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Abstract. MRI imaging is crucial for knee joint analysis in osteoarthri-
tis (OA) diagnosis. The segmentation and thickness estimation of knee
cartilage are vital steps for OA assessment. Most deep learning algo-
rithms typically produce a single segmentation mask or rely on architec-
tural modifications like Dropout to generate multiple outputs. We pro-
pose an alternative approach using Denoising Diffusion Models (DDMs)
to yield multiple variants of segmentation outputs for knee cartilage seg-
mentation and thus offer a mechanism to study predictive uncertainty
in unseen test data. We further propose to integrate sparsity adaptive
losses to supervise the diffusion process to handle intricate knee carti-
lage structures. We could empirically validate that DDM-based models
predict more meaningful uncertainties when compared to Dropout based
mechanisms. We have also quantitatively shown that DDM-based mul-
tiple segmentation generators are resilient to noise and can generalize to
unseen data acquisition setups.

1 Introduction

MRI imaging can capture the structural details of the knee joint highlighting fine
morphological changes better than any other imaging modality [2]. The clinical
diagnostic protocol for Osteoarthritis (OA) is generally carried out by analyzing
MRI scans to delineate the knee cartilages, followed by thickness calculation. The
delineation of knee cartilages is often subjective, due to their resemblance to tis-
sue features surrounding the cartilages. When building segmentation algorithms
for such structures, having a single annotation restricts the learning, leading
to closer mimicking of the available annotation. This also affects the predictive
power of segmentation on unseen data.

Deep learning-based algorithms usually result in a single output segmenta-
tion, which is typically a single or multi-channel softmax output representing
voxel-wise classification posterior probability. If the model has Dropout layers,
using them at test-time results in random masking of the layer’s inputs, offering
an architectural mechanism to obtain variations at the output. We seek to pro-
duce an alternative approach for generating multiple segmentation outputs and
study it in comparison with the Monte Carlo Dropout technique.
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Fig. 1. The outline of our method indicating the integration of the Diff-UNet structure
with the losses we have introduced and our devised STAPLE-based mechanism to
extract variability generated by the model.

Denoising diffusion models (DDM) [5,10,11] are a new generative method
that has emerged as high-quality image generators. They use a learned
parametrized iterative denoising process which is the reverse of a Markovian
diffusion process to yield a ‘sample’, and various inverse problems involving
image restoration and synthesis have been demonstrated building upon the DDM
sampling framework. Specifically, they offer strong sample diversity and faith-
ful mode coverage of the learned data distribution. Both of these are valuable
in generalizing segmentation to unseen data under the aleatoric uncertainty of
training annotations.

Related Work. U-Net based architectures such as nnUNet [6,8] represent
standard baselines in automatic knee cartilage segmentation. Going beyond
architectural adaptability, the need for precise segmentation of certain localized
and sparse structures led to Attention-based transformer models such as Tran-
sUNet [3] which encode strong global context by treating the image features as
sequences. Towards supporting application-specific requirements such as thick-
ness measurements, PCAM [8], introduces a morphologically constrained module
to ensure continuity in the cartilage segmentation.

DDM-based segmentation models [14-16] can generate multiple samples
which are variants of label maps. This is because the input to DDMs is a noised
image, and by changing the additive noise, a slightly different sample is yielded
at the output. By supervising the diffusion model to generate outputs close to
a specified single annotation, we aim to study the characteristics of the gener-
ated multiple outputs with regard to two capabilities: First, handling noisy MRI
scans, Second, handling data acquisition variabilities.

For supervising the diffusion process towards segmentation, we have adopted
the Diff-UNet [16], and build upon it to address the sparse and intricate char-
acteristics of knee cartilage, which exhibits less inter-tissue variability. Our con-
tributions are:
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— a method of leveraging the stochastic capabilities of Diff-UNet to yield mul-
tiple variants of segmentation maps for knee cartilage segmentation, offering
a mechanism to study predictive uncertainty in unseen test data.

— integration of sparsity adaptive losses to supervise the diffusion process, which
has shown quantitative improvement in the segmentation of cartilages in the
presence of noise, and for scans acquired from a different setup.

