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Abstract. There is an increasing need to share sensitive information
within and beyond organisations. Protecting this information is vital for
commercial and regulatory reasons. Homomorphic Encryption (HE) has
come to the fore as a mechanism to enable the sharing of confidential data
in a secure and private manner. Multiple open-source libraries are now
publicly available, providing organisations with the tools to utilise the
advantages of HE. While research devoted much effort to the academic
and cryptographic aspects of HE schemes, research explicitly focusing on
real-world financial applications is comparably rare. There is a need to
provide a comparative analysis and related benchmarking of the most
suitable HE libraries, having fixed the functional and non-functional
requirements of the enterprise application of interest. We consider the
motivation and background for HE and discuss the most promising open-
source HE libraries. Having introduced real-world use cases in a financial
context, we then illustrate outstanding challenges and how we plan to
circumvent open points, introducing HELT (Homomorphic Encryption
Libraries Toolkit).

Keywords: Homomorphic Encryption · Private computation ·
Real-world applications

1 Introduction

Financial institutions create, process, and control significant amounts of data.
This data can have significant value, especially when combined with other sources
or types of data. Such sources include other financial institutions and service
organisations, government and regulatory bodies, and other units within their
own organisation. However, sharing such data is not always possible for legal,
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regulatory or commercial reasons. As such, methods are required that allow the
use and analysis of this data in a confidential manner. Homomorphic Encryp-
tion (HE) is a promising approach to the problem of computation of confidential
data. Since the introduction of Fully Homomorphic Encryption (FHE) in 2009
[13], much effort has been devoted to optimising the drawbacks brought by the
enhancements introduced by the work of Gentry. In this direction, the academic
community has developed many libraries to test and allow HE use. The first ver-
sions of these libraries were not ready for enterprise and real-world applications.
HE realises not only the protection of data in-transit or at-rest but also in use.
It represents paramount progress in data analysis due to the increasing usage
of personal data and its applications in everyday life. Moving to a more spe-
cific context, we can observe how financial institutions and services have access
to structured and unstructured personal data due to their varied duties. Fur-
thermore, fintech companies and public institutions could also use public cloud
services. It appears more evident that legal instruments, e.g., Non-Disclosure
Agreements (NDA) [18], are not protective enough for data owners and finan-
cial counterparties. There is a demand for more stable and sound technology
solutions to the problem of confidentiality of personal data, such as PETs (Pri-
vacy Enhancing Technologies). Of course, HE is only one of the available PETs
on the market. We focus on this cryptographic technique taking into account
two different motivations: (i) many PETs fail with the so-called privacy-utility
trade-off : an amount of leakage about confidential data should be accepted to
obtain valuable results from the computation [27]; (ii) the recent and consistent
investments in the HE field in the last years [20].

Despite attempts to make HE libraries more user-friendly, building
enterprise-ready applications that act on homomorphically encrypted data still
requires a range of technical experts: (i) the data analyst, which could either
be a data scientist or an artificial intelligence expert, or a (typically untrusted)
researcher that may be external to the organisation; (ii) the software developer,
which helps in the integration of the new application in the already existing
legacy environment, provided all the functional and non-functional constraints;
(iii) the cryptographer, which is pivotal to choose the suitable library and to
choose the right HE context, that as we will see in the remainder of the paper,
is not an easy task for a non-cryptographer. Moreover, new and existing enter-
prise applications should be translated into a HE-friendly format to support the
computation. It is not easy to make these three actors work together. Further-
more, an expert skilled in all these aspects is yet to be available in the market.
Enterprises need a solution to fix this gap, at least partially.

