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Abstract. Due to the advancement of technology over time, higher technology
machines are being used in the production and service sectors. Companies suffer
great financial losses if these machines stop working due to a breakdown. To avoid
these losses, maintenance has become increasingly important for companies over
time. Condition based maintenance aims to intervene in a system as close to the
point of failure as possible using information received from the system. Sensors
are used to obtain information about the wear and tear of the machine. However,
since sensors are costly, they are not installed on every machine component but
rather on the system. While this reduces costs, it also means that we now obtain
partial information from the system rather than from each component. In these
systems, we need to make two types of decisions. The first decision is when to
intervene in the system. The second decision is howmany spare parts to carry with
us once we decide to intervene. We simulated several different experiments for
a periodic system composed of identical components and found optimal policies
based on the two decisions we made. Our managerial insights indicate that as the
number of components in the machine increases, the importance of selecting spare
parts for the system also increases, leading to a tendency to maintain the system as
late as possible before the system fails. Moreover, in situations where the penalty
for maintenance is lower after a failure occurs, in optimal policy, wemaintain later
and carry more spare parts during our interventions.

Keywords: Condition-based maintenance ·Multi-component systems ·
Corrective Maintenance · Preventive Maintenance · Spare part selection decision

1 Introduction

In the manufacturing and service sectors, human labor has been replaced by machines.
These machines can deteriorate over time, making maintenance a critical issue in these
sectors. Machinery and parts have also started to have more features, and with it, the
maintenance cost has increased. Maintenance costs can account for up to 70% of total
production costs for some companies (Bevilacqua & Braglia, 2000 [1]). Companies
with better maintenance strategies can be more competitive in the market due to the cost
savings they achieve. The firm that implements poor maintenance strategies not only

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
N. M. Durakbasa and M. G. Gençyılmaz (Eds.): ISPR 2023, LNME, pp. 443–453, 2024.
https://doi.org/10.1007/978-3-031-53991-6_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-53991-6_34&domain=pdf
https://doi.org/10.1007/978-3-031-53991-6_34


444 B. Kaya et al.

spend more money on their machines and parts but also damage their reputation, as the
use of inadequate maintenance strategies can result in an approximately 80% rise in
downtime (Özcan et al., 2017 [2]). On the other hand, ineffective maintenance strategies
can cause significant losses for companies, which can lead to a reduction in their direct
production capacity by up to 20% (Wollenhaupt, 2017 [3]).

Maintenance operations can significantly impact the daily operations of businesses.
Machines that are not properlymaintainedmay not function properly, and downtimemay
increase. Even if downtime does not occur, theremay be a decrease inmachine efficiency.
If the maintenance requirements of machines are not met regularly, machine failure and
increased replacement costs are also possible. In addition, maintenance requirements
can affect the safety of the business, and it should not be forgotten that machines that are
not regularly maintained can lead to dangerous situations. Businesses are increasingly
using machines that have advanced technology, and with the development of machines,
maintenance has become much more important for businesses. This not only makes the
machines more expensive but also increases their workload. Examples of thesemachines
are high-tech lithography systems, MRI machines, and wind turbines. Even momentary
interruptions in machines can result in thousands or even millions of dollars in losses
for companies. According to Sleptchenko and van der Heijden’s research in 2016 [4], an
average aircraft can lose $ 10,000 for every hour it is out of service, while a high-tech
lithography system can lose up to $ 100,000 per hour in downtime.

There are two primary maintenance strategies that companies use: time-based main-
tenance (TBM) and condition-based maintenance (CBM). Time-based maintenance
involves performing maintenance activities at fixed intervals regardless of the equip-
ment’s condition. For instance, a machine may receive maintenance every eight months
or every year, regardless of whether it shows signs of wear and tear. While this type of
maintenance is typically easier to plan and schedule, it can lead to unnecessary main-
tenance and increased costs. Condition-based maintenance, on the other hand, involves
monitoring the equipment’s condition and performing maintenance activities only when
necessary. However, obtaining information about the equipment’s condition requires the
use of various tools. This type of maintenance is more cost-effective since maintenance
is performed only, when necessary, but it requires more advanced planning and mon-
itoring systems. CBM can reduce maintenance costs by more than 50% (Zhang, 2018
[5]). Despite being more complex for technologically advanced machines, CBM is pre-
ferred due to the high cost of downtime and the increased cost of equipment replacement
when equipment is replaced more frequently. A comparison between condition-based
maintenance (CBM) and time-based maintenance (TBM) has shown that CBM is more
effective in reducing maintenance costs (Elwany & Gebraeel 2008 [6]).

