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Abstract. External disturbances, such as interference, have a significant impact
on the functionality of radio detection and ranging (radar) systems, which are
employed for the identification, ranging, and imaging of target objects. As radar
systems are increasingly adopted across various sectors for different applications,
it is essential to handle interference issues appropriately to mitigate false detec-
tions, poor signal-to-noise ratio (SNR), and reduced resolution. In the current
paper, we introduce a Long Short-Term Memory (LSTM)—based multi-layer
recurrent neural network (RNN) to tackle interference problems in a multi-radar
setting. In the simulation, a 4-layeredLSTM-RNN is trainedwith 50 different chirp
rate interference signals. The efficiency of the introduced interference mitigation
technique is evaluated by testing the randomly selected coherently interfered sig-
nals, non-coherently interfered signals, and a combination of both on the trained
model. The LSTM-RNN effectively suppresses ghost targets in the range profile in
the case of coherently interfered signals. Furthermore, the LSTM-RNN enhances
the signal-to-interference noise ratio (SINR) by > 18dB in all cases. Thus, the
proposed LSTM-RNN offers a promising solution to improve the accuracy and
reliability of radar operation in multi-radar environments.

Keywords: Radar · interference · deep learning · recurrent neural network ·
LSTM

1 Introduction

In today’s context, radio detection and ranging systems (radars) are extensively utilized
across various domains, ranging from remote sensing, defense, agriculture, industry, and
automotive to consumer electronics [1–3]. With the growing number of radar deploy-
ments, signals originating from external radars often referred to as interferers, spoofers
or intruders can introduce disturbances to the legitimate radar, also known as victim
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radar (VR). One significant disturbance is the signal arising from the interferer radar
(IR) which is operating at the same or nearby frequency band as the VR. The IR signal
can significantly impact the performance of the VR by adding external noise, introduc-
ing ghost signals, and deteriorating the waveform of the VR. In a multi-radar scenario,
these degradations can lead to a poor detection capability of the VR and impose threats
to the safe and secure operation of radar systems. Consequently, effective interference
handling becomes crucial.

To address the effect of external interference/intrusion in radar systems, variousmeth-
ods have been proposed, such as the development of noise waveform-based radars [4, 5],
interference-tolerant waveforms [6, 7], wavelet denoising techniques [8], adaptive beam-
forming techniques [9, 10], and more. Additionally, recently deep learning (DL)-based
interference mitigation techniques have gained attention to the radar research commu-
nity, as these techniques can reconstruct the echo signal by suppressing the interference
and can be applied regardless of the VR and IR signal types [11–15]. Among different
DL techniques, convolution neural networks (CNN) based interference mitigation tech-
niques utilize the range-Doppler map technique, which minimizes the interference after
the range-Doppler measurement [11, 12]. In general, the IR signals corrupt the VR sig-
nal and create temporal gaps in the time domain signal. Consequently, recurrent neural
network (RNN) based solutions are effective in addressing this kind of temporal prob-
lem. Most previously reported RNN-based techniques involve detecting the interference
corrupted segments in the signal, followed by interference mitigation steps [13–15].
However, interference detection may not be robust if the interference corrupts the signal
smoothly or uniformlywithout creating substantial gaps. Therefore, a robust interference
mitigationmechanism is always favored, which canmitigate the interference irrespective
of the interference type.

Fig. 1. Overall functional block diagram.

Figure 1 presents the overall functional diagram. To demonstrate the robustness of
the proposed scheme, in the simulation environment, we generate a VR linear frequency
modulated (LFM) transmission signal (Tx Signal) with a bandwidth of 4GHz (4GHz–
8GHz). We used this signal to detect 2 objects located 3m away from the radar sensor,
with a 4cm separation between each object. In the current paper, we introduce and present
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a robust LSTM-based RNN (LSTM-RNN) to suppress the interference signals from the
received echo. For the training purpose, the received echo serves as the reference signal
to the 4-layered LSTM-RNN. Each object was detected using 50 different IR LFM sig-
nals with varying chirp rates, which were subsequently used as an input signal to train
the LSTM-RNN. In the testing phase, randomly interfered signals are evaluated. The
interference-suppressed echo signal is retrieved by using the previously trainedmodel. In
general, IR signals can be categorized as coherent (having the same chirp rate as the VR)
and incoherent (having a different chirp rate than the VR). The performance of the pro-
posed LSTM-RNN is evaluated by calculating the range profiles for scenarios involving
coherently interfered VR signals, incoherently interfered VR signals, and a combination
of both. The proposed 4-layered LSTM-RNN structure mitigates coherent interference
cases by suppressing the ghost target in the range profile. Furthermore, it enhances the
signal-to-interference noise ratio (SINR) by > 18dB in all cases, thereby indicating its
robustness in mitigating interference including different chirp rate interference signals.