This paper conveys the idea that it is necessary to build open-source bench-
marking tools that allow understanding of some crucial issues:

– if the existing HE libraries are usable for the data analyst;
– which library fits a given application;
– what means integrating them with the existing enterprise environment.
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We propose a two-step approach for adopting HE in an enterprise context to
reach this objective. The first step is providing the data analyst with encrypted
confidential data and an HE environment with selected open-source libraries.
The cryptographer will guide the analyst in building the proper analysis in a
HE-friendly format. A phase of control of the results by the Data Owner may
be envisaged to avoid re-identification due to analyses aimed at extracting con-
fidential data. The second step will provide an HE toolbox where some standard
functions, e.g., the primitive blocks of statistical computations or some simple
machine learning or Natural Language Processing tools, are implemented, given
a chosen library, and then exposed to the data analyst, apart from a set of param-
eters. This step should be carefully implemented, considering the functional and
non-functional requirements of the involved actors. The choice of parameters is
challenging because the HE context highly depends on the target application and
the employed data. The goal is to provide a set of rules and predefined parame-
ters. This paper is a starting point for analysing some available HE libraries. It
represents a short work-in-progress report for developing a playground where the
data analysts, helped by the cryptographers in the initial phase, can experiment
with which library is more suitable for the selected application.

Outline. The remainder of the paper is organised as follows. Section 2 describes
the industrial context we are touching. Section 3 introduces a proper background
for HE. In Sect. 4, we describe the main libraries, giving a valuable overview of
implemented schemes and their parameters. Section 5 discusses the requirements
for a possible HE benchmarking tool. In Sect. 6, we review the main results avail-
able in the literature. Finally, Sect. 7 concludes the paper and gives directions
for future work.

2 Industrial Context

Although HE has been successfully employed in medicine [33], we focus on the
financial institutions’ context. Indeed, governments and institutions have access
to confidential data for their purposes. Among institutions, we will consider the
case of a central bank, which owns different confidential assets, like datasets
about companies, balance sheets of banks and intermediaries, payment systems
data, suspicious transactions data, and many others. These datasets are instru-
mental in ensuring that a central bank acts, e.g., as the supervisory authority or
is proficient in economic research, collaborating with academia and other statis-
tics institutions. Each dataset has a different data owner who is the only one in
charge of manipulating and analysing the data. The possibility of collaboration
between external actors, such as data scientists or academic researchers, and
the sharing of confidential assets with other institutions and academia are chal-
lenging. It may undergo ad-hoc remote processing systems [4] or anonymisation
processes [7]. Furthermore, the confidential nature of the data assets cannot fully
unravel the potential of public cloud computing. In Fig. 1, the depicted use cases
are locked due to the confidential nature of the data. We can deduce that, in
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Fig. 1. Locked enterprise use cases due to privacy concerns.

the financial context, two are the main scenarios that ask for a solution based
on HE [17,32], as in Fig. 2:

– private outsourcing computation, where an institution may decide to use pub-
lic cloud resources to execute computational intensive tasks on confidential
data;

– privacy preserving data science, where an external actor (that may be a
machine learning expert, a researcher from another institution, or a data
scientist from the same institution that is not the data owner) has to perform
tasks like, e.g., Private Prediction as a Service (PPaaS), Private Training as
a Service (PTaaS), or statistical analysis on confidential data.

Moreover, the use of HE in this second scenario protects confidential data from
untrusted third parties and the intellectual property of the algorithm developed
by the external actor [5]. Public cloud resources could enable this scenario, espe-
cially in the case of PTaaS. We may deal with these different situations in these
three scenarios: (i) encrypted data, plain model, (ii) encrypted data, encrypted
model, and (iii) multiple encrypted data from different data owners. Multikey
Homomorphic Encryption could enable the last one [21]. With their different use
cases, these scenarios can represent practically relevant HE applications in our
industrial context. Sharing a statistical dataset ensuring confidentiality requires
fixing functional and non-functional requirements that enable a wise choice of
the HE library to support private computation. In the case of private compu-
tation with HE, confidential data will undergo a new data-processing pipeline:
as we will see in Sect. 3, working with homomorphically encrypted data requires
a phase of Encoding before Encryption; the classical Extract-Transform-Load
(ETL) process should be complemented with these two phases before sharing
data between counterparties. The design of these phases is closely tied to the
nature of data (e.g., textual or numeric, structured or unstructured) and the
application we need to deploy: having a benchmarking environment will help
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Fig. 2. Private Prediction as a Service (PPaaS) and Private Training as a Service
(PTaaS)

choose the most appropriate HE library for each application. In Table 1, we
gathered the requirements from the point of view of the three actors that are
involved in our design process, as seen in 1: (i) the data analyst, (ii) the data
owner, and (iii) the software developer. From this requirements gathering, we
will exclude the cryptographer that will set up the HE test environment and
assist these actors in the application deployment.