2 Methods

Diffusion UNet. We adopt a new diffusion-based segmentation model Diff-
UNet, due to its superior tri-fold capabilities: First, Diff-UNet enables volumetric
prediction of the segmentation maps, which is essential to capture the complete
structure of the cartilages and enforce consistency across multiple 2D slices,
which are inherently sparse in appearance. Second, Diff-UNet enables multi-
label prediction of the segmentation maps, which is vital in labeling the different
cartilages which share similar tissue appearances. Diff-UNet enables volumetric
multi-label prediction of segmentation maps (zg) of dimension N xW x H by con-
verting it to multi-channel labels (Xy) through one-hot encoding. The iterative
noising process generates X; and X, at each time step, followed by learning to
denoise X; to X;_1, integrating MRI volume M € R *NXWxH yging bi-phased
integration: concatenating M with X; and employing an additional encoder for
multi-scale feature maps. The architectural flow of Diff-UNet is represented in
Fig. 1.

Third, in Diff-UNet the losses for supervision are enforced on X, predicted
at each time step. This is unlike other diffusion models for segmentation which
usually do not enforce constraints directly on Xo, making the Diff-UNet capable
of precise structural mapping.

Loss Integration (Diff-UNety). The enforcement of losses on the predicted
X, enables the incorporation of additional losses, which is necessary to better
adapt to the sparse knee cartilage structures. We formulate Diff-UNety by the
addition of boundary enforcement loss (Lgp) [7], focal loss (Lpocar), and Haus-
dorff distance-based loss (Lgp) [9], along with the existing Diff-UNet losses:
MSE loss, Dice loss, and BCE loss (Lpss—unet)- Surface losses Lgp, Lyp are
added as both the structures of interest femoral cartilage and tibial cartilage
share an adjacent boundary which is difficult for the model to differentiate the
dilating boundary. In order to mitigate the challenge posed by the class imbal-
ance problem, we incorporate the Lp,cq; loss, which is designed to tackle the
inherent size variation between the tibial, femoral cartilage structures and the
non-cartilage regions within the MRI scan. In Fig. 3 the effect of loss integration
is indicated by the differences in the segmentation output.

Liotal = M (LBD + Lrocal + Lup) + A2 Lpif-UNet (1)

Multiple Generations and Uncertainty Estimation. The stochastic nature
of DDMs enables the generation of multiple segmentation outputs (X¢) while
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Analysis of Cartilage Samples used for STAPLE based Ensemble
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Fig. 2. The top row (a) displays variations in samples from Diff-UNetz and TransUNet.
STAPLE was applied to five samples from each model, and a similarity metric (sensi-
tivity) was calculated between the samples and the STAPLE output. The plots show
that TransUNet samples exhibit minimal variation, while Diff-UNet; samples have a
wider spread with some outliers. The second row provides a clearer visualization of the
variations, with TransUNet showing concentrated variation and Diff-UNet, exhibiting
meaningful spread. The third row illustrates two consecutive slices with a noticeable
abrupt change in GT labels in the right femoral region, where Diff-UNet; displays
more variability in that region.
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the deterministic class of models like TransUNet enables stochastic generations
can be obtained if the Dropout technique is used. While Dropout based uncer-
tainty stems from the change of configuration of the models, the DDM-based
uncertainty highlights the model’s uncertainty about the underlying true data
distribution. Based on these differences, we aim to investigate the following ques-
tions, First, “What are the differences between the samples which are generated
from inherent stochastic models and the Dropout simulated ones?”, Second, “Are
the variations within the samples meaningful and resemble the variations which
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Fig. 3. The top block represents the output of our model compared to the Diff-UNet,
TansUNet, and our model, TransUNet in the cross-dataset setup. S-O implies a model
trained on the SKM dataset and inferred on the OZ dataset. The second block rep-
resents the output of our model compared with TransUNet in two noisy setups. The

blue boxes depict better performance of our model, The pink boxes depict better per-
formance of TransUNet. (Color figure online)
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can naturally occur during manual annotator based segmentations?” To address
these questions, we have proposed the following experiAmental formulation. We
utilized a group of segmentation samples, denoted as X§, which were processed
through the STAPLE [13] algorithm. This allowed us to generate a consensus-
based segmentation mz}sk called F;. This was utilized to measure the similarity
between each sample X} and F, referred to as STAPLEs,,. A higher degree of

similarity between X and F) indicates reduced variability among the samples
produced by the model. These STAPLFE,,, was calculated for both diffusion-
based model and deterministic segmentation models. We have estimated the
Uncertainity from the ensemble of the segmentation samples.