In the previous section, we mentioned that to make decisions about intervening in
the system along with the CBM maintenance strategy, we need to obtain information
about the condition of the equipment or system. Sensors can be used to detect changes
in equipment performance. Sensors provide information about critical components or
systems they are attached to. For example, blades are an important part of wind turbine
generators. The sensor signals us in the light of various information. Zhang et al., (2018)
[7], suggest that the level of degradation can be evaluated by factors such as the degree
of corrosion, wear area, creep fatigue, and crack growth. However, since sensors are
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expensive, it is not economically feasible to install them on every component. Therefore,
we will install sensors in the system, which is more cost-effective, but the information
we obtain will belong to the system, not components and obtain partial information. In
this case, we will not be able to obtain information about which component failed and
how many components failed when there is a failure.

As mentioned before gathering information by installing sensors in conjunction with
the CBM strategy in order to intervene in the system. After deciding to maintain, we
will need to replace the failed components. However, in this case, we need to determine
how many components we need to bring with us, as these are high-tech components that
are difficult to transport and require careful handling. If we bring an insufficient number
of components, we will need to emergency order the missing component(s) before the
machine breaks down. On the other hand, if we bring too many, we will need to return
them to our inventory, which can result in lower costs than emergency orders. There are
not many papers on spare part selection, as this decision alone is already difficult, and
creating a systemwith spare parts selectionmakes it evenmore complex and challenging
to find an optimal policy. One of my main objectives is to contribute to the literature on
spare part selection.

In this study, we aim to contribute to the literature with a wider design of experiments
on spare parts selection decisions and the use of identical components. The problem that
we are interested in is writing a simulation model that optimizes the time of maintenance
and spare part selection with a CBM maintenance strategy, finds optimal policies under
various scenarios in this model, and draws managerial insights about these policies. The
wide design of the experiment makes this thesis unique.

The remaining sections of the paper are composed of five main parts. In the first
section, we will review the literature related to CBM, CBM-related sensors, and spare
parts selection papers, under the headings of critical component and multi-component
systems. In the second section, we will briefly examine the problem definition, including
what the problem is, its critical elements, its costs, and how to solve the problem. Next, in
the Solution methodology section, we will provide detailed information on how to solve
the problem, and how to validate and adapt the model to real-life scenarios. In the fourth
section, we will discuss the inputs and outputs of the model, the scenarios developed,
why these scenarios were selected, and the realism of these scenarios, as well as the data
used, presenting the scenario results and enriching them with managerial insights using
graphics. Finally, the conclusion section will provide conclusions and future directions
for research.

2 Literature Review

While reviewing the literature, we will focus on single-component andmulti-component
systems for future experiments on CBM.Contrary to the disaster andmanagement issues
in CBM in general, we gave priority to the papers in the maintenance and cost part of the
literature flows. Inmost of the paperswe have looked at, studies have been done on sensor
deterioration, but we will ignore this effect. Our contribution to the literature is to find
the optimal policies by establishing a simulation model for a multi-component system,
to optimize the selection of spare parts during the intervention, and to the differences
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in the experiments we apply. Karabağ et al., (2022) [8] modeled a single-component
system as Markov Decision Process. They made two naïve policy which is Corrective
Policy and Naïve Policy and try to minimize total expected maintenance cost rate. In
their observation, they find that the long-term expected maintenance cost rate rises with
increasing values of corrective maintenance cost/preventive maintenance cost and α,
eventually reaching the cost rate of Naive Policy 2. Similarly, the number of yellow
signals received before maintenance decreases as corrective maintenance cost increases,
ultimately converging to a value of 1.

