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Abstract. Investigating perturbations of a periodic steady state of an electric cir-
cuit is of interest e.g. for small signal responses, noise analysis or the generation
of X-parameter models. We present a method based on Harmonic Balance, to
compute the Fourier coefficients of the circuit response for a small signal pertur-
bation of the input. The relation to two-tone Harmonic Balance is investigated and
it is shown that under suitable conditions the perturbation method can approxi-
mate the full two-tone solution at extremely lower costs. The method is tested on
a Gilbert mixer circuit.

1 Introduction

Many problems require the computation of the distortion of the periodic steady state
(PSS) of a circuit if a small signal perturbation is applied. For instance, if the small sig-
nal response itself is of interest [1]. Furthermore, noise analysis [2] is based on the injec-
tion of small random signals. Another application is the generation of X-parameters
[3,4], which provide a behavioral model for a neighborhood of the PSS.

Here, we present a frequency domain method, which is based on Harmonic Bal-
ance (HB) [5]. If HB is suitable for the simulated circuit then the perturbed solution is
obtained easily, with only little extra cost, compared to the HB for the unperturbed PSS.
In Sect. 2 we reformulate the problem as an infinite system of equations for the Fourier
coefficients. Simplifications for real-valued signals are given in Sect. 3. In Sect. 4 we
introduce a discretization scheme, which results in a linear system of equations, for a
truncated sequence of Fourier coefficients. The relation to multi-tone HB is described
in Sect. 5. In Sect. 6 we describe how our method can be utilized for the computation of
X-parameters. The method is tested on a Gilbert cell mixer circuit in Sect. 7.

2 Small Signal Distortion of a Periodic Steady State

Consider the circuit equations from modified nodal analysis

d
dt q

(
x(t)

)
+ f

(
x(t)

)
+ s(t) = 0, (1)

where x(t) ∈R
n is the vector of unknowns, f (x) ∈R

n the vector sums of static currents
entering each node, q(x) ∈ R

n the vector sums of charges and magnetic fluxes, and
s(t) ∈ R

n is the vector of time-dependent sources.
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Let x(t) be a PSS, i.e., x(t) solves (1) and for all t

s(t) = s(t+T ), x(t) = x(t+T ).

A perturbation s̃(t) = s(t)+Δs(t)will lead to the perturbed solution x̃(t) = x(t)+Δx(t).
For small Δs(t) and Δx(t) one obtains by linearization of q and f an approximated
version of the circuit equations, namely

d
dt q

(
x(t)

)
+ d

dt

(
C(t)Δx(t)

)
+ f

(
x(t)

)
+G(t)Δx(t)+ s(t)+Δs(t) = 0, (2)

where the Jacobians C(t) := dq
dx

(
x(t)

)
and G(t) := d f

dx

(
x(t)

)
are T -periodic matrix-

valued functions. Taking the difference of (2) and (1) one obtains the linear, time-variant
differential algebraic equation

d
dt

(
C(t)Δx(t)

)
+G(t)Δx(t)+Δs(t) = 0 (3)

for the perturbation Δx of the PSS x(t).
Now we consider a harmonic perturbation Δs(t) = ŝ ei(mω+Δω)t , where ω = 2π

T is
the angular frequency, the amplitude ŝ ∈ C

N is small, and Δω ∈ R is a frequency offset
which can be chosen such that |Δω| ≤ ω

2 for suitable m ∈ Z. With the Fourier expan-
sions

C(t) = ∑
k∈Z

Ck e
ikωt , G(t) = ∑

k∈Z
Gk e

ikωt , Δx(t) = ∑
k∈Z

Xke
i(kω+Δω)t

one obtains from (3)

d
dt

(
∑
�∈Z

ei(�ω+Δω)t ∑
k∈Z

C�−k Xk
)
+ ∑

�∈Z
ei(�ω+Δω)t ∑

k∈Z
G�−k Xk+ ŝ ei(mω+Δω)t = 0, (4)

For the expansion of Δx we have to assume that the homogeneous equations (i.e. for
Δs(t) = 0) have only the trivial solution. This means the circuit does not contain an
oscillator. Equating coefficients in (4) now yields

i(ω�+Δω) ∑
k∈Z

C�−k Xk+ ∑
k∈Z

G�−k Xk+ ŝδ�,m = 0, � ∈ Z, (5)

where δ�,m is the Kronecker delta.

3 Real-Valued Signals

In practice, we can assume that q(x) and f (x) are real-valued functions. This implies
thatC(t) andG(t) are real-valued, too, with Fourier coefficients satisfyingC−k =Ck and
G−k =Gk. Since the stimulus s(t) is in practice also a real-valued (typically sinusoidal)
signal, it is of interest how the solution of (3) can be used for the solution of real-valued
problems. It turns out that this requires only little extra effort.