2 Signal Model and Interference Effect Analysis

Among various types of radar waveforms, LFM is the most common one which can be
represented as [1]

Tx(t) = Atx cos

((
2π

(
fc − B

2

)
t + παtxt

2
))

, for(0 ≤ t ≤ T ), (1)

where Atx is the amplitude of the transmitted signal, fc is the center frequency, B is the
operating bandwidth, αtx is the chirp rate of the signal which is equal to B

T , and T is the
time period. For the time period of 0 ≤ t ≤ T , the frequency of the transmitted signal
linearly increases from fc − B

2 to fc + B
2 . When the transmitted signal is reflected from

the target of K number of stationary objects, the received signal, Rx(t) is represented as
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k=1
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where ARk and τdk represent the amplitude of the signal reflected from the kth objects
and the time delay resulted by the relative range between the radar receiver and the kth
target object, respectively. The LFM signal’s range resolution is its ability to distinguish
the two target entities’ separation distance, which is proportional to the frequency shift.
Hence, the range resolution can be expressed as �R = c

2B , and is a function of the
bandwidth.

Next, we consider the case where the interference radar (IR) LFM signal, which acts
on the receiver, can be expressed as,

RI (t) =
Y∑

y=1

AIy cos

((
2π

(
fc − BIy

2

)(
t − τIy

) + παIy
(
t − τIy

)2))
, (3)

where AIy is the amplitude of the yth IR signal, αIy is the chirp rate of the IR signal, and
τIy is the delay of the IR signal to the victim radar (VR) signal. The chirp rate of the
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IR signal is given by αIy = BIy
TIy

, where BIy and TIy are bandwidth and the time period

of yth IR signal, respectively. When the chirp rate of the VR signal and IR signal are
equal, i.e., αIy = αtx it is known as a coherent interference, and when they are different,
αIy �= αtx, we considered it as a noncoherent interference. In the presence of IR signal,
whether it is coherent or non-coherent, the output of the receiver is the mixture of the
echo signal from the transmitted signal and the IR signal. For simplification, we consider
a single VR and IR source. The beating frequency due to the IR signal RI (t), after the
de-chirping is given by,

fbi = (
αIy − αtx

)
t + αIyτIy (4)

Figure 2 illustrates theLFMVRsignal and the de-chirping of the signal at the receiver
in the appearance of an IR signal with the same/various chirp rate. In Fig. 2 (a-i), the
IR signal has the same chirp rate as that of the VR, i.e., αIy = αtx, resulting in two
constant beat-frequencies fbo and fbi, observed at the receiver’s output as they fall inside
the bandwidth of the receiver as shown in Fig. 2a-ii. These two constant beat frequencies
will result in two ranges, giving the information of the existence of two target objects,
one of which is a ghost target object, as illustrated in the range profile of Fig. 2a-iii.

Fig. 2. Demonstration of interference impact a coherent interference, b non-coherent interfer-
ence, (i) echo with interference, (ii) produced beat signals in the receiver, (iii) range profile
observation.

In Fig. 2b-i, the chirp rates are αIy �= αtx, leading to the observation of a con-
stant beat frequency, fbo, caused by the actual target object, along with a varying beat
frequency fbi(t) as shown in Fig. 2b-ii. The varying beat frequency within the receiver
bandwidth adds additional undesired frequency bins in the received signal and adds addi-
tional noise floor in the range profile as illustrated in Fig. 2b-iii. Both the interferences,
whether coherent, Fig. 2a, or non-coherent, Fig. 2b, severely degrade the performance of
the VR’s detection capability in a multi-radar environment either by introducing ghost
targets or by significantly reducing the SNR. The illustration of Fig. 2 is for a case of 1
object detection and 1 interference signal acting in the received echo. However, in prac-
tical scenarios, multiple object detection should be carried out along with the various
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interference signals. Various approaches can be implemented tominimize the effect of IR
signals in a VR signal while operating in a multi-radar environment. In this manuscript,
our focus is on analyzing and mitigating interference through an LSTM-RNN based DL
technique, which can provide similar output performance for detecting target objects in
both interference and non-interference scenarios, in terms of range resolution, SNR, and
detection capability.

