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Abstract. Semantic segmentation of remote sensing images is a vital
task in the field of remote sensing and computer vision. The goal is
to produce a dense pixel-wise segmentation map of an image, where a
specific class is assigned to each pixel, enabling detailed analysis and
understanding of the Earth’s surface. This paper provides an overview
of semantic segmentation in remote sensing, starting with a definition
of the task and its significance in extracting valuable information from
remote sensing imagery. Various methods used for semantic segmenta-
tion in remote sensing are discussed, including traditional approaches
such as region-based and pixel-based methods, as well as more recent
deep learning-based techniques. Next, the paper delves into the available
datasets for semantic segmentation of remote sensing images. Many avail-
able datasets are reviewed, highlighting their characteristics, including
the number of images, image size, number of labels, spatial resolution,
format and spectral bands. These datasets serve as valuable resources
for training, evaluating, and benchmarking semantic segmentation algo-
rithms in remote sensing applications. Furthermore, the paper highlights
the broad range of applications enabled by semantic segmentation in
remote sensing, including urban planning, land cover mapping, disaster
management, environmental monitoring, and precision agriculture. Over-
all, this paper serves as a comprehensive guide to semantic segmentation
of remote sensing images, providing insights into its definition, methods,
available datasets and wide-ranging applications.

Keywords: Remote Sensing Images · Semantic Segmentation · Deep
Learning · Earth Observation

1 Introduction

Remote sensing images refer to images captured from a distance by sensors or
instruments mounted on satellites, aircraft, drones, or other platforms. These
images are used to collect information about the Earth’s surface, atmosphere,
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and other objects or phenomena without direct physical contact [44]. In recent
years, the advent of sophisticated machine learning techniques, coupled with the
abundance of remote sensing data, has paved the way for significant advance-
ments in image analysis and interpretation [10,18].

The concept of semantic segmentation has made substantial strides [21]. Its
application to remote sensing imagery spans various domains and has been a
prominent research area for decades [47]. Operating at the forefront of computer
vision, semantic segmentation equips machines with the capability to intricately
understand and demarcate image content down to individual pixels. Unlike tra-
ditional object detection methods that label entire objects or regions within
an image, semantic segmentation meticulously labels each pixel according to
its associated object or class. This finer granularity of analysis endows us with
a deeper understanding of the intricate spatial distribution of features within
remote sensing images.

The implications of semantic segmentation within the realm of remote sensing
are vast and profound. It finds application in a multitude of fields, including
urban planning, agriculture, environmental monitoring, disaster management,
forestry, and more [31]. Semantic segmentation enables the automated extraction
of vital information from imagery, unraveling patterns and changes that might
otherwise elude human perception. By unraveling the complex tapestry of pixels,
semantic segmentation unveils insights that drive informed decision-making and
facilitate holistic comprehension of the Earth’s ever-evolving landscapes.

This paper makes significant contributions to the understanding and advance-
ment of semantic segmentation within the context of remote sensing imagery.
It provides a comprehensive and cohesive overview of the concept of semantic
segmentation in the domain of remote sensing. It serves as an accessible intro-
duction for both novice and seasoned researchers, offering a clear understanding
of the underlying principles and significance of semantic segmentation in inter-
preting remote sensing data. A significant contribution of the paper lies in its
exploration of various methods and techniques employed in semantic segmen-
tation for remote sensing images. The paper conducts a thorough examination
of datasets used in training and evaluating semantic segmentation models for
remote sensing imagery. Highlighting various applications, the paper demon-
strates the real-world implications of semantic segmentation within the realm of
remote sensing.

In the reminder, we first explain the main characteristics of the remote sens-
ing image data and then define the task of semantic segmentation, outlining the
input data and the desired output. Various machine learning methods used for
semantic segmentation are discussed, along with evaluation measures to assess
the performance of trained models. The paper further summarizes and high-
lights different datasets available for training and evaluating semantic segmen-
tation models for remote sensing data. Lastly, the paper explores the potential
applications of semantic segmentation in the context of remote sensing data. It
discusses how semantic segmentation can be employed in various domains such
as urban planning, disaster management, environmental monitoring, precision
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agriculture, deforestation analysis, climate assessment, and water resource man-
agement. These applications showcase the broad range of benefits that semantic
segmentation offers in understanding and analyzing remote sensing imagery.