Table 1. Table indicating the performance of our model with the baselines on OZ
dataset.

Model Femoral Cartilage Tibial Cartilage
DSC(%) | ASSD(mm) | DSC(%) ASSD(mm)
nnUNet 89.03 0.255 86.00 0.211
TransUNet 89.31 0.180 84.82 0.227
nnUNet+PCAM | 89.35 0.239 86.11 0.216
Diff-UNet 87.63 0.238 84.44 0.247
Diff-UNet, 88.11 0.210 84.84 0.239
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Table 2. Table indicating the performance of the models in different noisy setups on
OZ dataset.

Model Femoral Cartilage (DSC%) Tibial Cartilage (DSC%)
No Noise | Gaussian Rician No Noise Gaussian Rician
Noise Noise Noise Noise
TransUNet | 89.31 86.63 87.68 84.82 80.67 82.71
Diff-UNety, | 88.11 86.68 87.79 84.84 83.59 84.26

Noise Resilience and Generalisation. The segmentation of sparse cartilage
structures in knee MRI becomes more challenging when the acquisition is noisy.
To assess the noise resilience capability of the Diff-UNety,, we have simulated
noisy knee MRI scans by introducing Gaussian noise A'(u, 0%) and Rician noise
R(1,0?). The adaptability of the models in different acquisition setups is very
essential for deploying models in practical use cases. To evaluate the generaliz-
ability of Diff-UNety,, we trained it on one dataset and tested its performance on
other datasets (cross-dataset setup). This cross-dataset setup poses higher vari-
ation within the set due to the OZ dataset being DESS and the SKM dataset
being qDESS.

Thickness Estimation. One of the crucial aspects of assessing OA is estimating
the thickness of cartilage. In order to better quantify and visualize the segmen-
tation results in terms of clinically relevant metrics, we have adopted a simple
yet efficient thickness estimation from [12|. This method creates a refined 3D
model, split the mesh into inner and outer components, and computes thickness
using the nearest neighbor method. The thickness maps are visualized through
2D projection.

3 Experimental Setup

Datasets. We have made use of two publicly available datasets knee MRI
datasets OAI ZIB [1] (OZ) and SKM-Tea dataset [4] (SKM). OZ includes 507
3D DESS MR data with a sagittal acquisition plane with a voxel spacing of
0.3645 x 0.3645 x 0.7 mm. SKM has 155 3D knee MRI volumes acquired using a
5-min 3D quantitative double-echo in steady-state (QDESS) sequence. The voxel
spacing is 0.3125 x 0.3125 x 0.8 mm. In order to ensure consistency in OZ data we
have adopted the following standardization protocol. We center crop the Region
Of Interest (ROI) of the volume with a dimension of 256 x 256 x 120, perform
Non-local means filtering, and Normalise intensity levels across volumes. For the
SKM dataset such intra-volume variability doesn’t exists within a volume, so we
have applied only an ROI cropping protocol similar to the OZ dataset. We have
considered training and test split as given within the datasets.

Metrics. Dice Similarity Coefficient (DSC), Average symmetric surface Distance
(ASSD) are adopted for quantitative analysis between predicted and ground
truth. The STAPLEFE,,, is evaluated by calculating the sensitivity between the
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Table 3. Table indicating the performance of the models when tested in a cross-dataset
setup.

Model Femoral Cartilage (DSC %) | Tibial Cartilage (DSC %)
OZ train SKM train OZ train SKM train
SKM test OZ test SKM test OZ test

TransUNet | 73.72 72.50 75.66 74.37

Diff-UNety, | 77.20 72.64 81.51 79.19

samples ()25) and STAPLE output (E;). In order to visually highlight the vari-
ances of the samples we have considered Mean Subtracted STAPLE,,, while
plotting as in Fig. 2.