Table 1. Requirements for private computation with Homomorphic Encryption.

Actor Requirement

Data Analyst Usability

Documentation and toy examples

Parameters setting

Programming language

Ease of data preparation phase

Confidentiality of models

Data Owner Data confidentiality

Correctness of results

Performance

Cloud/on-premise solution

Software Developer Integration in the enterprise environment

Code maintenance and upgrade
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3 Background

We introduce the main results of HE theory to pose a common language for the
remainder of the paper. The interested reader may find an in-depth discussion
in [1,22].

A Primer. Homomorphic Encryption (HE) allows computation on encrypted
data by employing an homomorphism, a structure-preserving map between two
algebraic groups, i.e., the plaintext group P and the ciphertext group C.

For an asymmetric HE encryption scheme, it holds:

Encr(pkencr, p1 � p2) = Encr(pkencr, p1) ◦ Encr(pkencr, p2) = c1 ◦ c2 (1)

where Encr(·) is the encryption function, � and ◦ are defined over the group P
and C.

Equation 1 means that computing � over plaintexts p1 and p2 is equivalent
to computing ◦ on related ciphertexts c1 and c2.

HE schemes are required to work with complex functions, not just single
operations. Beyond key generation, encryption, and decryption functions, the HE
scheme defines an evaluation function as follows, Eval(pkevalf, [c1, c2]), where
the function f should belong to the set of the admissible functions for that
particular scheme to be correct:

p1 � p2 = Decr(sk, c1 ◦ c2) (2)

To this end, the function f should be polynomial, i.e., expressible as a combi-
nation of multiplications and additions; in other words, the function f has to be
homomorphic-ready. For practical applications of our interest, such as machine
learning tasks or statistical analysis, this is not to be taken for granted: many
approximation techniques for complex f have been explored, such as (i) Taylor
expansion series approximation, (ii) Chebychev polynomials, (iii) look-up table,
(iv) least squares.

Lattice and Ring-Based Cryptography. The security of HE schemes relies
on the hardness of known problems on lattices that act as the basis for their con-
struction. Learning With Errors (LWE) and Ring Learning With Errors (RLWE)
are the most relevant.

Roughly, the encryption operation can be seen as adding random noise to
the plaintext, and the decryption operation is recovering the plaintext after
filtering the noise using the secret key. The random noise grows as the number
of operations increases. When the number of multiplications exceeds a fixed
depth, the noise becomes a burden for correct decryption that cannot be ensured
anymore. Noise growth is typically associated with a noise budget that depends
on the type of scheme. Furthermore, an unwanted expansion in the ciphertext
and the key size happens during computation. Moreover, the hardness of these
problems contributes to the computational complexity of the HE scheme.

Bootstrapping and Optimizations. When the depth of the function to be
homomorphically evaluated is not known a priori, e.g., if we are dealing with a
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neural network, LHE is not enough, and bootstrapping, introduced by Gentry in
2009 [13], is the instrument to efficiently transform an LHE scheme with certain
properties to an FHE scheme.

The bootstrapping operation reduces noise and allows correct decryption for
any function. A second level of homomorphic encryption with a noise budget
greater than the first level is applied to the ciphertext. Then, it is possible
to decrypt the ciphertext with respect to the first encryption key, removing
accumulated noise and restoring a new noise budget. The sufficient condition
to apply bootstrapping to an LHE scheme is that the decryption circuit of the
latter is included in the set of admissible functions to be evaluated. Various
optimisations have been proposed to overcome the described inherent limits; we
will find them optional in many libraries:

– modulus-switching, that prevents the ciphertext from growing without control.
– key-switching, that enables the revert of the new secret key to the original

secret key, decreasing the size of the ciphertext.
– relinearization, that reduces the size of the ciphertext modulus.

These optimisation techniques mostly manage noise in LHE schemes and are
employed when the depth of the circuit to be evaluated is known in advance. At
the same time, bootstrapping cannot be avoided in all other use cases.

