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Abstract. Research in cognitive neuroscience has found emotion-
induced distinct cognitive variances between the left and right hemi-
spheres of the brain. In this work, we follow up on this idea by using
Phase-Locking Value (PLV) to investigate the EEG based hemispherical
brain connections for emotion recognition task. Here, PLV features are
extracted for two scenarios: Within-hemisphere and Cross-hemisphere,
which are further selected using maximum relevance-minimum redun-
dancy (mRmR) and chi-square test mechanisms. By making use of
machine learning (ML) classifiers, we have evaluated the results for
dimensional model of emotions through making binary classification
on valence, arousal and dominance scales, across four frequency bands
(theta, alpha, beta and gamma). We achieved the highest accuracies for
gamma band when assessed with mRmR feature selection. KNN classi-
fier is most effective among other ML classifiers at this task, and achieves
the best accuracy of 79.4%, 79.6%, and 79.1% in case of cross-hemisphere
PLVs for valence, arousal, and dominance respectively. Additionally, we
find that cross-hemispherical connections are better at predictions on
emotion recognition than within-hemispherical ones, albeit only slightly.

Keywords: Phase-Locking Value (PLV) · brain functional
connectivity · mRmR · chi-square test

1 Introduction

Emotions play a fundamental role in human communication and interaction,
significantly influencing our behavior, decision-making, and overall well-being.
Accurately detecting and interpreting human emotions has far-reaching applica-
tions, ranging from affective computing to mental health monitoring and human-
robot interaction. Among the various modalities utilized for emotion analysis,
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electroencephalography (EEG) stands out as a promising and non-invasive tech-
nique for capturing the neural correlates of emotions. The use of EEG for emotion
recognition presents numerous advantages; one being, EEG is non-invasive and
relatively affordable, along with a high temporal resolution, allowing for the pre-
cise examination of rapid changes in emotional states. Moreover, EEG is capable
of capturing brain activity associated with both conscious and unconscious emo-
tional processes, offering a comprehensive perspective on emotional experiences.
Unlike emotions captured using physiological signals from Autonomous Nervous
System (like heart rate, galvanic skin response) which are vulnerable to noise,
those captured directly from the Central Nervous System (like the EEG) cap-
ture the expression of emotional experience from its origin. This has sparked
extensive research in the field of EEG-based emotion recognition, aiming to har-
ness the power of EEG signals to advance our understanding of emotions and
pave the way for practical applications [10]. Leveraging machine learning and
pattern recognition techniques has made it possible to translate complex EEG
data into meaningful emotional states, bridging the gap between neuroscience
and technology.

There are two widely accepted emotion models around which such research
has centered around - discrete and dimension. Based on the discrete basic
emotion description approach, emotions can be categorized into six fundamen-
tal emotions: sadness, joy, surprise, anger, disgust, and fear. Alternatively, the
dimension approach enables emotions to be classified based on multiple dimen-
sions (valence, arousal, and dominance). Valence pertains to the level of positiv-
ity or negativity experienced by an individual, while arousal reflects the degree of
emotional excitement or indifference. The dominance dimension encompasses a
spectrum ranging from submissive (lack of control) to dominance (assertiveness).
In practice, emotion recognition predominantly relies on the dimension app-
roach due to its simplicity in comparison to the detailed description of discrete
basic emotions [13], which also allows for a quantitative analysis. In this work,
our investigations explore the latter. Emotion recognition from EEG involves
extracting relevant time or frequency domain feature components in response
to stimuli evoking different emotions. However, a common limitation of existing
methods is the lack of spatial correlation between EEG electrodes in univariate
feature extraction. EEG brain network is a highly valuable approach for exam-
ining EEG signals, wherein each EEG channel serves as a node and the connec-
tions between nodes are referred to as edges. The concept of brain connectivity
encompasses functional connectivity and effective connectivity [1,2]. Moreover,
findings in cognitive neuroscience have provided evidence for the structural and
functional dissimilarities between the brain hemispheres [5].

To address this limitation and leverage hemispherical functional brain con-
nections for emotion recognition, the phase locking value (PLV) method [9] has
been utilized in our work which enables the investigation of task-induced changes
in long-range neural activity synchronization in EEG data.