2 Characteristics of Remote Sensing Image Data

Remote sensing images can be broadly categorized into two main types: aerial
images and satellite images. Satellite images and aerial images are both valuable
sources of remote sensing data, but they differ in how they are acquired and the
characteristics of the imagery. Remote sensing data encompasses various aspects
of information representation, including spectral, spatial, radiometric, and tem-
poral resolutions. Spectral resolution involves the bandwidth and sampling rate
employed for data capture. High spectral resolution signifies narrower bands of
the spectrum, while low resolution indicates broader bands. These spectral bands
span diverse wavelengths such as ultraviolet, visible, near-infrared, infrared, and
microwave. Image sensors range from multi-spectral, covering numerous bands
(e.g., Sentinel-21 with 12 bands), to hyper-spectral sensors like Hyperion (part
of the EO-1 satellite), gathering thousands of spectral bands (0.4–2.5 µm) [34].

Spatial resolution refers to the Earth’s surface area represented by each pixel
in an image. Higher spatial resolutions (small pixel size) capture finer details,
whereas lower resolutions (large pixel size) retain fewer details. Moderate Reso-
lution Imaging Spectroradiometer (MODIS), for instance, observes most bands
with a spatial resolution of 1 km, where each pixel signifies a 1 km × 1 km ground
area [19]. Conversely, UAV-captured images can achieve highest spatial resolu-
tions, even less than 1 cm pixel size [33].

Radiometric resolution defines the sensor’s capability to record signals of
varying strengths (dynamic range). A larger dynamic range enables the detec-
tion of intricate details in recordings. Landsat 7 records 8-bit images, discerning
256 distinct gray values of reflected energy, while Sentinel-2 boasts a 12-bit radio-
metric resolution (4095 gray values). Enhanced radiometric resolution facilitates
the differentiation of subtle variations in ocean color, crucial for water quality
assessment.

Temporal resolution denotes how often a satellite revisits a specific observa-
tion area. Polar-orbiting satellites exhibit varying temporal resolutions, ranging
from 1 to 16 days (e.g., ten days for Sentinel-2). Temporal considerations are
pivotal in monitoring changes within observation areas, encompassing aspects
like land use alteration, deforestation, and mowing.

Satellite images are captured by sensors mounted on satellites orbiting the
Earth. These satellites can be classified into different types, including optical,
radar, and thermal satellites [44]. Satellites, with varying altitudes and predeter-
mined orbits, capture images across large expanses at regular intervals. Ranging
from a few square kilometers to entire continents, satellite images offer a global
perspective, crucial for monitoring extensive phenomena and long-term changes.

1 https://sentinel.esa.int/web/sentinel/missions.
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Spatial resolution varies by sensor and platform. High-resolution satellites unveil
details down to meters, while lower-resolution ones provide a broader view of
Earth’s surface. Temporal resolution hinges on satellite revisit periods, spanning
days to weeks or months based on specifics. Atmospheric conditions like cloud
cover and haze influence image quality, although some sensors counter these
effects, while others, like radar sensors, remain unaffected.

Aerial images are captured from platforms that are closer to the Earth’s sur-
face, such as airplanes, helicopters, or drones [33]. These platforms are equipped
with cameras or other sensors, allowing for the acquisition of images at spe-
cific locations and altitudes. Aerial images offer localized coverage and can be
acquired over targeted areas of interest. They are particularly useful for capturing
detailed imagery of specific regions, such as cities, construction sites, or natural
landscapes. Aerial images generally have higher spatial resolution compared to
satellite images. They can capture fine details, objects, and features with greater
clarity and precision. The spatial resolution of aerial images can range from cen-
timeters to a few meters, depending on the sensor and flight parameters. Aerial
images can be acquired on-demand, allowing for more frequent revisit times com-
pared to satellites. The temporal resolution of aerial images depends on factors
like flight scheduling and availability of aircraft or drones. Aerial images are less
affected by atmospheric conditions compared to satellite images. Being closer
to the Earth’s surface, they are captured under relatively clearer atmospheric
conditions, resulting in improved image quality and reduced atmospheric inter-
ference.

