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Preface

It was our genuine honor and great pleasure to organize the Third Workshop on Deep
Generative Models for Medical Image Computing and Computer Assisted Intervention
(DGM4MICCAI 2023), a satellite event at the 26th International Conference onMedical
Image Computing and Computer Assisted Intervention (MICCAI 2023).

DGM4MICCAI was a single-track, half-day workshop consisting of high-quality,
previously unpublished papers, presented orally (in a hybrid format), intended to act
as a forum for computer scientists, engineers, clinicians and industrial practitioners to
present their recent algorithmic developments, new results and promising future direc-
tions in Deep Generative Models. Deep generative models such as Diffusion Models,
Generative Adversarial Networks (GAN) and Variational Auto-Encoders (VAE) are cur-
rently receiving widespread attention from not only the computer vision and machine
learning communities, but also in the MIC and CAI community. These models com-
bine advanced deep neural networks with classical density estimation (either explicit
or implicit) to achieve state-of-the-art results. As such, DGM4MICCAI provided an
all-round experience for deep discussion, idea exchange, practical understanding and
community building around this popular research direction.

This year’s DGM4MICCAI was held on October 8, 2023, in Vancouver, Canada.
There was an enthusiastic response to the call for papers this year. We received 43
submissions for the workshop. Each paper was reviewed by at least three reviewers
and we ended up with 23 accepted papers (53% acceptance rate) for the workshop.
The accepted papers present fresh ideas on broad topics ranging from methodology
(causal inference, latent interpretation, generative factor analysis etc.) to applications
(mammography, vessel imaging, surgical videos etc.).

The high quality of the scientific programofDGM4MICCAI 2023was due first to the
authors who submitted excellent contributions and second to the dedicated collaboration
of the international Program Committee and the other researchers who reviewed the
papers. We would like to thank all the authors for submitting their valuable contributions
and for sharing their recent research activities.

We are particularly indebted to the Program Committee members and to all the
external reviewers for their precious evaluations, which permitted us to organize this
event. We were also very pleased to benefit from the keynote lecture of the invited
speaker, Ke Li, Simon Fraser University, Vancouver, Canada. We would like to express
our sincere gratitude to these renowned experts for making the second workshop a
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successful platform to advance Deep Generative Models research within the MICCAI
context.

August 2023 Anirban Mukhopadhyay
Ilkay Oksuz

Sandy Engelhardt
Dajiang Zhu
Yixuan Yuan



Organization

Organizing Committee

Anirban Mukhopadhyay Technische Universität Darmstadt, Germany
Ilkay Oksuz Istanbul Technical University, Turkey
Dajiang Zhu University of Texas at Arlington, USA
Yixuan Yuan City University of Hong Kong, China
Sandy Engelhardt University Hospital Heidelberg, Germany

Program Committee

Li Wang University of Texas at Arlington, USA
Tong Zhang Peng Cheng Laboratory, China
Ping Lu Oxford University, UK
Roxane Licandro Medical University of Vienna, Austria
Veronika Zimmer TU München, Germany
Dwarikanath Mahapatra Inception Institute of AI, UAE
Michael Sdika CREATIS, France
Jelmer Wolterink University of Twente, The Netherlands
Alejandro Granados King’s College London, UK
Jinglei Lv University of Sydney, Australia
Onat Dalmaz Bilkent University, Turkey
Camila González Stanford University, USA
Magda Paschali Stanford University, USA

Student Organizers

Lalith Sharan University Hospital Heidelberg, Germany
Henry Krumb Technische Universität Darmstadt, Germany
Moritz Fuchs Technische Universität Darmstadt, Germany
John Kalkhof Technische Universität Darmstadt, Germany
Yannik Frisch Technische Universität Darmstadt, Germany
Amin Ranem Technische Universität Darmstadt, Germany
Caner Özer Istanbul Technical University, Turkey



viii Organization

Additional Reviewers

Martin Menten
Soumick Chatterjee
Arijit Patra
Giacomo Tarroni
Angshuman Paul
Meilu Zhu
Antoine Sanner
Mariano Cabezas
Yipeng Hu
Salman Ul Hassan Dar
Shuo Wang
Christian Desrosiers
Chenyu Wang
Prateek Prasanna
Lorenzo Tronchin
Li Wang

Alberto Gomez
Mohamed Akrout
Shuo Wang
Despoina Ioannidou
Pedro Sanchez
Ninon Burgos
Haoteng Tang
Dorit Merhof
Xinyu Liu
Wei Peng
Qishi Yang
Matthias Wödlinger
Luis Garcia-Peraza Herrera
Meng Zhou
Yipeng Hu
Meilu Zhu



Contents

Privacy Distillation: Reducing Re-identification Risk of Diffusion Models . . . . . 3
Virginia Fernandez, Pedro Sanchez, Walter Hugo Lopez Pinaya,
Grzegorz Jacenków, Sotirios A. Tsaftaris, and M. Jorge Cardoso

Federated Multimodal and Multiresolution Graph Integration
for Connectional Brain Template Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

Jia Ji and Islem Rekik

Metrics to Quantify Global Consistency in Synthetic Medical Images . . . . . . . . . 25
Daniel Scholz, Benedikt Wiestler, Daniel Rueckert, and Martin J. Menten

MIM-OOD: Generative Masked Image Modelling for Out-of-Distribution
Detection in Medical Images . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

Sergio Naval Marimont, Vasilis Siomos, and Giacomo Tarroni

Towards Generalised Neural Implicit Representations for Image
Registration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Veronika A. Zimmer, Kerstin Hammernik, Vasiliki Sideri-Lampretsa,
Wenqi Huang, Anna Reithmeir, Daniel Rueckert, and Julia A. Schnabel

Investigating Data Memorization in 3D Latent Diffusion Models
for Medical Image Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Salman Ul Hassan Dar, Arman Ghanaat, Jannik Kahmann,
Isabelle Ayx, Theano Papavassiliu, Stefan O. Schoenberg,
and Sandy Engelhardt

ViT-DAE: Transformer-Driven Diffusion Autoencoder for Histopathology
Image Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Xuan Xu, Saarthak Kapse, Rajarsi Gupta, and Prateek Prasanna

Anomaly Guided Generalizable Super-Resolution of Chest X-Ray Images
Using Multi-level Information Rendering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Vamshi Vardhan Yadagiri, Sekhar Reddy, and Angshuman Paul

Importance of Aligning Training Strategy with Evaluation for Diffusion
Models in 3D Multiclass Segmentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

Yunguan Fu, Yiwen Li, Shaheer U. Saeed, Matthew J. Clarkson,
and Yipeng Hu



x Contents

Diffusion-Based Data Augmentation for Skin Disease Classification:
Impact Across Original Medical Datasets to Fully Synthetic Images . . . . . . . . . . 99

Mohamed Akrout, Bálint Gyepesi, Péter Holló, Adrienn Poór,
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Privacy Distillation: Reducing
Re-identification Risk of Diffusion Models

Virginia Fernandez1(B) , Pedro Sanchez2 , Walter Hugo Lopez Pinaya1 ,
Grzegorz Jacenków2 , Sotirios A. Tsaftaris2 , and M. Jorge Cardoso1

1 King’s College London, London WC2R 2LS, UK
virginia.fernandez@kcl.ac.uk

2 The University of Edinburgh, Edinburgh EH9 3FG, UK

Abstract. Knowledge distillation in neural networks refers to compress-
ing a large model or dataset into a smaller version of itself. We introduce
Privacy Distillation, a framework that allows a generative model to teach
another model without exposing it to identifiable data. Here, we are inter-
ested in the privacy issue faced by a data provider who wishes to share
their data via a generative model. A question that immediately arises is
“How can a data provider ensure that the generative model is not leaking
patient identity? ”. Our solution consists of (i) training a first diffusion
model on real data; (ii) generating a synthetic dataset using this model
and filter it to exclude images with a re-identifiability risk; (iii) training
a second diffusion model on the filtered synthetic data only. We showcase
that datasets sampled from models trained with Privacy Distillation can
effectively reduce re-identification risk whilst maintaining downstream
performance.

Keywords: Privacy · Diffusion Models · Distillation

1 Introduction

Synthetic data have emerged as a promising solution for sharing sensitive medi-
cal image data [15]. By utilizing generative models, artificial data can be created
with statistical characteristics similar to the original training data, thereby over-
coming privacy, ethical, and legal issues that data providers face when sharing
healthcare data [15,20,32]. Recent advancements have made generative mod-
els achieve sufficient quality to accurately represent the original medical data
in terms of both realism and diversity [4]. Diffusion probabilistic models [4,10]
(DPMs), are a new class of deep generative models which has been successfully
applied to medical image data [17], and can scale particularly well to high reso-
lution and 3D images [24]. However, the high performance of these models also
raises a growing concern on whether they preserve privacy [5].

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-53767-7_1.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Mukhopadhyay et al. (Eds.): DGM4MICCAI 2023, LNCS 14533, pp. 3–13, 2024.
https://doi.org/10.1007/978-3-031-53767-7_1
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Patient privacy is indeed a crucial concern for these models, as the aim is
to share the synthetic datasets and the models themselves across institutions or
make them open source [5]. Sharing trained generative models, in particular, can
be useful1 for fine-tuning with smaller datasets, performing anomaly detection
[23,28], or even using synthetic data for segmentation [8]. Deep generative mod-
els are, however, prone to leak information about their training datasets [13]. A
major risk in medical imaging is the potential for patient re-identification from
the training dataset [16,32], especially when sharing models derived from pri-
vate or protected datasets. Re-identification risk refers to the probability that
a generative model synthesises an image which can be traced back to a real
patient [22]. While the notion of what constitutes a person’s identity may be
ambiguous, it is possible to train deep learning models to accurately determine
whether images belong to the same patient [22]. DPMs have shown to be par-
ticularly susceptible to attacks extracting its training data [3,30], more than
other architectures such as generative adversarial networks (GANs) [3], but few
publications have tackled solutions for DPM privacy preservation.

A common solution which allows privately sharing deep learning models with
guarantees is differential privacy (DP) [1,7,16]. Generation of images with DP,
however, has shown poor scalability to high resolution images. Existing DP meth-
ods [7] typically generate images at 32× 32 resolution whereas latent diffusion
models (LDM) can scale up to 1024 × 1024 [27] or 3D [24] images. At the same
time, many discriminative tasks such detecting pathologies from X-ray require
images at 224× 224 resolution [6]. Recent work has shown that duplications
and outliers datapoints are prone to be memorised [3], suggesting that filter-
ing the training dataset might improve privacy. In [21], Packhäuser et al. fil-
tered a dataset generated using a DPM according to a re-identification metric
in order to reduce its re-identification risk. These synthetic datasets can still
perform relatively well in downstream tasks [21]. Therefore, while reducing the
re-identification risk for synthetic datasets is possible, sharing private models
capable of generating high-resolution images tailored to the user’s requirements
remains an open challenge.

In this work, we propose a method for sharing models with a reduced re-
identification risk via privacy distillation. In the distillation procedure, two dif-
fusion models are trained sequentially. The first model is trained on real data
and used to generate a synthetic dataset. Subsequently, the synthetic dataset is
filtered by a re-identification network to eliminate images that could potentially
be used to re-identify real patients while mainting usefulness in a downstream
task. A second model is then trained on the filtered synthetic dataset, thus
avoiding the risk of memorisation of the real images and subsequent potential
re-identification of patients. The efficacy of the distilled model is evaluated by
assessing the performance of a downstream classifier on the synthetic data gen-
erated by the distilled model.

1 As seen in Stable Diffusion’s successful public release followed by over 6 million
downloads (by March 2023) of its weights by the community https://stability.ai/
blog/stable-diffusion-public-release.

https://stability.ai/blog/stable-diffusion-public-release
https://stability.ai/blog/stable-diffusion-public-release
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Contributions. (i) We train a conditional LDM on text-image pairs from a
Chest X-ray dataset [4]; (ii) We assess re-identification risk of LDMs trained
with different dataset sizes as well as how risk varies when the model is trained
from scratch as opposed to fine-tuned; (iii) We verify that the distilled model
has lower re-identification risk, whilst retaining information about the original
dataset useful for classifiers on its generated data.

2 Methods

2.1 Data

We evaluate our method on a real dataset Dreal = {(xi, ci) | ∀i ∈ (1, 2, . . . , N)}
of images x and text conditions c. We use images and radiological reports from
the MIMIC-CXR 2.0.0 database [14]. As text, we use each report’s “impression”
section, which corresponds to an interpretative summary of the findings for sup-
porting medical decisions. Following RoentGen [4], we filter the data used in
this study based on the length of impression in tokens, which should not exceed
76 tokens due to the text encoder limit. Ultimately we obtained a set of 45,453
images belonging to 25,852 patients, each associated with an impression of the
original radiological report. We split these into a train set of 23,268 patients
(40,960 images) and a test set of 2,132 patients (3,101 images). 10% of the
patients left for testing had half of their image and report pairs moved to the
training dataset to allow us to assess re-identification when the patient, but not
the query image, is part of the training dataset.