Based on this, we investigate the connections both within-hemisphere, and
cross-hemisphere. Therefore, this paper proposes an EEG emotion recognition
scheme based on significant Phase Locking Value (PLV) features extracted from
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Fig. 1. Block diagram of our proposed method

hemispherical brain regions in the EEG data acquired as part of DEAP dataset
[7], to understand the functional connections underlying within same hemisphere
and cross hemisphere. By investigating performance of various machine learning
models in being able to recognize the human emotions from EEG signals, this
work throws light on which rhythmic EEG bands (alpha, beta, theta, gamma,
all), and hemispherical brain connections (within or cross) are most efficient and
responsive to emotions to measure the emotional state.

2 Related Work

There have been many studies conducted on using DEAP dataset for emotion
recognition. Wang et al. (2018) [14] used an EEG specific 3-D CNN architecture
to extract spatio-temporal emotional features, which are used for classification.
Chen et al. (2015) [4] used connectivity features representation for valence and
arousal classification.

Current findings in cognitive neuroscience have provided evidence for the
structural and functional dissimilarities between the brain hemispheres [5].
Zheng et al. (2015) [17] conducted an investigation on emotional cognitive char-
acteristics induced by emotional stimuli, revealing distinct cognitive variances
between the left and right hemispheres. The study indicated that the right hemi-
sphere exhibits enhanced sensitivity towards negative emotions. Similarly, Li et
al. (2021) [11] employed the calculation of differential entropy between pairs
of EEG channels positioned symmetrically in the two hemispheres, and used
bi-hemisphere domain adversarial neural network to learn emotional features
distinctively from each hemisphere.

Consequently, the analysis of EEG signals in both the left and right hemi-
spheres holds immense significance in advancing emotional recognition tech-
niques. Following this, Zhang et al. (2022) [16] focused on the asymmetry of the
brain’s hemispheres and employed cross-frequency Granger causality analysis to
extract relevant features from both the left and right hemispheres, highlight-
ing the significance of considering functional connectivity between hemispheres
and leveraging cross-frequency interactions to improve the performance of EEG-
based emotion recognition systems.
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Fig. 2. 32 electrode positions in the international 10-20 system; Selected electrodes
from each hemisphere for PLV features: left (in green color) and right (in blue color)
(Color figure online)

Wang et al. (2019) [15] used Phase-Locking Value (PLV), to extract informa-
tion about functional connections along with the spatial information of electrodes
and brain regions.

3 Proposed Method

3.1 Dataset Description

The DEAP (Database for Emotion Analysis using Physiological Signals) dataset
[7] consists of data from 32 participants, who were exposed to 40 one-minute
video clips with varying emotional content. These video clips were carefully
selected to elicit different emotional states.

While the EEG signal is recorded at 512 Hz, it is down-sampled to 128 Hz
sampling frequency in this work. Although the videos were of one minute, record-
ing was started 3 s prior, resulting in recordings of 63 s. Therefore, data of dimen-
sion 32 × 40 × 32 × 8064 (participants × videos × channels × EEG sampling
points) was recorded.

At the end of each trial, the participants self-reported ratings about their
emotional levels in the form of valence, arousal, dominance and liking and famil-
iarity. Each of these scales spans from a low value of one to a high value of
nine. To create binary-classification tasks, the scales are divided into two cate-
gories. Each of valence-arousal-dominance is categorized as high valence-arousal-
dominance (ranging from five to nine) and low valence-arousal-dominance (rang-
ing from one to five) based on the respective scales.

A block diagram depicting our proposed method is shown in Fig. 1, while
Algorithms 1 and 2 depict our proposed approach.

3.2 Data Preprocessing

Preprocessing involved several steps to enhance the quality and extract relevant
information from the recorded signals, which are described as follows.
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Algorithm 1. Emotion Recognition: Preprocessing
1: procedure Preprocessing(Data)
2: for each subject in Subjects do
3: for each video in Videos do
4: for each signal X from EEG electrode do
5: Perform z-score normalization based baseline removal
6: Perform wavelet-based multiscale PCA
7: for each band in α, β, θ, γ, all do
8: Apply bandpass filtering to decompose signals into band

Algorithm 2. Emotion Recognition: Feature Extraction and Selection
1: procedure FeatureExtractionAndSelection(Preprocessed Data)
2: for each subject in Subjects do
3: for each video in Videos do
4: for each band in α, β, θ, γ, all do
5: for each video segment 1:10 do
6: Compute PLV features for within-hemisphere
7: Compute PLV features for cross-hemisphere

