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Abstract. In the face of increasing irregular operations due to global pandemics
and other disruptions, effective scheduling of flight-crew-aircraft resources has
become crucial for the efficient operation of airlines. This work presents a novel
approach for solving the integrated airline scheduling problem. The proposed
solution approach provides a comprehensive solution to small-sized real-world
instances of this challenging problem. The solution methodology comprises an
initial heuristic algorithm, followed by a simulated annealing heuristic method,
to efficiently generate and optimize scheduling solutions. The initial heuristic
ensures a strong starting point, while the simulated annealing algorithm dynami-
cally explores the search space to find optimal solutions. The studies in the litera-
ture on the application of simulated annealing in airline scheduling, have demon-
strated the effectiveness of the simulated annealing approach in finding optimal
andnear-optimal solutions. Through extensive experimentation, our approach con-
sistently produces high-quality schedules with reduced operational costs. The sig-
nificance of this work lies in its ability to address the urgent need for efficient
airline scheduling amidst the irregular operations caused by global pandemics,
which disrupt traditional planning approaches. By integrating the scheduling of
flight, crew, and aircraft resources, our solution optimizes resource utilization,
enhances operational efficiency, and mitigates the impact of unexpected events.
Thorough review of existing literature has been conducted and the uniqueness of
our approach is ensured. By presenting our findings, it is aimed to contribute to
the advancement of the field and foster discussions on addressing the challenges
of modern airline operations.
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1 Introduction

In the dynamic and complex world of aviation, the effective scheduling of flight crews
and aircraft is a critical aspect that directly impacts operational efficiency, passenger sat-
isfaction, and airline profitability. The intricate interplay between crew members, their
qualifications, aircraft availability, and the ever-changing nature of air travel demands
sophisticated optimization techniques to navigate the challenges posed by irregular oper-
ations. This study explores the application of Simulated Annealing (SA)—a powerful
metaheuristic algorithm—to optimize integrated flight-crew-aircraft scheduling in the
face of such disruptions, aiming to achieve effective solutions that mitigate the impact
of unforeseen events and maintain operational resilience. Irregular operations, including
weather disturbances, air traffic congestion, mechanical issues, and crew unavailability,
can cause disruptions to airline schedules, leading to delays, cancellations, and missed
connections. These disturbances not only result in increased costs for airlines but also
have a profound impact on customer satisfaction. As a result, airlines strive to minimize
the adverse effects of irregular operations by developing robust scheduling solutions that
allow for rapid adaptations and optimal resource allocation.

SA, ametaheuristic optimization technique inspired by the annealing process inmet-
allurgy, has proven to be a valuable tool in addressing complex scheduling problems.
SA has gained popularity in various domains for its ability to find near-optimal solu-
tions in large solution spaces, even in the presence of highly nonlinear and non-convex
objective functions. By simulating the gradual cooling and reorganization of atoms in a
solid, this algorithm emulates the search for an optimal configuration through iterative
adjustments and stochastic transitions, allowing for the exploration of a wide range of
solutions. In the context of integrated flight-crew-aircraft scheduling, SA can effectively
handle the complexities arising from the need to align crew qualifications, contractual
regulations, and aircraft availability. By considering a multitude of constraints, such
as crew rest requirements, duty time limitations, and aircraft maintenance needs, SA
provides a robust framework to optimize the allocation of flight crews to aircraft in
the face of irregular operations. Furthermore, this technique can account for various
factors, such as minimizing delays and cancellations, maximizing crew utilization, and
ensuring efficient resource utilization, all while maintaining compliance with regulatory
standards.

This study delves into the intricacies of integrating SA with flight-crew-aircraft
scheduling, highlighting its potential in mitigating the disruptive impact of irregular
operations. By harnessing the power of this optimization method, airlines can enhance
their operational performance, reduce costs, and improve customer satisfaction by effi-
ciently managing the allocation of crews and aircraft during challenging circumstances.
Through a comprehensive exploration of the SA approach, we aim to provide valuable
insights and practical guidelines for aviation professionals seeking effective solutions in
the complex realm of integrated flight-crew-aircraft scheduling.
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2 Literature Review

There are many studies in the literature that propose SA method for different airline
scheduling problems. These problems are sometimes considered individually and some-
times in an integrated manner. The following Table 1 indicates just the studies, which
are mainly considered to implement SA for the integrated airline scheduling problem,
in the literature.