Both satellite and aerial images have their advantages and are used in various
applications [31]. Satellite images provide a global perspective and long-term
monitoring capabilities, while aerial images offer higher spatial resolution and
localized coverage for detailed analysis of specific areas of interest. The choice
between satellite and aerial imagery depends on the specific requirements of the
application, the desired level of detail, and the availability of data.

3 Definition of Semantic Segmentation

Semantic segmentation tasks focus on labeling each pixel of an image with a
corresponding class of what the pixel represents. The goal is to produce a dense
pixel-wise segmentation map of an image, where specific class is assigned to each
pixel. The tasks of image semantic segmentation aim at the fine-grained identi-
fication of objects in an image. In contrast to object detection, which aims at
coarser localization of the detected objects. Recently, more sophisticated exten-
sions of the semantic segmentation task, referred as instance segmentation [15]
and panoptic segmentation [20] have emerged. Instance segmentation takes into
account different semantic types and focuses on delineating multiple objects
present in an image. On the basis of instance segmentation, panoptic segmenta-
tion needs to detect and segment all objects in the image, including the back-
ground.

Semantic segmentation of remote sensing images is a fundamental task in
the field of remote sensing and computer vision. The goal is to partition the
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image into meaningful regions, enabling detailed analysis and understanding of
the Earth’s surface. Figure 1 illustrates an example of semantic segmentation of
remote sensing images in the context of buildings extraction.

Fig. 1. Semantic segmentation of buildings in remote sensing imagery: A sample image
(left) and its corresponding output (right) displaying prediction overlays. This example
is sourced from the Massachusetts Buildings dataset [25].

With the continuous advancements in semantic segmentation techniques,
they have found applications in addressing diverse and data-rich remote sens-
ing problems [31]. These problems often involve complex and high-dimensional
datasets, such as aerial and satellite images, which require accurate and detailed
analysis. The semantic segmentation of remote sensing images plays an impor-
tant role in many applications [31].

4 Methods for Semantic Segmentation

The task of semantic segmentation in remote sensing images has its unique
challenges, due to the high resolution, complex spatial structures, diverse object
scales, and the huge amounts of data.

Initially, traditional machine learning methods were the go-to solutions for
this task, primarily grouped into two categories: pixel-based methods and region-
based methods [46]. Both, pixel-based and region-based methods, relied heavily
on handcrafted features and manual or heuristic threshold selection. Although
sometimes effective, these methods often struggled with complex images with
varying lighting conditions, textures, and scales. As a result, their performance
could be inconsistent and their application limited compared to modern deep
learning-based approaches [47].
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The advent of deep learning brought forth a paradigm shift in semantic seg-
mentation of remote sensing imagery. Deep learning models, unlike traditional
machine learning techniques, can automatically learn hierarchical representa-
tions from raw data. This inherent ability enables them to detect complex pat-
terns, handle high-dimensional data, and minimize the need for manual feature
engineering, which is crucial for remote sensing imagery [21].

One of the most prominent deep learning models applied in the context of
this task are the Convolutional Neural Networks (CNNs). CNNs are a class
of deep learning models that excel at processing grid-like data, such as images
[14].

Fully Convolutional Networks (FCNs) are an important development in
the field of semantic segmentation. Unlike traditional CNNs that are confined
to fixed-size inputs and outputs, FCNs are designed to handle inputs of any size
and produce corresponding spatial outputs. This quality makes them particularly
adept at pixel-level prediction tasks, a key requirement in semantic segmentation
[22].

U-Net, initially designed for biomedical image segmentation, has proven to
be highly effective in the semantic segmentation of remote sensing images as
well. A unique mark of the U-Net architecture is its symmetric encoder-decoder
structure. Its structure delivers detailed and accurate segmentation maps, even
when working with relatively small datasets, a feature that has made U-Net
particularly popular for tasks requiring precise localization [13].

Multi-Scale Contextual Models, represented by notable architectures
such as DeepLabv3 [4] and Pyramid Scene Parsing Network (PSPNet) [48],
introduce a novel approach to semantic segmentation that seeks to incorporate
context information at varying scales. This is particularly beneficial in remote
sensing image analysis where objects of interest often appear at different scales
and densities.