PLV =

∣
∣
∣
∣
∣

1

N

N∑

n=1

exp(iΔφn)

∣
∣
∣
∣
∣

8: for each band in α, β, θ, γ, all do
9: Select 50 most significant features using mRmR and chi-square

10: for each hemisphere in within hemisphere, cross hemisphere do
11: for each set of 50 significant features do
12: for each dim in Valence, Arousal, Dominance do
13: Apply machine learning classifiers on the data

Firstly, we used Z-score normalization, which helps eliminate the individual
variations and biases present in the recorded signals. Since the recording was
started 3 s before the actual video, the signal in the first three seconds is used for
z-score based baseline removal. Assuming x(i) is the input signal, it is performed
by first calculating the mean (μ) and standard deviation (σ) of the signal upto
the first three seconds (N = 3× 128), and then normalizing as shown in Eq. 1.

xnormalized(i) =
x(i) − μ

σ
(1)

We then used Wavelet-based multiscale PCA [3] to remove noise from the
normalized signal. Firstly, a covariance matrix Cj of the wavelet coefficients
is computed as shown in Eq. 2. Top eigenvectors with highest eigenvalues are
chosen after eigenvalue decomposition. However, in this work, we selected the
whole set of the principle components, instead of taking a subset.
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Fig. 3. PLV features extracted for within-hemisphere (top) and cross-hemisphere
(below) for first subject and first trial

Cj =
1
N

N∑

n=1

Wcoeff(n, j) · Wcoeff(n, j)T (2)

Finally, the normalized EEG signal is projected onto the selected eigenvectors
Vij (ith eigenvalue at scale j) at each scale to obtain the wavelet-based multiscale
PCA features, as shown in Eq. 3.

PCAij(n) = xnormalized(n) · Vij (3)

After applying these steps, bandpass filtering is performed on the EEG signals
by decomposing them into α (8–15 Hz), β (16–30 Hz), θ (4–7 Hz), and γ (30–
45 Hz) bands.

3.3 Feature Extraction

The extraction of Phase-Locking-Value (PLV) features from each EEG band
- α (alpha), β (beta), θ (theta), and γ (gamma) bands, involves a series of
steps to quantify phase coupling between different electrode pairs within each
frequency band. The electrodes selected from each hemisphere for extraction of
these features are shown in Fig. 2, which include 14 electrodes from each of the
left and right hemispheres.

The extraction process involves the following steps. Firstly, we segment the
preprocessed EEG signals into 10 time windows of 6 s each. Next, for each seg-
ment, the EEG signals within the selected frequency band are processed using
the Hilbert transform H(x(t)), to obtain the instantaneous phase information,
as shown in Eq. 4.

φ(t) = arctan
(

H(x(t))
x(t)

)
(4)
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Table 1. Classifier Details

Classifier Algorithm Type Parameters and Details

K-Nearest
Neighbors

Supervised learning
(Instance-based)

No. of neighbors (k) = 1,
Distance Metric: Euclidean

Decision Tree Supervised learning
(Tree-based)

Max category levels: 10,
Max no. of decision splits: size(X, 1)–1,
Min Leaf Size: 1, Min Parent Size: 10

Support
Vector Machine

Supervised learning
(Kernel-based)

Kernel Function: linear,
Kernel Scale: 1

Random Forest Ensemble learning
(Bagging)

Base Estimator: DT,
K-fold: 10

Adaboost Ensemble learning
(Boosting)

Base Estimator: DT,
K-fold: 10

Once the instantaneous phase information is obtained, pairwise phase dif-
ference value is computed for each electrode pair within the frequency band of
interest. Finally, PLV for each electrode pair within the frequency band is cal-
culated by averaging of the absolute value of the complex exponential of the
pairwise phase differences (Δφn) over the entire segment, as shown in Eq. 5. An
example of PLV features extracted for within-hemisphere and cross-hemisphere
is shown in Fig. 3.

PLV =

∣∣∣∣∣
1
N

N∑

n=1

exp(iΔφn)

∣∣∣∣∣ (5)

In our proposed approach, we calculate PLVs within each frequency band,
for both within-hemisphere and cross-hemisphere, which is described as follows.
The 28 electrodes left after removal of the four middle electrodes (Fz, Cz, Pz,
and Oz) are symmetrical. To investigate the role of hemispherical functional
brain connections, we compute PLVs on these electrode pairs through two kinds
of combinations: (1) within-hemisphere (wherein, electrodes in each hemisphere
form a pair with every other electrode in the same hemisphere), and (2) cross-
hemisphere (wherein, electrodes in one hemisphere form a pair with each elec-
trode from the other hemisphere). While the former reflects the connections
in each hemisphere, the latter reflects the connections across hemispheres and
between the left and right hemispheres.