2.2 Diffusion Models

Diffusion models [10] learn to reverse a sequential image noising process, thus
learning to map a pure noise image into a target data distribution. Diffusion
models εθ can, therefore, be used as a generative model. We follow RoentGen
[4] in training/fine-tuning a latent diffusion model (LDM) [27] pre-trained2 on a
subset of the LAION-5B database [29]. The LDM allows the generation of high-
dimensional high-resolution images by having a diffusion model over the latent
space of a variational autoencoder. The latent model is conditioned using a
latent space derived from CLIP text encoder [25]. Here, we only fine-tune/train
from scratch the diffusion model weights, leaving the autoencoder and CLIP
text encoder as pre-trained [4]. We generate images using classifier-free guidance
[11] with the PNDM scheduler [19]. Whenever we mention samples from an
unconditional model, we refer to images generated with prompts from empty
strings.

2 https://huggingface.co/runwayml/stable-diffusion-v1-5.

https://huggingface.co/runwayml/stable-diffusion-v1-5
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2.3 Privacy Distillation

As we are interested in safely sharing the weights of generative models in a
privacy-preserving manner, a major concern is that synthetic images generated
by a model can be used to re-identify a patient from the real training dataset.
Therefore, we propose an algorithm for training a diffusion model over filtered
synthetic images, minimising the model’s exposure to re-identifiable data.

Data provider User Potential 
use cases

train trainsample

Anomaly 
Detection

Fine-tune
small dataset

Synthetic +
Classification

Release

filter
Re-identifiability

& Rerank

Datasets Diffusion Models

Fig. 1. Privacy Distillation Pipeline.

The procedure for Privacy Distillation, as depicted in Fig. 1, consists of the
following steps: (i) Train a diffusion model εθ

real on real data Dreal; (ii) Generate
a synthetic data Dsynth; (iii) Filter Dsynth, ensuring that none of the images
are re-identifiable, to obtain Dfiltered; (iv) Train a diffusion model εθ

distill on
Dfiltered; (v) Share εθ

distill.

2.4 Filtering for Privacy

Identity Memorisation. We hypothesise that synthetic images can enable
re-identification due to model memorisation. A xi is considered memorised by
εθ if �(x̂i,xi) ≥ δ [3,32], where � is a similarity function, δ is a threshold, and
A is an algorithm which can extract an image x̂i from a generative model εθ

without access to the original xi, x̂i = A(εθ). We consider A to be a sampling
algorithm with access to ci.

Defining an appropriate �(x̂,x) allows controlling which aspects of the orig-
inal data one wishes to measure for memorisation. Previous work [3] searches
near-identical images utilising a Euclidean distance or pixel-by-pixel correspon-
dence. Measuring identity, however, can be challenging and specific to certain
modalities or organs [18], limiting the validity of such approaches.

Assessing Re-identification. Instead of pixel-based [3] or structural-based
[18] similarities, we measure identity with a deep model � = fre−id

θ , introduced by
Packhäuser et al. [22]. The model is trained to classify images as belonging to the
same patient or not. This model, devised for X-Ray images, consists of a siamese
neural network with a ResNet-50 backbone. The model takes in two images, fuses
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the representation of the two branches and outputs a re-identification score (after
a sigmoid) that we will note as sre−id. If sre−id ≥ δ for a pair of synthetic and
real images (x̂,x), x̂ has been re-identified by εθ. For a set of synthetic images,
we call re-identification ratio Rre−id the number of re-identified samples divided
by the number of total samples. We explored the effect of varying δ and found
no relevant difference in the resulting score for thresholds between 0.05 and 0.90,
so we picked an intermediate threshold of δ = 0.5.

We train fre−id
θ from scratch on our training set, sampling positive (images

from the same patient) and negative pairs. To avoid data imbalance, positive
pairs, which were on average ten times less frequent, were oversampled, resulting
in an effective dataset size of 472,992. We tested it on a set of even 101,592 non-
repeated pairs, achieving a 99.16% accuracy (AUC 0.9994).

Retrieval. For data sampled without conditioning, we also utilised a retrieval
model fretrieval

θ proposed in [22]. The model is a siamese neural network with an
architecture similar to fre−id

θ . However, the fretrieval
θ excludes the layers from the

merging point onwards, to function solely as a feature extractor. To identify the
closest image in terms of identity, we computed the Euclidean distance between
the embeddings of the query sampled image and every image in our training set.
When evaluating pairs of the test set from the real dataset, our trained model
obtained high mean average precision at R (mAP@R) of about 95% and a high
Precision@1 (the precision when evaluating how many times the top-1 images in
the retrieved lists are relevant) of 97%. This way, approach enabled us to analyze
and evaluate the unconditioned synthetic data accurately.

Constrative Reranking. We ensure that the images in Dfiltered used for train-
ing εθ

distill correspond to their conditioning. Therefore, we rerank the synthetic
images in Dfiltered based on the image alignment with the conditioning, similar
to Dall-E [26]. We leverage a contrastive text-image model f im2tex

θ pre-trained
on MIMIC-CXR [2]. An alignment score salign = f im2tex

θ (x̂i, ci) is computed
between an image and a text prompt by passing them through an image and
text encoder respectively and taking the cosine similarity between their latent
spaces.

Filtering Strategy. We generate Nc synthetic images for each prompt ci in
Dreal. We choose Nc = 10; although a higher value would have been desirable,
increasing it bore a certain computational cost. Therefore, Dsynth has Nc ∗ N
elements. We compute salign between all generated images and corresponding
conditioning using f im2tex

θ ; and sre−id between the generated images and the real
image corresponding to its prompt. For unconditional models, we use fretrieval

θ to
find the strongest candidate in the dataset before computing sre−id. We remove
all re-identified images sre−id ≥ δ and choose, for each ci, the synthetic image
with the highest salign.

2.5 Downstream Task

To assess the quality of synthetic datasets, we train a classifier fclass
θ of 5 different

pathologies (Cardiomegaly, Edema, Consolidation, Atelectasis, Pleural Effusion)
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based on the model ranked first in the CheXpert Stanford ML leaderboard [33].3
We trained a DenseNet121 on our datasets and tested it in the real hold-out test
set. The network is pre-trained for 5 epochs on cross-entropy loss, then trained
for another 5 epochs on an AUC loss, as per [33] (Table 1).

Table 1. Evaluating the influence of pre-training and conditioning on εθ
real.

Pre-trained Conditional sre−id ↓ FID ↓
– – 0.057 ± 0.232 54.56
– ✓ 0.015 ± 0.124 81.95
✓ - 0.034 ± 0.181 97.91
✓ ✓ 0.022 ± 0.232 79.27

3 Experiments

First, we evaluate how/when identity memorisation happens and the effect of
training the model and sampling under different conditions and dataset sizes.
Then we showcase that our model trained under Privacy Distillation can be used
to train a downstream classification model.

3.1 Measuring Re-identification Risk of Latent Diffusion Models

Effect of Fine-Tuning. We explored the differences in terms of salign between
fine-tuning the model pre-trained on LAION-5B or training from scratch, and
between sampling using conditioning or not. For the conditioned generation, we
sample 100 instances for each of the first 400 prompts of the training dataset,
resulting in 40,000 samples. For the unconditional generation, we sample 40,000
images and use the retrieval network to get the closest images in the train-
ing dataset. We calculate the re-identification ratio and evaluate the quality
of the images using the Fréchet inception distance (FID) score [9], based on
the features extracted by the pre-trained DenseNet121 from the torchxrayvi-
sion package [6]. The lowest re-identification ratio was achieved for the data
sampled from a model trained from scratch using conditioning. Unconditionally-
generated datasets have higher re-identification ratios but achieve a better FID
score. Nonetheless, their usability is limited, as conditional sampling allows the
user to guide the generation process.

Effect of Training Dataset Size on Memorisation. We trained one model
on our full training dataset, and three models on 1%, 10% and 50% of the training
dataset, respectively. Then, we calculated the Rre−id of a set of samples inferred
using 100 instances of 400 training prompts (40,000 images in total). Figure 2

3 We used their code, available at https://github.com/Optimization-AI/LibAUC.

https://github.com/Optimization-AI/LibAUC
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shows the re-identification ratio, defined as the average number of times a sample
was re-identified divided by the total of generated samples. Supplementary Fig. 1
shows examples of re-identified and non re-identified samples.

As opposed to findings in the literature, where bigger training set sizes result
in less leakage [3], the re-identification ratio was lowest for the model trained on
only 1% of the data. The TSNE plots of Fig. 2 suggest that re-identification tends
to happen in specific clusters [31]. We looked at the radiological reports of the
top 10 most re-identified prompts, and 90% of them were associated with similar
pathological phenotypes: atelectasis, pleural effusion, and lung opacity. In paral-
lel, we observed that the proportion of images associated with these pathologies
is less frequent in the first 1% of the data than it is in the whole dataset, which
suggests that generated data from models trained on the full dataset might be
more re-identifiable due to overfitting to subject-specific pathological features.

Fig. 2. Left: violin plots showing the distribution of the average re-identification ratio
for the models fine-tuned in different portions of the training dataset; the middle and
right plots are TSNE plots of the f im2tex

θ embeddings of the first 400 prompts used to
test this experiment, for the model trained on 1% and 100% of the data, respectively.
Orange dots correspond to prompts for which none of the generated 100 instances
was re-identified, whereas blue dots are associated with prompts re-identified to some
extent, the size being proportional to the re-identification ratio. (Color figure online)

Effect of Filtering. We compare the impact of our filtering strategy on the
synthetic datasets Dsynth and Dfiltered. We sample 10 instances for each of the
40,959 training prompts from the proposed privacy-preserving model. We then
filter by sre−id, and pick the sample with the better salign score, resulting in a
filtered dataset of 40,959 images (Fig. 3). We found that filtering improves the
salign and reducing the number of memorised (re-identifiable) samples to 0, given
a δ.

3.2 Privacy Distillation

We now show empirically that εθ
distill indeed reduces re-identification risk. We

also assess whether εθ
distill is able to produce useful synthetic datasets for down-

stream tasks. We train classifiers fclass
θ (see Sect. 2.5) on Dreal, Dsynth, capped
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Fig. 3. Left : sre−id distribution; right : salign distribution. Comparing distribution of
the non-filtered Dsynth and filtered Dfiltered dataset.

at 40,000 images, and a dataset Ddistill of 40,000 images sampled from εθ
distill,

our distilled model, using the training set prompts. We measure the AUC on
the 3,101 images of our test set. The results are reported in Table 2, in addition
to the re-identification ratio Rre−id and the salign score. Supplementary Fig. 2
shows example images sampled from εθ

distill.
Training a model on synthetic data slightly affects performance (AUC and

salign decrease), but the resulting value is still comparable to the literature [12].
Nonetheless, the re-identification ratio between the initial and the distilled mod-
els is decreased by more than 3-fold. We hypothesise that filtering re-identifiable
data might also filter out unique phenotypes, more prone to be memorised [3],
resulting in reduced model generalisability and performance. Another possible
reason is a loss of quality of the images produced by the model after the distilla-
tion process. On the other hand, the fact that Ddistill is generated by applying a
threshold on Rre−id, along with the inherent model stochasticity, could explain
why Rre−id doesn’t reach 0%.

Table 2. Privacy Distillation performance: memorisation ratio, predicted AUC for the
classifier on the real test set and salign score.

Dataset Rre−id ↓ fclass
θ AUC ↑ salign ↑

Dreal – 0.863 0.6980.259

Dsynth 4.24% 0.830 0.6450.219

Ddistill 1.34% 0.810 0.6110.272

4 Discussion and Conclusion

This study has demonstrated that the application of privacy distillation can
effectively reduce the risk of re-identification in latent diffusion models without
excessively compromising the downstream task performance. Our main goal is
to enable sharing of private medical imaging data via generative models. In
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line with other approaches [7], there is a trade-off between privacy (degree of
filtering) and utility (downstream performance). However, differently from DP
techniques [7], which can only be performed over low-resolution datasets, we
train our private model on dataset at 256× 256 resolution.

Although in this work we evaluated the impact of important factors such
as dataset size and fine-tuning, our work is still limited to an imaging type
and a re-identification metric. Nonetheless, the principle of privacy distillation
could potentially be extended to other modalities, conditioning types or re-
identification metrics. Further work should also assess the effect of applying
it iteratively (i.e. more filtering-sampling-training steps) and use other down-
stream tasks (e.g. segmentation) for evaluation, to support the usability of the
method.
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Abstract. The connectional brain template (CBT) is an integrated graph that
normalizes brain connectomes across individuals in a given population. A well-
centered and representative CBT can offer a holistic understanding of the brain
roadmap landscape. Catchy but rigorous graph neural network (GNN) architec-
tures were tailored for CBT integration, however, ensuring the privacy in CBT
learning from large-scale connectomic populations poses a significant challenge.
Although prior work explored the use of federated learning in CBT integration,
it fails to handle brain graphs at multiple resolutions. To address this, we pro-
pose a novel federated multi-modal multi-resolution graph integration framework
(Fed2M), where each hospital is trained on a graph dataset from modalitym and
at resolution rm to generate a local CBT. By leveraging federated aggregation
in a shared layer-wise manner across different hospital-specific GNNs, we can
debias the CBT learning process towards its local dataset and force the CBT to
move towards a global center derived from multiple private graph datasets with-
out compromising privacy. Remarkably, the hospital-specific CBTs generated by
Fed2M converge towards a shared global CBT, generated by aggregating learned
mappings across heterogeneous federated integration GNNs (i.e., each hospital
has access to a specific unimodal graph data at a specific resolution). To ensure
the global centeredness of each hospital-specific CBT, we introduce a novel loss
function that enables global centeredness across hospitals and enforces consis-
tency among the generated CBTs. Our code is available at https://github.com/
basiralab/Fed2M.

