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Preface

The 14th International Conference on Scientific Computing in Electrical Engineering
was held from 11–14 July 2022, in Amsterdam, the Netherlands. The conference took
place at the Centre for Mathematics and Computer Science (CWI), Amsterdam Science
Park, Amsterdam, the Netherlands. It was a festive event, marking the 25th anniversary
of SCEE, as the first conference was held in Darmstadt in 1997.

The conference topics were:

• Computational Electromagnetics: Modelling and parameter extraction, discretization
and solution methods, Applications: antennas, microwave, interconnects and on-chip
passive structures.

• Circuit Simulation and Design: Reduced order modelling, numerical integration
techniques, TCAD/EDA tools and techniques, Applications: radio frequency, power
electronics, optical networks.

• Coupled Problems: Field-circuit coupled problems, Multi-physics: substrate cou-
pling, coupling with electrical, thermal and mechanical problems, Applications:
co-simulation, electromagnetic compatibility, bio-engineering.

• Mathematical and Computational Methods: Inverse problems, optimization, multi-
scale schemes, solutions methods for large linear systems, differential-algebraic
equations, grid computing and parallel computing.

In the latter category, also the relatively new and popular topic of scientific machine
learning was addressed, as quite a few researchers are now focussing on this theme, for
example, with physics-informed neural networks (PINNs).

This conference edition had several invited/keynote speakers both from academia
and industry and contributed presentations in lecture and poster format. SCEE 2022 was
honoured by the presence of the following invited speakers:

• Ursula van Rienen (University of Rostock, Germany), Some Highlights from
Computational Electromagnetics @ SCEE

• Ricardo Riaza (Universidad Politécnica de Madrid, Spain), A Projective-Based
Formalism for Symmetric Modelling of Electrical Circuits

• Michael Günther (University ofWuppertal, Germany), Port-Hamiltonian Systems: A
Useful Approach in Electrical Engineering?

• IdoiaCortesGarcia (EindhovenUniversity of Technology, theNetherlands/TUDarm-
stadt, Germany), Multiphysical Modelling and Co-Simulation of Superconducting
Magnets in Accelerator Circuits

• Carolina Urzúa Torres (TU Delft, the Netherlands), Boundary Element Methods for
Electromagnetic Scattering at Complex Geometries

• Fernando Henriquez (EPFL-Switzerland), RELU Neural Network Galerkin Bound-
ary Element Method
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Participants of SCEE 2022 in front of the CWI building in Amsterdam

Another feature of this conference was the Industry Morning, where three renowned
speakers from industry gave very nice presentations on urgent topics within the
electronics industry:

• Liesbeth Vanherpe (ASML, Eindhoven, the Netherlands), Scientific Computing at
ASML

• Andras Poppe (SIEMENS Industry Software STS Strategic Innovation group, Hun-
gary, Budapest University of Technology and Economics (BME), Department of
Electron Devices, Hungary), Creating New Multi-Domain Digital Twins of LEDS
with an Attempt to Describe Their Ageing for Predictive Maintenance Schemes

• Jörg Ostrowski (ABB), Research within ABB.

In addition to these talks, we had a total of 33 oral presentations and 26 poster
presentations, completed with two special sessions: a meeting of the European project
(Marie-Skłodowska-Curie EID) ROMSOC and a meeting of the ECMI Special Interest
Group MSOEE.

On Wednesday evening, the SCEE standing committee, the program committee and
the local organizing committee also had a meeting, followed by a lovely dinner with the
invited speakers in restaurant “De Kas”, a restaurant in a greenhouse that uses only their
own grown products, and recently received a Michelin green star. A special highlight of
the SCEE 2022 was the visit to the Van Gogh Museum.

After this excursion, the conference dinner took place in the Vondelpark3 restaurant,
which is located in the heart of Amsterdam’smost famous park, in the formerVondelpark
pavilion. This venue is also used by Dutch broadcasting organization WNL for their
Sunday morning talk show. During the dinner, in the midst of a warm atmosphere, many
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ideas and new research directions were discussed in parallel to the enjoyment of good
food and wine.

For us, organizing SCEE 2022 took quite some effort. As many of you would know,
the 14th edition of the conference was first scheduled to take place in Darmstadt, Ger-
many. Due to strict COVID-19 regulations, the standing committee of SCEE, in close
consultation with the Darmstadt organizers, decided to choose a different location. It was
decided that the conference would be hosted again in March 2022 in the Netherlands,
like in 2020, but now in Amsterdam. Thanks to the efforts of Wil Schilders, who man-
aged to gather a team of organizing committee and avoid postponing the conference by
a period of two years. However, due to COVID-19-related measures in the Netherlands,
and similar problems in other European countries, in the first months of this year, we had
to postpone the conference till 11–14 July 2022 in anticipation that the situation would
be better then. We were finally able to have a great and enjoyable in-person conference
in the summer of 2022. Over the past year, a lot of hard work has been put into getting
the proceedings published in 2023. We thank the reviewers and the SCEE program com-
mittee members for their assistance during the reviews of the abstracts and the papers
for the proceedings.

September 2023 Martijn van Beurden
Neil Budko

Gabriela Ciuprina
Wil Schilders
Harshit Bansal

Ruxandra Barbulescu
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Harmonic Balance with Small Signal
Perturbation

Kai Bittner, Martin K. Steiger, and Hans Georg Brachtendorf(B)

University of Applied Sciences of Upper Austria, 4232 Hagenberg, Austria
kai.bittner@zeiss.com,

{Martin.Steiger,Hans-Georg.Brachtendorf}@fh-hagenberg.at

Abstract. Investigating perturbations of a periodic steady state of an electric cir-
cuit is of interest e.g. for small signal responses, noise analysis or the generation
of X-parameter models. We present a method based on Harmonic Balance, to
compute the Fourier coefficients of the circuit response for a small signal pertur-
bation of the input. The relation to two-tone Harmonic Balance is investigated and
it is shown that under suitable conditions the perturbation method can approxi-
mate the full two-tone solution at extremely lower costs. The method is tested on
a Gilbert mixer circuit.

1 Introduction

Many problems require the computation of the distortion of the periodic steady state
(PSS) of a circuit if a small signal perturbation is applied. For instance, if the small sig-
nal response itself is of interest [1]. Furthermore, noise analysis [2] is based on the injec-
tion of small random signals. Another application is the generation of X-parameters
[3,4], which provide a behavioral model for a neighborhood of the PSS.

Here, we present a frequency domain method, which is based on Harmonic Bal-
ance (HB) [5]. If HB is suitable for the simulated circuit then the perturbed solution is
obtained easily, with only little extra cost, compared to the HB for the unperturbed PSS.
In Sect. 2 we reformulate the problem as an infinite system of equations for the Fourier
coefficients. Simplifications for real-valued signals are given in Sect. 3. In Sect. 4 we
introduce a discretization scheme, which results in a linear system of equations, for a
truncated sequence of Fourier coefficients. The relation to multi-tone HB is described
in Sect. 5. In Sect. 6 we describe how our method can be utilized for the computation of
X-parameters. The method is tested on a Gilbert cell mixer circuit in Sect. 7.

2 Small Signal Distortion of a Periodic Steady State

Consider the circuit equations from modified nodal analysis

d
dt q

(
x(t)

)
+ f

(
x(t)

)
+ s(t) = 0, (1)

where x(t) ∈R
n is the vector of unknowns, f (x) ∈R

n the vector sums of static currents
entering each node, q(x) ∈ R

n the vector sums of charges and magnetic fluxes, and
s(t) ∈ R

n is the vector of time-dependent sources.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. van Beurden et al. (Eds.): SCEE 2022, MI 43, pp. 3–10, 2024.
https://doi.org/10.1007/978-3-031-54517-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54517-7_1&domain=pdf
https://doi.org/10.1007/978-3-031-54517-7_1
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Let x(t) be a PSS, i.e., x(t) solves (1) and for all t

s(t) = s(t+T ), x(t) = x(t+T ).

A perturbation s̃(t) = s(t)+Δs(t)will lead to the perturbed solution x̃(t) = x(t)+Δx(t).
For small Δs(t) and Δx(t) one obtains by linearization of q and f an approximated
version of the circuit equations, namely

d
dt q

(
x(t)

)
+ d

dt

(
C(t)Δx(t)

)
+ f

(
x(t)

)
+G(t)Δx(t)+ s(t)+Δs(t) = 0, (2)

where the Jacobians C(t) := dq
dx

(
x(t)

)
and G(t) := d f

dx

(
x(t)

)
are T -periodic matrix-

valued functions. Taking the difference of (2) and (1) one obtains the linear, time-variant
differential algebraic equation

d
dt

(
C(t)Δx(t)

)
+G(t)Δx(t)+Δs(t) = 0 (3)

for the perturbation Δx of the PSS x(t).
Now we consider a harmonic perturbation Δs(t) = ŝ ei(mω+Δω)t , where ω = 2π

T is
the angular frequency, the amplitude ŝ ∈ C

N is small, and Δω ∈ R is a frequency offset
which can be chosen such that |Δω| ≤ ω

2 for suitable m ∈ Z. With the Fourier expan-
sions

C(t) = ∑
k∈Z

Ck e
ikωt , G(t) = ∑

k∈Z
Gk e

ikωt , Δx(t) = ∑
k∈Z

Xke
i(kω+Δω)t

one obtains from (3)

d
dt

(
∑
�∈Z

ei(�ω+Δω)t ∑
k∈Z

C�−k Xk
)
+ ∑

�∈Z
ei(�ω+Δω)t ∑

k∈Z
G�−k Xk+ ŝ ei(mω+Δω)t = 0, (4)

For the expansion of Δx we have to assume that the homogeneous equations (i.e. for
Δs(t) = 0) have only the trivial solution. This means the circuit does not contain an
oscillator. Equating coefficients in (4) now yields

i(ω�+Δω) ∑
k∈Z

C�−k Xk+ ∑
k∈Z

G�−k Xk+ ŝδ�,m = 0, � ∈ Z, (5)

where δ�,m is the Kronecker delta.

3 Real-Valued Signals

In practice, we can assume that q(x) and f (x) are real-valued functions. This implies
thatC(t) andG(t) are real-valued, too, with Fourier coefficients satisfyingC−k =Ck and
G−k =Gk. Since the stimulus s(t) is in practice also a real-valued (typically sinusoidal)
signal, it is of interest how the solution of (3) can be used for the solution of real-valued
problems. It turns out that this requires only little extra effort.

In a preliminary step, solving (3) for the conjugate complex Δs(t) leads in (5) to the
equations

i(ω�−Δω)∑
k∈Z
C�−k X

∗
k +∑

k∈Z
G�−k X

∗
k + ŝδ�,−m = 0,
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with the solution coefficient X∗
k . Substituting � → −� and k → −k we obtain due to

C−k =Ck and G−k = Gk that

i(ω�+Δω)∑
k∈Z
C�−k X∗

−k+∑
k∈Z

G�−k X∗
−k+ ŝδ�,m = 0,

i.e. X∗
−k = Xk and thus the corresponding solution of (3) for Δs(t) is

Δx∗(t) = ∑
k∈Z

Xk e
−i(kω+Δω)t = Δx(t).

Therefore, Re(Δx(t)) and Im(Δx(t)) are the solutions for the real-valued perturbations
Re(Δs(t)) and Im(Δs(t)), respectively.

4 Discretization

Since (5) is an infinite system one needs to approximate it by a finite system of equa-
tions. Because one can expect the Fourier coefficients to decay for |k| → ∞, we set
Xk = 0, |m1 − k| > K for some m1 ∈ Z. To determine the remaining coefficients Xk,
k = m1 −K, . . . ,m1+K one chooses 2K+1 equations from (5), namely

i(ω�+Δω)
m1+K

∑
k=m1−K

C�−k Xk+
m1+K

∑
k=m1−K

G�−k Xk+ ŝδ�,m = 0, � = m2 −K, . . . ,m2+K, (6)

for some m2 ∈ Z. A possible choice would be m1 = m2 = m, to adapt to the center
frequency. However, if the computation has to be repeated for several values of m,
fixed values of m1 and m2 may be used to speed up computations, since only one LU-
factorization has to be performed.

The regularity of the system matrix is equivalent to the fact that there is only the
trivial solution to the homogeneous system. Since we have assumed this property for
the original system (5), it should typically hold for a sufficiently good approximation
(4).

The matrices Ck and Gk can be computed numerical integration, namely the trape-
zoidal rule, i.e.,

Gk =
1
T

∫ T

0
G(t)e−ikωt dt ≈ 1

TN

N−1

∑
�=0

G
(

�T
N

)
e−2πik�/N ,

where N > 2K+1 to avoid aliasing. Therefore, an efficient computation of Gk,Ck, and
x� := x( �T

N ) can be done by employing the Fast Fourier Transform, if a suitable N is
chosen, e.g. a power of two.

In contrast to the method in [1], where the linear, time-variant system (3) is solved in
the time domain by classical time stepping methods, the presented method works in the
frequency domain. It is well suited if the matrix sequences (Ck) and (Gk) are decaying
fast, which implies a fast decay of (Xk), too. This is a case if the PSS x(t) is nearly
sinusoidal, i.e., if the PSS can be computed by an HB efficiently, than the described
perturbation method will perform very well, too.
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5 Relation to Two-Tone Harmonic Balance (HB)

Two-tone signals are of the form x(t) = x̂(t, t), where

x̂(t1, t2) = x̂(t1+T1, t2) = x̂(t1, t2+T2), t1, t2 ∈ R.

They have a bi-variate Fourier expansion of the form

x(t) = ∑
k,�∈Z

X̂k,� e
2πi(k/T1+�/T2)t .

With the substitution k → k−n� and Xk,� = X̂k−n�,� this becomes

x(t) = ∑
k,�∈Z

Xk,� e
i(kω+�Δω)t , (7)

where ω = 2π
T1

and Δω = 2π
T2

−nω . Typically, n∈Z is chosen to obtain a small frequency
offset Δω , i.e., |Δω| ≤ ω

2 , which corresponds to the setting in Sect. 2. By a multi-rate
HB [6,7] one can compute the coefficients Xk,� for the PSS of a circuits driven by a
two-tone signal.

The two-tone solution of (1) with the real-valued source term

s̃(t) = s(t)+ ŝ ei(nω+Δω)t + ŝ e−i(nω+Δω)t

with a T1-periodic single-tone signal s(t), can be approximated using the solution of
(5) for sufficiently small ŝ. Due to linearity one solves for s(t) by a single-tone HB,
then solves (5) for Δs(t) = ŝ ei(nω+Δω)t . The solution for Δs(t) = ŝ e−i(nω+Δω)t follows
immediately from Sect. 3. By linear combination one obtains the solution

x(t) = ∑
k∈Z

1

∑
�=−1

X̃k,� e
i(kω+�Δω)t , (8)

where X̃k,0 is the result of a single-tone HB with source s(t), while X̃k,1 = Xk, X̃k,−1 =
X−k (cf. Sect. 3) are obtained from the subsequent perturbation approach (5). Obviously,
for small ŝ the expansion (8) will be a good approximation of the two-tone signal (7).

A general multi-tone analysis can be performed by computing the perturbed solution
for several harmonic perturbations ŝ� ei(k�ω+�Δω�)t separately, and using the linearity for
superpositions of the harmonics.

Note, that the computational cost of the perturbation approach is much smaller than
for the full two-tone HB since it requires only the computation of a single-tone PSS
with an essentially smaller system of equations to be solved. The cost for the final step
of solving the linear system (5) equals essentially the cost of one Newton step in the
preciding single-tone HB.

6 Extraction of X-Parameter Models

X-parameters [3,4] are a generalization of S-Parameters to describe the relation of
power waves in electronic circuits or devices. While S-Parameter are used as behavioral
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model for linear systems, X-parameters describe the behavior of a non-linear network
in the neighborhood of a PSS. For an N-port system with a large signal incident wave
of fixed amplitude at port 1 the X-parameter model reads as

Bp,k = X (FB)
p,k (|A1,1|, f0)Pk

+
q=N,�=K

∑
q=1,�=1

(q,�) �=(1,1)

X (S)
p,k,q,�(|A1,1|, f0)Aq,�P

k−� +X (T )
p,k,q,�(|A1,1|, f0)Aq,�P

k+�,

where Ap,k and Bp,k denote the k-th Fourier coefficient of the incident and scattered
wave at the p-th port, respectively. The first term describes the contribution of the large
signal inputDC+A1,1 e2πi f0+A1,1 e−2πi f0 , where P= ei arg(A1,1) and the amplitude |A1,1|
is fixed. The remaining terms contain variable small signal contributions.

Since the incident and scattered waves are related to voltages and currents at the
ports by

ap =
Up+ Ip Zp

2
√

Re(Zp)
bp =

Up − Ip Zp

2
√
Re(Zp)

, (9)

with the port impedance Zp (often 50Ω), we can obtain the X-parameters of a given
circuit with N ports as follows. The ports are connected to voltage sources with internal

impedance Zp. To obtain the large signal contribution X
(FB)
p,k (|A1,1|, f0), a HB with input

signal
V (t) =U0 cos(2π f0t)

at port 1, while all other sources are set to zero. The amplitude U0 is chosen to get the
proper value for |A1,1| as described e.g. in [4, Eq. (14)]. Using (9) we obtain

X (FB)
p,k (|A1,1|, f0) = Up,k − Ip,k Zp

2
√

Re(Zp)
,

where Up,k and Ip,k are the k-th Fourier coefficient of voltage and current at the p-th
port, respectively, which can be extracted immediately from the HB solution.

To compute the remaining X-parameters one can now use the perturbation method
described in Sect. 2. We reformulate the problem as an infinite system of equations for
the Fourier coefficients. Simplifications for real-valued signals are given in Sect. 3 and

4. First the matrices Gk and Ck are computed. Now, to determine X (S)
p,k,q,� and X (T )

p,k,q,�
we solve (6) with Δω = 0 and � chosen as the corresponding X-parameter index. The
source term ŝ is chosen as if all voltage sources are set to zero except for q-th port (as it
is done for the computation of S-Parameters). Due to linearity, the voltage at q-th port
can be any non-zero value, e.g. 1V is usually a good choice. Using again the relation
(9) we obtain the X-parameters as

X (S)
p,k,q,� =

Up,k − Ip,k Zp

Uq,�+ Iq,�Zq
X (T )
p,k,q,� =

Up,−k − Ip,−k Zp

Uq,�+ Iq,�Zq
.

One should take into account, that the system (6) has to be solved for the same � for
different ports q, i.e., the same matrix for several right hand sides. To save computation
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time, one should therefore first set up the system matrix for (6) (for each � = 1, . . . ,K),
do an LU-factorization, and solve for each right hand side (port) by forward and back-
ward substitution.

7 Numerical Test

We have tested the method on a Gilbert cell mixer [8, Fig. 2.8] with a local oscillator
input of 100MHz and an radio frequency (RF) input of 99.9MHz yielding a frequency
offset Δω = −0.1MHz. The perturbation method as well as the 2-tone HB were per-
formed with a cutoff of the Fourier series after K = 31 and N = 64 sampling points
for the trapezoidal rule. The RF signal is treated as perturbed input and the amplitude
is swept from 0.1mV to 0.4V. In Fig. 1 one can see the absolute value of Fourier coef-
ficients of the output signal for local oscillator amplitude 1V plotted against the RF
amplitude. As one can see the coefficients X̃0,1 and X0,1 agree very well for RF input
almost up to 0.1V. The coefficient X0,2 (only obtained by two-tone HB) is included as
a measure of non-linearity.

10-4 10-3 10-2 10-1 100

URF in V

10-10

10-5

U
O

ut
 in

 V

Fig. 1. Fourier coefficient X0,1 for perturbation technique and two-tone HB, as well as X0,2 for
two-tone HB as reference

The above result is confirmed by the relative �2-error (i.e. in the Euclidean norm)
over all coefficients (Fig. 2), obtained by comparison to a two-tone HB of high preci-
sion.
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Fig. 2. �2-error of perturbation technique.

8 Conclusion

The presented HB perturbation method permits the efficient analysis of the distortion
of a PSS by a small signal. The results allow a first assessment of the qualitative char-
acteristics of RF circuits with moderate nonlinear behavior.
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Abstract. We survey in this contribution some recent ideas involving the use of
a homogeneous formalism to set up electrical circuit models. Broadly, the goal is
to avoid any lack of generality in the modeling process by avoiding unnecessarily
restrictive assumptions in the form of the characteristics of the circuit devices.
We discuss how to use this approach in the framework of nodal analysis, aiming
at the development of computationally efficient models. Except for some minor
technicalities arising in the index analysis, the discussion is deliberately kept at a
simple level.

1 Introduction

Choosing either a current-controlled or a voltage-controlled description for any given
circuit device always entails both a lack of generality and of symmetry in symbolic
circuit analysis. This is already the case in the most elementary stages of circuit the-
ory, when one chooses between the forms v = Ri and i = Gv to write Ohm’s law [16].
The same happens in the nonlinear context: choosing between any of the two nonlinear
counterparts of such relations, namely v= f (i) or i= g(v) for whatever functions f or
g, necessarily excludes some devices from the analysis. Focusing on specific forms of
f or g which are known to admit a global inverse entails an obvious loss of general-
ity. Similar remarks apply to capacitors, inductors and memristors, now involving the
charge/flux variables in their characteristics.

A way to circumvent these limitations comes from choosing a homogeneous
description for the devices (as a historical anecdote, worth noting is that homogeneous
coordinates were created, in a completely different context, by A. F. Möbius in 1827
[14], exactly the year of publication of Ohm’s book [16], what motivates an anachronic
speculation about what the evolution of circuit theory might have been should Ohm
have used this formalism). In the linear resistive setting, such a homogeneous stand-
point would amount to writing Ohm’s law as

Pv−Qi= 0 (1)

for two real parameters P, Q which do not vanish simultaneously. The assumptions P �=
0 or Q �= 0 imply that the resistance or the conductance, respectively, are well-defined
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. van Beurden et al. (Eds.): SCEE 2022, MI 43, pp. 11–22, 2024.
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as R=Q/P orG=P/Q. The variables (P :Q) are defined only up to a nonzero constant
and therefore define a pair of homogeneous coordinates of a point lying on a projective
line RP, which seems to provide the natural mathematical context to accommodate all
possible resistance values (including zero and infinity) in a comprehensive manner. The
same ideas apply to linear circuits in sinusoidal steady state, working in this case in the
complex domain.

Still in the linear context and from the same homogeneous perspective, a way to
reduce model dimensionality without losing generality comes from writing Ohm’s law
in parametric form, that is,

i = Pu (2a)

v = Qu, (2b)

where u is an adimensional variable from which both the current and the voltage can
be explicitly computed. In turn, this provides a route to extend the approach to the
nonlinear context, namely by writing the characteristics of nonlinear (resistive) devices
as

i = ψ(u) (3a)

v = ζ (u), (3b)

for certain functions ψ , ζ . Such a global parametric description is well-defined for
a broad class of devices, as discussed in [21,22]. Current-controlled and voltage-
controlled descriptions are of course included in (3), just by letting ψ or ζ be the identity
map. However, (3) also accommodates, for example, hysteresis loops not admitting a
global description in terms of either the current or the voltage. The form (3) is also of
interest when, for the sake of generality, one wants to leave the nature of the device
unspecified in the modeling process, at least up to a certain stage.

A systematic approach to linear and nonlinear circuit analysis stemming from these
ideas is discussed in [20,21]. One of the challenges of this approach is to accommodate
it within a computationally efficient framework, for simulation purposes. Needless to
say, nodal analysis is the key tool to set up automatically circuit models with a reduced
dimensionality, something which is essential in large-scale circuit analysis and simula-
tion. In this direction, the main purpose of this contribution is to discuss some features
of nodal models of nonlinear circuits in which some branches are given a homogeneous
description of the form (3), for any of the reasons discussed in the previous paragraph.
This will be addressed in Sects. 2 and 3: in particular, the latter section provides an index
characterization of the resulting differential-algebraic circuit models. For simplicity, we
will restrict the use of homogeneous descriptions to (some) resistive devices, by assum-
ing that capacitors are voltage-controlled and inductors current-controlled. For space
restrictions, other analytical aspects involving homogeneous descriptions of circuits
will be discussed in less detail in Sect. 4. Finally, Sect. 5 compiles some concluding
remarks.

2 Nodal Models

Digraphs and the Incidence Matrix. We refer the reader to [1,3–5] for background
on graph and digraph theory and, in particular, for details on the claims which are
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here presented without proof. We assume throughout the document that the digraph
underlying the circuit has n nodes (vertices) and m branches (edges), and also that it is
connected and has no branches with just one incident node. Let us choose a reference
node and map the remaining nodes and the branches onto the sets {1, . . . , n− 1} and
{1, . . . , m}, respectively. In this setting, the entries of the reduced incidence matrix
A = (a jk) ∈ R

(n−1)×m are defined as a jk = 1 (resp. −1) if the k-th branch leaves (resp.
enters) node j, and 0 otherwise. Any reduced incidence matrix of a digraph is totally
unimodular (that is, the determinant of all square submatrices is either 1, −1 or 0), and
the determinant of a square submatrix of order n− 1 is ±1 if and only if the branches
corresponding to its columns define a spanning tree.

Nodal Analysis. After choosing a reference node, Kirchhoff laws can be easily
described in terms of the corresponding reduced incidence matrix as Ai = 0, where
i is the m-dimensional vector of branch currents, and v = ATe, where v and e stand
for the vectors of branch voltages and node potentials, with dimensions m and n− 1,
respectively.

We will split the incidence matrix according to the nature of the circuit device lying
on each branch: specifically, we will let Ac, Al , Ag, Av, Ai stand for the submatrices of A
defined by the columns corresponding to capacitors, inductors, voltage-controlled resis-
tors, voltage sources and current sources, respectively. Resistors with a homogeneous
description will be later labeled with the subscript h. The same notational convention
will apply to the components of the voltage and current vectors; that is, vc, vl , etc. will
be defined from the components of the voltage vector which correspond to capacitors,
inductors and so on.

As indicated in Sect. 1, we will assume for simplicity that capacitors are voltage-
controlled by a smooth relation of the form qc = η(vc), with C(vc) standing for the
incremental capacitance matrix η ′(vc). Analogously, inductors will be assumed to be
defined by a smooth current-controlled characteristic reading as ϕl = φ(il); we will let
L(il) = φ ′(il) denote the incremental inductance matrix. Furthermore, C(vc) and L(il)
will be assumed to be nonsingular (invertible) for all values of vc and il .

In the context of nodal analysis, it is very common to assume that resistors are
voltage-controlled by a smooth relation of the form ig = γ(vg). With this setup, the
expressions provided above for Kirchhoff laws make it possible to write the nodal equa-
tions in the form

C(vc)v′
c = ic (4a)

L(il)i′l = ATl e (4b)

0 = Acic+Aviv+Alil +Agγ(ATg e)+Aiis(t) (4c)

0 = vc −ATc e (4d)

0 = vs(t)−ATv e, (4e)

where is(t) and vs(t) denote the excitations in the (assumed independent) current and
voltage sources. By eliminating capacitor voltages and currents one easily gets theMod-
ified Nodal Analysis (MNA) model, namely
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AcC(ATc e)A
T
c e

′ = −Aviv −Alil −Agγ(ATg e)−Aiis(t) (5a)

L(il)i′l = ATl e (5b)

0 = vs(t)−ATv e, (5c)

widely used in nonlinear circuit simulation [7,8,12,18,19,24,25]. With some extra
work, later results can be naturally extended to MNA models. However, we mostly
restrict the analysis to models of the form (4) for the sake of simplicity.

Homogeneous Description of (Some) Resistors. The aforementioned voltage-control
assumption on resistors may be unnecessarily restrictive in different practical situa-
tions. Even if this assumption may be reasonable for most resistors, it excludes resistive
devices for which no global controlling variable exist and, more important, rules out the
chance to leave the nature of the device unspecified up to a certain stage of the modeling
process: for instance, the latter is important when one wants the model to account for
both a voltage-controlled or a current-controlled device in a given circuit branch (think
e.g. of an ideal switch). Along the lines presented in Sect. 1, a way to do so is to con-
sider a second class of resistors (besides the voltage-controlled ones already introduced
above) and give them a parametric description of the form

ih = ψ(uh) (6a)

vh = ζ (uh). (6b)

Notice the use of the subindex h for these resistors and be aware of the fact that ψ and
ζ are now vector-valued (these maps were used for a single device in Sect. 1). Also
worth noting is that the family described by (6) includes current-controlled resistors as
a particular case, obtained by setting ψ(uh) = uh. Under a smoothness assumption on
such resistors and provided that there are no coupling effects, we will let Pj and Qj

(with j indexing the set of homogeneous resistors) stand for the corresponding entries
of ψ ′ and ζ ′, respectively. We further assume that, for each homogeneous resistor, at
least one of the parameters Pj or Qj is not zero.

In this framework, a nodal model with the structure depicted in (4) takes the form

C(vc)v′
c = ic (7a)

L(il)i′l = ATl e (7b)

0 = Acic+Aviv+Alil +Agγ(ATg e)+Ahψ(uh)+Aiis(t) (7c)

0 = vc −ATc e (7d)

0 = vs(t)−ATv e (7e)

0 = ζ (uh)−ATh e, (7f)

whereas the MNA reads as

AcC(ATc e)A
T
c e

′ = −Aviv −Alil −Agγ(ATg e)−Ahψ(uh)−Aiis(t) (8a)

L(il)i′l = ATl e (8b)

0 = vs(t)−ATv e (8c)

0 = ζ (uh)−ATh e. (8d)
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3 Index Analysis

The notion of the index is essential for the analysis and the numerical treatment of
differential-algebraic systems such as (4), (5), (7) or (8) [11,12,19]. In particular, index-
one systems are important because they admit (at least in a local sense) a state-space
reduction in terms of the differential variables arising in the model, and also because
they are better suited for numerical treatment than higher-index systems.

Under the assumption that C(vc) and L(il) are nonsingular, the nodal models (4)
and (7) display a semiexplicit form: this makes the index analysis a bit simpler than
for the MNA counterparts (5) and (8). Indeed, for semiexplicit equations the index-
one condition amounts to the nonsingularity of the matrix of partial derivatives of the
functions defining the algebraic part of the system (namely, the equations which do not
involve time derivatives) with respect to the algebraic variables (again, those for which
no time derivative appears in the model).

Specifically, for the model (7), the algebraic variables are e, ic, iv and uh, and the
index-one condition is equivalent to the nonsingularity of the matrix

⎛
⎜⎜⎝

AgGATg Ac Av AhP
−ATc 0 0 0
−ATv 0 0 0
−ATh 0 0 Q

⎞
⎟⎟⎠ , (9)

where G= γ ′(vg) is diagonal (that is, no coupling effects among resistors are allowed),
and P and Q are diagonal matrices whose diagonal entries are defined by the corre-
sponding parameters of the different homogeneous resistors. Note that in (9) we omit
the dependence of G on ATg e and of P and Q on the homogeneous variables uh.

Our main result (Theorem 1 below) presents an index-one characterization of (7) in
terms of the structure of spanning trees in the circuit. This approach can be traced back
to Kirchhoff’s seminal paper [10], and is of particular interest for nonpassive problems,
namely, those in which some of the conductances Gi and/or the ratios Pj/Qj or Qj/Pj

for homogeneous resistors (remember that, for each j, at least one of the parameters
Pj and Qj does not vanish) become zero or negative. Note that the subindices of the
individual devices correspond here to the global numbering of the digraph edges and
not to their position in the G, P and Q matrices. In the same direction, we assume that
each spanning tree T is defined by the index set of its constituting branches or twigs; that
is, every such T amounts to a subset of {1, . . . ,m} with n− 1 elements which specify
a spanning tree. The complement of T in {1, . . . ,m} is written as T and stands for the
index set of the cotree branches or chords. Note also that the absence of proper trees
implicitly defines a null sum in (10) below, ruling out such configurations from the
index-one setting.

Theorem 1. The determinant of the matrix (9) equals the polynomial

∑
T∈Tp

∏
i∈Tg
j∈Th
k∈Th

GiPjQk, (10)
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where Tp stands for the set of proper trees (namely, those including all voltage sources
and capacitors, and neither current sources nor inductors), and Tg, Th denote the indices
of T corresponding to twigs with voltage-controlled resistors and with homogeneous
resistors, respectively, whereas Th denotes the set of chords with homogeneous resis-
tors.

Therefore, provided that C(vc) and L(il) are nonsingular, the model (7) is index one
exactly for the values of the variables vg = ATg e, uh which do not annihilate (10).

Proof. For notational simplicity, let us join together capacitors and voltage sources
under the subscript cv: we are therefore led to characterize the determinant of

⎛
⎝

AgGATg Acv AhP
−ATcv 0 0
−ATh 0 Q

⎞
⎠ .

We will do so by looking at this matrix as the Schur complement [9] of the identity
block in ⎛

⎜⎜⎝
0 Acv AhP AgG

−ATcv 0 0 0
−ATh 0 Q 0
−ATg 0 0 I

⎞
⎟⎟⎠

and, in turn, the latter matrix as the one obtained after setting P0 = I and Q0 = 0 in
⎛
⎜⎜⎝

0 AcvP0 AhP AgG
−ATcv Q0 0 0
−ATh 0 Q 0
−ATg 0 0 I

⎞
⎟⎟⎠ .

By denoting Ã = (Acv Ah Ag), P̃ = diag(P0, P, G), Q̃ = diag(Q0, Q, I), this matrix has
the form (

0 ÃP̃
−ÃT Q̃

)
.

By multiplying the first n− 1 columns by −1 and performing an obvious permutation
of columns, one can easily check that

det

(
0 ÃP̃

−ÃT Q̃

)
= (−1)(n−1)(m̃+1) det

(
ÃP̃ 0
Q̃ ÃT

)
,

where m̃ is the total number of voltage sources, capacitors and resistors. Now, the latter
determinant can be computed by means of a generalized Laplace expansion (see e.g.
[9]) along the first n− 1 rows. In light of the properties of determinants of the square
submatrices of the incidence matrix and the diagonal form of P̃, it is not difficult to see
that

det

(
ÃP̃ 0
Q̃ ÃT

)
= ∑

T∈Tcvr

(
(−1)σ(T ) detAT

(
∏
j∈T

P̃j

)
det

(
Q̃T ÃT

))
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where Q̃T is the submatrix of Q̃ defined by the columns indexed by T and σ(T ) is the
exponent which corresponds to the spanning tree T in the Laplace expansion, namely

1+ . . .+n−1+ ∑
j∈T

j.

Additionally, Tcvr denotes the family of spanning trees just including capacitors, volt-
age sources and resistors.

In turn, after a transposition and a permutation of rows one gets

det
(
Q̃T ÃT

)
= (−1)(n−1)(m̃−n+1) det

(
Ã
Q̃T
T

)
= (−1)(n−1)(m̃−n+1)(−1)σ(T ) detAT ∏

k∈T
Q̃k,

where the last identity owes to the structure of the matrix Q̃T . Altogether, the different
expressions obtained for the successive determinants yield

det

(
0 ÃP̃

−ÃT Q̃

)
= ∑

T∈Tcvr

(
(−1)2[(n−1)(m̃+1)+σ(T )]−(n−1)n(detAT )2 ∏

j∈T
P̃j ∏

k∈T
Q̃k

)
.

Note that the exponent of −1 has the same parity as n(n− 1), which is necessarily
an even number. The fact that detAT = ±1 then implies that the determinant above
amounts to

∑
T∈Tcvr

(
∏
j∈T

P̃j ∏
k∈T

Q̃k

)
.

Finally, we make use of the definition of P̃ and Q̃ to show that the latter expression
yields (10). First, the conditions P0 = I and Q0 = 0 for the entries which correspond
to capacitors and voltage sources reduce the range of the sum to the family of proper
trees (namely, those including all voltage sources and capacitors) since, otherwise, a
voltage source or a capacitor in the cotree annihilates the corresponding term because
of the condition Q̃k = 0. For voltage-controlled resistors and by construction of P̃ and
Q̃, each P̃i-entry is simply the incremental conductance Gi, whereas the corresponding
entry in Q̃ amounts to 1. This is responsible for the factors ∏i∈Tg Gi in (10). Finally,
homogeneous resistors contribute the remaining factors in (10) simply because P̃j = Pj

and Q̃k = Qk, again by the definition of P̃ and Q̃. This completes the proof. �
Some particular cases merit additional remarks: in the absence of homogeneous

resistors, (10) essentially amounts to Maxwell’s characterization of the admittance
nodal matrix [13], since only the conductances within the twigs of proper trees are
involved. By contrast, when all resistors are given a homogeneous description, then
(10) amounts to

∑
T∈Tp

∏
j∈Th
k∈Th

PjQk, (11)

just formulated in terms of the homogeneous parameters P, Q. In particular, from (11)
one can also accommodate the case in which all the parameters Pj are nonzero, an
assumption which allows for a local current-controlled description of all resistors: after
dividing the (11) by the product of all Pj-parameters, this expression then amounts to
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the sum of chord resistance products extended over the set of proper trees. The example
that follows should be of help in clarifying the expressions arising in all these contexts.
Let us also emphasize that, in strictly locally passive problems (in which all incremen-
tal conductances are positive and, for each j, Pj and Qj do not vanish and have the
same sign), all terms in (10) have the same sign and therefore the sum is not zero, pro-
vided that there exists at least one proper tree. The latter condition is equivalent to the
absence of VC-cycles and IL-cutsets, a topological condition which is well-known to
characterize index-one configurations in strictly locally passive circuits [7,25].

Example. For illustration, consider the simple circuit depicted in Fig. 1. To keep the
terms of the discussion as simple as possible, assume that both the capacitor and the
inductor are linear, with nonzero capacitance and inductance C and L, respectively.

Fig. 1. An elementary circuit example.

As indicated above, in nodal analysis it is very often the case that resistors are
assumed to be voltage-controlled. In our setting, this would mean that they are governed
by the (assumed differentiable) characteristics i1 = γ1(v1) and i2 = γ 2(v2). By directing
the branches top-down or (the one accommodating the capacitor) towards the right, the
nodal equations (4) take the form

Cv′
c = ic (12a)

Li′l = e1 (12b)

0 = ic+ il + γ1(e1) (12c)

0 = −ic+ γ 2(e2) (12d)

0 = vc − e1+ e2, (12e)

with the subindices 1 and 2 in the node potentials corresponding to the NW and NE
nodes. The determinant of the matrix of partial derivatives of (12c)–(12e) with respect
to the algebraic variables e1, e2, ic is easily seen to be G1+G2, with Gj = γ ′

j(e j) for
j = 1, 2. Notice that G1 +G2 corresponds to the sum of conductances in the circuit
proper trees, shown in Fig. 2.
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Fig. 2. Proper trees.

In this voltage-controlled setting, we may therefore guarantee that the circuit is
index one if and only if G1+G2 �= 0. However, this assumption excludes some cases
which may be of interest in practice. To avoid lacking generality, we may resort to a
homogeneous description of the resistors and write i j =ψ j(u j), v j = ζ j(u j) for j= 1, 2.
Now the model (7) is defined by (12a)–(12b) together with the algebraic equations

0 = ic+ il +ψ1(u1) (13a)

0 = −ic+ψ2(u2) (13b)

0 = vc − e1+ e2 (13c)

0 = −e1+ζ1(u1) (13d)

0 = −e2+ζ2(u2) (13e)

and some elementary computations show that the corresponding determinant is now

P1Q2+Q1P2, (14)

where Pj = ψ j
′(u j), Qj = ζ j

′(u j) for j = 1, 2.
The polynomial shown in (14) is homogeneous of degree one in each pair of vari-

ables (Pj,Qj): in greater generality, so is (11). What we want to illustrate is that the
expression just obtained accounts for all possible forms in the characteristics of resis-
tors. For instance, the voltage-control assumption supporting (12) above essentially
amounts to assuming Q1 �= 0 �=Q2, what makes it possible to divide (14) by Q1Q2 (this
is known as a dehomogenization of (14)) to get the aforementioned expression G1+G2,
with Gj = Pj/Qj. But other cases are also of interest: for instance, the assumption that
only the first resistor is voltage-controlled yields, by the same token, the expression

G1Q2+P2,

which exemplifies the form (10) obtained in Theorem 1. The tree on the left of Fig. 2
accounts for the term G1Q2 (since resistor 1 is a twig and resistor 2 is a chord) and,
likewise, the tree on the right just yields the second term, namely P2. Another case
of interest results from the assumption that both resistors are current-controlled: here,
after dividing (14) by P1P2 one gets the expression R1+R2, with Rj =Qj/Pj; note that
the Rj’s arise as the chord resistances from each spanning tree, that is, R1 comes from
the tree on the right of Fig. 2 and R2 from the one on the left. Worth remarking is that
when both resistors are current-controlled, the condition R1+R2 = 0 prevents the model
from being index one, something that remains somehow hidden if devices are assumed
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to be voltage-controlled, as in the (so to speak) standard approach to nodal analysis. We
encourage the reader to elaborate on the main idea by examining other cases, e.g. by
checking that, when resistor 1 is voltage-controlled and resistor 2 current-controlled,
(14) amounts to G1R2+1.

The essential idea behind this elementary example is that by means of dehomoge-
nization techniques one gets the particular conditions characterizing the index in spe-
cific contexts from the general form shown in (14): we refer the reader to [20] for further
uses of such techniques.

4 Other Applications of Homogeneous Models

In this section we discuss, in less detail, other applications of the homogeneous for-
malism. The first one involves DC circuits, in which operating points are computed
by open-circuiting capacitors and short-circuiting inductors. Using the model (7), the
equations describing operating points are easily seen to be

0 = Alil +Aviv+Agγ(ATg e)+Ahψ(uh)+AiIs (15a)

0 = −ATl e (15b)

0 = vc −ATc e (15c)

0 = Vs −ATv e (15d)

0 = ζ (uh)−ATh e, (15e)

where Is and Vs stand for the DC excitation terms in the sources. Provided that a DC
operating point does exist, the nonsingularity of the matrix of partial derivatives of the
right-hand side of (15) makes it unique, as a straightforward consequence of the inverse
function theorem. This matrix of partial derivatives reads as

⎛
⎜⎜⎜⎜⎝

AgGATg Al Av AhP 0
−ATl 0 0 0 0
−ATc 0 0 0 Ic
−ATv 0 0 0 0
−ATh 0 0 Q 0

⎞
⎟⎟⎟⎟⎠
,

which is easily seen to be nonsingular if and only if so is
⎛
⎜⎜⎝

AgGATg Al Av AhP
−ATl 0 0 0
−ATv 0 0 0
−ATh 0 0 Q

⎞
⎟⎟⎠ .

Notice that this matrix has the same form as (9), and therefore the characterization of
index-one configurations stated in Theorem 1 should have a dual result characterizing
nondegenerate operating points in the homogeneous framework.

Other Uses of the Homogeneous Formalism. From a different perspective, the intrin-
sic symmetry provided by the homogeneous description of devices can be extended,
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at least for linear circuits, to handle both voltage and current sources in a unifying
framework. This idea can be pursued further as to accommodate Thévenin and Norton
equivalent circuits within a comprehensive setting [23].

Projective-based techniques in circuit modeling also find applications in power sys-
tem modeling, fault diagnosis and the qualitative analysis of nonlinear circuits: see
[17,20,22] and references therein. The very idea behind (2) suggests that homogeneous
descriptions should be useful in the modeling of switching circuits, a topic which is
in the scope of future research. Possibly, other application fields may benefit from this
formalism.

5 Concluding Remarks

To sum up, homogeneous description of devices are of interest when trying to avoid
any lack of generality in the circuit modeling process. Additionally, one may retain the
computational advantages of the nodal approach by using homogeneous descriptions
only for specific devices which for whatever reason demand so. Needless to say, the
idea can be naturally extended to reactive devices and also to memristors. Controlled
sources and coupling effects may also be accommodated in this framework along the
lines suggested in [21]. Future work may extend the index analysis here presented to
MNAmodels, as well as to index-two configurations and also to other families of circuit
models, including distributed models involving partial differential-algebraic equations
[2,6,15,24,25].
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Abstract. We present a recently developed electrical circuit formulation that
has port-Hamiltonian (pH) structure and results in a structurally amenable
differential-algebraic equation (DAE) system of index ≤ 1. Being pH assures
energy stability—the total energy of the system cannot increase. It also pro-
vides compositionality—larger pH models can be assembled from smaller ones
in a standard way that facilitates building pH models in software. Structurally
amenable and index ≤ 1 eliminate the phases of DAE index analysis and reduc-
tion, which are commonly used in circuit simulation software. Thus, standard
numerical solvers can be applied directly to integrate the DAE. In addition, it has
a known a priori block-triangular form that can be exploited for efficient numer-
ical solution. A prototype MATLAB code shows high potential for development
of this “compact port-Hamiltonian” (CpH) methodology.

1 Summary

Computer simulation of electrical circuits entails integrating systems of differential-
algebraic equations (DAEs). Our work forms a DAE of remarkably simple structure
promising faster numerics. It is a synergy of three oldish themes

• Energy-based port-Hamiltonian modelling, from ∼2000, [1–3]
• Structural analysis (SA) of circuit topology, from ∼1960, [4–7] but using ideas of

Kron dating to the 1940s, [8]
• Structural analysis of general DAEs, from 1988, [9,10]

Port-Hamiltonian (pH) is a philosophy/technology for multi-physical system mod-
elling, making energy flow central; while SA deploys combinatorial algorithms, inex-
pensive compared with the numerical ones, to reveal structure and thus speed up the
numerics—cf. reordering algorithms in solving sparse linear systems.

2 Constituents

We take the three parts of the title in turn.

“Port-Hamiltonian”. The universe runs on energy conservation across all physi-
cal domains. It is perilous for modelling to ignore this. The port-Hamiltonian (pH)

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. van Beurden et al. (Eds.): SCEE 2022, MI 43, pp. 23–31, 2024.
https://doi.org/10.1007/978-3-031-54517-7_3
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Fig. 1. pH system.

approach [3] splits a system into an energy-
storing part S, a resistive or energy-dissipating
part R, a control or input-output part P, and
lossless energy-distributing elements D connect-
ing them, Fig. 1. Stored energy in S is described
by a Hamiltonian function H . The e , f lines are
ports where energy flows; e · f has dimension of
power. For a circuit they are voltages and currents
and D represents Kirchhoff’s laws. Multi-physics
models and numerics respecting this structure are
energy-stable, e.g. perpetual motion is excluded.

“Index ≤ 1 ”. Unlike ODEs, DAEs typically have hidden constraints found by differ-
entiating one or more equations. As an example take the simple DAE

x1 −g(t) = 0, ẋ1 − x2 = 0.

To find the solution x1 = g(t), x2 = ġ(t), one must differentiate the first equation.
An index of the DAE measures how much difficulty this causes. There are several;

we use the differentiation index [11], the largest number of times some equation must
be differentiated so the resulting equations can be solved to give an ODE.

Index > 1 DAEs typically give numerical difficulties. In practice, some index-
reduction procedure is applied to arrive at an index-1 DAE, e.g. Pantelides’s algo-
rithm [9].

Those of index ≤ 1 are solvable by standard codes e.g. DASSL [12], SUNDIALS [13],
MATLAB’s ode15i etc. Popular circuit models such as the modified nodal analysis
(MNA) [14] can give index 2. That our CpH method is of index ≤ 1 was a surprise
bonus, and as a consequence, no index reduction is necessary.

“Structurally Amenable”. A DAE is structurally amenable (S-amenable) if analysing
the sparsity pattern of its equations reveals exactly what differentiations of them are
needed. This analysis is inexpensive, only needs be done once, and when success-
ful, allows various efficient numerical methods to be used (e.g., Mattsson–Söderlind
Dummy Derivatives [15] for reducing the DAE to index ≤ 1).

The original method to find if a DAE is S-amenable is in Pantelides’s 1988 paper
[9]. We use the 2001 Pryce Σ -method [10], which is equivalent and more direct.

Consider a DAE with N equations fi = 0 in N variables x j(t) and some of their
t-derivatives. In vector form we can write it as

f (t; x and derivatives) = 0.

A sketch of the Σ -method’s steps follows.

1. Form the N×N signature matrix Σ = (σi j), where σi j is the highest derivative order
of x j in fi, or −∞ if x j is absent from fi.

2. Find suitable offsets ci ≥ 0, d j ≥ 0 with d j − ci ≥ σi j (i, j = 1, . . . ,N), and equal-
ity on some transversal, a set of N positions (i, j) with one in each row and each
column. This is a linear assignment problem, an efficiently solvable kind of linear
programming problem [16].



A Port-Hamiltonian, Index ≤ 1, Structurally Amenable Electrical Circuit Formulation 25

3. Form the N×N system Jacobian J with Ji j = ∂ fi/∂x(d j−ci)
j , or 0 if d j − ci < 0.

4. If J is nonsingular at some arbitrary point, the DAE is S-amenable. Then the offsets
say what differentiations of equations are needed, and how to reduce the DAE to an
implicit ODE.

3 Circuit Equations

Circuits. We consider circuits made of 2-pin elements on graph edges, joined at nodes,
see e.g. [7]. Key variables are voltage drop ν over, and current ι in, an edge.

As an example, Fig. 3 shows an RLC circuit schematic as commonly drawn, with
elements V = voltage source, I = current source, R = resistor, G = conductor1, C =
capacitor, L = inductor. Figure 3 is the corresponding mathematical graph, showing
e.g. that the top ends of R,G,L2 come together at a single node (Fig. 2(a) and Fig. 2(b)).

Fig. 2. RLC circuit example. On the right the edges have been numbered 1–8, with orientations
shown, and the nodes 1–5.

In a circuit graph G, we allow multiple edges between two given nodes, but not
edges from a node to itself (which have no electrical use). G is undirected but each edge
has an orientation to say which direction of ν and ι counts as positive (switching it
doesn’t change the physics). Henceforth, we assume G is connected.

Trees. Spanning trees (just called trees in circuit literature) in the graph are key to
finding the right set of equations for the DAE. A tree T is a minimal subset of the m
edges containing a path from any of the n nodes to any other. Necessarily it contains no
cycles and has n−1 edges. The m−n+1 edges not in T are the cotree T∗.

1 A resistor with Ohm’s law written as ι = νG instead of ν = ιR.
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Fig. 3. Cycle and cutset example.

Each cotree edge specifies a fundamental
cycle—that edge, plus the unique path between
its ends via the tree. Each tree edge specifies a
fundamental cutset—removing it splits the nodes
into two nonempty subsets, the cutset is all edges
between these subsets.

In Fig. 3, with tree {5,1,2,6}, cotree edge 4
specifies fundamental cycle {1,4,5}; tree edge
2 when removed splits the nodes into {1,2,3},
{4,5}, hence the fundamental cutset of edges
between them is {2,3,7,8}.

Physics. The physical assumptions on which the DAE is constructed are:

(a) Constitutive relations. If we assume standard linear elements, these are:

(b) Kirchhoff’s voltage and current laws. Given T, it suffices to impose KVL (sum of
voltages round a cycle is 0) round the m−n+1 fundamental cycles, and KCL (sum
of currents across a cutset is 0) across the n−1 fundamental cutsets, since by linear
combination these make all possible KVL and KCL equations. E.g., the cycle and
cutset in Fig. 3 give ν4 +ν5 −ν1 = 0 and ι3 + ι2 + ι8 − ι7 = 0.

Each of the many circuit formulations combines the constitutive relations with
selected Kirchhoff equations, to get a DAE f (t,x, ẋ) = 0 in some variables x = x(t).
Methods differ in what variables are in vector x—they can be voltages, currents, capac-
itor charges and inductor fluxes—and which KVL/KCL equations are used.

4 Graph Linear Algebra

Definition 1. G’s n×m incidence matrix A has

ap j = 1, aq j = −1 if edge j is from node p to node q

and zero elsewhere.

Assuming the graph is connected we have the well known facts:

Theorem 1. A’s column space (the linear span of its columns) is the hyperplane x1 +
· · ·+xn = 0 in Rn. A set of edges is a tree if and only if the corresponding columns of A
are a basis of this column space.

Consider such a graph, its incidence matrix A, a tree T and its cotree T∗.
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Definition 2. The (m−n+1)× (n−1) Kron matrix F = ( fi j) of T holds the unique rep-
resentation of cotree columns of A as linear combinations of tree columns2:

ai = − ∑
j∈T

fi ja j, columns indexed by T, rows by T∗.

Theorem 2. Kirchhoff’s laws for the graph can be written as ιT = F�ιT∗ , νT∗ = −FνT

or equivalently [
ιT

νT∗

]
=

[
0 F�

−F 0

][
νT

ιT∗

]
(1)

where ιT, ιT∗ denote the vectors of currents on tree and cotree edges respectively, and
similarly νT,νT∗ .

A non-obvious fact [17] is that all nonzeros of the Kron matrix are −1 or 1, and
that these nonzeros encode the fundamental cycles and cutsets, with the orientation of
each edge thereon. Our example circuit graph has the following 5×8 incidence matrix
and 4×4 Kron matrix. In F for instance, the row labeled 4 encodes cycle {1,4,5}; the
column labeled 2 encodes cutset {2,3,7,8}.

