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Abstract. The feature selection problem has become a key undertak-
ing within machine learning. For classification problems, it is known to
reduce the computational complexity of parameter estimation, but it
also adds an important contribution to the explainability aspects of the
results. An evolution strategy for feature selection is proposed in this
paper. Feature weights are evolved with decision trees that use the Nash
equilibrium concept to split node data. Trees are maintained until the
variation in probabilities induced by feature weights stagnates. Predic-
tions are made based on the information provided by all the trees. Numer-
ical experiments illustrate the performance of the approach compared to
other classification methods.
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1 Introduction

Evolutionary algorithms (EAs) have been widely used for feature selection and
classification purposes [6,23,27], as they are flexible and adaptable to different
optimization environments. Genetic algorithms (GAs) have been the first natural
choice, since the binary representation fits within this problem naturally [9].
Many examples of genetic algorithms are mentioned in [27], and in particular,
the combination with Decision Trees (DT) has been appealing from the start
[2], with many variants following, expanding to random forests [10] or multi-
objective optimization [26]. Examples of EAs for feature selection and decision
trees can be found in [13,14], and applications in network intrusion detection
[21], chemistry [10], speech recognition [15], etc.

However, the efficiency of any evolutionary approach depends on proper
parameter tuning and fitness evaluation mechanisms. Within EAs, the selection
is mainly responsible for guiding the search, as the survival of newly created
individuals ultimately relies on their fitness. When the fitness is associated with
the results of classification tasks and is based on some performance indicator
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reported on data samples, we find a high variability between different samples,
which makes comparisons of results irrelevant for selection purposes.

The fighting for survival paradigm is usually implemented within EAs by
comparing individuals using their fitness values and deciding, depending on the
selection mechanism used, which ones are preserved and which are discarded. It
is considered that individuals compete for resources and the fittest will survive,
to further access, exploit, and explore them.

In this paper, we introduce a feature selection-based classification method
that evolves feature weights by using game-theoretic decision trees. Individuals
represent vectors of feature importances, evolved with the purpose of identifying
the most relevant features in the data set that may explain the classification
problem. A game-theoretic decision tree is used for classification and evalua-
tion purposes. However, there is no selection involved, trees are grown together,
and they form an ecosystem in which all of them are involved in the predic-
tion task. An individual stops evolving when there is no more variation in the
probabilities that it provides for selecting features for inducting its tree. A prac-
tical application that analyses countries’ income group classification based on
world development indicators presents an interpretation of the feature selection
approach.

2 Evolution Strategy Decision Forest (ESDF)

ESDF evolves individuals representing feature weights to identify those that most
explain the data. The evolution strategy mechanism, as well as the decision trees
used for classification, are presented in what follows.

Decision Trees and Random Forests. Decision trees were some of the most
popular machine learning techniques [19,25] due to their efficiency and explain-
ability. They recursively split the data space into separate regions aiming to find
areas as pure as possible. Large trees tend to overfit the data, and small trees
may not split it enough. One way to overcome these drawbacks is to use ensem-
bles of trees, e.g. in the form of random forests [4], and aggregate their results in
some form. Decision trees can also be used to assess feature importances based
on the tree structure, and the purity of split data in each node [24].

In what follows, we consider the binary classification problem: given a data
set X ⊂ R

N×d containing N instances xi ∈ R
d, i = 1, . . . , N and d and Y

their corresponding labels, with yi ∈ {0, 1} the label of xi, the goal is to find
a rule that best predicts the labels ŷ for instances x that come from the same
distribution as X .

Equilibrium-Based Decision Tree. Most decision trees are built top-down
starting with the entire data set at the root level. Different trees split data in
different manners, by using either axes parallel, oblique, or non-linear hyper-
planes [1,12,16], computing their parameters by using some purity indicators
that evaluate sub-nodes data, e.g. gini index, entropy, etc. [28]. At each node
level, some optimisation process takes place involving either hyperplane param-
eters, the attributes to use for the split, or both.
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In this paper, we propose the use of a decision tree that computes hyperplane
parameters by approximating the equilibrium of a non-cooperative game [22].
The equilibrium of the game aims to find parameters such that each sub-node
‘receives’ data as pure as possible by shifting instances with different labels to
the left/right of the hyperplane. Thus, in order to split node data X,Y based
on an attribute j, we use the following non-cooperative game Γ (X,Y |j) :

– the players, L and R correspond to the two sub-nodes and the two classes,
respectively;

– the strategy of each player is to choose a hyperplane parameter: βL and βR,
respectively;

– the payoff of each player is computed in the following manner:

uL(βL, βR|j) = −n0

n∑

i=1

(β1|jxij + β0|j)(1 − yi),

and

uR(βL, βR|j) = n1

n∑

i=1

(β1|jxij + β0|j)yi,

where
β =

1
2
(βL + βR)

and n0 and n1 represent number of instances having labels 0 and 1, respec-
tively.