HE Schemes. HE schemes are classically classified into four main classes,
depending on the type and the number of elementary operations. For real-world
applications, we are mainly interested in (i) Leveled Homomorphic Encryption
(LHE) schemes, where additions, multiplications, and their combination are
allowed but only up to a fixed number, and (ii) Fully Homomorphic Encryption
(FHE) schemes, where both addition and multiplication are allowed, without
limits on the number of operations.

Various HE schemes have been implemented in HE libraries, mainly based
on LWE or RLWE problems. One of the first is the BGV scheme that works
over the integers, based on the LWE problem, and it is characterised by noise
and ciphertext growth. Other popular schemes are, e.g., (i) CKKS which allows
working with real numbers, and (ii) TFHE, which is based on the hardness of
LWE assumption over the torus and provides fast bootstrapping.

Usually, LHE schemes are more practical and ensure a good trade-off between
computational complexity, performance time, and privacy preservation. This is
true in all the use cases characterised by the fixed depth of the computation.

Encoding Raw Input Data. Input data to be encrypted could have many
different formats, highly dependent on the chosen HE scheme. Batching allows
the packing of many plaintexts into a single ciphertext, enabling parallel homo-
morphic computation and slot-wise operations in a SIMD fashion. Each value is
independently encoded in a slot inside an array. Binary representation of plain-
texts is often available. More sophisticated encoding methods can be found for
schemes based on the TFHE scheme, where binary or real values for each slot
are taken on the torus.
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4 Available Libraries

This section presents an overview of the HE libraries we will compare. We choose
the following seven libraries considering various features, as stated in Table 1.
We excluded from our analysis wrappers or compilers; we aim to explore HE
libraries already employed in the research community [17]. All the libraries are
open-source since they are still at a research level. These libraries are addressed to
a developer with advanced cryptographic skills: defining a cryptographic context
where HE parameters for the selected scheme are chosen is necessary. Table 2
and 3 summarise supported operations and main features for each library, except
for OpenFHE, that we plan to include in our future work.

4.1 HElib

HElib is an open-source C++ library developed by IBM and the Algorand Foun-
dation. Two schemes are available: leveled and fully BGV for integers and lev-
eled CKKS for real and complex numbers. Packing enables the construction of
an LHE scheme and an FHE with bootstrapping where available. Another type
of representation is the binary one, which is used only for the BGV scheme and
could be employed for FHE and LHE.

The encryption context creation requires setting many parameters, which
are inherently tight to the inner logic of the library; even if in HElib scripts and
utilities are available to help the developer, this choice is challenging for a non-
cryptographer. This is true especially for the BGV scheme, while CKKS default
parameters are present. It is worth remarking that in HElib, noise and time of
execution are two parameters that need to be optimised, and typically the size
and the depth of the SIMD circuits are descriptive of these constraints. We first
fix the bound on the noise, i.e., the depth of the circuits, and then optimise
the running time. Noise is also tightly related to the security level, which is
recommended to be fixed at 128 bits.

4.2 SEAL

SEAL [28] is an open-source C++ library developed at Microsoft. The available
schemes are BFV for integers and CKKS for real values. SEAL provides only the
leveled mode, so the type of computation should be known in advance to balance
the encoding and encryption parameters correctly. The encoding happens in two
ways, depending on the selected HE scheme. A batch encoder is employed for the
BFV scheme, while for the CKKS scheme, a CKKS encoder is implemented. The
encryption context creation usually needs three parameters, which also influence
the encoding phase. Two parameters are common to both BFV and CKKS
schemes and alter both noise budget and performance, and the third parameter
is peculiar to the chosen scheme. Contextually to the encryption context, the
SEAL library creates a modulus switching chain, a set of encryption parameters
derived from the original ones, which improves performance and communication
cost in the BFV scheme. In the CKKS scheme, the modulus switching prevents
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Table 2. Admitted operations for each library. CT stands for ciphertext, PT stands
for plaintext.

Library HE
Scheme

CT +
PT

CT + CT CT * PT CT * CT Column
shift

Row
shift

Binary
circuit

HElib BGV
bin.