A=

⎡
⎢⎢⎢⎢⎣

1 1 0 1 0 0 0 1
0 0 0 −1 1 0 −1 0

−1 0 1 0 −1 0 0 0
0 −1 −1 0 0 1 0 0
0 0 0 0 0 −1 1 −1

⎤
⎥⎥⎥⎥⎦ , F =

1 2 5 6⎡
⎢⎣

⎤
⎥⎦

3 1 −1 0 0 C2
4 −1 0 1 0 G

7 −1 1 1 1 L2
8 0 −1 0 −1 I

V C1 R L1

(2)

5 The Compact port-Hamiltonian DAE

Circuit formulations differ in what vector x of DAE variables, and which Kirchhoff
equations they select. The CpH method in its simplest form chooses x with one x j for
each non-source edge, thus:

charge q for capacitors, flux linkage φ for inductors,
voltage ν or current ι at will for resistors,

(3)

and applies Kirchhoff’s laws in the form in Theorem 2. A circuit must be well posed,
meaning it has no cycles composed only of voltage sources and no cutsets composed
only of current sources (“no V-cycles or I-cutsets”). Otherwise, since we have ideal
circuit elements, Kirchhoff’s equations are either underdetermined or contradictory.

Circuit SA says that a well-posed circuit has a normal tree containing all voltage
sources, no current sources, and in a well defined sense the most possible capacitors
and the fewest possible inductors. For a simple proof see [18, §2.3].

Constructing the CpH DAE then comprises the following steps.

2 The − is chosen to match the notation in [7].
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1. Input: t and the DAE vector x defined in (3).
2. Evaluate the constitutive relations. Given the choice of variables (3), these make ν

and ι on each edge an explicit function of x or ẋ and (for source edges) t.
3. Substitute these ν and ι into Kirchhoff’s equations in the Kron form (1). Each such

equation “belongs” to a unique edge: e.g. each KVL equation is round a fundamental
cycle, and belongs to the cotree edge that generates this cycle.

4. Separate out equations belonging to voltage and current source edges. They give
control-output to be handled after the DAE is solved.

5. Output: the remaining equations as the DAE f (t,x, ẋ) = 0, of size N equal to the
number of non-source edges.

We have assumed simple linear RLC circuit elements above. However this con-
struction and the next theorem work more generally, for nonlinear elements and various
kinds of coupling. Thus diodes, transistors, transformers, etc. are supported.

Theorem 3. Subject to suitable passivity assumptions on the circuit elements, the CpH
DAE is port-Hamiltonian, S-amenable and index ≤ 1.

Sketch proof, showing the synergy of our three themes: see [18] for details.
Tree T being normal puts some blocks of zeros in the Kron matrix F . . . [circuit-SA]
. . . which improve the sparsity of the system Jacobian J, making it block-triangular with
three diagonal blocks [DAE-SA]

J =

⎡
⎣capacitor data

inductor data
× × resistor data

⎤
⎦ .

The passivity assumptions mean physically that no circuit element except voltage
and current sources can create energy in the system. They have the mathematical form
that certain Jacobian matrices must be positive definite. [pH]

These Jacobians enter into J’s diagonal blocks. Their positive definiteness implies
each such block is nonsingular. So J is nonsingular, proving S-amenability.

Index ≤ 1 is a by-product, and pH structure is immediate from construction. �	
For the example circuit’s F in (2), the tree that produces it is normal; the blocks of

zeros mentioned in the sketch proof are the three zeros in F’s top right corner.

6 Conclusion

For details of what is said here, and proofs, see [18]. Other circuit formulations
presented at the SCEE 2022 conference are in [20,21], of which the first is port-
Hamiltonian and the second is always index ≤ 1; but neither discusses SA-amenability.

CpH Advantages. CpH essentials are to be port-Hamiltonian and structurally
amenable. Being pH is desirable physics: pH assures energy-stability of the mathe-
matical DAE, and also of its numerical solution when suitable methods are used.

Being S-amenable is good for numerics. It makes possible, or inexpensive to imple-
ment, methods that in its absence are unavailable or expensive. Essentially equivalent
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for a DAE are that (a) it is S-amenable; (b) the Pantelides method (1988) works on it—
e.g. to find consistent initial values; and (c) the Mattsson-Söderlind dummy derivatives
method (1993) works on it—e.g. to reduce it to an implicit ODE.

Being pH is good software engineering, since pH models are compositional, i.e. can
be assembled in a standard way to make larger pH models. This suits them to languages
like Modelica, whose essence is to build systems from basic components.

Code Generation. We have implemented our theory in MATLAB, in principle support-
ing nonlinear dependent elements of the full generality in [18]. An object of a class
pHcircuit, a “part”, is specified by an incidence matrix, and type and parameters for
each edge. We build larger circuits by combining existing parts; e.g. for the circuit
in Fig. 4, the statement P = [P0, BJT]/["a4b1", "a3b2", "a1b3"]; was used to join
transistor BJT to the rest of the circuit P0 by “soldering” pins 4, 3, 1 of P0 to pins 1, 2,
3 of BJT respectively. Then we generate MATLAB code for the DAE function f (t,x, ẋ)
and use ode15i to integrate the DAE. The generated code is readable and efficient.
Generation is easily customised to make C++ or Fortran.
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improve the paper. LS acknowledges support of the Berlin Mathematics Research Center
MATH+, Project AA4-5. NN acknowledges support of the Natural Sciences and Engineering
Research Council of Canada (NSERC), FRN RGPIN-2019-07054.

Appendix: Application, and Example CpH Code

Fig. 4. BJT amplifier circuit, and output.

We modelled the bipolar junction transis-
tor (BJT) amplifier circuit example from
Falaize & Hélie [19]. This shows the
CpH method going beyond the linear ele-
ments assumed in Sect. 3.

The upper part of Fig. 4 is the circuit
schematic. From the graph viewpoint,
edges IN, 9V, OUT join to the “ground”
node. We number the edges and assign
orientations as marked by red arrows.

The MATLAB code was generated
automatically, and the lower part shows
the output from solving by odei5i with
absolute and relative tolerances 10−3,
with input Vin(t) as in [19], namely zero
for 0.3 s to let a steady state be reached,
followed by a sinusoidal oscillation of
linearly increasing amplitude for 0.01 s.
It agrees to graphical accuracy with [19, Fig. 6(b)].

One could use tolerances down to around 10−12, beyond which step size failure
occurred. An upper step size limit was needed (0.005 worked), else the large steps built
up in the initial 0.3 s were liable to make the solver go from t = 0.3 to 0.31 in one step,
not noticing the changed behaviour at 0.3.
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Below is the central part of the code—constitutive relations and Kirchhoff equa-
tions, expressed in mathematical notation. The physical parameters are in lines 5–11.
The transistor is constructed on the Ebers–Moll model, of two Shockley diodes (nonlin-
ear voltage-controlled resistors) with a linear dependence between them. In the code the
diode is scalar function D on line 10; note @(. . .) . . . is how MATLAB defines anony-
mous functions. The transistor is modelled by function BJT on line 11, with 2-vector
input and output. Values αF ,αR > 1 in matrix M derive from the Ebers–Moll forward
and reverse current gains βF ,βR.

Constitutive relations for independent edges are in lines 14–20; for the dependent
transistor edges, in line 21. The Kirchhoff equations derive from the tree of edges
{1,2,3,5,7}. Setting the currents of voltage sources and voltages of current sources
to zero (lines 18–20 is a trick to simplify code generation. It makes the y’s in lines
28–30 equal minus their correct output values, hence the sign reversal at line 33.

1 function [ f ,y ] = fcnBJTamplifier(t,x, ẋ)
2 % DAE vector x= (x1, . . . ,x6)T = (qC1, qC2, iR3, iR4, vG8, vG9)T

4 % Physical parameters

5 Ci = 10−6, Co = 10−6, Rc = 270×103, Rf = 103, Vcc = −9, Iout = 0
6 td = 0.3, tmax = td +0.01,Vmax = 0.2, ω = 2π103

7 Vin = @(t)− (t− td ≥ 0)Vmax
t−td

tmax−td
sin(ω(t− td))

8 Is = 10−13, VT = 0.025, βF = 250, βR = 10, αF = 1+1/βF , αR = 1+1/βR
9 % Shockley diode D and Ebers−Moll transistor BJT

10 D= @(v) Is · (ev/VT −1) %It accepts vector input

11 M =
[

αF −1
−1 αR

]
, BJT = @(v)M ·D(v) % v=

[
v1
v2

]

13 % Constitutive relations

14 v1 =C−1
i x1 i1 = ẋ1

15 v2 =C−1
o x2 i2 = ẋ2

16 v3 = Rcx4 i3 = x4
17 v4 = Rfx3 i4 = x3
18 v5 =Vin(t) i5 = 0
19 v6 = 0 i6 = Iout
20 v7 =Vcc i7 = 0

21

[
v8
v9

]
=

[
x5
x6

] [
i8
i9

]
= BJT

([
x5
x6

])

23 % Kirchhoff laws
24 f1 = i1 + i4 − i8 − i9
25 f2 = i2 − i6
26 f3 = i3 + i4 + i6 − i8
27 f4 = v4 − v1 − v3 − v5 + v7
28 y1 = i5 + i4 − i8 − i9
29 y2 = v6 + v2 − v3 + v7
30 y3 = i7 − i4 − i6 + i8
31 f5 = v8 + v1 + v3 + v5 − v7
32 f6 = v9 + v1 + v5
33 y= −y

35 % Return: f = ( f1, . . . , f6)T and control−output y= (y1,y2,y3)T = (iV5,vI6, iV7)T
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Abstract. A field effect transistor is simulated in the case the active area is made
by a single graphene nanoribbon. At variance with large area graphene, an energy
gap is present and this should improve the performance of the device as transis-
tor. A drift-diffusion model which includes the degenerate effects, coupled to the
Poisson equation for the electrostatic potential, is used. The mobility models are
obtained, by a fitting procedure, solving numerically the semiclassical Boltzmann
equation for the graphene nanoribbon, including also the edges scattering besides
the electron-phonon interactions.

1 Introduction

Device engineers devote considerable effort for developing transistor designs in which
short-channel effects are suppressed and series resistances are minimized. Scaling the-
ory predicts that a field effect transistor (FET) with a thin barrier and a thin gate-
controlled region will be robust against short-channel effects down to very short gate
lengths. The possibility of having channels that are just one atomic layer thick is perhaps
the most attractive feature of graphene for its use in transistors [1]. Main drawbacks of
a large-area monolayer graphene are the zero gap and, for graphene on substrate, the
degradation of the mobility. A possible way to overcome this problem consists to adopt
narrow strips of graphene, called nanoribbons (GNR), because the spatial confinement
of carriers induces a band gap [2,4], even if the mobility reduces with respect to the
large area graphene sheet.

The drift-diffusion model represents a common tool for the current prediction and
many studies are devoted to GFETs [5,13,17]. In [12] a new geometry with a good
switch on/off ratio is presented, in [18] the drift-diffusion model for GFET is presented
in detail together with the numerical approach. The adoption of more sophisticated
models is under investigation, e.g. hydrodynamic [6], and kinetic [7].

The current behavior in GNRs has been simulated at kinetic level [14] where the
charge confinement is taken into account in the dispersion relation [2] and in the colli-
sion term [3]. Moreover, hydrodynamic models have been deduced [8,9].

In this paper, we simulate a GNR-FET with the geometry presented in [12] and the
drift-diffusion model of [18]. Here, the mobility model is deduced by a fitting proce-
dure of the data obtained with the numerical solution of the semiclassical Boltzmann
equation for GNRs [14].
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2 Mathematical Model

We simulate the device depicted in Fig. 1. The active area consists of a layer made of
GNR.

Fig. 1. Schematic representation of the simulated device.

We adopt the 1D bipolar stationary drift-diffusion model

∂Jn
∂x

= eR,
∂Jp
∂x

= −eR, (1)

e being the (positive) elementary charge. Jn(x) and Jp(x) are the electron and hole cur-
rent densities respectively. R denotes the generation-recombination term. The previous
equations are coupled with the 2D Poisson equation for the electrostatic potential in the
whole section.

The electron and hole current densities are expressed in terms of the quasi-Fermi
energies [5]

Jn = μnn
∂ε(n)F

∂x
, Jp = μpp

∂ε(p)F

∂x
, (2)

where n and p, ε(n)F and ε(p)F , μn and μp are the densities, quasi-Fermi energies and
mobilities of electrons and holes, respectively.

The electron and hole densities, n(x) and p(x) respectively, are evaluated as

n(x) =
gsgv
(2π)2

∫
R2

fFD(k,ε
(n)
F )dk, x ∈ [x1,x4],

p(x) =
gsgv
(2π)2

∫
R2

fFD(k,−ε(p)F )dk, x ∈ [x1,x4],
(3)

with gs = 2 and gv = 2 the spin and valley degeneracy, and the crystal momentum of
electrons and holes is assumed to vary over R

2. fFD indicates the Fermi-Dirac distribu-
tion

fFD(k,εF) =
[
1+ exp

(
(ε(k)− εD)− (εF − εD)

kBT

)]−1

,
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where kB is the Boltzmann constant, T is the lattice temperature, kept at 300K (room
temperature), εD =−eφ(x,ygr) is the Dirac energy and φ(x,y) is the electrical potential,
here evaluated on y= ygr, ygr being the average y-coordinate of the graphene sheet (see
Fig. 1). εF denotes the Fermi level (in pristine graphene εF = εD). Following [2], the
GNR dispersion relation reads

ε(k)− εD = �vF

√
k2x + k2y +

( π
W

)2
,

strictly valid around the Dirac points, where � is the reduced Planck constant, vF the
Fermi velocity andW the GNR width. The dispersion relation is the same for electrons
and holes (see [10,11]).

We impose Dirichlet boundary conditions on the system (1), (2) as in [12]

ε(n)F (x1)− εD(x1) = ε(p)F (x1)− εD(x1) = ΔεF ,

ε(n)F (x4)− εD(x4) = ε(p)F (x4)− εD(x4) = ΔεF .

The quantity ΔεF is the difference of the work functions between metal and graphene.
Its value depends on the material the contact is made of. In this paper, we use the value
ΔεF = 0.25 eV, appropriate for copper.

Generally, for the generation-recombination term R the Shockley-Read-Hall model
is adopted, as suggested in [13] by analogy with standard semiconductors. In the case of
GNR, ifW � 10 nm a gap high enough to prevent the generation-recombination effect
is induced. In this case R= 0 with high accuracy.

The system (1) is coupled with the 2D Poisson equation for the electrostatic poten-
tial, solved in the section of the device [17],

∇ · (ε∇φ) = h(x,y), (4)

where

h(x,y) =

{
e(n(x)− p(x)−nimp)/tgr if (x,y) ∈ [x1,x4]× [y2,y3],
0 otherwise.

The dielectric function ε is given by

ε =

{
εgr if y ∈ [y2,y3],
εox otherwise,

with εgr and εox dielectric constants in graphene and oxide respectively. nimp is the areal
density of the impurity charges at the graphene/oxide interface. Since n and p are areal
densities, the charge in the graphene layer is considered as distributed in the volume
enclosed by the parallelepiped of base the area of the graphene and height tgr. Equation
(4) is augmented with the following boundary conditions [12]

φ = 0 at y ∈ [y1,y4], x= x1,

φ =Vb at y ∈ [y1,y4], x= x4,

φ =VGd at y= y1, x ∈ [x2,x3],
φ =VGu at y= y4, x ∈ [x2,x3],
∇ν φ = 0 at the remaining part of the boundary,
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where Vb is the bias voltage, VGu is the upper gate-source potential, VGd is the down
gate-source potential. We have denoted by ∇ν φ the external normal derivative.

The mobility models μn = μn(n,E) and μp = μp(p,E) represent a crucial point for
an accurate determination of currents. We adopt a model deduced by a fitting procedure
on extensive simulations of the homogeneous Boltzmann equation for charge transport
in GNRs solved by a discontinuous Galerkin deterministic numerical method [14] as
already done in [15,16] for large area graphene. For several values of the electron den-
sity n the low field mobility is extrapolated by a linear regression model

μ0(n) =
μ̃

1+
(

n
nre f

)α , (5)

where μ̃ , nre f and α are fitting parameters estimated by means of the least squares
method. For the electric field dependence we propose the following model [15,16]

μ(n,E) =
μ0(n)+μ1

(
E

Ere f

)β1

1+
(

E
Ere f

)β2
+ γ

(
E

Ere f

)β3
, (6)

where Ere f , μ1, β1, β2, β3 and γ are fitting parameters. Since the behaviour is the same
for holes on account of the symmetry between the hole and electron distributions we
set μ = μn = μp.

3 Numerical Results

Here some preliminary numerical results are presented. We set the width of the GNR
W = 5nm and estimate the fitting parameters consistently. In Table 1 the fitting param-
eters for the low field mobility (5) are reported while in Fig. 2 the corresponding plot is
shown. In the same way, in Table 2 the fitting parameters for the high field mobility (6)
are reported while in Fig. 3 a plot is shown together with the corresponding currents.
For each value of the electron density, in a range from εF = 0.1 eV to εF = 0.5 eV,
we calculate the coefficients Ere f μ1, β1, β2, β3 and γ by means of least square method.
Then in each interval [ni,ni+1] a third degree polynomial interpolation has been adopted
for the parameters mentioned above. The drift-diffusion equations coupled with the

Table 1. Estimated parameters for the low field mobility.

Parameter Value

μ̃ 1.493 μm2/V ps

nre f 4.236·104 μm−2

α 1.128
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Fig. 2. Comparison between the low field mobility simulated with the DG method and the fitted
one.

Table 2. Estimated parameters for the high field mobility.

n (μm−2) Ere f (V/μm) μ1 (μm2/V ps) β1 β2 β3 γ
9.904 1.197·10−1 7.450 2.865·10−4 1.363 1.810·10−1 7.291

4.560·102 1.343·10−1 5.961 8.865·10−9 1.353 1.824·10−1 6.010

9.374·103 7.184·10−2 4.476 2.807 3.776 2.669 3.498

3.414·104 5.773·10−2 5.717 2.394 3.387 2.336 6.467

6.718·104 2.232·10−2 8.696 1.804 2.696 1.750 1.520

Fig. 3. On the left, comparison between the high field mobility simulated numerically solving
the semiclassical Boltzmann equation by the DG method and the fitted one. On the right, the
corresponding current densities are plotted.

Poisson equation are solved by the finite difference scheme presented in [12,18] where
an iterative procedure is adopted to uncouple the system. The parameters for the geom-
etry of the device are: length 100 nm, height 21 nm, gates length 50 nm, contacts height
21 nm. tgr is set 1 nm. Moreover, we have set εgr = 3.3ε0 and εox = 3.6ε0, where ε0 is
the dielectric constant in the vacuum, and nimp = 2.5 ·103 μm−2.
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Fig. 4. Electrostatic potential at Vsd = 0.2V and VG = 2V.

Fig. 5. Electrostatic potential at Vsd = 0.2V and VG = −2V.

In Figs. 4, 5 the electrostatic potential is shown in a case of current on and in a case
of current off. In Fig. 6 the characteristic curves are plotted both in linear and logarith-
mic scale. Note that in the on region the current has not a monotone behaviour. The
switch on/off ratio is about eight orders of magnitude, assuring a good FET behavior.
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Fig. 6. Current density versus gate voltage for several values of bias in linear scale (left) and
logarithmic scale (right).
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Abstract. Numerical discretization of the large-scale Maxwell’s equations leads
to an ill-conditioned linear system that is challenging to solve. The key require-
ment for successive solutions of this linear system is to choose an efficient solver.
In this work we use Perfectly Matched Layers (PML) to increase this efficiency.
PML have been widely used to truncate numerical simulations of wave equations
due to improving the accuracy of the solution instead of using absorbing bound-
ary conditions (ABCs). Here, we will develop an efficient solver by providing an
alternative use of PML as transmission conditions at the interfaces between sub-
domains in our domain decomposition method. We solve Maxwell’s equations
and assess the convergence rate of our solutions compared to the situation where
absorbing boundary conditions are chosen as transmission conditions.

1 Introduction

Maxwell’s equations need to be solved in many applications, such as medical imaging
or electromagnetic compatibility. The Finite Element Method (FEM) is widely used for
numerical modeling of these problems due to its ability to handle complex geometrical
configurations. Finite element discretization of these frequency-domain wave problems
leads to an ill-conditioned linear system with large number of unknowns. To solve this
system, the efficiency of direct solvers is limited at larger scales due to scalability prob-
lems in memory and computing time. Besides, Krylov subspace iterative solvers have
shown slow convergence. An alternative method that tackles the convergence problem
of iterative solvers is the domain decomposition method (DDM). The method relies on
a division of the computational domain into smaller subdomains, leading to subprob-
lems of smaller sizes manageable by direct solvers. One perfect candidate introduced in
[1] and then improved in [2] is the domain decomposition preconditioner which proved
to be very robust in large scale computations. However, designing an efficient domain
decomposition preconditioner is still challenging for such a system.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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In this paper, we present an efficient PML-based Schwarz-type domain decompo-
sition preconditioner with overlapping subdomains. The convergence rate of Schwarz
methods highly depends on the transmission condition on the interfaces between sub-
domains. Thus, carefully designed transmission conditions play a critical role in the
efficiency of the solver. To decrease undesired numerical reflections, one usually adds a
PML layer along the boundaries that extend a definite area to the infinity, representing
an unbounded volume, and absorbs almost all incident waves, regardless of angle of
incidence, so that the waves decay exponentially in magnitude into the PML medium
[5,6]. Specifically, using PML is essential for simulating unbounded systems such as
infinitely long waveguides or an isolated structure in an infinite vacuum region. While
the use of PMLs as boundary conditions when solving a problem in open space is quite
common, less things are known about their use as transmission conditions within a
domain decomposition algorithm. We propose to assess the performance of a one-level
domain decomposition algorithm where the transmission conditions at the boundaries
between subdomains are PML conditions, providing a better approximation to the trans-
parent boundary operator. We will investigate the convergence properties and compare
them with the more common impedance transmission conditions. In a previous work,
PML have been used successfully as transmission conditions in domain decomposi-
tion methods in geophysical applications modeled by the Helmholtz equation in [3].
The paper is organized as follows. In Sect. 2, we present mathematical model includ-
ing Maxwell’s equations, PML formulation with different stretching functions as well
as its implementation. Then, the DDM with PML-based transmission operators is intro-
duced. In Sect. 3, some numerical examples are presented to analyze the performance of
the proposed domain decomposition algorithm. Finally, conclusion is written in Sect. 4.

2 Mathematical Model

Let us consider the computational domain Ω ⊂ R
3 to be a homogeneous dielectric

medium of complex-valued electric permittivity εσ and electrical conductivity σ > 0.
Let μ0 be the permeability of free space and n be the unit outward normal to the bound-
aries ∂Ω . ω is the angular frequency and c is the wave speed. In the frequency domain,
the electric field ξ (x, t) = ℜ(E(x)eiωt) has harmonic dependence on time of angular
frequency ω , where E(x) is its complex amplitude depending on the space variable
x. Hence E(x) is a solution to the following second order time-harmonic Maxwell’s
equation

∇× (∇×E)−ω2εσ μ0E = f in Ω . (1)

Let us denote the boundary of the global domain by ∂Ω where Robin condition
(∇ ×E)×n+ iω

c n× (E×n) = 0 is imposed [4]. The Robin or impedance boundary
condition (Imp BCs) is a standard first order approximation to the far field Sommerfeld
radiation condition enabling the description of the wave behavior in a bounded domain,
while the physical domain is not bounded. The finite element discretization of Eq. (1)
is written as the following linear system

Au= b. (2)
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2.1 PML Formulation

To solve a partial differential equation (PDE) numerically, the computational domain
has to be truncated without introducing reflections. The first attempt in this regard is
absorbing boundary conditions (ABCs). The first order ABC as regular choice is Robin
condition that was mentioned earlier. Due to the limited accuracy of this method, PML
were introduced by Berenger [5] as a better alternative. PML provide non-reflecting
boundaries so that the numerical solution converges exponentially to the exact solution
in the computational domain as the thickness of the layer increases.

PML implementation is done by stretching cartesian coordinates so that stretching
is defined in a layer surrounding the computational domain [5] and Dirichlet boundary
condition can be imposed at the end of the PML layer. In this regard, we assume the
boundaries of the computational domain to be aligned with the coordinate axes. For
simplicity we will focus on truncating the problem in the x direction. Let us suppose
that the PML layer extends from the boundary of our domain of interest x = a until
x= a∗. The coordinate mapping in x direction is:

∂
∂xpml

→ 1

1− i
ω σ(x)

∂
∂x

,σ(x) =

{
0 if x< a

> 0 if a< x< a∗.
(3)

In the PML region where σ(x)> 0, The oscillating solutions turn into exponentially
decaying ones. In the rest of the region where σ(x) = 0, the wave equation is unchanged
and the solution is unchanged. In this paper we have studied two different stretching
functions σ(x) as following

σ−1(x) = 1
a∗−x (a) , σ−2(x) = 2

(a∗−x)2 (b) (4)

To truncate our computational region with a PML layer in other directions, we just
need to do the same transformations to get ∂

∂ypml
and ∂

∂ zpml
. At the corners of the com-

putational cell, we will have PML regions along two or three directions simultaneously,
but it will not generate any problem.

Implementing this mapping in the three dimensional domain requires a slight further
generalization of Eq. (1), resulting in the following definition of the curl operator to be
used in the variational formulation:

∇pml ×E=

⎡
⎢⎢⎣

∂Ez
∂ypml

− ∂Ey
∂ zpml

∂Ex
∂ zpml

− ∂Ez
∂xpml

∂Ey
∂xpml

− ∂Ex
∂ypml

⎤
⎥⎥⎦ (5)

2.2 Domain Decomposition Preconditioner

To solve our large and ill conditioned linear system (2), the use of a robust and efficient
preconditioner is necessary in a Krylov iterative solver (GMRES) [6]. A preconditioner
M−1 is a linear operator that approximates the inverse of matrix A whose cost of the
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associated matrix-vector product is much cheaper than solving the original linear sys-
tem. In this regard, we employ right preconditioning to solve (2) that will give us:

AM−1y= f, where u=M−1y (6)

This right preconditioned system benefits from a residual that is preconditioner inde-
pendent compared to the left-preconditioned variant.

As an overlapping Schwarz method, the optimized restricted additive Schwarz
(ORAS) domain decomposition preconditioner is chosen here

M−1
ORAS =

Nsub

∑
s=1

RT
s DsA

−1
s Rs (7)

where Nsub is the number of overlapping subdomains Ωs into which the domain Ω is
decomposed. Here, matrices As stem from the discretisation of local boundary value
problems on Ωs with transmission conditions at the subdomain interfaces. Let N be an
ordered set of the unknowns of the whole domain and let N =

⋃Nsub
s=1 Ns be its decomposi-

tion into the (nondisjoint) ordered subsets corresponding to the different (overlapping)
subdomains Ωs. Matrix Rs is the restriction matrix from Ω to subdomain Ωs; it is a
Ns×N Boolean matrix. RT

s is then the extension matrix from subdomain Ωs to Ω . Ds is
a Ns ×Ns diagonal matrix that gives a discrete partition of unity, i.e., ∑Nsub

s=1 R
T
s DsRs = I.

The convergence rate of this method highly depends on the choice of transmis-
sion conditions between the subdomains [7]. The optimal convergence is obtained by
imposing the Dirichlet-to Neumann (DtN) map related to the complementary of each
subdomain [8,9]. However, since the cost of computing the exact DtN is prohibitive,
low-order absorbing boundary conditions (ABCs) to approximate the DtN have been
developed. Nonetheless, these methods have limited accuracy, which led to developing
domain decomposition strategies with high order transmission conditions [10]. But the
problem with high order transmission conditions is the difficulty of their implementa-
tion. A good approximation of ABCs in terms of providing better convergence rate and
easy implementation would be to use PML on the interface boundaries of the cuboid-
shaped subdomains [11,12], that is what we consider here. In this purpose a PML layer
is added in each direction in the overlap region. Note that the width of the overlap has to
be larger than the PML layer for a good transmission of the data between subdomains.

3 Numerical Results

The performance of the proposed PML-based preconditioner for Maxwell’s equations
is studied in a 3D homogeneous domain Ω , while length of the domain in each direction
is 10 m. We have excited the z= 0 surface with plane wave incident term e(−ikz), where
k = 2π

λ , with propagation in +z direction shown in the Fig. 1. The convergence rate is
studied while there is PML or Impedance as global boundary conditions (BCs) or inter-
face conditions (ICs), which leads to four different situations reported in Table 1. The
finite element discretization is done for the first order edge elements for two different
frequencies. Let #DoF represents the number of degrees of freedom. For f = 0.5 Hz, we
have #DoF =511775 and for f = 1 Hz, we have #DoF = 2098100. The global domain is
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Fig. 1. Plane wave propagation.

decomposed into N = 100 number of cuboid-shaped subdomains, that PMl layer is set
along their interfaces with the length Lpmli.

In Table 1, simulations are done for the σ−2 stretching function and PML length
on the interfaces is shown with Lpmli = 8h where h= λ

nλ
is the mesh size and nλ is the

number of points per wavelength. In all simulations, PML length on the global boundary
is Lpml = 2λ and the overlapping layers between subdomains is changed from 2 to 8
layers in four steps. Looking at the Table 1, for f = 0.5 and considering 8 number of
overlapping layers to be larger than Lpmli, we can see while we have PML BCs and Imp
ICs, number of iterations is 21, but with PML BCs and PML ICs, this number decrease
to 16. It is while with Imp on BCs and ICs, number of iterations is 26. In this table, •
means that, solution has not converged for 200 number of iterations.

Table 1. Function σ−2. nλ = 5, Lpml = 2λ , Lpmli = 8h, c= 1, N = 100 is number of subdomains

BCs ICs f = 0.5 f = 1

2 4 6 8 2 4 6 8

Imp Imp 29 24 23 26 34 27 25 25

Imp PML 75 30 22 28 • 50 29 23

PML Imp 23 21 20 21 28 23 21 20

PML PML 65 25 18 16 • 43 25 19

To see the influence of the Lpmli, we did the simulation with smaller PML layer on
the subdomains, mentioned in Table 2, only for the case with PML as BCs and ICs.
Comparing with the equivalent row in the Table 1 for 6 and 8 overlaping layers, we see
that with larger length of PML on subdomains we have better convergence. Although
the rate of convergence has become better for lower overlapping layers, with smaller
PML length, due to the better data transmission between subdomains. Comparing the
results for the use of stretching function σ−1 instead of σ−2 is mentioned in the Table 3.
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For 2 number of overlapping layers, better number of iterations is seen with σ−1, how-
ever for higher number of overlapping layers, σ−2 results in better convergence.

Table 2. Function σ−2. nλ = 5, Lpml = 2λ , Lpmli = 4h, c= 1, N = 100

BCs ICs f = 0.5 f = 1

2 4 6 8 2 4 6 8

PML PML 59 22 18 17 183 35 30 29

Table 3. Function σ−1. nλ = 5, Lpml = 2λ , Lpmli = 8h, c= 1, N = 100

BCs ICs f = 0.5 f = 1

2 4 6 8 2 4 6 8

PML Imp 24 20 18 21 29 24 22 21

PML PML 46 28 19 17 66 35 26 21

The performance of the proposed preconditioner in a heterogeneous domain is stud-
ied in Tables 4 and 5. Here, we have defined a medium with two values of εr with the
dimension of 6.3 m in X and Y directions and 2.5 m in Z direction inside the free space
computational domain. In this experiment, rhs is chosen as a random value, Lpmli = 4h,
f = 1 Hz, stretching function is chosen as σ−2 in Table 4 and σ−1 in Table 5. Results
show, increasing value of εr increase number of iterations, but with PML interface
conditions we can have faster convergence. Comparing two tables, better performance
is obtained by σ−2 stretching function. Here we have considered maximum number
of iterations as 600. In the results, - means problem is not solved due to memory
limitation.

Table 4. Function σ−2. nλ = 5, Lpml = 2λ , f = 1.0 Hz, c= 1, N = 100.

BCs ICs εr = 4 εr = 5

2 4 6 8 2 4 6 8

PML Imp 262 207 181 168 586 425 375 326

PML PML • 249 199 160 • 514 440 311

Results are obtained on the Université Côte d’Azur’s High-Performance Computing
(HPC) center. In this HPC center, cluster is composed of 48 CPU computing nodes,
including 32 nodes with Dual Intel Xeon Gold processor, providing 40 cores per node
and 192 GB of memory and 16 nodes with 2 AMD Epyc processors, providing 32 cores
per node and 256 GB of memory.
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Table 5. Function σ−1. nλ = 5, Lpml = 2λ , f = 1.0 Hz, c= 1, N = 100.

BCs ICs εr = 4 εr = 5

2 4 6 8 2 4 6 8

PML Imp 264 207 183 - 587 427 374 -

PML PML 411 221 201 - • 402 353 -

4 Conclusions

In this work, we have developed a numerical model for an accurate and fast simula-
tion of Maxwell’s equations. To achieve this goal, the PML layer is implemented as
physical boundaries and as transmission conditions in domain decomposition precondi-
tioner for a three dimensional domain. A better convergence rate is achieved with PML
layer, compared to Impedance interface conditions. Numerical results shows that the
performance of the PML depends on a well chosen stretching function and length of
the PML. This work is a preliminary study that was inspired by a similar work done for
Helmholtz equations [13] where the results were very encouraging. More investigations
can be done in next works, like evaluating performance of the PML as interface con-
ditions for higher order edge elements or in a heterogeneous domain. Note that PML
have some limitations, for the time being it has been applied only along the straight
interfaces but variants for circular boundaries exist that can be further explored in the
context of other applications.
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Abstract. The capability of electrical stimulation to enhance cell activity, pro-
liferation, and differentiation makes it an attractive method in cell-based thera-
pies. Due to its biocompatibility, capacitive coupling has emerged as a favourable
method to deliver electric fields to cartilaginous cells. Unfortunately, there exists
no means to measure the electric field directly. It can solely be inferred from
other measurement results. Nonetheless, numerical simulations by the finite ele-
ment method provide a possibility to estimate the electric field distribution and
magnitude. The experimental validation of numerical models, however, receives
insufficient attention. This study aims to bridge the gap between theory and exper-
iment by applying validation-oriented modelling. The impact of different uncer-
tain input parameters on relevant observables was assessed to suggest valida-
tion experiments using uncertainty quantification. The estimated capacitance was
found to be in excellent agreement with the experimental result, indicating that
the model is accurate. However, the electric field remains uncertain since the
electric field and capacitance are dependent upon different input parameters. The
electric field is primarily determined by the conductivity of the medium. Hence,
a more precise conductivity measurement will allow for more accurate computa-
tion of the electric field magnitude.

1 Introduction

Recent years have seen increased interest in a variety of biophysical stimuli, such as
mechanical, electrical, and (electro)magnetic fields as a potential tool in tissue engi-
neering and regenerative medicine [11,15]. The clinical market for therapeutic devices
for electrical stimulation is currently expanding, but only a limited number of studies
addresses the electrical stimulation of cartilaginous cells [10,13]. Besides the common
direct contact electrical stimulation, it is feasible to use electrodes electrically isolated
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. van Beurden et al. (Eds.): SCEE 2022, MI 43, pp. 53–60, 2024.
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http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54517-7_6&domain=pdf
https://doi.org/10.1007/978-3-031-54517-7_6


54 L. V. Che et al.

from the sample. They are referred to as capacitive coupling (CC) approaches. CC has
been favoured since it has been shown to enhance chondrogenesis (i.e., production of
cartilage) [11] and (re-)differentiation of stem cells into cartilage cells [9]. Further-
more, CC can overcome drawbacks of direct contact stimulation, such as the formation
of cytotoxic compounds and electrochemical reactions [11], because a thin layer insu-
lates the electrodes. The goal of the device design is to control the electric field induced
by the displacement current in the area where the cells are placed. However, electric
field strength is rarely reported in most CC studies [16]. As it is not straightforward to
adjust the electric field in an experimental setting, numerical simulations are required
to determine the recommended voltage and/or current to be applied. The local electric
field is also obtained from numerical simulations. This contribution focuses on the com-
putation of measurable quantities to design appropriate validation approaches. For that
purpose, we present a model of a device for cartilage regeneration that has already been
employed in practice [9]. In many cases, numerical models are approached with suspi-
cion, so uncertainty quantification (UQ) becomes increasingly crucial. We prepared UQ
by establishing a parametrised geometrical model with an automated, adaptive mod-
elling approach to assess the impact of various uncertain parameters (both geometrical
and physical) and propose validation experiments.

2 Materials and Methods

A stimulation device for the application of capacitively coupled electrical fields in vitro
was designed by Krueger et al. [9]. Figure 1 shows a photograph of a sample carrier
comprising a polycarbonate plate with 12 cavities (wells) inserted by drilling. A flexi-
ble printed circuit board (Multi Circuit Boards, Poole, UK) made from polyimide was
fixed at the bottom of the plate. An electrode array with 12 pairs of two annular ring-
shaped electrodes and one small circular electrode in between was embedded in the
circuit board. The medium is usually a scaffold positioned in the centre of the cavity to
support cell cultivation. The schematic illustration with the dimensions of one well and
its geometry are shown in Fig. 1.

The stimulations are often performed in the kHz range. In this study, the simula-
tion was conducted at 60 kHz because this frequency has been found to be the most
suitable for the differentiation of chondrocytes and cartilage tissue by electrical stimu-
lation [9,10]. The applied voltage was 1V. The electric fields for other input voltages
can be determined by scaling the result due to the linearity of the system. We used
3ml potassium chloride (KCl) as the medium to ease the experimental validation of
our numerical results because its conductivity at 25 ◦C is reported by the manufac-
turer (Hanna Instruments) (0.1413 S/m). Its relative permittivity is 78.57 [18]. The wall
(polycarbonate) and plastic layer (polyimide) were assumed to have a conductivity of
10−8 S/m and 10−9 S/m, respectively. Both were assumed to possess the same relative
permittivity of 3.4.
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Fig. 1. Left: The sample carrier consists of (1) a polycarbonate plate with 12 cavities, (2) a cen-
tral electrode and (3) annular ring-shaped electrodes and the enlarged image from the bottom
view of one cavity. Central: Schematic view of a single stimulation device with the geometrical
parameters, including the wall (blue), the insulation layer (red), the electrodes (dark red) and the
medium (grey). Right: The geometry of the single stimulation device. Vm indicates the volume
of the medium.

Electromagnetic fields can be considered slowly varying in several therapeutic pro-
cedures involving the electrical stimulation of biological samples [4]. Because magnetic
field and eddy currents are assumed to be negligibly small, the electro-quasistatic (EQS)
potential φ can be computed by solving

∇ · [(σ + iωε)∇φ ] = 0 (1)

where σ is the conductivity, ε is the permittivity, and ω is the angular frequency. The
solution of (1) can be obtained using either a full discretization, here called full-fidelity
(FF), or an approximate discretization based on a thin layer approximation (TLA). The
open-source finite element solvers (NGSolve1 [3] with the mesh generator Netgen [2])
and the proprietary software code (COMSOL Multiphysics R©v5.52) were employed to
perform the simulation of both FF and TLA models.

In the FF approach, Dirichlet BCs were imposed on the annular ring-shaped elec-
trodes, i.e., a voltage-controlled stimulation was used. The central electrode was mod-
elled with a floating potential BC. This electrode has the potential to cause a distortion
of the electric field in the medium, even if it is not connected to a power source. To
examine its influence, we considered two cases: the FF model with the central electrode
included in the final geometry and the FF model without the central electrode. The weak
form of (1) [14] for the FF model can be formulated as

∫
Ω
(σ + iωε)∇φ∇vdΩ +

∫
ΓF

(λ (v− vF)+(φ −φF)μ)dS= 0 (2)

where v is the test function defined on the entire domain Ω . λ and μ are the solution and
the test function of the Lagrange multipliers belonging to an H− 1

2 -conforming space.

1 https://www.ngsolve.org/.
2 https://www.comsol.com/.

https://www.ngsolve.org/
https://www.comsol.com/
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φF is the floating potential, and vF is the corresponding test function from the space of
complex numbers.

The TLA was applied to decrease the computational effort because the capacitively
coupled setup possesses a very thin insulation layer on top of the electrodes. The thin
layer can be approximated as a parallel-plate capacitor. The TLA assumes that the elec-
tric field E inside the layer is homogeneous, and its magnitude is equal to the voltage
drop across U divided by the thickness of layer dl [5]. The problem comprises M con-
nected sub-domains. On each subdomain an H1-conforming space is used. Hence, two
degrees of freedom are defined at the same point on an interface ΓI between two sub-
domains, demonstrating the potential jump across an interface. Consequently, the weak
form of the TLA model [17] is defined as

M

∑
m=1

∫
Ωm

(σ + iωεm)∇φm∇vmdΩ +
M−1

∑
I=1

∫
ΓI

(
σI+ iωεI

dl
)[φ ][v]dS= 0 (3)

Here, [•] indicates a jump of the potential across the interface ΓI .
The impedance Z of the considered chamber can be determined from the solu-

tion of (1) using the instantaneous power dissipation P [1]. We applied adaptive mesh
refinement (AMR) for the base geometry described in the previous section using the
Zienkiewicz-Zhu error estimator [6]. Moreover, scalable iterative solvers (GMRes,
BiCGSTAB) with algebraic multigrid preconditioners were employed to solve (1).
Regarding uncertainty quantification (UQ), polynomial chaos expansion was used to
obtain the model output’s statistical metrics. We utilized a modified version3 of the
Python library Uncertainpy [8]. A point collocation method was utilized to estimate
the expansion coefficients. The polynomial order was set to four, and 104 samples were
drawn from the surrogate model. The simulations and UQ computations were carried
out using parallel computing on the HAUMEA high-performance computing cluster of
the University of Rostock (each computing node supplied with 2 Intel Xeon Gold 6248
CPUs with a total of 40 cores and 192 GB RAM). We assessed the impact of different
geometrical and physical uncertain parameters to suggest validation experiments. All
possible error sources and presumed hypotheses in the UQ analysis are summarised
in Table 1. Note that we did not consider the influence of the plastic conductivity and
the medium permittivity. The plastic acts as an insulator, while the medium acts as a
conductor; hence those above-mentioned dielectric properties do not play an essential
role in the model output. Further, we analyzed only uniform distributions to reflect the
current state of our knowledge about the uncertainty of individual parameters. The large
εp variation was used to investigate how different plastic materials can affect electrical
stimulation as the material properties are not disclosed by the manufacturer. The con-
siderable range of σm covers all possible values from standard measurement solutions
to biological tissue at various temperatures. The goal was to understand if a change in
medium conductivity can be detected by impedance/capacitance measurements.

3 https://github.com/j-zimmermann/uncertainpy.

https://github.com/j-zimmermann/uncertainpy
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Table 1.Model parameters for UQ given in terms of the uniform distributionU . σm: conductivity
of the medium, εp: relative permittivity of the plastic, Vm: volume of the medium, te: thickness of
the electrode, ttl : thickness of the top plastic layer, tbl : thickness of the bottom plastic layer

Parameter Distribution Reasoning

σm U [0.1,1.8] (S/m) Assumptions from previous works [9]

εp U [1.5,5] Assumptions from previous works [9]

Vm U [3,4] (ml) Pipetting inaccuracies

te U [20,50] (µm) Manufacturer error

ttl U [20,30] (µm) Manufacturer error

tbl U [0,2] (mm) Variation in the thickness of the sample holder

Impedance spectroscopy was employed to validate the numerical outputs because
CC results in a frequency-dependent impedance. The device was characterized over
a wide bandwidth using a frequency response analyzer (Rohde&Schwarz RTB2004
Digital Oscilloscope). A frequency sweep was conducted from 10Hz to 25MHz with
an input voltage of 2.5 Vpp. To calculate the unknown impedance, the applied voltage
was divided by the resulting current, calculated from the voltage drop across a shunt
resistor. This method is commonly known as the I-V method.

3 Results and Discussion

Both the FF models with and without the central electrode included in the final geom-
etry exhibit an insignificant discrepancy in the electric field in the medium. The neg-
ligible influence of the floating potential conductor is comprehensible as it is located
in an extremely low electric field. In the vicinity of this electrode, there was a distor-
tion of the electric field distribution. However, this change can be neglected because the
field strength is approximately 20,000 times smaller than the one around the annular
ring-shaped electrodes. Therefore, the vast majority of the electric field can be traced
to the field adjacent to the annular ring-shaped electrodes. The central electrode, thus,
was eliminated from the final geometry when applying the TLA approach and the UQ
analysis to save time and computational effort. Concretely, the computational time of
the FF model with and without the central electrode is 728 and 397 s, respectively. TLA
further reduces the runtime by 20 s, which is significant as nearly 500 simulations are
required to perform meaningful UQ. The electric field distribution and magnitude in the
medium are shown in Fig. 2. The field strength ranges from 0.01V/m to 3.6V/m. The
impedance is (888−55250i)Ω. This result indicates, as expected, a primarily capac-
itive behaviour. The numerically estimated capacitance of the device is about 48 pF.
The convergence of the impedance was proved by using AMR techniques. After the
fifth refinement, the variation in the impedance and the estimated error became negli-
gible. Regarding the electric field distribution and magnitude in the medium as well as
the global impedance, no significant difference between COMSOL Multiphysics R© and
NGSolve, irrespective of the chosen approach (FF or TLA model), could be found. The
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experimental result of the mean capacitance was calculated to be 49 ± 2 pF, using the
ImpedanceFitter package4. The numerical and experimental capacitance values con-
form well, indicating that we have a solid and accurate model (the relative difference is
roughly 2%).

Fig. 2. Left: Electric field distribution in the medium. Cut through the central YZ plane. Central:
Electric field distribution in the insulator layer. For visualisation, the electric field strength in the
insulator layer was fixed to a maximum of 3.6V/m; however, the actual field strength maximum
is around 20,000V/m near the annular ring-shaped electrodes. Cut through the central YX plane.
Right: The voltage difference distribution in the medium just above the insulation is shown. The
voltage difference was evaluated with respect to the mean value of the voltage in the medium.

Subsequently, UQ of the input parameters was conducted to examine the accuracy
and reliability of the numerical simulation as well as to suggest validation experiments.
Aside from the mean and standard deviation, the Sobol indices are computed in the UQ
approach. We studied the first-order Sobol indices to assess the sensitivity of the model
outcome to variations of individual parameters. If a parameter has a low Sobol index,
variations in this parameter result in comparatively slight changes in the final model
output and vice versa [8]. As shown in Fig. 3, the thickness of the electrode and the
bottom plastic layer, and the volume of the medium do not influence the model out-
put. In contrast, all features are sensitive to the permittivity of plastic. The capacitance
depends on the thickness of the top plastic layer and the permittivity of the plastic.
However, the impact of the plastic permittivity is more dominant than the top plastic
layer thickness. The variations in the electric field strength are mainly attributed to vari-
ations in the medium conductivity, followed by the permittivity of plastic. Based on
UQ results, the computed capacitance is 47.15 ± 15.67 pF and the field strength at the
fixed point, located in the centre of the YX plane and 100 µm above the bottom of the
medium, is 0.27 ± 0.3V/m. Moreover, the 90% prediction interval of the capacitance
in pF is [23.73, 73.99]. The field strength at the fixed point in V/m is [0.04, 0.94]. The
high standard deviation and the wide range of prediction intervals suggest that more
information about the model inputs is required to obtain a robust and reliable numerical
prediction.

The most interesting property of electrically active implants is the electric field dis-
tribution and amplitude. They can be mapped by measuring the voltage gradient or the
current through the sample, which should match a predicted value [12]. However, it

4 https://github.com/j-zimmermann/ImpedanceFitter.

https://github.com/j-zimmermann/ImpedanceFitter
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Fig. 3. The first order Sobol indices for the capacitance (C) and the electric field at a fixed point
(E) 100 µm above the bottom of the medium, computed for the parameters from Table 1.

is impossible to measure the voltage gradient in our case due to significantly minor
changes in voltage (0.34mV) across the CC chamber (Fig. 2). A similar situation exists
for the impedance phase; the phase change is approximately 0.2◦, whereas the smallest
experimentally measurable difference is about one degree. Measuring the capacitance
has emerged as the feasible option to validate the numerical model considering all previ-
ous aspects. Unfortunately, based on the UQ results, the uncertainty of the capacitance
and the electric field rely upon different model parameters. Therefore, knowing the
experimental result of the capacitance is not fully informative about the electric field in
electrical stimulation. Because the conductivity of the medium largely determines the
electric field, knowing the conductivity well allows for fair confidence in the computed
electric field. To investigate the case when measured conductivity and permittivity data
is available, which is rare in a biological laboratory, we utilized the normal distributions
for σm and εp. The uncertainty of the model outputs still mainly depends on ttl , σm and
εp. If the interval of three standard deviations from the mean interval is small for this
parameter, the 90% prediction range will also be small and vice versa.

4 Conclusion

Using different simulation software and models of different complexity yielded con-
sistent results for the capacitance and electric field. Eventually, a simplified geometric
model could be identified, which permitted an accelerated UQ analysis. The estimated
capacitance from the simulation is in excellent agreement with the experimental result
of approximately 48 pF, indicating a reliable numerical model. Nevertheless, the electric
field is still uncertain because, according to UQ analysis, the electric field and capac-
itance depend upon distinct input parameters. The conductivity of the medium largely
determines the electric field distribution and magnitude. Consequently, knowing the
conductivity well allows for fair confidence in the computed electric field. In future
work, we suggest the development of a digital twin (DT) of CC devices because a DT
for direct contact devices coupling numerical simulations and impedance spectroscopy
has been realised to make local electric field strengths accessible [12]. Otherwise, the
lack of electric field measurement might hamper translation to clinics [16]. In sum, a
DT will combine both validation-oriented modelling (e.g., computing and measuring
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the capacitance) and goal-oriented modelling (i.e., predicting and optimising the elec-
tric field).
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Abstract. We present a matrix-free parallel iterative solver for the Helmholtz
equation related to applications in seismic problems and study its parallel perfor-
mance. We apply Krylov subspace methods, GMRES, Bi-CGSTAB and IDR(s),
to solve the linear system obtained from a second-order finite difference dis-
cretization. The Complex Shifted Laplace Preconditioner (CSLP) is employed to
improve the convergence of Krylov solvers. The preconditioner is approximately
inverted by multigrid iterations. For parallel computing, the global domain is par-
titioned blockwise. The standard MPI library is employed for data communica-
tion. The matrix-vector multiplication and preconditioning operator are imple-
mented in a matrix-free way instead of constructing large, memory-consuming
coefficient matrices. These adjustments lead to direct improvements in terms of
memory consumption. Numerical experiments of model problems show that the
matrix-free parallel solution method has satisfactory parallel performance and
weak scalability. It allows us to solve larger problems in parallel to obtain more
accurate numerical solutions.

1 Introduction

The Helmholtz equation describes the phenomena of time-harmonic wave scattering
in the frequency domain. It is widely studied in computational electromagnetics, with
applications in seismic exploration, sonar, antennas, and medical imaging. To solve the
Helmholtz equation numerically, we discretize it and obtain a linear system Ax = b.
The linear system matrix is sparse, symmetric, non-Hermitian, and indefinite [1]. Itera-
tive methods and parallel computing are commonly considered for a large-scale linear
system resulting from a practical problem. However, the indefiniteness of the linear
system brings a great challenge to the numerical solution method, especially for large
wavenumbers. The convergence rate of many iterative solvers is affected significantly
for increasing wavenumber. Therefore, the research problem of how to solve the sys-
tems efficiently and economically, while at the same time maintaining a high accuracy
by minimizing pollution error arises in this field.

Many efforts have been made to solve the problem accurately with high perfor-
mance. Originally derived from [2], the industry standard, also known as the Complex
Shifted Laplace Preconditioner (CSLP) [3,4] does show good properties for medium
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. van Beurden et al. (Eds.): SCEE 2022, MI 43, pp. 61–68, 2024.
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wavenumbers. Nevertheless, the eigenvalues shift to the origin as the wavenumber
increases. These near-zero eigenvalues have an unfavorable effect on the conver-
gence speed of Krylov-based iterative solvers. Recently, a higher-order approximation
scheme to construct the deflation vectors was proposed to reach close to wavenumber-
independent convergence [5].

The development of scalable parallel Helmholtz solvers is also ongoing. One app-
roach is to parallelize existing advanced algorithms. Kononov and Riyanti [6,7] first
developed a parallel version of Bi-CGSTAB preconditioned by multigrid-based CSLP.
Gordon and Gordon [8] parallelized their so-called CARP-CG algorithm (Conjugate
Gradient acceleration of CARP) blockwise. The block-parallel CARP-CG algorithm
shows improved scalability as the wavenumber increases. Calandra et al. [9] pro-
posed a geometric two-grid preconditioner for 3D Helmholtz problems, which shows
strong scaling properties in a massively parallel setup. Another approach is the Domain
Decomposition Method (DDM), which originates from the early Schwarz Methods.
DDM, as a preconditioner mostly, has been widely used to develop parallel solution
methods for the Helmholtz problems. For comprehensive surveys, we refer the reader
to [10–14] and references therein.