Keywords: Federating varying architectures · Multi-modal multi-resolution
population graph fusion · Connectional Brain Learning

1 Introduction

The connectome, which characterizes the interactions between brain regions of interest
(ROIs) at various scales [1], plays a crucial role in advancing network neuroscience
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[2]. To comprehensively map and examine these interactions, the development of a
well-centered and representative connectional brain template (CBT) has gained atten-
tion in recent years [3,4]. The CBT serves as a tool to normalize brain networks of
a population and capture the connected core or backbone within a complex manifold
of graphs [3]. Moreover, it facilitates the comparison of core networks across different
populations, enabling the differentiation between healthy and disordered populations
[5,6]. By identifying deviations from the normalized brain network representation, it
becomes possible to more effectively discern pathological changes occurring in brain
networks [7]. This capability holds great potential for enhancing our understanding of
various neurological conditions and disorders.

The high-dimensionality of brain connectivity data from different views, such as
principle curvature, sulcal depth, and cortical thickness, adds complexity to construct-
ing a CBT [8–10]. The primer Deep Graph Normalizer (DGN) [8] presented the first
GNN model that aims to normalize and integrate a population of multi-view brain
networks into a single CBT. It introduced the Subject Normalization Loss (SNL) to
generate representative CBTs by leveraging complementary information from multiple
view-based networks (MVBNs). However, DGN overlooks the importance of preserv-
ing topological integrity in the generated CBT. To address this, the multi-view graph
normalizer network (MGN) proposes a topology loss that penalizes deviations from
ground-truth brain networks with different views. Both DGN and MGN assume that
graphs are derived from the same modality and at the same resolution. It is argued that
constructing a multi-modal CBT by integrating structural, morphological, and func-
tional brain networks offers a holistic perspective that enhances our understanding of
brain connectivity [2,11,12]. To bridge this gap, theMulti-modal Multi-resolutionBrain
Graph Integrator Network (M2GraphIntegrator) was proposed [13]. M2GraphIntegrator
employs resolution-specific autoencoders to map brain networks from various modali-
ties and resolutions into a shared embedding space. These learned embeddings are then
processed through a specialized integrator network to generate the CBT, while leverag-
ing the heterogeneity of brain connectivity data (i.e., graphs) from multiple modalities
and resolutions.

The strict cyberinfrastructure regulations within healthcare organizations, coupled
with the risks of privacy breaches, pose significant challenges to the sharing of medical
data [14,15]. Existing brain network integration methodologies typically focus on graph
integration from a single global source [8,13,16–19]. The emerging field of federated
learning offers a potential solution by enabling health data analytics while preserving
privacy, particularly for hospitals that prioritize privacy protection and face limitations
in the generalizability of results [20,21]. Fed-CBT approach [22] has emerged as a
promising method for federated multi-view graph fusion into a CBT. Hospitals serve as
clients, retaining their local training multi-view connective data and updating a shared
model through aggregating locally-computed updates. The server performs layer-wise
averaging using temporary-weighted averaging [23], and the resulting global weights
are shared with hospitals for subsequent updates. Such iterative process enables collabo-
rative learning while preserving data in a federated setting. Fed-CBT, although effective,
is limited to evaluating uni-modal data and cannot integrate brain networks with multi-
ple resolutions. To address this limitation, we propose the first federated multi-modal
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multi-resolution graph integration framework called Fed2M. In Fed2M, we set out to
learn from heterogeneous hospitals, where each hospital has a brain graph data derived
from one modality m (e.g., functional or morphological) and at a specific resolution
rm. Note that the local GNN models may vary across hospitals in architecture depend-
ing on the specific modality and resolution of their graph dataset. First, the local brain
graph data from each hospital is passed through its corresponding autoencoder, mapping
graphs from different modalities and at various resolutions into a shared embedding
space. Secondly, batches of embeddings are processed through a batch-based normal-
izer to estimate batch-based CBTs. Thirdly, the weights of all local models are sent to
a server and aggregated in a shared layer-wise manner. Lastly, for each hospital, the
batch-based CBTs are debiased using element-wise median operation to generate the
hospital-specific CBT. Notably, we note that all hospital-specific CBTs are drawn
towards a global center shared among all hospitals in a fully data-preserving and
learnable way (Suppl. Fig. 1). This allows for universal CBT learning from a locally
limited data, where the universality is imposed by the federation process. Moreover, we
introduce a novel loss that boosts the global centeredness of hospital-specific CBTs,
(i.e., local CBTs). Fed2M offers a comprehensive solution for integrating multi-modal
and multi-resolution brain networks while utilizing the benefits of federated learning.

2 Proposed Method

In this section, we provide a detailed description of the steps involved in our Fed2M1

framework. Figure 1 illustrates the three key steps of the proposed method: A) Batch-
based embeddings and batch-based CBTs generation. B) Shared layer-wise aggregation
and batch-based embeddings sampling. C) Post-training: hospital-specific CBT gener-
ation.

A- Batch-Based Embeddings and Batch-Based CBTs Generation. In Fig. 1-A, each
hospital is trained locally by first vectorizing its local brain graph data to form a
local graph population. This graph population is then passed through a self-mapper or
autoencoder to map it into a shared embedding space across hospitals. Subsequently,
batches of embeddings are normalized using a batch-based normalizer to generate
batch-based embedding from which the CBT matrix is derived and batch-based CBTs.

Graph Population. In our proposed federated pipeline with k hospitals denoted as
{Hm}km=1, each hospital has a population of brain networks derived from a specific
modality m (e.g., functional or morphological) and at a particular resolution rm. To
facilitate batch-based normalization in the framework, all brain networks are processed
in batches. Thus, we represent the connectivity data for each hospital as follows:

Xm = {Xm,b}nb

b=1 , Xm,b =
{
Xs

m,b

}nb
s

s=1
,

where Xs
m,b ∈ R

rm×rm . Each Xs
m,b ∈ R

rm×rm denotes a connectivity matrix (or adja-
cency matrix) of resolution rm (i.e., number of ROIs) for subject s in batch b, and there

1 https://github.com/basiralab/Fed2M.

https://github.com/basiralab/Fed2M
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Fig. 1. Proposed federated multi-modal multi-resolution graph integration framework (Fed2M)
for learning universal connectional brain network. A) Batch-based embeddings and batch-based
CBTs generation. B) Shared layer-wise aggregation and batch-based embeddings sampling. C)
Post-training: hospital-specific CBT generation.

are nb
s subjects in batch b. Xm,b represents the set of modality-specific brain networks

in a batch b derived from modality m. Xm encompasses all the batches of modality m-
specific brain networks. We note that rm ∈ {r1, r2, . . . , rk} which stipulates a learning
paradigm from heterogeneous GNN architectures. To map the local brain connectiv-
ity dataset Xm into a lower-dimensional embedding space at the lowest resolution r1,
we utilize graph convolution (GCNConv), which encodes the node feature vectors and
learns hidden layer representations [24]. Prior to applying GCNConv, we vectorize the
connectivity matrices Xs

m,b. Each brain network is represented as a subject in a local
population graph, where the connectivity matrix serves as the feature vector of the sub-
ject node denoted as V s

m,b ∈ R
1×r̂m , with r̂m = rm×(rm−1)

2 .

Self-mapper and Hospital-Specific Autoencoder. To generate the embeddings Zs
m,b for

each hospital’s local feature vectors V s
m,b, we initialize the hospital’s GNN model using

the self-mapper or resolution-specific graph autoencoders from the M2GraphIntegrator
framework [13] (Fig. 1-A). Hospital 1, with the lowest resolution r1 for its local brain
data, utilizes the self-mapper E1 to embed the feature vectors at the minimal resolu-
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tion into the same resolution level. For hospitals with higher resolutions, resolution-
specific or hospital-specific autoencoders Em are used for initialization. Both architec-
tures share a common structure, consisting of GCNblocks. Each GCNblock comprises
a GCNlayer (or GCNConv) followed by a sigmoid function and a dropout layer. The
self-mapper E1 of H1 is composed of a single GCNblock denoted as {l1}. On the other
hand, the hospital-specific encoders {Em}km=2 consist of three GCNblocks, namely
{lm3 , l2, l1} from left to right (Fig. 1-A). In these encoders, l1 is shared across all hospi-
tals, while l2 is shared among the hospitals, excluding the one with the minimal resolu-
tion ({Hm}km=2). By passing the vectorized local connectivity matrices (V s

m,b) through
the corresponding self-mapper or encoder, the local feature vectors V s

m,b at the resolu-
tion r̂m are mapped into a shared embedding space of size r̂1. This mapping process
allows for the embeddings of hospital-specific brain networks at the same resolution
level, facilitating further integration. We note that we federate the shared encoding and
normalizing layers across varying GNNs.

Hospital-Specific Decoder. The hospital-specific encoder Em is paired with its corre-
sponding decoder Dm to reconstruct the ground-truth brain network using the embed-
ding Zs

m,b. However, the self-mapper is not paired with a decoder to preserve the struc-
ture of the minimal-resolution brain network while mapping it to the same resolution.
Although the decoder is not directly involved in CBT integration, it plays a key role in
ensuring that the embeddings retain essential traits of the ground-truth brain networks.
The decoder Dm follows the same architecture as Em, but in a reversed version. The
reconstructed feature vector is denoted as Ṽ s

m,b, which can be antivectorized to matri-

cial form X̃s
m,b. To ensure that the embedding Zs

m,b captures the essential traits of the
ground-truth connectivity matrix, we incorporate the reconstruction loss and topology
loss from the M2GraphIntegrator. The reconstruction loss LR

m,b, calculated in batches,
measures the mean Frobenius distance (MFD) between the reconstructed connectivity
matrix X̃s

m,b and the ground-truth matrix Xs
m,b. Additionally, we employ the topol-

ogy loss to ensure the topology soundness of the decoded connectivity matrix from
the learnt embedding. The topology loss LT

m,b, also calculated in batches, measures the
absolute difference between the node strength vectors [25] of the reconstructed connec-
tivity matrix P s

m,b and the ground-truth matrix P̃ s
m,b.

Batch-Based Normalizer. To normalize the embeddings within a batch Zm,b, we intro-
duce a batch-based normalizer Nm to generate batch-based CBTS, which is shared
across all hospitals. The normalizer comprises two blocks, denoted as {l4, l5}, arranged
from left to right (Fig. 1-A). Each block consists of a linear layer followed by a sig-
moid function. First, the embeddings Zm,b ∈ R

nb
s×r̂m are linearized into a linear vector

I0m,b ∈ R
1×im,b , where im,b = nb

s × r̂m. Then, I0m,b is passed through the batch-based
normalizer, and the resulting vector is antivectorized to produce a batch-based CBT
denoted as Cm,b ∈ R

r1×r1 . The embedding obtained from l4 is represented as I1m,b

(batch-based embedding). We introduce a local centeredness loss LL
m,b to ensure that

the generated batch-based CBT captures not only the traits of brain networks within
the current batch but also represents the entire population of hospital-specific local
brain network data. This is achieved by comparing the batch-based CBT Cm,b of batch
b against randomly selected NL embedded connectivity matrices from other batches
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through clustering techniques such as hierarchical clustering. This evaluates the cen-
teredness of the CBT against other sample batches. In addition to identifying a well-
centered CBT within each hospital’s population, which we refer to as ”local centered-
ness”, our ultimate objective is to achieve the convergence of hospital-specific CBTs
towards an implicit global CBT (global centeredness). To achieve this, we introduce a
novel global centeredness loss LG

m,b. This loss is computed as the Euclidean distance
between I1m,b and randomly selected NG batch-based embeddings I1m′,b′ from other
hospitals. In our federated learning framework, hospitals exchange batch-based embed-
dings with each other through the server, facilitating collaborative learning. The shared
embeddings offer benefits while maintaining privacy, as each client has no knowledge
of the architectures used by other clients. Furthermore, the absence of shared decoders
under federation reduces the risk of reconstructing local brain networks of other clients.
This approach ensures data privacy and security while promoting the integration of
heterogeneous and multi-resolution brain connectivity data. In our federated learning
framework, hospitals exchange batch-based embeddings with each other through the
server. The collaborative exchange enables hospitals to benefit from the shared batch-
based embeddings without directly accessing the sensitive information within their local
data. Additionally, by processing embeddings in batches and utilizing the first layer of
batch normalizer, it reduces the risk of reconstructing personal brain networks.

