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Abstract. Human activity recognition (HAR) is necessary in numerous domains,
including medicine, sports, and security. This research offers a method to improve
HAR performance by using a temporally distributed integration of convolutional
neural networks (CNN) and long short-term memory (LSTM). The proposed
model combines the advantages of CNN and LSTM networks to obtain tem-
poral and spatial details from sensor data. The model efficiently learns and cap-
tures the sequential dependencies in the data by scattering the LSTM layers over
time. The proposedmethod outperforms baseline CNN, LSTM, and existing mod-
els, as shown by experimental results on benchmark datasets UCI-Sensor and
Opportunity-Sensor dataset and achieved an accuracy of 97% and 96%, respec-
tively. The results open up new paths for real-time applications and research devel-
opment by demonstrating the promise of the temporally distributed CNN-LSTM
model for improving the robustness and accuracy of human activity recognition
from sensor data.
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1 Introduction

Healthcare monitoring, sports analysis, and human-computer interaction (HCI) are just
a few of the areas where human activity recognition (HAR) is finding increasing use
[1–3]. Recognizing human behavior accurately from sensor data in real-time is crucial
for delivering individualized and contextualized support. Recent years have seen encour-
aging results from deep learning models in HAR, since they can automatically generate
discriminative characteristics from raw sensor data.

Owing to their different strengths in capturing temporal and spatial correlations,
deep learning architectures such as convolutional neural networks (CNN) [6] and long
short-term memory (LSTM) [4] have been extensively used. However, there are limits
to using either CNN or LSTM models. While CNN models are more inclined towards
spatial data than temporal dynamics, LSTM models have difficulty capturing long-term
relationships.
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In order to alleviate the existing limitations, we offer a technique to improve HAR
performance by applying a time-distributedCNN-LSTMmodel to sensor data. To extract
both temporal and spatial characteristics from sensor input, the temporally distributed
CNN-LSTM network associates the improvements of CNN and LSTM architectures. To
better recognize activity patterns across time, the proposedmodel uses a time-distributed
LSTM to capture the sequential dependencies in the data. However, themodel can gather
important information across several sensor channels since the CNN layers focus on
extracting spatial characteristics from sensor input.

The aim of this study is to assess the effectiveness of the proposed time-distributed
CNN-LSTM model in enhancing HAR, relative to the conventional CNN and LSTM
models. We test the model’s efficiency using publically available datasets. We expect the
suggested technique to greatly enhance the accuracy and reliability of human activity
detection from sensor data by harnessing the combined strength of CNN and LSTM
architectures.

The remainder of the paper is structured as follows: In Sect. 2, we examine relevant
work in the area of sensor data and the limits of existing methods. The proposed tem-
porally distributed CNN-LSTM model is described in depth, including its architecture
and training method, in Sect. 3. The experimental design, including datasets, measures
for success, and implementation specifics, is presented in Sect. 4. The research finishes
with Sect. 5, in which the contributions are summarized.

2 Related Works

There has been a lot of work done on HAR. Researchers have investigated a wide range
of approaches to improve the robustness and precision of action recognition systems.
Here, we summarize recent research that has improved HAR using sensor data.

Representational analysis of neural networks for HAR using transfer learning is
described by An et al. [1]. To compare and contrast the neural network representations
learned for various activity identification tasks, they proposed a transfer learning strategy.
The results show that the suggested strategy is useful for increasing recognition accuracy
with little additional training time.

Ismail et al. [2] offer AUTO-HAR, an automated CNN architecture design-
based HAR system. They present a system that mechanically generates an activity-
recognition-optimized CNN structure. The recognition performance is enhanced due to
the framework’s excellent accuracy and flexibility across datasets.

A storyline evaluation of HAR in an AI frame is provided by Gupta et al. [4].
This study compiles and assesses many techniques, equipment, and datasets that have
been requested for the problem of human activity identification. It gives an overview
of the state-of-the-art techniques and talks about the difficulties and potential future
developments in this area.

Gupta et al. [6] offer a method for HAR based on deep learning and the informa-
tion gathered from wearable sensors. In particular, convolutional and recurrent neural
networks, two types of deep learning models, are investigated for their potential. Find-
ings show that the suggested method is efficient in obtaining high accuracy for activity
recognition.
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A transfer learning strategy for humanbehaviors employing a cascade neural network
architecture is proposed by Du et al. [11]. The approach takes the lessons acquired from
one activity recognition job and applies them to another similar one. This research shows
that the cascade neural network design is superior at identifying commonalities across
different types of motion.

Wang et al. [13] provide a comprehensive overview of deep learning for HAR based
on sensor data. Their work summarizes many deep learning models and approaches
that have been applied to the problem of activity recognition. It reviews the previous
developments and talks about the difficulties and potential future paths.