This work describes parallel versions of Krylov subspace methods, such as the
Generalized minimal residual method (GMRES), Bi-CGSTAB, and IDR(s), precon-
ditioned by the multigrid-based CSLP for the Helmholtz equation. We consider the
CSLP preconditioner because it is the first and most popular method where the num-
ber of iterations scales linearly within medium wavenumbers. Based on a block-wise
domain decomposition and a matrix-free implementation, our parallel framework con-
tributes to robust parallel CSLP-preconditioned Krylov solvers for Helmholtz problems.
It is the basis for scalable parallel computing. Numerical experiments show that, com-
pared to [5,6] that assemble matrices, the matrix-free framework allows us to solve the
Helmholtz problem with a larger grid size to reduce pollution errors related to grid res-
olution. The parallel efficiency is up to 70%. Its weak scaling performance means that
a larger problem can be solved in about the same amount of time as a smaller problem
as long as the number of tasks increases proportionally.

The rest of this paper is organized as follows. Section 2 describes the mathematical
model that we will discuss. All numerical methods we use are given in Sect. 3. The
numerical performance is explored in Sect. 4. Finally, Sect. 5 contains our conclusions.

2 Mathematical Model

We will consider the following 2D Helmholtz equation on a rectangular domain Ω with
boundary Γ = ∂Ω . The Helmholtz equation reads

−Δu(x,y)− k2u(x,y) = b(x,y), on Ω (1)

supplied with Dirichlet boundary conditions u(x,y) = g(x,y) or first-order Sommerfeld

boundary conditions ∂u(x,y)
∂n − iku(x,y) = 0, on ∂Ω . i is the imaginary unit. n and g(x,y)

represent the outward normal and the given data of the boundary respectively. b(x,y) is
the source function. k is the wavenumber. The frequency is f , the speed of propagation
is c, which are related by k = 2π f

c .
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3 Numerical Methods

3.1 Discretization

Structural vertex-centered grids are used to discretize the computational domain. Sup-
pose the mesh width in x and y direction are both h. A second-order finite difference
scheme is used. The discrete Helmholtz operator Ah can be obtained by adding the diag-
onal matrix −k2Ih to the Laplacian operator −Δh, i.e. Ah = −Δh − k2Ih. Therefore, the
stencil of the discrete Helmholtz operator is

[Ah] =
1
h2

⎡
⎣

0 −1 0
−1 4− k2h2 −1
0 −1 0

⎤
⎦ (2)

In the case of the Sommerfeld radiation condition, ghost points located outside the
boundary points can be introduced for the boundary points. For instance, suppose u0, j is
a ghost point on the left of u1, j, the normal derivative can be approximated by ∂u

∂n − iku=
u0, j−u2, j

2h − iku1, j = 0. We can rewrite it as u0, j = u2, j + 2hiku1, j, which can be used in
the above computational stencil. The discretization of first-order Sommerfeld boundary
conditions will result in a complex-valued linear system.

3.2 Preconditioned Krylov Subspace Methods

Among the representative Krylov subspace methods, GMRES and Bi-CGSTAB are
suitable choices for the Helmholtz equation, as they are designed for non-singular prob-
lems. Also, the IDR(s) developed by Sonneveld and van Gijzen [17] is an efficient
alternative to Bi-CGSTAB for Helmholtz problems. Compared with full GMRES, Bi-
CGSTAB and IDR(s) have short recurrences and are easily parallelizable.

As for the preconditioner, we will focus on the CSLP due to its satisfactory perfor-
mance and easy setup. The CSLP is defined by

Mh = −Δh − (β1+β2i)k2Ih (3)

We need to compute the inverse of preconditionerMh in the preconditioned Krylov-
based algorithms. It is usually too costly to invert a preconditioner like CSLP directly.
One idea is to approximately solve the preconditioner by using the multigrid method
[4]. It is necessary to choose a proper complex shift [18], since a small complex shift
may affect the convergence of the multigrid method. In the numerical experiments of
this paper, β1 = 1,β2 = 0.5 will be used.

A multigrid method involves several components that need a careful design to
achieve excellent convergence. In this paper, damped Jacobi smoother with relaxation
ω = 0.8 is used. The so-called full weighting restriction operator and the bilinear inter-
polation operator are employed for the inter-grid transfer operations. The coarse grid
operator M2h is constructed by re-discretizing on the coarse mesh in the same way that
the operatorMh is obtained on the fine mesh. This is known as the discretization coarse
grid operator (DCG). The classical multigrid V-cycle is performed. Instead of solving
the coarse-mesh problem directly, we will solve it by full GMRES.
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Suppose a problem with N unknowns is solved by the CSLP-preconditioned Krylov
subspace method by assembling the matrices. According to the complexity analysis in
[5,19], except the variables vectors, we need extra memory to store the sparse matrix
Ah with 5N non-zero elements,Mh with 5N non-zero elements,M2h with

9N
4 , inter-grid

transfer operator Z with 9N
4 , etc. To minimize memory limitations and solve real-world

large-scale problems, we implement the preconditioned Krylov subspace methods in a
matrix-free way instead of constructing the coefficient matrices explicitly.

3.3 Matrix-Free Parallel Implementation

For the matrix-vector multiplication, like Ahuh in outer iterations,Mhuh in the smoother
and M2hu2h in the preconditioner solver, can be replaced by stencil computations. For
example, results of Ahuh can be obtained by Algorithm 1. The inter-grid transfer oper-
ations can also be performed in a matrix-free way according to the linear interpola-
tion/restriction polynomials.

Algorithm 1. Matrix-free vh = Ahuh.
1: Input array uh;
2: According to Eq. 2: ap= 4−k2h2

h2 , aw= ae= as= an= − 1
h2 ;

3: Internal grid points (i= 2 · · ·nx−1, j = 2 · · ·ny−1):
4: vh(i, j) = apu(i, j)+awu(i−1, j)+aeu(i+1, j)+asu(i, j−1)+anu(i, j+1);
5: Boundary grid points (i= 1,nx, j = 1,ny): update ap, aw, ae, as and an and compute vh(i, j);

6: Return vh.

To implement parallel computing, the standard MPI library is employed for data
communications among the processors. Based on the MPI Cartesian topology, we can
partition the computational domain blockwise. The partition is carried out between two
grid points. One layer of overlapping grid points is introduced outward at each interface
boundary to represent the adjacent grid points. In our method, the grid unknowns are
stored as an array based on the grid ordering (i, j) instead of a column vector based on
x-line lexicographic ordering.

We implement the parallel multigrid iteration based on the original global grid.
According to the relationship between the fine grid and the coarse grid, the parameters
of the coarse grid are determined by the grid parameters of the fine one. For example,
point (ic, jc) in the coarse grid corresponds to point (2ic − 1,2 jc − 1) in the fine grid.
For a V-cycle, after reaching a manually predefined coarsest grid size, the coarsening
operation will stop and solve the coarsest problem by GMRES in parallel, which may
incur some efficiency loss. In this paper, the predefined coarsest global grid size is
ncx ×ncy = 9×9 as the maximum number of processors we use is 4×4.

4 Numerical Experiments

The solver is developed in Fortran and compiled by GNU Fortran and runs on a Linux
compute node with Intel(R) Xeon(R) Gold 6152 (2.10GHz) CPUs. For outer iterations,
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the L2-norm of preconditioned relative residuals are reduced to 10−6. According to pre-
experiments, the stopping criterion for the coarse grid preconditioner solver should be
2–3 orders of magnitude smaller than the stopping criterion for the outer iteration. We
use 10−8 as the stopping criterion for the coarse grid preconditioner solver. The Wall-
ClockTime for the preconditioned Krylov-based solver to reach the stopping criterion is
denoted by tw. The speedup Sp is defined by Sp = t1

tp
, where t1 and tp are the WallClock-

Time for sequential and parallel computation, respectively. The parallel efficiency Ep is

given by EP = Sp
np ×100%, where np is the number of processors.

First, we consider a model problem (MP-1) with a point source described by the
Dirac delta function δ (x,y), imposed at the center (x0,y0) = (0.5,0.5). The wave
propagates outward from the center of the domain. Dirichlet boundary conditions are
imposed. The analytical solution for this problem is given in [15].

Compared to the analytical solutions given by [15], our parallel preconditioned
GMRES gives a fair approximation of the exact solution with relative errors (RErr.) less
than 5× 10−6. Parallel partitioning also has no effect on the results. The main differ-
ences in the amplitude of the waves are caused by the finite-difference approximation of
the Dirac function. As shown in Table 1, if we simultaneously and proportionally scale
the problem size and the number of processors (in bold), the WallClockTime almost
stays constant. It means our parallel framework has weak scalability. It indicates that a
parallel efficiency of up to 75% is satisfactory.

Table 1. Parallel performance of CSLP preconditioned GMRES for MP1 with wavenumber k =
100.

grid size np #Iter RErr tw Speedup Ep

161 × 161 1 350 1.638E−06 7.07 1.00 –

4 350 1.596E−06 2.06 3.43 85.68

321 × 321 1 348 1.476E−06 32.18 1.00 –

4 348 1.592E−06 8.10 3.97 99.34

481 × 481 1 358 4.319E−06 78.22 1.00 –

9 359 4.444E−06 9.02 8.68 96.41

641 × 641 1 339 2.000E−06 121.44 1.00 –

4 339 1.657E−06 33.75 3.60 89.97

16 339 2.158E−06 9.88 12.29 76.79

Most physical problems of geophysical seismic imaging describe a heterogeneous
medium. The so-called Wedge problem (MP-2) is a typical problem with simple hetero-
geneity. It mimics three layers with different velocities hence, different wavenumbers.
The rectangular domain Ω = [0,600]× [−1000,0] is split into three layers, where the
wave velocity c is constant within each layer but different from each other. A point
source is located at (x0,y0) = (300,0). The wavenumber is k(x,y) = 2π f

c(x,y) , where f is

the frequency. The distribution of wave velocity c(x,y) refers to [6]. First-order Som-
merfeld boundary conditions are imposed on all boundaries.
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The 2D wedge problem is used to evaluate the performance of our parallel solution
method for a simple heterogeneous medium. Besides, the matrix-free parallel frame-
work is not limited to the GMRES algorithm. All the ingredients can be directly gen-
eralized to other Krylov methods like Bi-CGSTAB and IDR(s). In Table 2 we give
the WallClockTime and the required number of matrix-vector multiplications of dif-
ferent CSLP-preconditioned Krylov methods for the wedge problem. It illustrates that
our matrix-free parallel CSLP-preconditioned method is still suitable for heterogeneous
Helmholtz problems. It still leads to satisfactory scalability if we increase the number
of processors correspondingly while refining the grid.

Table 2. MP-2: CPU time consumed by different parallel CSLP-preconditioned Krylov methods
while refining the grid, f = 40Hz. The number of matrix-vector multiplications is in parentheses.

Grid size np GMRES Bi-CGSTAB IDR(4)

385 × 641 2 25.34 (278) 6.20 (321) 6.10 (282)

769 × 1281 8 31.92 (283) 7.98 (301) 7.41 (251)

The so-called Marmousi problem [16] is a well-known benchmark problem (MP-
3). It contains 158 horizontal layers in the depth direction, making it highly heteroge-
neous, see [6] for an illustration. In our numerical experiments, first-order Sommerfeld
boundary conditions are imposed on all boundaries. The source frequency f = 40Hz,
grid size 2945×961, which indicates kh ≤ 0.54 and guarantees more than 10 grids per
wavelength. In [6], the Marmousi problem with grid size 2501× 751 has to be solved
on at least two cores due to memory limitations. The matrix-free framework allows us
to solve larger problems within even a single core.

Table 3 presents the required number of matrix-vector multiplications (denoted by
#Matvec), CPU-time, and relative speedup of different CSLP-preconditioned Krylov
methods for the Marmousi problem. One can find that a huge number of iterations are
required. GMRES has the least number of matrix-vector multiplications but requires the
most CPU time reducing the parallel efficiency to 50%. This is due to the Arnoldi pro-
cess in GMRES requiring a lot of dot product operations, which need global communi-
cation in parallel computing. IDR(4) and Bi-CGSTAB exhibit higher parallel efficiency
than GMRES. The results illustrate that the matrix-free parallel CSLP-preconditioned
method also works for the highly heterogeneous Helmholtz problems.

Table 3.MP-3: parallel performance of different parallel CSLP-preconditioned Krylov methods,
f = 40Hz, grid size 2945×961.

GMRES Bi-CGSTAB IDR(4)

np #Matvec Time(s) Sp Ep np #Matvec Time(s) Sp Ep np #Matvec Time(s) Sp Ep

1 2872 61705.58 – – 1 4124 2431.94 – – 1 4438 2881.58 – –

3 2872 21892.21 2.82 93.95 3 4435 712.34 3.41 113.80 3 4688 854.72 3.37 112.38

12 2872 10309.02 5.99 49.88 12 4513 279.09 8.71 72.61 12 4484 334.59 8.61 71.77
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5 Conclusions

In this paper, we studied a matrix-free parallel solution method using preconditioned
Krylov methods for Helmholtz problems. The Complex Shifted Laplace Preconditioner
is used, which is approximately inverted by multigrid iterations. The matrix-free parallel
framework is suitable for different Krylov methods. Numerical experiments of model
problems demonstrate the robustness, satisfactory parallel performance, and weak scal-
ability of our matrix-free parallel solution method. It allows us to solve larger problems
in parallel to obtain more accurate numerical solutions.
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grateful to the referees for their helpful comments and suggestions that improved the quality of
the paper considerably.
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Abstract. Dual full-wave (FW) frequency-domain E and H formulations, with
scalar potentials on the boundary, and with electric circuit element boundary con-
ditions are discussed and details about their implementation in the finite element
method are given. For some magneto-quasi-static devices this duality frames the
exact solution thus allowing the accuracy control. In such cases the geometric
mean of the dual solutions exhibits a better accuracy and higher convergence rate
than the individual numerical solutions. For FW devices the dual formulations
allow a compromise between model accuracy and computational effort, espe-
cially if the models are not 3D. Implementation is available for free in onelab.
Validation for test cases with analytic solution are provided: a conducting cylin-
der and a coaxial cable.

1 Introduction

Electric Circuit Element (ECE) boundary conditions allow a natural coupling between
electromagnetic devices and electric circuits. This paper shows how ECE can be imple-
mented in the 3D-finite element method, for a full-wave (FW) field regime in dual
formulations, in terms of the electric E and magnetic H fields. This is an extension
of our previous results referring to duality published for electrostatics (ES) and mag-
netostatics (MS) [1], and referring to the recent use of ECE boundary conditions for
FW E-based formulation [2], implemented in onelab [3]. When providing bounds, the
duality concept is important for the assessment of the numerical results accuracy, with
implications to optimal mesh refinement and efficient parameter extraction. In general,
bilateral bounds cannot be ensured [4]. However, dual formulations have been investi-
gated in the literature. e.g. in [5,6].

Given the non perfect duality between the E and H fields, we investigate the
behaviour of the numerical implementations of the E and H formulations when used
for FW models and ECE BC. In this paper we aim to implement and use the frequency
domain FEM formulation in [2], with an electric field strictly inside the domain and
electric scalar potential on the boundary, and a dual counterpart, with a magnetic field
inside the domain and magnetic scalar potential on boundary. A sound and general the-
ory for weak E-based and H-based formulations, with electric and magnetic ports, for
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. van Beurden et al. (Eds.): SCEE 2022, MI 43, pp. 69–77, 2024.
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multiply connected domains can be found in [7]. We consider the H formulation pro-
posed here different from the one in [7] because its time domain correspondent involves
convolution integrals. A detailed numerical implementation of theH formulation is pro-
vided as well. Since our final goal is the extraction of lumped circuits equivalent to elec-
tromagnetic devices with distributed parameters, we adopt here only frequency domain
formulations. This eases theH-based approach, for which the elimination of E in a time
domain formulation is not straightforward. The implementation is done in onelab and
the files are available for download from https://gitlab.onelab.info/doc/models. We pro-
vide a strong validation by using two simple examples for which analytical solutions
exist. More complicated structures are currently under investigation.

2 H-Based Formulation for ECE and Frequency Domain FW
Field

Herein we provide only theH-based formulation. TheE-based counterpart can be found
in [2]. For simplicity, we assume a simply connected domain Ω , with a Lipschitz con-
nected boundary ∂Ω , linear and isotropic materials.

1. Second order strong formulation in H, with α = jω/(σ + jωε) is:

∇× (α∇×H)+( jω)2μH= 0, (1)

where ε , μ , σ are the material permittivity, permeability and conductivity, underlined
symbols are complex vectors, and ω is the angular frequency. Classical BC means that
Et = n× (E×n) is given on SE ⊂ ∂Ω , and Ht = n× (H×n) on SH = ∂Ω −SE , where
n is the outer normal on ∂Ω and E= (∇×H)/(σ + jωε).

2. Strong formulation in H and magnetic scalar potential ϕ with ECE BC.
Equation (1) holds. ECE BC are: the boundary includes m disjoint parts Sk, k= 1,m

(device terminals), so that:
(ece1) there is no magnetic coupling with the exterior: n ·H(r) = 0,∀r ∈ ∂Ω ;
(ece2) the electric coupling is carried out only through the terminals:

n · (∇×H(r)) = 0,∀r ∈ Σ def= ∂Ω −∪m
k=1Sk;

(ece3) each terminal is equipotential: n×E(r) = 0,∀r ∈ Sk, k = 1,m.
Note that here, contrary to the classical BC (without ECE) where SE and SH are the

usual notations for the parts of the boundary where the tangential components of E and
H are given, there is no SE and/or SH parts. On Σ , the tangential component of H is not
known, but the normal component and the normal component of its curl are zero. To
have (ece2), a magnetic scalar potential ϕ may be defined on Σ . However, since Σ is
not simply connected, cuts are needed to transform it into a simply connected one, for a
proper definition of ϕ . Currents and voltages associated at first to the terminals will be
transferred to these cuts. Each terminal is controlled in voltage Vk =

∫
Ck⊂∂Ω E · dr, Ck

linking Sk to Sm, or current Ik =
∮

∂Sk H · dr, with {1 : m} = Iv ∪Ic. Here Iv, Ic are
the sets of indices of voltage and current excited terminals, respectively.

3. Weak formulation in H with classical BC:
Find H inH such that a(H,H′) = b(H′) ∀H′ ∈ H0, where

H = {u ∈ H (curl,Ω)|n× (u×n) =Ht on SH} , H0 as H with Ht = 0, (2)

https://gitlab.onelab.info/doc/models.
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H and H′ are curl-conform with essential BC (zero for H′), where

a(H,H′) =
∫

Ω
(α∇×H) · (∇×H′)dx+

∫

Ω
jω( jωμ)H ·H′ dx, (3)

b(H′) = jω
∫

SE
(n×Et) ·H′ dA. (4)

Et is a natural BC, whereas Ht is essential.
4. Weak formulation in H,ϕ with ECE BC.
Find H ∈ HH and ϕ ∈ Hϕ , so that a(H,H′) = b(H′), ∀H′ ∈ HH,0; and

∫

Ck

E ·dl=Vk,k ∈ Iv; Ht = ∇2ϕ on ∂Ω −∪m
k=1Sk, (5)

H′
t = ∇2ϕ ′, ϕ ′ ∈ Hϕ,0. Let Tk =Ck be a cut in ∂Ω −∪m

k=1Sk assoc. to terminal k.

HH = {u ∈ H (curl,Ω)| n× (u×n) = ∇2ϕ ′ on ∂Ω −∪m
k=1Sk, ϕ ′ ∈ Hϕ

}

Hϕ = {u ∈ H (grad,∂Ω −∪m
k=1Sk)| [u]k = Ik k ∈ Ic, [u]k = ct.k ∈ Iv} (6)

HH,0 is as HH but ϕ ′ ∈ Hϕ,0, Hϕ,0 is as Hϕ but the jump on Tk denoted by [u]k, for
k ∈ Ic is zero. The left side of the functional equality is (3), but b(H′) is1

b(I′) = − jω ∑
k∈Iv

V kI
′
k. (7)

Note that with this formulation, voltage excitation is a natural BC, current excitation is
essential. All test functions have zero essential BC, but the trial functions have imposed
values for them.

5. Discrete formulation in H,ϕ with ECE BC.
To satisfy ECE BC, the numerical solution is searched as

H =
Ne

∑
j=1

Um jN j+
NnBndNotTerm

∑
j=1

ϕ
j
∇ϕ j+

m

∑
k=1

(

Ik
NeCutTermK

∑
j=1

N j

)

, (8)

where Ne are the edges inside the domain and on the surface of terminals.
NnBndNotTerm are the nodes on the boundary that does not include the terminals,
NeCutTermK are the edges that belong to the cut that corresponds to the terminal k.
The cuts are automatically generated with the cohomology solver of gmsh [8].

The ECE implementation2 in onelab uses (3) and (7), and the function spaces (6)
and (8) and choices for N j (edge elements) and ϕ j (nodal elements).

Two academic examples with analytical solutions validate the implementations: 1)
a cylindrical homogeneous conducting domain, for extracting the inner impedance; 2)
a cylindrical conducting domain surrounded by air ended by the return conductor - a
coaxial cable. In both models the EM field on the boundary satisfies ECE BC.

1 Classic to ECE:
∮

∂Ω (n × Et) · H′ dA =
∫

Σ −(n × ∇2V ) · H′ dA = ∑m
k=1Vk

∮
∂Sk H

′
t · dl =

∑k∈Iv
V kI

′
k.

2 Other resources are available at www.lmn.pub.ro/$\sim$gabriela/ece..

www.lmn.pub.ro/$sim $gabriela/ece.
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3 MQS Test - Conducting Cylinder

The first 3D test consists of a cylindrical domain with radius a = 2.5µm, length l =
10μm, and linear and homogeneous material (εr = 1,μr = 1,σ = 6.6 ·107 S/m). Its ends
are two terminals, one grounded and the other excited either in current or voltage. This
configuration has the advantage that a formulation with classical boundary conditions
is equivalent to the one with ECE BC, the classical having an analytic solution for the
current excitation case, and thus a reference. The first numerical tests aimed 2.5D vs.
3D checks3, current vs voltage excitation, E vs. H formulation, 1st vs 2nd order FEM,
and then h-convergence studies were done4.

Figure 1 depicts the impedance obtained from the FE solution of the two 3D-FW
formulations with ECE BC and current excitation. There is no coupling with an exter-
nal circuit. Note that we can derive an equivalent reduced circuit from the frequency
dependent impedance, which can be interconnected with any external circuit [10]. Bilat-
eral bounds are obtained for both frequency characteristics: magnitude and phase of the
impedance Z. Note that the FW Maxwell equations were used for solving, even though
this is an MQS problem (indeed τe < τem < τ < τm, see [11]).

Fig. 1. Cylinder test (3D). The dual formulations provide scissors type bounds for the frequency
characteristic in the magnitude (left) and phase (right) representation of the impedance Z. Their
average Z =

√
ZEZH gives surprisingly better results than the individual formulations or their

arithmetic or harmonic averages. A relatively coarse frequency dependent mesh, was used (1
element/skin depth, 10 nodes along the length, a coarse mesh in the middle).

Even if MQS, this test is useful to check the FW E and H implementations. The
following results are obtained for an axisymmetrical (2.5D) model. The same FEM
formulation file is used for E, whereas the files for H in 3D and 2.5D are different. In
2.5D the edge elements for theH formulation become nodal elements multiplied by the

3 Here 2.5D was adopted as an acronym for the axisymmetric problems because from mathe-
matical point of view the model is 2D, but from the physical point of view the model is 3D,
no domain truncation is done along the azimuth direction. Numerically, this is encoded in the
computation of the Jacobian [9]. This is different from plane-parallel 2D problems where the
model is 2D both from mathematical and physical points of view, there is a domain truncation
along the Oz axis (physical end effects are neglected).

4 Error convergence for uniform meshes of increasing fineness; h is the characteristic length of
the element.
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azimuth direction unit vector and ϕ is no more needed, the boundary consists only of
terminals and cuts. In the 2.5D H formulation, the unknown has to be set to zero on the
axis to avoid numerical instabilities. In the 2.5D E formulation, nothing has to be done
on the axis, the axis is treated like the domain’s interior.

Figure 2 shows an h-convergence study for first order elements, where h= sa/10 is
the mesh size, with s the mesh factor - a real positive number. Note that the minimum
skin depth δmin = 0.2µm is close to h for s = 1, i.e. for s = 1 at fmax there is 1 ele-
ment per skin depth. The H formulation is better than E at low frequencies, whereas
at high frequencies, they are about the same. Figure 3 shows the results for fmax, and
the effect of computing the square root of the solutions and Richardson extrapolations5.
The deviations in E and H have almost the same magnitude but they frame the exact
solution. For a discretization with a mesh having the characteristic length of elements
equal h= δmin(s= 1), the relative errors are about 10% (11.8% for E and 9.3% forH),
but they are four times smaller if the characteristic length decreases twice (3.3% for E
and 2.5% for H when h= δmin/2). Their geometric mean has a relative error which is
one order of magnitude less, i.e. 1.4% for h= δmin, and 0.4% for h= δmin/2(s= 0.5).
The Richardson extrapolation of the geometric average is better, it has a relative error of
0.2%, which is two times smaller than the one corresponding to the geometric average
for the finest mesh (0.4%). It is one order of magnitude less than the Richardson extrap-
olation carried out separately for each formulation (1.8% for E and 1.4% for H). Both
limits are acceptable for most engineering models, and only in exceptional cases recur-
rent Richardson is needed, with smaller steps, reaching h = δmin/4, in order to obtain
even smaller relative errors. The convergence rates for E and H are in the range 1.7–2,
but the Richardson extrapolation applied to the geometric average converges faster, with
a convergence rate of about 2.7. By using the geometric mean of the dual solutions, the
numerical error obtained for this test is surprisingly much smaller than the error in E or
H formulations, the arithmetic or harmonic averages, or their difference (which gives
thus pessimistic information). However, the difference can be used as an error estimator
for low and medium frequencies.

Fig. 2. Cylinder test (2.5D, uniform mesh). Relative errors for the whole frequency range for 3
meshes and the Richardson extrapolation. E formulation (left), H formulation (right).

5 Three different computations are needed for the Richardson extrapolation, based on the
assumption Z(h) = Z0 +Ahp, with Z0, A and h unknowns. If the mesh sizes are such that
h1/h2 = h2/h3, the extrapolated value is computed as Z0 = (Z1Z3 −Z22)/(Z1 − 2Z2 + Z3),
with Zk = Z(hk), k = 1,2,3.



74 G. Ciuprina et al.

Fig. 3. Cylinder test (2.5D, uniform mesh). Two different Richardson extrapolations of the square
root solution.

4 FW Test - Coaxial Cable

This test case is adapted from [12]. It consists of an air-filled 1m long coaxial cable,
with radius of the inner circular cylindrical electrode of 4mm. The inner radius of the
outer circular cylindrical electrode is 8mm. The cable is ended by a lumped circuit that
includes a 100 pF capacitor in series with the parallel combination of a 5Ω resistor
with a 10 nH inductor. On the driving end there is a 5Ω shunt resistor connecting the
two electrodes. The problem admits an analytic result, based on TLs theory. We use a
2.5D model (Fig. 4-left). This problem is truly FW at high frequencies (Fig. 4-right). A
difference with respect to the formulation in [12] is that we added the inner conductor in
the model, so that not to have holes in it. Adding the inner conductor in the model will
not have a visible effect at high frequencies, particularly when looking at the terminal
impedance, but it makes the model closer to reality by including the propagation in the
dielectric and the skin effect. Thus, the model can be used for frequencies in the MQS
range as well, where the skin effect is relevant and not the propagation.

Fig. 4. Coax test (2.5D). Domain - the figure is not at scale (left); Fields along the full length of
the cable at fmax, E - arrows, H - lines (right). Propagation is obvious.

We simulated the coaxial cable alone, as a MIMO (multiple input multiple output)
system with 2 floating terminals (ends of the inner electrode) and a ground - the outside
electrode. The results obtained for the dual formulations are shown in Fig. 5. Results for
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Fig. 5. Coax test (2.5 D). Frequency characteristics of the cable simulated alone.

Fig. 6. At low frequencies, H formulation is unstable if σair = 0, which does not happen for the
E formulation. The H formulation can be stabilized by choosing σair = 10−5 S/m.

1st and 2nd order elements for the E-based formulation are very good for the considered
frequency range (60–600MHz). Second order results for the H formulation are also
good. However, first order FEM results for the H formulation are not so good at high
frequencies (HF). This time, no bounds are obtained at HF and also H formulation is
not as accurate as the E-based one of the same FEM order.

Figure 6 shows a zoom-in the low frequency (LF) range. Stability at LF is a known
concern for FW numerical models [13]. At LF H-based formulation suffers from insta-
bilities (under 10 kHz) if σair = 0, which is not the case for the E-based formulation
which proved robust for all frequencies. Further analysis of the stability issues is cur-
rently ongoing.

The coupling with the circuit can be done in several ways: with a code implement-
ing the simple circuit equations (as it was done here - Fig. 7); in the field simulator (e.g.
in onelab); or reduce the model, realize a circuit and use a circuit simulator [2]. The eas-
iness of field-circuit coupling is the strongest point of our approach. Figure 7 validates
the correctness of the H formulation for FW with ECE. It seems to indicate that the E
formulation works better at HF. However, this test problem has a very particular field
distribution, and therefore, in order to draw fair conclusions about E vs.H, 1 vs. 2 order,
problems with less particular configurations should be investigated. This is beyond the
scope of this paper.
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Fig. 7. The input impedance of the cable model connected to its feeding and load circuits.

The coaxial cable is however a standard test problem to check field numerical for-
mulations, e.g. in [13]. This test problem was useful for checking the implemented
FW codes for E and H, but in practice, there are better modeling strategies for
cables/interconnects, e.g. as in [14]. However, the developed code can be successfully
applied to simulate any more complicated RF linear devices.

5 Conclusions

The main contribution of this paper is the detailed derivation of the full-wave H for-
mulation in the frequency domain: strong, weak (continuous and discrete), so that its
numerical implementation becomes clear. The implementation is validated by exam-
ples with analytical solution. The benefits of using dual formulations are investigated
as well. It is known that dual formulations for elliptic PDEs give scissors type bounds
for extracted lumped quantities. The tests shown here indicate that it is possible that,
under certain conditions, such a framing can also be obtained in MQS, allowing a reli-
able accuracy control. This statement is solely based on numerical observations. In this
case, the square root of the solutions obtained from the E and H formulations had an
impressive correction effect at HF. In FW, a possible useful strategy could be to combine
the E and H solutions according to a weighted formula inspired from a similar success-
ful CFIE strategy used for integral equations [15]. This strategy was not successful for
the coaxial cable, but it works in other tests, e.g. a monopole antenna. Even if bilateral
bounds cannot be ensured in general cases, the availability of dual formulations enrich
the possibilities of choosing the best compromise between model accuracy and compu-
tational effort. This is especially useful for 2D/2.5D models where E andH solutions of
the same order have a very different number of unknowns. ECE BC can be generalized
to include parts of the boundary through where radiation is permitted, thus being useful
for antenna modeling. Our ongoing work aims at the implementation of radiant ECE.
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Abstract. A novel finite element method for the approximation of Maxwell’s
equations over hybrid two-dimensional grids is studied. The choice of appro-
priate basis functions and numerical quadrature leads to diagonal mass matrices
which allow for efficient time integration by explicit methods.On purely rectan-
gular grids, the proposed schemes coincide with well-established FIT and FDTD
methods. Additional internal degrees of freedom introduced on triangles allow
for mass-lumping without the usual constraints on the shape of these elements. A
full error analysis of the method is developed and numerical tests are presented
for illustration.

1 Introduction

The propagation of electromagnetic waves through a non-dispersive linear medium can
be described by the time-dependent Maxwell’s equations

ε∂tE+ curlH = − j, (1)

μ∂tH+ curlE = 0, (2)

together with appropriate initial and boundary conditions. Here E, H denote the elec-
tric and magnetic field intensities, ε , μ the corresponding material parameters, and j
describes the density of source and eddy currents. An efficient discretization of (1)–
(2) can be achieved by the finite difference time domain (FDTD) method or the finite
integration technique (FIT), see e.g. [14,15], and for isotropic materials and orthogonal
grids, second-order convergence can be obtained in space and time. In order to handle
complex geometries, several attempts have been made to generalize these methods to
non-orthogonal and unstructured grids; see e.g. [2,12,13] and also [3,4] for more recent
results. A rigorous error analysis of a Yee-like scheme on triangles and tetrahedra was
given in [6], and first-order convergence in space on general unstructured grids was
demonstrated theoretically and numerically.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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Scope. In this paper, we propose a novel Yee-like discretization scheme for hybrid grids
in two space dimensions, consisting of triangles and rectangles. The method is based
on a finite element approximation with mass-lumping through numerical quadrature,
which allows for a rigorous error analysis; see [5,9] for background. On rectangular
grid cells, the resulting discretization coincides with that of the FIT or FDTD method.
Following [8], additional internal degrees of freedom are introduced on triangular grid
cells, which allows us to prove discrete stability without severe restrictions on the mesh.
The lowest order approximation on two-dimensional hybrid grids is studied in detail.
The main ideas behind the construction of the method and its analysis however carry
over to three dimensions and higher-order approximations; see [7,8,11] and the discus-
sion at the end of the paper.

2 Description of the Problem

Let us start with completely specifying the model problem to be considered in the rest
of the paper. We choose ε = μ = 1 and abbreviate f = −∂t j. Moreover, we consider
the second-order form of Maxwell’s equations, i.e.,

∂ttE+ curl(curlE) = f , in Ω , (3)

n× curl(E) = 0, on ∂Ω , (4)

with simple boundary conditions. The computational domain Ω ⊆ R
2 is assumed to

be a bounded Lipschitz polygon and curlE = ∂xE2 − ∂yE1 denotes the curl of a vector
field E = (E1,E2) in two space dimensions. The above differential equations are con-
sidered on a finite time interval [0,T ], and complemented by suitable initial conditions
E(0) = E0 and ∂tE(0) = F0. The existence of a unique solution can then be established
by semi-group theory or Galerkin approximation. Solutions of (3)–(4) can further be
characterized equivalently by the variational identities

(∂ttE(t),v)+(curlE(t),curlv) = ( f (t),v), (5)

for all v ∈ H(curl,Ω) = {E ∈ L2(Ω)2 : curlE ∈ L2(Ω)} and a.a. t ∈ [0,T ]. For abbre-
viation, we write (a,b) =

∫
Ω a ·bdx for the scalar product on L2(Ω) and L2(Ω)2.

3 A Finite Element Method with Mass-Lumping

Let Th = {K} be a geometrically-conforming quasi-uniform shape-regular partition of
Ω into triangular and/or rectangular elements K. By assumption, all edges of the mesh
are of similar length and we call the size h of the longest edge the mesh size.

Finite Element Spaces. For the approximation of the field E on individual elements,
we consider local polynomial spaces defined by

V (K) =

{
N 0(K), if K is a square,

N +
0 (K) =N 0(K)+B(K), if K is a triangle.

(6)
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Here N 0(K) is the lowest order Nedelec space for triangles or rectangles [1,10], and
B(K) is a space of three quadratic functions with vanishing tangential components.
The corresponding degrees of freedom are depicted in Fig. 1, and details on the basis
functions are presented in Sect. 5.The global finite element space is finally defined by
Vh = {vh ∈ H(curl;Ω) : vh|K ∈V (K) ∀K ∈ Th}.

Fig. 1. Degrees of freedom for the space N 0(K) on the rectangle (left) and the space N +
0 (K),

introduced in [8], on the triangle (right). The three internal degrees of freedom for the bubble
functions are displayed in red and the corresponding quadrature points are depicted as blue dots.
(Color figure online)

Quadrature. We use an approximation (u,v)h :=∑K(u,v)h,K for the L2-scalar product,
with contributions obtained by numerical integration. On the triangle, we set

(u,v)h,K = |K|
3

∑
i=1

1
3 u(mK,i) · v(mK,i), (7)

where mK,i is the midpoint of the edge ei opposite to vertex i; see Fig. 1. For the rect-
angle, we proceed differently: Here we decompose (u,v) = (u1,v1)+ (u2,v2) into two
contributions for the orthogonal directions, and then use different quadrature rules for
the two contributions, i.e.

(u,v)h,K = |K|
(

2

∑
i=1

1
2u1(mK,h,i)v1(mK,h,i)+

2

∑
j=1

1
2u2(mK,v, j)v2(mK,v, j)

)

. (8)

Here mK,h,i and mK,h, j are the midpoints of the horizontal and vertical edges, respec-
tively; see again Fig. 1. For the semi-discretization of our model problem in space, we
then consider the following inexact Galerkin approximation.

Problem 1. Let Eh,0, Eh,1 ∈ Vh be given. Find Eh : [0,T ] → Vh such that

(∂ttEh(t),vh)h+(curlEh(t),curlvh) = ( f (t),vh) (9)

for all vh ∈ Vh and all t ∈ [0,T ], and such that Eh(0) = Eh,0 and ∂tEh(0) = Eh,1.

As we will indicate below, the implementation of this method leads to a diagonal mass
matrix, which allows using explicit methods for efficient time integration.
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4 Main Results

By elementary computations, one can verify the following assertions, which ensure the
well-posedness of Problem 1 and yield a starting point for our error analysis.

Lemma 1. The quadrature rule (8) is exact for polynomials of degree k ≤ 2 on tri-
angles and for polynomials of degree k ≤ 1 on squares. Moreover, the inexact scalar
product (·, ·)h induces a norm ‖ · ‖h on Vh, which is equivalent to the L2-norm on Vh,
and consequently Problem 1 has a unique solution.

As a second ingredient, let us recall some results about polynomial interpolation.
We denote by Πh : H1(Th)2 → Vh the projection defined element-wise by

(ΠhE)|K := ΠKE|K (10)

where ΠK :H1(K)→N 0(K) is the standard interpolation operator for the lowest order
Nedelec space N (K) on both triangles and squares; see [1,10] for details. We further
denote by π0

h : L
2(Ω)→ P0(Th) the L2-orthogonal projection onto piecewise constants;

the same symbol is used for the projection of vector-valued functions.

Lemma 2. Let K ∈ Th and Πh defined as in (10). Then

‖E −ΠhE‖L2(K) ≤Ch‖E‖H1(K), (11)

‖curl(E −ΠhE)‖L2(K) ≤Ch‖curlE‖H1(K), (12)

‖E −π0
hE‖L2(K) ≤Ch‖E‖H1(K), (13)

whenever E is regular enough, with a constant C independent of h.

Having introduced all the required tools, we can now state and prove our main result.

Theorem 1. Let E and Eh denote the solutions of (5) and (9) with initial values set by
Eh(0) = ΠhE(0) and ∂tEh(0) = Πh∂tE(0). Then

‖∂t(E −Eh)‖L∞(0,T ;L2(Ω)) +‖curl(E −Eh)‖L∞(0,T ;L2(Ω)) ≤C(E,T )h

with constant C depending on the norm of E but independent of the mesh size h.

Proof. Apart from some technical details, the analysis follows by standard arguments.
For completeness and convenience of the reader, we present all the details.

Step 1. Error Splitting and Estimate for the Projection Error. We first split the
discretization error into a projection error and a discrete error component via

E −Eh = (E −ΠhE)+(ΠhE −Eh) =: −η +ψh. (14)

By the estimates of Lemma 2, we immediately obtain

‖∂tη‖L∞(0,T ;L2(Ω)) +‖curlη‖L∞(0,T ;L2(Ω))

≤Ch
(
‖∂tE‖L∞(0,T ;H1(Th)) +‖curlE‖L∞(0,T ;H1(Th))

)
,

which already covers the first error component.
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Step 2. Discrete Error Equation. By subtracting (8) from (5) with v= vh, we can see
that the discrete error ψh satisfies the identity

(∂ttψh(t),vh)h+(curlψh(t),curlvh) =
(∂ttη(t),vh)+(curlη(t),curlvh)+σh(Πh∂ttu(t),vh)

for all vh ∈ Vh and 0 ≤ t ≤ T , with quadrature error

σh(E,v) = (E,v)h − (E,v). (15)

We can further split σh(E,φ) = ∑K∈Th
σK(E,φ) into element contributions defined by

σK(E,φ) = (E,φ)h,K − (E,φ)K . Moreover, ψh(0) = ∂tψh(0) = 0, due to the choice of
initial conditions for the discrete problem.

Step 3. Estimates for the Quadrature Error. To further proceed in our analysis, we
now quantify the local quadrature error in more detail.

Lemma 3. Let E ∈ L2(Ω)2 with E|K ∈ H1(K)2 for all K ∈ Th. Then

|σK(ΠhE,φh)| ≤Ch‖E‖H1(K)‖φh‖L2(K)
for all φh ∈ Vh and all K ∈ Th with constant C independent of the element K.

Proof. Using Lemma 1, we deduce that (u0h,vh)K = (u0h,vh)h,K for all u0h ∈ P0(K)2 and
vh ∈V (K). We can then estimate the quadrature error by

|σK(Πhu,vh)| = |σK(Πhu−π0
hu,vh)| ≤ c‖Πhu−π0

hu‖L2(K)‖vh‖L2(K)
≤ c′h‖u‖H1(K)‖vh‖L2(K),

where we used the Cauchy-Schwarz inequality and the norm equivalence of Lemma 1
and the approximation properties of the projections from Lemma 2.

Step 4. Estimate for the Discrete Error. Taking vh = ∂tψh(t) as test function in the
discrete error equation and integrating from 0 to t leads to

1
2

(
‖∂tψh(t)‖2h+‖curlψh(t)‖2L2(Ω)

)
(16)

=
t
∫
0
(∂ttη(s),∂tψh(s))+(curlη(s),curl∂tψh(s))+σh(Πh∂ttu(s),∂tψh(s))ds.

The three terms can now be estimated separately. Using Cauchy-Schwarz and Young
inequalities, the first term may be bounded by

(i) ≤ ch2‖∂ttE‖2L1(0,t,H1(Th))
+ 1

4‖∂tψh‖2L∞(0,t,L2(Ω)).
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For the second term, we utilize that

(ii) =
t
∫
0
(curl(E −ΠhE),curl∂tψh))ds

= (curl(E −ΠhE)(t),curlψh(t))−
t
∫
0
(curl(∂tE −Πh∂tE),curlψh)ds

≤Ch2
(‖curlE‖2L∞(0,t;H1(Th))

+‖curl∂tE‖2L1(0,t;L2(Ω))

)
+ 1

4‖ψh‖2L∞(0,t;L2(Ω)).

The third term can finally be estimated using Lemma 3 according to

(iii) ≤ ch2‖∂ttE‖2L1(0,t,H1(Ω)) +
1
4‖∂tψh‖2L∞(0,t,L2(Ω))

Using these estimates in the inequality (16), absorbing all the terms with the test func-
tion into the left side, and taking the supremum over t ∈ [0,T ], after applying the norm
equivalence of Lemma 1 to some terms, then leads to the estimate

‖∂tψh‖2L∞(0,T ;L2(Ω)) +‖curlψh‖2L∞(0,T ;L2(Ω))

≤Ch2
(‖∂ttE‖2L1(0,T ;H1(Th))

+‖∂tE‖2L1(0,T ;H1(Th))
+‖curlE‖2L∞(0,T ;H1(Th))

)

for the discrete error component; one may also take the square root in all terms.

Step 5. The proof of the theorem is completed by applying the triangle inequality to
the error splitting in Step 1 and adding up the estimates for the projection error η and
the discrete error component ψh.

5 Implementation

For completeness of the presentation, let us briefly discuss the choice of basis func-
tions for the local finite element spaces N 0(K) and N +

0 (K) which, together with the
numerical quadrature leads to diagonal mass matrices.

Rectangle. On quadrilateral elements K, we choose the standard basis for the lowest
order Nedelec space N 0(K) = span{Φh,i,Φv,i : i = 1, . . . ,2}; see [1,10]. These func-
tions have the following properties: The function Φh,i associated to a horizontal edge
eh,i vanishes identically on the opposite horizontal edge, and Φv, j associated to for the
vertical edge ev, j vanishes on the opposite vertical edge. Hence the local mass matrix
produced by the quadrature rule (u,v)K,h for every rectangle is diagonal.

Triangle. Let {λi} be the barycentric coordinates of the element K. For every edge
ek = ei j pointing from vertex i to j, and thus opposite to k, we define the two basis
functions

ΦB
i j = λiλ j∇λk and

Φi j = λi∇λ j −λ j∇λi+αi jΦB
i j+βi jΦB

jk+ γi jΦB
ki.
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Then N +
0 (K) = span{Φ12,Φ23,Φ31,ΦB

12,ΦB
23,ΦB

31}. The bubble functions ΦB
i j have

vanishing tangential components on the edge are ek, and they vanish identically on the
two remaining edges ei, e j. The functions Φi j are modified Nedelec basis functions.
They have vanishing tangential components on the two edges ei, e j, and by appropriate
choice of the parameters αi j, βi j, γi j, their normal components on all edge midpoints
mK,i can be made zero. As a consequence, the local mass matrix produced by the scalar
product (u,v)K,h for the triangle becomes diagonal.

Summary. The global mass matrix is obtained by assembling the local mass matrices,
which are diagonal, and hence has inherits this property.

6 Numerical Illustration

We consider the computational domain Ω = Ω1 ∪Ω2 where Ω1 = (0,2)× (−1,1) and
Ω2 =

(
(2,4)×(−1,1))\B0.3(3,0), where Br(x,y) denotes the ball with radius r around

midpoint (x,y). The two subdomains are meshed by rectangles and triangles, respec-
tively. For our test problem, we consider the wave Eq. (3). The boundary ∂Ω is split
into several parts and as boundary conditions, we impose

n×E = sin(10 · t) · e−10y2 , on ∂Ωleft,

n×E = 0, on ∂Ωball,

n× curlE = 0, else.

The initial conditions are chosen as E(0) = ∂tE(0) = 0. This corresponds to a pulse
entering at the left boundary, propagating through the domain, and getting reflected
at the walls of the box and the circular inclusion. Some snapshots of the solution are
depicted in Fig. 2. Let us remark that no reflections are observed at the interface between
the two meshes. In our numerical tests, we observe linear convergence of the error in
space. This coincides with the theoretical predictions of Theorem 1, and also demon-
strates that the error estimates are sharp. Note that second-order convergence is in gen-
eral lost for Yee-like approximations on unstructured grids; also see [11].

Fig. 2. The first E1 component of the solution E = (E1,E2) at time steps t = 2.3 and t = 5 showing
the scattering at the sphere.
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Abstract. A full-wave electromagnetic solver coupled with a Poisson’s solver
based on time-domain finite element method (TD-FEM) is developed. This solver
aims to simulate the side-band frequency generation on optical signal due to the
imposed radio frequency (RF) signal through a nonlinear material. The optical
signal propagating within an optical waveguide is simulated in time-domain by
solving the electromagnetic wave equation, whereas Poisson’s equation is numer-
ically solved to compute the strength of the slowly-varying RF signal. The applied
RF signal changes the permittivity of the nonlinear material BTO, and this chang-
ing permittivity affects the transient wave behavior of the light. As opposed to the
available frequency-domain Maxwell solvers, this proposed time-domain solver
is capable of simulating the nonlinear effects introduced by an electro-optical
material, and implemented for the modeling of an application where RF signal
is mixed into the optical frequencies. As a result of the simulations, nonlinear
dielectric constant of electro-optical material is computed, and resulting side-
band frequency generation is observed in the spectrum of the time-domain output
signal.

1 Introduction

New generation mobile network systems offer faster communication speeds and exten-
sive data transfer rates. New 5G and 6G applications utilize higher frequency bands to
satisfy the demand in broader bandwidths and high data transfer rates, and photonic and
plasmonic communication systems proved to be vital in this pursuit to replace highly
lossy traditional electronic counterparts. In [1–5] authors have successfully demon-
strated plasmonic modulation and photodetection reaching up to 500 GHz. Furthermore,
a transparent optical-subTHz-optical link with single line rate of 240 Gbit/s over 115 m
at subTHz frequencies over 200 GHz is reported [5]. The permanent progress in high
frequency communication systems and continuous increase in data transfer rates rely
on conversion of electronic and optical signals to each other [6], and ultra-fast, energy-
efficient electro-optical switches. Recently, electro-optic modulation schemes via quan-
tum effects [7], 2D materials [8], resonant structures [9], or plasmonic effects [10] have
been demonstrated. To avoid the speed limitations that can be introduced by some of
these methods, electro-optic devices with plasmonics that enhances the nonlinear effects
via light confinement into sub-diffraction limits are reported [11]. Including plasmonics,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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one common way of mixing optical and electrical signals is through phase modulation
of an optical signal by an RF signal that produces a series of side-band frequencies in
the optical domain by utilizing nonlinear materials [12]. Therefore, advanced nonlinear
electro-optical devices offer solutions for the next generation high speed communica-
tion systems. The performance of these devices are strongly dependent on the electro-
optic coefficients of these nonlinear materials [13]. Moreover, the physical properties
of the waveguides and light confinement are affecting the device operation as well [14].
Consequently, this article focuses on time-domain modeling of phase modulation of an
optical signal and the mentioned nonlinear electro-optical effect. The objective of this
article is to present a nonlinear material integrated optical waveguide in order to observe
and model the mixing of the RF frequencies to the optical frequencies.

This article is organized as follows. Section 2 presents the optical waveguide and the
material nonlinearity, as well as theoretical backgrounds for the computation. Section 3
discusses the results and Sect. 4 concludes the paper with remarks and future work
description.

2 Physical Model and Theory

Considered problem requires electromagnetic analysis of an optical waveguide structure
that has a nonlinear material insertion. The defined scheme is depicted in Fig. 1a, which
consists of a 2-D optical waveguide, and in its middle section, a nonlinear material,
Barium Titanate (BTO), is inserted as a phase modulator. Electric permittivity εrBTO
of BTO depends on the electric field |Elocal | it encounters, and can provide Pockels
coefficients as high as 1600 pm/V [15,16]. Assuming single crystal BTO, the relation
between the permittivity of BTO and the electric field is given as follows [16]:

εrBTO(|Elocal |) =
ε0

(
1+ kε3

0 |Elocal |2
)1/3

, (1)

where ε0 = 1000 is the typical zero-field permittivity for BTO, and k = 3βε3
0 =

10−8m2V−2 is a constant that includes the nonlinear Johnson’s parameter β .
The core material of the waveguide has 400 nm width and is assumed to be Silicon

(with εr Si = 12.04). Whereas the cladding is 2 µm wide on each side of the waveg-
uide and is taken as Silicondioxide (εr SiO2 = 2.07). The electro-optical (EO) modulator
section with BTO insertion is chosen such that the effective permittivity of that section
varies as εr = 0.9εr Si+0.1εrBTO, since the fabricated 3-D devices have dominant con-
tributions from the core material in addition to the deposited BTO. In other words, the
EO section consists of a layer of BTO on the Silicon waveguide which leads to consid-
eration of an effective electric permittivity that is combination of electric permittivities
of Silicon and BTO.

The electromagnetic solver is developed using electromagnetic wave equation in
time domain as in (2). The boundary conditions are perfect electric conductor (PEC)
boundary condition on the top and the bottom sides of the structure (n×E= 0, where n
is unit vector pointing outwards direction), and the port boundary condition (3) is used
for both the input and the output waveports (without excitation at the output, E0 = 0).
On the other hand, the field distribution due to the applied RF signal is computed by
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Fig. 1. Figure illustrating the nonlinear electro-optical signal mixer. (a): 2-D optical waveguide is
depicted. The input waveport is on the left, whereas the output is on the right. The core section
has also an electro-optical (EO) phase modulator (the middle part) in the middle to provide the
nonlinearity. (b): Relative permittivity εr vs. |Elocal | is shown for the pure nonlinear material. The
RF signal is directly applied on the contacts (∂ΩRF ) near the nonlinear material whereas the light
excitation is provided from the waveport (∂Ωport ) on the left, and it is absorbed from the right.

the Poisson’s equation as in (4). The RF signals are applied as Dirichlet conditions
on the boundaries of the electro-optical (EO) material as in (5) and PEC boundary
conditions are implemented for the computation domain boundaries for the RF field
analysis (ϕ = 0 on outer boundaries).

The computed potential distribution ϕ is used to obtain the RF field ERF =−∇ϕ and
|Elocal | = |ERF | since the RF field (in the order of V/m) is much higher than the optical
field (in the order of μV/m). Then, |Elocal | is used to compute the electric permittivity
of BTO and the effective electric permittivity of the phase modulator sections based on
(1).

For this coupled analysis to be accurate, the main assumptions are that the wave-
length of the RF signal (in the order of millimeters) is very large compared to the com-
putation domain (in the order of micrometers), and RF signal also varies very slowly
compared to the time domain optical signal. Therefore, it is safe to solve only Pois-
son’s equation for the RF field and resultant nonlinear contribution. Furthermore, the
given waveguide is single-moded and the fundamental mode operation only requires
z-component of the electric field for the light propagation. Consequently, Eq. (2) can
be further reduced to a scalar equation which is be very convenient for the numerical
analysis.