Attention-based are pivotal in semantic segmentation of remote sensing
images due to their capacity to allocate computational focus selectively [12].
They employ an attention mechanism, which uses attention maps, learned during
the training process, to assign varying weights to different regions in the feature
maps. This capability is particularly crucial for remote sensing images where
some regions can be more relevant than others depending on the task at hand.
The weights assigned by the attention mechanism help to amplify the influence of
important regions and suppress the less important ones in the subsequent layers
of the model, enhancing the ability to distinguish different land cover classes or
physical objects within the imagery.

The Masked-attention Mask Transformer (Mask2Former) architecture
falls in this category [6]. It is a novel architecture proficient in managing various
image segmentation tasks such as panoptic, instance, or semantic segmentation.
The design is built upon a simple meta architecture, which includes a backbone
feature extractor, a pixel decoder, and a Transformer decoder. A main feature
is the incorporation of masked attention within the Transformer decoder.
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The evaluation of the semantic segmentation models in the context of remote
sensing images is primarily done using Pixel Accuracy, Mean Accuracy, Intersec-
tion over Union (IoU) and F1 Score (Dice Coefficient). Further details on the
definition of the various metrics can be found in [31].

5 Datasets for Semantic Segmentation of Remote Sensing
Images

There are numerous datasets specifically designed for semantic segmentation
of remote sensing images that have been widely used for training and evaluat-
ing algorithms. Table 1 presents a summary of these datasets, including their
source, type, number of images, image size, spatial resolution, format and pro-
vided bands. The datasets are with different spatial resolutions and sizes. The
number of semantic labels in these datasets ranges from 2 to 20.

The datasets in the table exhibit a wide range of sources. While the majority
of the datasets consist of aerial RGB images, there are also datasets that include
multi-spectral data from specific satellite missions such as Sentinel-1, Sentinel-
2, and Gaofen-2 [5]. Additionally, some datasets are sourced from platforms
like Google Earth. It is worth noting that a significant portion of the datasets
are obtained using unmanned aerial vehicles (UAVs), specifically drones, which
provide high-resolution imagery for various applications.

Several datasets are specifically designed to support multi-class semantic seg-
mentation tasks for accurate land cover mapping, such as SEN12MS [39], Sem-
City Toulouse [37], Christchurch Aerial Semantic Dataset (CASD) [2], DFC2022
[17], DLRSD [40] and Dubai’s Satellite Imagery Dataset [28]. The LandCover.ai
dataset, also known as Land Cover from Aerial Imagery, is specifically designed
for the automatic mapping of buildings, woodlands, water, and roads from aerial
images [3]. It contains a selection of aerial images taken over the area of Poland.
The Inria Aerial Image Labeling dataset focuses on the task of semantic segmen-
tation of aerial imagery [24] by providing ground truth data for two semantic
classes: building and not building.

The Massachusetts Roads dataset consists of 1171 aerial images of the state
of Massachusetts [25]. The target maps for the dataset are created by converting
road centerlines obtained from the OpenStreetMap project into raster format.
The labels are generated without any smoothing, using a line thickness of 7
pixels. The Massachusetts Buildings Dataset is composed of 151 aerial images
capturing the Boston area [25]. The target maps for this dataset are generated
by converting building footprints obtained from the OpenStreetMap project into
raster format. GTA-V [49] is synthetic dataset for remote sensing image segmen-
tation tailored for building extraction.

The Potsdam dataset [38] and Vaihingen dataset [38] are for urban seman-
tic segmentation. These datasets are used in the 2D Semantic Labeling Contest.
The datasets encompass five foreground classes: impervious surface, building, low
vegetation, tree, car and one background class referred as clutter. The masks for
these datasets are 3-channel geotiffs with unique RGB values for each class. The
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Remote Sensing Land-Cover dataset for Domain Adaptive Semantic Segmenta-
tion (LoveDA) [45] encompasses two scenes (urban and rural) with significant
challenges arise from the presence of multi-scale objects, intricate background
elements, and uneven class distributions within the dataset. The Gaofen Image
Dataset (GID-15) for semantic segmentation [42] contains 150 satellite images.
The images are taken by the Gaofen-2 (GF-2) satellite over 60 cities in China.
The images are organized into 15 semantic categories. The DeepGlobe Land
Cover Classification Challenge dataset is designed for semantic segmentation
tasks [9]. It includes high-resolution sub-meter satellite imagery for classifying
land cover categories.