✗ � ✗ � � ✗ �

BGV
pack

� � � � � ✗ ✗

CKKS � � � � � ✗ ✗

SEAL BFV � � � � � � ✗

CKKS � � � � � ✗ ✗

PALISADE BGV � � � � Rotate Rotate ✗

BFV � � � � ✗ ✗ ✗

CKKS � � � � Rotate Rotate ✗

FHEW ✗ ✗ ✗ ✗ ✗ ✗ �
RGSW ✗ � ✗ � � ✗ �

Concrete LWE � � � External product Rotate Rotate �
GLWE � � � External product Rotate Rotate �

LATTIGO CKKS � � � � Rotate Rotate ✗

BGV � � � � Rotate Rotate ✗

BFV � � � � Rotate Rotate ✗

noise growth. A valuable feature of SEAL is the automatic parameter selection,
which helps the user fix the parameters based on the state-of-the-art attacks
against RLWE.

4.3 PALISADE

PALISADE [19] was born as a Sponsored Project of NumFOCUS, a nonprofit
charity in the United States, and has the contributions of various cryptogra-
phers and developers coming from, e.g., Duality Technologies or the HE commu-
nity. It is an open-source C++ library built on lattice-based cryptography. It is
designed to be modular and extensible, providing a well-documented codebase
and a transparent system to choose parameters, encryption schemes, and data
encoding methods. The various features are offered in terms of capabilities that
the user has to enable, e.g., Encryption, SWHE, and LHE; for each of these
capabilities, the list of available schemes and related operations are given, as
summarised in Table 2. Various representations for polynomials are available;
the recommended one is DCRTPoly, where the Chinese Remainder Theorem
format represents polynomial coefficients. Various encoding types are available
in PALISADE, like Integer, Fractional, or Packed encoding. The creation of con-
text depends on the enabled capability and related HE scheme, and it requires
the choice of ring dimension, multiplicative depth, and batch size for schemes
like BGV, BFV, and CKKS.
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Table 3. HE main features.

Library Lang Multithread SIMD Multi-key Mod Switch Key Switch Bootstr Relin

HElib C++ � � ✗ � � BGV �
SEAL C++ � � ✗ � ✗ ✗ �
PALISADE C++ � � ✗ � � � BGV

TFHE C++ � ✗ ✗ ✗ � � ✗

Concrete Rust ✗ � ✗ ✗ � � ✗

Lattigo Go ✗ ✗ � � � CKKS �

4.4 OpenFHE

The PALISADE project is converging into the OpenFHE open-source project
[6], which is supported by DARPA and has as contributors many of the leading
developers of the major open-source HE libraries. It is a C++ library that sup-
ports the most useful HE schemes and is based on the hardness of the RLWE
problem.

The available schemes are (i) BGV and BFV for modular arithmetic over
finite fields, (ii) CKKS for vectors of real and complex numbers, (iii) DM, and
CGGI, for boolean circuits and decision diagrams. SIMD packing is available
for both vectors of integers and real numbers. This library foresees bootstrap-
ping for all HE schemes in future versions. Each scheme runs in AUTO and
MANUAL modes to overcome inherent difficulties in setting parameters and
applying optimisations such as modulus/key switching, rescaling for CKKS, or
bootstrapping. Integration with the existing compilers is easy to obtain. Multi-
ple backends, e.g., GPU and FPGA, provide hardware acceleration support. It
also enables multi-party versions of such HE schemes.

We plan to include OpenFHE in our future benchmarking tool.

4.5 TFHE

TFHE (Fast Fully Homomorphic Encryption Library over the Torus) [11] is a
C/C++ library, which improves the bootstrapping time to 0.1 s, as in [10,12].
It implements a generalisation of LWE and RLWE on the Torus.

TFHE provides both leveled and bootstrapping modes; bootstrapping is exe-
cuted after every boolean operation. The inputs are integer values, and the user
decides the precision of the plaintext representation, i.e., the number of bits. The
key management is facilitated since only two keysets are required: (i) the Secret
Keyset, which is used to encrypt and decrypt confidential data symmetrically,
and (ii) the Cloud Keyset, which is used to perform computation and bootstrap-
ping on the ciphertexts. The user has to rewrite the required computation as a
boolean circuit using the available binary gates. The encryption context is auto-
matically created by specifying the security level and using the related default
parameters.
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4.6 Concrete