In a preliminary step, solving (3) for the conjugate complex Δs(t) leads in (5) to the
equations

i(ω�−Δω)∑
k∈Z
C�−k X

∗
k +∑

k∈Z
G�−k X

∗
k + ŝδ�,−m = 0,
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with the solution coefficient X∗
k . Substituting � → −� and k → −k we obtain due to

C−k =Ck and G−k = Gk that

i(ω�+Δω)∑
k∈Z
C�−k X∗

−k+∑
k∈Z

G�−k X∗
−k+ ŝδ�,m = 0,

i.e. X∗
−k = Xk and thus the corresponding solution of (3) for Δs(t) is

Δx∗(t) = ∑
k∈Z

Xk e
−i(kω+Δω)t = Δx(t).

Therefore, Re(Δx(t)) and Im(Δx(t)) are the solutions for the real-valued perturbations
Re(Δs(t)) and Im(Δs(t)), respectively.

4 Discretization

Since (5) is an infinite system one needs to approximate it by a finite system of equa-
tions. Because one can expect the Fourier coefficients to decay for |k| → ∞, we set
Xk = 0, |m1 − k| > K for some m1 ∈ Z. To determine the remaining coefficients Xk,
k = m1 −K, . . . ,m1+K one chooses 2K+1 equations from (5), namely

i(ω�+Δω)
m1+K

∑
k=m1−K

C�−k Xk+
m1+K

∑
k=m1−K

G�−k Xk+ ŝδ�,m = 0, � = m2 −K, . . . ,m2+K, (6)

for some m2 ∈ Z. A possible choice would be m1 = m2 = m, to adapt to the center
frequency. However, if the computation has to be repeated for several values of m,
fixed values of m1 and m2 may be used to speed up computations, since only one LU-
factorization has to be performed.

The regularity of the system matrix is equivalent to the fact that there is only the
trivial solution to the homogeneous system. Since we have assumed this property for
the original system (5), it should typically hold for a sufficiently good approximation
(4).

The matrices Ck and Gk can be computed numerical integration, namely the trape-
zoidal rule, i.e.,

Gk =
1
T

∫ T

0
G(t)e−ikωt dt ≈ 1

TN

N−1

∑
�=0

G
(

�T
N

)
e−2πik�/N ,

where N > 2K+1 to avoid aliasing. Therefore, an efficient computation of Gk,Ck, and
x� := x( �T

N ) can be done by employing the Fast Fourier Transform, if a suitable N is
chosen, e.g. a power of two.

In contrast to the method in [1], where the linear, time-variant system (3) is solved in
the time domain by classical time stepping methods, the presented method works in the
frequency domain. It is well suited if the matrix sequences (Ck) and (Gk) are decaying
fast, which implies a fast decay of (Xk), too. This is a case if the PSS x(t) is nearly
sinusoidal, i.e., if the PSS can be computed by an HB efficiently, than the described
perturbation method will perform very well, too.
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5 Relation to Two-Tone Harmonic Balance (HB)

Two-tone signals are of the form x(t) = x̂(t, t), where

x̂(t1, t2) = x̂(t1+T1, t2) = x̂(t1, t2+T2), t1, t2 ∈ R.

They have a bi-variate Fourier expansion of the form

x(t) = ∑
k,�∈Z

X̂k,� e
2πi(k/T1+�/T2)t .

With the substitution k → k−n� and Xk,� = X̂k−n�,� this becomes

x(t) = ∑
k,�∈Z

Xk,� e
i(kω+�Δω)t , (7)

where ω = 2π
T1

and Δω = 2π
T2

−nω . Typically, n∈Z is chosen to obtain a small frequency
offset Δω , i.e., |Δω| ≤ ω

2 , which corresponds to the setting in Sect. 2. By a multi-rate
HB [6,7] one can compute the coefficients Xk,� for the PSS of a circuits driven by a
two-tone signal.

The two-tone solution of (1) with the real-valued source term

s̃(t) = s(t)+ ŝ ei(nω+Δω)t + ŝ e−i(nω+Δω)t

with a T1-periodic single-tone signal s(t), can be approximated using the solution of
(5) for sufficiently small ŝ. Due to linearity one solves for s(t) by a single-tone HB,
then solves (5) for Δs(t) = ŝ ei(nω+Δω)t . The solution for Δs(t) = ŝ e−i(nω+Δω)t follows
immediately from Sect. 3. By linear combination one obtains the solution

x(t) = ∑
k∈Z

1

∑
�=−1

X̃k,� e
i(kω+�Δω)t , (8)

where X̃k,0 is the result of a single-tone HB with source s(t), while X̃k,1 = Xk, X̃k,−1 =
X−k (cf. Sect. 3) are obtained from the subsequent perturbation approach (5). Obviously,
for small ŝ the expansion (8) will be a good approximation of the two-tone signal (7).

A general multi-tone analysis can be performed by computing the perturbed solution
for several harmonic perturbations ŝ� ei(k�ω+�Δω�)t separately, and using the linearity for
superpositions of the harmonics.