The Cloud Cover Segmentation Dataset was created through a crowdsourc-
ing competition and subsequently validated by a team of expert annotators [35].
This dataset comprises Sentinel-2 satellite imagery along with corresponding
cloud labels stored as GeoTiffs. The 95-Cloud dataset is an expansion of the
previously released 38-Cloud dataset for cloud detection [27]. This binary classi-
fication allows for the precise identification and separation of cloudy areas within
the imagery.

FloodNet, as described in [36], offers high-resolution UAS imagery with
detailed semantic annotations specifically focusing on damage assessment after
Hurricane Harvey. The dataset is captured using DJI Mavic Pro quadcopters,
providing valuable information for flood damage analysis. The semantic anno-
tations in FloodNet offer precise labeling for various classes, enabling accurate
assessment of flood-related damages. ETCI2021 Flood Detection dataset [30]
contains data from the flood event detection contest, organized by the NASA
Interagency Implementation and Advanced Concepts Team. The primary objec-
tive of the dataset is to foster innovation in the detection of flood events and
water bodies.

RIT-18 [18] dataset contains very-high resolution multispectral imagery col-
lected by an unmanned aircraft system. The primary use of this dataset is
for evaluating semantic segmentation frameworks designed for non-RGB remote
sensing imagery. Several datasets, such as UAVid [23], Aeroscapes [32], DroneDe-
ploy [11] and Semantic Drone Dataset [43] are specifically designed to enhance
semantic understanding of urban scenes. These semantic segmentation datasets
are with fine-resolution images obtained using UAVs.

6 Applications Enabled by Semantic Segmentation
in Remote Sensing

With the ever-expanding number of aerial and satellite images, coupled with
the constant development of modern deep-learning techniques, the application
of semantic segmentation of aerial images takes significant contribution to wide
range of applications, like urban planning, land cover mapping, disaster man-
agement, environmental monitoring, and precision agriculture.

Semantic segmentation of remote sensing images, can help urban planners
to gain insights into various aspects of urban environments, including the iden-
tification of buildings, roads, vegetation, water bodies, and other infrastructure



Semantic Segmentation of Remote Sensing Images 135

T
ab

le
1.

P
ro

pe
rt

ie
s

of
th

e
di

ffe
re

nt
se

m
an

ti
c

se
gm

en
ta

ti
on

da
ta

se
ts

.
T

he
ta

bl
e

co
nt

ai
ns

in
fo

rm
at

io
n

fo
r

th
e

so
ur

ce
,

ty
pe

,
nu

m
be

r
of

im
ag

es
,i

m
ag

e
si

ze
,s

pa
ti

al
re

so
lu

ti
on

,f
or

m
at

an
d

pr
ov

id
ed

ba
nd

s
fo

r
th

e
di

ffe
re

nt
da

ta
se

ts
.

N
am

e
So

ur
ce

#
Im

ag
es

Im
ag

e
Si

ze
S
p
at

ia
l
R

es
.

#
L
ab

el
s

F
or

m
at

B
an

d
s

L
an

d
C

ov
er

.a
i
[3

]
A

er
ia

l
10

67
4

51
2

×
51

2
0.