The training process is conducted in rounds, with each round comprising a pre-
defined number of training epochs. Within each round, the trained hospitals undergo
the backward propagation phase, followed by the transmission of the updated model
weights and batch-based embeddings to the server at the end. In summary, we define
the total batch-specific loss for a training batch b as follows:

Lm,b =

nb
s∑

s=1

∥∥∥Xs
m,b − X̃s

m,b

∥∥∥
2

2

︸ ︷︷ ︸
LR

m,b

+λ1

nb
s∑

s=1

∥∥∥P s
m,b − P̃ s

m,b

∥∥∥
1

︸ ︷︷ ︸
LT

m,b

+ λ2

⎛

⎜⎝
nb
s∑

s=1

NL∑

s′=1

∥∥∥Cm,b − Zs
m,b

∥∥∥
2

2
+

∥∥∥Cm,b − Zs′
m,b′

∥∥∥
2

2

⎞

⎟⎠

︸ ︷︷ ︸
LL

m,b

+λ3

NG∑

b′=1

∥∥Im,b − Im′,b′
∥∥
2

︸ ︷︷ ︸
LG

m,b

B- Shared Layer-Wise Aggregation and Batch-Based Embeddings Sampling.
Figure 1-B illustrates the operations performed at the server, which involve aggregating
the local model weights and sampling the batch-based embeddings received from the
local hospitals. Once the server receives the models’ weights and batch-based embed-
dings from the hospitals, it performs FedAvg [23] on the shared layers’ weights. Specif-
ically, the weights of l1, l2, l4, l5 are averaged as follows:

W t+1
l1

=
1

k

k∑

m=1

W t
m,l1

, W t+1
li

=
1

(k − 1)

k∑

m=2

W t
m,li

, where i ∈ {2, 4, 5}

Here, W t
m,l1

and W t
m,li

represents the weights of shared layers of hospital m during

the tth round. The federated weights for the subsequent round, denoted as W t+1
l1

and
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W t+1
li

, are then sent back to the local models of the hospitals. As a result, the weights
of the local models are updated as follows:

W t+1
m,l1

= W t+1
l1

, where m ∈ {1, . . . , k}

W t+1
m,li

= W t+1
li

, where m ∈ {2, . . . , k} , i ∈ {2, 4, 5}

Furthermore, the server randomly selects batch-based embeddings from other hospitals
m′ and sends them to hospital m. This allows hospital m to update its global centered-
ness loss for the (t + 1)th round by comparing its batch-based embeddings with the
sampled batch-based embeddings received from the server at the end of the tth round.

C- Post-training: Hospital-Specific CBT Generation. To mitigate the influence of
specific batches and promotes a more representative and robust CBT for each hospital,
we propose a post-training step involving an element-wise median operation on the
batch-based CBTs (Fig. 1-C). Specifically, we calculate the median of the batch-based
CBTs as Cm = median [Cm,1, Cm,2, . . . , Cm,nb

], where nb is the total number of
batches in the local population. Cm is the estimated local CBT of hospital m.

3 Results and Discussion

Fig. 2. The learnt hospital-specific CBTs and t-SNE plot based on different strategies. A) Learnt
hospital-specific CBTs by standalone and Fed2M models. B) t-SNE plot of brain graph embed-
dings and hospital-specific CBTs by different strategies.

Dataset. We conducted training and evaluation using the Southwest University Lon-
gitudinal Imaging Multimodal (SLIM) Brain Data Repository [26]. The SLIM dataset
comprises 279 healthy subjects, each depicted by 3 connectomes at the following res-
olutions: 35, 160, and 268. Connectomes represented with 35 ROIs are based on mor-
phological networks extracted from T1-weighted MRIs, whereas the ones with 160 and
268 ROIs are derived from resting-state functional MRI (rs-fMRI) and correspond to
functional networks. To ensure generalizability, we perform a 4-fold cross-validation to
split the dataset into training and testing sets. To simulate the federated learning frame-
work, we created three virtual hospitals, each with access to different types of MRIs.



Federated Multimodal and Multiresolution Graph Integration 21

Hospital 1 had access to morphological MRIs with 35 ROIs, hospital 2 had access to
functional MRIs with 160 ROIs, and hospital 3 had access to functional MRIs with 268
ROIs.

Benchmarks and Hyperparameter Tuning.We evaluated our model using three vari-
ants for comparison: a standalone model without federation, an ablated version of
Fed2M without global centeredness loss optimization, and Fed2M. To optimize the
local centeredness loss of the hospital-specific local CBT, we employed two differ-
ent sampling algorithms for randomly selecting the local training subsets in the SNL
loss. Furthermore, we trained each variant of the model with two different numbers
of updates per round: 1 epoch per round and 10 epochs per round. This allowed us to
assess the performance and effectiveness of our proposed Fed2M framework under var-
ious configurations and settings. We initialized two clusters for hierarchical sampling
and selected 5 training subjects at each epoch. The hyperparameters λ1, λ2, and λ3

in our loss function Lm,b were set to 2, 0.5, and 0.2, respectively, using a grid search
strategy. We used a learning rate of 0.00005 for all 3 hospitals and the Adam optimizer.

Table 1. Evaluation of Fed2M method using various measures. Sampling method for the cal-
culation of local centeredness loss: hierarchical clustering (H) and random (R) sampling. EPR
represents epochs per round. Consistency evaluates the consistency of the self-mapper. Recon-
struction MAE and Topology end evaluates the reconstruction capability and topology soundness
of autoencoder. Local centeredness and global centeredness of hospital-specific CBTs are eval-
uated as well. The bold number represents the best performing method, while the underlined
number indicates the second best. Fed2M significantly outperforms ablated Fed2M (p-value <
0.05). Both Fed2M and ablated Fed2M outperform the standalone approach in terms of the local
centeredness of H 1 and H 2 (p-value < 0.001). H 1: hospital 1. H 2: hospital 2. H 3: hospital 3.

Local Centertedness Reconstruction MAE Topology Snd.
EPR Model variation Consistency

H 1 H 2 H 3 H 2 H 3 H 2 H 3
Global Centeredness

Standalone 0.84312 0.03050 0.00739 0.04009 0.15153 0.18109 0.20414 0.19300 0.28080

Ablated Fed2M 0.84478 0.01670 0.07633 0.01672 0.15141 0.18266 0.20418 0.19312 0.0036610

Fed2M 0.84476 0.01662 0.02453 0.01680 0.15150 0.18225 0.15212 0.19313 0.00202

Standalone 0.84313 0.03042 0.00738 0.04029 0.15153 0.18175 0.20414 0.19303 0.27982

Ablated Fed2M 0.84460 0.02174 0.02826 0.02168 0.15140 0.17928 0.20418 0.19302 0.00677

H

1

Fed2M 0.84458 0.02206 0.02886 0.02151 0.15149 0.17967 0.20407 0.19312 0.00379

Standalone 0.84330 0.02919 0.00740 0.03444 0.15153 0.18178 0.20414 0.19310 0.26270

Ablated Fed2M 0.84478 0.01624 0.02318 0.01587 0.15150 0.18224 0.20407 0.19313 0.0036010

Fed2M 0.84480 0.01617 0.02337 0.01620 0.15140 0.18289 0.20418 0.19314 0.00191

Standalone 0.84330 0.02919 0.00740 0.03444 0.15153 0.18178 0.20414 0.19310 0.26270

Ablated Fed2M 0.84462 0.02136 0.02738 0.02210 0.15140 0.17949 0.20418 0.19307 0.00685

R

1

Fed2M 0.84461 0.02162 0.02741 0.02126 0.15149 0.17959 0.20407 0.19312 0.00317

Evaluation. The reconstruction capability of the hospital-specific autoencoder is
assessed by calculating the mean absolute difference between the ground-truth and
reconstructed connectivity matrices. Additionally, the preservation of topological prop-
erties is evaluated by the difference between the node strength of the ground-truth
and reconstructed connectivity matrices. We also measure the consistency of the self-
mapper by comparing the input minimal-resolution brain network with its correspond-
ing output embedding. To assess the local centeredness of the hospital-specific CBT, we
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compute the MFD between the hospital-CBT generated from the local training set and
the embeddings of test set. To ensure global centeredness, we calculate the Euclidean
distance between hospital-specific CBTs. Hospitals 1 and 3 exhibit lower local cen-
teredness in both ablated Fed2M and Fed2M (p-value < 0.001), while hospital 2 shows
higher local centeredness (Table 1). This disparity arises from the bias in CBT learning
towards the local dataset [27,28]. Since our ultimate goal is to achieve global centered-
ness, we anticipate that the hospital-specific CBTs may not be locally well-centered
but contribute to a more comprehensive, representative, and globally centered brain
network. Remarkably, Fed2M generates more globally centered hospital-specific CBTs
compared to ablated Fed2M (p-value < 0.05). Figure 2-A displays estimated hospital-
specific CBTs, while Fig. 2-B shows the blending of functional MRI embeddings and
distinct morphological MRI embeddings, demonstrating Fed2M’s capability to preserve
modality-specific traits and achieve convergence towards a global center.

4 Conclusion

In this paper, we presented a primer federated multi-modal multi-resolution integration
framework from heterogeneous multi-source brain graphs. Our framework includes the
introduction of the global centeredness loss to optimize the hospital-specific CBTs,
ensuring the multi-modal information capability. By leveraging federated learning, we
demonstrated that hospital-specific CBT derived by our approach captures shared traits
among populations from different modalities and resolutions, leading to a more compre-
hensive understanding of brain connectivity while maintaining data privacy. However, a
key limitation of this work is the potential privacy leakage of batch-based embeddings.
In our future work, we plan to address this limitation by incorporating differential pri-
vacy techniques.
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Abstract. Image synthesis is increasingly being adopted in medical
image processing, for example for data augmentation or inter-modality
image translation. In these critical applications, the generated images
must fulfill a high standard of biological correctness. A particular require-
ment for these images is global consistency, i.e an image being overall
coherent and structured so that all parts of the image fit together in a
realistic and meaningful way. Yet, established image quality metrics do
not explicitly quantify this property of synthetic images. In this work,
we introduce two metrics that can measure the global consistency of syn-
thetic images on a per-image basis. To measure the global consistency,
we presume that a realistic image exhibits consistent properties, e.g., a
person’s body fat in a whole-body MRI, throughout the depicted object
or scene. Hence, we quantify global consistency by predicting and com-
paring explicit attributes of images on patches using supervised trained
neural networks. Next, we adapt this strategy to an unlabeled setting
by measuring the similarity of implicit image features predicted by a
self-supervised trained network. Our results demonstrate that predicting
explicit attributes of synthetic images on patches can distinguish globally
consistent from inconsistent images. Implicit representations of images
are less sensitive to assess global consistency but are still serviceable
when labeled data is unavailable. Compared to established metrics, such
as the FID, our method can explicitly measure global consistency on a
per-image basis, enabling a dedicated analysis of the biological plausibil-
ity of single synthetic images.

Keywords: Generative Modeling · Synthetic Images · Image Quality
Metrics · Global Consistency

1 Introduction

With recent improvements in deep learning-based generative modeling [4,9,25],
image synthesis is increasingly utilized in medical image processing. It has seen
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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Current Status

Not focused on global consistency
Only computable on a set of images
Evaluating images generally

FID

Our Method

Focused on global consistency
Computable on single images
Evaluating images for biological
plausibility

Implicit Explicit

RealSynthetic

Fig. 1. We present a novel method to quantify global consistency in generated images.
Most established image quality metrics, like FID [8], are not designed to measure the
biological correctness of medical images. Conversely, our approach measures the global
consistency of synthetic medical images, like whole-body MRIs, based on their explicit
and implicit features.

application in inter-modality transfer [18], counterfactual image generation [20],
anomaly detection [6], data augmentation [28], and synthetic dataset genera-
tion [22]. When using synthetic images in critical medical systems, it is vital to
ensure the biological correctness of the images. One crucial aspect of image real-
ism is its global consistency [5,12,31]. Global consistency refers to an image’s
overall coherence and structure so that all parts of the image fit together in
a realistic and plausible way. While several others have researched methods to
improve the global consistency of synthetic images [11,16], these works do not
quantitatively assess the global consistency of these images in a standardized
fashion. This is because existing metrics, such as Inception Score [24], Fréchet
Inception Distance (FID) [8], and Precision and Recall [15,23], only measure
image quality in terms of fidelity and variety.

In this work, we introduce solutions to measure the global consistency of
synthetic images (Fig. 1). To this end, we make the following contributions.

– We propose an approach to quantify global consistency by determining
attributes on different image regions. We call this method explicit quantifica-
tion of global consistency.

– Next, we adapt this approach to a setting in which explicit labels are not
available. To this end, we utilize the cosine similarity between feature vec-
tors of patches in the image as a global consistency measure. These implicit
features are predicted by neural networks trained in a self-supervised fashion.

– In extensive experiments, we compare our proposed metrics with FID, one
of the most established image quality metrics, with regard to its ability to
measure global consistency in synthetic images. We perform our experiments
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on the challenging task of whole-body magnetic resonance image (MRI) syn-
thesis, in which it is crucial that the various depicted body parts match.