Karabağ et al. (2020) [9] developed an integrated optimization model that combines
condition-basedmaintenance and spare part selection for amulti-component systemwith
spare part selection. They analyzed this problem using a partially observable Markov
decision process. The optimal policy implemented, results in an average cost reduction
of 28% and 15%, respectively, for the two scenarios examined. Furthermore, the study
explores the benefits of having complete information, which involves using sensors
dedicated to each component. On average, this leads to a 13% cost reduction compared
to the situation where only partial information is available. They find that the value of
having full information is found to be higher for cheaper and less reliable components
than for more expensive and more reliable components.

Wang et al. (2008) [10] created an analytical model for a condition-based order-
replacement policy, which considers factors such as the cost rate, preventive replacement
rate, andmean availability. The proposedmaintenance policy’s characteristics, including
the trade-off among three performance criteria and the impact of the lead time of spare
parts orders, were examined through numerical experiments. The findings suggest that
the lead time has a detrimental effect on the policy’s overall performance.

Maillart (2006) [11] investigates the problem of scheduling both perfect and imper-
fect observations and preventive maintenance actions for a multi-state, Markovian dete-
rioration system with self-announcing failures. The researcher develops a closed-form
heuristic method to address the perfect-information problem, and they modify and apply
this approach to handle a specific scenario of the imperfect-information problem.

Zheng et al. (2023) [12] conducted a study about K-out-of-N System with failures
during inspection intervals. Apart from considering the system’s degradation condition,
maintenance schedules need to account for the availability of spare parts. By integrating
information on spare part orders, planners can make more accurate arrangements for
both maintenance activities and spare parts replenishment, resulting in reduced oper-
ating costs. This study delves into the simultaneous optimization of condition-based
maintenance and spare parts provisioning for a K-out-of-N system, taking failures into
account during inspection intervals. This research explores the optimization of joint
condition-based replacement and spare parts ordering for a multi-component system.

Wari et al. (2023) [13] introduce a partially observable Markov decision process
(POMDP) model to optimize maintenance decisions based on the progression of corro-
sion in pipelines. The corrosion progress is assessed through inline inspections, which
help determine the extent of pipeline corrosion. To compute the transitionmatrix required
for the POMDP model, the researchers utilize both Monte Carlo simulation and a pure
birth Markov process method. This paper is important to see the usage of CBM’s area.
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3 Problem Defınıtıon

This problem is amaintenance and spare part selectionmodel with a periodic system.We
focus on a machine that has 3 or more critical components Components have the current
deterioration level and the maximum deterioration levels they can reach. Maximum
deterioration level is 3 for these components. Each component’s deterioration level
increases by 1 with the probability of alpha or staying same. Components are classified
as non-defective, defective and failure. The component is non-defective if and only if
the deterioration level of component is 0. The component is defective if and only if
the deterioration level of component is between 0 and 3. The component is failure if
and only if the deterioration level of component is maximum deterioration level and if
component is failure machine breaks down. A sensor is attached to the system to get
information about the deterioration levels of the components. We assume that the sensor
never degrades, which means it always gives correct information.

The sensor displays three colors. Sensor shows red, if any component is failure,
shows yellow, if there is no failure component and there is a defective component,
shows green, if each component is non-defective. However, as we mentioned before,
we receive partial information from the sensor. We know that at least one component’s
deterioration level reaches 3 when the sensor gives a red signal, or that at least one
component’s deterioration level is at least 1 when it gives a yellow signal, but we cannot
have an idea about the other components.

We have 2 different decisions, the first of them is the decision of when to intervene in
the machine. After seeing yellow in sensor, we start to count how many periods we see
yellow in sensor. We decide to intervene after a certain period. If the sensor shows red
before deciding to intervene after seeing yellow, we immediately decide to maintain. We
assume that maintenance lasts for a negligible time. When we decide to maintain we can
see the actual deterioration level of components. All failure and defective components are
replacedduring the interventionwith newones and all components becomenon-defective
after the intervention.

Another decision we will make in the system is how many components we will
bring with us to change after deciding to intervene. We mentioned that all components
with defective and failures were replaced. If we do not bring enough components with
us, we order these components urgently and after the order, the arrival lead time of the
components is assumed as negligible. If the number of components we bring is more
than the number of components we will replace, we send the extra components back to
the warehouse.

