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Abstract Companies operating in global production networks should handle the
complex, uncertain, and volatile environment, making them more vulnerable to
disruptions. The Mass Personalization (MPe) paradigm is already a reality and has
increased the involvement of end-users in the product lifecycle. It requires responsive
and flexible manufacturing operations to produce cost-effective individualized prod-
ucts in dynamic batch sizes at scale taking into consideration the unique preferences
of each customer. Therefore, modern manufacturing and production systems and
networks must be capable of responding quickly to (i) the alteration of demand and
conditions in the supply chain, and (ii) the volatile customer demands. By extension,
in the context of MPe, manufacturing and production systems must be capable of
self-optimizing manufacturing operations in order to achieve flexible, autonomous,
and error-tolerant production. On the other hand, Intelligent Manufacturing (IM) is
a key concept that has evolved during the last five years and is, currently, gaining
momentum thanks to the potential offered by the Industry 4.0 vision. Thus, the ability
of a company to setup an effective data gathering and processing strategy, orches-
trating data flows, and then draw meaningful and actionable insights from them, is
critical to MPe success. As such, the technological drivers of MPe are the Big Data
Sets and Artificial Intelligence (AI) among other pillar technologies of Industry 4.0.
The scope of this essay is to identify and highlight the state-of-the-art on how the
integration of AI and Big Data technologies and techniques will contribute towards
the efficient personalization of each customer’s experience under the framework of
Industry 4.0 and beyond.
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Nomenclature

6LoWPAN IPv6 Low-Power Wireless Personal Area Networks
ABC Artificial Bee Colony
ACO Ant Colony Optimization
AI Artificial Intelligence
AMQP Advanced Message Queuing Protocol
AR Augmented Reality
BA Bat Algorithm
BBO Biogeography Based Optimization
BFO Bacterial Foraging Optimization
B2B Business-To-Business
BLE Bluetooth Low Energy
BMS Biological Manufacturing Systems
CAx Computer Aided Technologies
CFO Central Force Optimization
CoAP Constrained Application Protocol
CLSA Clonal Selection Algorithm
CRO Chemical Reaction Optimization
CSA Cuckoo Search Algorithm
DE Differential Evolution
DDS Data Distribution Service
DL Deep Learning
DPO Dolphin Pod Optimization
EMO Electromagnetism Optimization
EBITDA Earnings Before Interest, Taxes, Depreciation and Amortization
FA Firefly Algorithm
FPA Flower Pollination Algorithm
GA Genetic Algorithm
GDP Gross Domestic Product
GPN Global Production Network
GSA Gravitational Search Algorithm
HMI Human–Machine Interface
HS Harmony Search
IoT Internet of Things
IIoT Industrial Internet of Things
IM Intelligent Manufacturing
ISA Intelligent Search Algorithm
IT Information Technologies
KHA Krill Herd Algorithm
LOA Lion Optimization Algorithm
LoRaWAN Long Range Wide Area Network
MSA Monkey Search Algorithm
M2M Machine-To-Machine
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MCS Monte-Carlo-Simulation
ML Machine Learning
MPe Mass Personalization
NIOA Nature Inspired Optimization Algorithm
NP Non-deterministic Polynomial time
OIO Optics Inspired Optimization
OS Operating System
PFA Paddy Field Algorithm
PSS Product-Service System
PSO Particle Swarm Optimization
RFD River Formation Dynamics
SA Simulated Annealing
SFLA Shuffled Frog Leaping Algorithm
SOA Spiral Optimization Algorithm
SSO Social Spider Optimization
SCN Supply Chain Network
SDG Sustainable Development Goal
SME Small and Medium sized Enterprises
TS Tabu Search
WSN Wireless Sensor Networks

1 Introduction

1.1 Digital Transformation

The concurrent status and structure of Smart Factories is totally different from the
industrial setups of the past decades. In particular modern factories are data-driven,
the equipment is embedded with multiple sensors, and each system has become a
thing in the Industrial Internet ofThings (IIoT) [1]. Further to that,with the implemen-
tation of cutting-edge digital technologies, human operators have been augmented
along with robotic operation on the shop-floor level [2]. In more advanced factory
plants, robotics are setup/capable of operating independently, also known as lights-
off factory [3]. However, the majority of the manufacturing companies still operates
under the mass production paradigm, as it was introduced by Henry Ford, who said
that “Any customer can have a car painted any color he wants as long as it’s black.”
[4]. Although the mass production paradigm has facilitated companies to produce
larger batches minimizing the production and operation costs of their plants, the
current market status is highly characterized by the demand for highly customized
products and services [5]. Consequently, the integration of the nine pillars of Industry
4.0 has become mandatory for manufacturers, in a global scale. The benefits from
the transition towards the Smart Factory might not be obvious. However, with the
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integration of technologies such as the Internet of Things (IoT), predictive main-
tenance, and real-time data and analytics unprecedented cost-efficiency ratios are
becoming even more feasible, extending to more robust quality control, affecting
positively the overall effectiveness [6]. According to recent market research, digiti-
zation, digitalization, and automation will be the key drivers for the realization and
widespread adoption of the Smart Factory model, as it is projected that by the end of
2030 approximately fourteen (14) percent to global GDP (Gross Domestic Product)
gains are accounted to the above-mentioned technologies [7]. To put this in perspec-
tive, these gains are equal to more than fifteen trillion US dollars (US$15 trillion) in
the current value [8]. Nonetheless, the true potential of Industry 4.0 has not yet been
unveiled since there are certain barriers to its implementation, which in turn affect the
Sustainable Development Goals (SDGs). Therefore, it can be concluded that more
extensive and proper education regarding the concepts, the frameworks and the tech-
nologies associatedwith Industry 4.0 are required [9]. The involved actors in Industry
4.0 technologies should be aware of data and data analytics, which are basically
algorithms that combine information and simulation of processes, production lines
and manufacturing systems. These algorithms are the backbone of schemes, known
as architecture, with the latter being essential for the depiction of key components
towards optimization of production lines and management.

With the emergence of Artificial Intelligence (AI) and its subsets, Machine
Learning (ML) and Deep Learning (DL) and Digital Twins [10] new frontiers for
industrial applications, such as robotics, are yet to be explored. The newest generation
of machine vision (Industry 4.0: The Fourth Industrial Revolution—Guide to Indus-
trie 4.0, 2020) powered systems can inspect products and detect potential defects
with greater accuracy than any human operator. The driving vision for Industry 4.0
was the full digitization and digitalization of Industry as a whole. On the contrary,
Industry 5.0, and by extension Society 5.0, will emphasize more on the human
aspect of technologies. Thus, it is expected to see more developments in the field
of human–machine interface (HMI). Further to that, Society 5.0 introduces several
aspects relevant to AI and Production Networks. One key aspect is the integration
of AI-driven automation, which leverages technologies like machine learning and
robotics to enhance efficiency and intelligence in manufacturing processes. Smart
factories, another aspect, envision the utilization of AI, IoT devices, data analytics,
and autonomous systems to optimize production networks, improve productivity,
and enable flexible and customized manufacturing. Society 5.0 also emphasizes the
collaboration between humans and AI systems within production networks, aiming
to enhance human capabilities through AI assistance while ensuring worker well-
being and safety [11]. Regarding ergonomics, Society 5.0 recognizes the importance
of designingworkspaces, equipment, and tasks in away that optimizes human perfor-
mance, comfort, and safetywithin production networks. By integrating these aspects,
Society 5.0 aims to create a harmonious and efficient ecosystemwhereAI andhumans
work together in production networks, driving innovation and productivity [12]. As
per recently published literature [13–15] themain objective of Industry 5.0 is to create
a new vector for human-technology collaboration (robots, cobots, IoT devices, and
other cognitive systems) at and beyond production infrastructures [16]. Furthermore,
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according to the statement from the Japanese government (Japanese Cabinet Office)
[17] that “As we move into Society 5.0, all people’s lives will be more comfortable
and sustainable as people are provided with only the products and services they need
in the quantities and at the times they need”, it is emphasized that the collabora-
tion of cognitive systems, robots, and humans can help businesses, harmonize their
production processes, and become more agile to meet market changes and requests
for customization.

In [18, 19] the authors have conducted an extensive literature investigation
regarding the implementation and the reference architecture of Industry 4.0 and
other similar/equivalent initiatives, such as Plattform Industrie 4.0 (Austria), Manu-
facturing USA (USA), Industrie du Futur (France) to name a few. Despite the need
for installation, maintenance, and operation of physical and static equipment, there
is an increasing need for the creation and implementation of suitable communication
and internet protocols.

Therefore, it can be highlighted that with the advent of Digital Transformation,
there is a strong link between Mass Personalization and Artificial Intelligence (AI)
in the context of Industry 4.0 [20]. Digital Transformation enables the integration
of advanced technologies such as AI, Machine Learning (ML), and Deep Learning
(DL) into industrial applications, particularly robotics. These technologies offer new
possibilities for enhanced productivity and efficiency in manufacturing processes.
For example, AI-powered machine vision systems can inspect products with greater
accuracy than human operators, leading to improved quality control. Moreover, AI
can enable the creation ofDigital Twins, virtual replicas of physical systems, allowing
for simulations and optimization of production processes [21]. The combination of
Mass Personalization, which caters to the demand for customized products, and
AI-driven technologies paves the way for more agile and adaptable manufacturing
systems [22]. As we progress towards Industry 5.0 and Society 5.0, there will be a
greater focus on human-technology collaboration and the development of human–
machine interfaces (HMIs) to facilitate seamless interaction between humans and
cognitive systems [23]. Thus, this essay focuses on decisions related to responsive and
flexible manufacturing operations, self-optimization of manufacturing operations,
and the efficient personalization of customers’ experience. To sum up, the integration
of AI and digital technologies is crucial for achieving the vision of Industry 4.0 and
enabling the realization of Mass Personalization in manufacturing.