The concept of Nash equilibrium for this game represents a solution such that
none of the players can find a unilateral deviation that would improve its payoff,
i.e., none of the players can shift data more to obtain a better payoff. An approx-
imation of an equilibrium can be obtained by using a stylized version of fictitious
play [5] in the following manner. For a number of iterations (η), the best response
of each player against the strategy of the other player is computed using some
optimization algorithm. As we only aim to approximate β values that reasonably
split the data, the search stops after the number of iterations has elapsed. In
each iteration, the best response to the average of the other player’s strategies
in the previous ones is considered the fixed one. The procedure is outlined in
Algorithm 1.

For each attribute j ∈ {1, . . . , d}, data is split using Algorithm 1; the
attribute that is actually used to split the data is chosen based on the Gini
index [28]. The game theoretic decision tree splits data in this manner, recur-
sively, until node data becomes pure (all instances have the same label) or a
maximum tree depth has been achieved.

Prediction. A DT provides a partition for the training data. To predict the label
for a tested instance x, the corresponding region of the space, i.e., its leaf, is
identified. The decision is made based on the proportion of labels in that leaf.
Let DT be a decision tree based on a data set X and x a tested value. Then
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Algorithm 1. Approximation of Nash equilibrium
Input: X, Y - data to be split by the node; j - attribute evaluated
Output: XL|j , yL|j , XR|j , yR|j , and βj to define the split rule for the node based on
attribute j;
Initialize βL, βR at random (standard normal distribution)
for η iterations: do

Find βL = argmin
b

uL(b, βR);

Find βR = argmin
b

uR(βL, b);

end for
βj = 1

2
(βL + βR)

XL|j = {x ∈ X|xT
j β ≤ 0}, yL|j = {yi ∈ y|xi ∈ XL|j}

XR|j = {x ∈ X|xT
j β > 0}, yR = {yi ∈ y|xi ∈ XR|j}

the decision tree DT has partitioned X into data found in its leaves, denoted
by DT1, . . . , DTm, where m is the number of leaves of DT . Let DT (x) be the
data set corresponding to the leaf region of x, DT (x) ⊂ X . Typically, the model
would assign to x label y with a probability equal to the proportion of elements
with class y in DT (x).

Feature Importance. The game-based splitting mechanism of the tree indicates
for each node the attribute that ’best’ splits the data. It is reasonable to assume
that the position of the node in the tree indicates also the importance of the
attribute in classifying the data and an importance measure can be derived based
on the structure of the tree. Thus, for each feature j ∈ {1 . . . d} we denote by

νj = {νjl}l∈Ij ,

the set containing the nodes that split data based on attribute j, with Ij the
set of corresponding indexes in the tree and let δ(νjl) be the depth of the node
νjl in the decision tree, with values starting at one at the root node. Then the
importance φ(j) of attribute j can be computed as:

φ(j) =

⎧
⎪⎨

⎪⎩

∑

l∈Ij

1
δ(νjl)

, Ij �= ∅

0, Ij = ∅
. (1)

The formula (1) is based on the assumption that attributes that split data
at the first levels of the tree may be more influential. Also, multiple appearances
of an attribute in nodes with higher depths may indicate its importance and are
counted in φ().

Evolution Strategy Decision Forest. The Evolution Strategy decision forest
evolves a population of feature weights in order to identify their importance for
classification. Individuals in the final population indicate feature importances
while, overall, the evolution strategy performs classification using the evolved
feature weights.
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Encoding. Individuals w are encoded as real, positive valued vectors of length
d, where wj represents the importance of feature j, j = 1, . . . , d.

Initialization. All individuals are initialized with equal weights of 1/d. ESDF
maintains a population of pop size individuals.