Table 1. The considered studies to use SA for the ıntegrated airline scheduling problem

Study Problem

Zheng et al. [1] Aircraft scheduling

Jamili [2] Large scale aircraft routing problem

Chen et al. [3] Crew scheduling

Jungai and Hongjun [4] Flight delay scheduling

The inception of the mathematical model was sparked by a study conducted by
Stojkovıć and Soumis [5, 6], aiming to present an optimization framework addressing
the challenge of concurrent operational flight and crew scheduling. Subsequently, the
comprehensive integrated flight crew scheduling model was formulated with a primary
focus on aircraft scheduling considerations. Therefore, the studies [1, 2, 7–28] focusing
on aircraft scheduling (fleet assignment and/or aircraft routing) problems with integrat-
ing flight and/or crew scheduling problems in the literature are considered to suggest
an optimization model for the integrated flight-aircraft-crew scheduling problem. To
develop the optimization problem about only the crew scheduling perspective, the latest
studies [29–37] in the literature are considered.

3 Methodology

In this study, the formidable task of optimizing integrated flight-crew-aircraft scheduling
in the challenging context of irregular operations was approached with a powerful tool—
SA, implemented using theRprogramming language. R’s versatility in handling data and
conducting complex optimization procedures played a pivotal role in our research. By
leveraging R, wewere able to develop and execute an efficient SA algorithm, enabling us
to tackle the intricate scheduling problem faced by the aviation industry. The flexibility
and ease of use of R allowed us to adapt our code to the specific needs of this demanding
domain, ensuring that our solutions were not only effective but also tailored to the unique
constraints of the airline industry. Through this study, R has demonstrated its significance
as a valuable resource in the quest for more resilient and cost-effective integrated flight
operations. The steps involved in the SA algorithm can be summarized as below:
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Initialize: Start with an initial solution. This solution can be generated randomly or
based on some heuristics.
Set Parameters: Define parameters like initial temperature and cooling rate. These
parameters control the annealing schedule.
Define a Stopping Criterion: Decide when to stop the algorithm. This could be a max-
imum number of iterations, a specific temperature threshold, or other criteria related to
the problem.
Main Loop:
Repeat the following steps until the stopping criterion is met.
Generate a Neighbor Solution: Create a neighboring solution by making a small change
to the current solution. The nature of this change depends on the problem, but it should
be based on some probabilistic criteria.
Calculate Cost: Compute the cost or objective function value of the new solution and
the current solution.
Evaluate Acceptance: Determine whether to accept the neighbor solution. Typically, if
the neighbor solution has a lower cost, it’s accepted. However, it may also be accepted
with some probability if it has a higher cost, based on a probabilistic criterion (Metropolis
criterion).
Update Current Solution: If the neighbor solution is accepted, set it as the new current
solution.
Update Best Solution: If the current solution is better than the best solution found so far,
update the best solution.
Cooling: Reduce the temperature according to the cooling rate. This reduces the
likelihood of accepting worse solutions as the algorithm progresses.
Output: Once the stopping criterion is met, or after a predefined number of iterations,
output the best solution found during the search.

A newmathematical model, which is constructed by usingMixed Integer Non-linear
Programming (MINLP) in this study includes the following objectives:

• Minimizing the total flight-crew assignment cost,
• Minimizing the total penalty cost of using flights that have long connection/waiting

time (in-active time),
• Minimizing the total flight delay cost and
• Minimizing the total aircraft assignment cost. The aircraft assignment cost includes

two main cost items: the total operating cost and the total passenger spill cost.
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The considered constraints are related to:

• Flight coverage constraints
• Flight precedence constraints
• Task assignment constraints
• Network flow balance constraints
• Unit flow constraints
• Constraints for the requirement for nonlinear compatibility between flow and time

variables.
• Time windows constraints

The small-sized problem of the AnadoluJet airline company is considered in this
study. The integrated problem modelled by using MINLP was solved by SA algorithm
in the R programming language. The suggested code in R programming language in this
study is as the following. The required packages to run the code and the explanations of
each line (considered parameters, decision variables, objective function, SA steps, etc.)
are shown below.