1.2 Global Production Networks

During the last decade manufacturing and production systems are coping to reorga-
nize their entities towards the adoption of a decentralized network architecture. Due
to the scarcity of resources, localization, and unique equipment required for highly
personalized products, decentralization of manufacturing and production networks
has enabled companies to maintain their competitive edge and satisfy the volatile
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market demand. The decentralization trend has been greatly supported by the integra-
tion of the pillar technologies introduced under the light of the ongoing Industry 4.0.
Despite the utilization of cutting-edge digital technologies as a solution to complexity
caused by mass personalization, for the management of global production networks,
engineers are facing new challenges in redesigning management strategies [17]. In
Fig. 1 the core activities that take place during the design and operation of GPNs
are summarized. Concretely in the above-mentioned Fig. 1 there have been defined
the key entities of a GPN, covering two aspects, the production of the goods, and
the commercialization of the final products. Regarding the production of the goods,
the entities involved are, (i) the GPN plants (i.e. the main factories producing the
final assembly/product), (ii) the supplier plants which produce individual parts, and
(iii) the recovery plants which are responsible for gathering products back from the
customers/end users. Similarly, in the market side, the entities involved are in partic-
ular, (i) the distribution centers which are responsible for the delivering the goods
(i.e., the finished products) to the selling points, (ii) the collection points which
receive the products at the end of their lifecycle, in order to be sent to the recovery
plants, and the most important entities are the customers.

The authors in [24] explore resource sharing dynamics in a production network,
focusing on the anticipated increase in resource sharing demand. Using a steel
manufacturing example, four scenarios with varying levels of information exchange
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Fig. 1 Core tasks required for the design and operation of Global Production Networks
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were developed. The results of this research work reveal that increased informa-
tion exchange may not benefit all participating companies, as it can lead to longer
cycle times for smaller companies and increased cycle time variance. Additionally,
the simulation suggests that higher information exchange can result in inventory
level fluctuations for shared resources. The origin of oscillatory behavior in the
system was attributed to the relationships between companies and shared resources,
rather than individual company or resource dynamics. Furthermore, the paper empha-
sizes the need for future decision-making designs to address such behavior and
proposes that the findings can be applied to other production networks aiming to opti-
mize resource utilization. The combination of discrete-event simulation and control-
theoretic modeling offers a comprehensive approach to identifying fundamental
dynamic properties in sharing scenarios.

1.3 Structure of the Essay

The Essay is divided into several sections that provide a structured exploration of key
topics related to digital transformation, global production networks, artificial intel-
ligence in smart factories, and efficient production management. The first section
serves as an introduction, setting the stage for the subsequent discussions. It intro-
duces the concepts of digital transformation and global production networks and
outlines the essay’s structure. The second section deals with the shift from traditional
manufacturing to mass personalization, covering production management, smart
manufacturing, decision-making challenges, complexity in manufacturing systems,
and specific challenges faced in global production networks. The third section focuses
on artificial intelligence in the context of smart factories, highlighting the utilization
of data for knowledge generation, implementation of nature-based optimization algo-
rithms, and AI decision-making at the network level. The fourth section introduces
reference architecture model for efficient production management, encompassing an
AI-assisted customized manufacturing factory, edge computing-assisted intelligent
agents, digital transformation in resilient global production network frameworks, and
the significance of data security. Finally, the last section offers a discussion of the
main findings and an outlook for future research. Through these sections, the essay
presents a comprehensive examination of the subject matter, guiding readers through
the steps of understanding digital transformation, global production networks, AI in
smart factories, and efficient production management. The structure of the Essay is
presented in Fig. 2.
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Fig. 2 Structure of the essay

2 From Traditional Manufacturing to Mass Personalization

Over the past century Manufacturing and Production paradigms have undergone
several changes, ranging from the production of small batches to themass production
of goods in large volumes with minimal or no individualization prospects. Following
the discussion of the previous paragraphs digitalization lies among the most influ-
ential concepts for the reshaping of Industry, and by extension of Society. The rapid
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development of new technologies has reshaped traditional manufacturing methods.
With the arrival of the Fourth Industrial Revolution, a significant number of smart
sensors capable of monitoring production in real time have been integrated into
machines and manufacturing environments. These can help engineers make deci-
sions while reducing production downtime and overall costs and improving product
quality, providing engineers with continuous support throughout a series of product
development phases [25]. CAx platforms and IT systems are now an essential part
of standard product development processes. Mass personalization strategies typi-
cally allow potential customers to review and order individualized products, which
necessitates more complex production configurations and processes [26, 27]. These
strategies do not focus only on the personalization of products, but should also include
personalized production and markets, since both aspects can dictate changes on the
previous manufacturing level. The design and operation of production networks
include decisions related to the production strategy of a company, network footprint,
and networkmanagement, which can be divided into core and sub-tasks. The decision
making should be done according to the principles of the Product Service System
(PSS) [28, 29], but overall this decision making is highly dependent on the company,
management and operational team, country, legal framework and political situation.

Since the global market has changed over the past few decades, centralized mass
production appears unable to keep up with the new production demands that global-
ization has imposed [30]. Furthermore, according to Chryssolouris statement, “It is
increasingly evident that the era of mass production is being replaced by the era of
market niches. The key to creating products that canmeet the demands of a diversified
customer base, is a short development cycle yielding low cost and high-quality goods
in sufficient quantity to meet demand” [31]. As a result, the model of an independent
business that is only connected to its clients and suppliers through the delivery and
acquisition of goods is no longer viable. Cooperation between businesses in Business
to Business (B2B) Marketplaces and Platforms is essential [32]. The apparent gap
betweenmass production andmass customization is a challenging issue that needs to
be addressed [33]. As a result, Mourtzis et al. (2019) [34] present the cost-efficient,
quick, and accurate optimal design network configurations that are dedicated to
the production of highly customized products. This paper discusses an investiga-
tion into the performance and viability of centralized and decentralized production
networks under heavy product customization. To evaluate the performance of auto-
motive manufacturing networks under highly diversified product demand, discrete-
event simulation models have been developed. A manufacturing network configu-
ration must be created effectively due to the escalating demand for more product
customization and the fluctuating nature of demand. Production planners, however,
are impacted by the vast array of alternative design configurations because they can
no longer rely on experience to plan the network. In order to achieve this, a novel
platform for designing and evaluating Dynamic Manufacturing Networks has been
presented in [35]. The method assesses the effectiveness and viability of central-
ized and decentralized production networks under the condition of high product
customization. In addition, simulation models for automotive networks are created,
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and their effectiveness is assessed. The decision-making process then employs an
exhaustive search and an intelligent search algorithm (ISA), respectively [36].

2.1 Production Management

By definition, manufacturing is a complex series of tasks and processes, demanding
careful and precise management, regardless of the size of the company. Production
management focuses on the utilization and allocation of resources in order to produce
the final products [37]. Therefore, its importance becomes evident. Since manage-
ment involves several processes within a workday, the research results presented in
[38] have been compiled in the chart presented in Fig. 3, in order to highlight the
most time-consuming tasks, indicating that approximately 54% of time is spent on
administrative coordination and control activities.

In order to support production management, insights are required so that proper/
valuable management reports can be produced. In the era of Industry 4.0, Big Data
and Analytics, as technological pillars provide the necessary context in order to
provide the companies’ management teams with sufficient data for more in-depth
reporting. However, according to recent reports [62] 53% of the managers feel that

Fig. 3 Management time distribution as a percentage of the total management within a workday



Artificial Intelligence for Production Management and Control Towards … 277

the quality of the available data is not sufficient. The above-mentioned percentage
raises to eighty percent considering the lack of executive sponsorship.

Moving on to the Sustainable pillar of production networks, considerations
regarding the environmental aspects of production are crucial in achieving sustainable
development goals, particularly in the manufacturing sector. Sustainable Develop-
ment Goals (SDGs) set by the United Nations provide a framework for addressing
environmental concerns [39]. Manufacturing processes should prioritize resource
efficiency, waste reduction, and pollution prevention to minimize their ecological
footprint. Embracing sustainable manufacturing practices such as eco-design, clean
energy adoption, and circular economy principles can contribute to SDGs such as
responsible consumption and production, climate action, and sustainable cities and
communities. By integrating environmental considerations into production practices,
industries can move towards a more sustainable future, ensuring the well-being
of both present and future generations [40]. The SDGs related to production and
manufacturing, are briefly summarized as follows:

• SDG 9: Industry, Innovation, and Infrastructure—Promote sustainable industri-
alization and innovation.

• SDG 12: Responsible Consumption and Production—Encourage sustainable
consumption and production patterns.

• SDG 13: Climate Action—Take action to combat climate change, including in
manufacturing processes.