25
–0

.5
m

5
ge

o
ti

f
R

G
B

In
ri

a
[2

4]
A

er
ia

l
36

0
50

00
×

50
00

0.
3
m

2
ge

o
ti

f
R

G
B

M
as

sa
ch

us
et

ts
R

oa
ds

[2
5]

A
er

ia
l

11
71

15
00

×
15

00
1
m

2
ti

f
R

G
B

M
as

sa
ch

u
se

tt
s

B
u
il
d
in

gs
[2

5]
A

er
ia

l
15

1
15

00
×

15
00

1
m

2
ti

f,
p
n
g

R
G

B

V
ai

h
in

ge
n

[3
8]

A
er

ia
l

33
24

94
×

20
64

0.
09

m
6

ge
o

ti
f

R
G

,
N

IR

P
ot

sd
am

[3
8]

A
er

ia
l

38
60

00
×

60
00

0.
05

m
6

ge
o

ti
f

R
G

B
,
N

IR

L
ov

eD
A

[4
5]

G
oo

gl
e

E
ar

th
59

87
10

24
×

10
24

0.
03

m
7

p
n
g

R
G

B

G
ID

-1
5

[4
2]

G
ao

fe
n-

2
15

0
68

00
×

72
00

3
m

15
ti

f
R

G
B

D
ee

pG
lo

b
e

L
an

d
C

ov
er

[9
]

D
ig

it
al

G
lo

b
e

V
iv

id
+

80
3

24
48

×
24

48
0.

5
m

7
p
n
g,

jp
g

R
G

B

U
A
V

id
[2

3]
U

A
V

42
0

40
96

×
21

60
n
/a

8
p
n
g

R
G

B

C
lo

ud
C

ov
er

Se
gm

en
ta

ti
on

[3
5]

Se
nt

in
el

-2
22

72
8

51
2

×
51

2
10

m
2

ge
o

ti
f

M
S
I

95
-C

lo
u
d

[2
7]

L
an

ds
at

8
43

90
2

38
4

×
38

4
30

m
2

p
n
g

R
G

B
,
N

IR

E
T

C
I2

02
1

F
lo

od
D

et
ec

ti
on

[3
0]

Se
nt

in
el

-1
66

81
0

25
6

×
25

6
5–

20
m

2
p
n
g

SA
R

F
lo

od
N

et
[3

6]
U

A
V

23
43

40
00

×
30

00
0.

01
5
m

10
jp

g,
pn

g
R

G
B

SE
N

12
M

S
[3

9]
Se

nt
in

el
-1

/2
,
M

O
D

IS
18

06
62

25
6

×
25

6
10

m
33

ti
f

SA
R

,
M

SI

C
A

S
D

[2
]

A
er

ia
l

4
48

00
×

36
00

0.
1
m

4
ti

f
R

G
B

S
em

C
it
y

T
ou

lo
u
se

[3
7]

W
or

ld
vi

ew
-I

I
16

35
04

×
34

52
2
m

7
ge

o
ti

f
M

S
I

D
F
C

20
22

[1
7]

A
er

ia
l

39
81

20
00

×
20

00
0.

5
m

16
ge

o
ti

f
R

G
B

D
L
R

SD
[4

0]
A

er
ia

l
21

00
25

6
×

25
6

0.
30

5
m

17
ti

f,
p
n
g

R
G

B

D
u
b
ai

’s
S
at

el
li
te

Im
ag

er
y

D
at

as
et

[2
8]

A
er

ia
l

72
di

ff
er

en
t

si
ze

s
n
/a

6
jp

g,
pn

g
R

G
B

G
T
A

-V
-S

ID
[4

9]
S
yn

th
et

ic
12

1
50

0
×

50
0

1
m

2
p
n
g

R
G

B

R
IT

-1
8

[1
8]

U
A
V

3
di

ff
er

en
t

si
ze

s
0.

04
7
m

19
m

at
M

S
I

A
er

os
ca

p
es

[3
2]

U
A
V

32
69

12
80

×
72

0
n
/a

12
jp

g,
pn

g
R

G
B

D
ro

ne
D

ep
lo

y
[1

1]
U

A
V

55
11

08
4

×
12

32
6

0.
1
m

7
ti

f,
p
n
g

R
G

B

Se
m

an
ti

c
D

ro
n
e

D
at

as
et

[4
3]

U
A
V

60
0

60
00

×
40

00
n
/a

20
p
n
g

R
G

B



136 V. Spasev et al.

elements [3,24]. Further more, it can helps in understanding the spatial distri-
bution and patterns of the different land cover types, which is crucial for urban
planning tasks such as infrastructure development and transportation planning.
The semantic segmentation of remote sensing images can support the analysis
of urban growth and change over time. The study presented in [41] introduces
an approach that involves comparing segmented images taken at various time
intervals. This allows urban planners to analyze the dynamics of urban develop-
ment, monitor changes in land use, and evaluate the impact of urban planning
policies and interventions.