Implementational Details. We have implemented our methods in the
PyTorch framework. We assigned higher weightage to sparsity and boundary
constraints in the loss function (Lgp, Lrocal, Lrup) where A\; = 2, as compared
t0 Lpiff—vUnet Wwhere Ay = 1. For the model, we have adopted similar parameters
as used in the Diff-UNet implementation [16]. We have compared with our per-
formance with nnUNet [6] TransUNet [3], nnUNet+PCAM |[8], Diff-UNet [16],
Diff-UNety,. For the noisy and generalization case we have compared between
TransUNet and Diff-UNety. The STAPLE-based uncertainty estimation utilized
5 samples per volume. For TransUNet, the Dropout probability is 0.3. We have
introduced noise within the volumes by adding Gaussian and Rician noise with
N(u = 0,02 =0.01) and R( = 0,02 = 0.01) parameters respectively. For the
cross-dataset setup, we have trained the models on OZ dataset and inferred on
SKM dataset and vice-versa.

MR Image GT Femur TransUNet Femur  Diff-UNet, Femur GT Tibia TransUNet Tibia DIff-UNet, Tibia

EAAA oo e)

Fig. 4. The 2D projection of Thickness maps from ground truth(GT), TransUNet and
Diff-UNetr,

4 Results

The Fig. 3 qualitatively shows the effect of the additional losses integrated with
the Diff-UNet. The addition of losses has ensured better consistency within the
femoral and tibial cartilage for Diff-UNety, as highlighted in the first row of
Fig.3 with blue boxes. From Table 1 we can infer that the results of our model
are comparable to the baselines. The mean error thickness values, comparing
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GT with respect to Diff-UNety, and TransUNet femoral cartilage is 0.073 mm &
0.061 mm and tibial cartilage is 0.073 mm & 0.058 mm.

Multiple Segmentation and Uncertainty. From the box plots of Mean sub-
tracted STAPLE,,, for TransUNet and Diff-UNet;, in Fig.2(a), it is clearly
quantifiable that the variance of Diff-UNety is much higher TransUNet. The
median of the box plots of the Diff-UNet, is higher than that of TransUNet for
all the samples. The qualitative visualization of the variations is in Fig. 2(b). In
Fig. 2(c), our model effectively detects the uncertain regions in the left femoral
regions, which were unmarked by annotators in the first slice but marked in
the following slice. This consecutive slice comparison highlights the presence of
uncertainty in that specific region. These uncertain regions are well demarcated
by our model but missed by TransUNet.

Resilience to Noise. From Table 2, it is clearly evident Diff-UNet;, has better
performance than TransUNet in both the noise addition setup. Although in both
the cases of Femoral and Tibial cartilage, Diff-UNet;, has better quantification of
results, in the latter case the relative increment is much higher when compared
to the former. The appearance of the tibial cartilage in MRI scans is more sparse
in nature when compared to the Femoral ones, so they have been more affected
by the addition of noise. The qualitative visualisation of the results are in the
lower block of the Fig. 3.

Generalisation in Cross-Dataset Setup. From Table 3 it is indicative
that Diff-UNet; compared to TransUNet, performs better when the model was
trained on OZ dataset & was tested on the SKM dataset and vice versa. Despite
the cross-dataset setup, the model has shown incremental performance. The
qualitative visualization of the results are in the lower block of the Fig. 3. From
the Fig. 4 is observable that the overall structure of the cartilages predicted by
the Diff-UNety, is relatively smooth.

5 Discussions

The integration of losses has shown better performance mostly in predicting the
cartilages since they are sparse structures in MRI and need additional enforce-
ment. The better quantification of variances and qualification of uncertainty
maps from our model are due to DDM’s capability of providing meaningful vari-
ations when there is allowable stochasticity. This is further attributed to the
model’s capacity to generalize beyond specific annotations and adapt to the
intrinsic structures present in the scans, despite being trained on a single anno-
tation. Diff-UNet, outperforms in noisy setups due to DDMs’ unique denoising-
based sampling process, enabling better adaptation to noisy conditions during
mapping from Gaussian to target distributions. The better generalization of the
model is due to the fact that DDMs can better capture the distributional prop-
erties of the target without being biased to a certain set of data shown to the
model during training.
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6 Conclusion

Our proposed DDM-based multiple segmentation generator has shown to have
a higher variability within the regions of generations which are natural causes of
uncertainty while manual annotation. We have quantitatively and qualitatively
verified that diffusion-based models better highlight uncertainty than Droput-
based techniques. We have shown that after the addition of Gaussian and Rician
noise, our model has better DSC % as compared to TransUNet. Also, in the
cross-dataset setup, our method has better performance.
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