#install.packages("optimization") 
#library("optimization") 
#Install packages to convert minutes to Hour-Minute-Second format 
#install.packages("tidyverse") 
#install.packages("magrittr") 
#install.packages("lubridate") 
#install.packages("dplyr") 
#install.packages("hms") 
#library(lubridate) 
#library(dplyr) 
#library(hms) 
#library(magrittr) 
#library(tidyverse) 

# Load the 'gtools' package for generating combinations 
#install.packages("gtools") 
library(gtools) 
#library(stringr) 
num_nodes <- 5  # Number of flights 
min_node <-1 
max_node <-5 
num_crews <- 7  # Number of crews 
# Define Parameters to Calculate Aircraft Cost  
#SC (Seat Capacity) 
SC <- c(189, 189, 176, 176, 189, 189, 189) 
#CASM (Cost per Available Seat Mile) 
CASM <- c(0.042, 0.042, 0.038, 0.038, 0.042, 0.042, 0.042) 
#RASM (Revenue per Available Seat Mile) 
RASM <- c(0.15, 0.15, 0.12, 0.12, 0.15, 0.15, 0.15) 
#RR (Recapture Rate) 
RR <- 0.15 
#ENPS (Expected Number of Passenger Spill) 
ENPS <- c(0, 1000, 2000, 1500, 3000) 
# Create a 2-dimensional array to represent the flight duration parameter FD 
FD <- array(0, dim = c(num_nodes, num_nodes))  # Initialize the array with zeros
FD[1,1] <- 0 
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FD[1,2] <- 70
FD[1,3] <- 63
FD[1,4] <- 80
FD[1,5] <- 75
FD[2,1] <- 70
FD[3,1] <- 63
FD[4,1] <- 80
FD[5,1] <- 75
# Define the hub airport 
i <- sample(setdiff(min_node:max_node,2:5),1,rep=FALSE) 
i 
# Generate all combinations of four different numbers between 2 and 5 without replication 
combinations_j <- permutations(n = 4, r = 4, v = 2:5, repeats.allowed = FALSE) 
combinations_j  
combinations_k <- permutations(n = 7, r = 4, v = 1:7, repeats.allowed = FALSE) 
combinations_k  
combinations_a <- permutations(n = 7, r = 4, v = 1:7, repeats.allowed = FALSE) 
combinations_a  
# Get the number of combinations in combinations_j 
num_combinations <- nrow(combinations_j) 
num_combinations  
# Generate a random index between 1 and num_combinations 
random_index <- sample(1:num_combinations, 1)
# Assign j as the randomly selected combination 
j <- combinations_j[random_index, ] 
j 
# Get the number of combinations in combinations_k 
num_combinations_k <- nrow(combinations_k) 
num_combinations_k  
# Generate a random index between 1 and num_combinations 
random_index_k <- sample(1:num_combinations_k, 1) 
random_index_k  
# Assign j as the randomly selected combination 
k <- combinations_k[random_index_k, ] 
k 
# Set the binary decision variable Xijk to 1 for crew k assigned to flight arc (i, j) 
# Create a 3-dimensional array to represent the binary decision variable Xijk 
X <- array(0, dim = c(num_nodes, num_nodes, num_crews))  # Initialize the array with zeros 
X 
for(t in 1:4) { 

X[i, j[t], k[t]] <- 1 
t <- t+1 

}
X[i, j[1], k[1]] 
X 
for(t in 1:4) { 

X[j[t], i, k[t]] <- 1 
t <- t+1 

}
# Create a 3-dimensional array to represent the binary decision variable Zijk 
num_aircrafts <- 7  # Number of crews 
Z <- array(0, dim = c(num_nodes, num_nodes, num_aircrafts))  # Initialize the array with zeros
# Get the number of combinations in combinations_k 
num_combinations_a <- nrow(combinations_a) 
num_combinations_a  
# Generate a random index between 1 and num_combinations 
random_index_a <- sample(1:num_combinations_a, 1) 
random_index_a 
# Assign j as the randomly selected combination 
a <- combinations_a[random_index_a, ] 
a 
# Set the binary decision variable Zija to 1 for aircraft k assigned to flight arc (i, j) 
for(t in 1:4) { 

Z[i, j[t], a[t]] <- 1 
t <- t+1 

}
Z[i, j[1], a[1]] 
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for(t in 1:4) { 
Z[j[t], i, a[t]] <- 1 
t <- t+1 