There are 4 cost parameters in the system, 2 different cost parameters for the main-
tenance decision and 2 different cost parameters for the spare part selection. In the
maintenance decision, if the intervention decision is made while the maintenance, if
signal shows yellow, the Preventive Maintenance Cost (PMC) is paid, and if the main-
tenance is made after the red signal, the Corrective Maintenance Cost (CMC), which is
much higher than the Preventive Maintenance Cost, is paid. In order to reduce the cost
here, we need to try to do as little maintenance as possible, but we need to do main-
tenance without getting a red signal. If we make a maintenance decision earlier than
it should, we will pay more PMC than we normally would, but if we wait longer than
necessary, we will overpay the CMC and our total cost will increase. This cost is fix
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cost and we pay for each maintenance. For the spare part selection cost parameters, we
pay Emergency order cost (EOC) for every product we bring with us incomplete after
the intervention decision. If we have brought excess items with us after the intervention
decision, we will pay the Return Cost (RC) for each excess item. This cost is variable
cost.

We wrote a simulation model to optimize our decision. We wrote this model in the
Python program.

4 Solution Methodology

This model will be solved by optimizing the parameters by writing the simulation code.
In order to find the optimal results, the decision variables will be tried to be optimized
with the Exhaustive Search method. Since the verification of the model is the analytical
solution of the single-component models, it was compared with them. The pseudocode
of the model is given in Table 1, system parameters are in Table 2 and the decision
variables of the model are given in Table 3.

Table 1. Pseudocode of the Model

INITIALIZE the parameter and decision variables.

CALL all_possible_combinations ()

FOR each index c in the range of the length of  all_possible_combinations 

CALL simulation ()

IF Total_Cost < min_Total_Cost THEN

SET min_Total_Cost to Total_Cost

END IF

END FOR

Table 2. System Parameters

Parameter Explanation

CMC Corrective Maintenance Cost

PM Preventive Maintenance Cost

α Increase rate of a component

ROC Return Cost of a component

MDL Maximum deterioration Level of a component

NoC Number of component in the machine

We mentioned that we would do an Exhaustive Search. Although an Exhaustive
Search may seem like the easiest way, the time it takes to find the optimal results in
the simulation can be very long since you have tried all possible possibilities. There
are two main variables searched in the simulation, these are MP and Ci. MP is how
many yellow signals to intervene after. Ci is a threshold for each component and the
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Table 3. Decision Variables of a System

Decision Variable Explanation

MP After how many yellow signals we will maintain

Ci Threshold value of bringing for component i. i = 1, 2,… 6

coefficient determined here is the threshold related to how many components we will
take with us in case of interference. Because let’s think that we will intervene after 10
yellow signals, the number of components we will take in the red signal we will receive
after 3 yellow signals and the number of components we need to take in the red signal
we will receive after 8 yellow signals will be different. For this reason, we have set a
threshold for the components and if it is higher than this threshold value, we decide to
take that component with us. Since the components are identical, Ci+1 is always greater
than or equal to Ci. While searching, it returns all possible combinations and searches
for each MP depending on the condition we have described.

The random numbers we used in the simulation model were run for the same seed
since therewas no difference between the searchers. The seed used is chosen randomly in
ourmodel. The number of Periods determined in the system is 1million. Each experiment
was run for at least 2 different seeds. If the results were different, the number of periods
was doubled and tried once again.

5 Numerical Experiments

After finding the optimal results in the simulation, the optimal decision variables, the
average costs per period of 4 different cost types and the percentages of these 4 different
cost types according to the average cost are kept in the system.

In the experiments, it was desired to look at the effects of the number of components,
CMC and different RC - EOC changes on the cost in the optimal condition, and it aims to
look at the examples in the literature from awider perspective. The design of experiments
is given in Table 4.

Table 4. Design of Experiments

Factor/ Factor Level 1 2 3 4 5 6

NoC 3 4 5 6

RC-EOC 5–5 5–10 5–15 10–10 10–15 15–15

α 0.1

MDL 3

CMC 500 375 250 150

PMC 50
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In this study, there will be a total of 96 different experiments. Since CBM is generally
used in high-techmachines, the deterioration of these products does not occur very often,
and when the literature is examined, it has been observed that it varies between 1 percent
and 12.5%. Contrary to CMC and PMC, RC and EOC have variable costs, so these costs
are generally relatively less, and since EOC is ordered, it should be at least as much as
RC. CMC, on the other hand, is much higher compared to PMC, as it causes the machine
to stop completely. Since there are no experiments in this number of components in the
literature, the number of components has been tried in this number. While determining
the design numbers, our first change is in the number of components as an increase, then
with the change of the RC-EOC pair as an increase and finally with the change of the
CMC as a decrease.