Evaluation. There is no explicit fitness assignment mechanism within ESDF.
Individuals are evolved regardless of their performance based on the informa-
tion received from the environment. The motivation behind this approach can
be expressed in two ways: on the one hand, the evaluation of feature weights
may be performed using some classification algorithm based on its performance.
However, there is no universally accepted performance indicator that can be
used to compare results in a reliable manner. From a nature-inspired point of
view, on the other hand, a forest paradigm does not require direct competition
for resources. Trees grow in forests and adapt to each other. Some may stop
growing due to a lack of resources, but they do not replace each other every
generation. Thus, all trees are added to the forest and evaluation takes place on
the entire forest at the end of the search.

Evolution. The evolution process takes place iteratively until a maximum num-
ber of generations is reached, or until all individuals have achieved maturity.

Updating Mechanism. In each iteration, a bootstrapped sample from the data
is used to induct a game theoretic decision tree for each individual in the pop-
ulation. Attributes for each tree are selected with a probability proportional to
their corresponding weights in the individual. Thus, for individual w representing
feature weights, the probability to select feature j is:

P (j|w) =
wj∑d
k=1 wk

. (2)

In the first iteration, probabilities are all equal. However, in subsequent gener-
ations, feature importances reported by each tree are used to update the corre-
sponding individuals:

wj ← wj + φ(j) · α, j = 1, . . . , d, (3)

where φ(j) represents the importance of feature j reported by the tree inducted
by using individual w (Eq. (1)), and α is a parameter controlling the magnitude
of the update.

In this manner, the weights of attributes that are deemed important by the
tree are increased, also increasing the probability that they are selected in the
next iterations. While apparently, this may lead to overfitting features, the fact
that in each iteration, a different sample from the data is used for inducting
trees, that the search of an individual stops when it reaches maturity, and also
that there are several individuals maintained on the same data ensures diversity
preservation.
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Thus, the role of the tree is to assign feature importances for the updating
mechanism. Apart from that, each tree is also preserved and further used in
prediction for classification.

Maturity. Individuals are used to select attributes for training using probabilities
in Eq. (2). The goal of the search is to find a distribution over the feature set: if
several iterations of applying Eq. (3) feature importances reported by the tree
do not change significantly, the standard deviation of the probabilities P () will
not vary. ESDF considers that an individual has reached maturity and stops
evolving and inducting trees using it if there is no change in the variation of
the corresponding probabilities. The following condition is used to compare the
evolution of an individual from generation t to t + 1:

σ(P (·|wt)
σ(P (·|wt+1)

< ε (4)

where σ denotes the standard deviation and P (·|w) the vector of probabilities in
Eq. (2) taken for all attributes j. If condition 4 holds, the individual is considered
to have reached maturity and is no longer updated,i.e., and no more trees are
inducted based on him. Not all individuals reach maturity at the same time,
which means that the size of the population decreases during the search, reducing
the complexity of the method.

Classification. Each individual inducts several trees until reaching maturity. All
these trees form a forest that can be used to make predictions for the clas-
sification problem. This is the last step of the algorithm, and it can be used
to validate results. Trees are inducted by using different data samples and dif-
ferent attributes. Selecting attributes without any fitness measure may provide
(or not) good classification trees. To avoid overfitting or using misleading trees,
prediction is not made by considering labels in the trees’ leaves but by aggregat-
ing data from the leaves corresponding to tested instances and further applying
logistic regression (LR) to make predictions. Each tree offers a neighborhood for
the tested instance. Aggregating all these regions will provide a set of relevant
instances, allowing the algorithm to make an informed prediction.

Outline of ESDF. ESDF has two main steps: an evolution step (Algorithm 2,
line 6) and a prediction step (Algorithm 2, line 17).

During the evolution step, a population of weights is updated several iter-
ations until there is no variation in the probabilities they provide for selecting
attributes for tree induction. Prediction is performed for each tested instance by
aggregating data corresponding to its leaves in all inducted trees and applying
logistic regression on the resulting data set.