}
# Print the value of the binary decision variable Zija 
print(Z[i, j[1], a[1]]) 
# Create an array to track the arrival times of aircraft at the hub 
ArrivalTime <- array(0, dim = c(num_aircrafts)) 
ArrivalTime[a] <- 0  # Initialize the array with zeros 
# Create a 3-dimensional array to represent the integer decision variable Tija for the departure times
DT <- array(0, dim = c(num_nodes, num_nodes, num_aircrafts))  # Initialize the array with zeros 
# Generate the departure times for flights 
for (t in 1:4) { 

# Check the availability of the aircraft before assigning a departure time 
if (ArrivalTime[a[t]] < 30) { 

DT[i, j[t], a[t]] <- 30
} else { 

DT[i, j[t], a[t]] <- ArrivalTime[a[t]] 
}
ArrivalTime[a[t]] <- DT[i, j[t], a[t]] + FD[i, j[t]]  
DT[j[t], i, a[t]] <- ArrivalTime[a[t]] + 30 

}
DT
ArrivalTime 
#Calculate the objective value 
# Define the objective function
calculateObjective <- function(X, Z, DT) { 

TotalCost <- 0 
for (t in 1:4) { 

TotalCost <- TotalCost + 
10 * sum(X[i, j[t], k[t]]) +
10 * sum(DT[i, j[t], a[t]]) + 
sum(Z[i, j[t], a[t]] * ( 

        (FD[i, j[t]] * CASM[a[t]] * SC[a[t]]) + 
          (ENPS[j[t]] * RASM[a[t]] * FD[i, j[t]] * (1 - RR))

))
}
TotalCost 

}
# Call the calculateObjective function to calculate the total cost 
TotalCost <- calculateObjective(X, Z, DT) 
# Print the value of TotalCost 
print(TotalCost) 
InitialSolution <- TotalCost 
#Simulated Annealing 
# Define the neighborhood function 
# This function generates a neighbor solution given the current solution 
# Generate a neighbor solution based on the current solution (schedule) 
# Return the modified schedule 
NeighborTotalCost <- array(0, dim = 23) 
NeighborTotalCost  
for(tt in 1:24){ 

X <- array(0, dim = c(num_nodes, num_nodes, num_crews))  # Initialize the array with zeros  
Z <- array(0, dim = c(num_nodes, num_nodes, num_aircrafts))  # Initialize the array with zeros 
DT <- array(0, dim = c(num_nodes, num_nodes, num_aircrafts))  # Initialize the array with zeros 
TotalCost <- 0
j <- combinations_j[tt,]  
for(t in 1:4) { 
X[i, j[t], k[t]] <- 1
t <- t+1 

}
for(t in 1:4) { 
X[j[t], i, k[t]] <- 1 
t <- t+1 

}
for(t in 1:4) { 

Z[i, j[t], a[t]] <- 1 
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t <- t+1 
}
for(t in 1:4) { 

Z[j[t], i, a[t]] <- 1 
t <- t+1 

}
for(t in 1:4) { 

DT[i, j[t], a[t]] <- 30
t <- t+1 

}
for(t in 1:4) { 

DT[j[t], i, a[t]] <- DT[i, j[t], a[t]] + FD[i,j[t]] + 30 
t <- t+1 

}
for(t in 1:4) { 

TotalCost <- TotalCost + 10*sum(X[i, j[t], k[t]]) + 10*sum(DT[i, j[t], a[t]]) + sum(Z[i, j[t],
a[t]]*((FD[i,j[t]]*CASM[a[t]]*SC[a[t]])+(ENPS[j[t]]*RASM[a[t]]*FD[i,j[t]]*(1-RR))))

t <- t+1    
}
NeighborTotalCost[tt] <- TotalCost 
tt <- tt + 1   

}
NeighborTotalCost  
# Define the simulated annealing steps 
# These steps perform the simulated annealing algorithm to find the optimal solution 
# Set the initial solution, initial temperature, cooling rate, and maximum iterations 
Temperature <- 90
coolingRate <- 0.1 
maxIterations <- 200 
currentSolution <- InitialSolution 
bestSolution <- currentSolution 
# Create a vector to store the best solutions at each iteration 
bestSolutions <- numeric(maxIterations) 
for (iteration in 1:maxIterations) { 