Concrete [35] is an open-source Rust library developed at Zama. It implements a
discretised TFHE version for machine learning tasks and neural networks. This
library allows keeping invariant the topology of the original neural network to be
evaluated without the need to change it to make it more homomorphic-friendly,
as mentioned in Sect. 2. The key enhancement is Programmable Bootstrapping
(PBS), which permits the computation of any function, even the non-linear ones,
during the bootstrapping phase, resetting the noise simultaneously. PBS is pos-
sible if the function can be decomposed and expressed as a linear combination
of univariate functions using methods like Ridge decomposition or Kolmogorov
superposition theorem. The encoding feature in Concrete is different from TFHE:
each array slot is encoded as real Torus elements modulo 1, i.e., real numbers
between 0 and 1. Creating an encryption context in Concrete means choosing
parameters like the dimension of the vector of integers (LWE) or polynomi-
als (RLWE) and the standard deviation of the noise distribution added to the
body value; these two parameters influence the computation time, the ciphertext
overhead, and the number of bits of precision that remains available. Recently,
Concrete has been enriched with a module on the top of the Concrete library,
Concrete ML, to enable machine learning-based applications.

4.7 LATTIGO

LATTIGO [26] is an entirely Go-based HE library developed at EPFL and based
on RLWE schemes. The Go programming language has many valuable features:
it works well with concurrent systems and is as efficient as C++, despite being
more accessible to code. The encryption context creation is easily obtained using
default parameters available for 128-bit of security. The ability to efficiently deal
with concurrency makes Lattigo one of the HE libraries that offers multi-party
computation (MPC) for both implemented schemes, BFV and CKKS, taking in
input both integers and real values, with packed representation. Another unique
characteristic is that bootstrapping is available for CKKS.

5 Towards Real-World HE Applications: HELT

There are many challenges in developing real-world HE applications starting
from scratch. Apart from well-known HE issues like computational costs and
performance concerns, more support tools for developers and ready-to-use frame-
works for data analysts are needed. Many efforts are currently devoted to pro-
viding user-friendly APIs to develop privacy-preserving data science applications
quickly, and the vendors are trying to satisfy this enterprise requirement. Notable
examples are the IBM Security HE Services or Zama’s roadmap for Concrete
[16,34].

Another trend is the development of HE Compilers, which should provide
high-level functions that prevent the user from working with HE parameters
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setting or operations on cyphertexts [31]. However, compilers or DS-ready envi-
ronments are not general-purpose. Another critical aspect is the selection of
HE parameters because it influences the security level, the compactness of the
scheme, and the performance. The HE standard, which is in progress, provides
tables of recommended parameters to guide the data scientist in the choice [3].
Furthermore, in literature, there are some recent contributions to guide the devel-
opers in setting the so-called HE context: [8,25] make a significant step forward
in developing a parameter generator that is readily usable in the PALISADE
library; the drawback is that it is library dependent and works only for the BGV
scheme, which is indeed a state-of-the-art FHE scheme but is not flexible enough
to be employed in all business applications. Furthermore, as investigated in [17],
many primitives that are part of the business application should be rewritten
to be fully HE-ready: this applies to activation functions for machine learning
tasks, as well as to simple statistics primitives, such as mean, variance, or linear
regression. This is highly tied to integrating or replacing novel privacy-preserving
applications with HE in an enterprise or legacy context, which is challenging to
achieve.

In Fig. 3, it is depicted the typical protocol for a HE-based application [9,
15,24]: Besides the HE setup, which considers several exchanges between client
and server, we would like to highlight that the additional data encoding and
encryption is a significant phase of the HE pipeline, as seen in Sect. 2.

Fig. 3. HE pipeline for a privacy-preserving computation.