2 Related Works

2.1 Global Consistency in Image Synthesis

The notion of global consistency in image synthesis has been researched in com-
puter vision. Multiple important works [12,31] describe synthesizing complex
images with multiple objects as challenging and lacking global coherence. Inte-
grating the attention mechanism [30] into the GAN architecture [5,11] facilitates
generating more globally consistent images. To evaluate their adherence to the
properties in the real data, Hudson et al. [11] statistically compare property
co-occurrences in the generated images, similar to [28]. The use of large auto-
regressive models advances the generation of ultra-high-resolution images while
maintaining global consistency [16]. They use a block-wise FID to assess the
quality of individual blocks in the image, which only evaluates the realism of
individual patches but does not measure the global consistency within a single
image. In summary, none of these works have dedicated quantitative metrics for
global consistency.

2.2 Metrics Measuring Quality of Generated Images

Several metrics, such as Inception Score [24], Fréchet Inception Distance (FID) [8],
and Precision and Recall [15,23], have been proposed in the literature to assess the
quality of synthetic images. The most established metric, the FID [8], measures
image quality and variation in a single value by comparing the distribution over
features from sets of real and synthetic images. Multiple variants have been pro-
posed in the literature to address the limitations of FID. These variants focus on
overcoming the bias towards a large number of samples [1,3], the lack of spatial
features [29] or standardization of its calculation [21]. However, the global consis-
tency remains, at most, only validated as part of general image fidelity.

Zhang et al. [32] measure a learned perceptual image patch similarity (LPIPS)
between patches of two separate images. While this metric is conceptually sim-
ilar to ours, their work focuses on evaluating different kinds of representations
and similarity measures between two images for their correspondence to human
judgment. However, they do not assess global consistency within a single image.
Sun et al. [28] evaluate their hierarchical amortized GAN by quantifying the
accuracy of clinical predictions on synthetic images. Their evaluation strategy
only compares statistics over the clinical predictions between real and synthetic
data but does not incorporate per-image analysis. In general, existing metrics
do not explicitly address the quantification of global consistency.

2.3 GANs for Whole-Body MRI Synthesis

Only few works have researched the challenging task of generating synthetic
whole-body MRIs. Mensing et al. [19] adapt a FastGAN [17] and a StyleGAN2
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[10,14] to generate whole-body MRIs. They primarily evaluate their generated
images using the Fréchet Inception Distance (FID) [8]. However, they do not
focus on assessing global consistency of the synthetic images.

3 Method

We propose two novel metrics to measure the global consistency of synthetic
images. We distinguish between implicit and explicit quantification of global
consistency, which are described in the following (see Fig. 2).

Implicit Explicit

Fig. 2. Two strategies to assess the global consistency of an image based on the feature
representations of the superior and inferior half of the body. Explicit : Absolute error
between an explicit attribute predicted from the feature representation using some
regression head f . Implicit : Cosine similarity SC between the feature representations.

3.1 Explicit Quantification

Our method for explicitly quantifying global consistency is based on the notion
that biological properties should be consistent in different parts of a person’s
body. For example, a person’s body mass index (BMI) should be similar when
viewing the superior part of a whole-body MRI depicting the torso and the
inferior part containing the legs. To assess its global consistency, we compare
various biological attributes, such as age, body fat percentage, or BMI, in two
parts of the synthetic images. While individual organs might age at different
rates [26], our method assumes that the overall age of the superior part and
inferior part of a person’s body still contain consistent age-related information. In
addition, the body fat mass between the limbs and the trunk correlates and can
hence serve as marker for consistency in a synthetic image [13]. We generate two
views of the whole-body MRI by simply cropping the superior and inferior half
of the image. Other possible cropping modes include random cropping, cropping
based on semantic regions, such as organs, and grid-structured cropping. The
two views are each evaluated using dedicated referee neural networks. We train
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several neural networks in a supervised fashion to predict one of three different
biological properties for either the superior or inferior image view.

By comparing the predicted attributes via the absolute error, we can obtain
a proxy measure for the global consistency of a synthetic image. For a more
holistic analysis, we simultaneously compare an average error of all biological
attributes.

3.2 Implicit Quantification

Detailed annotations of the data are not always available, rendering supervised
training of referee networks infeasible. Therefore, we propose the use of implicit
features extracted via a network that has been trained via self-supervision as an
alternative measure for global consistency.

As before, we crop two views from the synthetic image and extract one feature
vector for each view by applying an encoder network. Here, the encoder network
is trained using SimCLR [2], a self-supervised contrastive learning framework
alleviating the need for labels during training. SimCLR is trained to return
similar representations for two views of the same image and diverging represen-
tations for two views of different images. The similarity between the embedding
of the two views is obtained by calculating their cosine similarity. To calculate
a global consistency measure for a given image, we obtain the cosine similarity
between the embeddings of the superior and inferior views.

3.3 Experimental Setup

We conduct experiments using 44205 whole-body MRIs from the UK Biobank
population study [27], which we split into 36013 training images, 4096 validation
images, and 4096 test images. We extract the slice along the coronal plane in
the intensity center of mass of the 3d volumes and normalize them to the range
of [0, 1]. We train one ResNet50 [7] network per attribute on the training set
as a referee network for the explicit quantification experiments. We also fit a
ResNet50 using SimCLR [2] to our training images to extract features for the
implicit quantification strategy.

The validation images are used to evaluate the accuracy of the referee net-
works for the explicit quantification strategy. We find that the networks achieve
good performance on the attribute estimation. The mean absolute error (MAE)
for age estimation is 3.9 years ± 2.98 years on the superior half and 4.4 years ±
3.35 years on the inferior half. Similarly, we achieve an MAE of 0.97 ± 0.83 on
the superior and 1.11 ± 0.93 on the inferior half for BMI estimation and 2.10%
± 1.70% on the superior and 2.36% ± 1.89% on the inferior half for body fat
percentage prediction. Ultimately, we compare the variation in biological prop-
erties of the explicit metric, the cosine similarity of the implicit metric, and the
FID on all test set images.
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4 Results

4.1 Distinguishing Consistent from Inconsistent Images

Initially, we analyze the two proposed metrics on a dataset of consistent and
inconsistent images. We construct the inconsistent images by stitching the supe-
rior part and inferior part of two different whole-body MRIs from the test set
together (see Fig. 3). The sharp edge at the seam of the inconsistent images is
a very distinctive feature. In order to avoid the metrics being influenced by it,
we remove the central 10% of both the consistent and inconsistent images. We
compare our two metrics with the FID [8], which is calculated using two distinct
sets of images. One half of the consistent images serves as the reference dataset
for calculating the FID of either the other half of the consistent images or the
inconsistent images, respectively.

Fig. 3. A comparison of an original whole-body MRI (left) with the modified versions
used in our experiments, i.e., consistent (middle) and inconsistent (right) superior-
inferior combinations with the central 10% removed.

Our metrics differentiate well between consistent and inconsistent images (see
Table 1, top). For the explicit strategy, we report the mean over the superior-
inferior errors of age, BMI, and body fat percentage prediction after normalizing
them to a range between 0 and 1. While the FID is also influenced by global
consistency, our metric distinguishes more clearly between consistent and incon-
sistent.

We present a detailed analysis of the explicit attribute errors in Fig. 4. The
experiment shows that body fat percentage and BMI are more distinctive bio-
logical attributes than age.

Additionally, we investigate the correlation between our implicit and explicit
metrics to verify the utility of the implicit strategy in the absence of labels (see
Fig. 5). These findings suggest the potential utility of the implicit quantification
strategy as a weaker alternative to explicit quantification.

4.2 Global Consistency in Synthetic Whole-Body MRIs

We conduct an exemplary assessment of global consistency on 1000 synthetic
images using our implicit and explicit metrics and the FID. The synthetic whole-
body MRIs were generated using a StyleGAN2 [14] that we trained on images of
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Table 1. Comparison of our explicit global consistency metrics, implicit global consis-
tency metric, and FID in two different experiments. In the first one, we calculate all
metrics on constructed consistent and inconsistent images. In the second experiment,
the metrics are compared for real and synthetic datasets, akin to the envisioned use
case of our proposed method.

Dataset FID (↓) Explicit (Ours, ↓) Implicit (Ours, ↑)

Consistent 14.10 0.09 ± 0.05 0.59 ± 0.12
Inconsistent 16.10 0.24 ± 0.11 0.37 ± 0.17
Real 14.10 0.09 ± 0.050 0.59 ± 0.12
Synthetic 17.13 0.09 ± 0.049 0.55 ± 0.14
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Fig. 4. The per-attribute results of the explicit absolute errors between the superior
and inferior part of the consistent and inconsistent images (top) and real and syn-
thetic images (bottom). The rightmost column: an average over the 0-1-normalized
per-attribute errors.



32 D. Scholz et al.

0.0 0.5 1.0
Implicit

0

10

20

E
xp

lic
it

Age

0.0 0.5 1.0
Implicit

0

20

Body fat percentage

0.0 0.5 1.0
Implicit

0

10

20
BMI

0.0 0.5 1.0
Implicit

0.0

0.5

All

Fig. 5. The correlations between our implicit and explicit metrics verifying the utility
of the implicit strategy in the absence of labels on real images.

the UK Biobank [27]. The results suggest an overall high global consistency and
a low error in biological attributes in the synthetic images (Table 1, bottom).
The images show overall high fidelity to the real images due to the comparable
FID to the real images.

Our metrics differ only slightly between real and synthetic in the per-attribute
analysis (see Fig. 4, bottom). The high values in our metrics indicate a high
degree of global consistency in the synthetic images.

5 Discussion and Conclusion

In this work, we have proposed two strategies to quantify the global consistency
in synthetic medical images. We found that global consistency influences estab-
lished metrics for synthetic image quality, such as the FID, yet the differences
between consistent and inconsistent images are more pronounced in our novel
metrics. Our first metric explicitly quantifies the error between predicted biolog-
ical attributes in the superior and inferior half of a single whole-body MR image.
However, this approach relies on labels to train neural networks that determine
the biological attributes. As a solution, we also presented a second metric based
on implicit representations that can be obtained via a self-supervised trained
network. Both strategies have proven suitable for assessing synthetic medical
images in terms of their biological plausibility.

We envision that our work will complement the existing landscape of image
quality metrics - especially in medical imaging - and that it will be used to
develop and benchmark generative models that synthesize globally consistent
medical images. An extension of our work to the 3D domain is theoretically
simple but may be practically challenging due to the additional complexity when
training SimCLR for the implicit and the referee networks for the explicit metric.
Moreover, global consistency analysis for other image modalities and use cases
can be enabled through retraining the feature extraction networks on domain
specific data with corresponding augmentations. Ultimately, we believe our work
can potentially increase the trust in using synthetic data for critical medical
applications in the future.
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Abstract. Unsupervised Out-of-Distribution (OOD) detection consists
in identifying anomalous regions in images leveraging only models trained
on images of healthy anatomy. An established approach is to tokenize
images and model the distribution of tokens with Auto-Regressive (AR)
models. AR models are used to 1) identify anomalous tokens and 2) in-
paint anomalous representations with in-distribution tokens. However,
AR models are slow at inference time and prone to error accumula-
tion issues which negatively affect OOD detection performance. Our
novel method, MIM-OOD, overcomes both speed and error accumulation
issues by replacing the AR model with two task-specific networks: 1) a
transformer optimized to identify anomalous tokens and 2) a transformer
optimized to in-paint anomalous tokens using masked image modelling
(MIM). Our experiments with brain MRI anomalies show that MIM-
OOD substantially outperforms AR models (DICE 0.458 vs 0.301) while
achieving a nearly 25x speedup (9.5 s vs 244 s).

Keywords: out-of-distribution detection · unsupervised learning ·
masked image modelling

1 Introduction

Supervised deep learning approaches achieve state of the art performance in
many medical image analysis tasks [10], but they require large amounts of man-
ual annotations by medical experts. The manual annotation process is expensive
and time-consuming, can lead to errors and suffers from inter-operator variabil-
ity. Furthermore, supervised methods are specific to the anomalies annotated,
which is in contrast with the diversity of naturally occurring anomalies. These
limitations severely hinder applications of deep learning methods in the clinical
practice.
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Unsupervised Out-of-Distribution (OOD) detection methods propose to
bypass these limitations by seeking to identify anomalies relying only on
anomaly-free data. Generically, the so-called normative distribution of healthy
anatomy is modelled by leveraging a training dataset of healthy images, and
anomalous regions in test images are identified if they differ from the learnt
distribution. A common strategy consists in modelling the normative distribu-
tion using generative models [1]. In particular, recent two-stage approaches have
shown promising results [11,13,14,20]. In order to segment anomalies, a first
stage encodes the image into discrete latent representations referred as tokens,
from a VQ-VAE [12]. The second stage aims to model the likelihood of individ-
ual tokens, so a low likelihood can be used to identify those tokens that are not
expected in the distribution of normal anatomies. Auto-Regressive (AR) mod-
elling is the most common approach to model latent representation distributions
[12]. Furthermore, once the anomalous tokens are identified, the generative capa-
bilities of the AR model allow to in-paint anomalous regions with in-distribution
tokens. By decoding the now in-distribution tokens, it is possible to obtain healed
images, and anomalies can be localized with the pixel-wise residuals between
original and healed images [11,13,14,20].