Since there are 14 EEG electrode nodes in each hemisphere, the number of
effective PLV values in the case of cross-hemisphere is 14 * 14 = 196, while in the
case of within-hemisphere is 14 * 14 * 2 = 392.
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Table 2. Accuracy on the DEAP dataset for Valence Classification using features from
Within and Cross Hemisphere

Within-hemisphere

Model Theta Alpha Beta Gamma All

all mRmR chi all mRmR chi all mRmR chi all mRmR chi all mRmR chi

KNN 44.7 56.2 56.4 44.7 59.3 57.7 44.7 70.7 69.5 44.7 78.1 74.7 44.7 66.4 63.4

±0.0 ±1.0 ±0.7 ±0.0 ±0.8 ±1.2 ±0.0 ±1.4 ±1.2 ±0.0 ±1.5 ±0.5 ±0.0 ±1.3 ±1.9

DT 55.3 54.9 54.7 55.3 56.7 55.0 55.3 63.8 63.1 55.3 66.7 66.1 55.3 60.9 60.6

±0.0 ±1.4 ±0.9 ±0.0 ±1.2 ±1.6 ±0.0 ±0.8 ±1.8 ±0.0 ±1.4 ±1.2 ±0.0 ±1.6 ±1.1

SVM 55.3 55.2 55.3 55.3 56.4 55.2 55.3 56.7 57.4 55.3 58.9 58.4 55.3 57.9 55.2

±0.0 ±0.2 ±0.0 ±0.0 ±1.1 ±0.5 ±0.0 ±1.1 ±0.9 ±0.0 ±1.0 ±0.9 ±0.0 ±1.0 ±0.7

RF 55.3 61.6 61.5 55.3 64.0 62.6 55.3 72.1 71.5 55.3 77.0 76.2 55.3 69.6 68.1

±0.0 ±1.1 ±1.0 ±0.0 ±1.0 ±0.8 ±0.0 ±1.2 ±0.9 ±0.0 ±1.5 ±1.3 ±0.0 ±1.2 ±1.3

AB 55.3 59.0 58.7 55.3 59.8 59.3 55.3 65.7 66.4 55.3 67.8 67.0 55.3 64.1 63.3

±0.0 ±0.8 ±1.5 ±0.0 ±1.1 ±1.0 ±0.0 ±0.9 ±1.0 ±0.0 ±1.2 ±1.0 ±0.0 ±1.3 ±1.0

Cross-hemisphere

KNN 50.9 56.1 56.9 51.4 60.2 59.8 51.3 73.2 72.9 50.4 79.4 78.6 50.6 66.8 66.6

±1.6 ±1.1 ±1.4 ±1.3 ±0.8 ±1.1 ±1.8 ±1.1 ±0.9 ±1.5 ±1.0 ±1.1 ±1.5 ±1.1 ±1.0

DT 51.0 54.6 55.0 52.0 56.6 55.3 51.5 64.7 63.7 51.0 67.6 68.1 51.4 61.0 61.2

±1.0 ±1.1 ±1.1 ±1.1 ±1.8 ±1.6 ±1.8 ±1.6 ±1.8 ±1.1 ±1.1 ±1.2 ±1.4 ±1.9 ±2.0

SVM 55.3 57.4 57.6 55.3 57.4 57.7 55.3 60.7 59.5 55.3 61.0 60.6 55.3 58.2 58.3

±0.0 ±1.2 ±1.0 ±0.0 ±1.2 ±0.8 ±0.0 ±0.9 ±1.2 ±0.0 ±0.8 ±1.2 ±0.0 ±1.0 ±1.1

RF 50.9 61.8 62.2 51.3 64.3 64.1 51.3 73.9 73.1 50.4 77.7 77.8 50.6 70.3 69.9

±1.6 ±0.7 ±0.8 ±1.3 ±0.6 ±1.2 ±1.8 ±0.8 ±0.9 ±1.5 ±1.3 ±1.1 ±1.5 ±1.2 ±0.6

AB 54.7 59.5 59.6 55.0 61.1 61.1 55.1 67.7 67.1 55.7 68.9 68.8 55.7 64.4 65.0

±1.0 ±1.3 ±1.2 ±0.4 ±0.6 ±1.0 ±0.9 ±1.2 ±1.9 ±0.9 ±1.5 ±1.1 ±1.1 ±1.1 ±0.7

3.4 Feature Selection

We select relevant PLV features for classification using two feature selection
methods - mRmR (maximum Relevance-minimum Redundancy) and chi-square,
explained as follows. The mRmR algorithm [12] aims to select features that
have a high relevance to the target variable (e.g., emotion classification) while
minimizing redundancy among selected features, as shown for a specific feature
Fi in Eq. 6.

mRmR(Fi) = Relevance(Fi) − α × Redundancy(Fi) (6)

We also use chi-square statistic [6] to select the features with the highest
statistical significance, with respect to the target variable. It’s calculation for
a specific feature Fi with c classes in the target variable and observed Oij and
expected frequencies Eij is shown in Eq. 7. We use these methods to identify the
fifty most relevant and discriminative PLV features for our task.

χ2(Fi) =
c∑

j=1

(Oij − Eij)2

Eij
(7)
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Table 3. Accuracy on the DEAP dataset for Arousal Classification using features from
Within and Cross Hemisphere