• SDG 11: Sustainable Cities and Communities—Foster sustainable industrializa-
tion within urban areas.

2.2 Smart Manufacturing and Mass Personalization

The rise of Mass Personalization necessitates manufacturing operations that can
adapt to produce personalized products at scale, accommodating changing demands
and conditions. However, current manufacturing systems struggle to maintain stable
performance while adjusting configurations and production plans. Therefore, the
authors in [41] to address these challenges propose a self-optimizing manufac-
turing system capable of autonomous and error-tolerant production. Moreover, they
provide a systematic review of Self-OrganizingManufacturing Systems (SOMS) and
propose the concept of a Self-Organizing Manufacturing Network (SOMN) as the
next-generation solution for achievingMass Personalization (see Fig. 4). The review
traces the development of SOMS, highlights their limitations in achieving mass
personalization, and presents the functional requirements for self-organizing manu-
facturing. The proposed SOMN encompasses essential technological components,
such as system modeling, control architecture, peer communications, and adaptive
manufacturing control, drawing upon knowledge from various disciplines.
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Fig. 4 Conceptual architecture of a self-organizing manufacturing system [41]

2.3 Decision Making Under Uncertainty in Global
Production Network Design

Manufacturing companies today work in international production networks in order
to manufacture their products and gain a competitive advantage [42]. Even though
decisions made in the context of these complex production networks affect manufac-
turing companies over the long term, there is frequently a lack of integrated planning
of the production network [43]. Thus, continuous network adaptive design is required
to withstand the volatile environment and to be able to react to altering constraints
[44]. It is imperative for companies to adapt and react to changes in their production
networks so as to succeed in the face of intense competition [45]. Next, the design of
production networks is closely associated with high degrees of freedom [46]. In addi-
tion, there are several influencing variables influencing the design of GPN such as
volatility, production and process variables, supplier agreements, location factors and
legal framework conditions [47]. The abovementioned challenges and factors, lead
to complex management of GPN as stated in [44]. Reducing complexity while main-
taining high decision quality is necessary to speed up design decisions for production
networks because difficult-to-reverse decisions can restrict the long-term strategic
options of a company [44]. There are several different quantitative and qualitative
approaches for decision support in the production network design [42], which can
be designed in any level of detail or aggregation, leading to a conflict of objectives
between low effort and necessary accuracy [47].

The decision-making problem is always accompanied by uncertainties because
of the long-term orientation and the variety of influencing factors. Therefore, for
decisions involving uncertain future developments, it is necessary to take into account
scenarios and their possibility of occurrence [48]. Thus, the authors in [49] presented
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an effort oriented and transparent decision-making process in the design of GPN and
to address the necessary comprehensibility.

There are two main categories of decision-making techniques used in the design
of GPN as follows: (1) qualitative, and (2) quantitative. The latter ones can be further
divided to process-oriented approaches with manual selection of alternatives as well
as to heuristics or optimization approaches. Furthermore, both categories can be
furthered divided into stochastic and deterministic methods [50]. An overview of the
body of knowledge in the field is presented in [51].Amethodical process for decision-
making without an alternative selection logic is offered by quantitative, process-
oriented approaches. These introduce process-basedmethods for the configuration of
production networks through the provision of a decision support procedure [52]. Due
to the incorporation of decision rules for the selection of specific results, quantitative
approaches with automated decision models for network design differ from process-
based approaches. More specifically, these approaches provide decision rules for the
selection of specific outcomes. On the other hand, the decision field considers design
alternatives and environmental condition [53–55].

Three main steps can be identified in the methodology for the support of the
decision-making process in the design of global production networks. The under-
lying research hypothesis is that early recognition of the critical decision-influencing
factors speeds up gathering information and ensures a transparent decision-making
process. The first step is about the classification of factors that influence design alter-
natives as well as the assessment dimensions. The second step regards the stochastic
modeling of influencing factors using arithmetic random walks. The third step is
finally solved using a Monte-Carlo-Simulation (MCS), which is then transferred
into an assessment cockpit that ranks the design alternatives according to their net
present value and displays the key influencing factors as well as their aleatory and
epistemic uncertainty. The process is repeated until a choice can be made [48]. The
most frequently identified keywords in literature are used in [56] and are relevant
to the sand cone model proposed by the authors in [38]. In order to compare the
economic efficiency as the quantitative target variable of the alternatives, the quali-
fying targets to be met are quality, flexibility, and time. A supply chain perspective
is used to define the targets along the design alternative in order to evaluate the
satisfaction of customer needs in terms of quality, flexibility, and time. A design
alternative is not considered in the decision-making process if it does not satisfy one
of the qualifying target variables. Utilizing economic efficiency as the optimization
variable, the final design alternative is chosen from the remaining alternatives. As
a result, in the framework of the model proposed in [48], only financial influencing
factors are presented with the design alternatives (Fig. 5).

2.3.1 Modeling of Influencing Factors and Their Uncertainty

Models play a crucial role in decision-making for network design by consid-
ering time-dependent factors under uncertainty. Stochastic modeling using arith-
metic random walks assesses individual factors and incorporates both epistemic and



280 D. Mourtzis et al.

Fig. 5 Influencing factors in the context of production network design [48]

aleatory uncertainty over time. The modeling process involves four steps: specifying
the epistemic uncertainty as a distribution function, incorporating aleatory uncer-
tainty through random walks, and determining confidence intervals. The arithmetic
random walk equation for an influencing factor over time depends on the selected
distribution function.

I F(t) = X0 + X0 ∗ apa ∗ t + σe ∗ snv1 + σα ∗ √
t ∗ snv2

(1 + W ACC)t

If x0 is known, then there is no epistemic uncertainty and as a result the standard
deviation of the epidemic uncertainty is σe = 0. The standard deviation of aleatory
uncertainty is represented by σa while the expected annual development of the initial
value is denoted as apa. The discounted interest rate, determined by the weighted
average cost of capital (WACC), is applied. snv1 and “snv2” represent standard
normally distributed random numbers.When influencing factors are dependent, their
correlations are determined by the covariance of random variables, resulting in the
expected value [48].

2.3.2 Application of Proposed Methodology

The described methodology was implemented in a real case study involving a
machine tool manufacturer. The company had developed a production network
with six sites in Europe over the past three decades, resulting in overcapacities that
needed to be addressed. Four alternatives were derived to redesign the network struc-
ture, considering restrictions such as core competence sites and product distribution
(Fig. 6). The economic efficiency of these alternatives was assessed over a 10-year
period, taking into account six influencing factors. These factors included additional
buy parts, machine hour rates, site base costs, logistics, implementation/divestiture
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Fig. 6 Assessment cockpit of the first iteration to support decision making under uncertainty in
global production network design [48]

costs, and uncertainties. The assessment revealed that the expansion of sites 1 and 2
and the reduction of site 1 were not beneficial, while reducing sites 1 and 2 showed
the highest economic efficiency with a net present value of 33.7 Mio. e and a short
amortization period of 1.6 years [48].

2.4 Manufacturing Systems and Networks Complexity

Manufacturing systems and networks are constantly expanding, in order to adopt a
decentralized architecture. Further to that,with the implementation of the Industry 4.0
large amounts of data are constantly producedwithin themanufacturing environment.
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Considering the market volatility it can be concluded that modern manufacturing
and production activities take place in a highly dynamic environment. Consequently,
complexity is useful metric for the realization of operational complexity. Following
this context complexity quantification can be further divided to part, product, system
and system of systems [56]. The literature also suggests that complexity of global
networks can be divided to static and dynamic, following the utilization of entropy
calculation methods [57]. A multi-layered methodology has been implemented for
the analysis of global production networks, focusing on the plurality and diversity
aspects of the networks, aiming to the assessment of the complexity for global produc-
tion networks [58]. The recent global developments have unveiled that production
andmanufacturing systems are very prone to failure/collapse as a result of the disrup-
tion of the global supply chains. As a result, the authors in [59] following a systematic
analysis of systems and networks have proposed a method for the provision of alter-
native solutions regarding the structure of the networks, aiming at the reduction of the
effect caused by external disturbances. From a complexity point of view, the dynamic
manufacturing networks (DMNs) offer a modern approach to managing risks and
increasing benefits in the manufacturing sector [60]. In particular, the authors have
compiled information regarding three cornerstone supply chains regarding, (i) food,
(ii) textiles, and (iii) chemicals. The researchwork concluded that social sustainability
is a factor playing a key role to the complexity of global production networks.

More specifically, challenges arise in managing GPNs due to disruptions that
lead to various issues such as order modifications, quality problems, and engineering
changes. The negative impact on performance can be mitigated by fostering a more
extensive sharing of information among network partners. Digitalization provides
numerous opportunities to enhance transparency in this regard. Nonetheless, deter-
mining the optimal level of interaction and implementing a broader information
exchange poses a complex decision-making problem [61]. A disruption on either
the supplier or customer side of today’s tightly coupled supply chains can easily
devastate the entire Supply Chain Network (SCN). The pandemic caused signifi-
cant supply chain disruption, necessitating leaders to right-size their operations and
embrace digital capabilities that protect supply chains from future disruptions as
we transition into the post-COVID-19 reality [62]. Companies across all industries
are increasing their investments in advanced technology, ranging from blockchain
to artificial intelligence (AI), machine learning, and intelligent automation [63, 64].
During the COVID-19 pandemic, global supply chains were confronted with both
a supply shortage and a shrinking demand, which could result in disruptions propa-
gating forward and backward simultaneously or sequentially [65–67]. The Closed-
Loop Control Systems of the Control Theory has been parallelized to a Closed-Loop
Crisis Response Framework that explains the Supply Chains Disruption (see Fig. 7).