∇×
(

1
μr

∇×E
)
+μ0σ

∂E
∂ t

+μ0ε0εr
∂ 2E
∂ t2

= 0 in Ω (2)
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n×
(

1
μr

∇×E
)
+

μ0

Zport
n×

(
n× ∂E

∂ t

)

=
−2μ0

Zport
n×

(
n× ∂E0

∂ t

)
over ∂Ωport

(3)

∇(ε∇ϕ) = 0 in Ω (4)

ϕ = ϕRF over ∂ΩRF (5)

∂E
∂ t

≈ Et −Et−1

Δ t
(6)

The introduced equations are discretized using Finite Element Method (FEM) and
using first order linear shape functions by adopting the formulation in [17] and [18].
This discretization resulted around 14000 triangular elements for the complete geom-
etry. The time discretization is done by Backward Difference Formula (BDF) as in (6)
that ensures the stability of the wave equation [18]. Furthermore, the coupling of the
wave equation (2) and the Poisson’s equation is done through the effective permittiv-
ity of the EO material which directly effects the wave propagation. The time-domain
approach requires very small time steps in the order of femtoseconds (0.1–1 fs) for the
full wave simulation of the propagating light, whereas the RF field is changing very
slowly and hence solving the static Poisson’s equation at every time step is sufficient.
In other words, the static Poisson’s equation is solved at every time step to compute the
RF field and the instantaneous effective permittivity before solving the wave equation
in the respective time step. One complete simulation with sufficient number of periods
of the optical signal requires around 200 MB memory, and it takes around 0.3 s CPU
time for the computation of a single time step on an Intel i7-7500 CPU. A snapshot of
the electric field (Ez) with the propagating fundamental mode is shown in Fig. 2 where
the scattering due to nonlinear material is visible.

3 Results

The influence of the ‘slowly varying’ RF field directly reveals itself on the propagating
light due to nonlinear electric permittivity of the EO section. From the input port, optical
wave with wavelength of 1550 nm is excited with the spatial shape of the fundamental
mode of the single-moded waveguide. Fast Fourier Transform (FFT) of the input signal,
(the blue curve in Fig. 3b) also proves the excitation initially has purely one wavelength.
After propagating through the waveguide and going through the nonlinear EO material
in the presence of an RF excitation of 500 GHz, light reaches the output waveport, where
its FFT is again computed. Figure 3b clearly shows that at the output, in addition to
the excitation signal, other frequencies emerge. These frequencies occur at fout = f0 ±
mfRF , where f0 denotes the original optical carrier frequency, fRF is the RF frequencies
applied to EO section and m=±1,±2, ... is an integer. With the applied RF field in this
simulated case, εrBTO changes between around 25 and 100, which in return provides
the mixing of RF signal into the optical carrier signal.
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Fig. 2. Snapshot of the normalized field due to propagating light in the given waveguide with the
nonlinear insertion. Here the plot depicts the z-component of the propagating electric due to light,
and the applied in-plane RF field is not shown. Light enters into the computation domain from the
left boundary, where the fundamental mode excitation (having only z-component) is applied, and
travels within the Si core between the black lines; and absorbed at the output port on the right.
The box, with 100 nm length (in x dimension), indicates where BTO is inserted. Scattering of the
light due to discontinuity of permittivity can be seen.

Furthermore, amplitude of the applied RF signal have an effect on how efficient the
signal mixing takes place. This also reveals itself as changing side-band ratios in the
spectrum of the output signal. In other words, the emerging side-band frequencies have
different peaks and different ratios with respect to the central optical frequency f0. This
can be observed in Fig. 4, as the higher RF field amplitude results higher sideband peaks
when the spectrum are all normalized with respect to the central peak f0. Also in Fig. 5,
the side-band ratios for the first three side-bands are given with respect to varying RF
field amplitude. Since the permittivity dependence of the BTO is nonlinear with respect
to Elocal , the side-band ratios also change nonlinearly and they saturate, which makes
the design of electro-optical signal mixers more challenging and interesting.
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Fig. 3. Figure showing the spectrum of the signals indicating the signal mixing at the output.
(a): Spectrum of the RF signal, single peak at 500 GHz. (b): Normalized spectrum of the optical
signals: excitation signal, and the signal at the output port. The spectrum of the output optical
signal shows that side-band frequencies are generated at fout = f0 ±mfRF .

Fig. 4. Normalized (with respect to corresponding f0 peak) spectrum of the mixed signals when
different RF amplitudes are applied. The two curves depict the spectrum when the peak-to-peak
potential through the EO section is 0.5µV and 1.0µV. As expected, high RF field results side-
bands with higher amplitude, but the effect is nonlinear due to material’s field dependent electric
permittivity.
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Fig. 5. 1st, 2nd and 3rd sideband ratios with respect to changing RF field peak-to-peak amplitude.
The ratios are calculated from the amplitudes of the respective peak and the central peak at the
output.

4 Conclusion

Thanks to the developed solver, nonlinear EO materials can be considered accurately
and the effects can be observed directly. Additionally, Pockels coefficient of nonlin-
ear materials for a given structure can be determined and verified using this method
starting from the basic material properties. Therefore, this work opens up new perspec-
tive to improve the design of electro-optical high-speed devices by enabling simulation
of more complicated modulator structures, side-band frequency generation and signal
mixing by nonlinear materials. Using the developed solver, it is possible to optimize
the device structures and dimensions to make use of the nonlinear effects and to effi-
ciently obtain signal mixing while maintaining high signal-to-noise ratios. Moreover,
this approach could offer additional physics coupling such as charge transport in the
active material due to RF signal or DC bias [19,20], and nonlinear effects of the mov-
ing charges can also be inserted. Besides, explicit discontinous Galerkin time-domain
methods can easily be applied for the Maxwell’s equations to eliminate the computa-
tional costs introduced due to the costly matrix inversions and dynamic matrix assembly
operations at every time step that result from the nonlinear material properties. We also
plan to extend our studies by performing a full stability analysis of the coupled system
for various time discretization methods.
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Abstract. The electric scalar potential electro-quasistatic field formulation is
commonly employed for simulating nonlinear high-voltage problems. To this
end, standard iterative nonlinear solvers, such as fixed-point iterations and New-
ton’s method, are used. Here, iterative charge update schemes that possess a con-
stant coefficient matrix throughout the nonlinear iterations are developed, abstract
convergence conditions are proved and numerically verified for the fundamental
frequency, while their suitability and performance is assessed, in terms of accu-
racy and computational complexity.

1 Introduction

The electro-quasistatic (EQS) approximation [1] of Maxwell’s equations provides a
suitable model for various applications in electrical engineering, whenever radiation
effects can be neglected and the electric field energy density exceeds the magnetic
energy density. A benefit of the EQS approximation is that it enables a scalar poten-
tial formulation for the charge continuity equation. Further, since the conductivity is
inherent in EQS formulations, it is possible to consider media whose conductivity is
a nonlinear function of the field-strength, such as field grading material that are often
used in high-voltage engineering devices as means to reduce the field-strength in the
vicinity of critical points [2].

2 Problem Description

In the electro-quasistatic (EQS) limit ∂tB → 000, Faraday’s law implies that the electric
field intensity E is irrotational, and hence, Maxwell’s equations reduce to a scalar poten-
tial formulation for the continuity equation. More precisely, in the absence of imposed
current density, EQS fields are governed by the continuity equation

∇ · (σ∇ϕ + ε∇∂tϕ) = 0, (1)

where σ ≥ 0 is the electric conductivity, ε > 0 is the permittivity, ϕ is the sought scalar
EQS potential, which depends on the time t and on the position vector r, and E =
−∇ϕ . Provided a time-harmonic excitation, the electric potential ϕ can be written as
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ϕ(r, t) = Re(φ(r)eiωt), where Re(...) denotes the real part of the enclosed expression,
ω = 2π f is the angular frequency of the excitation, i=

√−1 is the imaginary unit, and
φ is a complex-valued function that satisfies the Laplace equation

∇ · (σ + iωε)∇φ = 0. (2)

Provided that Eq. (2) holds in an open, bounded, and simply connected domain Ω ⊂R
3

whose boundary ∂Ω is Lipschitz, such as the one depicted in Fig. 1 (left), a typical
boundary value problem for Eq. (2) is formulated by assuming Dirichlet and Neumann
boundary conditions of the form φ |ΓS = s, φ |ΓG = 0, and n · ∇φ |ΓI = 0. Here, ΓS is
the boundary that supplies a constant potential s > 0, ΓG is grounded, and n is the out-
ward pointing unit normal on the insulating boundary ΓI. Further, the computational
domain Ω constitutes ofM ≥ 1 sufficiently regular non-overlapping subdomains Ω (m),
where each Ω (m) with m ∈ {0,1, . . . ,M − 1} is occupied by material with constant
material properties. To introduce the variational setting, consider the function spaces
Uα = {ψ ∈ H1(Ω) : ψ|ΓS = α,ψ|ΓG = 0}, where α ∈ {0,s}, H1(Ω) = H(grad,Ω)
is the space of square-integrable functions whose weak partial derivatives are square-
integrable, and the restriction operators |ΓS, |ΓG are understood in the sense of traces.
Then, the variational form of the boundary value problem that constitutes of Eq. (2) and
the aforementioned boundary conditions reads as follows.

Find φ ∈Us such that
∫

Ω
(σ + iωε)∇φ ·∇ψ = 0 ∀ψ ∈U0. (3)

Provided the Dirichlet boundary data, and the fact that the permittivity is nonvanish-
ing throughout Ω , problem (3) is well-posed for all ω > 0, as follows from the Lax-
Millgram theorem [3].

Fig. 1. (A) Conceptual setup of a benchmark device [4] in the EQS limit, with the numbers (m)
corresponding to the domains Ω (m) and (B) a plot of the conductivity function σ (0) as a function
of the electric field strength |E|, in semilogarithmic scale. The inset shows the same curve using
linear scales for both axes.
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3 The Iterative Charge-Update Scheme

Equation (2) can be viewed as a combination of the electric divergence law with the
time-harmonic continuity equation [5], that is,

−∇ · ε∇φ = ρ, iωρ = ∇ ·σ∇φ , (4)

with ρ being the charge density. Based on this observation, an iterative charge-update
(ICU) scheme can be introduced by first computing the induced charge density accord-
ing to the continuity equation, and then using the resulting updated charge density as
the right-hand side term for a boundary value problem for the electric divergence law,
in order to update the potential. More precisely, consider the variational form

∫
Ω

ε∇φ ·∇ψ =
∫

Ω
ρψ ∀ψ ∈U0, (5)

which is associated with the boundary value problem for the electric divergence law,
and the one that is associated with the continuity equation, that is,

∫
Ω

σ∇φ ·∇ψ = −iω
∫

Ω
ρψ ∀ψ ∈U0. (6)

Given an initial guess φ0 ∈ Us, an approximation φn of φ can be introduced by using
problem (6) to evaluate the right-hand side term, while afterwards, the potential can be
updated using Eq. (5). In particular, let n = 0, en = 1, 0 < δ < 1, and choose φn ∈Us.
While en ≥ δ , find φn+1 ∈Us such that

∫
Ω

ε∇φn+1 ·∇ψ =
i
ω

∫
Ω

σn∇φn ·∇ψ ∀ψ ∈U0, (7)

set en+1 = ‖φn+1−φn‖0,Ω /‖φn+1‖0,Ω , where ‖...‖0,Ω is the standard L2-norm through-
out the computational domain Ω , and increase the counter n by one. In the resulting
Eq. (7), the conductivity-weighted integral is evaluated at the previous iteration, in con-
trast to standard fixed-point iterations

∫
Ω
(σn+ iωε)∇φn+1 ·∇ψ = 0 ∀ψ ∈U0. (8)

Whenever the ICU scheme (7) is convergent, its benefit over fixed-point iterations
and Newton-like methods is evident; a single matrix assembly is required by the ICU
scheme, while only the right-hand-side vector needs to be updated within each iteration.
In the following theorem, the condition that is required for the ICU scheme to converge
is given.

Theorem 1. If γ = σmax/(ωεmin)< 1, then the iterative charge-update scheme (7) con-
verges to the solution of problem (3) in H1(Ω) for all φ0 ∈Us.

Proof. Let un = φn −φ ∈U0 and observe that un satisfies the variational equation
∫

Ω
ε∇un+1 ·∇ψ =

i
ω

∫
Ω

σn∇φn ·∇ψ − i
ω

∫
Ω

σ∇φ ·∇ψ. (9)
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For ψ = un+1 ∈ U0, with overlines denoting complex conjugation, the latter equation
becomes

∫
Ω

ε|∇un+1|2 = i
ω

∫
Ω

σn∇φn ·∇un+1 − i
ω

∫
Ω

σ∇φ ·∇un+1. (10)

The left-hand side integral of Eq. (10) satisfies the inequality

∫
Ω

ε|∇un+1|2 =
M−1

∑
m=0

ε(m)
∫

Ω (m)
|∇un+1|2 ≥ εmin‖∇un+1‖20,Ω , (11)

where εmin is the minimum permittivity value throughout Ω . Furthermore, an appli-
cation of the triangle inequality followed by M applications of the Cauchy-Schwarz
inequality to the first term of right-hand side of Eq. (10) yields

∣∣∣∣ iω
∫

Ω
σn∇φn ·∇un+1

∣∣∣∣ ≤ σmax

ω
‖∇φn‖0,Ω · ‖∇un+1‖0,Ω , (12)

where σmax is the maximum conductivity value throughout Ω . A similar argument for
the second term on the right-hand side of Eq. (10) results in

∣∣∣∣ iω
∫

Ω
σ∇φ ·∇un+1

∣∣∣∣ ≤ σmax

ω
‖∇φ‖0,Ω · ‖∇un+1‖0,Ω . (13)

By letting γ = σmax/(ωεmin) and assuming that ‖∇un+1‖0,Ω 
= 0, a combination of (10),
(11), (12), and (13) results in ‖∇un+1‖0,Ω ≤ γ(‖∇φn‖0,Ω +‖∇φ‖0,Ω ), and hence,

‖∇un+1‖0,Ω ≤ γn+1(‖∇φ0‖0,Ω +‖∇φ‖0,Ω ). (14)

If γ < 1, then ‖∇un+1‖0,Ω → 0 as n → ∞, which means that ∇un+1 → 0 almost every-
where in Ω . Provided that ΓG is of nonvanishing Hausdorff measure, an application of
the Poincaré inequality followed by an application of (14) yields

‖un+1‖0,Ω ≤C‖∇un+1‖0,Ω ≤Cγn+1(‖∇φ0‖0,Ω +‖∇φ‖0,Ω ) → 0 (15)

as n→ ∞, withC ∈ (0,+∞) depending only on Ω and ΓG. To summarize, given γ < 1, it
follows that ‖φn−φ‖21,Ω = ‖φn−φ‖20,Ω +‖∇φn−∇φ‖20,Ω → 0 as n→ ∞, and the proof
is complete.

Although the condition on γ , or equivalently the condition σmax < ωεmin, appears
to be rather hard to satisfy under the presence of perfect electric conductors, there are
various ways to overcome most of the difficulties that arise in practical applications, as
is demonstrated in the following section.

4 Numerical Explorations

4.1 Reference Simulation

The simulations are performed using the upper half of the cylindrically symmetric
device that is depicted in Fig. 1, with homogeneous Neumann boundary data on the
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boundary that is formed after the truncation. The height of the cylinder is � = 120 mm,
while its radius is r= 32.5 mm. The values of the material functions are given in Table 1,
while the conductivity of the material in Ω (0) is modeled by the logistic function

σ (0)(|E|) = σ0

1+ e−α·(|E|−E0)
, (16)

where σ0 = 10−9 S/m, α = 10−5 m/V, and E0 = 106 V/m. The potential that is sup-
plied through ΓS is s = 105 V, while the frequency of the excitation is f = 0.1 Hz.
Mark that the value of the parameter E0 has been chosen to be approximately 170 V/m
higher than s/�, which corresponds to the electric field strength of a plate capacitor
whose �-separated plates are at voltage s.

Theorem 1 holds both for linear problems and nonlinear problems whose conduc-
tivity is a nonlinear function that is bounded from above, such as the logistic function
in Eq. (16). In case of nonlinear problems, a harmonic balance expansion can be used
for the transition to the frequency domain, with Theorem 1 being required to be valid
for each frequency ωk = kω , with integer k ≥ 1 and ω being the fundamental fre-
quency. Since the goal here is to verify Theorem 1 and assess the performance of the
ICU scheme, it is evident that if σmax throughout the computational domain is smaller
than ωεmin, then it is also smaller than any k-multiple of ωεmin, and hence, only the
fundamental frequency needs to be examined in the numerical experiments.

To obtain reference solutions, fixed-point iterations are employed with stopping cri-
terion en < δ = 10−8. The simulation is performed using a nearly uniform triangulation
whose average edge-length is approximately 1.5 · 10−4 m. The resulting mesh consti-
tutes of 72 000 vertices, and since the finite element method with Lagrangian elements
of unity order is used for the sought scalar potential, the number of vertices coincides
with the number of degrees of freedom. The initial guess φ0 ∈Us is obtained by solving
the associated electrostatic problem, that is, Problem (3) for σ = 0 everywhere in Ω .
The solver requires 13 s and 8 nonlinear iterations to satisfy the given tolerance, with
e8 ≈ 4.5 ·10−9, while a direct solver is used within each iteration. The results are shown
in Fig. 2, where the real and imaginary part of the resulting potential φ8 are shown in (A)
and (B), respectively. In the same figure, (C) and (D) depict the electric field strength
of the real and imaginary part upon numerical convergence.

Table 1.Material Properties

Ω (0) Ω (1) Ω (2) Ω (3) Ω (4)

ε(m)r 4.0 4.0 1.0 1.0 4.0

σ (m)(S/m) Eq. (16) 10−12 4.0 ·10−12 0.0 107
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Fig. 2. Reference simulation results that have been obtained with fixed-point iterations. In (A) and
(B), the real and imaginary part of the scalar EQS potential is shown, while (C) and (D) depict
the electric field strength of the real and imaginary parts, respectively. Mark that the visualiza-
tion range has been truncated, and hence, the mono-colored regions in the vicinity of the lower
right corners of the electric field strength visualizations do not correspond to equal values but to
truncated ones.

4.2 The Case of Perfect Electric Conductors

Since σmax = σ (4) = 107 S/m, γ = σmax/(ωεmin) � 1, a direct application of the ICU
scheme is not possible. On the other hand, Fig. 2 suggests that the problem in the con-
ducting domain Ω (4) is nearly static, with Re(φ |Ω (4)) ≈ s and Im(φ |Ω (4)) ≈ 0. Hence,
to recover the convergence of the ICU scheme, the nearly perfectly conducting domain
Ω (4) can be removed from the computational domain, while the supplying boundary
condition φ |ΓS = s can be imposed on the newly formed boundaries. The results from
this strategy are shown in Fig. 3(A) and (B), with (A) depicting the relative difference
between the real part of the potentials that have been obtained with fixed point itera-
tions and the ICU scheme and (B) showing the associated relative difference for the
imaginary part. The ICU solver achieves numerical convergence for the same tolerance
that has been used for the fixed point iterations, δ = 10−8, after 18 s and 26 iterations.
An alternative approach that does not require mesh modifications is show in Fig. 3(C)
and (D), where the domain Ω (4) is kept as part of the computational domain but with
modified material parameters so that a nearly static problem is approximated within
Ω (4), as often done for modelling floating potentials [6]. Here, the values σ (4) = 0 S/m
and ε(4) = 103 F/m are used. Mark that this approach results in significantly improved
accuracy, as depicted in Fig. 3(C) and (D). In the latter case, the ICU solver needs 19 s
and 26 iterations for satisfying the tolerance criterion en < δ = 10−8.

The latter approach is adopted for the rest of the experiments in this work. Mark
that, since the studied device constitutes of weakly conducting material and the con-
ductivity of the perfect electric conductor is set to zero, convergence depends now on
the maximum conductivity σ0 of the nonlinear material, that is, γ = σ0/(ωεmin) < 1.
In the following subsections, numerical verification of the condition σ0 < ωεmin is pre-
sented.
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Fig. 3. Relative differences between the real, (A) and (C), and imaginary parts, (B) and (D), of
the EQS potentials that have been obtained with fixed point iterations and the ICU scheme. In (A)
and (B), the computational domain has been modified, while in (C) and (D) the static problem in
Ω (4) is approximated by setting σ (4) = 0S/m and ε(4) = 103 F/m.

4.3 Numerical Convergence Study

As mentioned below Eq. (16), let σ0 = 10−7 S/m, α = 10−5 m/V, and E0 =
106 V/m; hence, the ICU scheme is expected to be convergent for all frequencies
f > σ0/(2πεmin) ≈ 1800 Hz, although this estimate is tight only when the maxi-
mum value σ0 is attained. The maximum attained conductivity value is approximately
10−9 S/m, which actually results in the lowest frequency being in the order of 10 Hz.
In Table 2, the number of iterations that are required by the ICU scheme for δ = 10−8

is depicted for frequencies f ∈ {20,40, . . . ,100} Hz together with the total time until
convergence.

Table 2. Convergence History and Timing for σ0 = 10−7 S/m

f = 20 Hz f = 40 Hz f = 60 Hz f = 80 Hz f = 100 Hz

#1 3.4 ·10−3 1.7 ·10−3 1.1 ·10−3 8.5 ·10−4 6.8 ·10−4

#2 6.8 ·10−5 1.7 ·10−5 7.6 ·10−6 4.3 ·10−6 2.7 ·10−6

#3 7.6 ·10−6 9.6 ·10−7 2.8 ·10−7 1.2 ·10−7 6.1 ·10−8

#4 2.6 ·10−7 1.9 ·10−8 3.6 ·10−9 1.2 ·10−9 4.7 ·10−10

#5 1.6 ·10−7 4.7 ·10−9 − − −
#6 1.6 ·10−8 − − − −
#7 9.6 ·10−9 − − − −
Timing 5.3s 3.8s 3.0s 3.0s 3.0s

5 Conclusions

An iterative charge-update (ICU) scheme has been introduced as an alternative to
the electro-quasistatic (EQS) scalar potential formulation for high-voltage engineer-
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ing problems and, in particular, for nonlinear problems. The convergence criterion
σmax < ωεmin has been derived and strategies have been presented to satisfy this crite-
rion when perfect electric conductors are part of the domain. The proposed ICU scheme
avoids reassembling the system matrix for each nonlinear iteration. Instead, only the
right-hand side has to be reassembled, and hence, the ICU scheme is expected to be
beneficial when the assembly time possesses a significant part of the total computa-
tional time, that is, for large-scale problems.
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Abstract. In this work we are concerned with computing local/global electro-
static forces and torques on perfect electrical conductors using the boundary ele-
ment method (BEM). Classical boundary based force functionals are not contin-
uous on energy trace spaces and therefore offer low accuracy and convergence
rates. Following the work [P. PANCHAL AND R. HIPTMAIR, Electrostatic Force
Computation with Boundary Element Methods, the SMAI journal of computa-
tional mathematics, 8 (2022), pp. 49–74], we derive a similar force expression
starting from a floating potential problem for conducting bodies. The computa-
tions are done by employing the Virtual Work Principle using shape calculus and
the adjoint method. The final expression is structurally simple and can be evalu-
ated without explicitly computing the adjoint solution. It enjoys superior accuracy
and convergence rates compared to standard formulas which is demonstrated by
means of numerical experiments.

1 Introduction

Numerical computation of Electrostatic forces and torques is of interest in the design of
electro-mechanical devices. Classical approaches for computing these quantities rely on
either boundary-based, or volume-based formulas (also called egg-shell approach), both
of which derive from the Maxwell Stress Tensor [1, Sec. 6.9], [2, Sec. 8.2]. The volume-
based approaches tend to be numerically superior to their boundary-based counterpart
as seen in [3, Section 1]. Our new boundary integral equation (BIE) constrained shape
derivative approach presented in [3] yields a superior boundary-based formula which
outperforms even the volume-based approach, making it an attractive option for use
with a BEM discretization. In this work we follow a similar approach, starting with
the assumption that all bodies are conducting and then employing a floating potential
problem [4] posed on an unbounded domain.

1.1 Floating Potential Model Problem

We have two solid perfectly conducting objects occupying bounded Lipschitz domains
D,B⊂R

3 as shown in Fig. 1. The complement M :=R
3 \(B∪D) is filled with a homo-

geneous isotropic dielectric medium with ε ≡ 1 after rescaling. The solid object B is
grounded (at electrostatic potential 0), whereas the solid object D has a known net elec-
tric charge Q ∈ R. Writing ∂B and ∂D for the boundaries of these conducting objects,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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the electrostatic potential u can be obtained as the weak solution in H1(M)1 of the
Laplace boundary value problem (BVP) on the unbounded domain M:

Δu= 0 in M,

u= 0 on ∂B,
u= c on ∂D,∫

∂D
∇u ·nnn dS= −Q on ∂D,

(1)

M

∂D
∂B

D B

(charge Q) (Grounded)

Fig. 1. Geometric setting

where c ∈ R is the unknown constant potential of the conducting body D and nnn is the
exterior unit normal vector field on Γ := ∂D∪ ∂B. The potential u satisfies the decay
conditions u(xxx) =O(‖xxx‖−1) for ‖xxx‖ → ∞.

The floating potential problem (1) can be equivalently formulated on the boundary
in terms of traces of the potential u, namely the Dirichlet trace u|Γ and the Neumann
trace ∇u|Γ ·nnn. Writing c1∂D for the Dirichlet trace and ψ for the Neumann trace, the

variational formulation reads: seek ψ ∈ H− 1
2 (Γ ), c ∈ R such that

∫

Γ

∫

Γ

G(xxx,yyy)ψ(xxx)φ(yyy) dS(yyy)dS(xxx)+ c
∫

Γ

1∂D(xxx)φ(xxx) dS(xxx) = 0 ∀φ ∈ H− 1
2 (Γ ),

d
∫

Γ

1∂D(xxx)ψ(xxx) dS(xxx) = −d Q ∀d ∈ R, (2)

where G(xxx,yyy) is the fundamental solution for the Laplace operator.

Remark 1. We note that (2) has a saddle-point structure. The double integral in the
first equation is precisely the bilinear form associated with the single layer boundary
integral operator (BIO) which is bounded and elliptic on H− 1

2 (Γ ), and we refer to [5,

1 We adopt the convention of [5, Sec. 2.3 & Sec. 2.4] for function spaces and Sobolev spaces:
Wk,p(Ω),H1(Ω),H

1
2 (Ω),L2(Ω),Ck(Ω) etc., where Ω denotes a generic domain.
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Thm. 3.5.3], [6] for the proof. The bilinear form arising from the fixed charge constraint
is bounded on H− 1

2 (Γ )×R, which is trivial considering the L2(Γ ) duality pairing in
the expression. It satisfies the stability condition [6, Thm. 3.11] which is trivial to prove
for the scalar constraint. Thus from [6, Thm. 3.11] we have the unique solvability of
(2).

2 Forces via Shape Differentiation

The Virtual Work Principle [7–11] tells us that the force can be recovered via the shape
derivative of the total energy. For the electrostatic system (1), the total energy consists
of only the electrostatic field energy EF which is given as

EF =
1
2

∫

R3

‖∇u(xxx)‖2 dxxx=
c Q
2

. (3)

Notice that it is the familiar expression for the energy of a capacitor.

PerturbationMethod: In the perturbation method for computing shape derivatives [12,
Sec. 2.8], we start with a perturbation map. Using a perturbation field ννν ∈C∞

0 (R
3;R3),

it is defined as

Ts
ννν : R3 → R

3, Ts
ννν(xxx) := xxx+ s ννν(xxx), s ∈ R. (4)

The implicit function theorem guarantees the existence of a δ (ννν) such that Ts
ννν is a

C∞ diffeomorphism for |s| < δ (ννν). Using the perturbation map, we define a set of
admissible domains Aννν(Ω0) using perturbations of a reference domain Ω0⊂ R

3 as
Aννν(Ω0) := {Ωs := Ts

ννν(Ω0), s ∈ (−δ (ννν),δ (ννν))}. A shape functional J is then a map
J : Aννν(Ω0) → R, Ω 	→ J(Ω). The shape derivative of J at Ω0 in the direction ννν is
defined as the directional derivative

dJ
dΩ

(Ω0;ννν) := lim
s→0

J(Ts
ννν(Ω0))− J(Ω0)

s
,

if it exists. If, in addition, ννν → dJ
dΩ (Ω0;ννν) ∈ R is a distribution on the space of test

velocity fieldsC∞
0 (R

3;R3), a 1-current as called by de Rham [13, Ch. 3, § 8], then Ω 	→
J(Ω) is called shape-differentiable at Ω0 and that distribution is the shape derivative.
For smooth boundaries, the shape derivatives carry more structure which is captured in
the Hadamard Structure Theorem [12, Ch. 9, Thm. 3.6].

BIE on Perturbed Boundary: Let Ω0 :=D0 ∪B0 denote the reference domain for our
model problem. To make sense of the energy shape functional on the set Aννν(Ω0), we
consider our model problem on the elements of this set. For all values of the shape
parameter s, the conducting object Bs := Ts

ννν(B0) is grounded and Ds := Ts
ννν(D0) carries

the net charge Q. The variational form of the floating potential problem on Ωs :=Ds∪Bs

reads: seek (ψs,cs) ∈Vs := H− 1
2 (Γs)×R such that

A(s;(ψs,cs),(φ ,d)) = −d Q ∀(φ ,d) ∈Vs, (5)
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where Γs := ∂Ωs and A : (−δ (ννν),δ (ννν))×Vs ×Vs → R is defined as

A(s;(ψ,c),(φ ,d)) :=
∫

Γs

∫

Γs

G(xxx,yyy)ψ(xxx)φ(yyy) dS(yyy)dS(xxx)

+d
∫

Γs

1∂D(xxx)ψ(xxx) dS(xxx)+ c
∫

Γs

1∂D(xxx)φ(xxx) dS(xxx).

The electrostatic field energy for the s configuration is denoted by EF(s) and taking cue
from (3) it is defined as

EF(s) :=
cs Q

2
. (6)

Equivalent BIE on Reference Boundary: To compute shape derivative, we need an
equivalent formulation on the reference boundary Γ0. This is achieved using a transfor-
mation and a pullback. In the first step we transform all integrals on Γs to Γ0 using the
perturbation map (4) and the identity [12, Ch. 9, Sec. 4.2, eq. 4.9]:

∫

Γs

f dS=
∫

Γ0

f ◦Ts
ννν ωs dS, yyy= Ts

ννν(xxx),

where the Jacobian of transformation is given as ωs := ‖C(DTs
ννν) nnn0‖, nnn0 is the exterior

unit normal vector field on Γ0 and C(A) denotes the cofactor matrix of A. The matrix
DTs

ννν is the Jacobian matrix and is defined as [DTs
ννν ]i, j = ∂ j[Ts

ννν ]i, i, j = 1,2,3, where
[Ts

ννν ]i denotes the ith component of Ts
ννν . The next step is to get rid of function spaces on

Γs which we accomplish using a pullback for surface charge densities:

ψ̂ ∈ H− 1
2 (Γ0) : ψ̂ := (ψ ◦Ts

ννν) ωs, ψ ∈ H− 1
2 (Γs). (7)

Since Ts
ννν is a smooth mapping and ωs ∈ L∞(Γ0), the trace spaces are preserved under

pullback. We skip the details since the procedure is identical to [3, Sec. 4] and write the
equivalent formulation to (5): we seek ψ̂s,cs ∈V0 = H− 1

2 (∂Γ0)×R such that

Â(s;(ψ̂s,cs),(φ̂ ,d)) = −d Q ∀(φ̂ ,d) ∈V0, (8)

where Â : (−δ (ννν),δ (ννν))×V0 ×V0 → R is defined as

Â(s;(ψ̂,c),(φ̂ ,d)) :=
∫

Γ0

∫

Γ0

G(Ts
ννν(xxx),T

s
ννν(yyy)) ψ̂(xxx) φ̂(yyy) dS(xxx) dS(yyy)

+ c
∫

∂D0

ψ̂(xxx) dS(xxx)+d
∫

∂D0

φ̂(xxx) dS(xxx).

Since the field energy EF(s) from (6) depends on the solution cs to (8) it will be useful
to define the following linear functional

Ĵ :V0 → R, Ĵ((ψ̂,c)) :=
cQ
2
. (9)
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Constrained Shape Derivative via Adjoint Method: For computing the energy
shape derivative with the variational constraint (8) we use the well known adjoint
approach from literature [14, Sect. 1.6.4]. We start by defining the Lagrangian L :
(−δ (ννν),δ (ννν))×V0 ×V0 → R,

L (s;(ψ̂,c),(φ̂ ,d)) := Â(s;(ψ̂,c),(φ̂ ,d))+dQ+ Ĵ((ψ̂,c)). (10)

We observe that by plugging in the state solution (ψ̂,c) = (ψ̂s,cs) we get

L (s;(ψ̂s,cs),(φ̂ ,d)) = Ĵ((ψ̂s,cs)) = EF(s) ∀(φ̂ ,d) ∈ H− 1
2 (Γ0)×R. (11)

From the above expression, the energy shape derivative can be calculated as

dEF
ds

(0) =
∂L
∂ s

(0;(ψ̂0,c0),(ζ̂ ,e)) =
∂ Â
∂ s

(0;(ψ̂0,c0),(ζ̂ ,e)), (12)

where (ζ̂ ,e) ∈ H− 1
2 (Γ0)×R solves the adjoint equation

<
∂L

∂ (ψ̂,c)
(0;(ψ̂0,c0),(ζ̂ ,e));(φ̂ ,d)>= 0 ∀(φ̂ ,d) ∈ H− 1

2 (Γ0)×R. (13)

Using the symmetry of Â the above expression simplifies to

Â(0;(ζ̂ ,e),(φ̂ ,d)) = −dQ
2

∀(φ̂ ,d) ∈ H− 1
2 (Γ0)×R. (14)

Comparing with (8) we immediately see that the adjoint solution is the scaled state
solution and is given as (ζ̂ ,e) = 1

2 (ψ̂0,c0) which yields the final form of the shape
derivative. It represents the force computed in the direction of ννν and is denoted as F(ννν).
Thus we have

F(ννν) :=
1
2

∫

Γ0

∫

Γ0

(∇xG(xxx,yyy) ·ννν(xxx)+∇yG(xxx,yyy) ·ννν(yyy)) ψ̂0(xxx) ψ̂0(yyy) dS(xxx)dS(yyy). (15)

A detailed analysis of the expression (15) has already been done in [3, Sect. 4.4]
where it appears as T2 in [3, Eq. 4.17]. Since it is a continuous, bilinear mapping
on H− 1

2 (Γ0)×H− 1
2 (Γ0) → R, its Galerkin approximation enjoys superconvergence [3,

Prop. 1.2].
For computing electrostatic force on conductors, (15) has two major advantages

over the shape derivative formula derived in the companion work [3, Eq. 4.17]. The
first advantage is that there is no need to explicitly compute an adjoint solution since
it turns out to be a scaled state solution. Second advantage is its considerable simplic-
ity while retaining the superior numerical performance of [3, Eq. 4.17] which will be
demonstrated next.
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3 Numerical Experiments

3.1 Implementation

The numerical implementation is done in the MATLAB-based Gypsilab framework
and is available online2 Given a triangular mesh M of the boundary Γ (we drop the
subscript notation), the trace space H− 1

2 (Γ ) is approximated using the space S−1
0 (M )

which consists of piece-wise constant functions supported on the elements of the mesh.
For solving the state problem (8) at s = 0, the single-layer boundary integral operator
is assembled using semi-analytic integration technique available in Gypsilab. Given an
orthonormal basis {β1,β2, ...,βN} of S−1

0 (M ), let ψψψ ∈R
N represent the coefficients for

the basis expansion of the Galerkin solution to (8). Then for a given direction ννν , the
approximate force in that direction Fh(ννν) can be computed as

Fh(ννν) =ψψψT Mψψψ , (16)

where the entries of M ∈ R
N,N are given as

[M]i, j :=
1
2

∫

Γ

∫

Γ

(∇xG(xxx,yyy) ·ννν(xxx)+∇yG(xxx,yyy) ·ννν(yyy)) βi(xxx) β j(yyy) dS(xxx)dS(yyy). (17)

The above singular integral is evaluated using the Sauter and Schwab quadrature tech-
nique for triangular panels [5, Ch. 5] using a tensor product quadrature rule with 34

quadrature points.
Forces and torques can be computed by plugging-in appropriate velocity fields into

the shape derivative formula (15). Cartesian components of the net electrostatic force
F= (F1,F2,F3) acting on the object D can be computed as

Fk = F(xxx 	→ ek χ(xxx)), (18)

where ξ ∈ C∞(Γ ), ξ |∂B ≡ 0, ξ |∂D ≡ 1 and ek are the unit vectors pointing along the
axes of the cartesian coordinate system. The net torque T about a point x0 ∈ R

3 and
axis a ∈ R

3 can be computed as

T = F(xxx 	→ a× (xxx−xxx0) χ(xxx)). (19)

3.2 Force and Torque Convergence Results

To study convergence a quasi-uniform sequence of mesh partitions (M )h, consist-
ing of triangular panels of Γ with decreasing meshwidth h was employed. Net forces
((F2

1 +F2
2 +F2

3 )
1
2 ) and torques were computed using the Maxwell Stress Tensor based

boundary formula [3, Eq. 1.3] for comparison. These computations are done for two
different geometries shown in Fig. 2:

2 Code available at https://gitlab.ethz.ch/ppanchal/gypsilab.

https://gitlab.ethz.ch/ppanchal/gypsilab
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Fig. 2. Coarsest mesh of the geometries in the numerical experiments

1. Cube and Torus: The cube shaped conductor D is (−5,5)3 while the grounded torus
shaped conductor B has R = 10 and r = 3, where r is the radius of the tube and R is
the distance between center of tube and center of torus. The cube is centered at the
origin while the torus is centered at [25,25,25]. The torus is rotated about its center by
a random orthogonal matrix provided in the code. Reference values are computed using
(15) at a refinement level of h = 0.42. The results are computed using Q = 102 and
plotted in Fig. 3. We observe the superiority of the shape derivative formula compared
to the boundary formula. The difference is stark for the domain with sharp corners
which agrees with the observations in [3].
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(b) Torque computation

Fig. 3. Error plots for Cube Torus geometry. Dashed lines represent the linear regression fit.

2. Sphere and Torus: The conductor D is a torus shaped domain with R = 10 and
r = 3, and the grounded conductor B is a sphere of radius 5. The sphere is centered at
[54,0,0] whereas the torus is centered at the origin. The torus is rotated about its center
by a random orthogonal matrix provided in the code. Reference values are computed
using (15) at a refinement level of h= 0.36 and using Q= 102. The results are plotted
in Fig. 4. We see that the shape derivative formula is slightly superior to the Maxwell



Electrostatic Forces on Conductors with Boundary Element Methods in 3D 109

Stress Tensor formula in absolute accuracy and asymptotic rate of convergence for both
force and torque computation for this smooth case (Table 1).
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Fig. 4. Error plots for Sphere Torus geometry. Dashed lines represent the linear regression fit.

Table 1. Fitted asymptotic rates of algebraic convergence

Method Torus D, sphere B Cubic D, Torus B

Pullback approach 2.55 2.77

Stress tensor 2.14 0.35

(a) Forces

Torus D, sphere B Cubic D, Torus B

2.51 2.85

2.43 0.65

(b) Torques

4 Conclusion

In this work we derived a simple and stable boundary based expression for computing
net force and torque on conducting objects which is suitable for use with BEM. This was
achieved by interpreting the Virtual Work Principle via shape calculus and defining the
force field as the shape derivative of the electrostatic field energy. The obtained expres-
sion (15) turned out to be a continuous force functional on the energy trace spaces,
allowing for the superconvergence of its Galerkin approximation, which we observed
in the numerical experiments. The derived formula carries a few advantages compared
to its companion formula derived for a Dirichlet BVP [3, Eq. 4.17]. It contains only one
weakly singular integral and does not require the explicit computation of the adjoint
solution.
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Abstract. From the beginning, Computational Electromagnetics (CEM) was
among the core themes of the conference series on Scientific Computing in Elec-
trical Engineering (SCEE). This invited contribution to the 25th anniversary of
the SCEE sheds light on some selected highlights in Computational Electromag-
netics as presented during the past 25 years. In this context, CEM comprises
different challenges to applied mathematics, such as the treatment of partial dif-
ferential equations or the numerical solution of linear systems.

After some overview of the number of CEM contributions over the years
and the type of discretisation methods employed, one example contribution is
described for each edition of the conference series. Typically, these were invited
papers.

1 General Introduction

Computational Electromagnetics comprises different challenges to applied mathemat-
ics, such as solving partial differential equations derived from Maxwell’s equations or
the numerical solution of linear systems. Thus, a close interaction between mathemati-
cians and electrical engineers is of fundamental importance for the progress of CEM.
One aim of the SCEE conferences is to inform engineers about current methods from
applied mathematics and, on the other hand, to make mathematicians aware of difficul-
ties posed to their methods by problems arising in CEM. The score is as comprehensive
as both sciences reach; therefore, only some highlights can be set, while the contribu-
tions over the last 25 years covered many more topics. Many of them can be found in
the previous post-conference books.

First, let us regard an abundance distribution. Contributions could be attributed to
CEM based on the programmes and abstract books of the previous SCEE conferences1

Even though in most years, no classification was made, especially for the posters, con-
tributions were selected according to our best knowledge and sorted out generously if
something referred to Circuit Design, Coupled Problems or Mathematical Methods, for

1 see https://scee-conferences.org/pages/foundation-publications.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. van Beurden et al. (Eds.): SCEE 2022, MI 43, pp. 111–122, 2024.
https://doi.org/10.1007/978-3-031-54517-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54517-7_13&domain=pdf
https://scee-conferences.org/pages/foundation-publications
https://doi.org/10.1007/978-3-031-54517-7_13
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example. Since there is a great deal of overlap in the topical areas of the SCEE and
some topics only evolved from a few single CEM contributions in the beginning to an
explicit topical area, this classification is not unique. The showcase position of CEM
always occupying at least around 30 % of all contributions is valid over the course of
the years, as visible in Fig. 1.

A further classification of the 302 contributions, previously filtered out as CEM,
was achieved by screening the titles and abstracts. It was pretty straightforward for 40 %
of the contributions. Figure 1 shows this share’s distribution of discretisation methods.
It can be observed that most of the contributions concern the Finite Element Method
(FEM), including Discontinuous Galerkin (DG). The second-highest share regards the
Finite Integration Technique (FIT), followed by Boundary Element Methods (BEM),
partly coupled with FEM (BEM+FEM). The remaining contributions regard the Finite
Difference Time Domain (FDTD), Finite Volume Method (FVM), and Particle-in-Cell
method (PIC and FVPIC). The prominence of FEM, FIT, and BEM has been visible
over the years.

Fig. 1. Left Axis: Distribution of discretisation methods in the share of 302 CEM contributions
from 1997 till 2020: The Finite Element Method (FEM), Boundary Element Methods (BEM),
Finite Integration Technique (FIT), Finite Difference and Finite Difference Time Domain (FD,
FDTD), Finite Volume Particle-in-Cell (FVPIC), BEM coupled with FEM (BEM+FEM), Finite
Volume Method (FVM), Particle-in-Cell (PIC), and Discontinuous Galerkin (DG). Right axis:
Share of CEM contributions in the total number of SCEE contributions per year, displayed as
grey streaked bars. The support by Hendrikje Raben in this evaluation is highly acknowledged.

Common to all these methods is the starting point in Maxwell’s equations. In dif-
ferential and integral form, they read as
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∮
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(1)

Well-known, Maxwell’s equations (1) comprise Faraday’s law linking the electric
field �E with the time derivative of the magnetic flux density �B (top row), the Ampère-
Maxwell law relating the magnetic field �H with the current density �J and the time
derivative of the electric flux density �D (second row). In addition, Gauss’ laws for elec-
tric and magnetic fields (third and fourth row) provide electric charges ρ as electric
sources and state the source-freeness of magnetic fields. Several of the discretisation
methods for Maxwell’s equations mentioned above are well-understandably described
in [1].

1.1 Finite Element Method

Before showing examples of the wide variety of invited talks and some selected other
contributions over the 25 years in chronological but otherwise arbitrary order, we
will briefly shed light on the FEM and the FIT as primary discretisation methods for
Maxwell’s equations.

In the numerical solution of differential equations by the FEM, the solution domain
is decomposed into smaller subdomains called finite elements, for example, triangles in
2D or tetrahedra in 3D.

Regard the equation L[ f ] = swith an operator L, the source s, and the unknown func-
tion f in the region Ω . The main idea behind the FEM is approximating the solution f
by a linear combination of basis functions ϕi, i = 1, ...,n (usually low-order polynomi-
als) associated with, for example, local element nodes, edges or faces:

f (�r) ≈
n

∑
i=1

fi ϕi(�r) (2)

Their coefficients fi, i= 1, ...,n are obtained from a variational problem. The weak form
is derived from the strong form of the partial differential equation by applying suitable
test functions to the entire domain. Then, the basic steps are as follows:

Minimise the residual r = L[ f ]− s. In the so-called weak sense, it shall be zero; a
weighted average is set to zero.

Choose weighting functionswi, i= 1, ...,n for weighting the residual r. In Galerkin’s
method, the weighting functions equal the basis functions, wi = ϕi.
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Set the weighted residuals to zero and solve for the unknowns fi; that is, solve the
set of equations

〈wi,r〉 =
∫

Ω
wi rdΩ = 0, i= 1, ...,n (3)

With its topologically irregular meshes, the FEM is very flexible in its discretisation;
curved elements are possible. The dual coupling of electromagnetic fields demands
specific function rooms; the so-called Nédélec edge elements allow the construction of
such finite element spaces very elegantly.

Nowadays, automated FEMmodelling is enabled by open-source tools such as FEn-
iCS2 or NGSolve3. Let us regard an example. The strong form (left) and the correspond-
ing weak form (right) of the homogeneous electro-quasistatic equation read as

∇ · (σ̂∇φ) = 0,
∫

σ̂∇φ∇vdΩ =
∫

0vdΩ , (4)

with the complex permittivity σ̂ , the (complex) electric potential φ and the test function
v. The resulting code implemented in NGSolve becomes easily readable:

a = BilinearForm(fes)
a += sigma*grad(phi)*grad(v)*dx
f = LinearForm(fes)
f += 0 * v * dx

“fes” is a suitable function space. This formulation is generally valid and enables, for
example, to process patient-specific brain models as described in Fig. 2.

Fig. 2. Initial human brain discretisation in open-source platform OSS-DBS [2] with electrodes
for Deep Brain Stimulation (DBS), a standard therapy in later stages of Parkinson’s disease. The
region of interest (ROI), the vicinity of the electrode contacts and the rest of the tissue (ROT),
are three different domains with sub-meshes of different element size requirements. Additionally,
sub-meshes are defined for the electrode contacts and the encapsulation layer around them. Con-
trolled surface refinement of the contacts – active contacts in red, floating conductors in blue -
leads to a highly dense sub-mesh around the electrode.

2 fenicsproject.org.
3 ngsolve.org.

http://fenicsproject.org/
http://ngsolve.org/
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1.2 Finite Integration Technique

In a very ’natural way’, the FIT represents Maxwell’s Equations in their integral form
on some suitable grid, respectably some appropriate pair of grids. Though explaining it
for a Cartesian grid, the FIT has also been realised for several other grids, such as tri-
angular and further non-orthogonal grids. The FIT was developed in 1977 by Thomas
Weiland [3] as a method with the same scope as Maxwell’s Equations. It was devel-
oped independently from Yee’s FDTD method [4] for time-domain problems dating
to 1966. The FIT development aimed to achieve a consistent numerical solution for
Maxwell’s Equations. Here, we see the derivation of the discrete induction law using
the integral state variables, that is, the electric grid voltages along the edges of an ele-
mentary grid area and the magnetic grid fluxes normal to the facets. The integrals are
thus transferred directly to the grid cells, and the corresponding system of linear equa-
tions follows immediately (Fig. 3).

Fig. 3. Derivation of the discrete induction law using the electric grid voltages along the edges
of an elementary grid area, the magnetic grid fluxes normal to the facets, and the corresponding
system of linear equations.

A dual grid is introduced to reflect the interrelations between the electric and mag-
netic fields. It then holds the magnetic grid ’voltages’, that is, line integrals over the
magnetic field along the edges and the electric grid flux. In addition, the material rela-
tions are transferred to the grid pair.

Without going into more detail, this procedure finally leads to the so-called
Maxwell-Grid-Equations, a discrete analogue for Maxwell’s equations in the form of
a set of matrix equations. The linear operators C and C̃ and S and S̃ correspond to a
discrete curl operator and a discrete divergence operator, respectively. The operatorsM
refer to the material operators which link the quantities on the primary grid to those
on the dual grid. More can be found, e.g., in [5]. Figure 4 displays the grid for a PIC
simulation.
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Fig. 4. 2D slice of a hexahedral mesh of a two-cell cavity for the FCC-ee [6] assembled with
fundamental power coupler and two Higher Order Mode couplers. Model for a Particle-in-Cell
(PIC) simulation. The particles pass the cavity on its axis (see blue and red arrows indicating this
path). The figure was created by Sosoho-Abasi Udongwo using CST Studio Suite R© 2020.

2 Exemplary Contributions from the Previous Conferences

Based on the previous post-conference books, I selected a representative diversity of
the invited papers published there, plus some contributed ones. As very theoretical con-
tributions were not too suitable for such a short glimpse, I only selected two of them. If
not stated otherwise, the following examples are from invited papers.

1997 Peter Thoma [5] explained the discretisation with the FIT and showed its wide
range of applicability. After introducing the discretisation and its operators in more
detail, he highlighted the preservation of vector-analytical properties by the FIT oper-
ators, such as SC equals zero, and S-tilde C-tilde equals zero, corresponding with curl
grad equals zero and div curl equals zero; the primary curl operator equals the trans-
pose of the dual curl operator. This relation builds the basis for the consistency of FIT.
Starting from the Maxwell Grid Equations (MGE), linear-algebraic and differential-
algebraic problems result in the different problem classes known from electrodynamics.
The resulting large-scale problems from numerical linear algebra demand modern solu-
tion methods (as is the case for the resulting equations of the other discretisation meth-
ods). The practical application examples covered all problem classes resulting from
Maxwell’s equations.

1998 ThomasWeiland introduced the FIT and its MGE, including a dozen examples
of provable properties of MGE, such as charge conservation, energy conservation, and
stability of the time discretisation. He highlighted advanced discretisation techniques
such as non-orthogonal grids in 2D and 3D, consistent and recursive sub-grids and the
Perfect Boundary Approximation technique (PBA). As topical challenges in electro-
magnetic computations, he discussed user-friendly codes, CAD input and output, and
high-speed- and parallel computing. A wide range of practice-relevant examples, for
example, electromagnetic compatibility (EMC) applications, was provided. As the use
of mobile phones rapidly grew, the EMC issue rapidly gained importance given the
users and the use scenarios up to a scenario with a driver in the car and a human head
model employing the first stable, consistent and recursive local sub-gridding algorithm.
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2000 Leszek Demkowicz [7] reviewed the main ideas behind constructing variable-
order edge elements: adaptive hp FE modelling for the time-harmonic Maxwell’s equa-
tions. Moreover, he discussed the possibility of extending the construction to Nédélec’s
elements of the first kind. He elaborated on the power of varying the order of approxi-
mation p and the mesh size h, such as an exponential rate of convergence even for very
irregular solutions: Using elements with higher-order p strongly reduces the dispersion
error. Small elements, that is, small h, capture small geometrical details. Last, he derived
the De Rham diagram comprising the exact sequences on the continuous and discrete
levels together with the hp-interpolation operators. It corresponds to the classical dia-
gram for a uniform approximation order, entailing the Nédélec and Raviart-Thomas
elements. He further elaborated on various numerical aspects and open problems at that
time.

FEM can handle complex geometries due to the underlying variational principles,
but it is cost-intensive, for example, in mesh generation. 2002 Igor Tsukerman [8] intro-
duced a new method with desired characteristics such as Finite Difference data struc-
tures and schemes based on FE variational principles, the ability to treat curved inter-
faces on relatively coarse regular rectangular or hexahedral grids with high accuracy
without having to resolve small geometric details, the feasibility of h- and p-refinement,
means in the discretisation and the polynomial order, and an optimal convergence rate.
Generalised FEM by partition-of-unity, Discontinuous Galerkin methods, and FIT are
some of the then-existing techniques most closely related to this wish list. The newly
introduced “Finite Element Difference” method, FED, is equally applicable for general
FE meshes. Still, due to the choice of approximation functions, it is applied here to reg-
ular hexahedral or rectangular meshes. For problems with small particles, for example,
in nanotechnological applications, the FED can avoid the usually necessary high mesh
refinement around the particles since the special approximation functions with jumps
represent the behaviour of the potential well.