The output of ESDF consists of prediction probabilities for the tested data
that can be used to evaluate the entire approach and the average feature weights
over the entire population.
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Algorithm 2. ES-DF: Evolution Strategy Decision Forest
1: input: training set X , Y,
2: parameters:: - pop size - population size;

- p - the proportion of attributes used for a tree;
- μ - maximum tree depth;
- MaxGen - maximum number of generations;

3: output: predictions C for a (test) set T ; Feature weights ω;
4: t = 0;
5: Initialize population W0 with w0,ij = 1/d, i = 1, . . . , pop size, j = 1, . . . , d;
6: Step 1: Evolution
7: while t < MaxGen or not all trees have reached maturity do
8: Xt ← sample of size N with replacement from X ;
9: for each individual wt do

10: Xt,w ← sample proportion p of attributes from Xt using probabilities P in
Eq. (2);

11: DTt,w ← game based decision tree based on Xt,w, μ;
12: Update wt+1 using Eq. (3);
13: Check maturity using condition (4); if (4) holds, mark individual as mature

and stop its update;
14: end for
15: t ← t + 1;
16: end while
17: Step 2: Prediction
18: for each xt ∈ T do
19: RF (xt) = ∪w,tDT (xt);
20: Fit LR on RF (xt);
21: Assign ct to xt - probability that xt has class 1, based on LR;
22: end for
23: return

- C = (c1, c2, . . . , c(x|T |1))
- ω - average feature weights over the entire population.

1 | · | denotes the cardinality of a set.

3 Numerical Experiments

Numerical experiments are used to test and illustrate the performance of ESDF
and compare its results to other state-of-the-art classification models. This
section is divided into two main parts: the first one presents results obtained
on synthetic and real-world benchmarks with various degrees of difficulty used
for classification, and the second part is a real data application involving the
classification of countries’ income groups.

Synthetic and Real-World Benchmarks
For synthetically generated test data, to ensure reproducibility and control the
difficulty of the resulting data set, we use the make classification function
from the scikit-learn1 Python library [18]. The degree of difficulty is con-

1 version 1.1.1.
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trolled by the generating function parameters: number of instances, number of
attributes/features, degree of overlap between instances of different classes, the
seed used to generate the test data, and class imbalance. For our experiments,
we use the following: number of instances (100, 200, 500, 1000, 2500), number of
attributes (20, 50), the seed used to generate the data (500), degree of overlap
between instances of different classes (0.1, 0.5), and all data sets generated are
balanced. We generate test data sets for all combinations of the above parame-
ters. In order to evaluate the feature selection mechanism, only half of the fea-
tures in each data set are generated using the make classification function,
and the other half at random following a uniform distribution.

For real-world benchmarks, we use the following data sets from the UCI
Machine Learning Repository [7]: iris data set (R1) from which we removed the
setosa instances to obtain a linear non-separable binary classification problem,
Pima Indians Diabetes (R2), Connectionist Bench (Sonar, Mines vs. Rocks)
(R3), acute inflamations (R4), heart disease (R5), Somerville Happiness Sur-
vey (R6), appendicitis (R7), blogger (R8), bupa (R9), monks (R10), thoracic-
surgery(R11), vertebra-column-2c (R12), wholesale-channel (R13), and the wdbc
(R14) data set.

Experimental Set-Up. A Stratified k-fold Cross-Validation strategy [11] is
used to estimate the expected prediction error. The data set is divided into
k = 10 balanced folds, of which nine are used to train the model, and the tenth
fold (the test fold) is used to evaluate the model. The train and test part are
repeated k = 10 times, each time a different fold is used as a test fold. We repeat
the k-fold cross-validation four times, each time a different seed is used to split
the data (we use as seed the values 1, 2, 3, 4), resulting in 40 indicator values
that are compared.

For each test fold of a data set, we report performance metrics based on which
we compare the performance of ESDF with other state-of-the-art classifiers. We
train each compared classifier on the same train data as ES-DF for each fold and
compare the results of ES-DF to those reported by the compared models on the
test fold.

The performance metrics used for comparison are: AUC (area under the ROC
curve) [8,20], the F1 score [29], the accuracy ACC and the log-loss score [11].

ESDF results are compared to other decision tree-based classifiers, and
because it uses Logistic Regression in the prediction step, we also compare
results with this method. We also compare the performance of ES-DF to other
well-known classifiers. The list of compared classifiers is: M0 - Support Vector
Machine with a linear kernel, M1 - Support Vector Machine with a radial kernel,
M2 - k−nearest-neighbour classifier with k = 3, M3 - AdaBoost classifier, M4
- Gaussian Naive Bayes, M5 - stochastic gradient descent, M6 - Gaussian pro-
cess classification, M7 - decision tree classifier which splits nodes until its leaves
contain only instances of one class, M8 - a decision tree with maximum depth
equal to that of ESDF, M9 - a random forest classifier for which each estimator
splits nodes until its leaves are pure, M10 - a random forest classifier with 10
estimators, M11 - a random forest classifier with 50 estimators, M12 - a random
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Fig. 1. Heatmaps for the AUC and ACC indicators for the synthetic data sets. A
higher (darker) value is desirable. The last line also presents the number of times
ESDF results were significantly better than the other method based on the p values
of the t test comparing results reported for all folds (out of 120). The first line of the
heading indicates the number of attributes and the second line the class separator for
the data sets.

forest classifier with 100 estimators (for M10, M11 and M12 each estimator has
a maximum depth equal to ESDF), and M13 - logistic regression classifier. For
reproducibility and control, we use their implementation from the scikit-learn
software library [18].