Although this strategy is effective, AR modelling requires defining an artifi-
cial order for the tokens so the latent distribution can be modelled as a sequence,
and consequently suffer from two important drawbacks: 1) inference/image gen-
eration requires iterating through the latent variable sequence, which is compu-
tationally expensive, and 2) the fixed sequence order leads to error accumulation
issues [13]. Error accumulation issues occur when AR models find OOD tokens
early on the sequence and the healed/sampled sequence diverges from the origi-
nal image, causing normal tokens to also be replaced.

Contributions: we propose MIM-OOD, a novel approach for OOD detection
with generative models that overcomes the aforementioned issues to outperform
equivalent AR models both in accuracy and speed. Our main contributions are:

– Instead of a single model for both tasks, MIM-OOD consists of two bi-
directional Transformer networks: 1) the Anomalous Token Detector,
trained to identify anomalous tokens, and 2) the Generative Masked
Visual Token Model (MVTM), trained using the masked image modelling
(MIM) strategy and used to in-paint anomalous regions with in-distribution
tokens. To our knowledge, it is the first time MIM is leveraged for this task.

– We evaluated MIM-OOD on brain MRIs, where it substantially outperformed
AR models in detecting gliomas anomalies from BRATS dataset (DICE 0.458
vs 0.301) while also requiring a fraction of the inference time (9.5 s vs 244 s).

2 Related Works

Generative models have been at the core of the literature in unsupervised OOD
detection in medical image analysis. Vanilla approaches using Variational Auto-
Encoders (VAE) [8] are based on the assumption that VAEs trained on healthy
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data would not be able to reconstruct anomalous regions and consequently voxel-
wise residuals could be used as Anomaly Score (AS) [1]. In [21], authors found
that the KL-divergence term in the VAE loss function could be used to both
detect anomalous samples and localise anomalies in pixel space using gradi-
ent ascent. Chen et al. [5] suggested using the gradients of the VAE loss func-
tion w.r.t. pixels values to iteratively heal the images and turn them into in-
distribution samples, in a so-called restoration process. Approaches using Gen-
erative Adversarial Networks (GANs) [7] assume that anomalous samples are
not encoded in the normative distribution and that AS can be derived from
pixel-wise residuals between test samples and reconstructions [16]. As introduced
previously, the most recent approaches based on generative models rely on two-
stage image modelling [11,14,20]: the first stage is generally a tokenizer [12] that
encodes images in discrete latent representations (referred as tokens), followed
by a second stage that learns the normative distribution of tokens leveraging AR
models. To overcome the limitations of AR modelling, Pinaya et al. [13] propose
replacing AR with a latent diffusion model [15].

A novel and efficient strategy to model the latent distribution is generative
masked image modelling (MIM), which has been used for image generation [4].
MIM consists in 1) dividing the variables of a multivariate joint probability dis-
tribution into masked and visible subsets, and in 2) modelling the probability
of masked variables given visible ones. Masked Image Modelling strategy, when
applied to latent visual tokens is referred to as Masked Visual Token Mod-
elling (MVTM). MVTM produces high quality images by iteratively masking
and resampling the latent variables where the model is less confident. In [9],
authors improve the quality of the generated images by training an additional
model, named Token Critic, to identify which latent variables require resampling
by the MVTM model. The Token Critic is trained to identify which tokens are
sampled from the model vs which tokens were in the original image. Token Critic
and MVTM address the tasks of identifying inconsistent tokens and in-painting
masks tokens, respectively, which are similar to the roles of AR models in the
unsupervised OOD detection literature. We took inspiration from these efficient
strategies to design our novel MIM-OOD method.

3 Method

3.1 Vector Quantized Variational Auto-encoders

Vector Quantized Variational Auto-Encoders (VQ-VAEs) [12] encode images
x ∈ R

H×W into representations zq ∈ KH/f×W/f where K is a set of discrete
representations, referred as tokens, and f is a downsampling factor measuring
the spatial compression between pixels and tokens. A VQ-VAE first encodes
the images to a continuous space ze ∈ R

D×H/f×W/f . Continuous representations
are then discretized using an embedding space with |K| embeddings ek ∈ R

D.
Specifically, tokens are defined as the index of the embedding vector ek nearest
to ze: zq = argminj‖ze − ej‖2. For a detailed explanation, please refer to the
original paper [12].



38 S. N. Marimont et al.

3.2 Generative Masked Visual Token Modelling (MVTM)

Masked modelling consists in learning the probability distribution of a set of
occluded variables based on a set of observed ones from a given multivariate
distribution. Occlusions are produced by replacing the values of variables with
a special [MASK] token. Consequently, the task is to learn p(yM | yU ), where
yM , yU are the masked and unmasked exclusive subsets of Y . The binary mask
m = [mi]

N
i=1 defines which variables are masked: if i ∈ M then mi = 1 and yi

is replaced with [MASK]. The training objective is to maximize the marginal
cross-entropy for each masked token:

LMV TM =
∑

∀yi∈YM

log pφ(yi | YU ) (1)

In MVTM, Y is the set of tokens zq ∈ KH/f×W/f encoding image x. We use a
multi-layer bi-directional Transformer to model the probability p(yi | YU ) given
the masked input. We optimize Transformer weights φ using back-propagation
to minimize the cross-entropy between the ground-truth tokens and predicted
token for the masked variables. The upper section in Fig. 1 describes the MVTM
task.

The MVTM model can be leveraged to both in-paint latent regions using its
generative capabilities and to identify anomalous tokens. A naive approach to
identify anomalous tokens would be to use the predicted p(yi | YU ) to identify
tokens with low likelihood. However, by optimising over the marginals for each
masked token, the model learns the distribution of each of the masked variables
independently and fails to model the joint distribution of masked tokens [9].
Given the above limitation we introduce a second latent model specialized to
identify anomalous tokens.

Fig. 1. Training tasks diagram. Given a random mask m and an healthy image repre-
sentation (generated by the VQ-VAE), two Transformers are trained. Upper: MVTM is
trained to predict masked tokens. Lower: Anomalous Token Detector (ATD) is trained
to identify locally corrupted tokens.
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3.3 Anomalous Token Detector (ATD)

The Anomalous Token Detector (ATD) is trained to identify local corruptions,
similar to the task introduced in [17] but in latent space instead of pixel-space.
We create the corruptions by replacing the tokens in mask m with random
tokens. Consequently, our ATD bi-directional Transformer θ receives as input
ỹ = y� (1−m)+r�m, where r is a random set of tokens and � is element-wise
multiplication. It is trained to minimize a binary cross-entropy objective:

LTC =
N∑

i

mi log pθ(yi) + (1 − mi) log(1 − pθ(yi)) (2)

The bottom section in Fig. 1 describes the proposed ATD task. Both the
MVTM and ATD masks were generated by a random walk of a brush with a
randomly changing width.

3.4 Image Restoration Procedure

At inference time, our goal is to evaluate if an image is consistent with the learnt
healthy distribution and, if not, heal it by applying local transformations that
replace anomalies with healthy tissue to generate a restoration. We can then
localise anomalies by comparing the restored and original images. The complete
MIM-OOD pipeline consists of the following steps:

1. Tokenise the image using the VQ-VAE Encoder.
2. Identify anomalous tokens by selecting tokens with an ATD prediction

score greater than a threshold λ. Supplementary Materials include validation
set results for different λ values.

3. Restore anomalous tokens by in-painting anomalous tokens with genera-
tive masked modelling. We sample tokens based on the likelihood assigned by
MVTM: ŷt ∼ pφ(yt | YU ) and replace original tokens with samples in masked
positions: yt+1 = yt � (1 − m) + ŷt � m.

4. Decode tokens using the VQ-VAE Decoder to generate the restoration xT .
5. Compute the Anomaly Score (AS) as the pixel-wise residuals between

restoration xT and original image x0: AS = |xT − x0|. AS is smoothed to
remove edges with min and average − pooling filters [11].

Note that sampling from MVTM is done independently for each token, so it
is possible that sampled tokens are inconsistent with each other. To address this
issue, we can iterate T times steps 2 and 3. Additionally, we can also generate
R multiple restorations per input image (i.e., repeating for each restoration step
3). We evaluated different values of T steps and R restorations, and validation
set results are included in the Supplementary Materials. Figure 2 describes the
end-to-end inference pipeline.



40 S. N. Marimont et al.

Fig. 2. MIM-OOD pipeline: the Anomalous Token Detector predicts the likelihood of
tokens being anomalous. Tokens with ATD prediction score > λ are deemed anomalous
and replaced with samples from the MVTM model. We perform T iterations of the
above procedure in parallel to generate R number of restorations.

4 Experiments and Results

We evaluated MIM-OOD on brain MRIs (training on a dataset of normal images
and testing on one with anomalies) and compared our approach to an AR
benchmark thoroughly evaluated in the literature [11,14]. Two publicly avail-
able datasets were used:

– The Human Connectome Project Young Adult (HCP) dataset [18] with
images of 1,113 young and healthy subjects which we split into a training
set with 1013 images and a validation set with 100 images.

– The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) [2],
from the 2021 challenge. The dataset contains images with gliomas and comes
with ground-truth segmentation masks highlighting their location. We ran-
domly selected 100 images as validation set and 200 images as test set.

From both datasets we obtained pre-processed, skull-stripped T2-weighted struc-
tural images. We re-sampled both datasets to a common isotropic spacing of
1 mm and obtained random axial slices of 160× 160 pixels. Intensity values
were clipped to percentile 98 and normalized to the range [0, 1]. Latent models
were only trained with random flip and rotations augmentations. We included
broader-than-usual intensity augmentations during VQ-VAE training.

Network Architecture and Implementation Details: For the VQ-VAE we
used the architecture from [6] and trained with MAE reconstruction loss for 300k
steps. We used a codebook with |K| = 256 and D = 256 and a downsampling
factor f = 8. For the AR, ATD and MVTM we used a vanilla Transformer [19]
with depth 12, layer normalization, and a stochastic depth of 0.1. Both the ATD
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and the MVTM Transformers are bi-directional since there is no sequence order
to be enforced, in contrast to AR models. Transformers were trained for 200k
steps.

We used AdamW with a cosine annealing scheduler, starting with learning
rate of 5 × 10−5 and weight decay 1 × 10−5. Our MONAI [3] implementation
and trained models are made publicly available in1.

Performance Evaluation: The role of the latent models (AR and MVTM)
is both to identify anomalous latent variables and to replace them with in-
distribution values for restoration. To evaluate the identification task, we setup
a proxy task of classifying as anomalous tokens corresponding to image areas
where anomalies are present. To this end, we downsample annotated ground-
truth labels by the VQ-VAE scaling factor f = 8. Using token likelihood as a
Anomaly Score (AS) in latent space we computed the Average Precision (AP)
and the Area Under the Receiver Operating Characteristic curve (AUROC).
Table 1 summarizes the proxy task results on the validation set. Our proposed
approach relying on the ATD substantially outperforms the competitors.

Table 1. Results for Anomalous Token identification in BRATS validation set.

Method AP AUROC

AR [11] 0.054 0.773

MVTM [4] 0.084 0.827

MVTM + Token Critic [9] 0.041 0.701

MIM-OOD (Ours) 0.186 0.859

We then evaluate MIM-OOD’s capability to localise anomalies in image space
on the test set. We report the best achievable [DICE] score following the con-
ventions in recent literature [1,14]. Additionally, we report AP, AUROC and
inference time per batch of 32 images (IT (s)) using a single Nvidia RTX3090.

Table 2. Results for Pixel-wise Anomaly Detection in BRATS test set.

Method [DICE] AP AUROC IT (s)

AR restoration R = 4 (1) [11] 0.301 0.191 0.891 244

MVTM + Token Critic R = 4 [9] 0.201 0.131 0.797 5.4

MIM-OOD R = 4 (Ours) (2) 0.458 0.399 0.926 9.5

MIM-OOD R = 8 (Ours) (2) 0.461 0.404 0.928 19.9

1 - Implementation from [11] with 4 restorations and λNLL = 6, using
Transformer instead of PixelSNAIL AR architecture.
2 - Our approach with 4 and 8 restorations respectively, λ = 0.005 and
T = 8.

1 https://github.com/snavalm/MIM-OOD.

https://github.com/snavalm/MIM-OOD
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The results in Table 2 show that MIM-OOD improves the [DICE] score by
15 points (0.301 vs 0.458) when using the same number of restorations (R = 4),
while at the same time reducing the inference time (244 s vs 9.5 s for a batch
of 32 images). These results are consistent with the previous anomalous token
identification task where we showed that our ATD model was able to better
identify anomalous tokens requiring restorations. Qualitative results are included
in Fig. 3 and in Supplementary Materials.

It is worth noting that our AR baseline slightly underperforms compared
to previous published results (DICE of 0.301 vs 0.328 in BRATS dataset [13,
14]) due to different experimental setups: different modalities (T2 vs FLAIR),
training sets (HCP with N = 1,013 vs UK Biobank with N = 14,000) and pre-
processing pipelines. While both T2 and FLAIR modalities are common in the
OOD literature, T2 was chosen for our experiments because of the availability of
freely accessible anomaly-free datasets. The differences in experimental setups
makes results not directly comparable, however our approach shows promising
performance and high efficiency when comparing with both AR Ensemble ([14]
DICE 0.537 and 4,907 s per 100 image batch) and Latent Diffusion ([13] DICE
0.469 and 324 s per 100 image batch).