As it regards, companies across various industries and sizes organize their
production through global production networks, where partners including suppliers,
producers, distributors, and customers collaborate and contribute their expertise to
deliver goods and services [68]. These networks are typically alignedwith the strategy
of a central partner and are the outcome of evolutionary decisions. Unfortunately, a
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Fig. 7 Closed-loop crisis/disruption response framework [45]

prevailing mindset of insulation and silo thinking hampers transparency and collabo-
ration within these networks. Disruptions at the operational level, caused by unfore-
seen events like quality issues, equipment failures, and supplier bankruptcies, have a
negative impact on network performance [69]. The most affected business processes
are order management, quality problem resolution, and engineering change manage-
ment. The automotive industry, in particular, is more vulnerable to disruptions due
to lean production and just-in-time delivery practices. To address this, the ongoing
digitization and increasedhorizontal interlinkage amongproductionnetworkpartners
hold the promise of faster identification and resolution of disruptions [70].

The effects of a local disruption are unpredictable due to the propagating effects,
whichmakes it challenging to plan for andmanage. Risk identification is typically the
first step in traditional supply chain risk management, which is followed by several
risk management strategies [71, 72]. Every industrial revolution is accompanied
by technological unemployment, but this is simply a characteristic of the human
workforce because it is predicted that there will be an increase in the number of jobs
globally [73].

2.5 Challenges for Production Management in Global
Production Networks

With regards toGPNs, in the literature two generations can be identified. In particular,
GPN1.0 has been developed in the 2000s [73], whereas GPN2.0 has been introduced
a decade later, during the 2010s [74]. This is important, in order to familiarize with
the terms as well as to clarify the differences between the two generations as they
are reflected to other aspects, such as production management. Essentially, GPN1.0
was a more broad representation of the concept. On the contrary, GPN2.0 has been
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Fig. 8 Key challenges and associated barriers in global production networks

presented as a more concise framework, taking into consideration the emerging chal-
lenges in the setup,management, and operation ofGPNs.GPN2.0 has been developed
under the framework of a theory for improving industrial organization and ensure
economic development in an interconnected global economic landscape [74]. In light
of the GPN2.0 framework five different types of risks have been identified, in partic-
ular (i) product quality, (ii) economic, (iii) regulatory, (iv) environmental, and (v)
labor. In Fig. 8 several of the key challenges and their associated barriers regarding the
operation and management of GPNs have been compiled and categorized. However,
the integration of GPN2.0 framework does not necessarily guarantee the network’s
resiliency, which as it is discussed in the next paragraph is at high risk.

Following the recent developments of the global pandemic, it became obvious to
the community, that GPNs do not possess the minimum required level of resilience.
In fact, the current structure of such systems and networks has indicated that they
are reluctant to sudden changes, often leading to unavoidable collapse. Dolgui and
Ivanov in 2021 [74] have extensively investigated this issue from the viewpoint of
the so-called ripple effect, focusing on its effects in supply chain management. The
recent global pandemic has provided concrete evidence on the effect of disruptions
to global production.

2.6 Challenges for Agile Production Network Enabled
by Reconfigurable Manufacturing Systems

Reconfigurable manufacturing systems (RMSs) consist of machines with inter-
changeable modules, allowing for flexible functionality [75]. Coordinating produc-
tion flows, machines, and modules requires complex decision-making algorithms
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[76]. Resource sharing among collaborative manufacturing systems enhances
production networks [77]. Responding to disruptions promotes network robustness
[78]. Reconfigurablemachines offer adaptability but fall short in emergencies. Lever-
aging collaborative RMSs for global network reconfiguration is a challenge [79].
More specifically, reconfiguration decisions pose challenges due to their connection
with process and production planning, the roles of companies in the supply chain, and
the flow of materials. The dynamic adjustment of the production network impacts
collaborative machine and module sharing, which subsequently affects the produc-
tion capabilities and material flow of companies. As such, the authors in [80] suggest
an agile management strategy that utilizes reconfigurable manufacturing systems
(RMSs) to enable a timely and flexible response to the pandemic. The approach
involves iterative transformations of production networks from their pre-emergency
state to achieve adaptation. Within this study, the authors consider lead-time and
missed demand as crucial indicators of health risk (e.g., achieving reconfiguration
with shorter lead-time could increase ventilator availability and reduce fatalities) and
economic losses (e.g., inability to deliver regular commercial products due to system
adaptation). As it regards the Network Interaction, the main objective of the Manu-
facturing System Reconfiguration (MSR) model is to align the ramp-up time and
target capacity, while maximizing the capacity for commercial production based on
the optimized production network target. On the other hand, the Production Network
Reconfiguration (PNR) model creates a production plan within the given ramp-up
time and achievable production capacity obtained from the MSR model. These two
models rely on each other’s inputs and calculations, and their interaction is crucial
in determining the optimal solution. The PNR model aims to minimize the ramp-
up time to increase production for both commercial products and critical resources.
However, the feasibility of the plan must be evaluated by the MSR model to ensure
that it can meet the production plan, even if it doesn’t reach the target capacity. To
avoid making infeasible decisions due to tight constraints during direct interaction,
the MSR model initiates the iteration process with configurations that require a rela-
tively longer ramp-up time and continues until an agreement is reached with the PNR
model. The interaction process concludes when the remaining demands no longer
decrease. To overcome potential challenges of getting trapped in local optima, the
MSR model selectively relaxes the ramp-up time constraints to broaden the search
space, thereby enhancing the robustness of the decisions.

3 Artificial Intelligence in the Context of Smart Factory

This section starts from presenting tools to transform signal-captured data to actual
information and subsequently to useful knowledge. This is further supported by
presenting cases from literature where some nature inspired algorithms were used
for production and management optimisation, with reference architectures found in
Sect. 4.
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Fig. 9 From Automation Pyramid to Digital Transformation with Industry 4.0 [82]

3.1 Turning Data to Knowledge

Chen et al. in 2022 [81] in their research work have investigated data-driven
approaches for constructing dynamic content for efficient knowledge management.
Industrial AI plays a crucial role in creating intelligent and resilient industrial systems
that possess fault tolerance, self-organization, and on-demand capabilities. It is
a systematic discipline that focuses on the development, validation, and deploy-
ment of machine learning algorithms specifically designed for industrial applica-
tions, ensuring sustainable performance. The core concept revolves around delivering
manufacturing services to end users by effectively coordinating distributed manu-
facturing resources through the integration of AI methodologies. Figure 9 provides
a visual representation of how the four enabling technologies of industrial AI can be
better understood within the context of the IMS 5C-CPPS architecture. This archi-
tectural framework offers a comprehensive and step-by-step strategy, encompassing
data collection, processing, analysis, and ultimately generating value [82].

3.2 Implementation of Nature-Based Algorithms
for Production Optimization

Optimization is a broad topic, which covers all the technologies, techniques and
algorithmic approaches for enabling engineers to enhance a plethora of manufac-
turing and production activities. The most prevailing approaches until recently were
(i) deterministic, and (ii) meta-heuristic. However, the recent technological advances
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Fig. 10 The bi-directional systematic approach to identify the potential impact of biological
transformation of manufacturing

imposed by Industry 4.0 and its pillar technologies, advanced computational capabil-
ities in combination with AI have enabled engineers to design and implement algo-
rithms based on principles and concepts of nature. Therefore, in Fig. 10 an attempt
has beenmade for comparing core Biology concepts versusManufacturing concepts.
Therefore, in the center part of the Fig. 10, bio-inspired approaches/algorithms are
illustrated [83].

Nature-based algorithms also defined as “Bio-localization in Manufacturing” can
be realized as the imitation of nature-based algorithms for solving engineering prob-
lems. Briefly, some examples are mentioned, falling under the category of swarm
algorithms. Such algorithms are imitating the behavior of groups of animals and
particles in order to optimize a mathematically modelled problem. Concretely such
mathematical models are structured in a way that they are expressed as minimization
or maximization problems. The implementation of any kind of AI requires a training
process for the computerized system before it can provide suggestions/predictions
and perform any kind of data analysis. Consequently, the need for implementing
optimization methods becomes mandatory. On the other hand, nature’s optimiza-
tion mechanisms, follow the “Open Adaptation” paradigm. Concretely, Open Adap-
tation does not require the strict setup of the above-mentioned parameters, thus
entailing an advanced level of intelligence versus the evolutionary intelligence of
modern computational systems [84]. By extension, it is necessary for engineers to
reverse engineer nature’s algorithmic approaches, before proceedingwith application
in manufacturing systems.

In the context of continuous production systems, The authors in [85] introduce a
new algorithm simulating the behavior of the Siberian Tiger, and which operates in
two stages, namely (i) the attacking stage, and (ii) the chase phase. The algorithm has
been tested in a variety of engineering applications indicating promising results in
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comparison with similar optimization algorithms. On the contrary, Trojovská et al.
in 2022 [86] have developed an algorithm which mimics the behavioral patterns of
zebras, including the foraging and defense actions. Following the validation of the
algorithm in common engineering problem, its superiority over traditional heuristic
algorithms is proved. Finally, in [87] the authors have proposed a bio-inspired meta-
heuristic algorithm inspired by the hunting behavior of the Tasmanian devil. Through
testing the proposed algorithm outperforms the common algorithms in terms of
exploration abilities and quality of results.