First, we would like to point out that we added one more decision variable to the
model. The thing we wanted to look at here was whether the signal color mattered when
we intervened in yellow except Ci, and they were only used in this model when we
received a red signal and intervened. When these were optimized for a short data set, we
saw that we needed to take the red as much as we take in the yellow in period X after
the first yellow, and we removed this decision variable from the model and we can say
very clearly that the signal color does not matter in the spare part selection.

The first thing we learn from the results is that as the CMC decreases, the weight of
the maintenance decision in the system gradually decreases, and the spare part selection
becomes more important, and the increasing importance of this spare part selection
increases the nonlinearity in the system, and the tour interventions in machine increase
can sometimes decrease and then increase, making each solution unique. However, in
Design Numbers 21–24, 69–72 and 93–96, where RC and EOC are 15 each, that is,
relatively more important than in other experiments, MP goes further and returns, while
in other experiments, MP goes further and returns to its former place. The main reason
for this is that as the importance of RC and EOC, that is, spare part selection, increases,
the system may decide to intervene later to reduce these costs.

The first thing we learned from the results is that as the CMC gradually decreases
and the number of components increases, the weight of the costs that come with the
maintenance decision in the system gradually decreases and the spare part selection
becomes more important. Can increase, which makes each solution unique. However,
in Design Numbers 21–24, 69–72 and 93–96, where RC and EOC are 15 each, that is,
relatively more important than other experiments, MP increases and then decreases and
returns to the old MP number, while in other experiments MP decreases first and then
later. Has returned to its former place. Themain reason for this is that as the importance of
RC and EOC, that is, spare part selection, increases, the system may decide to intervene
later to reduce these costs, but in other cases, being able to give CMC scares more than
giving these costs and a decision to intervene earlier can be made. In Fig. 1, we see the
graph percentage of the total cost due to maintenance decisions for values RC-EOC 5–5
and 15–15, respectively. Figure 2 shows the graph of the MP values changing with the
variable machine increase.

In our experiments, although the product is durable, it has an alpha close to its
maximum value in the examples in the literature, that is, it can be said that it is one
of the most nondurable products in the relatively durable product, and PMC dominates
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Fig. 1. Maintenance Decision Cost Rate to total cost as a percentage

Fig. 2. NoC- MP relationship
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most other costs since the MDL value is not high. However, when there is a decrease
in CMC or an increase in the number of components, PMC is affected dramatically by
these changes. Also, when PMC rate to total cost decreases between 40 and 50 percent
MP will change and CMC rate increase. It, it can be said that the Spare Part Selection
decision will become a very important decision in the decisions to be made on machines
that consist of too many components. In addition, it can be said that with an increase
in MDL or a decrease in alpha value, the system will mostly turn to CMC and the cost
we pay to PMC will become insignificant in terms of the system. Figure 3 shows the
percentage of CMC to total cost.

Fig. 3. CMC rate to total cost as percentage

6 Conclusion

For a multi-component system, we developed an optimization model in which we per-
form both maintenance and spare part selection in 96 different cases. As we see in the
model, the importance of spare part selection in total cost increases, making the system
nonlinear. The decrease of CMC in the products or the increase in the number of com-
ponents delays the intervention in the system and reduces the importance of PMC on the
total cost. However, it is an undeniable fact that even in this example we made almost
the most durable of the products in the durable product category, the importance of the
maintenance decision still has a lot of weight in the spare part selection decision. We
want to find if there is a relationship with the MDL or the number of components related
to the change in the MP value.
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We would like to do a wider simulation study to see how this nonlinearity works
for more durable products, and at the same time, we would like to discuss how the
maintenance and spare part selection rates will change with the increase in MDL. Also,
how does MP change with the rate. However, together with Exhaustive Study, we will
make a comparison of simulation times with certain heuristics that will shorten the
optimization time.
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