ForHARusingwearable sensors, CNN is proposed byRueda et al. [14]. The research
probes several CNNdesigns and delves into themerging of sensor data fromvarious parts
of the body. Findings prove that CNN can reliably identify actions from data collected
by sensors worn on the body.

Amulti-layer parallel LSTMnetwork forHARusing smartphone sensors is presented
byYu et al. [15]. In order to extract both three-dimensional and sequential characteristics
from sensor input, the network design makes use of parallel LSTM layers. The exper-
imental findings demonstrate the effectiveness of the proposed network in performing
activity recognition tasks. A few other methods are described in [15–17].

3 The Proposed Method

The block diagram of the proposed method for improving human activity identification
using a temporally distributed CNN-LSTM model using sensor data is shown in Fig. 1.
Each component of the block diagram is described here.

3.1 Input Dataset

The study uses twodatasets, namelyUCI-Sensor [2] andOpportunity-Sensor [5], as input
data. These datasets contain sensor readings captured during various human activities.

3.2 Data Pre-processing

The input data undergoes pre-processing steps, including null removal and normaliza-
tion. Null removal involves handling missing or incomplete data, while normalization
ensures that the data is scaled and standardized for better model performance.

3.3 Time Distributed Frame Conversion

The pre-processed data is then converted into time-distributed frames. This step involves
splitting the data into smaller frames based on a specific time step and the total number
of sensor channels. This enables the model to capture temporal dynamics and extract
features from the data.
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Input Dataset 
UCI-Sensor and Opportunity-Sensor

Data Pre-Processing 
Null removal, and normalization

Time Distributed Frame Conversion 
Time Step and Total Channel

Time Distributed CNN Layers 

LSTM Layers 

Training/Testing 
Adam, Categorical Cross Entropy

Evaluation 
Accuracy, Loss

Fig. 1. Block diagram of the proposed time distributed CNN-LSTM model.

3.4 Time Distributed CNN Layers

Convolutional neural network (CNN) layers play a crucial role in handling the time-
distributed frames. These CNN layers are designed to enable the model to identify
significant patterns and structures by extracting spatial attributes from the input sensor
data. A typical convolutional layer consists of numerous convolution kernels or filters.

Let us designate the number of convolution kernels as K. Each individual kernel
is tasked with capturing distinct features, thereby generating a corresponding feature
matrix. When employing K convolution kernels, the convolutional operation’s output
would consist of K feature matrices, which can be illustrated as:

Zk = f(WK*X + b) (1)

In this given context, let X denote the input data with dimensions m × n. The K th
convolution kernelwith dimensions k1 × k2 is represented byWK , and the bias is denoted
by ‘b’. The convolution operation is depicted by ‘ ∗ ‘. The dimension of the K th feature
matrix Zk depends on the chosen stride and padding method during the convolution
operation. For instance, when using a stride of (1,1) and no padding, the size of Zk

becomes (m − k1 + 1) × (n − k2 + 1). The function f signifies the selected nonlinear
activation function, applied to the output of the convolutional layer. Common activation
functions include sigmoid, tanh, and ReLU.
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3.5 LSTM Layers

The layers get the results from the CNN layers. Temporal dependencies in the data may
be captured and learned by the LSTM layers. The network’s ability to learn and anticipate
future activity sequences is greatly enhanced by the addition of LSTM layers. LSTM
utilizes three gates to manage the information flow within the network. The forget gate
( ft) regulates the extent to which the previous state (ct − 1) is preserved. The input
gate (it) decides whether the current input should be employed to update the LSTM’s
information. The output gate (ot) dictates the specific segments of the current cell state
that should be conveyed to the subsequent layer for further iteration.

ft = σ(W (f )xt + V (f )ht − 1 + bf ) (2)

it = σ(W (i)xt + V (i)ht − 1 + bi) (3)

ot = σ(W (o)xt + V (o)ht − 1 + bo) (4)

ct = ft ⊗ ct − 1 + it ⊗ tanh(W (c)xt + V (c)ht − 1 + bc) (5)

ht = ot ⊗ tanh(ct) (6)

Here, xt represents the input data fed into the memory cell during training, while ht
signifies the output within each cell. Additionally,W, V, and b denote the weight matrix
and biases correspondingly. The function σ refers to the sigmoid activation, which gov-
erns the significance of the message being propagated, and ⊗ indicates the dot product
operation.

3.6 Training and Testing

Loss function “categorical cross-entropy” and “Adam” as an optimizer are used during
training and testing. During training, the model uses the annotated data to fine-tune its
settings and becomes better at identifying people at work.