Fig. 3. Qualitative comparison. Our method outperforms the AR at both identifying
the anomalous latent tokens and generating restorations where the lesion has been
healed. This translates to a more reliable AS map (pink) vs ground truth (black).
(Color figure online)

5 Conclusion

We developed MIM-OOD, a novel unsupervised anomaly detection technique
that, to our knowledge, leverages for the first time the concept of Generative
Masked Modelling for this task. In addition, we introduce ATD, a novel app-
roach to identify anomalous latent variables which synergizes with the MVTM to
generate healed restorations. Our results show that our technique outperforms
previous AR-based approaches in unsupervised glioma segmentation in brain
MRI. In the future, we will perform further evaluations of our approach, testing
it on data with other brain pathologies and using additional image modalities.



MIM-OOD: Generative MIM for OOD in Medical Images 43

References

1. Baur, C., Denner, S., Wiestler, B., Albarqouni, S., Navab, N.: Autoencoders for
unsupervised anomaly segmentation in brain MR images: a comparative study.
Med. Image Anal. 69, 101952 (2021)

2. Menze, B.H., et al.: The multimodal brain tumor image segmentation benchmark
(BRATS). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014). https://doi.org/
10.1109/TMI.2014.2377694. Epub 2014 Dec 4

3. Cardoso, M.J., et al.: MONAI: an open-source framework for deep learning in
healthcare, November 2022. arXiv:2211.02701 [cs]

4. Chang, H., Zhang, H., Jiang, L., Liu, C., Freeman, W.T.: MaskGIT: masked gen-
erative image transformer. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 11315–11325 (2022)

5. Chen, X., You, S., Tezcan, K.C., Konukoglu, E.: Unsupervised lesion detection via
image restoration with a normative prior. In: Proceedings of The 2nd International
Conference on Medical Imaging with Deep Learning PMLR, vol. 102, pp. 540–556
(2020)

6. Esser, P., Rombach, R., Ommer, B.: Taming transformers for high-resolution image
synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 12873–12883 (2021)

7. Goodfellow, I.J., et al.: Generative adversarial networks. In: Advances in Neural
Information Processing Systems, pp. 2672–2680 (2014)

8. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. In: The 2nd Interna-
tional Conference on Learning Representations (ICLR) (2013)

9. Lezama, J., Chang, H., Jiang, L., Essa, I.: Improved masked image generation
with token-critic. In: Avidan, S., Brostow, G., Cissé, M., Farinella, G.M., Hassner,
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Abstract. Neural implicit representations (NIRs) enable to generate
and parametrize the transformation for image registration in a continu-
ous way. By design, these representations are image-pair-specific, mean-
ing that for each signal a new multi-layer perceptron has to be trained. In
this work, we investigate for the first time the potential of existent NIR
generalisation methods for image registration and propose novel methods
for the registration of a group of image pairs using NIRs. To exploit the
generalisation potential of NIRs, we encode the fixed and moving image
volumes to latent representations, which are then used to condition or
modulate the NIR. Using ablation studies on a 3D benchmark dataset,
we show that our methods are able to generalise to a set of image pairs
with a performance comparable to pairwise registration using NIRs when
trained on N = 10 and N = 120 datasets. Our results demonstrate the
potential of generalised NIRs for 3D deformable image registration.

Keywords: Image registration · Neural implicit representation ·
Generalisation · Periodic activation functions

1 Introduction

Image registration is the process of aligning two or more images taken from dif-
ferent sources or at different times, so that corresponding features in the images
are in the same spatial/anatomical position. The registration of medical images
is an important processing step for the reliable and quantitative interpretation of
changes occurring in multiple images, e.g., for disease monitoring [11] or motion
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correction and estimation [6,8,19]. Classical registration methods rely on pair-
wise optimisation strategies where a distance term between images is minimized
over a space of spatial transformations. Popular transformation models include
B-Splines [15,19] and velocity and flow fields [2,4], among others. In recent years,
several learning-based solutions have been proposed [10], where the most pop-
ular ones learn to predict the spatial transformations as displacement fields [3],
diffeomorphisms [5,18] or as parameters of the transformation model [7] between
the images using convolutional neural networks (CNNs). These methods leverage
the information of multiple image pairs during training and predict the trans-
formation between unseen images as the output of the CNN at inference.

Recently, neural implicit representations (NIRs) have been proposed to
encode continuous signals such as images in the weights of a multi-layer per-
ceptron (MLP) [16,21,23]. The spatial coordinates of the image grid are fed into
the MLP which is trained to approximate the image intensities. One advantage
is that this representation is continuous: the signal can be sampled at any point
in space without the need for interpolation. The expressiveness of these contin-
uous representations has been enhanced by Fourier Encoding [23] or periodic
activation functions [21]. The former work [23] proposed to map the input coor-
dinates to a Fourier feature space to overcome the difficulties of the MLP to
learn high-frequency functions. The latter work [21] achieves this by using sine
activation functions in the MLP. With both strategies NIRs are successfully used
to represent continuous functions in various applications in computer vision and
graphics [17]. In the medical imaging domain, NIRs have been investigated for
magnetic resonance image reconstruction in the image domain [20] and k-space
domain [13], radiation therapy [25], or image segmentation [14].

NIRs have also been studied to parametrize the transformation in a pair-
wise image registration setting [26]. This is different from other learning-based
approaches, where neural networks are used to predict a transformation, while
here the authors propose to represent the transformation by a neural network.
The inputs to the MLP are the coordinates of the image grid, while the outputs
are the coordinate’s displacements (instead of intensities). The MLP is trained
to minimize the image distance for each image pair, and the weights encode the
transformation between these images. One advantage of this implicit transfor-
mation representation is that it is continuous. A displacement can be estimated
for any voxel coordinate in the image space without interpolation, making the
method independent of the image grid resolution.

By design, a NIR is signal-specific and does not generalise to other signals.
This means that a transformation-encoding MLP for image registration is image-
pair-specific and for each new image pair, a new MLP has to be trained. This is
similar to the pairwise optimisation strategies in classical image registration.

Previous works have proposed several approaches for generalisation of NIRs
for continuous image representation, including hypernetworks [21,22], condi-
tioned MLPs [1] and modulation of the periodic activation functions [16]. In
[1], NIRs are used for shape representations and generalised by conditioning the
MLP on a latent vector as an additional input to the MLP. The latent vector is
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trained simultaneously with the MLP from the latent code of an autoencoder. In
[16], the authors propose to use the latent representations of local image patches
to modulate the amplitude of the sine activation functions. They use two MLPs,
a synthesis network using sine activations (the NIR) and a modulator network
using ReLU activations. The modulator network produces outputs (using the
latent codes) to modulate the amplitude of the sine activations of each layer in
the synthesis network.

Generalisation would have several advantages for NIRs in image registration.
First, it would not be necessary to train a new network for every new image
pair, which might be inefficient for large datasets even when using lightweight
networks such as MLPs. Second, the network could leverage the image features
as additional inputs, which are so far only used in the loss function to train
the MLP. Third, the training on multiple image pairs could yield image feature
sharing across the dataset, potentially benefiting the registration performance.

In this work, we adopt the methodological framework from [26], and inves-
tigate how NIRs can be generalised for image registration. In particular, we
explore how conditional MLPs and the modulation of periodic activation func-
tions can be leveraged to train a NIR for a group of images. We utilize global
image latent codes to inject the information of the images into the NIR. In [16],
local latent codes from image patches were used, but this approach is unfeasible
for 3D image registration, as for each spatial coordinate an image patch would
have to be sampled. This work presents the first step towards full generalisation
of NIR for image registration. Our contributions are three-fold:

– We explore for the first time generalisation techniques for NIRs in 3D image
registration.

– We propose novel strategies for generalisation of NIR adapted to the image
registration setting.

– In an ablation study, we show that modulation of periodic activations func-
tions, based on features extracted through a 3D encoder network, show high
potential for generalisation of NIRs on benchmark registration data.

2 Methodology

Given two d-dimensional images, a fixed image F and a moving image M with
F,M : Ω ⊂ Rd → R. The aim of image registration is to find an optimal
spatial transformation φ : Rd → Rd such that the transformed moving image
is most similar to the fixed image M ◦ φ ≈ F . Typically, this is formulated as
an optimisation problem φ∗ = arg maxφ J (F,M, φ) where the distance between
the images is minimised subject to constraints put on the transformation. We
denote the objective function J as

J (F,M, φ) = D(F,M ◦ φ) + αR(φ), (1)

with an image distance measure D, a regulariser R posing some additional con-
straints on the transformation φ and a regularisation parameter α ∈ R+ deter-
mining the influence of R on the solution. In classical methods, this problem is
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Fig. 1. Overview of architectures for neural implicit representations. (a) Image-pair-
specific MLP with ReLU or SIREN (with sine activation functions). (b) Conditioned
SIREN (MLP + sine activations). (c) Amplitude-Modulated SIREN. (d) Quadrature
Amplitude-Modulated SIREN.

solved iteratively for a pair of images, e.g., using gradient-based optimisation.
We now introduce NIRs for image registration and generalisation techniques.

2.1 Neural Implicit Representations for Image Registration

NIR can be used to model the transformation φ [26]. An MLP fθ with trainable
parameters θ is used to approximate the transformation φ(x) = x + u(x) with
x ∈ Ω between a given pair of images F,M by estimating u(x) = fθ(x). The
L-layer network is modelled as fθ = fL ◦ fL−1 ◦ . . . ◦ f1, where

hl = fl(hl−1) = ψ(Wlhl−1 + bl), 0 < l ≤ L.

The dense matrix Wl and the bias bl are learned, while the activation function ψ
is fixed to either ReLU or sine activations (SIRENS). The variable hl denotes the
hidden feature vector for the l-th layer, with the initial feature vector h0 = x.

2.2 Generalised Neural Implicit Representations

Our proposed generalised NIRs are based on conditioned MLPs [1] and modu-
lated SIRENs [16]. We adapt both approaches and describe novel strategies to
generalise NIRs to image registration. All presented approaches have in common
that we first obtain individual latent representations zF and zM for the fixed
and moving image, respectively which are processed in three different ways.

Conditioned Networks. In conditioned networks, the latent feature rep-
resentation zF and zM are appended to the input coordinates x, yielding
h0 = [x, zF , zM ]. We use a SIREN network as base network, i.e., ψ equals the
sine activation. Hence, we refer to this architecture as conditioned SIREN or C
SIREN.
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Amplitude-Modulated (AM) Periodic Activation Functions. While con-
ditioned SIRENs use zF and zF only at the input stage, the latent representa-
tions zF and zM are used to modulate the amplitude of the sine activations ψ
in every layer. The modulation is realized by a vector αl following

αl = σ(Wα,l[αl−1, zF , zM ]� + bα,l), 0 < l ≤ L (2)
α0 = σ(Wα,l[zF , zM ]� + bα,l) (3)

where Wα,l is a dense matrix, bα,l denotes the bias of the MLP. The modulated
SIREN reads as point-wise product between the modulation vector αl and the
hidden features hl, denoted by �

hl = αl � fl(hl−1) = αl � ψ(Wlhl−1 + bl), 0 < l ≤ L.

This modulations implicitly influences the frequency of subsequent layers [16].
We refer to this modulation as AM SIREN.

Quadrature Amplitude-Modulated (QAM) Periodic Activation Func-
tions. Up to know, we stacked the latent codes zF and zM for further processing.
However, we can also process them separately. Inspired by quadrature ampli-
tude modulation used in telecommunication systems, we propose to compose
two modulated signal, which are then further processed by subsequent layers as

hl = αl � f1,l(hl−1) + βl � f2,l(hl−1)
= αl � ψ1(W1,lhl−1 + b1,l) + βl � ψ2(W2,lhl−1 + b2,l), 0 < l ≤ L.

The parameters W1,l, W2,l, b1,l and b2,l denote the dense matrices and biases of
the two components. ψ1 and ψ2 are defined as the sine and cosine activation func-
tions, respectively. The modulation parameters α and β are defined according
to Eqs. (2) and (3). We denote this modulation technique as QAM SIREN.

2.3 Image Encoding Using Denoising Autoencoders

Image information is provided to the MLP in form of a latent vector z ∈ RZ ,
encoding the features of the image in a low dimension space with dimension Z
(see Fig. 1). We use a CNN encoder to encode the images F and M into latent
vectors zF , zM ∈ RZ . The CNN has four layers with channel dimensions [32, 64,
128, 256]. Each layer consists of a convolutional layer with stride 2 followed by
batch normalization, leaky ReLU activation and max pooling. The last layer is
followed by a linear layer.