In the previous paragraph, a handful of cutting-edge bio-inspired algorithms
have been presented. Undeniably, this does not cover the entirety of the algorithms.
However, this discussion provides concrete evidence, that engineers should investi-
gate the working principles of natural activities throughout its species, in order to
develop robust optimization models. Furthermore, it can also be concluded that AI
is not a revolutionary technological field. Instead the technological advances have
unveiled its potential.

It can be concluded that natural systems are extremely complex systems that have
significant effort and stages of development, adaptation, and optimization. A poten-
tial strategy for the effective decoding of the natural systems would be the creation
of parallels as we delve deeper into their structure. Engineers could concentrate on
modeling natural systems as engineering systems or translating natural processes into
engineering/system processes. For example, the logic of immune systems may help
in the creation of crisis management plans. The robustness and resilience of systems,
whichhavebeen extensively studied over the past twoyears, could specifically imitate
the principles of immune systems in order to detect volatile behaviors, detect and
recover from external disturbances, and consequently to reschedule the operation
of the production network in order to minimize undesirable effects. Further to that,
similar to how humans use collective systems, nature uses smaller communities as
collective systems (e.g., insects). The development of scheduling techniques, such as
job-shop scheduling, can benefit from these social insect societies and their operating
principles, and their contributionmay even extend to the planning and organization of
entiremanufacturing networks. Ultimately, nature could be considered as a black box
that engineers have not yet fully decoded. However, there are a few crucial issues that
demand discussion and further study. First, engineering has traditionally relied on
highly structured systems that, in some cases, are not flexible or adaptable to distur-
bances. These systems are also centralized and have all of their components overly
defined, which reduces the degrees of freedom. On the other hand, natural systems,
operate in an abstract manner. A pioneer new concept for manufacturing systems
entitled “Biological Manufacturing Systems (BMS)” [88]. As a result, it is neces-
sary to implement appropriate frameworks that give lower production levels access to
decision-making tools and/or functionalities while providing adequate information
about facility and network operations to the higher production levels. Consequently,
holonic approaches have therefore been developed, realizing individual production
entities as holons or agents, dispersed throughout the production network, capable
of cooperating with other holons, but also autonomous.
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Currently, more computational resources are needed due to the enormous amount
of data generated daily from manufacturing facilities and the growing complexity of
the digital/virtual models used to describe physical production networks. Therefore,
complex calculations can be carried out more easily due to continuously connected
device networks.

Recapping the context of this Section, engineers at a global scale have focused their
efforts on the design, development, implementation, and improvement of bio-inspired
algorithms. These category of algorithms in combination with the increasing compu-
tational resources/power, facilitates the design of more detailed/realistic models for
manufacturing and production systems. However, despite the efforts for creating
robust simulation frameworks, it remains unclear which type of algorithm to utilize,
and what are the criteria for selecting an algorithm.

3.2.1 Nature Based Optimization Algorithms Based on AI

Nature-based optimization algorithms based on AI have found significant appli-
cations in production control at the operational level. These algorithms leverage
concepts inspired by natural systems to optimize various aspects of production
processes. Genetic Algorithms (GA) can be employed to optimize production
scheduling, resource allocation, and inventory management, considering multiple
objectives and constraints. Particle Swarm Optimization (PSO) can aid in produc-
tion line balancing, minimizing cycle times, and improving throughput. Ant Colony
Optimization (ACO) algorithms can optimize routing and scheduling in transporta-
tion and logistics, reducing delivery times and costs. These nature-based optimization
algorithms (Fig. 11) provide efficient and effective solutions for production control,
enabling organizations to achieve higher productivity, reduced costs, and improved
overall operational efficiency [89]. Some key applications are summarized in Table 1.
The Abbreviations are included in Nomenclature List.

3.3 Implementing Nature-Based Optimization Algorithms
Based on AI Decision Making or Optimization
at the Network Level

While various Nature-Inspired Optimization Algorithms (NIOAs) exhibit their own
unique approaches, they generally adhere to a set of overarching principles. This
section explores the shared concepts employed in NIOAs.

• Exploration: NIOAs focus on exploration, aiming to uncover unknown areas
within the vast search space of NP-Hard optimization problems. This approach
reduces time complexity by probing potential solution areas, helping to avoid
sub-optimal solutions. The amount of emphasis placed on exploration directly
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Fig. 11 Classification
hierarchy of nature inspired
optimization algorithms [89]
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Table 1 Nature based Optimization algorithms based on AI that are used on production control
level (Decision Making & Optimization)

Nature-based
optimization
algorithm

Description Application in production
control

References

Genetic
algorithm

Concepts of mutation,
crossover, and selection to
iteratively search for the
optimal solution

Production scheduling,
resource allocation, and
facility layout optimization

[90]

Particle swarm
optimization

Nature-inspired algorithm that
simulates the movement and
cooperation of particles in a
search space to find the optimal
solution

Job shop scheduling,
inventory management, and
production planning

[91]

Ant colony
optimization

Nature-inspired algorithm that
uses pheromone trails to guide
the search for the optimal
solution

Routing and scheduling of
material handling systems,
vehicle routing, and supply
chain optimization

[92]

Artificial bee
colony
algorithm

Mimics the foraging behavior
of honeybee colonies, where
bees explore the search space
and communicate to find the
best solution

Job scheduling, task
allocation, and resource
optimization in manufacturing
environments

[93]

Firefly
algorithm

Nature-inspired optimization
algorithm that utilizes the
attractiveness between fireflies
to guide the search for optimal
solutions

Production planning, facility
layout design, and job shop
scheduling

[94]

Grey wolf
optimizer

Nature-inspired optimization
algorithm that simulates the
hunting behavior of grey
wolves to search for the best
solution in optimization
problems

Production scheduling,
workforce planning, and
supply chain optimization

[95]

Cuckoo Search
Algorithm
(CSA)

Nature-inspired optimization
algorithm that imitates the
behavior of cuckoo birds to
discover optimal solutions by
replacing poorer solutions in
the search space

Production control systems to
optimize scheduling, resource
allocation, and task
assignment, improving
efficiency and minimizing
production costs

[96]

impacts an algorithm’s performance, with well-executed exploration, particularly
in the initial iterations, significantly improving algorithmic performance [97]

• Exploitation: In Nature-Inspired Optimization Algorithms (NIOAs), exploration
involves searching for unknowns, while exploitation utilizes local knowledge to
improve solutions. The exploitation process aims to find better solutions within
a specific region of the search space, building upon existing best solutions.
Balancing exploration and exploitation is crucial for achieving global optima,
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and the effectiveness of NIOAs relies on the coordination between these two
processes [Yang X et. al., 2014].

• Encoding: NIOAs mimic complex natural phenomena that are difficult to repli-
cate, requiring solutions to be represented in a specific format. This representation,
known as encoding, transforms a solution into a problem-specific form, such as
binary strings, ordered sets, unordered sets, or permutations, depending on the
problem requirements. For instance, genetic algorithms commonly use binary
string representations for the population of individuals [98].

• Generation of New Solutions: Algorithms generate solutions in two ways: (1)
randomly at the start, and (2) through algorithmic operators during optimization.
Generated solutions must adhere to encoding techniques and remain within the
feasible search space. Accepted solutions with improved values contribute to
generating better solutions in subsequent stages [89].

• Elitism: NIOAs are iterative algorithms that generate new solutions in each iter-
ation, which may or may not be better than existing ones. Elitism is employed to
preserve high-quality solutions separately, allowing them to potentially contribute
to generating new solutions. The advantage of using elitism is that solution quality
can improve with increasing iterations [89].

• Stopping Criteria: In real-world problems where the optimal solution is
unknown, a significant number of iterations are required to approach it, necessi-
tating the definition of appropriate stopping criteria. Literature proposes various
techniques to address this issue, including setting maximum iterations and moni-
toring changes in the best solution over iterations. Careful consideration should
be given to the selection of a specific criterion as it can impact the algorithm’s
performance [99].

• Interpretation of result: NIOAs are stochastic algorithms that select solutions
randomly from the search space, leading to potential local optima. Different algo-
rithms may yield varying results even with the same parameters, making correct
interpretation crucial. Guaranteeing the best solution is impossible as the entire
search space is not considered. To address this, a common approach is to run the
algorithm multiple times, compare results, and select the best outcome [89].

• Objective function: The objective function is a fundamental component within
the realm of optimization, serving as a representation of the function that requires
optimization.Once a solution is generated, it becomes imperative for the algorithm
to assess its efficacy. The quality of a solution is determined by its associated
objective function value, which may manifest as a formal mathematical function
or take on a different form based on the specific problem at hand. This objective
function plays a crucial role in facilitating decision-making processes within the
algorithm, influencing judgments regarding the selection of solutions to carry
forward into subsequent iterations and determining the applicability of specific
operators to individual solutions [89].
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3.4 Management Optimization

Liu in 2023 [100] has proposed a supply chain management model targeting at the
more robust control of uncertainties and ensuring that the supply chain operation
adheres to the latest environmental regulations, for small and medium sized enter-
prises (SMEs). The proposed model is based on the implementation of a tabu search
algorithm, which imitates the functioning of the human memory. What is worth
noting, is the influence of this supply chain model in the decision-making processes.
Concretely, the framework can support managers into making more environmentally
friendly decisions, without compromising the company’s economic growth.