Electrical machines often require the solution of coupled or multi-physics prob-
lems, for example, sliding interfaces, capturing thermal limitations, or coupling to
electric circuits, partly with nonlinear components. Such problems result in weakly or
strongly coupled problems. Complex geometries pose challenges to FEM, often related
to mesh generation demanding a search for more efficient alternatives. In computational
mechanics, meshless methods demonstrated their strengths. 2004 Dave Rodger [9]
employed the meshless local Petrov Galerkin method applying small local domains
around points (nodes) and satisfying the weak form locally with different possible func-
tions such as radial basis functions or the Heaviside step function. Two examples were
shown: rigid body motion in a linear actuator and heating in an induction machine.
For the simple linear actuator, the usual FEM Galerkin procedure results in one set
of equations for the armature and another for the core with its surrounding air. They
are coupled using a Lagrange sliding interface. The concept of master elements taking
precedence over slave elements ensures that only armature elements are used to model
the overlapping area. The displacement is estimated in each time step.

2006 Francois Henrotte [10] introduced an energy-based formulation of electromag-
netism, which, compared to the classical theory, results in a stronger connection with
the universal principles of thermodynamics. This representation of electromagnetism
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results in a flow chart for the energy flow. The diagram consists of energy reservoirs
containing, amongst others, electric and magnetic energy. A co-moving time derivative
captures possible motion or deformation of the solution domain. The advantages of this
formulation have been examined from a numerical point of view. The governing equa-
tions are preserved in a form directly usable by the FEM and convex analysis. Further-
more, all terms retain a clear physical significance supporting the definition of coupling
terms in multi-physics modelling and providing meaningful criteria for parameter iden-
tification. Model reduction approaches were discussed as well. The energy-based theory
provides operative concepts clarifying issues such as hysteresis modelling. A suitable
decomposition of the force acting on the induction naturally yields a vectorial hysteresis
model based on an accurate physical description, which can be reasonably employed in
a 3D model, even if the parameter identification is based on uniaxial quasi-static mea-
surements.

Again 2006, Irina Munteanu [11] started with a brief review after almost 30 years
of FIT to solve electromagnetic field problems. For example, she highlighted that the
FIT was the first eigenmode algorithm reliably eliminating spurious modes, underlined
the various gridding options and pointed out the then-recent model order reduction in
conjunction with the FIT. She emphasised that due to its versatility, FIT was probably
the 3D numerical method at the time that covered the most comprehensive possible
range of simulation requirements in the enormously diverse field of RF and microwave
simulation. The challenge stems from the many different types of components, the great
variety of geometric complexity, the level of detail, and the different characteristics of
materials for the problems in both narrow-band and wide-band applications, from the
MHz to the multi-GHz range. The time-domain solvers are the preferred solvers to
obtain broadband results with a single run. A typical time-domain application is the full
3D simulation of a 30-metre aircraft illuminated by a plane wave at 500MHz. Despite
the relatively large number of 9 million cells back then, the simulation with the effi-
cient FIT/PBA time-domain algorithm took less than two hours on a regular PC. EMC
concerns and novel medical imaging techniques have increasingly required simulations
with human body models. These are highly inhomogeneous, contain many different
dispersive tissues and usually require a fine mesh in the time-domain simulations.

Against the background of ever-shorter development cycles in the modern electron-
ics industry, the importance of simulations as an alternative to traditional prototypes
and measurements started growing. Wireless high-frequency consumer devices, such
as mobile phones with their combinations of other devices such as cameras and sen-
sors, were becoming more and more complex with simultaneous miniaturisation mak-
ing compliance with EMC regulations very challenging. However, numerical analysis
at an early design stage can predict potential EMC problems well before building phys-
ical prototypes. Challenging are the typically two orders of magnitude between the
characteristic dimensions of the module or device and the printed circuit board (PCB)
details, thus characterising a multi-scale problem. For comparison with given standards,
absolute values of the magnetic field emissions radiated from a PCB must be obtained,
posing a second challenge. 2008 Sergey Yuferev [12] solved the multi-scale problem by
iteratively combining 2.5D and 3D field calculation. In this manner, real industrial EMC
problems of wireless devices could be simulated that could not be analysed exclusively
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with 3D simulators because of the high computational effort. Secondly, using a simple
enough reference PCB to allow accurate numerical modelling, a methodology was used
to calibrate electromagnetic sources in numerical models using measured data by solv-
ing the inverse problem and thus determining the absolute values of radiated magnetic
field emissions without detailed knowledge of the source’s characteristics.

Processes in the so-called low-frequency range, where wave propagation does not
play a role, are usually treated with electro- or magnetostatics or electro- or magneto-
quasistatic models requiring specific expertise. In addition, arrangements with cou-
pled inductive/capacitive effects cannot be simulated with the quasi-static models. 2010
Jörg Ostrowski [13] presented a stabilised full-wave Maxwell formulation in the time
domain based on a stabilised full-wave frequency domain formulation by Ralf Hiptmair.
Instability occurs in the so-called stationary limit, that is, for ω approaching zero in the
frequency domain or huge time steps Δ t. The approach splits the computational domain
into a conducting and a non-conducting subdomain. For stabilisation, in the Coulomb-
gauged approach with vector and scalar potential, the scalar potential is divided into
two parts, one of which is constant in the conducting region, whereby a corresponding
function space is added to the two usual function spaces. For numerical experiments,
a conformal Galerkin FE discretisation was performed. The resulting solution is not
unique, so at each time step, a singular system of equations with a consistent right-hand
side has to be solved, which was done with the preconditioned BiCGstab method. For a
simple plate capacitor, the stabilised method was compared with a commercial solver.
While the latter becomes unstable after a particular moment, the stabilised method pro-
vides an accurate solution as validated with a frequency domain solution, despite a time
step that is three orders of magnitude larger. In addition to this elementary example, a
practical lightning impulse test simulation was also described.

With his contributed paper presented in 2012, Maximilian Wiesmüller [14] shall
represent the solution of complex problems from the application. In a typical on-load
tap-changer (OLTC) in a power transformer, the influence of the transformer and the
tap leads on the OLTC insulation was studied with a comprehensive model simulated
with a commercial solver. Curved second-order tetrahedral finite elements were used. A
multi-stage simulation was carried out that used adaptive mesh refinement in the second
stage after identifying critical parts in the tap selector. The importance of always map-
ping the error estimation and refinement to the original CAD geometry was emphasised
and visualised using the simple example of a sphere with a non-zero potential above a
grounded plate. Different evaluation methods, also in oil, were considered. The influ-
ence of the transformer and the tap leads on the OLTC insulation proved small in areas
critical for a dielectric breakdown legitimating the usual design optimisation and test
procedures.

Modern computers allow very accurate models and simulation results so that inaccu-
racies caused by uncertainties receive increasing attention. Stochastic approaches such
as the Monte Carlo or perturbation methods via approximation methods to truncated
polynomial chaos expansions are common. 2014 Stéphane Clénet [15] considered a
magnetostatic problem as a deterministic problem in a vector potential formulation with
the Galerkin FEM. For uncertain input parameters, this uncertainty propagates into the
output parameters. The input parameters are modelled as random variables, and the
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random output parameters are characterised. Non-intrusive methods encapsulate the
deterministic model in an environment of stochastic procedures. Approximation meth-
ods were presented, particularly a non-intrusive projection method. Therein, the number
of multivariate polynomials grows exponentially (curse of dimensionality), which can,
however, be prevented with sparse grids such as the Smolyak cubature. Intrusive meth-
ods require access to the deterministic model. Their solution is sought in the tensor
product of the standard FE space with a space approximating the random variables. A
short review of applications of uncertainty analysis from CEM was given.

Vacuum interrupters are protective devices for switching nominal currents and inter-
rupting fault currents, relying on the vacuum insulation in the gap between two elec-
trodes to withstand the voltage. When interrupting current, a vacuum arc is formed.
Numerical simulations of the motion of vacuum arcs are critical for improving vacuum
interrupters’ performance but pose a challenge to standard computational fluid dynam-
ics methods based on the Eulerian approach. In a full arc simulation, the movement of
the plasma arc must be tracked in a strongly coupled multi-physics problem. In an initial
study in 2016, Massimiliano Cremonesi [16] solved the conservation equations using a
Lagrangian FE approach. A forward Euler scheme was used for the temporal integra-
tion of the equations for mass, momentum and energy, leading to an explicit solution
scheme, while the conservation of current is to be computed implicitly. The nodal coor-
dinates are updated in each time step following the fluid velocity. A simplified 2D arc
model was studied, and the results were validated with commercial software.

Efficient electric machines are of great importance for e-mobility. The desired prop-
erties depend strongly on the application areas and are also influenced by the design of
the machines. 2018 Peter Gangl [17] employed multipatch isogeometric analysis (IgA)
for the simulation and shape optimisation of the electrical machines. IgA represents
an alternative to the FEM. Here continuous Galerkin IgA was used. The same basis
functions represent the geometry of the computational domain and the solution of the
partial differential equations, making it particularly interesting for design optimisation
procedures. Non-overlapping domain decomposition (DD) methods were used for a fast
solution of the large algebraic equation systems. The DD matches well with the multi-
patch representation of the computational domain and parallelisation of the DD solvers.
Numerical experiments showed excellent scaling behaviour. The studied device was an
interior, permanent magnet electric motor. The shape of the motor should be optimised
with an interior point line-search optimiser to maximise the smoothness of the motor’s
rotation, that is, the so-called runout performance.

2020 Herbert Eggers [18] investigated two discretisation strategies for Maxwell’s
equations for wave propagation through linear dispersive media: one based on the tra-
ditional leapfrog time integration scheme FDTD, the other on convolution quadrature.
The polarisation is expressed in the time domain using the convolution theorem for the
Laplace-transform, and the susceptibility kernel is written as a superposition of sim-
ple Debye functions. In the integral for the polarisation, an appropriate convolution
quadrature is used. Both are equivalent for certain classes of problems and preserve
the underlying energy-dissipation structure of the problem. An advantage of the con-
volution quadrature is its independence of the number of internal states of the memory
part of the polarisation and its applicability to fairly general dispersive materials. An
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efficient implementation is possible by employing the so-called fast-and-oblivious con-
volution quadrature. Their test problem considered the propagation of an electromag-
netic pulse across the interface between air and human tissue. A five-pole Debye model
characterised the dielectric response of the tissue. They used a plane wave setting, lead-
ing to a 1D wave propagation problem, achieving excellent agreement between the two
schemes.

3 Conclusion

These insights into the CEM contributions at SCEE over the last 25 years hopefully
motivate picking up the earlier post-conference books, mostly online, to read more
about the presented examples and many other exciting contributions. The SCEE has
proven itself as a conference that allows the presentation and discussion of new cross-
disciplinary results linking electrical engineering and mathematics in a relatively wide
variety, with representatives from industry and in an almost familiar atmosphere. This
characteristic profile makes the SCEE stand out and complement many other, less inter-
disciplinary conference series in either of the fields.

References

1. Rylander, T., Bondeson, A., Ingelström, P.: Computational Electromagnetics. Texts in
Applied Mathematics, vol. 51, 2nd edn. Springer, Cham (2013)

2. Butenko, K., Bahls, C., Schröder, M., Köhling, R., van Rienen, U.: OSS-DBS: open-source
simulation platform for deep brain stimulation with a comprehensive automated modeling.
PLoS Comput. Biol. 16(7), e1008023 (2020). https://doi.org/10.1371/journal.pcbi.1008023

3. Weiland, T.: Eine Methode zur Lösung der Maxwellschen Gleichungen für sechskompo-
nentige Felder auf diskreter Basis. AEU-ARCH ELEKTRON UB 31, 116–120 (1977)

4. Yee, K.S.: Numerical solution of initial boundary value problems involving Maxwell’s equa-
tions in isotropic media. IEEE Trans. Antenn. Propag. 14, 302–307 (1966)

5. Clemens, M., Thoma, P., Weiland, T., van Rienen, U.: Computational electro-magnetic field
calculation with the finite-integration method. Surv. Math. Ind. 8, 213–232 (1998)

6. Abada, A., Abbrescia, M., AbdusSalam, S.S., et al.: FCC-ee: the lepton collider. Eur. Phys.
J. Spec. Top. 228, 261–623 (2019). https://doi.org/10.1140/epjst/e2019-900045-4

7. Demkowicz, L.: Edge finite elements of variable order for Maxwell’s equations. In: van
Rienen, U., Günther, M., Hecht, D. (eds.) Scientific Computing in Electrical Engineering.
LNCSE, vol. 18, pp. 15–34. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-
642-56470-3_2

8. Tsukerman, I.: Toward generalized finite element difference methods for electro-and magne-
tostatics. In: Schilders, W.H.A., ter Maten, E.J.W., Houben, S.H.M.J. (eds.) Scientific Com-
puting in Electrical Engineering. MATHINDUSTRY, vol. 4, pp. 58–77. Springer, Berlin Hei-
delberg (2004). https://doi.org/10.1007/978-3-642-55872-6_5

9. Rodger, D., Lai, H.C., Coles, P.C., Hill-Cottingham, R.J., Vong, P.K., Viana, S.: Finite ele-
ment modelling of electrical machines and actuators. In: Anile, A.M., Ali, G., Mascali, G.
(eds.) Scientific Computing in Electrical Engineering. TECMI, vol. 9, pp. 159–168. Springer,
Heidelberg (2006). https://doi.org/10.1007/978-3-540-32862-9_23

https://doi.org/10.1371/journal.pcbi.1008023
https://doi.org/10.1140/epjst/e2019-900045-4
https://doi.org/10.1007/978-3-642-56470-3_2
https://doi.org/10.1007/978-3-642-56470-3_2
https://doi.org/10.1007/978-3-642-55872-6_5
https://doi.org/10.1007/978-3-540-32862-9_23


122 U. van Rienen

10. Henrotte, F., Hameyer, K.: The energy viewpoint in computational electromagnetics. In:
Ciuprina, G., Ioan, D. (eds.) Scientific Computing in Electrical Engineering. TECMI, vol. 11,
pp. 261–273. Springer, Berlin Heidelberg (2007). https://doi.org/10.1007/978-3-540-71980-
9_27

11. Munteanu, I., Weiland, T.: RF & microwave simulation with the finite integration technique-
from component to system design. In: Ciuprina, G., Ioan, D. (eds.) Scientific Computing in
Electrical Engineering. TECMI, vol. 11, pp. 247–260. Springer, Berlin Heidelberg (2007).
https://doi.org/10.1007/978-3-540-71980-9_26

12. Yuferev, S.: Challenges and approaches in EMC modeling of wireless consumer devices.
In: Roos, J., Costa, L.R.J. (eds.) SCEE 2008. TECMI, vol. 14, pp. 9–20. Springer, Berlin
Heidelberg (2010). https://doi.org/10.1007/978-3-642-12294-1_3

13. Ostrowski, J., Hiptmair, R., Krämer, F., Smajic, J., Steinmetz, T.: Transient full Maxwell
computation of slow processes. In: Michielsen, B., Poirier, J.R. (eds.) SCEE 2010. TECMI,
vol. 16, pp. 87–95. Springer, Berlin Heidelberg (2012). https://doi.org/10.1007/978-3-642-
22453-9_10

14. Wiesmüller, M., Glaser, B., Fuchs, F., Sterz, O.: Dielectric breakdown simulations of an
OLTC in a transformer. COMPEL Int. J. Comput. Math. Electr. Electron. Eng. 33, 1145–
1160 (2014)

15. Clénet, S.: Approximation methods to solve stochastic problems in computational electro-
magnetics. In: Bartel, A., Clemens, M., Günther, M., ter Maten, E.J.W. (eds.) Scientific Com-
puting in Electrical Engineering. TECMI, vol. 23, pp. 199–214. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-30399-4_20

16. Cremonesi, M., Frangi, A., Hencken, K., Buffoni, M., Abplanalp, M., Ostrowski, J.: A
Lagrangian approach to the simulation of a constricted vacuum arc in a magnetic field. In:
Langer, U., Amrhein, W., Zulehner, W. (eds.) Scientific Computing in Electrical Engineer-
ing. TECMI, vol. 28, pp. 243–253. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-75538-0_22

17. Gangl, P., Langer, U., Mantzaflaris, A., Schneckenleitner, R.: Isogeometric simulation and
shape optimization with applications to electrical machines. In: Nicosia, G., Romano, V.
(eds.) Scientific Computing in Electrical Engineering. TECMI, vol. 32, pp. 35–43. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-44101-2_4

18. Dölz, J., Egger, H., Shashkov, V.: A convolution quadrature method for Maxwell’s equations
in dispersive media. In: van Beurden, M., Budko, N., Schilders, W. (eds.) Scientific Comput-
ing in Electrical Engineering. TECMI, vol. 36, pp. 107–115. Springer, Cham (2021). https://
doi.org/10.1007/978-3-030-84238-3_11

https://doi.org/10.1007/978-3-540-71980-9_27
https://doi.org/10.1007/978-3-540-71980-9_27
https://doi.org/10.1007/978-3-540-71980-9_26
https://doi.org/10.1007/978-3-642-12294-1_3
https://doi.org/10.1007/978-3-642-22453-9_10
https://doi.org/10.1007/978-3-642-22453-9_10
https://doi.org/10.1007/978-3-319-30399-4_20
https://doi.org/10.1007/978-3-319-75538-0_22
https://doi.org/10.1007/978-3-319-75538-0_22
https://doi.org/10.1007/978-3-030-44101-2_4
https://doi.org/10.1007/978-3-030-84238-3_11
https://doi.org/10.1007/978-3-030-84238-3_11


Mathematical and Computational
Methods



Machine Learning Techniques to Model Highly
Nonlinear Multi-field Dynamics

Ruxandra Barbulescu1(B), Gabriela Ciuprina2, Anton Duca2, and L. Miguel Silveira3

1 INESC-ID, Rua Alves Redol 9, 1000-029 Lisbon, Portugal
ruxi@inesc-id.pt

2 Politehnica University of Bucharest, Spl. Independentei 313, 060042 Bucharest, Romania
gabriela@lmn.pub.ro, anton.duca@upb.ro
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Abstract. Modelling the dynamics of the membrane displacement in a microma-
chined beam fixed at both ends for different applied voltages is important for real
applications. The strong nonlinearities involved and the interaction between mul-
tiple physical fields make this task challenging for classical modelling and model
reduction approaches. In this work we search for a simplified, yet accurate, data-
driven models, based on different recurrent neural network architectures, using
only peripheral input-output information of the original system. The main goal is
to find the most suitable neural network architecture having the smallest number
of hidden units that provides low error of the minimum gap dynamics for differ-
ent applied voltages. We show that these black-box models, with only 4 hidden
units, are able to accurately reproduce the original system’s response to a variety
of different stimuli, and a strategy to make them parameter aware is proposed.

1 Introduction

Since their creation in research labs in the 1950’s, Micro-Electro-Mechanical Systems
(MEMS) and their Radio-Frequency (RF) variety have seen a wide range of applica-
tions, from sensors to switches, vehicle controls, pacemakers and even games. The
basic structure of many RF-MEMS switches is based on a beam suspended like a bridge
across a substrate, which is pulled down by a force (such as an electrostatic force) and
eventually contacts a dielectric on the substrate thus blocking the signal (Fig. 1). The
pull-in voltage and the response time are some of the most important parameters of
electrostatically-actuated MEMS switches. Both the response time and the force needed
to pull-in the membrane depend nonlinearly on its displacement and this dependence is
the result of coupled electro-mechanical-fluid systems interaction.

One of the devices synthesising this mechanism is a micromachined beam fixed
at both ends, often used as a benchmark for model reduction algorithms [1] and even
studied as a pressure sensor [2]. A physics-aware model reduction approach is proposed
in [3], where the low-order model is built by progressively adding physical phenomena.
The dynamics of the bridge benchmark is described in detail in Sect. 2. The reduced

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. van Beurden et al. (Eds.): SCEE 2022, MI 43, pp. 125–132, 2024.
https://doi.org/10.1007/978-3-031-54517-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-54517-7_14&domain=pdf
https://doi.org/10.1007/978-3-031-54517-7_14


126 R. Barbulescu et al.

model in [3] reproduces with high-fidelity the dependence between the pull-in voltage
and the membrane displacement as well as the dynamic behaviour but, in the latter case,
only a few basic input stimuli are considered in the modelling and reduction processes.

In all these approaches, the difficulty of modelling and producing simplified repre-
sentations comes from the nonlinearity of the system and the interaction of more than
one physical field. In particular, adding the air damping phenomena makes the sys-
tem highly nonlinear. Physics-awareness can be both a plus and a minus, while gaining
specificity and physical interpretation, one sacrifices generalization.

Fig. 1. The bridge benchmark (extracted from [3]).

In recent years, machine learning type models have been successfully used in vari-
ous fields to tackle strongly nonlinear problems with considerable success. In this work,
we use machine learning techniques to model the dynamics of the membrane displace-
ment in the bridge benchmark, using only input-output information of the original full-
order system. We generate data-driven, black-box models assuming no prior knowl-
edge of the original system’s structure and constitutive equations, which can further
be explained using specific interpretation techniques for neural networks [4]. We train
recurrent neural networks on datasets representing the system’s response (membrane’s
minimum gap) to different input voltage signals (different shapes and magnitudes). We
compare these architectures in terms of their properties and accuracy in reproducing
the output of the original system. We show that with a recurrent layer of only 4 hidden
units, it is possible to accurately reproduce the original system’s response to a variety of
different stimuli. We further show that we can generate parameter-aware models, which
are able to predict with fidelity the system’s behaviour for different values of specific
parameters.

2 The Bridge Benchmark Dynamics

The bridge benchmark is a polysilicon beam of length l = 610µm, width w = 40µm
and height h = 2.2µm suspended like a bridge over a silicon substrate. The initial gap
is g0 = 2.3µm. The mechanism is described by the strongly coupled 1D Euler’s beam
equation (1) and 2D Reynolds’ squeeze film damping equation (2):

EI
∂ 4 g
∂x4 −S

∂ 2 g
∂x2 = Felec −ρ

∂ 2 g
∂ t2

+Fair, (1)

div

((
1+6

λ
g

)
g3p(grad(p))

)
= 12μ

∂ (pg)
∂ t

, (2)
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where g(x, t) is the unknown gap (the displacement is g0 − g(pm, t), where pm is the
middle point of the membrane pm = l/2), E = 149GPa is the Young modulus, I =
wh3/12 is the inertial moment, S/(hw) = −3.7MPa is the initial stress, ρ is the mass
per unit of length

(
ρ/(hw) = 2330kg/m3

)
, Felec(x, t) = −ε0wv(t)/

(
2g2(x, t)

)
is the

electric force per unit of length (ε0 is the air permittivity), Fair =
∫ w

0 (p− pa)dy is the
damping force per unit of length, p(x,y, t) is the unknown pressure, pa = 1.013 ·105 Pa
is the environment pressure, λ = 0.064µm is the mean free path of air and μ = 1.82 ·
10−5 kg/(m · s) is the air viscosity.

Since l � w, the deflection is assumed uniform across the width. Moreover, the
deformation is symmetrical along the length of the membrane, therefore we can con-
sider as quantity of interest the middle point pm = l/2, where the gap is minimum. This
point would also be the first touching the dielectric in case the membrane is pulled down
completely. Figure 2 shows the membrane’s displacement at different moments in time
and the minimum gap for a periodic impulse.

Fig. 2. Example of membrane displacement, generated with the original code from [3]). Left:
Input – applied voltage v(t). Middle: Displacement g(x, t) at different moments in time (t in
[ms]). Right: Output – minimum gap g(pm, t) in time.

3 Neural Networks Models

Recurrent Neural Networks (RNNs) [5–7] are a family of neural networks used for pro-
cessing sequential data. Compared to their predecessors – the Feedforward Neural Net-
works (FFNNs) – the RNNs allow neurons in a given layer to form connections among
themselves, thus being particularly adept to processing sequences of values x1, ...,xt of
equal or variable length. In this work we create models based on three architectures:
the simple RNN [6], the Long Short-Term Memory (LSTM) unit [8,9] and the Gated
Recurrent Unit (GRU) [10]. The structures of their cells are presented comparatively in
Fig. 3.

In the simplest form of RNNs (Fig. 3-left), the prediction at a certain time point
ŷt depends on the hidden state of the cell at the current time point ht , which in turn
depends of the hidden state at the previous time point ht−1. In the following equations
V, W and U are matrices of weights, b and c arrays of biases and φ is an activation
function, usually the hyperbolic tangent:

ht = φ (Vxt +Uht−1 + c) , ŷt =Wht +b.
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Fig. 3. Structure of a cell in the three architectures: simple RNN, LSTM, GRU (adapted from
[11]).

The simple RNNs however are known to suffer from various issues, a delicate one being
the vanishing gradient [12], which happens when long term components go exponen-
tially fast to norm 0, making it impossible for the model to learn the correlation between
temporally distant events. In our case, for a faithful reproduction of the dynamics, the
simulations of the original model require the use of fine time steps, leading to datasets
with long sequences. This in turn implies that the response at a given time will depend
on values which are far back in the sequence. This situation, however unavoidable, may
lead the RNN to experience difficulties in learning the data dependencies, resulting in a
model with unacceptable error (usually measured in terms of Root-Mean-Squared Error
– RMSE).

One solution to the vanishing gradient problem is the Long Short-Term Memory
(LSTM) unit [8,9]. A LSTM consists of three main gates: the input gate it ∈ (0,1)h

that controls whether the cell state is updated or not, where h is the number of hidden
units, the forget gate ft ∈ (0,1)h defining how the previous memory cell affects the cur-
rent one and the output gate ot ∈ (0,1)h, which controls how the hidden state is updated.
The usage of gates is a major difference from the simple RNNs, since besides the hidden
state ht ∈ (−1,1)h, the LSTM also outputs a cell state ct ∈ R

h to the next LSTM unit,
as shown in Fig. 3-center. The computation of the cell state is based on the candidate
cell state c̃t ∈ (−1,1)h. The vanishing gradient problem is partially solved by the LSTM
units by allowing gradients to also flow unchanged. The LSTM mechanism is described
by the following equations, where the learned parameters are the weights W∗ ∈ R

h×d

and U∗ ∈ R
h×h, and the biases b∗ ∈ R

h, where d is the number of input features:

it = σ (Wixt +Uiht−1 +bi) ,

ft = σ
(
W f xt +U fht−1 +b f

)
,

ot = σ (Woxt +Uoht−1 +bo) ,

c̃t = φ (Wcxt +Ucht−1 +bc) ,
ct = ft ◦ ct−1 + it ◦ c̃t ,
ht = ot ◦φ (ct) .

σ and φ are the logistic sigmoid and the hyperbolic tangent activation functions, respec-
tively. The operator ◦ denotes the Hadamard product (element-wise product).

A simpler unit composed of only two gates is the Gated Recurrent Unit
(GRU) [10], proposed in 2014. The GRU is described by:

zt = σ (Wzxt +Uzht−1 +bz) ,
rt = σ(Wrxt +Urht−1 +br),

ĥt = φ (Whxt +Uh (rt ◦ht−1)+bh) ,

ht = (1− zt)◦ht−1 + zt ◦ ĥt ,
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where the weights W∗ ∈R
h×d and the biases b∗ ∈R

h are learned parameters. The GRU
(Fig. 3-right) is only composed of two gates, the update gate zt ∈ (0,1)h and the reset
gate rt ∈ (0,1)h. The update gate controls how much of the past information needs to be
passed along to the future, while the reset gate is used to decide how much information
the model should forget. The GRU only outputs the hidden state ht ∈ R

h computed
based on the candidate hidden state ĥt ∈ (−1,1)h.

4 Results

Our first objective is, from a model reduction perspective, to find the most suitable
architecture and the smallest neural network (in terms of hidden units) that provides
good predictions. We therefore search for a nonlinear approximation F of the minimum
gap ĝ(pm, t), for different applied voltages v(t): ĝ(pm, t) =F (v(t)).

Data. We simulate the high-fidelity model from [3] described in Sect. 2 for 0.5ms, with
a time step of 5µs and different input signals to generate snapshots of the system’s
dynamical behaviour. Each snapshot contains pairs of input/output (I/O) data for 100
points, namely the input voltage’s variation in time v(t) and the membrane’s minimum
gap g(pm, t) (where pm = l/2 is the middle point of the membrane along the length),
which takes values in the range [0,2.3]µm. In the cases when the membrane is totally
pulled down, the minimum gap is set to 0 for the remaining simulation time. We use
scaled values (the gap is in µm, time is in ms), since the supervised learning uses an
absolute error metric (the RMSE – Root-Mean-Squared Error), whose very low values
might misdirect the training process.

We generate 40 snapshots, each with I/O values for 100 time moments, therefore
amounting to 4000 pairs of I/O values, and divide them into three sets of data: the
training set 50%, the validation set 25% and the test set 25%. The first two sets are
used to compute the learned parameters, then the model is evaluated against the test
set, containing data unseen before. The number of snapshots as well as their nature
were chosen as to sufficiently sample the training and test distributions. Numerical tests
showed that this choice was suitable for this benchmark.

Table 1. The average RMSE out of ten simulations, for RNN with 16 and 64 hidden units and for
LSTM and GRU with 8 and 32 hidden units, for the iteration with the smallest validation loss.

RNN-16 LSTM-8 GRU-8 RNN-64 LSTM-32 GRU-32

Training 0.0856 0.0376 0.0304 0.1728 0.0243 0. 0505

Validation 0.1335 0.0759 0.0896 0.1928 0.1781 0.1378

Implementation. The implementation is done in Python’s libraries Keras and Tensor-
flow. We use a Normalization layer that shifts and scales the inputs into a distribution
centered around 0 with standard deviation of 1, with the mean and variance adapted
to the data. For a consistent comparison, we fixed the hyperparameters for all three
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Fig. 4. Training and validation RMSE averaged over 10 runs, for different architectures and sizes.

Fig. 5. Real (blue) and predicted (red) minimum gap for the GRU model with 8 hidden units
extracted the training, validation and test sets.

architectures to the same previously optimized values, as follows: 1) We ordered the
hyperparameters decreasingly based on their expected influence on the model’s perfor-
mance; 2) We set the most important one and so on; to set one, we kept fixed all the
other hyperparameters and trained with different values for it. For the hyperparameters
that are interdependent – for example batch size with sequence length, we did a grid
search for different combinations of these. Our search in the hyperparameters space led
to the following: the optimizer was set to Adam, the loss function is the RMSE, and the
learning rate is 0.005. We trained the models for 10000 epochs (the number of passes
of the training dataset through the algorithm), choosing the number of hidden units
(neurons in the recurrent layer) so that the total number of parameters is comparable
between models, e.g. a RNN with 16 hidden units (305 parameters) corresponds to a
LSTM with 8 (328 parameters) and a GRU with also 8 hidden units (249 parameters).

Figure 4 shows the variation of the RMSE over the epochs, comparatively. Despite
the lower complexity, the GRU performed best overall (see Table 1). In fact, with a
recurrent layer as small as 4 hidden units, the RMSE is 0.0345 µm for the training and
0.0597 µm for the validation set. Figure 5 shows examples from the three sets, the input
and the corresponding real and predicted outputs for the GRU with 8 units.
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Parameter-Aware Models. A second objective is parameter-awareness, i.e. the ability
of the neural network model to take into account geometrical characteristics and other
parameters of the system that impact the output. We identified three important parame-
ters: the membrane length l and width w, and the air viscosity μ . A series of potential
values for each are listed in Table 2. We are now looking for an approximation that takes
into account these parameters, of the form ĝ(pm, t) =F (v(t), l,w,μ).

Table 2. Different parameter values. The air viscosity is dependent on the temperature.

Parameter Air viscosity μ
[

kg
m·s

]
Membrane length l
[µm]

Membrane width w
[µm]

Reference value 1.82 ·10−5 (15◦) 610 40

Other values considered 1.73 ·10−5 (0◦) 590 36

1.78 ·10−5 (10◦) 600 38

1.85 ·10−5 (25◦) 620 42

1.90 ·10−5 (35◦) 630 44

Fig. 6. Predicted minimum gap for two cases with the same input and fixed membrane length and
width, but different air viscosity.

We generated new datasets containing the original 40 input-output data and random
combinations of these values in a total of 500 examples (out of 5000 possible com-
binations) divided in 300 for training, 100 for validation and 100 for test). The 500
examples took more than 30h to generate with the original code. Using this data, we
trained a GRU and re-optimized the hyperparameters.

The RMSEs obtained are of the same order of magnitude as for the previous case.
Figure 6 shows the predicted output in two cases where the input is the same, as well as
two of the parameters, the length and the width, but the air viscosity is different. The
model successfully captures the difference in the output for the different values of air
viscosity.

5 Conclusions

In this work we create data-driven models for the dynamics of the minimum gap in the
bridge benchmark, using different recurrent neural network architectures. We show that
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a GRU layer with only 4 hidden units accurately reproduces the output for various dif-
ferent stimuli, and we further propose a strategy to make the model parameter-aware.
The main advantage of this model is the ability to accurately predict the response to
various different stimuli and for different parameters. Moreover, once the neural net-
work is trained, the prediction is done instantaneously. The source code, datasets and
results are publicly available at https://github.com/ruxandrab/beam. Our next focus is
to model the second half of the mechanism – the opening of the switch, as well as look
into physics-informed neural networks, by embedding physical constraints that would
allow both feature preservation and subsequent interpretation of the low-order models.

Acknowledgements. This work was supported by European Funds “Recovery and Resilience
Plan - Comp. 5” included in the NextGenerationEU program, under project n◦ 62 - “Respon-
sible AI” and Portuguese national funds, under projects UIDB/50021/2020, PTDC/EEI-
EEE/31140/2017.

References

1. Rewienski, M., White, J.: A trajectory piecewise-linear approach to model order reduction
and fast simulation of nonlinear circuits and micromachined devices. IEEE Trans. Comput.-
Aided Des. Integrated Circ. Syst. 22(2), 155–170 (2003)

2. Gupta, R.J., Senturia, S.D.: Pull-in time dynamics as a measure of absolute pressure. In:
Proceedings IEEE the Tenth Annual International Workshop on MEMS. An Investigation of
Micro Structures, Sensors, Actuators, Machines and Robots, pp. 290–294. IEEE (1997)

3. Ciuprina, G., Ioan, D., Lup, A.S., Silveira, L.M., Duca, A., Kraft, M.: Simplification by
pruning as a model order reduction approach for RF-MEMS switches. COMPEL- Int. J.
Comput. Math. Electr. Electron. Eng. 39(2), 511–523 (2019)

4. Ismail, A.A., Gunady, M., Bravo, H.C., Feizi, S.: Benchmarking deep learning interpretabil-
ity in time series predictions. arXiv preprint arXiv:2010.13924 (2020)

5. Elman, J.L.: Finding structure in time. Cogn. Sci. 14(2), 179–211 (1990)
6. Rumelhart, D.E., Hinton, G.E., Williams, R.J.: Learning representations by back-propagating

errors. Nature 323, 533–536 (1986)
7. Werbos, P.J.: Generalization of backpropagation with application to a recurrent gas market

model. Neural Netw. 1(4), 339–356 (1988)
8. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction with

LSTM. Neural Comput. 12(10), 2451–2471 (2000)
9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780

(1997)
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Abstract. The port-Hamiltonian (pH) modelling framework allows for
models that preserve essential physical properties such as energy conser-
vation or dissipative inequalities. If all subsystems are modelled as pH
systems and the inputs are related to the output in a linear manner,
the overall system can be modelled as a pH system, too, which preserves
the properties of the underlying subsystems. If the coupling is given by a
skew-symmetric matrix, as usual in many applications, the overall system
can be easily derived from the subsystems without the need of introduc-
ing dummy variables and therefore artificially increasing the complexity
of the system. Hence the framework of pH systems is especially suitable
for modelling multiphysical systems.

In this paper, we show that pH systems are a natural generaliza-
tion of Hamiltonian systems, define coupled pH systems as ordinary and
differential-algebraic equations. To highlight the suitability for electrical
engineering applications, we derive pH models for MNA network equa-
tions, electromagnetic devices and coupled systems thereof.

1 Port-Hamiltonian Systems Modelling in a Nutshell

Port-Hamiltonian (pH) systems are a generalization of Hamiltonian systems

ẋ = J · ∇H(x), x(0) = x0 (1)

with x = (p, q) consisting of generalized position q(t) ∈ R
n and momentum

p(t) ∈ R
n (where t ∈ [0, T ]), the skew-symmetric matrix J given by

J =
[

0 −I
I 0

]
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and the Hamiltonian H(x) = H(p, q) = U(p) + V (q) given as the sum of poten-
tial and kinetic energy, which maps R

n × R
n → R and is twice continuously

differentiable. The Hamiltonian flow ϕ(t;x0)), i.e., the solution of (1) at time
point t, starting at the initial value x(0) = x0, is characterized by four geometric
properties:

1. Preservation of the Hamiltonian:

d
dt

H(ϕ(t;x0)) = (∇H(ϕ(t;x0)))�J(∇H(ϕ(t;x0))) = 0.

2. Time-reversibility:
ρ ◦ ϕ(t;x0) ◦ ρ ◦ ϕ(t;x0) = x0,

with ρ(p, q) = (−p, q), which is a direct consequence of the ρ-reversibility of
the Hamiltonian flow: ρ ◦ J∇H(ϕ(t;x0))) = −J∇H(ρ ◦ ϕ(t;x0))).

3. Symplectic structure of the Hamiltonian flow:

Ψ(t)�J−1Ψ(t) = J−1, Ψ(t) := ∂ϕ(t;x0)
∂x0

,

which is a direct consequence of the skew-symmetry of J .
4. Volume-preservation:

(det Ψ(t))2 = 1,

which follows immediately from the symplectic structure in 3.

First generalization step: arbitrary skew-symmetric matrices J

If we replace in (1) J by an arbitrary skew-symmetric matrix, the Hamiltonian
is still preserved. As x will loose its characterization as generalized positions
and momenta of classical mechanics, time-reversibility will generally not hold
anymore. However, the symplectic structure of the flow still holds in the case of
a regular J , and volume preservation is still a consequence of the Hamiltonian
flow.

Second generalization step: adding dissipation to the system

Allowing the flow to become dissipative, we may generalize (1) to the dissipative
Hamiltonian system

ẋ = (J − R) · ∇H(x), x(0) = x0 (2)

with R ≥ 0 being symmetric and positive semi-definite. In this case, the flow
will neither be symplectic nor volume preserving, and the preservation of the
Hamiltonian is replaced by the dissipativity condition

d
dt

H(x(t)) = (∇H(x))�ẋ = −(∇H(x))�R∇H(x) ≤ 0

⇒ H(x(t)) = H(x0) −
∫ t

0

(∇H(x(τ)))�R∇H(x(τ)) dτ ≤ H(x0).
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Third generalization step: coupling to the environment via inputs and outputs

Allowing for inputs and outputs to couple the system to the environment, we
end up with linear pH system characterized by

ẋ = (J − R) · ∇H(x) + Bu(t), x(0) = x0,

y = B�∇H(x)

with inputs u(t) ∈ R
p, outputs y(t) ∈ R

p and port-matrices B ∈ R
n×p. The

dissipativity inequality now reads

d
dt

H(x(t)) = (∇H(x))�ẋ = −(∇H(x))�R∇H(x) + (∇H(x))�Bu(t))

= −(∇H(x))�R∇H(x) + y(t)�u(t) ≤ y(t)�u(t)

⇒ H(x(t)) = H(x0) −
∫ t

0

(∇H(x(τ)))�R∇H(x(τ)) dτ +
∫ t

0

y(τ)�u(τ)dτ

≤ H(x0) +
∫ t

0

y(τ)�u(τ)dτ.

Fourth generalization step: pH-DAE systems

Linear pH systems can be easily generalized to port-Hamiltonian differential-
algebraic equations (pH-DAEs) given by

d
dt

(Ex) = (J − R) · z(x) + Bu(t), x(0) = x0, (3a)

y = B�z(x) (3b)

with a possibly singular matrix E ∈ R
n×n and the nonlinear mapping z : Rn →

R
n fulfilling the compatibility condition E�z = ∇H. Now the dissipativity con-

dition reads

H(x(t)) = H(x0) −
∫ t

0

z(x(τ))�R∇z(x(τ)) dτ +
∫ t

0

y(τ)�u(τ) dτ

≤ H(x0) +
∫ t

0

y(τ)�u(τ) dτ.

The key point in pH modelling is the following: there is an easy way to couple
arbitrary many pH-DAE system such that the overall system is still a pH-DAE
system, which preserves a dissipativity inequality.

Let us consider r autonomous pH-DAE systems

d
dt

(Eixi) = (Ji − Ri)zi(xi) + Biui, (4a)

yi = B�
i zi(xi) (4b)
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with r Hamiltonians H1,H2, . . . , Hr and compatibility conditions E�
i zi = ∇Hi.

If the inputs and outputs fulfill a linear interconnection relation Mu + Ny = 0
for the aggregated input u = (u1, u2, . . . , ur) and output y = (y1, y2, . . . , yr),
it has been shown in [13] that one can write the aggregated system as a joint
pH-DAE system as

d
dt

⎛
⎜⎜⎝

⎡
⎢⎢⎣

E 0 0
0 0 0
0 0 0
0 0 0

⎤
⎥⎥⎦

⎡
⎣x

û
ŷ

⎤
⎦

⎞
⎟⎟⎠ =

⎡
⎢⎢⎣

J − R B 0 0
−B� 0 Im −M�

0 −Im 0 −N�

0 M N 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

z(x)
û
ŷ
0

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0
0

Im

0

⎤
⎥⎥⎦u,

y = ŷ,

with z(x)� = (z1(x1)�, z2(x2)�, . . . , zr(xr)�), new dummy variables û, ŷ and
setting X = diag(X1,X2, . . . , Xr) for X ∈ {E, J,R,B}. This coupling property
of pH-DAE systems makes the pH modelling framework well suited for multi-
physical applications.

Now, we consider external, time dependent inputs. To this end, we split the
inputs and outputs into external (bar-notation) and internal ones (hat-notation),
i.e., Biui is split into B̄iūi + B̂iûi. Then, the subsystem (4) reads

d
dt

(Eixi) = (Ji − Ri)zi(xi) + B̂iûi + B̄iūi, (5a)

ŷi = B̂�
i zi(xi), (5b)

ȳi = B̄�
i zi(xi). (5c)

For the coupling relation (of the internal quantities) û + Cŷ = 0 with a skew-
symmetric matrix C = −C� (which often arises in application), these systems
can be written as a joint pH-DAE system in condensed form [8]:

d
dt

(Ex) = (J̃ − R)z(x) + B̄ū, (6a)

ȳ = B̄�z(x) (6b)

with the condensed skew-symmetric matrix J̃ = J − B̂CB̂�. Note that in this
case all internal coupling modelled via the port-matrices B̂i has now been trans-
ferred into the off-block diagonal elements of the skew-symmetric matrix J̃ , i.e.,
−B̂CB̂�.

A systems theoretic treatment of pH systems goes back to Bernhard
Maschke and Arjan van der Schaft (see [12,14] for an overview), where
nonlinear systems governed by ordinary differential equations are treated. For
simplicity of presentation, we will (a) not follow the differential geometric path
via Dirac structures, (b) neglect a feed-through from input to output and (c)
only consider finite dimensional systems, i.e., ordinary (ODEs) and differential-
algebraic equations (DAEs), but no partial differential equations (PDEs). For
simulation, the latter are usually transformed into ODEs and DAEs by spatial
semi-discretization. For a differential geometric setting of pH systems see [15]
and an introduction into pH-PDEs see [11].
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The paper is organized as follows: In the next, section we introduce pH-DAEs,
which allow for a general nonlinear dissipative part. A pH-DAE formulation of
the modified nodal analysis (MNA) network equations is derived in Sect. 3, and
for electromagnetic devices in Sect. 4. Section 5 discusses formulations of pH
systems of coupled EM/circuit systems, which allow for monolithic as well as
weak coupling simulation approaches. Section 6 finishes with conclusions.

2 pH-DAE Systems

When dealing with applications in electrical engineering, the concept of pH mod-
elling has to be generalized to coupled differential-algebraic equations, which (a)
allow for a general nonlinear resistive part r(z) instead of a quasilinear setting
Rz as in the approach of [13] and (b) has only to be accretive on a subspace
V ⊂ R according to the constraints of the system.

A differential-algebraic equation of the form

d
dt

Ex(t) = Jz(x(t)) − r(z(x(t))) + Bu(t),

y(t) = B�z(x(t))
(7)

is called a port-Hamiltonian differential-algebraic equation (pH-DAE) [8] if the
following holds:

• E ∈ R
n×n, J ∈ R

n×n and B ∈ R
n×m, z, r : Rn → R

n.
• There exists a subspace V ⊂ R

n with the following properties:
(i) for all intervals I ⊂ R and functions u : I → R

m such that (7) has
a solution x : I → R

n, it holds z(x(t)) ∈ V for all t ∈ I.
(ii) J is skew-symmetric on V. That is, v�Jw = −w�Jv for all v, w ∈ V.
(iii) r is accretive on V. That is, v�r(v) ≥ 0 for all v ∈ V.

• There exists some function H ∈ C1(Rn,R) such that ∇H(x) = E�z(x) for
all x ∈ z−1(V).

Remark 1. a) The pH-DAE (7) system provides the usual energy balance

d
dt

H(x(t)) = −z(x(t))�r(z(x(t)))) + y(t)�u(t) ≤ y(t)�u(t).

b) pH-DAE subsystems now read

d
dt

Eixi(t) =Jizi(xi(t)) − ri

(
zi(xi(t))

)
+ Biui(t), (8a)

yi(t) =B�
i zi

(
xi(t)

)
(8b)

instead of (4), and if they are coupled by a skew-symmetric coupling relation
û + Cŷ = 0 with a skew-symmetric matrix C = −C� as before, they can be
condensed into an overall pH-DAE system

d
dt

Ex = Ĵz − r + B̄ū, (9a)

ȳ = B̄�z (9b)

with the skew-symmetric matrix Ĵ again given by Ĵ = J − B̂ĈB̂�.
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3 Electrical Networks

We consider the classical charge-/flux oriented MNA network equations [8,9]

d
dt

⎡
⎢⎢⎢⎢⎣

0 0 0 AC 0
0 0 0 0 I
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

e
jL

jV

qC

φL

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0 −AL −AV 0 0
A�

L 0 0 0 0
A�

V 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

e
jL

jV

qC

φL

⎤
⎥⎥⎥⎥⎦

−

⎡
⎢⎢⎢⎢⎣

ARg(A�
Re)

0
0

qC − q(A�
Ce)

φL − φ(jL)

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

−AI 0
0 0
0 −I
0 0
0 0

⎤
⎥⎥⎥⎥⎦

[
ı(t)
v(t)

]

with e, jL and jV denoting node potentials and currents through flux storing
elements and voltages sources, qC and Φl charge and flux-storing elements, i(t)
and v(t) independent current and voltage sources, the resistive currents g and
the incidence matrices AC , AL, AR, AV , AI for charge- and flux storing elements,
resistive elements, voltage and current sources, and seek a formulation as a pH-
DAE system. For this, we need the following assumptions, which naturally occur
in circuit simulation, see [8]:

(a) Soundness. The circuit graph has at least one branch and is connected.
Furthermore, it contains neither V -loops nor I-cutsets. Equivalently, AV

and (AC AR AL AV )� have full column rank.
(b) Passivity. The functions q, φ and g fulfill

(i) q : RnC → RnC and φ : RnL → RnL are bijective, continuously differen-
tiable, and their Jacobians

C̃(uC) :=
dq

duC
(uC), L̃(jL) :=

dφ

djL
(jL)

are symmetric and positive definite for all uC ∈ RnC , jL ∈ RnL .
(ii) g : RnR → RnR is continuously differentiable, and its Jacobian has the

property that dg

duR
(uR) + dg

duR
(uR)� is positive definite for all uR ∈ RnR .

If q : RnC → RnC and φ : RnL → RnL fulfill these assumptions, then there exist
twice continuously differentiable and non-negative functions VC : RnC → R,
VL : RnL → R with the following property: the gradients of VC and VL are,
respectively, the inverse functions of q and φ. That is,

∀qC ∈ RnC : ∇VC(qC) = q−1(qC), ∀φL ∈ RnL : ∇VL(φL) = φ−1(φL).

With this setting, the pH-DAE MNA network equations can now be derived as
follows: we first eliminate the equation φL − φ(jL) = 0: jL = φ−1(φL); secondly,
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we replace the equation qC − q(A�
Ce) = 0 by A�

Ce − q−1(qC) = 0. We end up
with

d
dt

⎡
⎢⎢⎣

AC 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
E :=

⎡
⎢⎢⎣

qC

φL

e
jV

⎤
⎥⎥⎦

︸ ︷︷ ︸
x :=

=

⎡
⎢⎢⎣

0 −AL 0 −AV

A�
L 0 0 0
0 0 0 0

A�
V 0 0 0

⎤
⎥⎥⎦

︸ ︷︷ ︸
J :=

⎡
⎢⎢⎣

e
φ−1(φL)
q−1(qC)

jV

⎤
⎥⎥⎦

︸ ︷︷ ︸
z(x)

−

⎡
⎢⎢⎣

ARg(A�
Re)

0
A�

Ce − q−1(qC)
0

⎤
⎥⎥⎦

︸ ︷︷ ︸
r(z(x)) :=

+

⎡
⎢⎢⎣

−AI 0
0 0
0 0
0 −I

⎤
⎥⎥⎦

︸ ︷︷ ︸
B :=

[
ı(t)
v(t)

]
︸ ︷︷ ︸
u(t) :=

,

(10)

which is a pH-DAE of type (7) with subspace V and Hamiltonian H(x) given by
H(x) = VC(qC) + VL(φL),V =

{(
e, jL, uC , jV

)� ∈ Rn
∣∣∣ A�

Ce = uC

}
.

Remark 2. a) The pH-DAE formulation shares the index properties of char-
ge/flux-oriented MNA network equations, if the assumption on soundness
and passivity hold: the index is one if, and only if, it neither contains LI-
cutsets nor CV -loops except for C-loops; otherwise it is two.

b) If r subcircuits given as pH-DAE MNA network equations are coupled via
voltage/current sources, the overall system can be written as a pH-DAE MNA
of type (10).

4 Electromagnetic Devices

In [5], the Maxwell grid equations for an electromagnetic device have been devel-
oped as a linear pH-DAE system provided that (a) the three-dimensional domain
of the device is connected, bounded and surrounded by perfectly conducting
material, (b) the permittivity ε, the permeability μ are symmetric positive def-
inite, and the conductivity σ is symmetric positive semi-definite, and (c) finite
integration technique [6] has been used for the spatial discretization with orthog-
onal staggered cells:

[
Mμ 0
0 Mε

]
d
dt

[
ĥ
ê

]
=

([
0 −C

C� 0

]
−

[
0 0
0 Mσ

])[
ĥ
ê

]
+

[
0

XS

]
û2, (11a)

ŷ2 =
[

0
XS

]� [
ĥ
ê

]
= X�

S ê. (11b)

Here C denotes the discrete curl operator, the material matrices Mε,Mμ and
Mσ represent the discretized permittivity, permeability and conductivity distri-
butions, ê is vector of the electric mesh voltages e, ĥ the vector of the magnetic
mesh voltages h, and the (dual grid facet) source current û2 as input. This
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input is allocated at positions XS . In fact, XS maps the interior mesh links onto
the exterior mesh nodes. Furthermore, the respective electric mesh voltage ŷ2
forms the output. The Hamiltonian of the electromagnetic device is given by
H1 = 1

2 (ẽ�Mεẽ + h̃�Mμh̃).