3 LSTM-RNN Architecture

In the training process of the LSTM-RNN we assume that the echo signal without the
interference is known. Therefore, the desired purpose of the training is to develop the
model that correctly identifies the interference in the echo and successfully removes it.
The LSTM-RNN based training model consists of the control mechanism with three
gates regulating the passage of data within the cell allowing the network to learn long-
range dependencies more effectively. Additionally, it avoids the exploding and vanishing
gradient problem for the large number of input data samples. Thus, the LSTM-RNN can
significantly enhance the ability of radar systems to detect and remove the interference
signals at the receiver side and recover the corrupted samples.

As illustrated in Fig. 3a, the corrupted sample (xn), can be recovered based on the
preceding samples x1, x2, …, xn−1. Figure 3b illustrates the LSTM unit, which consist
of the Forget Gate (�F ), the Input Gate (�I ), , and the Output Gate (�out), and can be
described as

�F = σ(xn · ω0 + hn−1 · ω1 + b1), (5)

�I = σ(xn · ω2 + hn−1 · ω3 + b2) · tanh(xn · ω4 + hn−1 · ω5 + b3), (6)

�out = σ(xn · ω6 + hn−1 · ω7 + b4), (7)

where σ is the sigmoid activation function, tanh is the hyperbolic tangent activation
function, xn is the input sample, hn−1 is the previous value of the short-term memory,
ω0—ω7 are corresponding weights, and b1—b4 are corresponding biases. The Forget
Gate is the first stage in a LSTM unit. This stage determines the percentage of the
previous long-termmemory to remember. As can be seen in (5), the Forget Gate uses the
sigmoid activation function which turns any input into a value within the range of 0 to
1. If the output of the function is 0, the previous long-term memory will be completely
forgotten. On the other hand, if the output is equal to 1 the long-term memory remains
unchanged. The next stage of the unit is the Input Gate. This gate contains both sigmoid
and hyperbolic tangent activation functions, as illustrated in (6). The tanh function part
of the Input Gate combines the input and the previous short-term memory to determine
a potential long-term memory. The σ function part determines the percentage of the
potential long-term memory to add to the current long-term memory. Overall, this part
of the LSTM unit updates the current long-term memory. The final part of an LSTM
unit is the Output Gate. This stage, in turn, updates the short-term memory by passing
the updated long-term memory to the tanh activation function and using the σ function.
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Fig. 3. LSTM a LSTM principle, b LSTM unit structure.

Thus, the new short-termmemory is the output of the entire LSTMunit. By utilizing these
Gates, the new long-term and short-term memories are calculated using the following
equations:

cn = cn−1 · �F + �I , (8)

hn = �out · tanh(cn) (9)

4 Methodology, Results and Discussions

Fig. 4. Steps of investigation.

Figure 4 demonstrates the steps of investigation. Overall, after preparing the VR and
IR signals, we train the LSTM-RNNwith various interference signals and test the trained
network with different coherent and non-coherent interference signals. The last step in
our investigation is the evaluation of the system performance by calculating SINR and
peak to sidelobe level (PSL).
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Table 1 illustrates the parameters for VR and IR signals. The VR signal is generated
with a 1µs time period and a 4GHz bandwidth. The VR signal is used to detect objects,
and the received echo serves as the output label for the LSTM-RNN. The AWGN noise
equivalent to the SNR of 20dB is added to the received echo. To train the LSTM-
RNN, the input signal is obtained by applying various chirp rate LFM interference
signals to the echo signal. In the training set, the echo signal is mixed with 50 different
interference signals with varying chirp rates ranging from 1GHz/µs to 10GHz/µs. All
the signals prior to applying to LSTM-RNN, were normalized using zero mean and unit
variance normalization functions. For the training step, the mean square error (MSE)
values in each iteration were minimized applying the Adam optimization algorithm
[16] with a starting learning rate of 0.01. For the testing purpose, we apply different
interference signals than the training phase to ensure the trained model works properly
for various interference signals with different parameters. Used training parameters and
hyper-parameters are provided in Table 2.