The aspect of genetic algorithms implementation in supply chain management
is investigated by Santos et al. in 2022 [88]. More specifically, the authors have
proposed a framework based on the utilization of a genetic optimization for resource
replenishment for dynamic industries, which have a plethora of product codes, thus
having complex resource requirements. Due to the complexity of the manufacturing
system and the corresponding complexity of the model, simulations are resource
intensive in terms of computational power, which depending on the time horizon,
might be acceptable. Supply chain management has been investigated by Chong
et al. in 2022 [100], who have developed a Deep Reinforcement Learning model
for the optimization of supply chains, considering aspects such as service level,
inventory-to-sales ratio, and sell-through rate.

4 Reference Architecture Model for Efficient Production
Management

4.1 Architecture of an AI-Assisted Customized
Manufacturing (CM) Factory in Industry 4.0

Taking into consideration the information presented in Sect. 3 and the technolog-
ical advancements of Industry 4.0, new frameworks for intelligent manufacturing
are constantly being developed as can be summarized from the literature. In that
context, in this Section, an architecture is presented and discussed for enhancing
interconnectivity of the various manufacturing assets as well as for integrating AI
techniques, for the provision of improved customization functionalities. The added
value of the proposed architecture is the integration of ML elements/functionalities,
such as knowledge graphs, artificial neural networks, and advanced HMI function-
alities, in order to improve cornerstone metrics of the manufacturing network, such
as, efficiency, scalability, sustainability, and flexibility. The core activities of the
architecture take place at the Cloud Layer (see Fig. 12, center part), which hosts
the AI functionalities. However, since devices and embedded systems are constantly
being improved following the trends of micro-electronics, the integration of Edge
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Computing is mandatory. By extension, with Edge Computing, the computational
burden can be shifted from the Cloud to the Edge (local node layer), thus further
minimizing the network traffic. Furthermore, Edge Computing facilitates achieving
true real-time reaction from the computational systems. Consequently, for critically
fast reactions/decisions, the Edge Computing functionalities are recalled. On the
contrary, for decisions requiringmore time, for efficient data processing, Cloud func-
tionalities/services are recalled. Concretely, the framework presented in Fig. 12, is
based on the interconnection and of three layers, in particular (i) the smart inter-
action, (ii) the smart devices, and (iii) smart services. More specifically, in this
proposedAI-assistedCognitiveManufacturing (AIaCM) framework, several compo-
nents are identified, namely smart devices, smart interaction, the AI layer, and smart
manufacturing services. The framework is explained in detail as follows:

Smart devices: This component encompasses robots, conveyors, and other
controlled platforms that form the physical layer of the AIaCM system. Automatic
control systems govern the operation of these devices, and real-time performance is
crucial.Machine Learning (ML) algorithms, implemented on low-power devices like
FPGAs, can enable real-time processing. Interconnections between physical devices
are established through edge computing servers.

Fig. 12 Smart customization framework based on the utilization cloud, edge computing and
artificial intelligence [101]
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Smart interaction: Serving as a bridge between the device layer, AI layer, and
services layer, this component consists of two modules. The first module comprises
network devices like switches and routers, forming the network layer. The second
module encompasses dynamic elements such as networkprotocols, information inter-
action, and data storage, facilitating connections between manufacturing processes.
AI techniques, such as Recurrent Neural Networks (RNN) or Reservoir Computing
(RC), are applied for tasks likewireless channel prediction and network optimization.

TheAI layer:Algorithms running on computing platforms like edge or cloud servers
form the AI layer. This environment incorporates cloud and edge computing servers
equipped with frameworks like MapReduce, Hadoop, and Spark. AI algorithms are
deployed at different levels, with cloud servers used for tasks like training deep
learningmodels,while edge computing servers handle simpler algorithms for specific
manufacturing operations.

Smart manufacturing services: This component encompasses various services,
including data visualization, system maintenance, predictions, and market analysis.
For instance, a recommender system can provide detailed information on CM prod-
ucts, while performance metrics of production lines, market trends, and supply chain
efficiency contribute to comprehensive decision-making [101].

Next, having discussed the physical layer, which incorporates the machines and
the sensing systems, the discussion of the smart interaction layer follows. This
layer/module of the proposed architecture encapsulates the network infrastructure
required for thewired andwireless communication of the sub-systemswith theCloud
Computing framework. In this layer, there are two types of components used, in
particular, the physical equipment which is static/fixed, and the digital assets, which
are dynamic.Thedigital assets include the necessary communication protocols (IEEE
804.15.4, IEEE 802.15.4, DDS, AMQP, CoAP etc.), information interactions, and
the information exchange (e.g. data storage). In this layer, ML algorithms can also be
implemented in order to facilitate network optimization, improve network security,
and reduce network traffic.

The closed-loop system is completed by the smart services layer/module, which
encapsulates the functionalities and services provided to the human operators for
facilitating the advanced HMI. Through the services provided, the engineers are
capable of constantly monitoring the status of the manufacturing assets and making
proper decisions. Further to that, engineers are capable of visualizing data and
consequently planning ahead maintenance and repair operations. Among the list
of provided services are the market analysis tools, which enable the company to
capture the volatile market trends and demands. By extension, with proper adjust-
ment of the manufacturing activities, the company is more capable of adapting to the
concurrent circumstances,which leads to improved flexibility and sustainability. This
methodology could be demonstrated in an example, however due to highly subjective
decision-making of technologies for a case-specific implementation, the selection of
technologies will depend on the agent of the decision making, the company’s prior-
ities, any legal framework and/or political aspects. Infrastructure is also important
such as sensor type and data format, which can dictate the selection of technologies
for the specific case.
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4.2 Edge Computing-Assisted Intelligent Agent Construction

The production of big data, with increasing volume, variety, and speed, is one of the
most important outcomes of IoT development. Themodern range ofmass customiza-
tion, which entails satisfying the needs of individualized consumer markets, is built
on the analysis of this data. Because of this, it is crucial to analyze this data in order
to enhance decision-making and knowledge repositories. Tao et al. [1] presented
a conceptual framework and typical application scenarios for big data in smart
manufacturing [102]. For the quantification of complexity, many approaches based
on heuristics, statistics, and probabilities have been also developed. Decentralized
decision-making and real-time response to unexpected developments are two impor-
tant factors influencing the flexibility required by a production chain to meet market
demand. The global market landscape has shifted in recent decades, and hierar-
chical mass production appears to be incapable of meeting the changing demand
requirements imposed by globalization [5].

In parallel, the advancements in intelligent edge and intelligent cloud have given
manufacturing companies a great deal more autonomy. The edge device and the
public cloud provider merge to form a new hybrid that allows suppliers, manufac-
turers, and industrial customers to collaborate effectively. The manufacturing oper-
ations management domain and its activities are described in ISO standard IEC
62,264 [103] following a real case from the management systems of a production
line. This description makes it possible to integrate the manufacturing operations and
control domain with the enterprise domain. This standard serves as a guideline for
increasing interface uniformity and consistency while lowering the risk, cost, and
errors associated with the implementation of these interfaces. Thus, the authors in
[80] have proposed an edge-enabled manufacturing management platform. In this
platform, the control domain and the manufacturing operations are executed by edge
computing and the enterprise domain is handled by cloud computing. As depicted in
Fig. 13, services and manufacturing activities such as maintenance, quality control
and inventory management will be assisted by intelligent edge.

Since cloud computing, edge computing, and local computing paradigms have
their unique set of advantages and disadvantages, they should be combined to maxi-
mize their effectiveness. Simultaneously, the corresponding AI algorithms should
be redesigned to match the corresponding computing paradigm. Next, cloud intel-
ligence is responsible for producing comprehensive, time intensive analysis and
decisions. On the other hand, edge and local node intelligence present high appli-
cability to time-aware environments. Intelligent manufacturing systems combine AI
technologies to create smart manufacturing devices, intelligent information interac-
tion, and intelligent manufacturing services. Figure 14 depicts an AI-assisted Cloud
Manufacturing framework with smart devices, smart interaction, AI layer, and smart
services. Manufacturing devices in the customized production paradigm should be
capable of rapid restructuring and reuse for small batches of personalized products.
However, achieving elastic and rapid control over massive manufacturing devices is
challenging. The agent-based system was considered as a solution to this challenge.
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Fig. 13 Edge computing-assisted intelligent agent construction Architecture

Agents can operate autonomously and continuously in a collaborative system. A
multi-agent system can be built to perform autonomous actions. Although a single
agent has sensing, computing, and reasoning capabilities, it can only perform rela-
tively simple tasks on its own. Smart manufacturing may entail complex tasks, such
as image-based personalized product recognition, which is expected from emerging
multi-agent systems applied in an Additive Manufacturing application [104]. A
variety of decentralized manufacturing agents are connected to edge computing
servers via high-speed industrial networks, as shown in Fig. 14. The device layer,
agent layer, edge computing layer, and AI layer are all part of the edge computing
assisted manufacturing agents.