For each data set, each method reports 40 performance indicator values cor-
responding to the ten folds generated four times with different random number
seed generators. To assess the difference in results, these values are compared
using a paired t-test, with the null hypothesis that results provided by ESDF
are worse than those reported by the other method. Rejecting this hypothesis,
with a p-value smaller than 0.05, indicates that we can consider ESDF results
significantly better than the others.

ESDF tested parameters are: population size 5, maximum number of gen-
erations 20, maximum tree depth 5 and 10, and α values 0.3, 0.8, and 1. All
experiments are run with combination of these parameters.

Results. Figures 1 and 2 present the performance indicators obtained by all
methods on the synthetic data sets. Figure 1 presents the AUC and accuracy
indicators, and Fig. 2 the F1 and Log-loss indicators. A square in the heatmap
shows the value obtained by a classifier for a specific set of parameters used
to generate the data set (no instances - 100, 200, 500, 1000, 2500, no attributes
- 20, 50, and overlap degree - 0.1, 0.5). Each row presents results obtained by a
different classifier. For our approach, we also report the number of cases in which
ESDF obtains significantly better results than the compared methods according
to a t-test. In the case of AUC, ESDF obtains the best results. for all data sets.
For the accuracy indicator, ESDF consistently gives better results, and when
more instances are available in the data set, the ensemble and logistic regression
classifiers report, for a few data sets, results as good as the ones reported by
ESDF. This is also the case for the F1 and Log-loss indicators (Fig. 2).
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Fig. 2. Heatmaps for the F1 and LogLoss indicators for the synthetic data sets. For F1,
a higher (darker) value is desirable, while for the LogLoss a smaller (lighter) value is
better. The last line also presents the number of times ESDF results were significantly
better than the other method based on the p values of the t test comparing results
reported for all folds (out of 120). The first line in the heading indicates the number
of attributes and the second line the class separator for the data sets.

Feature Selection. One possible manner to evaluate the efficiency of the feature
selection mechanism is to compute the stability indicator SC [3,17] over the ten
folds. Values of the stability indicator are based on average correlations: an SC
close to 1 indicates that the feature selection method selects the same features in
several runs on different samples of the data set, indicating stability. The values
of the SC score when selecting half of the features based on their weights for
the synthetic data sets vary between 0.7 and 1, indicating the stability of the
approach. For data sets with 20 attributes the confidence interval for SC is (0.97,
0.99), and for those with 50 attributes is (0.88, 0.93).

Table 1 presents the results obtained by ESDF against the best result
reported by the compared methods on the real-world data sets. The mean and
standard deviation for the AUC and Log-loss indicators are presented. The sta-
tistically better results are highlighted. It can be seen that ESDF consistently
gives better results. When comparing AUC values it can be seen that ESDF
either gives statistically better results or is indifferent when compared to the
best performing compared classifier.

Regarding different ESDF parameter settings, we found no significant differ-
ences among different values, either for synthetic or real-world benchmarks. The
value of α does not influence the results because it is not directly used for the
induction of trees.

Classification of low-income countries based on world development
indicators: an application
The World Bank classifies countries into five income groups: high income, upper
middle income, lower middle income, and low income yearly, based on gross
national income (GNI) per capita in USD values, using the Atlas methodol-
ogy2. The classification list for 2022 is based on 2021 data. In 2022, the GNI
2 https://datahelpdesk.worldbank.org/knowledgebase/articles/378832-what-is-the-

world-bank-atlas-method, last accessed January 2023.

https://datahelpdesk.worldbank.org/knowledgebase/articles/378832-what-is-the-world-bank-atlas-method
https://datahelpdesk.worldbank.org/knowledgebase/articles/378832-what-is-the-world-bank-atlas-method
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Table 1. Mean and standard deviation for the AUC and Log-loss indicators in the case
of real-world data sets for ESDF and the best performing compared classifier (best M).
A (�) symbol highlights the ESDF results that can be considered statistically better
than the other method.