Note, that the computational cost of the perturbation approach is much smaller than
for the full two-tone HB since it requires only the computation of a single-tone PSS
with an essentially smaller system of equations to be solved. The cost for the final step
of solving the linear system (5) equals essentially the cost of one Newton step in the
preciding single-tone HB.

6 Extraction of X-Parameter Models

X-parameters [3,4] are a generalization of S-Parameters to describe the relation of
power waves in electronic circuits or devices. While S-Parameter are used as behavioral
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model for linear systems, X-parameters describe the behavior of a non-linear network
in the neighborhood of a PSS. For an N-port system with a large signal incident wave
of fixed amplitude at port 1 the X-parameter model reads as

Bp,k = X (FB)
p,k (|A1,1|, f0)Pk

+
q=N,�=K

∑
q=1,�=1

(q,�) �=(1,1)

X (S)
p,k,q,�(|A1,1|, f0)Aq,�P

k−� +X (T )
p,k,q,�(|A1,1|, f0)Aq,�P

k+�,

where Ap,k and Bp,k denote the k-th Fourier coefficient of the incident and scattered
wave at the p-th port, respectively. The first term describes the contribution of the large
signal inputDC+A1,1 e2πi f0+A1,1 e−2πi f0 , where P= ei arg(A1,1) and the amplitude |A1,1|
is fixed. The remaining terms contain variable small signal contributions.

Since the incident and scattered waves are related to voltages and currents at the
ports by

ap =
Up+ Ip Zp

2
√

Re(Zp)
bp =

Up − Ip Zp

2
√
Re(Zp)

, (9)

with the port impedance Zp (often 50Ω), we can obtain the X-parameters of a given
circuit with N ports as follows. The ports are connected to voltage sources with internal

impedance Zp. To obtain the large signal contribution X
(FB)
p,k (|A1,1|, f0), a HB with input

signal
V (t) =U0 cos(2π f0t)

at port 1, while all other sources are set to zero. The amplitude U0 is chosen to get the
proper value for |A1,1| as described e.g. in [4, Eq. (14)]. Using (9) we obtain

X (FB)
p,k (|A1,1|, f0) = Up,k − Ip,k Zp

2
√

Re(Zp)
,

where Up,k and Ip,k are the k-th Fourier coefficient of voltage and current at the p-th
port, respectively, which can be extracted immediately from the HB solution.

To compute the remaining X-parameters one can now use the perturbation method
described in Sect. 2. We reformulate the problem as an infinite system of equations for
the Fourier coefficients. Simplifications for real-valued signals are given in Sect. 3 and

4. First the matrices Gk and Ck are computed. Now, to determine X (S)
p,k,q,� and X (T )

p,k,q,�
we solve (6) with Δω = 0 and � chosen as the corresponding X-parameter index. The
source term ŝ is chosen as if all voltage sources are set to zero except for q-th port (as it
is done for the computation of S-Parameters). Due to linearity, the voltage at q-th port
can be any non-zero value, e.g. 1V is usually a good choice. Using again the relation
(9) we obtain the X-parameters as

X (S)
p,k,q,� =

Up,k − Ip,k Zp

Uq,�+ Iq,�Zq
X (T )
p,k,q,� =

Up,−k − Ip,−k Zp

Uq,�+ Iq,�Zq
.

One should take into account, that the system (6) has to be solved for the same � for
different ports q, i.e., the same matrix for several right hand sides. To save computation
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time, one should therefore first set up the system matrix for (6) (for each � = 1, . . . ,K),
do an LU-factorization, and solve for each right hand side (port) by forward and back-
ward substitution.

7 Numerical Test

We have tested the method on a Gilbert cell mixer [8, Fig. 2.8] with a local oscillator
input of 100MHz and an radio frequency (RF) input of 99.9MHz yielding a frequency
offset Δω = −0.1MHz. The perturbation method as well as the 2-tone HB were per-
formed with a cutoff of the Fourier series after K = 31 and N = 64 sampling points
for the trapezoidal rule. The RF signal is treated as perturbed input and the amplitude
is swept from 0.1mV to 0.4V. In Fig. 1 one can see the absolute value of Fourier coef-
ficients of the output signal for local oscillator amplitude 1V plotted against the RF
amplitude. As one can see the coefficients X̃0,1 and X0,1 agree very well for RF input
almost up to 0.1V. The coefficient X0,2 (only obtained by two-tone HB) is included as
a measure of non-linearity.

10-4 10-3 10-2 10-1 100

URF in V

10-10

10-5

U
O

ut
 in

 V

Fig. 1. Fourier coefficient X0,1 for perturbation technique and two-tone HB, as well as X0,2 for
two-tone HB as reference

The above result is confirmed by the relative �2-error (i.e. in the Euclidean norm)
over all coefficients (Fig. 2), obtained by comparison to a two-tone HB of high preci-
sion.
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Fig. 2. �2-error of perturbation technique.

8 Conclusion

The presented HB perturbation method permits the efficient analysis of the distortion
of a PSS by a small signal. The results allow a first assessment of the qualitative char-
acteristics of RF circuits with moderate nonlinear behavior.
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