The complexity of the product, particularly in highly personalizedmarkets, affects
the overall performance of the production systems.Moreover, production scheduling
is a vital component of a decision-making process to address the challenge of high
flexibility [105]. Therefore, a knowledge-enriched short-term job shop scheduling
mechanism was proposed in [106]. The proposed framework was implemented into
a mobile application for an actual milling machine. The operating principle focuses
on the short-term scheduling of machine shop resources through an intelligent algo-
rithm creating and comparing alternate resource allocations to tasks. In addition, a
collection of mobile apps built to facilitate consumer integration in the service design
phase and subsequently in the network design phase. The applicability of the mobile
application is tested by customizing accessories and car aesthetics.
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Fig. 14 Edge computing-assisted manufacturing devices

Next, a framework consisting of a mobile application supported by Augmented
Reality (AR) technology and a production network design tool supported by a smart
search algorithm is presented in [107]. In the product design phase, the proposed
framework aims to integrate client ideas. Therefore, the customer contributes to
the design of the production network. The results of the proposed research work
were validated with a real-life application in the white-goods industry. Furthermore,
production is based on routine tasks in many manufacturing plants, which can cause
workload-related disorders. As a result, job rotation provides a widely accepted and
adopted solution to that issue. However, due to the physical limitations of human
operators, careful planning is a critical requirement for the avoidance of production
bottlenecks. As such, the manager/engineer is responsible for the task allocation
among the available employees. To that end, a web-based tool has been designed
and developed in order to create job rotation schedules. The tool presented in [108]
can calculate a range of alternative solutions that are continuously being evaluated
and the most valuable solution is chosen, based primarily on the repetitiveness score
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and, secondly, on minimizing the distance of travel as a result of the constant work
rotation. In the specific application, the focus was on assembling five trucks, with
specific number of tasks, operators and workplaces involved.

Similarly, the authors in [109] present a novel production network model that
utilizes a federation-based approach, enabling local factory agents to collaborate and
share manufacturing assets. The goal is to enhance resource utilization and service
levels. Using a real industrial data set, a cloud-based distributed framework was
created for a limited number of factories. Building upon this concept, the framework
was then scaled up significantly andmodeled globally usingAnyLogic’s agent-based
simulation. This simulation aimed to evaluate how the expansion of the federation
impacts cooperation, service level variations, and local resource utilization. More
specifically, the approach that is employed is based on the decentralized control
concept of Industry 4.0. In this framework, there are various agents with different
objectives, such as financial, manufacturing, and supply chain optimization. These
agents can make independent decisions and have the ability to select preferred part-
ners for collaboration. A Collaboration Platform (CP) acts as a facilitator, operating
as amarketwhere agents can offer or request resource capacities. The platform assists
in finding suitablematches for capacity requests. Since agents may have diverse pref-
erences, the goal is not to provide a single optimal solution, but rather to offer feasible
alternatives, similar to flight search applications that suggest different flights based
on search conditions. Therefore, the agents have the final stage in making decisions.

More specifically, the authors adopted the decentralized control paradigm of
Industry 4.0. There is a system of diverse agents that make decisions independently
and aim to optimize different key performance indicators (KPIs) such as financial
metrics (e.g., total cost), manufacturing metrics (e.g., Overall Equipment Effective-
ness), and supply chain metrics (e.g., service level, fill rate). These agents also have
preferences regarding the partners they choose for collaboration. To facilitate coop-
eration among the agents, a Collaboration Platform (CP) that acts as a marketplace
for resource capacities has been developed (as shown in Fig. 15). Agents can offer
their available capacities or request capacities when they have excess or shortages
respectively. The platform helps to find suitable offers for each request. Given the
complexity of the agents’ preferences, the goal of matching requests and offers is
not to provide a single optimal solution, but to offer feasible alternatives, similar to
flight search applications that suggest alternative flights based on different search
conditions.

The matching mechanism involves a basic model where the platform stores
incoming offers and attempts to find alternative proposals for requesting agents to
choose from. The selection considers the agents’ specific optimization requirements
and strategies. A capacity request is described by parameters such as the resource,
required quantity, release date, and due date. Capacity offers include details like
the resource, earliest start, latest finish, minimum accepted time, resource speed, and
resource utilization price. Theminimum accepted time sets a lower limit for requests,
preventing lending capacity for durations less than a shift. Transportation time and
price between the offering and requesting agents can be calculated for each request
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Fig. 15 Layers and components of the CP model

or offer. The decision variables include whether an offer is selected, as well as start
and end times for production on a specific resource. Derived variables simplify the
model by representing production time and produced quantity. Relaxing constraints
are introduced through additional parameters. The optimization problem is formu-
lated using mathematical programming techniques, including the simplex algorithm,
with appropriate equations and a “big number” (M) to solve linear problems.

min
∑

(T i Pi + 2AiT Pi ) (1)

(R − Ri )Ai = 0(∀i) (2)

Li ≤ si ≤ ei ≤ Ui (3)

Q − ε1 ≤
∑

Qi (∀i) (4)

(L − ε2 + TTi )Ai ≤ si (∀i) (5)

ei + T Ti ≤ U + ε3 + 1(1 − Ai )M(∀i) (6)

MAi ≥ Ti ≥ mi Ai (∀i) (7)
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where,

Ai (0 ≤ Ai ≤ 1) indicates whether offer i is selected or not.

si gives the start of the production on resource Ri,

ei gives the end of the production on resource Ri,

Ti = ei-si is the production time,

Qi = TiSi is the produced quantity on resource Ri.
In order to allow non-exact matches, three additional parameters are used for

relaxing the constraints: ε1, ε2, ε3 > 0.
Equation (1) represents the requirement to minimize the overall cost associated

with production and transportation. When an offer i is not chosen, denoted by Ai =
0, the transportation cost is not considered in the objective function. Additionally,
in this scenario, the production time is zero according to Eq. (7), implying zero
production cost as well. Equation (2) specifies that only the appropriate resource can
be matched. Equation (3) ensures that the production time is non-negative and falls
within the given interval. Equation (4) states that the total quantity produced covers
the requested amount, considering the permitted shortage. Equation (5) formulates
the condition that sufficient time exists for transportation between the release and
start time, allowing for a tolerance e2. Similarly, Eq. (6) expresses that there is
enough time for delivery after production, considering the deadline and allowing for
a maximum tardiness of ε3. Finally, Eq. (7) guarantees that the production time is
either zero or exceeds the minimum offered amount, such as a shift or a day.

4.3 Digital Transformation for Resilient GPN Framework

Corporations that neglected to follow the trends of new technologies in areas such as
Entrepreneurial Resource Planning (ERP) software, end-to-end business solutions,
or even basic websites, were caught off guard when the COVID-19 pandemic swept
the world and forced a sudden increase in digital transformation efforts. Companies
were forced to turn to e-commerce as physical stores were shut down by govern-
ment mandates. Those who adapted to the changes brought by the pandemic and
technology had the advantage over those who did not [111]. The key to successful
digital transformation lies in a clear vision, a roadmap, and a focus on the four key
areas of technology, data, process, and organizational change capability, all working
together. The COVID-19 pandemic also highlighted the importance of having a
flexible and agile supply chain, with real-time data playing a critical role in deci-
sion making. The six stages of digital transformation include Business as Usual,
Present and Active, Formalized, Strategic, Converged, and Innovative and Adaptive
[110]. Organizations can become more agile and better able to sustain profitability
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Fig. 16 Framework for Digital Resilient Cloud-Based Supply Chains [39]

by automating and standardizing processes and allowing for flexible work arrange-
ments for employees. Agile practices in IT have allowed for faster product develop-
ment and organizational transformation, enabling businesses to keep pace with the
rapid changes in the market. Based on the above-mentioned challenges, the digital
transformation in action framework is presented in Fig. 16. More specifically, to
enhance their agility, responsiveness to market changes, and overall profitability,
organizations are embracing automation, standardization, and global sourcing of
processes. The ability to anticipate and swiftly adapt to evolving market dynamics
is increasingly crucial for maintaining competitiveness. Agile methodologies have
proven successful in the realm of IT, facilitating accelerated product development
and organizational change. With the rapid pace of new product and software devel-
opment, businesses must align their transformation efforts accordingly to effectively
navigate continuous and abrupt shifts. Furthermore, empowering employees with
flexible and device-independent work options is vital. Considering these challenges,
the implementation of the digital transformation in action framework is warranted.

4.4 Data Security in Global Production Networks

The utilization of large-scale data in factory operations has led to increased concerns
about data security [112, 113]. In the past, the manufacturing industry has been
cautious about leveraging data due to fears of cyberattacks. High-profile incidents
like Stuxnet and traditional attacks like phishing have amplified these concerns,
particularly in light of stricter government regulations surrounding data distribution
and usage. IT professionals are particularly worried about the age, obsolescence, and
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Fig. 17 Example of using blockchain to identify breach in transmission of data file to a
manufacturer, adapted from [116]

diversity of operating systems and control technologies in manufacturing, as these
factors have created numerous vulnerable points that could be targeted by malicious
individuals [114].