5 Coupled EM/circuit System

When coupling an electromagnetic device with an electric circuit, it remains
only to define the inputs, outputs and the coupling equation. For the circuit, the
electromagnetic device produces the current jE flowing into the network, which
is assembled at the respective nodes of the circuit via an incidence matrix AE .
Hence the circuit part reads (where we split inputs again in external inputs ı, v,
and internal ones):

d
dt

⎡
⎢⎢⎢⎢⎣

AC 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

qC

φL

e
jV

jE

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0 −AL 0 −AV −AE

A�
L 0 0 0 0
0 0 0 0 0

A�
V 0 0 0 0

A�
E 0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

e
jL

uC

jV

jE

⎤
⎥⎥⎥⎥⎦ (12a)

−

⎡
⎢⎢⎢⎢⎣

ARg(A�
Re)

0
A�

Ce − uC

0
0

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

−AI 0
0 0
0 0
0 −I
0 0

⎤
⎥⎥⎥⎥⎦

[
ı(t)
v(t)

]
+

⎡
⎢⎢⎢⎢⎣

0
0
0
0
1

⎤
⎥⎥⎥⎥⎦ û1,

⎡
⎣ȳ1,1

ȳ1,2

ŷ1

⎤
⎦ =

⎡
⎢⎢⎢⎢⎣

−AI 0 0
0 0 0
0 0 0
0 −I 0
0 0 1

⎤
⎥⎥⎥⎥⎦

�

·

⎡
⎢⎢⎢⎢⎣

e
jL

uC

jV

jE

⎤
⎥⎥⎥⎥⎦ =

⎡
⎣−A�

I e
−jV

jE

⎤
⎦ (12b)

with the Hamiltonian: H2 = VC(qC) + VL(φL).
The coupling is as follows [5]: the input û1 (of the electric circuit) is given by

the voltage drop at the electromagnetic device, which reads û1 = −X�
S ẽ = −ŷ2;

on the other hand, the input û2 (of the magnetic device) is given by the current
û2 = jE = ŷ1. Overall, we get the following skew-symmetric relation between
inputs and outputs:

0 =
[
û1

û2

]
+

[
0 I

−I 0

] [
ŷ1
ŷ2

]
. (13)

As we have a system consisting of two pH-DAE systems (11) and (12) with a
skew-symmetric linear coupling condition (13), the overall system can be written
as a condensed pH-DAE system (9) with Hamiltonian H = H1+H2 and enlarged
matrices as above.
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6 Simulation Strategies

Generally, for simulating the coupled EM/circuit system numerically, two
approaches are feasible:

a) Monolithic approach. The condensed system (9) can be solved by any inte-
gration scheme suitable for index-1 and index-2 systems, depending on the
index. To preserve the dissipation inequality also on a discrete level, colloca-
tion schemes [13] and discrete gradient schemes tracing back to [7] are the
methods-of choice. This strategy is also referred to as strong coupling.

b) Monolithic multirate approach. In fact, we are facing models, where the sub-
systems can have widely separated time scales. This can create so-called mul-
tirate potential, where it is beneficial to employ schemes, which use inherent
step sizes for each subsystem. In this way, each subsystem can be sampled on
its time scale. See e.g. [2,10].

c) Weak coupling. Since the coupling equations is merely the one-to-one identifi-
cation of output and input, we can insert this. Furthermore, omitting outputs
due to external sources, we have

d
dt

⎡
⎢⎢⎢⎢⎣

AC 0 0 0
0 I 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

qC

φL

e
jV

jE

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

0 −AL 0 −AV −AE

A�
L 0 0 0 0
0 0 0 0 0

A�
V 0 0 0 0

A�
E 0 0 0 0

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

e
jL

uC

jV

jE

⎤
⎥⎥⎥⎥⎦ (14a)

−

⎡
⎢⎢⎢⎢⎣

ARg(A�
Re)

0
A�

Ce − uC

0
0

⎤
⎥⎥⎥⎥⎦ +

⎡
⎢⎢⎢⎢⎣

−AI 0
0 0
0 0
0 −I
0 0

⎤
⎥⎥⎥⎥⎦

[
ı(t)
v(t)

]
−

⎡
⎢⎢⎢⎢⎣

0
0
0
0
1

⎤
⎥⎥⎥⎥⎦ ŷ2,

ŷ1 = jE (14b)

and [
Mμ 0
0 Mε

]
d
dt

[
h̃
ẽ

]
=

([
0 −C

C� 0

]
−

[
0 0
0 Mσ

]) [
h̃
ẽ

]
+

[
0

XS

]
ŷ1 (15a)

ŷ2 =XS ẽ. (15b)

Here dynamic iteration schemes [1] are the methods-of choice, as due to the
ODE-DAE coupling no stability constraints occur [4]. In addition, each step
of a Jacobi or Gauß-Seidel iteration scheme defines a pH-DAE system by its
own [8].
Operator splitting approaches are not generally feasible for differential-
algebraic equations, which can easily be seen for the linear pH-DAE (3a)
with z(x) = x and B = 0. A Lie-Trotter splitting approach may read

d
dt

(Ex) = Jx, x(0) = x0,

d
dt

(Ew) = −Rw. w(0) = x(T ),
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allowing for using a symplectic integrator for the first step, and a dissipative
scheme for the second one. However, the matrix pencil {E, J} or {E,R}
may be singular and thus not define a unique solution for the respective
subproblem, even if the matrix pencil {E, J − R} of the overall system is
regular. Even if this does not happen, the first problem, for example, may not
allow for a unique solution for arbitrary choices of consistent initial values.
For

E = diag(1, 0, 1), J =

⎡
⎣0 −1 0

1 0 0
0 0 0

⎤
⎦ , R = diag(0, 1, 1), x0 =

⎡
⎣ 1

−1
0

⎤
⎦ ,

all matrix pencils {E, J − R}, {E, J} and {E,R} are regular, but the first
step yields x1 ≡ 0 �= 1.
One may overcome the problem by rewriting the DAE in terms of an under-
lying ODE and subsequent algebraic variables given by explicit evaluations.
For network equations a branch oriented loop-cutset approach is an option for
defining such a pH-DAE system, see [5]. Another way to avoid the problems
above is to follow an operator splitting based approach for dynamic iteration.
In the latter case, no stability problems occur and a monotone convergence
can be obtained [3].

7 Conclusions

Port-Hamiltionian (pH) systems provide a modelling framework which preserves
essential physical properties. It is especially suited for multiphysical applications,
as the proper coupling of pH subsystems yields an overall pH system. In elec-
trical engineering, we have shown that electrical networks and electromagnetic
devices can be written as pH systems, and coupled EM/circuit system yield cou-
pled pH systems with a skew-symmetric coupling, which can be rewritten as an
overall pH system. For simulation, a monolithic approach is suitable for the for-
mer, and weak coupling methods for the latter. There are still many unresolved
questions, such as how to adequately integrate distributed ports into the pH
system’s modeling.

Acknowledgements. Michael Günther is indebted to the funding given by the Euro-
pean Union’s Horizon 2020 research and innovation programme under the Marie
Sklodowska-Curie Grant Agreement No. 765374, ROMSOC.
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Abstract. Optimization of transient models is required in several domains
related to thermo-mechanical reliability of electronics, such as Prognostic Health
Monitoring (PHM) and design optimization. A novel framework for efficient
(local) parameter optimization of transient models in the H2 norm is proposed.
The optimization is feasible for large-scale transient models because it approx-
imates the gradient using physics-based model order reduction (MOR), in con-
trast to existing approaches that typically use data-driven surrogate models such
as neural networks. To demonstrate the framework an optimal fixed-order virtual
sensor for PHM of a Ball Grid Array (BGA) is numerically determined.

1 Introduction

Electronics have become an indispensable part of modern appliances. Their safety is
critical in certain applications such as automotive, where electronics are expected to
operate reliably under both thermal and mechanical loads. To achieve this, transient
simulation models are used for various stages of the lifecycle of an electronic product.
Often, optimization of these models plays a role. Two examples are 1) minimization of
mechanical stress during the design of a product and 2) minimization of the prediction
error of a virtual sensor that predicts mechanical stress during operation for PHM.

These examples demonstrate the importance of optimization of transient models.
However, these models are typically generated using Finite Element Method (FEM)
and, hence, are large-scale. As a result, much attention has been paid in literature
to replace these high-fidelity models by inexpensive surrogate models, of which an
overview is now provided.

In the design phase, a Response Surface Model (RSM) is used in [1] as a surrogate
model to capture the transient behavior of chip stress during thermal cycling as a func-
tion of several geometric design parameters. Subsequently, an optimization is carried
out over the RSM. The authors of [2] apply a recurrent neural network to model the
solder joint reliability of a glass wafer level chip-scale package as a function of design
parameters.

For PHM, in [3], different neural network architectures are employed to predict the
stress distribution of electronic packages during thermal cycling based on past observa-
tions. In [4], a neural network trained from FEM snapshots is used as virtual sensor for
internal mechanical stresses with the goal of detecting delamination.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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Based on the above examples, it is clear that transient thermo-mechanical models
play a key role in electronics reliability assessment. However, the surrogate models
employed in the literature for design optimization and predictor models for PHM, such
as neural networks and RSM, are not physics-based. Therefore, large amounts of high-
quality data is required (which is often not available in the context of microelectronics)
and generalization to situations not present in the data is poor.

Alternatively, this paper provides a physics-based approach for the optimization of
transient models. Namely, projection-based model reduction is employed to accelerate
the optimization. The proposed technique is general in the sense that it can readily
be applied to a wide class of problems, including design optimization and PHM as
highlighted here.

The structure of the article is as follows. Section 2 provides background on H2

model reduction, an important ingredient in the proposed optimization framework
which is treated in Sect. 3. Numerical results for a virtual sensor optimization for a
BGA model are presented in Sect. 4. Concluding remarks are given in Sect. 5.

2 Reduction in the H2 Norm

The H2 norm is a norm for transient systems that are linear, time-invariant, strictly
proper and asymptotically stable. Let this set of systems be denoted by R. The H2

norm is induced by the H2 inner product, which is defined as follows for G,H ∈ R:

〈G,H〉H 2 =
1
2π

∫ ∞

−∞
tr(G(iω)H(iω)∗)dω, (1)

where G(s) and H(s) denote, by slight abuse of notation, the transfer functions of G
and H evaluated at complex frequency s. Then, ‖G‖H 2

=
√〈G,G〉H 2 .

The H2 norm is attractive as a measure for transient systems for several reasons.
First, it can be seen as the average magnitude of the frequency response of G over all
frequencies. Weighting filters may be used to emphasize frequency ranges of interest
for a particular problem. The physical interpretation of the H2 makes it an appropriate
choice for many engineering problems. Second, extensions of the H2 norm for non-
linear systems have been proposed, such as bilinear systems [5]. Third, the H2 norm
has mathematical properties that make it possible to design efficient model reduction
schemes that are optimal in this norm, as will be seen next.

The H2 norm is commonly used to find an optimal approximation to some large-
scale system G by a much smaller reduced-order model (ROM):

μ∗ = argmin
μ

∥∥∥G− Ĝ(μ)
∥∥∥2

H 2
, (2)

with μ parameterizing the search space of ROMs.
In literature, many methods for solving (2) for large-scale G have been proposed.

Gradient-based methods are proposed in [6–8]. Another class of method is based on dis-
cretization of theH2 norm [9]. A third type of method is based on iteratively construct-
ing reduced-order models that, upon convergence, satisfy a set of necessary optimality
conditions [10].
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3 GeneralH2 Optimization

As shown in the previous section, there is a wide selection of techniques for solving the
standard H2 reduction problem (2). These methods can be applied to large-scale prob-
lems arising, for instance, from FEM discretization. However, the motivating examples
encountered in Sect. 1 indicate the need to solve a more general H2 problem:

μ∗ = argmin
μ

‖G(μ)‖2H 2
, (3)

with G a large-scale transient system parameterized in a parameter vector μ ∈R
nμ . The

physical interpretation of μ depends on the problem. In the context of design optimiza-
tion, μ represents material and geometric parameters, such as the shape of solder balls
or spacing between components on a Printed Circuit Board (PCB). When considering
virtual sensor design, μ represents, e.g., state-space coefficients of the virtual sensor
model.

Solving (3) is challenging because, similar to (2), the cost function is 1) large-scale,
and 2) typically non-convex. In addition, while the optimization variables of the cost
function of the reduction problem (2) are associated with the small-scale reduced order
model Ĝ, this is not the case with (3).

To solve (3), a gradient-based technique is proposed. The gradient can be conve-
niently written using the H2 inner product. Let μi be the ith component of μ . Define
f (μ) := ‖G(μ)‖2H 2

. Then, the partial derivative of f w.r.t. μi may be compactly written
using the properties of the inner product as

∂ f
∂ μi

(μ) = 2Re

(〈
G(μ),

∂G
∂ μi

(μ)
〉

H 2

)
= 2

(〈
G(μ),

∂G
∂ μi

(μ)
〉

H 2

)
(4)

where Re(·) denotes the real part of the argument. The second inequality holds since
the considered transient systems, G(μ) and ∂G

∂ μi
(μ) are real. The gradient of f is

∇ f (μ) = 2

[〈
G(μ), ∂G

∂ μ1
(μ)

〉
H 2

. . .
〈
G(μ), ∂G

∂ μnμ
(μ)

〉
H 2

]T
. (5)

The H2 inner product (1) is only defined if both arguments belong to R. Although
this assumption was made for G(μ), it can be shown that its parameter-gradient sys-
tem inherits, among others, these properties if the state-space coefficients of G(μ) are
differentiable functions of μ , in which case its transfer function may be written as

G(μ ;s) =C(μ)(sE(μ)−A(μ))−1B(μ). (6)

The following theorem shows that for systems of the form (6) the parameter-gradient
system inherits all required properties for (5) to exist.

Theorem 1. Let G(μ) ∈ R be a parameterized transient system with transfer function
of the form (6). Furthermore, let μ ∈ D ⊂ R

nμ with D an open subset of Rnμ . Then, (5)
exists for all μ ∈ D.
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Proof. Using the identity from matrix calculus dF−1

dx = −F−1 dF
dx F

−1, the parameter-
gradient of G(μ) w.r.t. μi is derived as

∂G
∂ μi

(μ ;s) =
∂C
∂ μi

(μ)(sE(μ)−A(μ))−1B(μ)

+C(μ)(sE(μ)−A(μ))−1 ∂B
∂ μi

(μ)

−C(μ)(sE(μ)−A(μ))−1
(
s

∂E
∂ μi

(μ)− ∂A
∂ μi

(μ)
)
(sE(μ)−A(μ))−1B(μ).

(7)

The first two terms on the right-hand side of (7) are transfer functions of the same form
as G(μ) that have furthermore the same pole locations as G. Thus, they are asymptoti-
cally stable. The last term is slightly more complicated, with additional appearances of
the complex frequency s. However, it is equivalent to

[
0 −C

](
s

[
E 0
∂E
∂ μi

E

]
−

[
A 0
∂A
∂ μi

A

])−1 [
B
0

]
, (8)

where dependence on μ has been omitted for brevity. The equivalence can be easily
checked using the Schur complement. From this equivalence, it can be seen that the
third term of (7) admits a descriptor state-space representation with twice the order of
G(μ) and block-triangular E and A matrices as given in (8). From this block-triangular
representation, it can be readily seen that the poles of this third term coincide with
the poles of G(μ) with double multiplicity. Since the above decomposition holds for all
components of μ , properness and asymptotic stability of the parameter-gradient systems
is guaranteed and, thus, the gradient (5) exists. �	
It can be seen from (7) that the state order of the parameter-gradient systems is at most
n+n+2n= 4n.

3.1 Gradient-Based Optimization

In the previous section, it was shown that for a wide-class of systems, the cost function
of (3) is differentiable. This motivates the application of a gradient-based technique. A
large class of gradient-based methods exist (see, e.g., [11] for an overview). However,
in this work only steepest descent is considered, i.e., if the parameter in the k-th iterate
is denoted by μ(k), then

μ(k+1) = μ(k) −α(k)∇ f (μ(k)) (9)

with α(k) the step size. Note that, as f is non-convex in realistic scenarios, proper ini-
tialization of (9) is required, for example using Bayesian optimization.

3.2 Approximating the Gradient

Computation of
〈
G, ∂G

∂ μi

〉
H 2

(i = 1, ...,nμ ) involves the solution of 2 generalized

Sylvester equations [12, Lemma 2.1.5] with computational complexity O(n3). Thus,
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computation of (5) is infeasible for large-scale G(μ). However, the following theorem
shows that the inner product can be computed efficiently if one of the 2 arguments is of
low order.

Theorem 2. Let G,H ∈ R. If G has a sparse descriptor state-space representation
of order n and H has a state-space representation of order r 
 n, then computing
〈G,H〉H 2

can be done with complexity O(nr+ r3) =O(nr).

Proof. See [13].

The significance of Theorem 2 is that if only 1 of the arguments of the inner prod-
uct is reduced (e.g., by H2 model reduction), then the calculation is efficient. Such a
reduction can be performed element-wise to approximate (5). A choice can be made
to reduce G(μ), the parameter-gradient systems ∂G

∂ μi
(μ) (i = 1, ...,nμ ) or both. Table 1

lists the computational complexity of these options. It shows that all choices have the
same complexity. At the same time, introducing fewer errors leads to a more accurate
gradient approximation. Thus, it is expected that the optimization converges fastest if
only 1 of the arguments is reduced.

4 Numerical Comparison

The proposed optimization is tested for a PHM use case using a transient thermo-
mechanical simulation model of a BGA. The geometry can be seen in Fig. 1. Using
the MATLAB Partial Differential Equation Toolbox, a FEM semi-discretization of the
geometry using linear basis functions was performed, resulting in a sparse descriptor
state-space model (GBGA) of order n= 544 modelling the transfer from die power dis-
sipation to 2 outputs: 1) the vertical component of the stress in the solder ball labeled
”SQ10” (which cannot be measured and should be predicted); and 2) a temperature
sensor located directly underneath the solder ball. Measurements of the die power and
temperature at the sensor are assumed available, corrupted by additive white noise.

Table 1. Possible choices for element-wise approximation of (5). A reduction scheme of com-
plexity O(nr) is used with r 
 n.

Form Reduction cost Evaluation cost Total cost〈
G, ∂G

∂ μi

〉
(no approximation) O(nμn3) O(nμn3)〈

Ĝ, ∂G
∂ μi

〉
O(nr) O(nμnr) O(nμnr)〈

G, ∂̂G
∂ μi

〉
O(nμnr) O(nμnr) O(nμnr)〈

Ĝ, ∂̂G
∂ μi

〉
O(nμnr) O(r3) O(nμnr)
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A fixed-order (r = 4) virtual sensor (with state-space coefficients parametrized in
μ) should be designed to predict the solder ball stress in an H2 optimal way.

The following techniques for obtaining a virtual sensor are compared:

1. K: a reference virtual sensor that is found by synthesizing a Kalman filter for GBGA

directly. Although this virtual sensor is of order n, it isH2 optimal and gives a lower
bound on the prediction error achievable with fixed-order virtual sensors. Note that
synthesizing a full-order Kalman filter costs O(n3) and thus is infeasible for large n.

2. Kr: Iterative Rational Krylov Approximation (IRKA) is applied to obtain an r-th
order ROM ĜBGA ≈ GBGA and, subsequently, a Kalman filter is synthesized for this
approximate model.

3. Kr,opt1: the virtual sensor obtained using the proposed optimization framework. The
gradient is approximated by projecting, in each iteration, G(μ) using IRKA with
order 20. Note that this order can be selected independent of the order of the virtual
sensor. The search is initialized from Kr and the step size in each iteration is deter-
mined using an Armijo line search [11]. The iteration is stopped when the step size
is smaller than 10−10.

4. Kr,opt2: the same procedure for Kr,opt1 is followed, but both G(μ) and the parameter-
gradient systems are reduced to approximate the gradient.

The prediction error for all virtual sensors is displayed in Fig. 2. As expected, the
lowest error (0.40) is achieved by K. Furthermore, the proposed method finds fixed-
order sensors with lower error than Kr (the Kalman filter synthesized on the ROM of
GBGA).

For every 100 iterations, the relative 2-norm error of the gradient approximation is
calculated for Kr,opt1 and Kr,opt2. It is on average, respectively, 0.095 and 0.765. Surpris-
ingly, despite the higher gradient error, Kr,opt2 achieves the lowest prediction error. One
possible explanation for this is that the additional gradient noise pushes the optimizer
towards a better local minimum.

Note that in some frequency regions, Kr has lower error than Kr,opt1, Kr,opt2 or even
K: the H2 characterizes the average frequency response. Thus, higher errors in cer-
tain regions may be compensated by lower errors elsewhere. In practical applications,
including weighting filters allows the engineer to steer the objective and ensure low
error is achieved in the important frequency bands.

Fig. 1. Geometry of BGA model. Solder balls are denoted by “SQ”.
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Fig. 2. Bode magnitude diagram comparing the prediction error of the 4 virtual sensors. The
transfer from die power to prediction error is not shown for the full-order Kalman filter (K) as it
is zero in theory and only limited by machine precision.

5 Conclusions

A novel gradient-based low-complexity technique is proposed for the optimization of
large-scale parametric transient models in the H2 norm. The approach can be applied
to a wide class of problems for which the transient cost can be expressed in terms of
the H2 norm. In particular, it was shown how the approach can be applied to relevant
problems in the area of thermo-mechanical reliability analysis of electronics.

The method was demonstrated on the synthesis of a reduced-order virtual sensor for
PHM of a BGA package.

As next steps, the method should be extended to non-linear models including
temperature-dependent material parameters and visco-plasticity. In addition, due to
space restrictions, an analysis of the effect the gradient approximation has on conver-
gence will be published in a future article.

Acknowledgements. This work has been funded in part by ITEA under the COMPAS project
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Abstract. We introduce a framework for data-driven model order reduction of
parameterized LTI systems with guaranteed uniform dissipativity. The strategy
casts the problem into a multivariate rational fitting scheme that formally pre-
serves the bounded realness of the model response. The formulation relies on
the solution of a semi-definite program arising from a rational parameterization
based on Bernstein polynomials. The models can be employed in system-level
simulations both in the frequency and time domain.

1 Introduction

Parameterized Reduced Order Models (pROMs) of dissipative systems are valuable
tools for enabling fast simulation and optimization of complex electrical components
depending on a number of free design parameters. These models reproduce the input-
output behavior of the underlying structure and its dependency on the parameters, mak-
ing use of a minimal set of explanatory variables. Use of pROMs drastically reduces
simulation time requirements at the system level, especially for what concerns transient
analyses.

In order to be fully exploitable within large system-level simulations, pROMs of
physically passive structures must be compliant with the dissipativity property of the
reference system for all the admissible parameters values. Even if accurate, pROMs that
do not exhibit this property may be the root cause of spurious numerical instabilities,
that compromise the validity of the results.

By restricting the focus on Linear Time-Invariant (LTI) systems, this contribution
presents a novel data-driven framework for generating pROMs that are dissipative by
construction. Differently from recent approaches based on port-Hamiltonian realiza-
tions [1,7], the proposed approach represents the model as a rational transfer function
with parameterized coefficients. Based on this structure, the model identification stage
involves the solution of a sequence of constrained convex rational fitting problems.
By representing the parameterized coefficients of the model transfer function as Bern-
stein polynomials expansions, we show that the involved infinite-dimensional frequency
domain conditions for dissipativity can be formulated as Linear Matrix Inequalities
(LMI) of finite dimension, which are enforced in polynomial time making use of robust
convex optimization solvers.
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2 Background and Notation

In the following, s will denote the Laplace variable, Sn the set of symmetric matrices
of size n. The symbol ⊗ will stand for the Kronecker product, while the superscripts
�, � and ∗ will denote transposition, hermitian transposition and complex conjugation,
respectively. The functions b�̄��

���(x),x∈ [0,1]d ⊂R
d are multivariate Bernstein polynomi-

als whose degree in each scalar variable is collected in the d-dimensional multi-index
�̄�� = (�1, . . . , �d). Accordingly, ��� is an identifier for each component of this basis andI���
is the set of admissible multi-indices spanning the basis.

2.1 Problem Statement

Our goal is to generate a pROM of a P-port dissipative LTI system depending on a set of
external (normalized) parameters ϑϑϑ ∈ Θ = [0,1]d ⊂ R

d . We assume that the equations
describing the reference system are not known in closed form, but that samples of its
parameterized input-output frequency response H̆(s,ϑϑϑ) ∈ C

P×P are made available by
real or virtual high-fidelity measurements

H̆k,m = H̆( jωk,ϑϑϑm), 1 ≤ k ≤ k̄, 1 ≤ m ≤ m̄, (1)

retrieved for fixed frequency-parameter configurations. The problem is thus to synthe-
size a small order transfer function H(s,ϑϑϑ) fitting the available samples

H( jωk,ϑϑϑm) ≈ H̃k,m, k = 1, . . . , k̄, m= 1, . . . , m̄ (2)

and at the same time preserving the dissipativity property of the underlying system.
For parameterized LTI P-port systems, dissipativity can be characterized in terms of the
associated transfer function. Given the following conditions

1. G(s,ϑϑϑ) regular for ℜ{s} > 0 ∀ϑϑϑ ∈ Θ
2. G∗(s,ϑϑϑ) = G(s∗,ϑϑϑ) ∀s ∈ C, ∀ϑϑϑ ∈ Θ
3. a. IP −G�(s,ϑϑϑ)G(s,ϑϑϑ) 
 0 for ℜ{s} > 0, ∀ϑϑϑ ∈ Θ Scattering

b. G�(s,ϑϑϑ)+G(s,ϑϑϑ) 
 0 for ℜ{s} > 0, ∀ϑϑϑ ∈ Θ Immittance

a parameterized transfer function G(s,ϑϑϑ) in immittance representation is Positive Real
(PR) if it satisfies conditions 1, 2, 3b, while a transfer function in scattering represen-
tation is Bounded Real (BR) if it satisfies 1, 2, 3a. The poles of PR or BR transfer
functions are always stable, as required by condition 1. Immittance transfer functions
are also classified as Strictly Positive Real (SPR) if they satisfy condition 1 also for
ℜ{s} = 0 and

G�( jω,ϑϑϑ)+G( jω,ϑϑϑ) � 0,∀ω ∈ {R∪∞},∀ϑϑϑ ∈ Θ (3)

in place of 3b. A SPR transfer function exhibits no poles nor zeros on the imaginary
axis [8].

Models with (S)PR or BR transfer functions are dissipative. Therefore our problem
is to obtain the model transfer function H(s,ϑϑϑ) in such a way that it fulfills (2) and that
is PR or BR, depending on the model representation.
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2.2 Model Structure

Our approach performs model generation based on model structure [5]

H(s,ϑϑϑ) =
N(s,ϑϑϑ)
D(s,ϑϑϑ)

=
∑n
i=0 ∑���∈I���

Ri,��� b
���
���(ϑϑϑ)ϕi(s)

∑n
i=0 ∑���∈I���

ri,��� b���
���(ϑϑϑ)ϕi(s)

. (4)

In the above, the rational dependence on the variable s is induced by the basis functions
ϕi(s), constructed from a set of fixed poles {q1, . . . ,qn} with ℜ{qi} < 0∀i > 0 as

⎧
⎪⎨

⎪⎩

ϕi(s) = (s−qi)−1, qi ∈ R

ϕi(s) = [(s−qi)−1+(s−q∗
i )

−1] qi ∈ C

ϕi+1(s) = j[(s−qi)−1 − (s−q∗
i )

−1] qi+1 = q∗
i ∈ C,

(5)

and ϕ0(s) = 1. Bases b���
���(ϑϑϑ) are multivariate Bernstein polynomials that parameterize

the model with respect to ϑϑϑ . Finally, ri,��� ∈ R and Ri,��� ∈ R
P×P are the unknown model

coefficients. We remark thatN andD are rational transfer functions sharing the same set
of common poles, but exhibiting different parameterized residues. Since the common
poles simplify in (4), each element ofH(s,ϑϑϑ) is actually a ratio of n-degree polynomials
of s, with parameterized coefficients. The poles of H(s,ϑϑϑ) are the parameterized zeros
of D(s,ϑϑϑ).

We will make use of the following state space realizations associated to D(s,ϑϑϑ)

D(s,ϑϑϑ) ↔ ΣD =
(

A1 B1

C1(ϑϑϑ) D1(ϑϑϑ)

)

, (6)

IPD(s,ϑϑϑ) ↔
(

IP ⊗A1 IP ⊗B1

IP ⊗C1(ϑϑϑ) IP ⊗D1(ϑϑϑ)

)

=
(

A B
C⊗(ϑϑϑ) D⊗(ϑϑϑ)

)

, (7)

where the constant matrices A1, B1 are

A1 = blkdiag{A1,i} ∈ R
n×n, B1 = [. . . ,B1,i, . . . ]� ∈ R

n, (8)

A1,i =

⎧
⎪⎨

⎪⎩

qi, qi ∈ R
[

σi ωi

−ωi σi

]

, qi = σi ± jωi ∈ C
, B1,i =

{
1, qi ∈ R
[

2 0
]
, qi = σi ± jωi ∈ C

(9)

Here, (A1,B1) is controllable and A1 is Hurwitz. The parameterized output matrices are
Bernstein polynomial expansions defined as

C1(ϑϑϑ) = ∑
���∈I���

C���
1 b

���
���(ϑϑϑ), C���

1 = [r1,���, . . . ,rn,���] ∈ R
1×n, (10)

D1(ϑϑϑ) = ∑
���∈I���

D���
1 b

���
���(ϑϑϑ), D���

1 = r0,��� ∈ R. (11)
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Defining A= IP ⊗A1 and B= IP ⊗B1 , N(s,ϑϑϑ) admits the realization

N(s,ϑϑϑ) ↔ ΣN =
(

A B
C2(ϑϑϑ) D2(ϑϑϑ)

)

(12)

C2(ϑϑϑ) = ∑
���∈I���

C���
2 b

���
���(ϑϑϑ) C���

2 ∈ R
P×nP, (13)

D2(ϑϑϑ) = ∑
���∈I���

D���
2 b

���
���(ϑϑϑ) D���

2 = R0,��� ∈ R
P×P. (14)

For any ���, C���
2 collects the entries of Ri,���, i > 0 with suitable ordering. Being ν a place-

holder for either 2 or ⊗, we define for brevity the matrices

Xν(ϑϑϑ) =
[
C�

ν (ϑϑϑ)
D�

ν (ϑϑϑ)

]
[
Cν(ϑϑϑ) Dν(ϑϑϑ)

]
= ∑

mmm∈Immm

Xmmm
ν bmmmmmm(ϑϑϑ), (15)

with m̄mm = 2�̄��. Similarly, we define the following augmented-degree representation for
the output matrices of ΣN

Y (ϑϑϑ) =
[
C�
2 (ϑϑϑ)

D�
2 (ϑϑϑ)

]

= ∑
���∈I���

[
C����
2

D����
2

]

b���
���(ϑϑϑ) = ∑

mmm∈Immm

Ymmm bmmmmmm(ϑϑϑ), (16)

which is always possible thanks to the degree elevation property of the Bernstein poly-
nomials. In the above, each Ymmm is obtained as a linear combination of the matrices
[
C���
2 D���

2

]�
, with predefined coefficients. See [2] for further details.

3 Model Dissipativity Conditions

Conditions 1, 2, 3a, 3b depend continuously on the Laplace variable and on the param-
eter vector ϑϑϑ . Verifying numerically the dissipativity of a pROM based on these condi-
tions is not feasible, as it would require checking an infinite number of constraints, one
for each fixed frequency-parameter configuration. The following theorem represents
our main result, providing sufficient conditions to assess the dissipativity of the pROM
in terms of a finite number of semidefinite constraints on the model coefficients. With-
out loss of generality, we provide the statement for models in scattering representation.
Similar results can be derived for the immitance case.

Theorem 1. Let Ω(P,Q,R) =
[
P�R+RP RQ

Q�R 0

]

. Then,

a) H(s,ϑϑϑ) in (4) is uniformly asymptotically stable over Θ if

∃L��� ∈ Sn : K
��� = Ω(A1,B1,L

���)−
[
0 C����

1
C���
1 2D���

1

]

≺ 0 ∀��� ∈ I��� (17)

b) H(s,ϑϑϑ) is uniformly Bounded Real over Θ if, additionally,

∃Pmmm ∈ SnP : Jmmm =
[

Ω(A,B,Pmmm)−Xmmm⊗ Ymmm

Ymmm� −IP

]

� 0, ∀mmm ∈ Immm. (18)
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We provide here a sketch of the proof for Theorem 1, more detailed derivations are
available in [3]. The uniform model stability condition (a) stems from enforcing the
denominator D(s,ϑϑϑ) to be SPR. In fact, the zeros of a SPR function are guaranteed sta-
ble, and since the zeros of D(s,ϑϑϑ) are the poles of H(s,ϑϑϑ), uniform stability follows.
The SPR conditions on D(s,ϑϑϑ) are written in algebraic form using a (parameterized
form of) the Kalman-Yakubovich-Popov (KYP) Lemma, which is then discretized in
the parameter space by a Bernstein polynomial expansion. A straightforward deriva-
tion leads to the sufficient condition for uniform stability expressed by (17). A similar
process is used to derive the uniform dissipativity condition in (b). The KYP lemma is
again used to eliminate dependence on frequency in condition 3a, and a Bernstein poly-
nomial expansion provides a discretized form of the corresponding parameterized LMI
condition for BR-ness. The result is the sufficient condition in (18). The key enabling
factors on which this proof is built are the model structure (4) with the associated param-
eterized state-space realizations of Sect. 2.2, and the properties of the Bernstein polyno-
mials which allow proving positivity (negativity) of a parameter-dependent matrix by
constraining the sign of its Bernstein coefficients.

4 Model Generation

In this section, we present our approach to generate dissipative pROMs in scattering
representation via semidefinite programming, exploiting the theoretical results of The-
orem 1. As in standard approaches based on model structure (4), we meet condition (2)
iteratively, enforcing a sequence of linearized approximations

Nμ( jωk,ϑϑϑm)−Dμ( jωk,ϑϑϑm)H̃k,m

Dμ−1( jωk,ϑϑϑm)
≈ 0, k = 1, . . . , k̄, m= 1, . . . , m̄, (19)

where μ = 1,2, . . . is an index for the iteration. At iteration μ , Dμ−1 is numerically
available1 so that relation (19) can be recast in matrix form as

[
Ψ μ
x Ψ μ

y
]
[
xμ

yμ

]

≈ 0 (20)

where vectors xμ , yμ collect the current numerator and denominator coefficients Ri,���

and ri,���, respectively, and Ψ μ
x and Ψ μ

y are known matrices. The approximation (20)
is then enforced in a least-squares sense. The iteration stops whenever Dμ( jω,ϑϑϑ) �
Dμ−1( jω,ϑϑϑ), so that (19) becomes equivalent to (2).

Since only the denominator variables yμ−1 are required to set up problem (20), the
iteration admits a fast implementation based on the elimination of the variables xμ , that
are computed only once convergence is met. The elimination procedure is based on
computing the QR factorization of the matrix

[
Ψ μ
x Ψ μ

y
]
, as thoroughly discussed in [6].

After the variable elimination, (20) is replaced by the smaller denominator estimation
problem

Γ μ
y yμ ≈ 0, (21)

1 We set D0( jω,ϑϑϑ) = 1 at the first iteration to initialize the denominator estimate.
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beingΓ μ
y a knownmatrix. We constrain the estimation with the stability conditions (17),

by solving the following semi-definite program

min
yμ ,L���

‖Γ μyμ‖2 subject to: Ω(A1,B1,L
���)−

[
0 C����

1
C���
1 2D

���
1

]

≺ 0 ∀��� ∈ I���, (22)

so that the resulting yμ guarantees a stable model by construction.
Problem (22) is solved repeatedly until convergence, that is practically met when

the condition

δ μ =

∥
∥yμ − yμ−1

∥
∥
2

‖yμ‖2
≤ ε (23)

holds with a user-defined small threshold ε > 0. Supposing this condition is met at
iteration μ̄ , we complete the model generation by estimating the numerator unknowns
xμ̄ . This can be done by substituting the available denominator coefficients yμ̄ in (20)
and enforcing the resulting condition

Ψ μ̄
x xμ̄ ≈ −Ψ μ̄

y yμ̄ . (24)

Since (17) holds by construction, we enforce (24) in such a way that the solution sat-
isfies (18), so that H(s,ϑϑϑ) is BR and the final model is dissipative. To this aim, we
observe that the matrices Xmmm⊗ in (18) are known, as they are defined upon the available
denominator coefficients yμ̄ . Since the terms Ymmm are obtained as linear combinations of
the numerator unknowns xμ̄ according to (16), we enforce (24) in a least-squares sense,
by solving another semi-definite program

min
xμ̄ ,Pmmm

∥
∥Ψ μ̄

x xμ̄ +Ψ μ̄
y yμ̄∥

∥
2

s.t.

[
Ω(A,B,Pmmm)−Xmmm⊗ Ymmm

Ymmm� −IP

]

� 0, ∀mmm ∈ Immm, (25)

which guarantees the bounded realness of H(s,ϑϑϑ).
We remark that since Theorem 1 provides only sufficient conditions for the ver-

ification of model dissipativity, enforcing constraints (17), (18) may introduce some
conservativity in the model generation process, by over-restricting the set of feasible
model coefficients. A systematic approach based on the degree elevation property of
the Bernstein polynomials can be used to arbitrarily reduce this conservativity, at the
price of introducing additional instrumental variables. Full details about this procedure
are available in [3].

5 A Test Case

The proposed strategy is applied to generate a dissiparive pROM of a high-speed inter-
connect link, designed as in [4]. We let the structure behavior depend on d = 2 geomet-
rical parameters related to the vertical interconnect on a Printed Circuit Board, namely
the pad radius ϑ1 ∈ [100,300] μm and the associated antipad radius ϑ2 ∈ [400,600] μm.
The dataset (1) is retrieved by performing virtual measurements of the 2×2 scattering
matrix of the structure, computed from a physics-based Maxwell equations solver in the
bandwidth [0,5] GHz. Then we generate the pROM as described in Sect. 4, fixing the
model order to n= 25. The remarkable accuracy of the resulting model is demonstrated
in Fig. 1, through a comparison with a set of validation responses (not used for training)
for different parameter configurations.
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Fig. 1. Model-data comparison for different parameter configurations.

6 Conclusions

We presented a novel data-driven approach for generating pROMs with theoretical dis-
sipativity certification. The method constrains the model training with finite dimen-
sional linear matrix inequalities that are shown to guarantee the dissipativity of the
model throughout the parameter space. Being based on convex programming, the app-
roach is fully deterministic and returns accurate and compact parameterized models.
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Abstract. The application of operator splitting methods to ordinary differential
equations (ODEs) is well established. However, for differential-algebraic equa-
tions (DAEs) it is subjected to many restrictions due to the presence of (possi-
bly hidden) constraints. In order to get convergence of the operator splitting for
DAEs, it is important to have and exploit a suitable decoupled structure for the
desired DAE system. Here we present a coupled field-circuit modeling via a loop-
cutset analysis and the choice of a suitable tree that results in a port-Hamiltonian
DAE system. Finally, we introduce an operator splitting approach of such lin-
ear coupled field-circuit DAEs and present convergence results for the proposed
approach.

1 Introduction

In mathematical modeling, one often wishes to capture different aspects of a physical
situation that are reflected in the model’s system of equations as different operators.
Operator splitting has been a successful strategy to deal with such complicated problems
[1]. A straight forward transfer of operator splitting from ODEs to DAEs is not trivial.
This is obviously because it is not applicable to algebraic equations. Accordingly, we
will have to adapt the operator splitting for DAEs to the different nature of inherent
DAE parts [2].

An important criterion that a splitting method must meet in order to solve physi-
cal and engineering problems is the conservation of physics, e.g., symplecticity, energy
conservation, irreversibility, mass conservation, etc. The splitting approach proposed
in this work for the linear coupled field-circuit DAE is designed to make use of the
conservation of energy. In particular, for the index-1 DAE of consideration, a suitable
decomposition of the matrices is achieved so that a natural port-Hamiltonian DAE struc-
ture is visible and can be exploited for a convergent splitting approach that is explicit
and energy preserving in the dynamic part.

This paper is structured as follows. First, we describe the decoupling of the linear
coupled field-circuit DAE to be exploited for a suitable operator splitting and we analyse
its index. In Sect. 3, we introduce our operator splitting approach for the coupled DAE.
It includes a convergence analysis and a discussion of some structural properties of
the subsystems. Finally we demonstrate numerical results for a benchmark circuit in
Sect. 4.
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2 Coupled Field-Circuit Modeling

We consider a model which couples partial differential equations for electromagnetic
(EM) devices with linear DAEs describing the basic circuit elements. Since we are seek-
ing a suitable modeling approach that fits the extension of the operator splitting method,
we describe the electromagnetic field by the classical E-H formulation of Maxwell’s
equations to exploit the Hamiltonian structure. In an open bounded domain Ω ⊂ R

3

and t ∈ I = [t0,T ] ⊂ R being the time interval, the evolution of electromagnetic fields
on Ω ×I is determined by Maxwell’s equations. The E-H formulation of Maxwell’s
equations is given by

∇×E= − ∂
∂ t

B, ∇ ·B= 0, ∇×H= J+
∂
∂ t

D, ∇ ·D= ρ (1)

In these equations, E and H are the electric and magnetic fields,and D and B are the
electric and magnetic flux densities, respectively. Further, ρ is the electric charge den-
sity and J is the electric current density.

The spatial discretization of Maxwell’s equations (1) using the finite integration
technique (FIT) [4] on a staggered grid pair with n primal grid points leads to the equa-
tions

Ce= −dtb,
∼
C h= dtd+ j,

∼
S b= 0, Sd= q (2)

where C,
∼
C∈ R

m×m are the discrete curl operators, S,
∼
S∈ R

n×m the discrete divergence
operators, which are defined on the primal and dual grid, respectively (m ≈ 3n). The
fields e, h, d, b, j : I → R

m and q : I → R
n correspond to electric and magnetic volt-

ages, electric and magnetic fluxes, electric currents and electric charges, respectively.
Maxwell’s grid equations (2) are linked with the material relations

d= Mεe, b= Mμh, j= Mσe+ js (3)

where Mε and Mμ are the material matrices of permittivities and permeabilities and Mσ
is the matrix of conductivities. We consider an electrical circuit consisting of capaci-
tors (C), resistors (R), inductors (L), voltage sources (V ), current sources (I) and an
electromagnetic device (E) satisfying well-posedness. And we denote by vX and iX the
voltages and currents through a type-X element, X ∈ {C,R,L,V, I,E}.

We proceed -similar to the approach we followed in [2]- by modeling the electrical
circuit using tree-based loop and cutset formulations [3]

it = −Qlil , vl = Q�
l vt (4)

where Ql is a submatrix of the fundamental cutset matrix such that its columns represent
the co-tree branches (links), see [2]. The subscripts (·)l and (·)t correspond to link and
twig elements, respectively. In this work, we focus on topological conditions given in
the following assumption.

Assumption 1. We assume that the circuit network has no CV E-loops, while CV -loops
and LI-cutsets are allowed.
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For the lumped circuit elements, we assume that all resistances, conductances, capaci-
tances and inductances show a globally passive behavior. In addition, the independent
functions vs and is for voltage and current sources are assumed to be continuously dif-
ferentiable. Notice that we used in our approach the conductive description for all resis-
tances that belong to the tree and the resistive description for all resistances that does
not belong to the tree, see below.

Based on the topological conditions of the Assumption 1, we can construct a tree as
follows:

1. All voltage sources and the electromagnetic device belong to the tree.
2. All current sources do not belong to the tree.
3. Split resistors in such a way that all G-resistances belong to the tree and all R-

resistances do not.
4. Split capacitors such that a capacitor is placed on a link if it belongs to a CV -loop.
5. Split inductors such that an inductor is placed on a twig if it belongs to an LI-cutset.

Consequently, the matrix Ql of can be written

Ql =

⎡
⎢⎢⎢⎢⎣

QVC QV R QV L QV I

QCC QCR QCL QCI

0 QER QEL QEI

0 QGR QGL QGI

0 0 QLL QLI

⎤
⎥⎥⎥⎥⎦

In the submatrices QXY with subscripts X ∈ {V,C,E,G,L} and Y ∈ {C,R,L, I}, the
subscript X refers to an X-type element on a twig, while the subscript Y refers to an
Y -type element on a link.

We always have three zero submatrices in the first column since if there is a capaci-
tor link, it will belong to a CV -loop, i.e., a loop that does not contain R, L, or E branches.
Similarly, in the last row there are always two zero submatrices.

The circuit equations consist of the loop and cutset formulations (4) reflecting the
Kirchhoff’s laws together with elements constitutive equations

iC =Cv′
C, vL = Li′L, iG = GvG, vR = RiR, iI = is(t), vV = vs(t). (5)

In order to incorporate an electromagnetic device into the circut, the system needs to be
completed with additional equations that distribute the circuit’s voltages and currents to
the field’s domain. We assume that the source current density is given by

js(t) = XsiE(t) (6)

where Xs ∈ R
m×mE is a space-discretized function distributing the quantities, mE is the

number of contact parts on the boundary. Moreover, we have the expression

1
α

vE = X�
s e (7)

with α being the number of mesh links in the direction between contacts.
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The circuit’s behaviour is then described by the formulations (4) together with the
constitutive element relations (5) which are then coupled with Maxwell’s grid equations
(2) and the coupling Eqs. (6)-(7). The resultant coupled field-circuit system is an index-
2 DAE [5] of the form

Dx′(t)+ Jx(t)+My(t) = rx(t) (8a)

−M�x(t)+Sy(t) = ry(t) (8b)

z(t)+Kx′(t)+Kxx(t)+Kyy(t) = rz(t) (8c)

with x =
[
vCt iLl h e

]�
,y =

[
iRl vRt vE iE

]�
,z =

[
iV vI

]�

D =

⎡
⎢⎢⎣

Ct +QCCClQ�
CC 0 0 0

0 Ll +Q�
LLLt QLL 0 0

0 0 Mμ 0
0 0 0 Mε

⎤
⎥⎥⎦ , J =

⎡
⎢⎢⎣

0 QCL 0 0
−Q�

CL 0 0 0
0 0 0 CCC
0 0 −CCC� Mσ

⎤
⎥⎥⎦ ,

M =

⎡
⎢⎢⎣

QCR 0 0 0
0 −Q�

GL −Q�
EL 0

0 0 0 0
0 0 0 Xs

⎤
⎥⎥⎦ , S =

⎡
⎢⎢⎣

Rl −Q�
GR −Q�

ER 0
QGR Gt 0 0
QER 0 0 I

0 0 − 1
α I 0

⎤
⎥⎥⎦ , K =

[
QVCClQ�

CC 0 0 0
0 Q�

LILt QLL 0 0

]
,

Kx =
[

0 QV L 0 0
−Q�

CI 0 0 0

]
, Ky =

[
QV R 0 0 0

0 −Q�
GI −Q�

EI 0

]
, rz =

[−QV Iis −QVCClQ�
VCv′

s
QT

V Ivs −Q�
LILt QLI i′s

]

rx =

⎡
⎢⎢⎣

−QCIis −QCCClQ�
VCv′

s
Q�

V Lvs −Q�
LLLt QLI i′s

0
0

⎤
⎥⎥⎦ , ry =

⎡
⎢⎢⎣

Q�
V Rvs

−QGIis
−QEIis

0

⎤
⎥⎥⎦

We note that the matrices D and S are nonsingular. Hence, Eqs. (8a) and (8b) are suf-
ficient for the determination of the unknown vector variables x and y, while Eq. (8c)
can be interpreted as an output equation for z. Further, the matrix J = J1 + J2 can be
written as the sum of skew-symmetric and symmetric matrices. Notice that rz(t) in (8c)
involves derivatives of the input functions vs and is. Consequently, the DAE (8) has
index 2 unless QVCClQ�

VC = 0 and QLILtQ�
LI = 0.

2.1 Coupled Index Analysis

As a part of the DAE analysis, we analyse the differentiation index of the coupled DAE
(8). The result is given by the following theorem.

Theorem 1 (See [9]). The DAE (8) yield by loop and cutset formulations is, for consis-
tent initial conditions, uniquely solvable and

• is a DAE of index-1 if the following 2 statements hold

– there is no CV -loop or any fundamental loop associated to a (link) capacitor
does not contain other (twig) capacitors

– there is no LI-cutset or any fundamental cutset associated to an inductor does
not contain other (link) inductors

• Otherwise, the DAE is of differentiation index-2.

Remark 1. For index-1 case, the coefficient matrix K is a zero matrix and DAE (8) fits
into the port-Hamiltonian form, introduced by Mehrmann and Morandin [6].
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3 Operator Splitting Approach

To this end, we have provided a new modeling approach for the coupled field-circuit
system to which we are going to propose a splitting approach based on the inherent
ODE. Therefore, we rewrite the DAE system (8a)-(8b) equivalently as

Dx′ +(J1 + J2)x+MS−1M�x = rx(t)−MS−1ry(t) (9a)

y = S−1(ry(t)+M�x
)
. (9b)

We split (9a), using Lie-Trotter splitting, into the subsystems Dx′ + J1x = 0 and

Dx′ + J2x+MS−1MT x = rx(t)−MS−1ry(t). (10)

Next, we reformulate (10) with (9b) back as DAE and obtain the following splitting
approach (SADAE) for the coupled field-circuit DAEs.

1. Initialize x2(t0) := x0 and n = 0.
2. Solve on [tn, tn+1] the first subsystem

Dx′
1 + J1x1 = 0, x1(tn) = x2(tn) (splitDAE 1)

3. Solve on [tn, tn+1] the second subsystem

Dx′
2(t)+ J2x+My(t) = rx(t), x2(tn) = x1(tn+1) (splitDAE 2a)

−MT x2(t)+Sy(t) = ry(t). (splitDAE 2b)

4. Set n = n+1 and go to 2. unless tn is the final time point.

3.1 Subsystem Properties

We observe that the first subsystem (splitDAE 1) is a Hamiltonian ODE system with
the Hamiltonian

H(x) =
1
2

x�Dx =
1
2

v�
Ct(Ct +QCCClQ

�
CC)vCt +

1
2

i�Ll(Ll +Q�
LLLtQLL)iLl (11)

+
1
2
h�Mμh+

1
2
e�Mεe=: H(vCt , iLl ,h,e)

where
d
dt

H(x) = x�Dx′ = −x�J1x = 0

since J1 is skew-symmetric. If we additionally have no CV E-loops nor LI-cutsets then
QVC = QCC = 0 and QLL = QLI = 0 and the Hamiltonian H becomes

H(x) =
1
2

x�Dx =
1
2

v�
C CvC +

1
2

i�L LiL +
1
2
h�Mμh+

1
2
e�Mεe

describing the total energy stored in the capacitors, inductors and the electromagnetic
device. Convenient time integration methods to solve the first subsystem (splitDAE 1)
are symplectic methods [7].

The second subsystem (splitDAE 2a)-(splitDAE 2b) is dissipative. It leads to non-
symmetric but positive definite linear systems after time discretization that allows the
exploitation of suitable iterative methods [8].
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3.2 Convergence Analysis

In order to verify the convergence of DAE operator splitting method, one has to rely on
the convergence of the ODE operator splitting method that results form consistency and
stability [1].

Theorem 2 (Theorem 5.2.1 in [9]). Let the time step size h be sufficiently small, the
initial currents and voltages as well as the source functions of current and voltage
sources be bounded. Let (x(t),y(t),z(t)) and (xn,yn,zn) be the exact and the approxi-
mated solutions by (SADAE) of the DAE system (8), respectively. Then

1. The approximated solution variables xn and yn converge to the exact solutions x and
y of the reduced system (8a)-(8b) with order 1.

2. The order of convergence of zn to z is 1 if the index of the DAE (8) is 1. Otherwise,
the convergence of zn is not guaranteed.

Theorem 3 (Corollary 5.2.1 in [9]). Under the same conditions of Theorem 2, if a
higher order operator splitting method of order p ≥ 2 is applied, then

1. The approximated solution variables xn and yn converge to the exact solutions x and
y of the reduced system (8a)-(8b) with order p.

2. The order of convergence of zn to z is p if the index of the DAE (8) is 1. Otherwise,
the convergence order is p−1.

4 Numerical Results

We aim in this section to check the convergence of operator splitting methods for cou-
pled systems. We consider the coupled field-circuit problem in Fig. 1 operating in a
GHz regime.

Fig. 1. RLC-circuit with EM device. The green branches form the tree considered for the model
equations.

For comparison, we consider the following three variants of numerical simulation
of the circuit:

1. Solve (8) by implicit Euler method.
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Fig. 2. Reference solution for EM device voltage vE for circuit in Fig. 1 (left) and the error for
numerical solution (right).

2. Solve (splitDAE 1) and (splitDAE 2a)-(splitDAE 2b) by implicit Euler method
3. Solve (splitDAE 1) by symplectic Euler and (splitDAE 2a)-(splitDAE 2b) by

implicit Euler method.

In Fig. 2 we see the reference solution computed by time stepsize h = 1e − 13 and
the error between the numerical solution for the three simulation variants with time
stepsize h = 1e − 12 and the reference solution. The results show that the solution of
the DAE splitting approach (variant 1) is almost the same as for the non-split solution
(variant 2). The use of the DAE splitting approach with the symplectic Euler method
(variant 3) gives the best results, of better accuracy. Further, we note that the symplectic
Euler method for the first subsystem (8a) is an explicit method.

5 Conclusions and Outlook

The presented modelling and splitting approach for coupled field-circuit DAEs has the
advantage that the skew symmetric dynamical part of high dimension (that preserves
energy) can be solved efficiently with an explicit symplectic scheme and afterwards
corrected by solving the symmetric dissipative part by an A-stable implicit scheme. The
simulation results show that the splitting approach is faster and more accurate than a
standard implicit (BDF) scheme for the coupled field-circuit system.

Acknowledgements. This project has received funding from the European Union’s Horizon
2020 research and innovation program under grant agreement No 76504.
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Abstract. We present a gradient-based calibration algorithm to identify a port-
Hamiltonian system from given time-domain input-output data. The gradient is
computed with the help of sensitivities and the algorithm is tailored such that the
structure of the system matrices of the port-Hamiltonian system (skew-symmetry
and positive semi-definitness) is preserved in each iteration of the algorithm. As
we only require input-output data, we need to calibrate the initial condition of
the internal state of the port-Hamiltonian system as well. Numerical results with
synthetic data show the feasibility of the approach.