Table 1. Parameters of VR and IR waveforms

Parameters Values for VR Values of IR

Center frequency 6GHz 0GHz–8GHz

Time period 1µs 1µs

Bandwidth 4GHz 1GHz–6GHz

Chirp rate 4GHz/µs 1GHz/µs–10GHz/ µs

Sampling freq 20GHz 20GHz

No. of signals 1 50

Table 2. LSTM-RNN training parameters and hyper-parameters

Parameters Values

Sample length 20000

No. of layers 4

No. of hidden units 50

Learning rate 0.01

Learning rate drop factor 0.2

Validation freq 10

Min. Batch size 32

With the use of 4 layers and a learning rate of 0.01, the optimum number of hidden
units (50)was obtained by simulating theLSTM-RNNand selecting the hidden unit num-
ber that resulted in the minimumMSE. The optimization function in the training process
minimizes the loss function, which calculates the error between the LSTM-RNN output
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(echo with interference suppression) and the expected output (echo without interfer-
ence). In the radar systems, external interference generally causes two major problems
(a) increment in noise floor and (b) appearance of ghost targets in the range profile.
SINR and PSL values provide quantitative measure of the radar detection performance
by identifying these problems.

To evaluate the performance with and without interference mitigation, the SINR
calculation was performed, which is given as

SINR = 10 log

{
|S|2∣∣S̃ − S

∣∣2
}

, (10)

where, S̃ is the interference-suppressed echo signal, and S is the echo signal without
the interference. In radar, range resolution determines the minimum separation distance
between objects that can be distinguished by the radar waveform. This is determined by
calculating the delay between the transmitted and received echo. In this paper, we cal-
culate the range resolution by cross-correlating the transmitted signal with the received
echo. The PSL power in the range profile is evaluated by determining the difference in
the cross-correlated power (|C − Corr.|2) between the detected object’s peak with the
sidelobe peak, denoted as (PSL).

Fig. 5. Interference mitigation a Echo signal, b Echo signal with interference, and c interference
removed echo signal.

Figure 5a-c shows examples of the amplitude-time diagrams of the echo signal
(label), interference corrupted signal (input), and the output signal after the interference
mitigation, respectively. As illustrated in Fig. 5b, the interference corrupts the signal in
the time domain.

Fig. 6. Training process. aEcho signal,bEcho signalwith various interference, and c interference
removed echo signal.
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Figure 6 shows the frequency-time diagrams at various stages in the training phase.
Figure 6a depicts the echo signal (label), whereas Fig. 6b demonstrates the interference
corrupted signal (input), and Fig. 6c represents the output signal after the interference
mitigation.

Fig. 7. Interference mitigation with the trained model. a Coherent interferences, b incoherent
and mixed interferences. (i) Spectrogram before interference mitigation, (ii) spectrogram after
interference mitigation, and (iii) range profile

Figure 7 shows the range profile results for different test scenarios. The coherent and
non-coherent types of interference signals are added to the victim echo signals for the test
purposes. In Fig. 7, Fig. 7i represents the interfered test signal input to the trained LSTM-
RNN, Fig. 7ii represents the recovered test signal with the previously trained model and
Fig. 7iii shows the range profile acquired using interference-recovered signal.

Figure 7a is the case for coherent interference, while Fig. 7b corresponds to the case
of both coherent and non-coherent interferences. As can be seen, in the case of coherent
interference (Fig. 7a), the ghost target does not appear in the range profile. For both
cases, a PSL > 15dB is obtained. The SINR was calculated using (10). With 25 runs, it
is confirmed that the presented LSTM-RNN network can recover the test signal with a
SINR of > 18dB in the presence of AWGN noise equivalent to the SNR of 20dB.

5 Conclusions

In this paper, we presented LSTM-RNN based interference mitigation method that can
be applied to mitigate both coherent and non-coherent interferences in the multi-radar
setup. The LSTM-RNN is trained with 50 different chirp rates of interference signals.
The trained model is then used to recover the interference corrupted signal in the testing
phase. With 25 tests, it is confirmed that the presented LSTM network can recover the
echo signal, with the SINR > 18dB. Additionally, with the recovered signal, the PSL >

15dB is obtained for all test cases. These results indicate that the presented LSTM-RNN
can be used to effectively mitigate the interference in multi-radar environments. The
interference mitigation in multi-radar environment holds vital importance in the radar
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application area such as autonomous vehicle.We plan to further investigate the effective-
ness of the proposed LSTM-RNN in experimental data. Additionally, with experimental
data we will investigate the optimum values of parameters and hyper-parameters of
the proposed LSTM-RNN by considering sufficient number of interference signals for
training.
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