# Generate a neighbor solution based on the current solution (schedule) 
# Return the modified schedule 
# You can consider swapping flights, reassigning crews or aircraft, etc. 
r <- sample(2:24, 1) 
newSolution <- NeighborTotalCost[r] 
# Define the acceptance probability function 
# This function determines whether to accept a neighbor solution or not 
AcceptanceProbability <- exp((bestSolution - NeighborTotalCost[r])) / Temperature 
if (newSolution < bestSolution) { 

bestSolution <- newSolution 
} else if (AcceptanceProbability > runif(1)) { 

bestSolution <- newSolution 
}
# Store the best solution at the current iteration 
bestSolutions[iteration] <- bestSolution 
Temperature <- Temperature * coolingRate 

}
bestSolutions 
bestSolution 
# Plot the graph 
plot(1:maxIterations, bestSolutions, type = "l", xlab = "Iteration", ylab = "Best Solution") 
# Add a title to the plot 
title(main = "Best Solution over Iterations") 
# Find the last arrival times for each crew and aircraft 
lastArrivalTimes <- numeric(num_aircrafts) 
for (t in 1:4) { 

if (X[j[t], i, k[t]] == 1) { 
arrivalTime <- DT[j[t], i, a[t]] + FD[j[t], i] 
if (arrivalTime > lastArrivalTimes[a[t]]) { 
lastArrivalTimes[a[t]] <- arrivalTime 

} 
}

}
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lastArrivalTimes <- numeric(num_crews) 
for (t in 1:4) { 

if (X[j[t], i, k[t]] == 1) { 
arrivalTime <- DT[j[t], i, a[t]] + FD[j[t], i] 
if (arrivalTime > lastArrivalTimes[a[t]]) { 
lastArrivalTimes[a[t]] <- arrivalTime 

} 
}

}
# Print the table of optimal decision variables, departure times, crew, and aircraft 
optimalTable <- data.frame(X = character(), DepartureTime = numeric(), Crew = numeric(), Aircraft = numeric())
# Function to convert minutes to Hour-Minute format with base time at 08:00 
convertToHM <- function(minutes) { 

minutes <- minutes + 480  # Add 480 minutes (8 hours) to the input minutes 
hours <- floor(minutes / 60) 
minutes <- minutes %% 60 
sprintf("%02d:%02d", hours, minutes) 

}
# Create a vector to store the arrival times 
arrivalTimes <- numeric(length = nrow(optimalTable)) 
# Calculate the arrival times for each flight in the optimal table 
for (t in 1:4) { 

if (X[i, j[t], k[t]] == 1) { 
arrivalTime <- DT[i, j[t], a[t]] + FD[i, j[t]]
arrivalTimes[optimalTable$Flight == paste("From hub (", i, ") to", j[t])] <- arrivalTime

}
if (X[j[t], i, k[t]] == 1) { 

arrivalTime <- DT[j[t], i, a[t]] 
arrivalTimes[optimalTable$Flight == paste("From", j[t], "to hub (", i, ")")] <- arrivalTime 

}
}
# Convert the arrival times to HM format 
arrivalTimes <- sapply(arrivalTimes, convertToHM) 
# Add the arrival times as a new column to the optimalTable 
optimalTable <- cbind(optimalTable, ArrivalTime = arrivalTimes) 
# Add flights from hub to destination nodes 
for (t in 1:4) { 

if (X[i, j[t], k[t]] == 1) { 
row <- c(paste("From hub (", i, ") to", j[t]), DT[i, j[t], a[t]], k[t], a[t]) 
optimalTable <- rbind(optimalTable, row) 

}
}
# Add flights from arrival nodes to hub 
for (t in 1:4) { 

if (X[j[t], i, k[t]] == 1) { 
row <- c(paste("From", j[t], "to hub (", i, ")"), DT[j[t], i, a[t]], k[t], a[t]) 
optimalTable <- rbind(optimalTable, row) 

}
}
colnames(optimalTable) <- c("Flight", "DepartureTime", "Crew", "Aircraft") 
print(optimalTable) 
# Create a new column for days in the optimal table 
optimalTable$Day <- ""
# Define the base day as Monday at 08:00 o'clock 
baseDay <- as.POSIXct("2023-06-05 08:00:00") 
# Function to calculate the day based on departure time 
calculateDay <- function(departureTime) { 

departureDateTime <- baseDay + minutes(departureTime) 
weekdays(departureDateTime) 