1 Introduction

In structure-preserving modelling of coupled dynamical systems the port-Hamiltonian
framework allows for constructing overall port-Hamiltonian systems (PHS) provided
that (a) all subsystems are PHS and (b) a linear coupling between the input and out-
puts of the subsystems is provided [4,5,8,9]. In realistic applications this approach
reaches its limits: for a specific subsystem, either no physics-based knowledge is avail-
able which allows for defining a physics-based PHS or (b) one is forced to use user-
specified simulation packages with no information of the intrinsic dynamics, and thus
only the input-output characteristics are available.

In both cases a remedy for such a subsystem is as follows: generate input-output data
either by physical measurements or evaluation of the simulation package, and based on
that derive a PHS surrogate that fits these input-output data best. This PHS surrogate
can than be used to model the subsystem, and overall one gets a coupled PHS with
structure-preserving properties.

Our approach aims at constructing a best-fit PHS model in one step, without the
need of first deriving a best-fit linear state-space model and then, in a post-processing
step, finding the nearest port-Hamiltonian realization, see, for example, [2,3]. The arti-
cles [1] and [10] consider port-Hamiltonian realizations in the frequency domain, using
a Loewner framework or a parametrization of the system matrices, respectively. The
identification of a PHS using parametrization leads to a high-dimensional problem as
a dynamic with n states and k inputs and outputs is represented by n( 3n+1

2 + 2k)+ k2

parameters. In contrast to these approaches we follow a time domain approach. In [6] an
adjoint-based approach has been investigated to compute the gradient in order to derive

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. van Beurden et al. (Eds.): SCEE 2022, MI 43, pp. 167–174, 2024.
https://doi.org/10.1007/978-3-031-54517-7_19
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a structure-preserving calibration algorithm for port-Hamiltonian input-output systems
in the time domain. In this article, we develop a gradient-based calibration algorithm
to identify a PHS from given time-domain input-output data. The gradient is computed
with the help of sensitivities.

Consequently, we consider the surrogate PHS system given by

d
dt
x= (J−R)Qx+Bu, x(0) = x̂, (1a)

y= B�Qx, (1b)

where B,J,R,Q are matrices of suitable dimensions with J� = −J, R ≥ 0 and Q > 0.
The task is to fit the system matrices and the initial conditions v= (J,Q,R, x̂) to the

data. We therefore define the cost functional

J (x,v) =
1
2

∫ T

0
|y(t)− ydata(t)|2dt = 1

2

∫ T

0
|BTQx(t)− ydata(t)|2dt

leading us to the calibration problem

minJ (x,v) subject to (1). (P)

Note that well-posedness of P is a priori not guaranteed. For a detailed discussion
we refer to [6].

As we are only interested in the input-output behaviour of the system, we can elim-
inate Q from the dynamics. In fact, by Cholesky decomposition we obtain V with
Q=VV�.

w=V�x, B̃=V�B, J̃ =V�JV, R̃=V�RV

yields the system

d
dt
w= (J̃− R̃)w+ B̃u, w(0) = ŵ(=V�x̂), (2)

y= B̃�w. (3)

For later use we define the state operator e corresponding to (2) as

e(w,v) =
(

d
dt w− (J̃− R̃)w− B̃u

w(0)−w0

)
.

Hence, (2) is equivalent to e(w,v) = 0.
The transformed cost functional is given by

J̃(w,v) =
1
2

∫ T

0
|y(t)− ydata(t)|2dt = 1

2

∫ T

0
|B̃Tw(t)− ydata(t)|2dt.

After the transformation we are left to identify the matrices J̃, R̃ and w0. For nota-
tional convenience we define the space of admissible controls

V = {(J̃, R̃,w0) ∈ R
n×n ×R

n×n ×R
n : J̃� = −J̃, R̃ ≥ 0}.
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Note that the system of differential equations admits a unique solution by standard
ODE theory. This allows us to define the control to state map

S : V �→C([0,T ],Rn), S(v) = w.

Moreover, we use S to define the reduced cost functional

Ĵ(v) :=
1
2

∫ T

0
|B̃T S(v)(t)− ydata(t)|2dt.

In the following we aim to derive an gradient-based algorithm that allows us to solve
the calibration problem numerically. In particular, we require to compute the gradient
of Ĵ. Details are presented in the next section. From now on we only work with the
transformed system and drop the ∼ for notational convenience.

2 Sensitivity Approach

We emphasize that the system matrices J,R as well as the initial condition x̂ are finite
dimensional. It is therefore feasible to employ an sensitivity approach [7] for the cali-
bration problem.

To compute the sensitivities require admissible directions for the Gâteaux deriva-
tives. Due to the structural restrictions, J can only be varied in direction hJ satisfying
h�
J = −hJ and R can only be varied by symmetric matrices.
The directional derivative of Ĵ in direction h= (hJ ,hR,hx) is given by

dĴ(v)[h] = 〈Ĵ′(v),h〉 = 〈dwJ(w,v),S′(v)h〉+ 〈dvJ(w,v),h〉
To evaluate this, we require dw(v,h) = S′(v)h the so-called sensitivity. Here, we make
use of the state equation e(w,v) = 0. In fact, it holds

ew(w,v)dw(v,h)+ ev(w,v) = 0 ⇔ ew(w,v)dw(v,h) = −ev(w,v)h. (4)

We emphasize that in order to identify the gradient Ĵ′(v) we need to compute the direc-
tional derivative w.r.t. all basis element of the tangent space of V .

3 Gradient-Descent Algorithm

In the previous section we established the theoretical foundation of the gradient descent
algorithm we present in the following.

Starting from an initial guess of system matrices and initial condition v0 =
(J0,R0, x̂0) we compute the sensitivities dw(v,h) for all basis elements of the tangent
space of V by solving (4) and use the sensitivity information to evaluate the gradi-
ent Ĵ′(v0). Then we seek for an admissible stepsize σ using Armijo-rule [7], see the
pseudo code in Algorithm 2 and update the system matrices and the initial condition
v0 ← v0 −σ Ĵ′(v0). The calibration procedure is stopped when the cost functional value
is sufficiently small. A pseudo code of the calibration algorithm can be found in Algo-
rithm 3.

The presented algorithm can be used for numerical studies. In the following we
discuss a proof of concept with states x ∈C([0,T ],R2).
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Algorithm 2. Armijo step size search
Require: gradient g, initial step size σ and safety parameter γ
Ensure: admissible step size σ , new parameter set v′
v′ ← v+σg
while Ĵ(v′)− Ĵ(v′) > −γσ‖g‖2 do

σ ← 0.5σ
v′ ← v−σg

end while

Algorithm 3. Gradient-based calibration algorithm
Require: initial guess v0 and additional parameters
Ensure: calibrated system matrices and initial condition v= (J,R, x̂)
while Ĵ(v0) > εstop do

for all admissible directions h do
compute dw(v0,h) by solving (4)

end for
identify Ĵ′(v0)
find admissible step size σ by Armijo-rule, see Algorithm 2
v0 ← v0 −σ Ĵ′(v0)

end while

4 Proof of Concept

In the following we discuss a proof of concept with states x ∈C([0,T ],R2) and output
y ∈C([0,T ],R). In the two dimensional setting the basis elements of the tangent space
of V are manageable. Indeed, we have the basis elements

J1 =
(
0 −1
1 0

)
, R1 =

(
1 0
0 0

)
, R2 =

(
0 0
0 1

)
, R3 =

(
0 1
1 0

)
, x1 =

(
1
0

)
, x2 =

(
0
1

)
.

We assume that B=
(
1 1

)
is known and that input signals at the time steps tk are given

as u(tk) = 1+0.1N(0,1) where N(0,1) denotes a realization of a normally distributed
random variable with mean 0 and standard deviation 1.

For simplicity, we assume that the time steps tk,k = 1, . . . ,K coincide with the time
step of the Euler discretization that is implemented to solve the state ODE. Indeed, with
the initial guess we solve (2) using the Euler scheme. Then we obtain the output y by
(3), which we use to evaluate the cost functional for the initial guess. If the cost values
is higher than the tolerance εstop we start the calibration procedure.

For notational convenience we split the sensitivity dw(v,h) into the parts hJ ,hR
and hx. The sensitivity w.r.t. J is computed by solving ew(w,v)dw(v,hJ) = −ev(w,v)hJ
which can be written explicitly as

d
dt
dw(v,hJ)− (J−R)dw(v,hJ) = hJw, dw(v,hJ)(0) = 0.
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In the two dimensional case, there is only one admissible direction hJ = J1. For the
sensitivities w.r.t. R we solve

d
dt
dw(v,hR)− (J−R)dw(v,hR) = −hRw, dw(v,hR)(0) = 0

for hR = {R1,R2,R3}. For the initial condition we solve

d
dt
dw(v,hx)− (J−R)dw(v,hx) = 0, dw(v,hx)(0) = hx

for hx = {x1,x2}.
The directional derivative of the cost functional reads

dĴ(v)[h] = 〈B�S(v)− ydata,B
�S′(v)h〉 =

∫ T

0
B
(
B�S(v)(t)− ydata(t)

)
,(S′(v)h)(t)dt,

which we can evaluate with the help of the sensitivities computed above. Note that
dĴ(v)[h•] ∈ R for all h• discussed above. Hence, the gradient is assembled as follows

Ĵ′(v) =

[
dĴ(v)[J1]J1

3

∑
�=1

dĴ(v)[R�]R�

2

∑
�=1

dĴ(v)[x�]x�

]�

5 Numerical Results

For our proof of concept we generate synthetic data by solving the state system for fixed
data matrices Jdata,Rdata and initial condition x̂data. For the following results we choose

Jdata =
(

0 1
−1 0

)
, Rdata =

(
0.5 0
0 0.3

)
, x̂data =

(
1
2

)
. (5)

The data yields the reference output ydata shown in Fig. 1 (left).

Fig. 1. Left: output ydata corresponding to the data given in (5). Right: output y0 corresponding to
the initial guess (6).
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We start the proof of concept with the initial guess given by

J0 =
(

0 1.2
−1.2 0

)
, R0 =

(
0.4 0
0 0.4

)
, x̂0 =

(
1.1
1.95

)
(6)

leading to the output in Fig. 1 (right). We set T = 1 and use 1000 time steps for the
Euler discretization. The Armijo-search for an admissible step size is initialized with
σ = 10 and the σ ← σ/2 if the current step size is not admissible.

Algorithm 3 is able to reproduce the output ydata with εstop = 1e−4 in 22 gradient
steps. The evolution of the cost function is shown in Fig. 2 (left) and the difference
ydata − yopt is plotted in Fig. 2 (right). The calibrated matrices and initial data read

Jopt =
(

0 1.073
−1.073 0

)
, Ropt =

(
0.379 −0.080

−0.080 0.367

)
, x̂opt =

(
1.039
1.929

)
,

where we rounded to precision 1e−3. It jumps to the eye that Ropt has nonzero off-
diagonal entries. Out of curiosity we run the same toy problem with R restricted diago-
nal matrices. We obtain the calibrated matrices and initial data by

Jopt,2 =
(

0 1.016
−1.016 0

)
, Ropt,2 =

(
0.351 0
0 0.335

)
, x̂opt,2 =

(
1.023
1.973

)
, (7)

again rounded to precision 1e−3. The additional structural information in R yields over-
all to better calibrated results. Compare Fig. 3 for the cost evolution and the difference
of the outputs for the calibration with R restricted to diagonal matrices.

Fig. 2. Left: output ydata corresponding to the data given in (5). Right: difference of reference
output and output of the calibrated system.
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Fig. 3. Left: output ydata corresponding to the data given in (5). Right: difference of reference
output and output of the calibrated system with R diagonal.

6 Conclusion and Outlook

We present a gradient-based algorithm to identify a port-Hamiltonian system consisting
of ordinary differential equation to given input-output data. The gradient is computed
with the help of a sensitivity approach. A proof of concept shows the feasibility of the
approach.

As the effort of the sensitivity approach scales with the number of basis elements
of the tangent space, the proposed calibration algorithm is only recommended for small
systems. From an industrial standpoint the case of noisy data measurements is relevant.
The performance of the proposed algorithm in the noisy setting is subject to future
work.
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Abstract. This paper proposes a procedure for the modeling of linear passive
devices with distributed parameters as Hamiltonian systems with a finite number
of ports, in the view of their coupling with external systems with lumped parame-
ters (circuits). To obtain this particular Dirac structure, appropriate boundary con-
ditions (BC) are used for the PDEs of several physical fields. Originally, they are
Electric Circuit Element BC, here generalized for multidisciplinary fields such
as elastic solids, acoustic and thermal devices Their internal field is discretized
by the Finite Element Method, thus obtaining the stiffness, damping and mass
matrices of a second order ODEs system, transformed then into a first order
pH canonical form, having as interaction variables the flow and effort of each
terminal.

1 Introduction

The general class of abstract systems we consider are linear, port-Hamiltonian (pH),
dissipative with distributed parameters and a finite number of ports. We will call them
pH systems for short. Any device in this category occupies a 3D domain Ω ⊂R

3, simple
connected and smooth enough. On its boundary there are a set of disjoint surfaces Sk
, k = 1 : n+ 1, called terminals (Fig. 1). The internal field is described by local, time
dependent quantities ϕ(M, t) : Ω × (0,T ) → R

p which satisfy the evolution equations:

E (ϕ) = 0. (1)

Mathematically, they are PDE with Electric Circuit Element (ECE) boundary condi-
tions, which will be defined below. This general class of systems is defined by the
following three conditions [12]:

1. Linearity: ∀ λ1,λ2 ∈ R, ∀ ϕa, ϕb

E (λ1ϕa+λ2ϕb) = λ1E (ϕa)+λ2E (ϕb). (2)

2. Energy balance:

I(t) = P(t)+
dW (t)
dt

, (3)

a differential consequence of the evolution Eqs. (1), including three quantities: the
energy, called also Hamiltonian (and denoted by H(t) in mathematical contexts),

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. van Beurden et al. (Eds.): SCEE 2022, MI 43, pp. 175–183, 2024.
https://doi.org/10.1007/978-3-031-54517-7_20
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a positive definite functional W (t) = W (ϕ(M, t))|M∈Ω ≥ 0; the dissipated power,
a semi-definite functional P(t) = P(ϕ(M, t))|M∈Ωd

≥ 0, Ωd ⊂ Ω ; the interaction
power I(t) = I (i(M, t))|M∈∂Ω .

3. Condition of finite interaction:

I(t) =
n

∑
k=1

ukyk. (4)

The interaction power is a sum of n terms, one for each floating terminal, excepting
for the last one (called reference). Each term is a product of two signals: the input
uk, and the output yk.

Fig. 1. A pH distributed system. Fig. 2. BG of the EM device with ECE BC.

The first condition, expressed as (2), is an assumption. As we will see later, the
second condition (3) is a consequence of the evolution equation (pH structure) given
by (1). The third condition (4) is a consequence of the evolution equation (1), and the
boundary conditions. For a particular physics, conditions (3) and (4) are thus theorems,
but here, together with (2), they define the class of system we consider in this paper -
the port-Hamiltonian (pH) linear dissipative/irreversible systems.

2 Devices with ECE BC

The first example of system in the class defined above is the Electromagnetic (EM)
device [8,11], described by the Maxwell Equations, linear constitutive relations and
ECE boundary conditions (BC):

(ece1) n · ∂B(r, t)
∂ t

= 0, ∀r ∈ ∂Ω ;

(ece2) n · (∇×H(r, t)) = 0 ∀r ∈ ∂Ω −∪n+1
k=1Sk;

(ece3) n×E(r, t) = 0 ∀r ∈ Sk, k = 1, . . . ,n+1. (5)

According to these conditions, there is neither magnetic coupling through the boundary
of the element ∂Ω , nor electrical coupling through boundary excepting for the terminals
Sk, which are equipotential. These BC allow the coupling of the device to an external
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electric circuit. Exterior calculus (differential forms) is the natural mathematical frame-
work to describe these equations. The local field variables are ϕ = [E;D;H;B;J] (inten-
sity and displacement of electric and magnetic fields, current density) out of which
the state variables, which define the energy are s = [B;D]. The resulting energy bal-
ance −∮

∂Ω (Et ×Ht) ·ndS =
∫

Ωd
J ·Edx+ d

dt

∫
Ω wdx, where w = D2/(2ε)+B2/(2μ)

gives the expressions of energyW , dissipated power P and interaction power I, which
is expressed in a finite manner as I = ∑n

k=1 vkik, where vk/ik are the voltage/(total)
current of the terminal k, properly defined as integrals of E/H on open/closed curves
which belong to the boundary surface ∂Ω : ik(t) =

∮
∂Sk H ·dl, Ck is an arbitrary curve,

which links the terminal k to the reference n+ 1, as in Fig. 1. The equations and BC
have important consequences, if the material constants are positive ε,μ ,σ > 0, both
Kirchhoff current and voltage relations can be proven, as well as the passivity, reci-
procity and linearity of the device. Thus, the impedance, admittance and in general,
the hybrid matrix are properly defined, after the Laplace transform: v(s) = Z(s)i(s),
Y(s) = Z(s)−1 = YT , which are transcendental functions w.r.t. the complex variable s,
having usually an infinite number of poles and zeros.

Being a pH system [13], the EM device with ECE BC has a Bond Graph (BG)
[1] representation (Fig. 2), with n ports, each terminal characterized by its current and
voltage, as flow and effort, which are conjugate variables since their product is the
power transferred by the terminal. The storage port is infinite dimensional, with the
flow fS = [Ḃ, Ḋ] and effort eS = [E,H]. The dissipation port has the conjugate variables
fR = E and eR = J. Similar relations hold in other physical disciplines [7]:

Mechanical devices described by Cauchy-Newton relations with field variables
ϕ = {σ ,ε, j,v} stress, strain, momentum density and local velocity, with ECE BC:

(ece1) Sk,k = 1, . . . ,n+1 are rigid (all their points have

the same velocities linear vk/angular ωk =
1
2
curlv);

(ece2) n ·σ = 0, ∀r ∈ ∂Ω −∪n+1
k=1Sk, (6)

with interaction variables Fk(t) =
∫
Sk
n ·σ dA, Tk(t) =

∫
Sk
(r×n) ·σ dA force and torque

acting on the terminal k and vk, ωk - translation and rotation velocity, each terminal
having as any rigid body up to six degrees of freedom.

Acoustic devices described by the linear equations of sound waves having field vari-
ables ϕ = [j; p; pv;S;v] pressure, compression, viscosity pressure, momentum density
and velocity, with ECE BC:

(ece1) Sk,k = 1, . . . ,n+1are rigid (all points have the same velocityvk);
(ece2) p= 0 (“sound soft boundary”) ∀r ∈ ∂Ω −∪n

k=1Sk. (7)

The interaction signals are vk(t) = vk · n the normal velocity [m/s] and pk(t) =
1
Ak

∫
Sk
pdA the average pressure [N/m2], where Ak is the terminal aria.

Thermal systems described by the Fourier eqs. of heat transfer with ECE BC:

(ece1) Sk,k = 1, . . . ,n are isothermal (all points have the same temp.)Tk;

(ece2) n ·q= 0 (adiabatic insulation, no heat transfer)∀r ∈ ∂Ω −∪n
k=1Sk. (8)
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The local field variables are ϕ = [u;q;F;T ] density of the internal energy, tempera-
ture, density of the heat flux and temperature gradient, and the interaction variables are
Tk - the temperature of the terminal k, and is its heat flux jk.

All these devices can be represented as pH systems and BG. Table 1 holds the
expressions ofW , P, I for several physical domains. Note that the I/O signal of thermal
devices are non-conjugate, and thus they are represented as pseudo-BG.

Table 1.W , P and I, for several devices. The formulas include the following material constants:
ε-permittivity; μ-permeability; S - stiffness tensor; ρ - mass density; k - elasticity factor; γ -
thermal capacity; τ - relaxation time; λ - thermal conductivity.

Device W P I

EM
∫

Ω
(
D2/(2ε)+B2/(2μ)

)
dx

∫
Ωd

J ·Edx ∑n
k=1 vkik

Mechanical
∫

Ω

(

S : ε : ε/2+ j ·v/2
)

dx
∫

Ω

(
μ ∂ε

∂ t

)
: ∂ε

∂ t dx ∑n
k=1 (Fk ·vk +Tk ·ωk)

Acoustic
∫

Ω
(
ρv2/2+ kp2/2

)
dx

∫
Ω

(
τv ·grad ∂ p

∂ t

)
dx ∑n

k=1 (pkAk)vk

Thermal
∫

Ω
(
γT 2/2

)
dx

∫
Ω

(
q2/λ

)
dx ∑n

k=1 Tk jk

3 Interconnection of the pH Systems

An essential characteristic of pH systems is their ability to be interconnected. For this,
it is enough to put their terminals in contact. For example, for two EM devices with
the same number of terminals which are in contact, in each contact, the voltage will
be the same and the currents will have zero sum. For several EM devices intercon-
nected in an arbitrary manner, the terminals can be seen as nodes, and the obtained
network satisfies Kirchhoff’s relations, regardless how the components are: distributed
or lumped. Each port has two interaction variables: input (excitation or controlled) u and
output (response or observed) y, each of them can be a flow “through”: f (e.g. currents
i) or an effort “across”: e (e.g. voltages v). Some authors prefer the inverse assign-
ment of i/v to f/e. Therefore, to avoid confusions, this assignment should be speci-
fied explicitly. The transferred power is I(t) = uTy = vT i in the case of EM devices
and I(t) = uTy = eT f in general. Due to the linearity, after the Laplace transform,
y(s) = H(s)u(s), v(s) = Z(s)i(s), i(s) = Y(s)u(s), and in general, I(t) = uTy = eT f,
y(s) =H(s)u(s), e(s) = Z(s)f(s), f(s) =Y(s)e(s). There are 2n possibilities for assign-
ments of the input/output signals to flows/efforts, and so as many ways to define the
hybrid matrix.

It is important to note that the system obtained by interconnection of pH sys-
tems is also a pH system, since the interconnection is power conservative. We call
the interconnection of lumped elements a Dirac structure. With Kirchhoff constrains,
a circuit with b branches satisfies the Tellegen’s theorem for pseudo-powers (in par-
ticular the power balance), regardless the type of elements, lumped or distributed:

∑b
k=1 i

′
ku

′′
k = (u′′)T i′ KVL= (ATv)T i′ = vT (Ai′) KCL= 0, and thus the Dirac structure - an

essential ingredient of pH systems is mathematically defined as

D ⊂ E ×F ,(e′, f′′) ∈ D iff (e′, f′′) = 0. (9)
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Here E , F are the spaces of efforts and flows, respectively, both of dimension n, since
they are conjugateF =E ∗. The Dirac structure [13] is a linear subspace of same dimen-
sion n. In the case of distributed systems of infinite dimension, a Stokes-Dirac structure
defined by the inner product < e′, f′′ >= 0 (an integral over Ω or ∂Ω of the products of
two fields, e.g. E ·J or E×H) is used instead of Dirac structure, defined by the dot prod-
uct (e′, f′′)= 0, which is used in lumped systems or in distributed systems with ECE BC.
The Dirac structures refers to finite number of variables, they describe interconnections,
or junctions in BG terminology (i.e., wires in electric circuits, paths in PCB, or metallic
traces in IC). A Dirac structure connects typically three kind of components: energy
storage C (where the flow-effort relation is fS = JeS with J a skew-symmetric matrix),
dissipative R (were eR = RfR with a symmetric and positive semi-definite matrix of
resistances R ≥ 0) and the interactive port (of sources) P with total transferred power
uTy= eTp fp. The fundamental energy balance is a consequence of the Dirac relations:

− eTS fS = (∇H x)T
dx
dt

=
dH
dt

, eTS fS+uTy+ eTR fR = 0, (10)

where H - the Hamiltonian is the same asW - the energy.1 In (10) all three ports have
the same orientation, not as in Fig. 2, where I is opposite. Thus, the canonical form of
the state equations of the pH systems are:

• Structural equation: −fs = (J−R)es+Gu, y=GT es;
• Dynamic equation (flow fs): dx

dt = −fs;
• Constitutive equations (effort es): es = ∇Hx,

where x is the state vector, H is the Hamiltonian (stored energy), J = −JT is the
structure matrix, which describes the interconnections of the storing components,
R = RT ≥ 0 is the dissipation matrix and G is the port matrix. This state equation
is a system of ODEs. The DAE form of the Dirac/structure equations is discussed in
[10].

Let’s consider an open circuit (or a Kirchhoffian network) excited by external volt-
age and current sources. The elements are linear, one-port or multi-port, lumped (ideal)
or distributed, controlled in voltages. Let’s split the nodes in: “a”- excited in known
currents/flows f = ia, “b”= excited in known voltages/efforts e = vb and “c”-internal
nodes. In the case of one-port elements with admittance Yk, the nodal admittance is
Yxy = Ax diag(Y1,Y2, ...,Yb)AT

y (where Ax is the incidence matrix between nodes “x”
and branches), the nodal technique gives the equation:

⎡

⎣
Yaa Yab Yac

Yba Ybb Ybc

Yca Ycb Ycc

⎤

⎦

⎡

⎣
va
vb
vc

⎤

⎦ =

⎡

⎣
ia
ib
0

⎤

⎦ ⇒ vc = −Y−1
cc (Ycava+Ycbvb)

It follows that:

va = (Yaa −YacY−1
cc Yca)−1

︸ ︷︷ ︸
Haa

ia−Haa(Yab −YacY−1
cc Ycb)︸ ︷︷ ︸

Hab

vb. (11)

1 We use two notations for the same quantity so as to emphasize both interpretations: the physi-
cal and the mathematical one.
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ib = (Yba −YbcY
−1
cc Yca)Haa︸ ︷︷ ︸

Hba

ia+[(Yba −YbcY
−1
cc Yca)Hab+(Ybb −YbcY

−1
cc Ycb)]︸ ︷︷ ︸

Hbb

vb,

Based on these relations, an algorithm to interconnect several lumped or distributed pH
models in an arbitrary network can be build. The circuit is reciprocal if Hab = −HT

ba
and it is passive with H real positive if Yk are real positive. Equation (11) describes an
arbitrary interconnection of circuit components. We can say that the linearity, passivity
and reciprocity are preserved by interconnection. The global circuit has the BG repre-
sentation in Fig. 3, if it is reciprocal and in Fig. 4, if not (e.g. with operational amplifiers
or controlled sources).

Fig. 3. BG of a reciprocal passive circuit.

Fig. 4. BG of a non-reciprocal circuit (e.g. with op. amps).

In the particular cases of finite and infinite series or parallel connections, the
impedances Z or admittances Y are added in sums and series [9].
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4 Discrete Models of Distributed PH-ECE Systems

From Maxwell equations with ECE BC results in the frequency domain the 2nd order
PDE for both electric and magnetic fields. Their strong form is a equation of complex
curl-curl Helmholtz type [2]. Their weak forms are obtained by projection over a curl-
conform space H (curl) of the test functions. Since Hamiltonian plays an important
role in the numerical variational methods, there is a close relation between weak form
and the energy balance (Table 1). After solving this system, the vector of state variables
q= [U j,V i,Vk] (voltages of internal edges, node voltages on nonterminal boundary and
terminal voltages) is obtained, which are the state variables of 2nd order ODE of FEM
in time domain:

Kq+D
dq
dt

+M
d2q
dt2

= B′u+B′′ du
dt

, y= C′q+C′′ dq
dt

+D′u, (12)

with K the stiffness matrix, D the dissipation matrix; and M the mass matrix. all sym-
metric, positive definite and sparse matrices, and u, y the vectors of input and output
signals, currents or voltages, depending how terminals are excited. Similar equations are
obtained after using other numeric methods, such as FIT (Finite Integrals Technique)
or DEC (Discrete External Calculus), from which q can be extracted. By changing the
variables, so as to use as states r= [q;p], where q is the “position” vector (states of 2nd
order ODE), and p=Mq is the momentum vector, the 1st order, canonical form of the
pH equations is obtained:

{
dr
dt = (J−R)Qr+Bu
y = BTQr

{
ṙ = Ar+Bu
y = Cr

J=
[

0 I
−I 0

]

R=
[
0 0
0 D

]

Q= ∇H =
[
K 0
0 M−1

]

A= (J−R)Q C= BTQ (13)

with J a skew-symmetric (symplectic) matrix, R a symmetric positive semi-definite
matrix, which describes the dissipation, and Q, the gradient of the Hamiltonian, which
describes the structure of energy storage. The port matrix B describes the interaction
structure. After mass lumping, the inversion of M is not difficult.

Fig. 5. BG for each element (left); BG for the global device (right).

Consequently, each finite element is a pH sub-system, and after their assembling, the
global numerical model is also a pH systems (Fig. 5). The energy is balanced locally as
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well as globally, the mesh acting as a Dirac structure. The first order canonical form of
equations can be obtained using an alternative way, called PFEM, as in [6], starting from
the weak form of the Maxwell equation of 1st order and eventually obtained a canonical
form of DAE type: Edx/dt = (J−R)Qx+Bu, with x= [E;D;B;H;J]. The advantage
of 2nd order form is given by the Lax-Milgram theorem which guarantees the well
formulation of both continuous and discrete problems, whereas PFEM preserves the
conservative properties (divergence of flux densities B,D, and the energy conservation).
However in DAE form of PFEM there is a waste of computing resources, since all 3D
vectors E, D, B, H and J are stored.

The proposed method for field-circuits coupling is illustrated by simulation in a
free software environment ONELAB (onelab.info) of a two-port patch GPS antenna
(modeled FW with ECE BC+ABC) connected to a Bridge Line Connector (BLC), pro-
cedure described in [7]. The antenna’s admittance was computed by FEM for several
frequencies (only 25 samples were enough to obtain an error less than 1% in Adap-
tive Frequency Sampling). This frequency characteristic was approximated with VFIT
(Vector Fitting), as a rational function of a reduced order n= 9, with an error less than
1e-4. Then an equivalent Spice circuit with this admittance was synthesized. The BLC
modeled with transmission lines was coupled to this circuit and it was simulated in
LTSpice.

5 Conclusions

The representation of distributed models by lumped parameter BG/pH has a practical
relevance since in most technical devices the field effects are spatially distributed, but
their interaction with the environment is often described only by a finite number of
scalar quantities. In the literature, the multiphysics distributed devices are studied as
infinite pH systems using a Stokes-Dirac structure. Our approach uses ECE BC for
the field equations, thus generating pH systems with a finite number of ports, which
are simpler finite Dirac structures instead of infinite Stokes-Dirac ones. The approach
we propose is extremely efficient because the model order reduction is applied to the
individual components, before their interconnection. Moreover, it can be applied for
several physical fields such as: electro-magnetic, elasto-dynamic, thermal, acoustic. For
all these domains, the PDE state equations are similar, both in strong and weak forms,
and an energy balance. The FEM discretizations for all these domains are also similar in
what refers to second order ODE and first order DAE. The future research will focus on
the implementation in ONELAB of the PFEM [6], its solving by an “operator splitting
method” [3,5] and MOR as in [4].

The contributions of this paper are related to the numerical modeling and simulation
of multiphysics distributed devices with a finite number of ports and their treatment
as BG, pH systems with appropriate Dirac structures, suitable to be incorporated in
complex networks.
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Abstract. We present a method that connects a well-established nonlinear (bilin-
ear) identification method from data in the time domain with the advantages of
neural networks (NNs). The main challenge for fitting bilinear systems is the
accurate recovery of the corresponding Markov parameters from the input and
output measurements. Afterward, a realization algorithm similar to that proposed
by Isidori can be employed. The novel step is that NNs are used here as a surro-
gate data simulator to construct input-output (i/o) data sequences from a single
experiment. Then, classical realization theory is used to build an interpretable
bilinear model that can further optimize engineering processes through robust
simulations and control design.

1 Introduction

Evolutionary phenomena can be formally described as continuous dynamical models
with partial differential equations (PDE)s. The continuous nature of these physical mod-
els is equipped with analytical results for an efficient discrete approximation in space
and in time. In particular, methods such as finite elements or finite differences bridge
the continuous analytical laws of the physical world with computational science [1]. On
the other hand, data science allows model discovery when the identification feature is
considered [2]. Quantification of these equivalences, in combination with the stochastic
nature that governs real-world applications, aims to explain the digital twin [3]. Spatial
discretization of PDEs, in many cases, results in a continuous in-time system of ordi-
nary differential equations (ODE)s that is described by the operators (F, G) and can
be approximated with Carleman linearization (e.g., bilinear system form) [4] where we
present the single-input single-output (SISO) case with the continuous operators to be
denoted with the subscript ”c.”

ΣΣΣ :

{
ẋ(t) = F(x(t))+G(x(t))u(t)

y(t) =Hx(t), x0 = 0, t ≥ 0.
Carleman−−−−−→
ΣΣΣ≈ΣΣΣ bil

ΣΣΣbil :

{
ẋ(t) = Acx(t)+Ncx(t)u(t)+Bcu(t)

y(t) = Ccx(t), x0 = 0, t ≥ 0.
(1)

If the original system has dimension n, since Carleman linearization [4] preserves
up to the quadratic term x(t)⊗ x(t)1, the dimension of the resulting bilinear system
(Ac, Nc, Bc, Cc) increases to N = n2+n.

1 ⊗: Kronecker product.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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Data-driven methods can be classified into two general classes. The first provides
prediction through regression techniques such as neural networks (NN)s from machine
learning (ML). At the same time, the second has its roots in system theory and allows
model discovery [2,5]. Generally, NNs are sensitive to parameter tuning and lack model
interpretability due to the inherent “black-box” structure [6], while the latter construct
interpretable models and can explain the hidden dynamics. ML models learn the fea-
tures by composing non-linear activation functions and utilizing mainly the backprop-
agation algorithm to adjust the network weights during training. Therefore, by using
data points for training, the prediction would be expressed as a function of these data
points (finite memory). Until recently, the ML and system identification (SI) techniques
were developed independently. But in recent years, great effort has been invested into
establishing a common ground [7].

The authors in [8] have extended the subspace realization theory from linear to
bilinear systems. For example, in applications that concern chemical processes, the
controls are flow rates, and, from the first principles, e.g., mass and heat balances, these
will appear in the system equations as products with the state variables. Therefore, the
bilinear equation has the physical formMẋ= ∑i qixi −∑m qmxm, q(inputs), x(state). The
authors of [9] could construct bilinear systems with white noise input based on an iter-
ative deterministic-stochastic subspace approach. The author in [10] uses the properties
of the linear model of the bilinear system when subjected to a constant input. Constant
inputs can transform the bilinear model to an equivalent linear model [11].

In Sect. (2), we introduce the theory of bilinear realization by explaining in detail the
data acquisition procedure to compute the bilinear Markov parameters that will enter
the bilinear Hankel matrix. Further, we present a concise algorithm that can achieve
bilinear identification, detailed by two examples. In Sect. (3), we train a neural network
with a single i/o data sequence to mimic the unknown simulator and combine it with
the bilinear realization theory. As a result, we could construct a bilinear model from a
single i/o data with slightly better fit performance compared with another state-of-the-
art bilinear SI approach. Finally, we provide the conclusion and the outlook in Sect. (4).

2 The Bilinear Realization Framework

In the case of linear systems, Ho and Kalman [12] have provided the mathematical foun-
dations for realizing linear systems from i/o data. In the nonlinear case and towards the
exact scope of identifying nonlinear systems, Isidori in [13] has extended these results
for the bilinear case, and Al Baiyat in [14] has provided an SVD-based algorithm.

Time discretization as in [15] of the single-input single-output (SISO) bilinear sys-
tem Eq. (1) with sampling time Δ t, results in fully discrete models defined at time
instances given by 0 < Δ t < 2Δ t < · · · < kΔ t, with xc(kΔ t) = xk and u(kΔ t) = uk
for k = 0, . . . ,m−1

ΣΣΣdisc :

{
xk+1 = Axk+Nxkuk+Buk,

yk = Cxk, x0 = 0.
(2)

The discrete-time system in Eq. (2) has state dimension N, so, x ∈ R
N and the oper-

ators have dimensions A,N ∈ R
N×N , B,CT ∈ R

N . We have assumed homogeneous
initial conditions and a zero feed-forward term (e.g., D= 0 term). As far as the authors
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are aware, the forward Euler scheme is the only numerical scheme that preserves the
bilinear structure in a discrete set-up with the cost of conditional stability. Moreover,
a more sophisticated scheme can exactly interpolate the continuous model at the sam-
pling points in [16] but is restricted to only a subclass of bilinear systems. Therefore, a
good choice in terms of stability is the backward Euler scheme from [15], which pre-
serves the bilinear structure asymptotically, and the transformation in Eq. (3) that leads
to the discrete system is

φ : A= (I−Δ tAc)−1, N= Δ t(I−Δ tAc)−1Nc, B= Δ t(I−Δ tAc)−1Bc, C= Cc,

ΣΣΣ c
b : (Ac,Nc,Bc,Cc)

φ−1

↔ ΣΣΣd
b : (A,N,B,C)

(3)

Definition 1. The reachability matrix Rn =
[
R1 · · · Rn

]
is defined recursively from

the following relation: R j =
[
AR j−1 NR j−1

]
, j = 2, . . .n, R1 = B.

Then, the state space of the bilinear system is spanned by the states reachable from the
origin if and only if rank(Rn) = n.

Definition 2. The observability matrix On =
[
O1 · · · On

]T
is defined recursively from

the following relation: OT
j =

[
O j−1A O j−1N

]T
, j = 2, . . .n, O1 = C.

Then the state space of the bilinear system is observable iff rank(On)= n. The following
Def. (3) will allow a concise representation of the i/o relation.

Definition 3. u j(h) =
[

u j−1(h)
u j−1(h)u(h+ j−1)

]
, j = 2, . . . , u1(h) = u(h).

Let {w1,w2, . . . ,w j, . . .} be an infinite sequence of row vectors, in which w j ∈ R
1×2 j−1

and is defined recursively as follows w j = CR j, j = 1,2, . . .;
The state response of system Eq. (2) from the state x0 = 0 at time k = 0, under a

given input function, can be expressed as:

x1 = Bu0 � R1u1(0),

x2 = AR1u1(0)+NR1u1(0)u(1)+Bu(1) � R2u2(0)+R1u1(1),

...

xk =
k

∑
j=1

R ju j(k− j), k = 1,2, . . . ;

(4)

Finally, the zero-state input-output map of system Eq. (2) after multiplication with the
vector C from the left can be written as:

yk =
k

∑
j=1

w ju j(k− j), k = 1,2, . . . ; (5)
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2.1 The Bilinear Markov Parameters

The bilinear Markov (invariant) parameters are encoded in the {w j} vectors for j ∈Z+.
These are invariant quantities of the bilinear system in connection with the input-output
relation. After making use of Def. (3), we can write⎡

⎢⎢⎢⎣
y1
y2
...
yk

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
Y

=

⎡
⎢⎢⎢⎣

uT1 (0) 0 · · · 0
uT1 (1) uT2 (0) · · · 0

...
...

. . .
...

uT1 (k−1) uT2 (k−2) · · · uTk (0)

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
U

·

⎡
⎢⎢⎢⎣
wT
1

wT
2
...

wT
k

⎤
⎥⎥⎥⎦

︸ ︷︷ ︸
W

, (6)

where the dimensions are: Y ∈ R
k×1, U ∈ R

k×m, and W ∈ R
m×1.

The least squares problem filled out with k time steps will remain under-determined
∀k ∈ {2,3, . . .} as long as the m = 2k − 1 bilinear Markov parameters are activated.
Thus, we must deal with the k equations and the 2k − 1 unknowns. Solving an under-
determined system is not impossible, but the solutions are infinite, and regularization
schemes cannot easily lead to identification. Therefore, one way to uniquely identify
bilinear Markov parameters and determine the solution vector W can be achieved by
solving a coupled least squares system after applying several simulations to the original
system.

To uniquely determine the (2k − 1) parameters, the column rank of the matrix U
should be complete. This can be accomplished by adding rows with more experiments
to the matrix U until the new augmented matrix Û has more rows than columns. Thus,
we need at least 2k−1 independent simulations of the original system. That is exactly
the bottleneck expected for nonlinear identification frameworks that deal with time-
domain data. Later, we will relax this condition in a novel way using NNs. Equation (7)
describes the coupled linear least squares systemwith d= 2k−1 independent simulations
that can provide the unique solution W with bilinear Markov parameters.[

Y1 · · · Yd
]T︸ ︷︷ ︸

Ŷ

=
[
U1 · · ·Ud

]T︸ ︷︷ ︸
Û

·W (7)

Hence, we repeat the simulation d times, and each time we get k equations, with

the ith simulation to be Yi =
[
y(i)1 y(i)2 · · · y(i)k

]T
and accordingly for the Ui, the real

matrix Û has dimension 2k × (2k − 1). After concatenating all the lower triangular
matrices with full column rank, the matrix Û results. To enforce that Û will also
have full column rank, one choice is to use a white input (sampled from a Gaus-
sian distribution) for the simulations. The use of a white input is widespread for
SI. Still, in that case, a careful choice of deterministic inputs can make the inver-
sion exact and recover the bilinear Markov parameters. The solution is as follows:

rank(Û) = 2k −1, so, the unique solution is: W = Û
−1
Ŷ ∈ R

2k−1. The vector W con-
tains the 2k −1 bilinear Markov parameters. A generalized Hankel matrix can be com-
puted from the bilinear Markov parameters.

2.2 The Bilinear Hankel Matrix

The bilinear Hankel matrix is the product of the observability and reachability matrices.
The bilinear Hankel matrix is denoted with Hb and is defined as the product of the
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following two infinite matrices O, R,

Hb = OR =

⎡
⎢⎢⎢⎣

C
CA
CN
...

⎤
⎥⎥⎥⎦

[
B AB NB · · · ] =

⎡
⎢⎢⎢⎣

CB CAB CNB · · ·
CAB CA2B CANB · · ·
CNB CNAB CN2B · · ·
...

...
...

. . .

⎤
⎥⎥⎥⎦ (8)

Equation (8) reveals the connection with the bilinear Markov parametersW =CR that
appear in the first row ofHb. In general, the construction of the bilinear Hankel matrix
is described in [13] with the partial and completed realization theorems along with the
partitions2 S A, S N [14].

2.3 Bilinear Realization Algorithm

Input: Input-output time-domain data from a system u → ΣΣΣ? → y.
Output: A minimal bilinear system (Ar,Nr,Br,Cr) of low dimension r that ΣΣΣ r ≈ ΣΣΣ .

1. Excite the system ΣΣΣ k times with um ∼ N(μ ,σ) and collect ym, where k = 2m−1.

1st simulation [u1(1) · · ·u1(m)] → ΣΣΣ → [y1(1) · · ·y1(m)] = Y1, and U1 as in Definition 3
...

...

kth simulation [uk(1) · · ·uk(m)] → ΣΣΣ → [yk(1) · · ·yk(m)] = Yk, and Uk as in Definition 3.

2. Identify the (2m −1) bilinear Markov parameters by solving the system in (7).
3. Construct the bilinear Hankel matrix Hb and the sub-matrices S A, S N.
4. Compute [U,ΣΣΣ ,V] = SVD(Hb) and truncate w.r.t the singular values decay (r 
 n)

- the reduced/identified bilinear model (Ar,Nr,Br,Cr) is constructed

Ar = ΣΣΣ−1/2UTS AVΣΣΣ−1/2 (9)

Nr = ΣΣΣ−1/2UTS NVΣΣΣ−1/2 (10)

Br = ΣΣΣ1/2VT → 1st column (11)

Cr = UΣΣΣ1/2 → 1st row (12)

Example 1. (A toy system) Let the following bilinear system of order 2 be

A=
[
0.9 0.0
0.0 0.8

]
, N=

[
0.1 0.2
0.3 0.4

]
, B=

[
1.0
0.0

]
, C=

[
1.0
1.0

]T
. (13)

Applying the algorithm in Sect. (2.3), by choosing m= 4, we can recover 2m −1= 15
bilinear Markov parameters. The solution of the system in Eq. (7) is:

W=
[
1.0 0.9 0.4 0.81 0.33 0.36 0.22 0.729 0.273 0.297 0.183 0.324 0.18 0.198 0.118

]
2 S A = {set of Hbcolumns : from 2m to (3 ·2m−1 −1), m= 1,2, . . .},
S N = {set ofHbcolumns : from 3 ·2m−1 to (2m+1 −1), m= 1,2, . . .}.
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By reshuffling the vector W , we can form the Hb matrix and the shifted versions
S A, S N as described above. The Hankel matrix (3 rows & 7 columns are displayed)
along with the shifted versions are

{
Hb, S

A, S N
}
:={[

1.0 0.9 0.4 0.81 0.33 0.36 0.22
0.9 0.81 0.33 0.729 0.273 0.297 0.183
0.4 0.36 0.22 0.324 0.18 0.198 0.118

]
,

[
0.9 0.81 0.33
0.81 0.729 0.273
0.36 0.324 0.18

]
,

[
0.4 0.36 0.22
0.33 0.297 0.183
0.22 0.198 0.118

]}
.

In Fig. (1), the 3rd normalized singular value has reached machine precision σ3/σ1 =
5.2501e− 17, that is the criterion for choosing the order of the fitted system (which
is minimal, in this case) of the underlying bilinear system. Therefore, we construct a
bilinear model of order r = 2, and the realization obtained is equivalent to the original
(minimal) one, up to a coordinate (similarity) transformation. Other ways of construct-
ing reduced models from Hankel⊂Loewner matrices can be obtained with the CUR
(cross approximations based) decomposition scheme as in [17] (Fig. 1).

Ar =
[

0.89394 0.11305
0.0050328 0.80606

]
, Nr =

[
0.41116 −0.2281

−0.24782 0.088841

]
, Br =

[ −1.0001
−0.053577

]
, Cr =

[ −1.0001
0.0040101

]T
. (14)
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Fig. 1.On the left figure, the singular value decay of the bilinear Hankel matrix is depicted. On the
right figure, the input response uk = 1/(k+1), k= 0,1, . . . certifies that all models are equivalent.

Example 2. (The viscous Burgers’ equation example) Following [15] after spatial semi-
discretization and the Carleman linearization technique, yields a bilinear system of
dimension N = 302+30= 930. The viscosity parameter is ν = 0.1; the sampling time
is Δ t = 0.1 and with 2m−1 = 512 independent random inputs of length m = 10 each,
we construct a database of 5,120 points. Solving Eq. (7), we get the bilinear Markov
parameters, and the bilinear Hankel matrix is constructed. On the left pane of Fig. (2),
the decay of bilinear Hankel singular values captures the nonlinear nature of the Burg-
ers’ equation, while, on the other hand, the linear Hankel framework captures only the
linear minimal response. It is evident in the right pane of Fig. (2) that after using the
inverse transformation φ from (3), the reduced continuous-time bilinear model of order
r = 18 performs well, producing an error O(10−5) where at the same time the linear fit
is off (Fig. 2).
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Fig. 2. Left pane: The recommended reduced bilinear model with Δ t = 0.1 is of order
r = 18 where σ19/σ1 = 1.18 · 10−12. Right pane: u1 = (1+ cos(2πt))e−t , t ∈ [0,2.5],u2 =
2sawtooth(8πt), t ∈ [2.5,3.75],u3 = 0, it is compared with a continuous bilinear identification
method based on the Loewner framework in both frequency and time domain approaches [5,18].

3 From a Single Data Sequence to Bilinear Realization

A repetitive data assimilation simulation in the time domain is required to achieve bilin-
ear realization as in [13]. In many cases, the data from a simulated system are available
as a single i/o sequence [9]. Using the NARX-net-based model, in the case of a single
experiment, the expensive, repetitive simulations can be avoided in a real engineering
environment. These models learn from a unique data sequence and can predict the out-
put behavior under different excitations. That is precisely where the NARX-net model
architecture will play the role of a surrogate simulator. Then, by constructing an NN-
based model [19] and combining the realization theory in [13], a state-space bilinear
model can be constructed as in (2). Using a state-space model, which relies on the
classical nonlinear realization theory with many known results (especially on bilinear
systems and in the study direction of stability, approximation, and control), is beneficial
compared to the NARX.

Example 3. (Heat exchanger) The process is a liquid-saturated steam heat exchanger,
where water is heated by pressurized saturated steam through a copper tube. The input
variable is the liquid flow rate, and the output variable is the outlet liquid temperature.
The sampling time is 1(s), and the number of samples is 4,000. More details can be
found in [20], and the data set can be downloaded from the database to identify systems
(DaISy): https://homes.esat.kuleuven.be/∼tokka/daisydata.html.
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Fig. 3. Comparison and model fit of the proposed NARX-net bilinear model (15) with the sub-
space method from [9] for the same reduced order (r = 3).

https://homes.esat.kuleuven.be/~tokka/daisydata.html
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ(t) =

⎡
⎣ 0.9164 0.09167 −0.1847

−0.2663 −0.1515 0.1232
−0.07227 0.4778 0.3571

⎤
⎦x(t)+

⎡
⎣ 0.02717 0.5169 0.5555

−0.09674 0.5467 0.5696
0.1878 −0.06846 −1.981

⎤
⎦x(t)u(t)+

+

⎡
⎣ 2.9063

2.909
−0.16088

⎤
⎦u(t)+

⎡
⎣ −1.073

−1.074
0.05938

⎤
⎦ ,

y(t) =
[−0.7852 0.7794 −0.05203

]
x(t)+96.9358, x(0) = 0, t ≥ 0.

(15)

Figure 3 illustrates the superiority of the proposed method in terms of accuracy. From
the single i/o data sequence, a neural network NN with 3-layers and 20-lags was trained
using the same training data3 as in [9] (1000 points). The trained NN was used in the
bilinear realization algorithm to generate more data, and a stable reduced bilinear model
of order r = 3 shown in Eq. (15) was successfully constructed. The original noisy data
were explained with a lower mean percentage error MPE = 0.56% compared to the
subspace method for the entire data set. Another NN architecture, s.a., the NARMAX4

belongs to a subclass of bilinear systems and will filter some nonlinear features without
achieving such a good MPE.

4 Conclusion

In conclusion, NN architectures are a superclass of NARMAX models used in the clas-
sical robust identification theory. Consequently, NN models share the same strong argu-
ment with the Carleman linearization scheme that can approximate general nonlinear
systems. Finally, NN and realization theory successfully bridge data science with com-
putational science to build reliable, interpretable nonlinear models. Different NN archi-
tectures (s.a., recurrent NNs, DeepOnets, etc.) in combination with other realization
frameworks (s.a., the Loewner framework) and for other types of nonlinearities (s.a.,
quadratic-bilinear) are left for future research endeavors.
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Abstract. This work is devoted to the analysis of electric circuits stemming from
automated modeling processes in system simulation software. Modern applica-
tions such as HEV (hybrid electric vehicle), BEV (battery electric vehicle) and
FCEV (fuel cell electric vehicle) require not only couplings of electric networks
with mechanical, thermal, fluid and gas systems. In many cases it is necessary to
extend or control the physics with grey box models like FMUs (Functional Mock-
up Units). In particular, the coupling of electric systems with FMUs can be done
on various levels (model exchange, co-simulation) via different interfaces (con-
troller, electric, electric-thermal) and is therefore a challenging task. In this work
we concentrate on a co-simulation approch for an electric-thermal coupling in a
BEV model.

1 Introduction

Multi-disciplinary modeling and simulation packages such as AVL CRUISETMM1 pro-
vide concepts for the automatic generation and stable simulation of dynamic system
models. The systems are built in a modular way. Standardized components can be cou-
pled together to form physical networks. In turn, they can be coupled and form the
overall system. For example, HEV, BEV and FCEV can be divided into electrical, fluid,
gas, mechanical and thermal networks and their controllers.

A practical extension of this approach is the representation of dedicated subsystems
as grey box models, i.e., physical or software components with unknown internal struc-
tures and principles but defined input and output interfaces. Those grey box models
allow to incorporate external or customer-defined components, model parts or parts of
the system into the software while guarding the intellectual property. Nowadays the FMI
(Functional Mock-up Interface)2 has been established as a standardized structured inter-
face for those kind of grey box models, giving the input-output relation as differential

1 https://www.avl.com/en/cruise-m.
2 http://fmi-standard.org/.
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state and/or algebraic output equation. Depending on the characteristic of the FMI, the
FMU can obtain model-exchange or co-simulation character. On the one hand, model
exchange FMUs allow to describe the physical systems and grey box models by DAEs
(differential algebraic equations), where solvability and index analysis are necessary to
ensure a stable system simulation and the resulting system of DAEs is solved within one
numerical scheme. On the other hand co-simulation FMUs can be incorporated within
a multirate co-simulation framework as individual solver elements including individual
integration and synchronisation time steps.

In this work we extend the results obtained in [4] for a multiphysical multi-rate
framework to the case of an electric-thermal coupling via grey box FMUs. This app-
roach leads to hybrid models, where some parts are described via multiphysical net-
works models and the FMU parts are described via input-output relations without any
further physical interpretation.