data set AUC (ESDF) AUC (best M) Log-loss (ESDF) Log-loss (best M)

R1 0.99 ± 0.03� M0: 0.95 ± 0.06 0.15 ± 0.14� M3: 0.89 ± 0.08

R2 0.83 ± 0.05� M6: 0.73 ± 0.05 0.65 ± 0.17 M5: 0.69 ± 0.06

R3 0.92 ± 0.06� M2: 0.86 ± 0.08 0.56 ± 0.35� M8: 0.72 ± 0.10

R4 1.00 ± 0.00 M0: 1.00 ± 0.00 0.00 ± 0.00� M4: 0.83 ± 0.08

R5 0.88 ± 0.07� M4: 0.84 ± 0.07 0.73 ± 0.53 M7: 0.72 ± 0.07

R6 0.66 ± 0.13� M11: 0.62 ± 0.12 0.94 ± 0.30 M5: 0.53 ± 0.10�

R7 0.83 ± 0.16� M3: 0.79 ± 0.16 1.34 ± 1.64 M8: 0.69 ± 0.18�

R8 0.92 ± 0.11� M1: 0.82 ± 0.14 0.62 ± 1.05� M3: 0.64 ± 0.15

R9 0.77 ± 0.08� M9: 0.72 ± 0.08 0.66 ± 0.14� M3: 0.70 ± 0.07

R10 1.00 ± 0.01 M8: 0.99 ± 0.02 0.13 ± 0.05� M13: 0.76 ± 0.05

R11 0.63 ± 0.09� M7: 0.56 ± 0.09 0.64 ± 0.22 M7: 0.56 ± 0.09�

R12 0.94 ± 0.04� M6: 0.84 ± 0.07 0.39 ± 0.25� M4: 0.80 ± 0.06

R13 0.96 ± 0.03� M9: 0.91 ± 0.05 0.36 ± 0.28� M8: 0.85 ± 0.05

R14 1.00 ± 0.01� M1: 0.98 ± 0.02 0.12 ± 0.20� M7: 0.92 ± 0.04

per capita is influenced by factors such as economic growth, inflation, exchange
rates, and population growth. The classification is based on GNI intervals3. The
World Bank also offers data related to a variety of other indicators. The World
Development Indicator data-set contains information regarding various financial
indicators that may be used to explain a country’s income group classification.
To test this assumption, as well as the efficiency of ESDF on a real-world appli-
cation, we used these data to classify low (low and low-middle) income countries
and identify features in the world development indicators list that most explain
the classification.

Data Processing. The world development indicators data set (for the year
2021) contains 108 indicators for 218 countries for which an income category
is also assigned. However, not all indicators have values for all countries. All
indicators with values for less than half the number of countries were removed,
resulting in a data set with 218 countries and 40 indicators. Further, removing all
countries with less than half indicator values resulted in a data set containing 138
countries and 40 indicators. In this data set, we found 13.35% missing values that
were replaced, for each indicator, with the average value of its country’s region,
which is part of the data set. Countries with lower and lower middle income were
assigned the label 1, and the others 0, resulting in a slightly imbalanced data

3 https://blogs.worldbank.org/opendata/new-world-bank-country-classifications-
income-level-2022-2023, accessed Jan. 2023.

https://blogs.worldbank.org/opendata/new-world-bank-country-classifications-income-level-2022-2023
https://blogs.worldbank.org/opendata/new-world-bank-country-classifications-income-level-2022-2023
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set with 37% instances having class 1. In what follows, we will call this data set
the World Bank Income indicators (WBII) data set.

Experimental Set-Up. The same methodology used to test ESDF on the
synthetic and real-world benchmarks was also used for the WBII data set. 10-
fold cross-validation was applied four times with different seeds for the random
number generator, and the four indicators were used to evaluate the results.
ESDF parameters were α = 0.8, the maximum tree depth used was 10, and the
population size was 5.

Results - Classification. Numerical results for classification reported by all
methods for the WBII data set are presented in Table 2. We find that results
reported by ESDF are as good as or even better than those reported by the
other methods. Particularly the Log Loss values are significantly better than all
the other methods.

Table 2. WBII data set: mean and standard deviation values for the four indicators
reported by all methods. We find results reported by ESDF better or as good as the
others for all indicator values.