During natural disasters such as floods, earthquakes, or wildfires, remote
sensing images can be used to monitor the affected areas and detect changes over
time [7,16], [?]. In [16], deep learning techniques including PSPNet, DeepLabV3,
and U-Net are employed on the FloodNet dataset [36] to detect floods. The focus
of the study is on identifying flooded roads and buildings, as well as distinguish-
ing between natural water and flooded water.

By leveraging the spatial and temporal resolution of remote sensing images,
semantic segmentation can also facilitate the monitoring and management of
post-disaster recovery and reconstruction activities. In [7], the authors present an
improved Swin transformer for semantic segmentation of post-earthquake dense
buildings in urban areas. The method is used to identify damaged buildings,
allowing emergency response teams to prioritize rescue and recovery efforts.

One of the primary applications of semantic segmentation in environmen-
tal monitoring is the detection and monitoring of deforestation. By segmenting
satellite or aerial images, semantic segmentation algorithms can identify forested
areas and distinguish them from cleared or degraded regions. In [1], the authors
propose a specialized variant of the DeepLabv3+ architecture called DeepLab
Change Detection (DLCD) for detecting deforestation in areas of significant for-
est loss.

Climate monitoring is another important aspect of environmental monitoring
that benefits from semantic segmentation. By analyzing remote sensing images,
semantic segmentation can identify and classify different climate-related features,
such as clouds, aerosols, atmospheric conditions, and surface temperature vari-
ations [27,35]. This information aids in climate modeling, weather forecasting,
and understanding the dynamics of climate change.

By segmenting remote sensing images, semantic segmentation can identify
water bodies, such as rivers, lakes, and reservoirs, as well as detect changes
in water levels and quality. Further more, Semantic segmentation aids in map-
ping and monitoring wetlands, coastal areas, and other ecologically sensitive
water-based ecosystems. In [29], the authors utilize two semantic segmentation
methods, namely DeepLabv3+ and SegNet, for the detection of water bodies.
The objective of this detection is to estimate water levels and monitor temporal
fluctuations in water levels.

Important aspect of precision agriculture is crop health monitoring. Semantic
segmentation can detect and classify vegetation health indicators, such as areas
affected by pests, diseases, nutrient deficiencies, or water stress. For example, in
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[8] a high-resolution aerial imagery and UNet with a convolutional LSTM is used
to accurately detect regions of the field showing nutrient deficiency stress. This
approach minimizes resource wastage and optimizes crop health and yield. Water
management is another critical component of precision agriculture. By analyz-
ing remote sensing images, semantic segmentation can map and monitor soil
moisture levels, water stress, and irrigation efficiency across agricultural fields.
Furthermore, semantic segmentation aids in weed detection and management as
in [26] where semantic segmentation is applied in two stages using UNet archi-
tecture. This approach promotes sustainable weed control practices and reduces
the development of herbicide resistance.

7 Conclusion

In conclusion, semantic segmentation of remote sensing images is a powerful tech-
nique that enables the accurate classification and labeling of individual pixels or
regions within an image, based on their semantic meaning. It plays a crucial role
in various applications across different domains. The paper provides a compre-
hensive overview of semantic segmentation, starting with its definition and the
underlying methods used for image analysis and classification. It discusses the
importance of high-quality datasets for training and evaluation purposes, high-
lighting several notable datasets available for semantic segmentation of remote
sensing images.

Furthermore, the paper explores the wide range of applications where seman-
tic segmentation is utilized. It covers areas such as urban planning, disaster man-
agement, environmental monitoring, precision agriculture, deforestation, climate
analysis, water management, and more. Each application benefits from the accu-
rate and detailed understanding of land cover and object classification provided
by semantic segmentation. The diverse datasets described in the paper, ranging
from aerial and satellite imagery to UAV and synthetic data, reflect the breadth
of sources used for remote sensing image analysis. The inclusion of different
spectral bands and data formats demonstrates the flexibility and adaptability of
semantic segmentation techniques.
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