2 Multiphysical System Formulation

The electrical network formulation is based on the well-known modified nodal analysis
[3] and additionally includes the temperature of the network elements. In contrast to [7],
where the temperature is modelled via temperature boundary elements, the formulation
follows [3] and includes the temperature as given input as well as the heat flow as
output. The electrical network can be described by the graph

N = {C,L,R, I,V,N,G}, (1)

which is composed of

capacitors C = {C1, . . . ,CnC},nC ∈ N,

inductors L= {L1, . . . ,LnL},nL ∈ N,

resistors R= {R1, . . . ,RnR},nR ∈ N,

current sources I = {I1, . . . , InI},nI ∈ N,

voltage sources V = {V 1, . . . ,VnV },nV ∈ N,

nodes N = {N1, . . . ,NnN},nN ∈ N and

grounds G= {G1, . . . ,GnG},nG ∈ N.

With incidence matrix
A=

(
AC AL AR AI AV

)

the system to be solved can be written as follows, cf. [3,4,7]:
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For given inputs uE = (uTC ,u
T
L ,u

T
R)

T , find currents j = ( jTC , j
T
L , j

T
R , j

T
I , j

T
V )

T , node
potentials e= (eTN ,e

T
G)

T and outputs yE = (yTC ,y
T
L ,y

T
R)

T , such that

0= AC jC+AL jL+AR jR+AV jV +AI j̄I

0= jC − q̇(AT
Ce,uC)

0= φ̇( jL,uL)−AT
L e

0= jR −gR(AT
Re,uR)

v̄V = AT
V e

yC = | jC ◦AT
Ce|

yL = | jL ◦AT
L e|

yR = | jR ◦AT
Re|

(2)

for given boundary conditions eG = 0, given characteristic functions g,q,φ , pre-
scribed currents j̄l and prescribed voltages v̄V as well as ◦ denoting the element-wise
(Hadamard) product. For the electrical system, solvability and index results are avail-
able in [3].

In case of a multiphysical system, similar results are also available for fluid, gas and
thermal solid systems, cf. [7]. A rigorous analysis of the full multiphysical equation
system is required in order to ensure, that the resulting system of DAEs is of (differen-
tial) index 1 again. On an abstract level, every physical subsystem of interest i= 1, . . . ,n
yields a semi-explicit DAE with index 1:

ẋi = fi(xi,ai,ui, t)
0= ri(xi,ai,ui, t)
yi = gi(xi,ai,ui, t)

, (3)

with states xi, algebraic variables ai, inputs ui, outputs yi, time t and functions fi,ri,gi.
Those physical subsystems can be coupled with each other by certain quantities, cf.
[7]. For example the electrical and thermal solid system can be coupled by temperature
and heat flow. The input output relation can be represented using a skew-symmetric
coupling matrixC, cf. [7],

u=Cy. (4)

Combining the multiphysical subsystems (3) as well as the coupling equation (4) yields
the system to be solved. Imposing certain conditions on the individual subsystems as
well as the coupling matrixC, it can be shown that the coupled multiphysical system is
feasible and yields a DAE of (differential) index 1, cf. [6].

So far, we are still operating in the multiphysical work. As a next step, grey box
FMUs are incorporated into the multiphysical framework.

3 Functional Mock-Up Units (FMUs)

In addition to the physical systems, grey box models can be incoporated in the mul-
tiphysical system modeling approach. In this work we restrict our use cases to FMUs
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which are conform with the FMI 2.0 standard. FMUs may have model exchange or
co-simulation character.

In a simplified approach a FMU for model exchange represents a DAE as an input-
output system of the form

ẋ= f (t,x,u),
y= g(t,x,u),

(5)

where t is the time, x is the differential state, u are inputs and y are outputs.
Furthermore a FMU for co-simulation represents an input-output system of the form

y= g(t,Δ t,u), (6)

where t is the time, Δ t is a timestep, u are inputs and y are outputs.
The choice for model exchange or co-simulation FMUs is determined by the

underlying problem formulation and the features of the generating platform. For
example, multiphysical subsystems can be extracted as co-simulation FMUs in AVL
CRUISETMM. Inputs and outputs of the FMU can be specified via a predefined inter-
face. The cooling system of Fig. 2 can be generated by adding the corresponding inter-
face and defining inputs and outputs, cf. Fig. 1. Co-simulation FMUs can be incorpo-
rated in various simulation software.

Fig. 1. Schematic representation of a cooling system extracted as FMU.
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4 Co-simulation for Coupled Network DAEs

The full DAE is partitioned due to the physical background to n subsystems (3) (typi-
cally n � 2). The incorporation of model exchange FMUs (5) can be done on compo-
nent level, i.e. a physical component or subsystem can be replaced via a FMU. Applying
Runge-Kutta methods with micro-stepsizes hi to each subsystem (3), a representation
in co-simulation form is obtained. Coupling the physical subsystems with k ∈ N co-
simulation FMUs (6), m= n+ k, the overall coupled co-simulation system reads as

yi = ci(ui, t,Δ t), i= 1, . . . ,m. (7)

Again the interaction of the individual systems is described via Eq. (4). Each subsystem
(7) has its own internal solver and step size hi. Since a synchronous communication app-
roach is applied, the whole system exchanges its data with frequency Δ t. The input val-
ues ui are handled with appropriate interpolation, extrapolation or filtering techniques,
depending on the slow or active characteristics of the interacting subsystems. At this
communication level no time integration method is involved. The system is solved by
applying a sequential non-iterative Gauss-Seidel type approach, cf. [2]. If all integration
methods are of order p, the interpolation methods are of order p−1 and a contraction
condition is fulfilled, the co-simulation approach is convergent of order p, cf. [1].

5 Numerical Example

We consider a BEV that demonstrates the modeling of an electrical system coupled to
the required cooling system, cf. Fig. 2. The model consists of an electrical propulsion
and two cooling circuits. This model has already been used and analysed in [4] and is
now extended to the case of grey box models in terms of FMUs. An oil circuit is used
for cooling of the electric machine and a coolant circuit is used for cooling of the bat-
tery pack, inverter and low voltage DC-DC converter. In model 1 the coolant circuit is
described by a multiphysical system, cf. Fig. 2, while in model 2 the coolant circuit is
modelled by a co-simulation FMU, cf. Fig. 3. The FMU in model 2 is exported from
AVL CRUISETMM using the same coolant circuit as in model 1, cf. Fig. 1. The cor-
responding input-output relations are established in order to mimic the behavior of the
original model, i.e. the electric FMU communications with the cooling circuits via input
and output channels and not via physical connections. Both models are implemented
and simulated using again AVL CRUISETMM. Although the importing and exporting
tool is the same, information about the equation system is lost due to the specific char-
acterization of the FMU interface. Model 1 and model 2 can be integrated with the
co-simulation approach using different solver parametrizations, while providing reli-
able results. For example, the results of the temperature in a single battery pack of a
multirate co-simulation case of model 2 (in blue) is compared to the reference solution
of model 1 using the same multirate co-simulation parametrization (in red) in Fig. 4.
In the standard multirate approach of model 1, model based inter- and extrapolation
techniques of the invelved physical quantities (temperature, heat flux) yield a accu-
rate result. Since in the multirate co-simulation FMU case of model 2 the correspond-
ing models of the coupling variables are hidden in the FMU, only standard inter- and
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Fig. 2.Model 1: Schematic representation of a BEV with cooling system.

Fig. 3.Model 2: Schematic representation of a BEV with FMU cooling system.

extrapolation methods can be applied. Since the applied interpolation schemes differ for
those two cases, differences in the simulation results occur. In this case the contraction
condition, cf. [1], is fulfilled, as it is coupled by a differential state. System modeling
using FMUs is expected to require increased computational effort. Performance losses
have to be accepted when calling the external FMU code. In addition, one is limited
in the optimization of the equation systems based on the given FMU structure. Due to
the computation overhead the FMU co-simulation approach in model 2 is about 10%
slower compared to the standard multirate approach in model 1.
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Fig. 4. Wall temperature within a battery pack for a reference solver parametrization (in red) as
well as a parametrization for the co-simulation FMU case (in blue). (Color figure online)

6 Conclusion and Outlook

For the integration of FMUs in multiphysical systems, solvability and index statements
for the overall system are essential for a stable system simulation. In the given thermal-
electrical FMU coupling example above, the solvability and index statements follows
directly from the results of the subsystems, since they were coupled via differential
states. Since information is contained in the physical model, which can be exploited by
the solver framework, it is always preferable to provide the networks as a physical sys-
tem instead of a grey box model. Nevertheless the presented framework is not restricted
to tool in tool simulation, but is open to handle any feasible co-simulation from any
other tool. Here the hybrid multi-domain - grey box approach closes the bridge between
multiphysical single-tool applications and signal based multi-tool co-simulation appli-
cations.

The presented framework is not restricted to the co-simulation case, but is also valid
for the model-exchange case. Although model-exchange FMUs are also grey box mod-
els, some more information can be retrieved from the interface, since the corresponding
coupling is equation based and not solver based. For the interested reader, we refer to
[5], where a bunch of model exchange FMUs are coupled directly into the electrical
system.

Furthermore, taking advantage of the possible port-Hamiltonian structure in the
coupled DAE system (3) is under investigation for the follow-up steps.
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Abstract. Over the past years, the importance of battery development has
increased significantly and will increase further. Consequently, the requirements
for the system simulation of electric networks are rising. In modern simulation
applications, the battery setup and battery modules can be simulated with differ-
ent levels of complexity and can be coupled with detailed powertrain and cooling,
yielding a multi-physcial problem. For some detailed investigations, e.g. about
the thermal behavior, it is needed that in the electrical subsystem one can model
and simulate detailed cells. The physical models of the cells can be given via
grey-box models such as FMUs (functional mock-up units) (https://fmi-standard.
org/). Simulating then combined battery cells increases the complexity of the
model. In this case, care must be taken to ensure that the simulation delivers sta-
ble results and that the computing time is kept as short as possible. Here we use
a hierarchical approach to solve the resulting equations for the electrical system.

1 Introduction

In today’s vehicle development, BEV (battery electric vehicles) and HEV (hybrid elec-
tric vehicles) are playing an increasingly important role. Simulation packages like AVL
CRUISETMM1 offer the possibility of generic modeling of such problems, see [2]. Mod-
ular components can be coupled together to form physical subsystems, such as electri-
cal as well as mechanical, thermal, gas and fluid circuits. These in turn can be linked
together via predefined coupling points.

In the development of such vehicles, the simulation of batteries and the interaction
with the other parts, especially the cooling, is crucial. For detailed investigations about
the temperature distribution within the battery, cooling, and ageing effects, one needs
a detailed simulation of the battery cells including electrical and thermal behavior. The
cells are then grouped serial and parallel electrically into modules and the modules are

1 https://www.avl.com/en/cruise-m.
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coupled to battery packs. Cells, modules, and packs then interact on different levels with
controllers to achieve efficiency and improve the lifetime of the batteries. For the devel-
opment and testing of control strategies, detailed simulations are needed. The system
simulation approach allows a smooth transition from fine granular to coarse models.

The starting point is a cell model which includes the needed physical details like
electrical characteristic, thermal behavior and in some cases mechanical properties. The
cells are connected in series and parallel for a module, see Fig. 4. Nowadays, typical
cell types are pouch cells, prismatic cells or cylindrical cells, see [5]. The cell type
determines how they can be grouped and connected to the cooling. In Fig. 1 a schematic
setup of pouch cells is given with intermediate cooling fins and the connection to the
housing.

Fig. 1. Schematic representation of a battery module with cells, cooling fins and housing plates.

From the electrical point of view, a cell is often a voltage boundary depending on
current. For detailed cell models, the actual state depends strongly on the temperature
of the cell. Due to the complexity of the internal physics, the cell models are often done
by specialists. For the simulation, cell models are provided as FMUs to encapsulate
physics and to secure intellectual property. We focus on the case that the cells are grey-
box voltage boundaries, coupled with the electrical system and the cooling network.
The challenge in modeling and simulating this constellation is to properly integrate the
FMUs of the cells in the electrical system and to ensure a high-performance simulation.

2 Mathematical Model

The simulation of the electrical system is based on the modified nodal analysis, cf. [1,3].
An electrical networkN = {R,C,L,V, I,N,G,B} is composed of resistors R, capacitors
C, inductors L, voltage sources V , current sources I, nodes N, grounds G and batteries
B.

The electrical system is modelled using a directed graph G = {V ,E }.
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Nodes and grounds are vertex elements, i.e. V = {N,G}, while resistors, capacitors,
inductors, voltage sources, current sources, and batteries are edge elements, i.e. E =
{R,C,L,V, I,B}.

Every vertex of the network graph v ∈ V has a corresponding potential ev, where
each ground has constant potential zero, i.e. eG = 0. Furthermore each edge element of
the network e ∈ E has an assigned current ie. The DAE for the electrical networkN is
given by, cf. [4]: For given continuous temperature inputs TR,TC,TB, find the potentials
e= (eTN ,e

T
G)

T , the currents j = ( jTR , j
T
C , j

T
L , j

T
V , j

T
B )

T , such that

AR jR+AC jC+AL jL+AV jV +AB jB+AI j̄I = 0

r(TR) jR −AT
Re= 0

jC − d(c(TC)AT
Ce)

dt
= 0

l
d jL
dt

−AT
L e= 0

AT
V e= v̄V

AT
Be= v̄B( jB,TB)

(1)

for given boundary conditions eG = 0 and given resistance r, capacitance c and induc-
tance l as well as prescribed currents j̄l and prescribed voltages v̄V and v̄B.

Since the battery cells are combined within the battery module with each other in
a specific structure, we have voltage boundary loops within the electrical network, cf.
Fig. 4. Hence the DAE has (differential) index 2, cf. [1,3].

In system simulation software individual elements are often provided by more com-
plex systems in the form of model exchange or co-simulation FMUs. Typically, such
FMUs are computationally expensive, hence one wants to avoid too many calls to the
FMUs. As most of the time is within the evaluation of the FMUs, solving the DAE
directly might not be efficient. The coupling of the cells leads to a regular structure in
those equations. Due to this, the equations can be arranged to solve for the inner current
distribution and the outside effect in the electrical network split, see Sect. 3.

Concerning the cell behavior, it is advantageous to use model exchange FMUs as
those allow stable simulation with larger time steps. Often the simulated time goes in
the range of days or weeks which should be simulated within hours. The FMU provides
states x which have to be integrated with the electrical system, z are (continuous) inputs
and y are the outputs of the FMU. The inputs into the FMU are for example the current
and the heat flux into the cell, the outputs are then the cell voltage, the cell temperature
and similar.

ẋ= f (t,x,z),
y= g(t,x,z).

In order to solve the index 2 equation, it is advantageous that the FMU provides the
current to voltage sensitivity information. Those are the needed parts in the chain rule
for the index reductoin to 1 of the constraints. In contrast to the electrical equation,
the change of the thermal behavior system happens slower. Still temperatures and heat
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fluxes need to be calculated sufficiently accurate due to the dependency of the cell
behavior on its temperature.

AVL CRUISETMM allows here a multirate approach to integrate the electrical and
thermal part with different time scales, cf. [4]. As the states of the FMU need to be
integrated with the fastest scale those are included in the electrical domain and the
thermal coupling is handled with the multirate framework. The thermal behavior of the
cooling fins and the housing plates is simulated within the thermal domain.

3 Hierarchical Approach

For a more efficient solution of the electrical system we can utilize the special setup
within the battery module as seen in Fig. 4b:

• For the equilibrium in the electrical system, the inner structure of the battery module
is not important. Only the current to voltage behavior is relevant.

• The voltage of the battery module is given by the sum of voltage for each row.
• Each row can be solved for the voltage independently of the others. The coupling is
mainly on the thermal level. So instead of a larger problem, we can solve a sequence
of smaller problems of the same structure: with the current input I and the voltage
output ulevel .

Assuming, we have n rows and in each row m cells in parallel. If I is the input
current to the battery module, ui, j is the voltage of the cell at row i and column j, we
have with currents ii, j into the cell at position (i, j) for each row i= 1, ..,n:

I =
m

∑
j=1

ii, j (2)

ui,1 −ui,k = 0,∀k ∈ {2, ..,m} (3)

Note that we put a special role on the first column, but all other equalities ui, j−ui,k =
0, for all j,k ∈ {1, ..,m} follow therefrom. Additionally we have for the output voltage

of the module umodule =∑n
i=1 ui,1. Using the FMU provided sensitivity information

∂ui, j
∂ ii, j

,

we can assemble the needed Jacobian analytically and the Jacobian is sparse. Hence, we
can solve the nonlinear problem more efficiently with fewer right hand side evaluations
which include the often expensive update calls to the FMUs.

4 Numerical Example

We focus here on the simulation of the battery module connected with an electrical
current boundary condition. The current prescription is calculated from a BEV vehicle,
see Fig. 2, with a NEDC (New European Driving Cycle) velocity boundary condition,
see Fig. 3. The vehicle is simulated with a simpler battery model to generate the current
prescription for the detailed model. One could couple the detailed battery model with
a detailed powertrain and cooling model. We focus here on the two step approach to
better see the performance improvement.
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Fig. 2. Example model for a BEV vehicle.

Fig. 3. NEDC cycle.

Fig. 4. Schematic picture of serial arrangement and electrical connections.

In the battery module, we consider the battery pouch cell LG Chem E66A2, cf. [5],
from Batemo3 with twelve cells, three serial and four parallel layers, depicted in Fig. 4
with the electrical connections. Geometrically the cells are arranged sequentially with
cooling fins in-between, see Fig. 4. This setup containing twelve model exchange FMUs
is incorporated into an electrical system containing a liquid flow system for cooling, cf.
Fig. 5. The influence of different setups, coolings and connections is the objective of the
simulations and the comparisons. In our case, the bottom plate is connected to a cool-

2 https://www.batemo.de/products/batemo-cell-library/e66a/.
3 https://www.batemo.de.

https://www.batemo.de/products/batemo-cell-library/e66a/
https://www.batemo.de
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ing network, here simplified as a fixed temperature boundary. The electrical boundary
conditions for the network model given in Fig. 5 is a charge-discharge cycle with short
resting period in-between is used. The corresponding charging/discharging current is
given in Fig. 6. Each cell is having its own surface temperature over the simulation time.
For particular times, the results of the temperature in the individual cells are shown in
Fig. 7.

Fig. 5.Network model containing battery module with pouch cell FMUs coupled to electrical and
cooling system.

Fig. 6. Charging/discharging current for the battery module in Fig. 5.

We compare the solution of the hierarchical approach versus a model setup com-
pared to a model where this is not utilized, i.e. in the electrical system all is solved
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Fig. 7. Temperature distribution within stack over time t: at the beginning, after the driving cycle,
before the charging phase, after the charging phase.

together, resulting in a larger set of unknowns. The hierarchical approach to solve the
equation system brings a computational benefit of 10% and 20% speedup. For exam-
ple in our test setup used here, the traditional simulation run requires 10721 s, while
the hierarchical approach requires only 8856 s in order to simulate the 7200 s lasting
decharging and charging cycle.

5 Conclusion

The presented hierarchical approach allows the efficient integration of model exchange
FMUs representing the cell physics within a system simulation model within AVL
CRUISETMM’s multi-rate and multi-domain framework. In the structured setup, the
resulting index 2 DAE can be efficiently solved by reducing the constraints to an index
1 system with the sensitivities provided by the FMUs. The resulting system can be
simulated avoiding too many expensive FMU evaluations. This is then the base for cou-
pling such systems with more detailed cooling networks and powertrain systems. Using
FMUs allows to encapsulate the cell physics and secure the intellectual property as well
as with the additional sensitivity information to solve the systems with less effort.
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Abstract. We consider linear dynamical systems with a single output,
where the systems include random parameters to perform an uncer-
tainty quantification. Using the concept of polynomial chaos, a linear
stochastic Galerkin system of higher dimension with multiple outputs is
arranged. Quadratic combinations of the outputs yield approximations
of time-dependent indices in global sensitivity analysis, which indicate
the influence of each random parameter. We investigate system norms for
the quadratic outputs, because these norms generate time-independent
sensitivity measures. Numerical results are presented for a model of an
electric circuit.

1 Introduction

Mathematical modelling often yields systems of differential equations including
physical parameters. Uncertainty quantification (UQ) is required to investigate
an output of the model with respect to a variability in the parameters. A common
approach consists in the substitution of the parameters by random variables,
see [10]. In addition, a global sensitivity analysis of the random-dependent model
can be performed to characterise the importance of each random parameter.
There are variance-based indicators (first-order indices and total-effect indices)
as well as derivative-based indicators for global sensitivity analysis, see [4,5,8,9].
The resulting numerical values allow for a ranking of the parameters.

We examine linear dynamical systems composed of ordinary differential equa-
tions (ODEs) or differential-algebraic equations (DAEs). A single input or mul-
tiple inputs are induced, while a single output represents a quantity of interest
(QoI). In the random-dependent system, we expand the state/inner variables as
well as the output in the polynomial chaos (PC), see [10]. The stochastic Galerkin
method yields a larger deterministic linear dynamical system with multiple out-
puts, which represent an approximation of coefficient functions in the expansion
of the QoI. Quadratic combinations of the outputs produce approximations of
three types of indices in global sensitivity analysis: first-order, total-effect, and
derivative-based. Since the outputs depend on time, the sensitivity indices also
vary in time.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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Alternatively, we derive system norms of the stochastic Galerkin system for
each non-negative quadratic output. These system norms provide sensitivity
measures, which are independent of both time and the input. In [6,7], this strat-
egy was applied to investigate system norms associated to total-effect indices.
Now we extend the approach to first-order indices as well as derivative-based
indices. Therein, the derivative-based concept uses the L2-norm of the QoI’s
partial derivatives with respect to the parameters. All system norms are com-
putable as H∞-norms of corresponding transfer functions in frequency domain.
Finally, we illustrate results of numerical computations employing the electric
circuit of the Miller integrator.

2 Random Linear Dynamical Systems

Let a linear dynamical system be given in the form

E(p) d
dtx(t,p) = A(p)x(t) + B(p)u(t)

y(t,p) = c(p)�x(t,p)
(1)

with time t ∈ I = [0,∞). Single or multiple inputs u : I → R
nin are supplied.

The matrices A,E ∈ R
n×n, B ∈ R

n×nin , and the vector c ∈ R
n depend on

physical parameters p ∈ Π ⊆ R
q. The variables x : I × Π → R

n depend on
time as well as the parameters. A single output y : I × Π → R is observed as
a QoI. If the mass matrix E(p) is non-singular, then the system (1) consists of
ODEs. Alternatively, a singular mass matrix implies a system of DAEs. A linear
DAE system exhibits a (nilpotency) index ν ≥ 1, see [3]. We assume that the
systems (1) are asymptotically stable for all p ∈ Π. An initial value problem is
specified by x(0,p) = x0(p) with a predetermined function x0 : Π → R

n.
The parameters are often affected by uncertainties due to modelling errors or

measurement errors, for example. A common approach to model their variability
consists in replacing the parameters by independent random variables, see [10].
Consequently, the parameters become measurable functions p : Ω → Π on a
probability space (Ω,A, P ). We assume that there is a joint probability density
function ρ : Π → R. Hence the expected value of a measurable function f : Π →
R reads as

E[f ] =
∫

Ω

f(p(ω)) dP (ω) =
∫

Π

f(p) ρ(p) dp. (2)

We consider the Hilbert space

L2(Π, ρ) =
{
f : Π → R : f measurable and E[f2] < ∞}

, (3)

which is equipped with the inner product 〈f, g〉 = E[fg] for two functions f, g ∈
L2(Π, ρ) using the expected value (2). Its norm is ‖f‖L2(Π,ρ) =

√〈f, f〉.
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Let an orthonormal basis (Φi)i∈N be given, which consists of multivariate
polynomials Φi : Π → R. Without loss of generality, Φ1 ≡ 1 is the unique
polynomial of degree zero. We assume that the variables x(t, ·) as well as the
output y(t, ·) are (component-wise) functions in the space L2(Π, ρ) for each t ≥ 0.
It follows that the functions can be expanded in the polynomial chaos (PC),
see [10],

x(t,p) =
∞∑

i=1

vi(t)Φi(p) and y(t,p) =
∞∑

i=1

wi(t)Φi(p) (4)

with time-dependent coefficient functions vi : I → R
n and wi : I → R. A

truncation of the series (4) to i = 1, . . . ,m with some integer m ≥ 1 yields a
finite approximation. Typically, all basis polynomials up to some total degree d
are included. Hence the number of basis functions results to m = (d+ q)!/(d!q!).

3 Stochastic Galerkin Systems and Norms

The stochastic Galerkin method changes the random-dependent linear dynamical
system (1) into the larger deterministic linear dynamical system

Ê d
dt v̂(t) = Âv̂(t) + B̂u(t) (5)

ŵ(t) = Ĉv̂(t). (6)

The constant matrices Â, Ê ∈ R
mn×mn, B̂ ∈ R

mn×nin , Ĉ ∈ R
m×mn are derived

from A, E, B, c, respectively. The definition of the matrices can be found in [6],
for example. The state/inner variables are v̂ = (v̂�

1 , . . . , v̂�
m)�. Now the system

produces multiple outputs ŵ = (ŵ1, . . . , ŵm)� by (6). Both v̂ and ŵ include
approximations of the exact coefficients in the PC expansions (4). The induced
approximation of the random QoI in (1) becomes

ŷ(m)(t,p) =
m∑

i=1

ŵi(t)Φi(p). (7)

We assume that the stochastic Galerkin system (5) is asymptotically stable. In
the following, we always predetermine initial values v̂(0) = 0.

A non-negative quadratic output of the system (5) reads as

g(t) = ŵ(t)�M̂ŵ(t) = v̂(t)�Ĉ�M̂Ĉv̂(t) (8)

with a symmetric positive semi-definite matrix M̂ ∈ R
m×m. Let Σ(M̂) be the

system consisting of the dynamical part (5) and the quadratic output (8). Now
we employ a symmetric decomposition

M̂ = F̂�F̂ (9)
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with a matrix F̂ ∈ R
m×m, for example, using a pivoted Cholesky decomposition.

We arrange a stochastic Galerkin system Σ(F̂) consisting of (5) and the linear
outputs

ẑ(t) = F̂Ĉv̂(t). (10)
We define the system norm belonging to (5), (8) as

∥∥∥Σ(M̂)
∥∥∥

L2
= sup

u �=0

∥∥√
g
∥∥

L2[0,∞)

‖u‖L2[0,∞)

(11)

including the L2-norm in the time domain [0,∞). This norm involves the supre-
mum of the set of all inputs u ∈ L2[0,∞)\{0}. In view of (10), it follows that

∥∥∥Σ(M̂)
∥∥∥

L2
= sup

u �=0

∥∥∥F̂ŵ
∥∥∥

L2[0,∞)

‖u‖L2[0,∞)

= sup
u �=0

∥∥F̂Ĉv̂
∥∥

L2[0,∞)

‖u‖L2[0,∞)

=
∥∥∥Σ(F̂)

∥∥∥
L2

. (12)

This system norm is independent of the chosen decomposition (9).
The input-output behaviour of a linear dynamical system can be described

by a transfer function in frequency domain, see [1]. The matrix-valued transfer
function of the system (5), (10) reads as Ĥ(s) = F̂Ĉ(sÊ− Â)−1B̂ for almost all
s ∈ C. Now the system norm of Σ(F̂) in (12) coincides with the H∞-norm of this
transfer function. The H∞-norm is computable by methods of numerical linear
algebra, see [2]. If the linear stochastic Galerkin system (5) consists of ODEs
or DAEs with index ν = 1, then the finiteness of the H∞-norm is guaranteed.
Yet the H∞-norm may still be finite for DAEs of index ν ≥ 2 depending on
the definition of inputs and outputs. The following sensitivity analysis applies to
any DAE system (5), (6) with finite H∞-norm, because a system (5), (10) with
modified output inherits a finite H∞-norm.

4 Sensitivity Measures

Our aim is a global sensitivity analysis of the stochastic model (1) with respect to
the influence of the individual random parameters. In general, there are variance-
based sensitivity measures and derivative-based sensitivity measures, see [8,9].
Although the variance-based sensitivity indices originally were defined different,
we use an equivalent specification by the PC expansion as in [5].

Let V (t) be the variance of the random QoI y(t, ·) for t ≥ 0. We define the
index sets Ij , I′j ⊂ N for j = 1, . . . , q using the family of basis polynomials (Φi)i∈N

Ij = {i : Φi depends only on pj},

I
′
j = {i : Φi depends (also) on pj}.

It holds that Ij ⊂ I
′
j and 1 /∈ Ij due to Φ1 ≡ 1. Variance-based sensitivity

measures are the first-order indices

S
FO

j (t) =
SFO

j (t)
V (t)

with SFO
j (t) =

∑
i∈Ij

wi(t)2 (13)

and the total-effect indices
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S
TE

j (t) =
STE

j (t)
V (t)

with STE
j (t) =

∑
i∈I′j

wi(t)2. (14)

These real numbers satisfy 0 ≤ S
FO

j (t) ≤ S
TE

j (t) ≤ 1 for each t ≥ 0 and
j = 1, . . . , q. If it holds that V (t) = 0 for some t, then the variance-based
sensitivity indices are not defined. However, an UQ is obsolete in this case as
there is no variability.

Furthermore, we examine derivative-based indices with respect to the norm
of (3), i.e.,

SDB
j (t) =

∥∥∥ ∂y
∂pj

(t, ·)
∥∥∥2

L2(Π,ρ)
=

∫
Π

(
∂y
∂pj

(t,p)
)2

ρ(p) dp. (15)

Applying the PC expansion (4), it follows that

SDB
j (t) =

∞∑
k,�=1

ηjk�wk(t)w�(t) with ηjk� =
∫

Π

∂Φk

∂pj
(p)∂Φ�

∂pj
(p)ρ(p) dp (16)

assuming that infinite summations and integration can be interchanged.
Now the sensitivity indices SFO

j in (13), STE
j in (14), and SDB

j in (15) can be
approximated by quadratic outputs (8) of the stochastic Galerkin system (5).
Let K ⊂ N be an index set. We define the diagonal matrix

D̂(K) = diag(d1, . . . , dm) with dk =
{

1, if k ∈ K,
0, if k /∈ K.

This matrix owns the trivial symmetric factorisation D̂(K) = D̂(K)�D̂(K). On
the one hand, we obtain the variance-based indices by

SFO
j (t) ≈ ŜFO

j (t) = ŵ(t)�D̂(Ij)ŵ(t) and STE
j (t) ≈ ŜTE

j (t) = ŵ(t)�D̂(I′j)ŵ(t).

On the other hand, we arrange the symmetric matrices N̂j = (ηjk�)k,�=1,...,m

including the coefficients from (16). It can be shown that the matrices are also
positive semi-definite. Although the integrals ηjk� include the derivatives of the
basis polynomials, the majority of these integrals are zero, i.e., the matrices N̂j

are sparse. Consequently, the approximation of the derivative-based indices reads
as

SDB
j (t) ≈ ŜDB

j (t) = ŵ(t)�N̂jŵ(t).

We consider the system norms (11) with M̂j ∈ {D̂(Ij), D̂(I′j), N̂j} for j =
1, . . . , q. These system norms represent sensitivity measures μ�

1, . . . , μ
�
q for 
 ∈
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Fig. 1. Circuit diagram of Miller integrator.

{FO,TE,DB}, which are independent of time t as well as the selection of
inputs u. A standardisation yields coefficients 0 ≤ μ̃�

1, . . . , μ̃
�
q ≤ 1 with

μ̃�
1 + · · · + μ̃�

q = 1 (17)

to investigate the relative differences for the random parameters.

5 Illustrative Example

We examine the electric circuit of a Miller integrator shown in Fig. 1. A mathe-
matical model of the Miller integrator was presented in [3], which consists of a
system of n = 5 linear DAEs. The system involves q = 4 physical parameters:
two capacitances C1, C2, a conductance G, and an amplification factor A. The
index of this DAE system is ν = 2 for all (positive) parameters. Furthermore,
the DAE systems are asymptotically stable. An input voltage uin is supplied as
single input. The output voltage y = uout represents the QoI. The DAE system
can be written in the form (1). Although the system of DAEs exhibits index two,
the H∞-norm of the associated transfer function is finite.

We replace the physical parameters by independent random variables with
uniform distributions. The mean values are chosen as C̄1 = 10−10, C̄2 = 5·10−11,
Ḡ = 0.001, Ā = 2, whereas each random variable varies 20% around its mean
value. We standardise the resulting hypercuboid Π to [−1, 1]4, which changes
only the magnitude of the derivative-based indices (15), since the derivatives are
multiplied by constants in the transformation. The PC expansions (4) include
basis polynomials, which are the products of univariate Legendre polynomials.
We truncate the expansions such that all polynomials up to total degree d = 4
are included, i.e., m = 70 basis polynomials. The stochastic Galerkin method
produces a system of DAEs (5) with dimension mn = 350. This linear dynamical
system is asymptotically stable.

In [7], the Miller integrator was also used as a test example, where only the
system norms associated to the total-effect sensitivity indices were investigated.
Now we examine all cases of system norms introduced in Sect. 4. Table 1 depicts
the computed system norms with respect to the three types of sensitivity indices.
The standardised sensitivity measures satisfying (17) are illustrated in Fig. 2.
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Table 1. Sensitivity measures for random parameters in example of Miller integrator.

parameter C1 C2 G A

first-order 0.2338 0.1257 0.1015 0.3564

total-effect 0.2699 0.1717 0.1088 0.3803

derivative-based 0.5187 0.3168 0.1906 0.7074

total-effect in time 0.6485 0.1879 0.1681 1.0000
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Fig. 2. Standardised sensitivity measures from system norms for first-order indices,
total-effect indices, derivative-based indices, and from maxima of total-effect indices in
time.
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Fig. 3. Expected value (left) and standard deviation (right) of random output voltage
in electric circuit of Miller integrator.
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We perform a transient simulation of the stochastic Galerkin system for com-
parison. The two-tone signal

uin(t) = sin(2π t) sin(40π t)

is supplied as input voltage. Initial values are zero and the time interval [0, 1] is
considered. The backward differentiation formula (BDF) of order two yields a
numerical solution of this initial value problem. The outcome (7) also provides
approximations for the expected value as well as the standard deviation of the
random output voltage, demonstrated in Fig. 3. Using the approximation from
the stochastic Galerkin system, we calculate the maxima in time with respect
to (14), i.e.,

max
{
S̄ TE

j (t) = STE
j (t)/V (t) : t ∈ [δ, 1]

}
for j = 1, 2, 3, 4. (18)

The threshold δ = 10−5 > 0 is introduced, because the initial conditions imply
V (0) = 0 and thus the variance exhibits tiny values at the beginning. Table 1
and Fig. 2 also show the sensitivity measures (18).

We observe that the ranking of the random parameters agrees in all four
concepts: the amplification factor A is the most influential parameter, followed
by the two capacitances C1, C2, and the conductance G is of least importance.

6 Summary

We investigated a sensitivity analysis for linear systems of ODEs or DAEs with
respect to the influence of random variables. Three concepts were considered: two
variance-based approaches and a derivative-based approach. Each concept yields
sensitivity indices, which represent quadratic outputs of a stochastic Galerkin
system. It follows that associated sensitivity measures are computable as H∞-
norms of the system. A test example demonstrates that this sensitivity analysis
identifies a correct ranking of the random variables.
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Abstract. The interconnect reliability of a packaged chip on the printed circuit
board is a major requirement that should be met for assembling microelectronics.
The solder connection fatigue is one of the main failure modes. It is caused by the
mechanical stress due to thermal expansion. In this work, the finite element model
of a package on the printed circuit board is built and the solder joint analysis is
performed within a thermo-mechanical simulation. For efficient studies of the
temperature impact on the solder joints, we present a successful application of
parametric model order reduction for constructing a compact model starting from
the full order finite element model. Temperature dependent Young’s modulus, a
parameter, which appears on both the left-hand and the right-hand side of the
spatially discretized model, is preserved in the symbolic form within this compact
model.

1 Introduction

For high-tech systems, such as motor control units for automated factories, smart infras-
tructures (streetlights, power grids), or autonomous vehicles, the requirements relating
to quality and mechanical reliability should be met. With the development of modelling
and simulation techniques in the last decades, the simulation software enables unprece-
dented reliability analysis and design optimization with reduced experimental cycles
and costs. However, the faster growing computational demands of the industry exceed
the power of desktop.

To solve this issue, the methodology of model order reduction (MOR) has been
introduced [1–5,9]. Starting from a high-dimensional finite element model, MOR
enables automatic generation of a lower dimensional but still accurate surrogate, which
significantly reduces the computational cost and enables the system-level simula-
tion. Conventional MOR methods already proved successful for linear single-physical-
domain models [10]. However, microelectronic components require coupled domain
thermo-mechanical simulations and exhibit temperature dependent material proprieties.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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To deal with that, parametric model order reduction (pMOR) methods have been devel-
oped, which enable to preserve the parameters in the symbolic form within the reduced
order model [6–8,11,13,14].

The European project COMPAS [17] aims to develop novel compact models and
ultra-compact digital twins for predicting the thermo-mechanical reliability issues in
high-tech systems, which integrate numerous highly complex components. The project
starts with a test model of a wafer level chip-scale package provided by NXP Semi-
conductors. One major failure mode in such hardware is the solder connection fatigue
(see Fig. 1). The mismatch between the coefficients of thermal expansion (CTE) of the
package and of the printed circuited board (PCB) causes mechanical stress within the
solder connection and leads to the solder fatigue and ultimate failure.

In this work, we successfully apply pMOR to the wafer level chip-scale package
model for constructing a parametric reduced order model (pROM). The temperature
dependent Young’s modulus in the solder connection is defined as a parameter and pre-
served in the symbolic form within the compact model. This enables efficient reliability
analysis.

The paper is organized as follows. In Sect. 2, the setup of the mechanical model
of the wafer level chip-scale package under the thermal load is introduced. Then, the
pMOR process is presented in Sect. 3 and the numerical simulation results of the para-
metric ROM are illustrated in Sect. 4. Section 5 concludes the contributions of this work
and gives an outlook to future research.

Fig. 1. Crack in the solder ball due to thermal loading.[15]

2 Case Study: Wafer Level Chip-Scale Package

Figure 2 displays the model assembly that contains the PCB, solders, copper, passi-
vation, chip and coating. The model consists of six elastic material domains and the
parameter of interest is the Young’s modulus of the solder domain. It is to be preserved
in symbolic form within the reduced order model. Furthermore, Young’s modulus of
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the silicon chip domain can also be preserved in the symbolic form. The three points
demarked in Fig. 2 with {0,1,2} on the border ∂Ω of computational domain Ω are
subjected to the following mechanical Dirichlet boundary conditions, where point one
is totally fixed, point two is free only in x direction and point three is only fixed in z
direction:

u0(x,y,z) = [0,0,0], u1(x,y,z) = [x,0,0], u2(x,y,z) = [x,y,0] on ∂Ω (1)

Fig. 2. An exploded view of the waver chip-scale package.

The reliability tests for these devices are performed inside an oven under homoge-
neous temperature cycles. This temperature cycling leads to mechanical deformations
and stresses. Usually, such tests are performed in passive regime, that is, without turning
on the Chip. This means that one can assume the homogeneous temperature distribution
across the chip (corresponding to the temperature cycling) and describe it with a static
finite element model. We use ANSYS R©R 21.2. In Fig. 3 and Table 1 the finite element
mesh and its statistics are displayed.

Fig. 3. Volumetric mesh sectioned through the whole model



220 I. Zawra et al.

Table 1.Mesh statistics of the model

Body name Nodes Elements Type

Coating 12272 9123 Solid

Silicon Chip 12272 9123 Solid

Passivation 9172 6048 Solid

Copper 10375 7500 Solid

Solder 11725 8850 Solid

PCB 40152 29919 Solid

Total 84232 70563 Solid
The total number of degrees of freedoms
amounts to 252690

The governing partial differential equations of linear elasticity over a continuous
domain Ω , considering infinitesimal strain theory and isotropic materials can be written
as follow:

−∇σσσ(u) = f in Ω
σσσ(u) = λ tr(εεε(u))I+2μεεε(u)

εεε(u) =
1
2

(
∇u+(∇u)T

)
(2)

where u is the state vector and represents the displacement vector field in the domain Ω ,
σ(u) and ε(u) are the stress and strain-rate tensors, f is the body force per unit volume,
λ and μ are elasticity parameters of materials in Ω , I is the identity tensor, tr is the trace
operator on a tensor.

Finite elements based spatial discretization of Eq. (2) leads to the following element
matrices and element load vectors:

{σ} = [D]
{

εel
}

{
εel

}
= {ε}−

{
ε th

}
,

{
ε th

}
= ΔT

[
αse
x αse

y αse
z 0 0 0

]T (3)

(
[Ke]+

[
K f
e

]){u} =
{
Fth
e

}

[Ke] =
∫

vol
[B]T [D][B]d( vol )

[
K f
e

]
= k

∫

area
[Nn]

T [Nn]d
(
area f

)

{
Fth
e

}
=

∫

vol
[B]T [D]

{
ε th

}
d( vol )

(4)

[D] =
E

(1+ v)(1−2v)

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

1− v v v 0 0 0
v 1− v v 0 0 0
v v 1− v 0 0 0
0 0 0 1−2v

2 0 0
0 0 0 0 1−2v

2 0
0 0 0 0 0 1−2v

2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

(5)
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whereD is the generalized Hook’s low fourth order tensor, material property, that relates
stress and strain. E and v are Young’s modulus and Poisson’s ratio. εel is the elas-
tic strain, αse

x is the first component of secant coefficient of thermal expansion vector,
ΔT = T −Tre f while Tre f is the strain free temperature, [B] strain-displacement matrix,
based on the element shape functions, {u} nodal displacement vector, [Ke] is element
stiffness matrix, [K f

e ] is the element foundation stiffness matrix, [Nn] is the matrix of
shape functions for normal motions at the surface and {Fth

e } is the element thermal
load vector.

From Eq. (4) the system stiffness matrix K is assembled and the parameter of inter-
est (E) can be factorized see Eq. (6). Note that it would be not so simple to factorize the
Poisson’s ratio as a parameter, because it enters the system matrix in a non-linear way.
The same holds true for geometrical parameters.

3 Parametric Model Order Reduction

In this chapter we will define the linear parametric system arising from the finite ele-
ment model defined in Sect. 2. Furthermore, the parametric reduced order model, which
preserves inputs, outputs and the Young’s modulus in symbolic form is defined. Many
studies in the field of parametric model order reduction focus on treating dynamical
systems, in which solely the left hand side is parameter-independent. However, the
parametric system arising in this work, contains parameters also at the right hand side.
Finally, we will describe the multi-point moment matching property of the MOR algo-
rithm [6]. In this case, we can say that the reduced model is a partial realization or
Padé-type approximation of the full order model.

3.1 Arising Parametric System

As discussed in Sect. 2 we can write the parametric full order model for a single material
parameter as follows:

ΣN :

⎧
⎨

⎩

(K0+E ·K1)︸ ︷︷ ︸
=K(E)

·x= (B0+E ·B1)︸ ︷︷ ︸
:=B(E)

·u(t)

y=C · x
(6)

where N is the dimension of the full order model and is equivalent to the number of
the degrees of freedoms defined in Table reftable:mesh (N= 252690), K ∈ R

N×N is the
system’s stiffness matrix with factorized Young’s modulus and K0,K1 ∈ R

N×N are its
parameter-independent and the parameter-dependent parts respectively. u ∈ R

m,y ∈ R
o

are the input and output vectors. B∈R
N×m,C ∈R

o×N are the input and output matrices,
respectively. m,o are the number of inputs and user defined outputs. x ∈ R

N is the
state vector of unknown displacements and E is the Young’s modulus of the specified
material domain.

In general multi-parameter case, the parametric system can be written as follows:

ΣN :

⎧
⎪⎨

⎪⎩

(
K0+E1 ·K1++E2 ·K2+ ...+Ep ·Kp

)

︸ ︷︷ ︸
=K(E)

·x= (
B0+E1 ·B1+E2 ·B2+ ...+Ep ·Bp

)

︸ ︷︷ ︸
:=B(E)

·u(t)

y=C · x
(7)
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where the subscript p denotes the total number of parameters. Physically each parame-
ter can describe material property of a certain material domain, which enters the system
matrices linearly and hence, can be factorized. The goal is to reduce such parameterized
system to a compact form, which can be employed within a system level simulation.
Single-parameter system Eq. (6) can be reduced by Galerkin approximation as follows:

Σr :

⎧
⎪⎪⎨

⎪⎪⎩

VT (K0+E ·K1)V︸ ︷︷ ︸
Kr(E)

·xr =VT (B0+EB1)︸ ︷︷ ︸
Br

·u(t)

yr = CV︸︷︷︸
cr

·xr
(8)

where V ∈ R
N×r, Kr ∈ R

r×r, Br ∈ R
r×m,Cr ∈ R

o×r and r << N is the dimension of the
reduced order model Note that, m,o are the same numbers of inputs and user defined
outputs, as in the original system Eq. (6). x ∈ R

r is the reduced state vector and E is the
Young’s modulus of the specified material domain, which now preserved in the reduced
space and can be changed at the system level simulation. The remaining question is
how to define the projection subspace Kr with minimal approximation error as it will
be demonstrated in the next section.

3.2 Moment Matching and Subspace Definition

The transfer function of the parametric system defined in Eq. (6) reads:

G(E) = Y (s)/U(s) =C[K(E)]−1 ·B(E) (9)

This transfer function can be rewritten as follows:

G(E) =C
[
I− [−(E)K1]K (E)−1

]−1
K (E)−1 [B(E)+(E) ·B1] (10)

Then, we apply the Taylor expansion and observe its coefficients (moments) around
a chosen expansion point E0:

G(E) =CK (E)−1B(E)
︸ ︷︷ ︸

ME
0

+
∞

∑
i=1

{
C

[
−K (E)−1K1

]i
K (E)−1B(E)+C

[
−K (E)−1K1

]i−1
K (E)−1B1

}

︸ ︷︷ ︸
ME
i ,i=1,2,...

(E)i

(11)
Based on these moments we can generate the Krylov subspace as follows:

colspan{V1} =Kr1

{
−K (E)−1K1,K (E)−1 [B(E) ,B1]

}

B(E) = B0+E ·B1

(12)

colspan{V} =Kr2

{
−K (E)−1K1,K (E)−1 [B0,B1]

}

=Kr1

{
−K (E)−1K1,K (E)−1 [B(E) ,B1]

} (13)
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The derivatives included in V can be matched by the reduced system such that:
ME

i = VM̂E
i , where M̂E

i are the moments of the reduced system. Thus, we have
moments of y and yr are identical [6].

G(E1,E2) = G(0,0)+
∂G
∂E1

(0,0) ·E1+
∂G
∂E2

(0,0) ·E2+
1
2!

∂ 2G

∂E2
1

(0,0) ·E2
1

+
∂ 2G

∂E1∂E2
(0,0) ·E1 ·E2+

∂ 2G
∂E2∂E1

(0,0) ·E1 ·E2+
1
2!

∂ 2G
∂E2

2 (0,0) ·E2
2+ . . .

(14)

Gr (E1,E2) = Gr(0,0)+
∂Gr

∂E1
(0,0) ·E1+

∂Gr

∂E2
(0,0) ·E2+

1
2!

∂ 2Gr

∂E2
1

(0,0) ·E2
1

+
∂ 2Gr

∂E1∂E2
(0,0) ·E1 ·E2+

∂ 2Gr

∂E2∂E1
(0,0) ·E1 ·E2+

1
2!

∂ 2Gr

∂E2
2 (0,0) ·E2

2+ . . .

(15)

For multi-parameter system like in Eq. (7) building the reduced space is more compli-
cated. As studied in [8] a comparison between three different algorithms, we here stick
to the second proposed method, where building the reduced space is more efficient and
robust. However, we apply a correction to deal with parametric right hand side. In this
method, the derivatives are computed separately. For example, Eqs. (14) and (15) show
two parameters expansion derivatives for both full and reduced, only the underlined
moments are matched. For generalized case, we can define the subspace that preserve
moment matching for each parameter pi as follows:

colspan
{
Vpi

}
=Kri

{
−K (E)−1Kpi ,K (E)−1 [B(E) ,B1]

}

V = span(Vp1 , ...,Vpi)
(16)

4 Numerical Results

In this chapter, we will demonstrate the efficiency and accuracy of our approach.
Table 2 shows the time comparison between the full finite element model and the

reduced parameterized model with single material domain parameter. A speed up by a
factor of 63 could be reached with maximal relative error of 0.2E − 5. Note that the
speed up would be much larger if a transient simulation of the full model is required.
A great time reduction in simulating the parametric reduced model over the full finite
element model and keeping almost a negligible error. The full model runs in almost half
an hour, while the reduced model do the job in a fraction of a second.

Figure 4 displays a schematic for the usage of pROM in the system level simulation.
Engineers can define the Young’s modulus of different material domains as an arbitrary
function of temperature. In our case study temperature cycles are defined from −40◦C
to 125◦C. Corresponding mechanical response of the full- and reduced-order model is
shown in Fig. 5.
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Table 2. Time comparison between reduced and full order models at Intel Core Processor (Broad-
well) @3.0GHz, 64GB.

Model DOF Time[s]

Finite element model 252690 2058.9

pROM generation (offline) 86 32.208

pROM (online) 86 0.1600

Here, we have to define our error criteria, as the input u(t) is time dependent and
each output node in y is defined by a row-vector inC. Relative error is defined as:

e=
|y− yr|

y
evec =

⎡

⎢
⎢
⎣

‖e0 j‖2‖e1 j‖2
...

‖eo j‖2

⎤

⎥
⎥
⎦ erel = ‖evec‖∞ (17)

First, we calculate e which is the defined as the error above, while y and yr are FOM
and ROM outputs respectively, then we take the second norm for each row in e, e.g. e0 j
is the first row of e and eo j is the last row, which can represent the average error over
time. Secondly, we have a vector of these averaged errors, evec, then we compute the
infinite norm of it, which can be considered as the maximum relative error, erel , among
the selected output nodes.

Fig. 4. The schematic of in the reduced space, while B0, B1, B2, E1 and E2 are consistent with the
definitions in the equations in the previous sections. The outputs on the right hand side are arbi-
trary three points directional displacements. sbottom and stop are two points chosen arbitrarily in
the solder material domain, while chip is in the silicon material domain.

Figure 6 shows the relative error between the parametric reduced order model and
the full order model over the range of values for Young’s modulus. In this case, the
single material parameter is observed. As expected, the minimum error is in the vicinity
of the chosen expansion point E0 = 2.9E10 Pa. In the case of Multi material domain it
shows the same conclusion.
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Fig. 5. A comparison between the full order model and parametric reduced model in response to
temperature cycling. The response is the displacement in x-direction at the node sbottom defined
in Fig. 4

Figure 7 shows the effect of using the expansion (extraction) point in chip material
domain on the multi material parametric reduced model. The plot is generated by pro-
ducing a reduced model with K0 shown by X and Y axis of the plots, with the difference
to Fig. 6 each point on Fig. 7 is a new reduced model. Then the relative error for a cyclic
simulation (see Fig. 5) is evaluated and plotted. We can clearly observe that error dras-
tically go up when we choose an expansion (extraction) point below the lower bound of
the used curve which describes the young’s modulus temperature dependency. Despite
the fact that mathematically there should be no influence in selecting an extraction point
far from the expansion point, Industrial models show many numerical problems here.
Also, Optimality algorithm should be applied to identify the optimum choice for the
expansion point in each material domain, maybe ’Iterative Rational Krylov Algorithm’
[12]. We used the expansion and the extraction point interchangeably. Figure 8 shows
how the choice of the subspace can influence the results in multi material domain study.
In contrast to singe material parametric case, subspace building has a great influence on
the error. As far as we know, the mixing moments absence in building the subspace can
be one reason for that.

Fig. 6. Validation for a single domain parametric reduced order model. The chosen expansion
point is 2.9E10 Pa.
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Fig. 7. The influence of choosing the expansion point on relative error, the horizontal axis is the
expansion point of the first parameter (Young’s modulus) and the vertical axis is the expansion
point of the second parameter, while the color represents the error.

Fig. 8. The relation between the relative error and the size of the reduced space. On the horizontal
axis is the number of vectors generated for each parameter matrix.

5 Conclusion and Outlook

In this work, we introduced a solution for reducing a parameterized finite element
model, so that material parameters can be preserved in the symbolic form (provided,
they can be factorized in front of the system matrices). In contrast to the previously
studied parametric model order reduction, our finite element model produces a para-
metric system with parameter at the right and left hand sides. A new implementation
had been carried out to accurately build the Krylov subspaces, which allow for moment
matching between the transfer functions of the full- and reduced order model.

The results from this work build an intermediate stage towards reducing nonlin-
ear reliability models. Material parameters are very important in the micro electronics
studies and optimization processes. Parametric reduced order model based on Krylov
subspace were generated for both single material domain parameter and multi-material
domain parameters.

The optimal expansion point for such a system is a concern. This study shows
that choosing the expansion point has a great influence on the accuracy of parametric
reduced order model. In addition, the proper choice of the dimensions of the reduced
space plays important role to build an efficient and accurate reduced model.
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Thus, in this paper we have been able to achieve one of COMPAS project [17] goals,
to preserve material properties in symbolic form within a reduced order model. Our next
step is to reduce fully nonlinear reliability models.
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