}
# Calculate the day for each departure time in the optimal table 
optimalTable$Day <- sapply(optimalTable$DepartureTime, calculateDay) 
# Convert the "DepartureTime" values from factors to numeric 
optimalTable$DepartureTime <- as.numeric(as.character(optimalTable$DepartureTime)) 
# Convert the numeric "DepartureTime" values to HM format in the optimalTable 
optimalTable$DepartureTime <- sapply(optimalTable$DepartureTime, convertToHM) 
# Print the updated table with "DepartureTime" in HM format 
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print(optimalTable) 
# Create a new column for flight duration in the optimal table 
optimalTable$FlightDuration <- 0 
# Add flight durations from hub to destination nodes 
for (t in 1:4) { 

if (X[i, j[t], k[t]] == 1) { 
flightDuration <- FD[i, j[t]] 
optimalTable$FlightDuration[optimalTable$Flight == paste("From hub (", i, ") to", j[t])] <- flightDuration 

}
}
# Add flight durations from arrival nodes to hub 
for (t in 1:4) { 

if (X[j[t], i, k[t]] == 1) { 
flightDuration <- FD[j[t], i] 
optimalTable$FlightDuration[optimalTable$Flight == paste("From", j[t], "to hub (", i, ")")] <- flightDuration

}
}
# Add flight indexes to the existing table 
flightIndexes <- paste("F", 1:nrow(optimalTable), sep = "") 
optimalTable <- cbind(Flight = optimalTable[, 1], Flight_Index = flightIndexes, optimalTable[, 2:ncol(optimalTable)]) 
# Define the desired column order 
column_order <- c("Flight_Index", "Flight", setdiff(colnames(optimalTable), c("Flight_Index", "Flight", "Crew", "Aircraft")),
"Crew", "Aircraft") 
# Reorder the columns in the optimal table 
optimalTable <- optimalTable[, column_order] 
# Combine the "DepartureTime" and "Day" columns into a single column called "DepartureTime": 
optimalTable$DepartureTime <- paste(optimalTable$DepartureTime, optimalTable$Day) 
arrivalTimes <- numeric(length = nrow(optimalTable)) 
for (t in 1:4) { 

if (X[i, j[t], k[t]] == 1) { 
arrivalTime <- DT[i, j[t], a[t]] + FD[i, j[t]]
arrivalTimes[optimalTable$Flight == paste("From hub (", i, ") to", j[t])] <- arrivalTime

}

if (X[j[t], i, k[t]] == 1) { 
arrivalTime <- DT[j[t], i, a[t]] + FD[i, j[t]] 
arrivalTimes[optimalTable$Flight == paste("From", j[t], "to hub (", i, ")")] <- arrivalTime 

}
}
# Function to convert minutes to Hour-Minute format with base time at 08:00 
convertToHM <- function(minutes) { 

minutes <- minutes + 480  # Add 480 minutes (8 hours) to the input minutes 
hours <- floor(minutes / 60) 
minutes <- minutes %% 60 
sprintf("%02d:%02d", hours, minutes) 

}
# Convert the arrival times to HM format 
arrivalTimes <- sapply(arrivalTimes, convertToHM) 
optimalTable <- cbind(optimalTable, ArrivalTime = arrivalTimes) 
# Combine the "ArrivalTime" and "Day" columns into a single column called "ArrivalTime": 
optimalTable$ArrivalTime <- paste(optimalTable$ArrivalTime, optimalTable$Day) 
# Remove the "Day" column from the optimal table: 
optimalTable$Day <- NULL 
# Calculate crew utilization percentage 
crewUtilization <- sum(X) / (num_nodes * num_crews) * 100 
# Calculate aircraft utilization percentage 
aircraftUtilization <- sum(Z) / (num_nodes * num_aircrafts) * 100 
optimalTable <- optimalTable[, c("Flight_Index", "Flight", "DepartureTime", "ArrivalTime", "FlightDuration", "Crew", 
"Aircraft")] 
# Display the updated table with modified column names 
print(optimalTable) 
bestSolution 
# Create vectors to store duty and flight times for each crew 
dutyTimes <- numeric(num_crews) 
flightTimes <- numeric(num_crews) 
# Calculate duty and flight times for each crew 
for (crew in 1:num_crews) { 
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# Initialize duty and flight times for the current crew 
dutyTime <- 0 
flightTime <- 0 
# Iterate over flights 
for (t in 1:4) { 

if (X[i, j[t], crew] == 1) { 
dutyTime <- dutyTime + FD[i, j[t]]  # Add flight duration to duty time 
flightTime <- flightTime + FD[i, j[t]]  # Add flight duration to flight time 