3.7 Evaluation

Metrics like accuracy and loss are used to assess the trained model’s performance.
The accuracy and loss metrics gauge the model’s effectiveness in categorizing human
behaviors by measuring its precision and accuracy, respectively. The model’s overall
performance and its capacity to reliably distinguish various actions may be depicted
from these assessment indicators.

4 Experimental Results and Discussion

4.1 UCI Sensor Dataset [2] Results

Six basic human activities—walking, sitting, standing, laying down, walking upstairs
and downstairs are represented in the UCI-HAR [2] machine learning repository dataset.
The information was collected from 30 people (aged 19 to 48) using an Android mobile
device (Galaxy S2) equipped with inertial sensors. This dataset also includes transitions
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between other types of stationary postures, such as standing to sit, sitting to stand, lying
to sit, laying to stand, and standing to laying.

The accuracy and loss calculated for each epoch for the proposedCNN-LSTMmodel
are shown in Fig. 2. The confusion matrix for the proposed method is shown in Fig. 3
for six activities, and classification report is shown in Fig. 4 for the UCI-Sensor dataset.
A comparison with the state of the art [1, 2, 4, 6], and baseline CNN and LSTM models
is shown in Table 1. From this comparative analysis, one can conclude that the proposed
model performs better.

Fig. 2. Accuracy-loss plot for the proposed CNN-LSTM model.

Fig. 3. Confusion matrix for the proposed CNN-LSTM model.
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Fig. 4. Classification report for the proposed CNN-LSTM model.

Table 1. UCI-sensor dataset comparative analysis.

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Time-Series CNN [1] 93.09 91.10 92.10 92.10

Parallel LSTM [2] 94.34 93.86 93.34 93.80

Feature Learning CNN [4] 67.51 66.80 66.78 67.35

Auto-Har [6] 94.80 94.65 94.70 95

Baseline CNN 74 75 73 73

Baseline LSTM 43 43 42 38

Time Distributed CNN-LSTM 96 96 96 96

4.2 OPPORTUNITY Sensor Dataset Results

Standing, laying down, walking, and navigating the stairwell are only some of the six
basic human actions included in theOpportunity [5]machine learning repository dataset.
Thirty people, ranging in age from 19 to 48, were surveyed using Android smartphones
(Samsung Galaxy S II) equipped with inertial sensors. This dataset also includes transi-
tions between other static postures, such as sitting, standing, lying, laying, sitting, lying,
and standing.

The accuracy and loss calculated for each epoch for the proposedCNN-LSTMmodel
are shown in Fig. 5. The confusion matrix for the proposed method is shown in Fig. 6
for six activities and classification report is shown in Fig. 7 for OPPORTUNITY-Sensor
dataset. A comparison with the state of the art [11, 13–15], and baseline CNN and LSTM
models is shown in Table 2. From this comparative analysis, one can conclude that the
proposed model performs better.
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Fig. 5. Accuracy-loss plot for the proposed CNN-LSTM model.

Fig. 6. Confusion matrix for the proposed CNN-LSTM model.

Fig. 7. Classification report for the proposed CNN-LSTM model.
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Table 2. Opportunity dataset comparative analysis.

Model Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Hybrid M [11] 46.68 46.75 46.70 47

b-LSTM-S [13] 92.70 92.45 92.10 92.90

InnoHAR [14] 94.60 94.20 94.20 94.80

CNN [15] 93.70 93.70 93.70 93.70

CNN 73 74 72 72

LSTM 38 34 35 27

Time Distributed CNN-LSTM 97 97 97 97

5 Conclusions

This research shows that a time-distributed CNN-LSTMmodel using sensor data signif-
icantly improves the performance of human activity recognition. The proposed model
outperforms baseline CNN and LSTM, and other existing models, as shown by experi-
mental results on theUCI-Sensor dataset and theOpportunity-Sensor dataset. The tempo-
rally distributed CNN-LSTMmodel achieved 97% accuracy for the Opportunity-Sensor
dataset and 96% accuracy for the UCI-Sensor dataset across the board. These results
demonstrate the value of integrating CNN and LSTM architectures to better capture
temporal and spatial characteristics, which in turn enhances the accuracy and reliabil-
ity of human activity classification from sensor data. Improving the effectiveness and
scalability of the proposed model may require more investigation into broadening the
assessment to other datasets and investigating optimization strategies.