Our answer to some of these concerns is the development of the Homomorphic
Encryption Libraries Toolkit (HELT); this paper represents a work-in-progress
report of our experience so far. The purpose of this toolkit will be to compare
and benchmark a set of selected HE libraries, which are the ones described in
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Sect. 4. HELT is designed as a Docker-based toolkit: each HE library has its
directory containing the package with preliminary benchmarks and a Docker
file. The user will create a container for each library, solving dependency prob-
lems efficiently. Furthermore, a configuration file is provided with suggested HE
context parameters that the expert user can modify. In our first version, we plan
to compare the libraries by the available HE schemes and their functionalities.
The starting point is the computation of simple metrics like the execution time
of every single operation, the creation time for the HE context, and the creation
time for the keys for every library. At the moment, we ran different tests on
the same HE scheme within the same library, changing the parameters. We also
measured the dimension in bytes of the generated keys and ciphertext created.
The second step is to implement a set of HE-ready building blocks tailored to
our business needs and, simultaneously, modular enough to be reused in various
enterprise contexts. HELT will also enable us to understand the transition readi-
ness of some critical applications that use confidential data from the standard
enterprise environment in the HE domain. Furthermore, we would like to evalu-
ate the selected libraries against the business requirements given in Sect. 2. One
of the first conclusions drawn from our analysis is that: (i) HE schemes like BFV
and BGV are employable for applications that make use of input that are in the
form of strings or integers; (ii) the CKKS scheme is desirable when dealing with
machine learning tasks; (iii) the TFHE scheme is robust when there is the need
to compare ciphertext, and it is possible to translate the comparison in binary
circuits.

Our next steps encompass the following:

– the integration of the OpenFHE library;
– the test of the multikey HE functionality where available, e.g., in Lattigo;
– the investigation of the data integrity problem: we can resort, e.g., to a solu-

tion that uses an attached checksum to the ciphertext to detect attacks.

6 Related Work

A few papers about benchmarking HE libraries are available; none encompass
comparison frameworks for the financial and statistical applications in scenarios
like the ones depicted in Sect. 2. One of the first works about benchmarking is
the HEtest framework [30], which tests the main bottlenecks of HE libraries.
However, this tool includes only HElib, although the authors remark that it is
extensible to other libraries. Melchor et al. [2] compare a modified version of
HElib, SEAL, and FV-NFLib to work with large plaintext moduli. The paper is
insightful in providing some remarks about the library choice and implementa-
tion recommendations. Marrone et al. [23] propose a testbed oriented to evaluate
the performance of HE-based applications towards the specific adopted library.
Takeshita et al. take a similar approach in HEProfiler [29], focusing on the CKKS
scheme. In [14], Gouert et al. answer the problem of the lack of comparison tools
for developers proposing Terminator 2 Benchmarking Suite, a compiler that
converts benchmarks written in T2, a domain-specific language, into encrypted
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programs running on HElib, SEAL, LATTIGO, TFHE, and PALISADE. To our
knowledge, none of the reviewed works includes Concrete and OpenFHE libraries
inside their benchmarking tools.

7 Conclusion

Homomorphic encryption can preserve data privacy while performing complex
computations on it. Nonetheless, it has several challenges in its employment in
real-world applications, particularly in the financial context. We described some
use cases of interest. The industrial community needs a comparative open-source
tool of the most useful HE libraries to gradually let the data analyst be indepen-
dent of a cryptographer while developing an enterprise application. We propose
a two-step approach. Firstly, we aim to provide a HE playground for the data
analyst, and the cryptographer is still present to guide the analyst in selecting
HE parameters. Then, an environment with built-in homomorphic functions and
APIs should be available for the data analyst, apart from a set of HE parameters.
We give the reader background for HE theory and describe the most promising
HE libraries and their main characteristics. Finally, we describe the require-
ments and challenges for an HE library in an industrial context, introducing our
seminal idea for HELT.
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21. López-Alt, A., Tromer, E., Vaikuntanathan, V.: On-the-fly multiparty computation
on the cloud via multikey fully homomorphic encryption. In: Proceedings of the
Forty-fourth Annual ACM Symposium on Theory of Computing, pp. 1219–1234
(2012)

22. Marcolla, C., Sucasas, V., Manzano, M., Bassoli, R., Fitzek, F.H., Aaraj, N.: Survey
on fully homomorphic encryption, theory and applications (2022)

23. Marrone, S., Tortora, A., Bellini, E., Maione, A., Raimondo, M.: Development of
a testbed for fully homomorphic encryption solutions. In: 2021 IEEE International
Conference on Cyber Security and Resilience (CSR), pp. 206–211 (2021)

24. Masters, O., et al.: Towards a homomorphic machine learning big data pipeline for
the financial services sector. Cryptology ePrint Archive (2019)
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