Within-hemisphere

Model Theta Alpha Beta Gamma All

all mRmR chi all mRmR chi all mRmR chi all mRmR chi all mRmR chi

KNN 42.4 60.3 60.0 42.4 63.1 61.4 42.4 72.9 71.2 42.4 79.0 77.2 42.4 68.4 67.1

±0.0 ±1.0 ±1.7 ±0.0 ±1.5 ±1.7 ±0.0 ±1.2 ±1.3 ±0.0 ±1.4 ±1.2 ±0.0 ±1.0 ±1.0

DT 57.6 57.9 57.9 57.6 59.8 59.0 57.6 64.1 64.6 57.6 67.5 66.5 57.6 62.8 62.5

±0.0 ±1.2 ±1.4 ±0.0 ±1.8 ±1.2 ±0.0 ±1.0 ±1.6 ±0.0 ±1.2 ±1.5 ±0.0 ±1.1 ±1.4

SVM 57.6 62.5 62.6 57.6 64.0 63.0 57.6 64.2 62.0 57.6 63.9 62.7 57.6 64.1 63.1

±0.0 ±1.5 ±1.0 ±0.0 ±1.5 ±0.6 ±0.0 ±1.0 ±1.1 ±0.0 ±1.2 ±2.0 ±0.0 ±1.0 ±1.1

RF 57.6 65.3 65.0 57.6 67.6 67.3 57.6 74.6 73.8 57.6 78.0 76.6 57.6 71.7 70.9

±0.0 ±1.0 ±1.1 ±0.0 ±1.2 ±1.5 ±0.0 ±0.8 ±1.4 ±0.0 ±1.6 ±1.4 ±0.0 ±1.0 ±0.6

AB 57.6 63.7 63.1 57.6 64.4 64.0 57.6 67.3 66.7 57.6 69.1 68.2 57.6 65.9 65.7

±0.0 ±1.7 ±1.5 ±0.0 ±1.5 ±1.1 ±0.0 ±1.2 ±1.2 ±0.0 ±1.3 ±1.0 ±0.0 ±1.5 ±1.1

Cross-hemisphere

KNN 51.0 59.7 60.2 51.9 63.0 62.6 51.9 75.0 73.8 51.5 79.6 79.6 51.1 68.7 68.8

±1.2 ±1.4 ±1.2 ±1.3 ±2.0 ±1.1 ±1.4 ±0.8 ±1.1 ±1.1 ±1.2 ±1.5 ±1.4 ±1.0 ±0.8

DT 52.5 57.3 58.2 52.1 59.1 59.2 52.8 64.3 65.3 52.0 67.9 67.5 51.7 63.2 63.2

±1.4 ±1.3 ±1.4 ±1.5 ±1.7 ±1.4 ±0.8 ±1.9 ±1.2 ±0.9 ±1.8 ±1.2 ±1.1 ±1.4 ±1.1

SVM 57.6 63.1 63.2 57.6 64.2 64.2 57.6 64.5 64.6 57.6 64.8 64.7 57.6 63.8 64.1

±0.0 ±1.2 ±0.8 ±0.0 ±1.0 ±1.1 ±0.0 ±1.4 ±1.2 ±0.0 ±1.2 ±1.0 ±0.0 ±1.4 ±1.1

RF 51.0 65.5 66.1 51.9 67.3 67.2 51.9 75.4 75.1 51.6 78.4 78.2 51.0 72.2 71.7

±1.1 ±0.9 ±1.4 ±1.3 ±1.3 ±1.6 ±1.3 ±1.5 ±1.5 ±1.2 ±1.3 ±1.3 ±1.4 ±0.8 ±0.9

AB 58.2 63.3 63.2 57.9 64.6 64.1 58.0 68.2 67.9 57.9 69.2 69.3 58.1 66.2 66.7

±0.4 ±1.2 ±1.5 ±0.8 ±1.5 ±1.2 ±0.8 ±1.5 ±1.2 ±0.4 ±1.2 ±1.1 ±0.9 ±1.2 ±1.3

3.5 Classification

PLV features are extracted from each band, for each of within and cross-
hemisphere. Fifty most significant features are selected through mRmR and
Chi-squared methods, on which classification is performed. We employed several
popular machine learning classifiers to learn the underlying patterns and rela-
tionship, namely K-Nearest Neighbors (KNN), Decision Tree, Support Vector
Machines (SVM), Random Forest, and Adaboost. The technical specifications
of these models are shown in Table 1. The trained models were then evaluated
using cross-validation for 10 folds. The mean of accuracies obtained and their
standard deviation are used as an evaluation metric to assess the performance
of the models and corresponding approaches on emotion recognition task.

4 Results and Discussion

Table 2 shows the accuracy for valence classification from within and cross hemi-
spheres. We observe that the approach involving features from the Gamma band,
selected through the mRmR method, using the KNN classifier perform best at
valence classification. Additionally, PLV features from cross-hemisphere seem to
be performing better (accuracy of 79.4%) than those from within-hemisphere



124 Ruchilekha et al.

Table 4. Accuracy on the DEAP dataset for Dominance Classification using features
from Within and Cross Hemisphere