References

1. An, S., Bhat, G., Gumussoy, S., Ogras, U.: Transfer learning for human activity recognition
using representational analysis of neural networks. ACM Transactions on Computing for
Healthcare 4(1), 1–21 (2023)

2. Ismail, W.N., Alsalamah, H.A., Hassan, M.M., Mohamed, E.: AUTO-HAR: An adaptive
human activity recognition framework using an automated CNN architecture design. Heliyon
9(2), e13636 (2023). https://doi.org/10.1016/j.heliyon.2023.e13636

3. Nigam, S., Singh, R., Misra, A.K.: A review of computational approaches for human behavior
detection. Archives of Computational Methods in Engineering 26, 831–863 (2019)

4. Gupta, N., Gupta, S.K., Pathak, R.K., Jain, V., Rashidi, P., Suri, J.S.: Human activity recogni-
tion in artificial intelligence framework: a narrative review.Artif. Intell. Rev.55(6), 4755–4808
(2022)

5. Ciliberto, M., Fortes Rey, V., Calatroni, A., Lukowicz, P., Roggen, D.: Opportunity++: A
multimodal dataset for video- andwearable, object, and ambient sensors-based human activity
recognition. Frontiers in Computer Science 3, 1–7 (2021). https://doi.org/10.3389/fcomp.
2021.792065

6. Gupta, S.: Deep learning based human activity recognition (HAR) using wearable sensor
data. Int. J. Info. Manage. Data Insights 1(2), 100046 (2021). https://doi.org/10.1016/j.jjimei.
2021.100046

https://doi.org/10.1016/j.heliyon.2023.e13636
https://doi.org/10.3389/fcomp.2021.792065
https://doi.org/10.1016/j.jjimei.2021.100046


136 G. Pareek et al.

7. Lv, T., Wang, X., Jin, L., Xiao, Y., Song, M.: Margin-based deep learning networks for human
activity recognition. Sensors 20(7), 1871 (2020)

8. Cruciani, F., et al.: Feature learning for human activity recognition using convolutional neural
networks: a case study for inertial measurement unit and audio data. CCF Trans. Pervasive
Comp. Interac. 2(1), 18–32 (2020)

9. Shuvo, M.M.H., Ahmed, N., Nouduri, K., Palaniappan, K.: A hybrid approach for human
activity recognition with support vector machine and 1d convolutional neural network. A
hybrid approach for human activity recognition with support vector machine and 1D con-
volutional neural network. In: 2020 IEEE Applied Imagery Pattern Recognition Workshop
(AIPR), pp. 1–5. IEEE, Washington DC, USA (2020)

10. Nematallah, H., Rajan, S.: Comparative study of time series-based human activity recogni-
tion using convolutional neural networks. In: 2020 IEEE International Instrumentation and
Measurement Technology Conference (I2MTC), pp. 1–6. IEEE, Dubrovnik, Croatia (2020)

11. Du, X., Farrahi, K., Niranjan, M.: Transfer learning across human activities using a cas-
cade neural network architecture. In: 2019 ACM International Symposium on Wearable
Computers, pp. 35–44. London United Kingdom (2019)

12. Xu, C., Chai, D., He, J., Zhang, X., Duan, S.: InnoHAR: A deep neural network for complex
human activity recognition. IEEE Access 7, 9893–9902 (2019)

13. Wang, J., Chen, Y., Hao, S., Peng, X., Hu, L.: Deep learning for sensor-based activity
recognition: a survey. Pattern Recogn. Lett. 119, 3–11 (2019)

14. Rueda, F.M., Grzeszick, R., Fink, G.A., Feldhorst, S., Ten Hompel, M.: Convolutional neural
networks for human activity recognition using body-worn sensors. Informatics 5(2), 1–17
(2018)

15. Yu, T., Chen, J., Yan, N., Liu, X.: A multi-layer parallel LSTM network for human activity
recognition with smartphone sensors. In: 2018 10th International conference on wireless
communications and signal processing (WCSP), pp. 1–6. IEEE, Hangzhou, Zhejiang, China
(2018)

16. Hammerla, N.Y., Halloran, S., Plötz, T.: Deep, convolutional, and recurrent models for human
activity recognition using wearables. In: 25th International Joint Conference on Artificial
Intelligence (IJCAI), pp. 1533–1540. New York, USA (2016)

17. Nigam, S., Singh, R., Singh, M.K., Singh, V.K.: Multiview human activity recognition using
uniform rotation invariant local binary patterns. J. Ambient. Intell. Humaniz. Comput. 14(5),
4707–4725 (2023)


	Human Activity Recognition with a Time Distributed Deep Neural Network
	1 Introduction
	2 Related Works
	3 The Proposed Method
	3.1 Input Dataset
	3.2 Data Pre-processing
	3.3 Time Distributed Frame Conversion
	3.4 Time Distributed CNN Layers
	3.5 LSTM Layers
	3.6 Training and Testing
	3.7 Evaluation

	4 Experimental Results and Discussion
	4.1 UCI Sensor Dataset [2] Results
	4.2 OPPORTUNITY Sensor Dataset Results

	5 Conclusions
	References