Method AUC ACC F1 Log-loss

ESDF 0.90 ± 0.08 0.85 ± 0.09 0.79 ± 0.12 0.99 ± 1.28

M0 0.78 ± 0.11 0.80 ± 0.11 0.72 ± 0.16 7.02 ± 3.67

M1 0.85 ± 0.09 0.86 ± 0.08 0.81 ± 0.12 4.77 ± 2.93

M2 0.81 ± 0.09 0.84 ± 0.08 0.75 ± 0.13 5.40 ± 2.71

M3 0.81 ± 0.10 0.83 ± 0.10 0.76 ± 0.16 5.71 ± 3.32

M4 0.78 ± 0.11 0.76 ± 0.11 0.72 ± 0.13 8.19 ± 3.75

M5 0.75 ± 0.12 0.76 ± 0.11 0.67 ± 0.17 8.20 ± 3.97

M6 0.84 ± 0.10 0.85 ± 0.10 0.79 ± 0.13 5.20 ± 3.30

M7 0.81 ± 0.08 0.83 ± 0.08 0.76 ± 0.12 6.06 ± 2.73

M8 5 0.80 ± 0.08 0.82 ± 0.07 0.74 ± 0.11 6.38 ± 2.62

M8 10 0.79 ± 0.09 0.81 ± 0.08 0.72 ± 0.13 6.90 ± 2.91

M9 0.86 ± 0.09 0.87 ± 0.08 0.82 ± 0.11 4.58 ± 2.81

M10 5 0.85 ± 0.10 0.87 ± 0.09 0.81 ± 0.13 4.76 ± 3.12

M11 5 0.87 ± 0.09 0.88 ± 0.08 0.83 ± 0.11 4.37 ± 2.93

M12 5 0.87 ± 0.09 0.88 ± 0.08 0.83 ± 0.11 4.44 ± 2.80

M10 10 0.84 ± 0.09 0.86 ± 0.08 0.79 ± 0.12 5.16 ± 2.82

M11 10 0.86 ± 0.08 0.88 ± 0.08 0.83 ± 0.11 4.44 ± 2.80

M12 10 0.86 ± 0.08 0.88 ± 0.08 0.83 ± 0.11 4.44 ± 2.75

M13 0.81 ± 0.10 0.82 ± 0.10 0.75 ± 0.14 6.41 ± 3.54

Results - Feature Selection. To illustrate a possible practical interpretation
of the selected features, Fig. 3 represents feature weights reported by ESDF on



An Evolutionary Approach to Feature Selection and Classification 345

the 10 folds used for cross-validation. The corresponding stability score is 0.74
indicating a strong correlation between selected features (when half of them are
chosen based on the value of their weights). The features with the highest weights
are:

1. GFDD.AI.11: Received wages: into a financial institution account (% age
15+)

2. GFDD.AI.05: Financial institution account (% age 15+)
3. GFDD.AI.21: Debit card ownership (% age 15+) and

GFDD.AI.20: Credit card ownership (% age 15+)
4. GFDD.EI.01: Bank net interest margin (%)
5. GFDD.AI.06: Saved at a financial institution (% age 15+)
6. GFDD.AI.10: Received domestic remittances: through a financial institution

(% age 15+)

This list indicates that individual banking activities may be considered as
indicators for a country’s income group. While there is no causation involved
here, results indicate a relationship between these indicators and the income
group.

Fig. 3. Example of distribution of feature weights for one run on the WBII data set.

4 Conclusions and Further Work

The evolution strategy random forest for feature selection and classification pro-
posed in this paper presents several original aspects: individuals are evolved
without an explicit fitness; an updating mechanism, imitating mutation, always
increases each component; converting values to probabilities when necessary
decreases the additive effect; the search stops for each individual when there
is no more variation in the probability values; the evaluation takes place at the
end of the search, during the prediction phase for classification when data is
gathered from the leaves in which tested instances are found from all trees, and
logistic regression (but any classification method can be used) is applied for
prediction.
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Numerical experiments performed on synthetic and real-world benchmarks
illustrate the efficiency of the approach for classification compared to other stan-
dard methods. A stability measure for feature selection indicates the potential
of the approach to identify relevant feature sets. Furthermore, the method is
used to analyse the classification of low-income countries based on several world
development indicators. Classification results and most popular features are dis-
cussed.
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