Within-hemisphere

Model Theta Alpha Beta Gamma All

all mRmR chi all mRmR chi all mRmR chi all mRmR chi all mRmR chi

KNN 39.1 61.5 60.0 39.1 63.0 62.8 39.1 72.9 71.5 39.1 77.1 76.2 39.1 69.1 67.0

±0.0 ±1.5 ±1.3 ±0.0 ±1.2 ±1.0 ±0.0 ±0.8 ±1.2 ±0.0 ±0.9 ±1.0 ±0.0 ±1.4 ±1.3

DT 60.9 59.3 59.3 60.9 60.4 59.6 60.9 65.0 65.7 60.9 67.5 67.4 60.9 63.6 62.8

±0.0 ±0.8 ±1.5 ±0.0 ±1.6 ±1.3 ±0.0 ±1.1 ±1.4 ±0.0 ±1.0 ±1.4 ±0.0 ±1.7 ±0.8

SVM 60.9 64.0 61.2 60.9 64.5 62.9 60.9 65.3 62.9 60.9 64.7 61.6 60.9 64.4 64.6

±0.0 ±1.1 ±0.3 ±0.0 ±1.1 ±1.2 ±0.0 ±1.1 ±0.9 ±0.0 ±0.8 ±0.8 ±0.0 ±0.9 ±1.1

RF 60.9 66.0 65.8 60.9 67.6 67.4 60.9 73.8 74.3 60.9 76.6 75.8 60.9 71.4 70.5

±0.0 ±1.7 ±1.1 ±0.0 ±1.9 ±1.6 ±0.0 ±1.4 ±0.9 ±0.0 ±0.9 ±1.1 ±0.0 ±1.1 ±0.9

AB 60.9 63.3 64.0 60.9 64.7 65.0 60.9 67.9 68.3 60.9 69.5 68.2 60.9 67.3 67.0

±0.0 ±1.0 ±1.5 ±0.0 ±0.7 ±1.1 ±0.0 ±1.5 ±1.4 ±0.0 ±1.2 ±1.0 ±0.0 ±1.5 ±1.2

Cross-hemisphere

KNN 52.5 61.2 61.1 52.4 63.1 63.4 53.8 75.6 74.2 53.1 79.1 78.8 53.1 69.3 68.6

±1.4 ±1.2 ±1.1 ±1.7 ±1.1 ±1.0 ±1.5 ±1.1 ±1.2 ±1.5 ±0.6 ±0.9 ±1.8 ±0.9 ±1.3

DT 52.9 60.1 59.8 53.2 60.7 61.1 54.4 66.6 65.6 54.4 69.1 69.1 53.5 64.8 64.4

±1.3 ±2.1 ±1.2 ±1.4 ±1.4 ±1.4 ±1.0 ±1.4 ±1.0 ±1.2 ±1.7 ±1.7 ±1.5 ±0.9 ±0.9

SVM 60.9 65.0 64.9 60.9 65.4 65.2 60.9 66.0 65.5 60.9 65.6 66.0 60.9 65.4 65.2

±0.0 ±0.8 ±1.2 ±0.0 ±1.2 ±1.2 ±0.0 ±0.9 ±1.1 ±0.0 ±1.1 ±1.3 ±0.0 ±0.7 ±1.0

RF 52.5 66.4 66.7 52.4 68.8 68.9 53.8 75.2 74.9 53.1 78.1 78.0 53.1 72.5 72.2

±1.4 ±1.2 ±1.3 ±1.7 ±1.4 ±1.8 ±1.5 ±1.4 ±1.3 ±1.5 ±0.9 ±1.2 ±1.8 ±1.1 ±0.5

AB 60.9 65.2 65.2 60.7 64.8 65.5 60.9 68.8 69.0 60.7 71.2 70.6 60.8 68.1 67.8

±0.2 ±1.4 ±1.1 ±0.6 ±1.1 ±1.3 ±0.3 ±1.1 ±1.6 ±0.5 ±1.1 ±1.3 ±0.3 ±1.2 ±1.3

(accuracy of 78.1%). Table 3 shows the accuracy for arousal classification from
within and cross hemispheres. We observe that the approach involving features
from the Gamma band, selected through the mRmR/Chi-square method, using
the KNN classifier perform best at arousal classification. Additionally, PLV fea-
tures from cross-hemisphere seem to be performing slightly better (accuracy of
79.6%) than those from within-hemisphere (accuracy of 79.0%). Table 4 shows
the accuracy for dominance classification from within and cross hemispheres. We
observe that the approach involving features from the Gamma band, selected
through the mRmR method, using the KNN classifier perform best at domi-