Blockchain is a decentralized system or database that consists of a growing list
of records known as “blocks”. These blocks are managed by anonymous peers who
follow a protocol that allows for transaction verification without revealing the partic-
ipants. The blockchain is designed to be resistant to manipulation, providing trust
despite transaction anonymity. An example in Fig. 17 demonstrates how blockchain
can facilitate secure data transfer, such as sharing a part model from a designer to a
manufacturer. By utilizing the blockchain, themanufacturer can verify the integrity of
the data, confirming its source and ensuring a smooth transaction.Hedberg et al. [115]
have proposed a reference information model that utilizes blockchain for traceability
of product and manufacturing data, further developing this concept.

5 Discussion and Outlook

In this manuscript, we have aimed to shed light on the current status of Global
Production Networks (GPNs) and their limitations as a robust solution for advancing
global production activities. While GPNs still face challenges in terms of reliability
and resilience, the inevitable shift towards Industry 5.0 and Society 5.0, along with
the growing demand for highly personalized products and services, will undoubtedly
drive the adoption of GPNs. This results in the need for a holistic framework for their
application, that can implement all technologies, using objective metrics, to support
the decision making of AI and Big data integration for mass personalization. This
framework, though, should be human-centric and will therefore require. Therefore,
more suitable education frameworks for the preparation of the next generation of



304 D. Mourtzis et al.

engineers or other disciplines, for them to support and execute the technological
implementation is required.

In terms of future developments in production management, the integration of
blockchain technology holds significant promise. Although still in its early stages
within the management sector, blockchain adoption can bring about greater trans-
parency, alignment, agility, and adaptability. Moreover, blockchain offers inherent
benefits such as enhanced security, trust, and authenticity. Further research is needed
to explore the full potential of blockchain integration in production management and
uncover its impact on optimizing supply chain processes and facilitating seamless
collaboration among global partners.

While the integration of Artificial Intelligence (AI) technologies and techniques
in manufacturing aspects has shown considerable support for human operators and
decision-makers, ethical considerations must not be overlooked. Trusting the deci-
sionsmadebyAI systems andestablishing ethical boundaries becomecritical aspects.
Recent studies comparing humanbehavior andAI behavior inmoral decision-making
scenarios highlight both areas of agreement and divergence.Understanding the extent
to which AI can be trusted and establishing ethical guidelines will be vital for the
responsible deployment of AI systems in decision-making contexts [90]. Similarly,
in the domain of human resource management, the utilization of AI for decision-
making purposes presents challenges related to the potential de-skilling ofHRprofes-
sionals. Research should focus on finding alternative approaches to mitigate the loss
of control and explore the long-term outcomes in terms of the professional exper-
tise and commercial approach of HR practitioners as AI technologies become more
prevalent.

In conclusion, the future of global production management holds immense poten-
tial with the inevitable adoption of GPNs and the integration of technologies such as
blockchain andAI. By addressing the limitations of current systems, fostering educa-
tion frameworks, and establishing ethical guidelines, we can create a more robust,
efficient, and responsible production management ecosystem. Continued research
and collaboration across academia and industry will play a pivotal role in realizing
the full benefits of these advancements and driving the future success of global
production networks.

5.1 Challenges and Trends

Decision-making in the design and operation of production networks is confronted by
several significant challenges, including uncertainty, complexity, sustainability, and
disruptive innovation. It is crucial for decision-makers to acknowledge and address
these challenges.

Uncertainty poses a formidable obstacle, as it involves predicting the development
of influencing factors. Unforeseen internal and external events can occur, altering
the impact of these factors and the behavior of the production network. This makes
it difficult to account for all possible eventualities. Market demand uncertainty is
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particularly prominent and represents a primary challenge for global production
[117].

Complexity is another challenge, characterized by the vast number and diversity
of elements and relationships within influencing factors and the production network
itself. It encompasses the variability in the passage of time, as expressed by the
various behavioral possibilities of the elements and the fluctuation in the effects
observed between these elements [118].

In addition to uncertainty and complexity, sustainability is a broad and increas-
ingly critical long-term challenge. It necessitates that production network partners
fulfill the needs of present stakeholders, including customers and partners, without
compromising the ecosystem’s ability to meet future needs and those of future
generations [119].

Furthermore, themanagement of production networks faces significant challenges
due to technological advancements and organizational transformations. One such
challenge arises from the emergence of disruptive innovations, characterized by
novel technological advancements such as 3D printing, Internet of Things (IoT), and
biotechnology. These innovations redefine performance metrics, consumer expecta-
tions, and introduce radical changes in functionality, technical standards, and owner-
ship structures. In the present era, digitalization stands as a prominent challenge,
driven by the digitization of instruments, devices, andmachinery. This transformation
brings forth complex implications for industries, including concerns regarding the
loss of control over customer relationships, the necessity of digital engagement with
suppliers and customers, intensified competition, and the potential commoditization
of hardware products [120].

5.2 Research Gaps

Based on the literature survey conducted, several research gaps emerge in the context
of AU-based Global Production Networks (GPNs) in the era of mass personal-
ization, including the effective integration of AI, scalability and flexibility chal-
lenges, data security and privacy concerns, human–machine interaction dynamics,
and sustainability and ethical considerations.Moredetails are summarized as follows:

• Integration of Artificial Intelligence (AI): One research gap in the context of
AU-based Global Production Networks (GPNs) is the exploration of how AI
technologies can be effectively integrated to support mass personalization. This
includes investigating AI algorithms and approaches that can optimize production
processes, enable adaptivemanufacturing, and enhance decision-making inGPNs.

• Scalability and Flexibility: Another research gap lies in understanding how AU-
basedGPNs can effectively scale and adapt tomeet the demands ofmass personal-
ization. This involves examining strategies for dynamically configuring and recon-
figuring production networks to accommodate varying product specifications,
customization requirements, and market dynamics.
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• Data Security and Privacy: The protection of sensitive data within AU-based
GPNs is a critical research area. Investigating robust security measures, privacy-
preserving techniques, and mechanisms for secure data exchange and collabora-
tion in the era of mass personalization is essential to ensure trust and mitigate
risks associated with data breaches and unauthorized access.

• Human–Machine Interaction: With the increasing role of automation and AI in
GPNs, there is a need to study the impact of human–machine interaction on
productivity, job roles, and employee well-being. Research should explore how
humans can effectively collaborate and work alongside autonomous systems in
AU-based GPNs, considering factors such as skill requirements, training needs,
and the potential for human error in complex decision-making processes.

• Sustainability and Ethical Considerations: As GPNs embrace mass personaliza-
tion, it is crucial to address sustainability and ethical aspects. Research should
focus on developing sustainable manufacturing practices, such as eco-friendly
materials, energy-efficient processes, and waste reduction strategies. Addition-
ally, ethical considerations related to the use of AI, data privacy, and social impli-
cations of automation in GPNs need to be explored to ensure responsible and
socially conscious production practices.

5.3 Future Trends

It becomes necessary to address the ability of the network footprint to respond to
changes and disturbances, thereby minimizing the hysteresis effect and effectively
managing the inherent uncertainty and complexity in Global Production Networks
(GPNs). To ensure an appropriate alignment between real-world network footprints
and production strategies, the core task of production strategy can benefit from the
utilizationof straightforward frameworks and tools. These frameworks and toolsmust
consider the intangible advantages associated with global production. Furthermore,
whendesigning the network footprint for the core task, the significance of adaptability
within the footprint becomes crucial.

The potential for increased transparency and standardization warrants thorough
examination, particularly in light of the digitalization that is shaping the require-
ments within network management. Research endeavors should focus on exploring
the potential of digitalization and its associated new business models for effective
network management through real-world applications. Overcoming concerns related
to privacy and cybersecurity is imperative in this regard. Additionally, the develop-
ment of algorithms for automated decision-making, negotiation, and balancing of
interests is necessary. By concentrating research efforts, the practical relevance of
GPNs can be further enhanced. However, it is crucial for research to remain cognizant
of future drivers of globalization, such as the circular economy, resource accessi-
bility, and sustainability (refer to Fig. 1). Depending on the increasing significance
of these drivers, research should be directed towards addressing their implications.
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Only through a combined focus on research needs and the examination of globaliza-
tion drivers can we gain a comprehensive understanding, clarification, and predictive
capabilities pertaining to GPNs within our globalized world [60].

6 Conclusion

Global production networks (GPNs) represent a pivotal organizational form that
plays a significant role in today’s global trade, exhibiting continuous evolutionary
growth. However, the design and operation of GPNs often face practical challenges
due to inefficient structures. This keynote paper provides a comprehensive summary
of technical and scientific aspects pertaining to global production within the CIRP
community and beyond. Drawing from industrial examples, the paper presents a
framework for designing and operating GPNs, which encompasses essential plan-
ning tasks, influential factors, challenges, enablers, and decision support systems.
Through a meticulous analysis of the current state-of-the-art in production strategy
formation, network footprint design, and operational networkmanagement, the paper
identifies three key trends that necessitate future research. The first trend emphasizes
the importance of defining and maintaining alignment between production strategy
and footprint design while considering the intangible benefits of global production.
The second trend highlights the need to address adaptability in footprint design and
provide theoretical support for emerging network and factory phenotypes. The third
trend underscores the exploration of the potential offered by digitalization and novel
collaboration models in network management. By embracing these trends, the paper
envisions the transformation of historically rigid production networks into efficient
networks with focused and resilient footprints.
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