} 
if (X[j[t], i, crew] == 1) { 
dutyTime <- dutyTime + FD[i, j[t]]  # Add flight duration to duty time 
flightTime <- flightTime + FD[i, j[t]]  # Add flight duration to flight time 

} 
}
# Add resting time, briefing time, and debriefing time to duty time 
if (flightTime > 0) { 

dutyTime <- dutyTime + 60 + 30 + 30  # Assuming 60 minutes resting time, 30 minutes briefing time, and 30 minutes
debriefing time 

}
# Store duty and flight times for the current crew 
dutyTimes[crew] <- dutyTime 
flightTimes[crew] <- flightTime 

}
# Calculate the total flight times of each aircraft in the optimal solution 
totalFlightTimes <- array(0, dim = num_aircrafts) 
for (t in 1:4) { 

if (X[i, j[t], k[t]] == 1) { 
totalFlightTimes[a[t]] <- totalFlightTimes[a[t]] + FD[i, j[t]] 

}
if (X[j[t], i, k[t]] == 1) { 

totalFlightTimes[a[t]] <- totalFlightTimes[a[t]] + FD[i, j[t]] 
}

}
# Display the updated table with modified column names 
print(optimalTable) 
bestSolution 
# Print the utilization percentages 
cat("Crew Utilization: ", crewUtilization, "%\n") 
cat("Aircraft Utilization: ", aircraftUtilization, "%\n") 
# Print duty and flight times for each crew 
for (crew in 1:num_crews) { 
  cat("Crew", crew, "Duty Time:", dutyTimes[crew], "minutes\n") 

cat("Crew", crew, "Flight Time:", flightTimes[crew], "minutes\n") 
}
# Print the total flight times of each aircraft 
cat("Total Flight Times:\n") 
for (a in 1:num_aircrafts) { 

cat("Aircraft", a, ":", totalFlightTimes[a], "\n") 
}
# Print the last arrival times for each crew and aircraft 
for (a in 1:num_aircrafts) { 

cat("Last arrival time for Aircraft", a, ":", convertToHM(lastArrivalTimes[a]), "\n") 
}
for (crew in 1:num_crews) { 

print(paste("Crew", crew, "Last Arrival Time:", lastArrivalTimes[crew])) 
}

The following Fig. 1 gathered by R code shows the best solutions over iterations.
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Fig. 1. The best solutions over iterations

After applying the SA algorithm using the R programming language to solve the
complex integrated flight-crew-aircraft scheduling problem, which is often modelled as
aMINLPproblem,we have observed the remarkable utility of this approach in delivering
highly efficient solutions. The combination of SA adaptability and the computational
capabilities of R proved to be a formidable force in addressing the intricate schedul-
ing challenges posed by the aviation industry. The algorithm, driven by R, successfully
navigated the complex solution space, yielding solutions that not only met operational
constraints but also demonstrated cost-effectiveness and adaptability in the face of irreg-
ular operations. This underscores the power of SA as a practical and effective tool in
optimizing integrated flight-crew-aircraft scheduling, contributing to more streamlined
and resilient operations in the aviation sector.

4 Conclusions

In the fast-paced and dynamic world of aviation, optimizing integrated flight-crew-
aircraft scheduling is a paramount challenge. The intricate web of variables, from crew
availability to aircraft maintenance, becomes even more complex when irregular opera-
tions disrupt the well-laid plans. In our exploration of this complex problem, we turned
to the powerful optimization technique known as SA to find effective solutions that can
withstand the turbulence of unexpected disruptions.

SA emerges as a potent ally in the intricate realm of integrated flight-crew-aircraft
scheduling, especially when confronted with the turbulence of irregular operations. Its
capacity to swiftly adapt to changing circumstances, explore diverse solutions, and min-
imize costs positions it as a valuable tool for the aviation industry. As airlines continue to
grapple with the ever-evolving challenges of scheduling, SA offers a path towards more
efficient, resilient, and cost-effective operations, ultimately ensuring smoother journeys
for both airlines and passengers in the face of unexpected disruptions. It is aimed that
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the applied methodology can be source of inspiration for the decision makers working
on the integrated airline scheduling problems.
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