nance classification. Additionally, PLV features from cross-hemisphere seem to
be performing better (accuracy of 79.1%) than those from the within-hemisphere
(accuracy of 77.1%). On comparing our results with the state of arts (Table 5),
we find that our approach performs better with state-of-the-art accuracy.

Overall, the experimental results demonstrate that gamma EEG band is
most relevant for emotion recognition and among machine learning classifiers,
KNN achieves the best performance across all three ratings. Additionally, there
is a minor increment in accuracy when PLV features are acquired from cross-
hemisphere as compared to within-hemisphere.
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Table 5. Comparison with the state of arts

Research Work Accuracy (%)

Valence Arousal Dominance

Chen et al. (2015) [4] 76.2 73.6 –

Wang et al. (2018) [14] 73.3 72.1 –

Wang et al. (2019) [15] 73.3 77.0 79.2

Kumari et al. (2022) [8] 77.5 78.4 79.4

Ours 79.4 79.6 79.1

5 Conclusion

In this paper, we have performed an emotion recognition task based on brain
functional connectivity. Firstly, EEG signals are processed and denoised using
wavelet based multiscale PCA. Then, PLV features are extracted from these
processed signals and further mRmR feature section is done to examine the per-
formance of brain connections demonstrated for within-hemisphere and cross-
hemisphere. The obtained results manifest that gamma band is most effective
and relevant for the evaluation of emotion recognition task. We achieved the best
performance with KNN classifier across three rating dimensions of emotions
(valence, arousal and dominance) for cross-hemisphere connections. Although
there is a very slight difference between both the scenarios, we concluded that
phase information obtained across cross-hemisphere connections is more reli-
able in comparison to same hemisphere one. Besides, as we know the informa-
tion extracted via brain connections requires more and more numbers of EEG
electrodes to enhance the performance of emotion recognition, simultaneously
increases complexity for data acquisition. Thus, we are interested in multivariate
phase synchronisation which improves the estimation of region-to-region source
space connectivity with lesser number of EEG channels while eliminating useless
electrodes. We leave this interesting topic as our future work.
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