We pre-train the weights of the encoder as part of a denoising autoencoder.
The decoder starts with a linear layer, followed by four layers consisting of trans-
posed convolutions, batch normalization and leaky ReLU activation function.
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3 Materials and Experiments

3.1 Data

We evaluate the performance of our methods on publicly available benchmark
data from the Learn2Reg challenge 20221 [12]. The dataset consists of computed
tomography (CT) images of the lung from 150 patients. The data is originally
taken from the National Lung Screening Trial2 (NLST) [24], a randomized multi-
center study for screening and early detection of lung cancer. For each patient,
images at inspiration and expiration are available and the goal of image registra-
tion is to estimate respiratory motion, which is important for multiple clinical
tasks such as radiotherapy planning, and general assessment of the lungs.

For the Learn2Reg challenge, a subset of the data was pre-processed: all
images were resampled to an isotropic resolution of 1.5mm and cropped to an
image size of [224, 192, 224]. The lungs were automatically segmented and key-
points (only for the training data) were automatically extracted. For the details
of the pre-processing, lung segmentation and keypoint extraction, we refer to the
Learn2Reg challenge 2022.

3.2 Experimental Design

We trained all methods using Eq. (1) with Normalized Cross Correlation as image
distance measure D and Bending Energy [19] as regularization with α = 10 as
suggested in [26]. We designed different experiments to evaluate our proposed
methods regarding different aspects: (i) generalisation strategy, (ii) MLP archi-
tecture, (iii) latent feature vector training, (iv) training dataset size.

First, we perform an ablation study on the different settings using a dataset of
ten CT image pairs. As a baseline, we registered each pair using the NIR method
(MLP and SIREN) by [26] using their publicly available code with the default
parameters. We compare this pairwise approach to C SIRENs, AM SIRENs and
QAM SIRENs (cp. Sect. 2.2), trained and tested on the same ten image pairs.
We pre-trained the autoencoder using a denoising task on an independent set
of images using a 64-dimensional latent vector. In the ablation study we test
different architectures for the MLPs, in particular the number of layers (3 and 5
layers) and hidden units (256 and 512). In addition, we test the effect of freezing
or unfreezing the weights of the image feature encoder. By unfreezing the weights,
the encoder is fine-tuned simultaneously with the training of the MLP. Second,
we evaluate the effect of a larger training set of N = 120 on the performance on
the same ten datasets as before for AM SIREN with varying architectures.

All networks were trained using the ADAM optimiser with a learning rate
of 10−5 and coordinate batch size of 10,000 until convergence. We implemented
the models in PyTorch (1.13.1). The code is publicly available3.

1 https://learn2reg.grand-challenge.org/.
2 https://www.cancer.gov/types/lung/research/nlst.
3 https://github.com/vamzimmer/generalized_idir.

https://learn2reg.grand-challenge.org/
https://www.cancer.gov/types/lung/research/nlst
https://github.com/vamzimmer/generalized_idir
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Fig. 2. Qualitative registration results using different pairwise (MLP, SIREN) methods
and methods generalised over ten image pairs (C SIREN, AM SIREN, QAM SIREN).

3.3 Evaluation Measures

As ground truth deformations are typically not known, we evaluate the registra-
tion performance using the Dice overlap and the robust (95%) Hausdorff distance
(HD95) on the lung masks and the mean squared error between the keypoints
(MSEkp). Additionally, we evaluate the plausibility of the resulting transfor-
mations by computing the standard deviation of the logarithm of the jacobian
determinant of the displacement field (SDLogJ). We test for statistical signif-
icance using a paired Wilcoxon signed-rank test between the pairwise SIREN
baseline and each generalized model. We consider significance at p < 0.05.

4 Results

The results for the ablation study for the generalisation over a set of ten
image pairs are reported in Table 1 and qualitative results are shown in Fig. 2.
AM SIREN yield competitive results to the baseline pairwise registration with
SIREN, indicating that the generalisation on these ten image pairs was success-
ful. We observe that with deeper MLPs and with fine-tuning the latent code
(Enc) the performance increases, except for QAM SIREN. C Siren benefits most
from latent code fine-tuning. However, at the same time the number of network
weights increases up to 80 Mio, when a full 3D autoencoder is trained simul-
taneously with the (originally lightweight) MLP. The best results among the
generalisation methods are obtained by AM SIREN with 5 layers and 256 hid-
den units (best overall HD95) and 512 hidden units (best overall Dice). For the
latter model, all metrics do not show any statistical difference to the baseline
SIREN. The results are similar to the pairwise SIREN with only 3 layers and
256 hidden units, indicating that deeper, more complex NIRs are necessary to
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Table 1. Architecture Ablation. The generalisation of NIR for image registration to
a group of image pairs (N = 10) is compared for several architectures (varying layers
and hidden units) to the baseline approach of pairwise MLP and SIREN [26]. Different
generalisation methods are C SIREN, AM SIREN and QAM SIREN either with fine-
tuning of the latent image code (Enc) or without. Gray boxes: p > 0.05 (not sig.).

Method Arch. Parameters MSEkp Dice HD95

Initial – – 6.97 ± 2.21 0.928 ± 0.01 5.61 ± 2.17

C SIREN
3l-256 182,659 2.46 ± 0.93 0.966 ± 0.01 2.49 ± 0.99
3l-256 Enc 80,181,444 2.00 ± 0.63 0.970 ± 0.01 2.63 ± 1.52
3l-512 610,947 2.48 ± 1.00 0.969 ± 0.01 2.38 ± 0.96

AM SIREN

3l-256 363,523 1.51 ± 0.85 0.980 ± 0.01 1.72 ± 1.21
3l-256 Enc 80,362,308 1.47 ± 0.67 0.981 ± 0.01 1.79 ± 1.27
5l-256 692,227 1.34 ± 0.69 0.983 ± 0.01 1.18 ± 0.32
3l-512 1,251,331 1.37 ± 0.86 0.983 ± 0.01 1.52 ± 1.17
5l-512 2,433,027 1.24 ± 0.62 0.984 ± 0.01 1.24 ± 0.60

QAM SIREN
3l-256 627,971 1.78 ± 1.04 0.980 ± 0.01 1.59 ± 1.08
3l-256 Enc 80,626,756 1.92 ± 1.22 0.978 ± 0.01 1.80 ± 1.28
3l-512 2,304,515 1.44 ± 0.84 0.983 ± 0.00 1.20 ± 0.60

Pairwise MLP 3l-256 133,379 1.65 ± 0.81 0.974 ± 0.01 3.00 ± 3.84
Pairwise SIREN 3l-256 133,379 1.13 ± 0.48 0.984 ± 0.02 1.32 ± 0.50

Table 2. Generalisation of NIR on the same N = 10 image pairs as in Table 1. Training
was performed with N = 120 datasets for Amplitude-Modulated (AM) SIRENs.

Method Arch MSEkp Dice HD95

AM SIREN 3l-256 2.94 ± 0.98 0.958 ± 0.02 4.16 ± 2.27
5l-256 2.24 ± 0.84 0.968 ± 0.01 2.75 ± 1.24
3l-512 2.45 ± 0.85 0.966 ± 0.01 3.19 ± 1.51
5l-512 1.87 ± 0.80 0.973 ± 0.01 2.43 ± 1.70

encode the transformations between multiple image pairs. QAM and C SIREN
perform slightly worse, however, they still reach an MSEkp of 2.48 as maximum.
QAM SIREN outperforms C SIREN, emphasising the capabilities of modulated
SIRENs for generalisation. For all methods, the SDLogJ is in the order of 10−4

with 0% of negative Jacobian determinants (min: 3.98; max: 4.03), indicating
that the regularization correctly constrains the transformations.

The results for training on N = 120 for AM SIREN with varying architectures
are reported in Table 2. Although the MLP was trained on many image pairs,
the registration performance on the ten test pairs does not deteriorate, with a
minimum MSEkp of 1.87. This indicates that the AM SIREN can encode the
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transformation between multiple image pairs accurately. As expected, deeper
MLPs perform better, as they can capture more information.

5 Discussion and Conclusion

In this work, we explored the generalisation abilities of NIRs for image regis-
tration. We investigated two approaches for generalising NIRs: conditioning the
MLP with image feature vectors and modulating the periodic activation func-
tions using the images encoder as a modulator network. Our experiments show
the superior performance of the latter approach using modulation of activation.

To the best of our knowledge, this is the first work on generalising NIRs
for image registration. To this end, we focused on generalising the registration
to a group of image pairs and not yet to unseen images. We tested generalisa-
tion strategies which have been developed for signal approximation, but image
registration is a much more complex task, and our results suggest that more
research is needed to obtain complete generalisation. Our work presents a first
step towards generalisation and shows potential directions of further research,
especially with regards to the modulation of sine activation functions.

Another limitation of our study is that we present results from a single mono-
modal benchmark dataset. In the future, we plan to include more diverse data
and datasets, including multi-modal data. We also did not compare to other
baseline registration methods such as [11,15] for classical pairwise and [3,9,18]
for learning-based methods. Our objective was not to propose a new state-of-
the-art but rather show a proof of concept for the generalisation of NIRs for
image registration.
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Abstract. Generative latent diffusion models have been established as
state-of-the-art in data generation. One promising application is gener-
ation of realistic synthetic medical imaging data for open data sharing
without compromising patient privacy. Despite the promise, the capacity
of such models to memorize sensitive patient training data and synthesize
samples showing high resemblance to training data samples is relatively
unexplored. Here, we assess the memorization capacity of 3D latent diffu-
sion models on photon-counting coronary computed tomography angiog-
raphy and knee magnetic resonance imaging datasets. To detect poten-
tial memorization of training samples, we utilize self-supervised models
based on contrastive learning. Our results suggest that such latent diffu-
sion models indeed memorize training data, and there is a dire need for
devising strategies to mitigate memorization.

Keywords: Deep generative models · Latent diffusion · Data
memorization · Patient privacy · Contrastive learning

1 Introduction

Contemporary developments in deep generative modeling have lead to perfor-
mance leaps in a broad range of medical imaging applications [6,8,10,17–19]. One
promising application is generation of novel synthetic images [4,5,9,11,12]. Syn-
thetic images can be used for data diversification by synthesizing samples belong-
ing to underrepresented classes for training of data-driven models or sharing of
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Fig. 1. 3D Latent diffusion models first project 3D sub-volumes onto a lower dimen-
sional latent space for computational efficiency using an encoder. Diffusion models are
then trained to gradually denoise the noisy latent space representation. Upon complete
denoising, the representation is projected back onto the pixel space using a decoder.

synthetic data for open science without compromising patient privacy. State-
of-the art generative models are based on latent diffusion [13]. These models
first project data onto a compressed latent space, learn latent space distribution
through a gradual denoising process, and synthesize novel latent space samples
followed by projection onto a high dimensional pixel space [13]. Despite the abil-
ity to synthesize high quality samples, recent studies in computer vision suggest
that latent diffusion models (LDMs) are prone to training data memorization
[3,15,16]. This can be more critical in medical imaging, where synthesizing real
patient data defeats the whole purpose of preserving data privacy. These com-
puter vision studies further suggest that the phenomenon of data memorization
is more prevalent in low data regimes [15], which is very often the case in the
medical domain. Despite the importance of patient privacy, it is surprising that
data memorization in generative models has received little attention in the med-
ical imaging community.

Here, we investigate the memorization capacity of 3D-LDMs in medical
images. To this end, we train LDMs to generate 3D volumes (Fig. 1) and compare
novel generated samples with real training samples via self-supervised models
(Fig. 2) for potential memorization. For assessment, we perform experiments on
an in-house photon-counting coronary computed angiography (PCCTA) dataset
and a public knee MRI (MRNet) dataset [2]. Our results suggest that LDMs
indeed suffer from training data memorization.

1.1 Data Generation via LDMs

LDMs belong to a family of generative models that learn to generate novel
realistic samples by denoising normally distributed noise in a compressed lower
dimensional latent space [13]. LDMs consist of two models:
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Latent Encoding Model. First, an encoder learns to project samples onto
lower dimensional latent space. This lower dimensional latent space is typically
learned using an autoencoder. The autoencoder is trained to encode the image
x ∈ R

L×H×W to a latent space z ∈ R
L′×H′×W ′

using an encoder E having
parameters θE (z = E(x)), followed by reconstruction via a decoder D having
parameters θD (x̂ = D(z)). Overall, the training is performed to minimize the
following reconstruction loss function:

Lrec(θE , θD) = Ep(x) [‖x − x̂‖1] (1)

where Ep(x) denotes expectation with respect to data distribution p(x). Since
the encoder and decoder are trained simultaneously with the aim to recover
the original image from a lower dimensional representation, the encoder learns
to project the data onto semantically meaningful latent space without loosing
much information.

Diffusion Model. Afterwards, a deep diffusion probablistic model (DDPM)
is trained to recover meaningful latent space from normally distributed noise.
DDPMs consist of a forward and reverse diffusion step. In the forward step
normally distributed noise is added to the latent representation (z) in small
increments. At any time t, the relation between zt and zt−1 can be expressed
as:

q (zt|zt−1) = N
(
xt;

√
1 − βtzt−1, βtI

)
(2)

where βt is the variance schedule [7] and q (zt|zt−1) is the conditional distri-
bution. In the reverse step, a model is trained to approximate q (zt−1|zt) as
pθ (zt−1|zt). Once trained, the model can be used to synthesise novel represen-
tations (z0) given zT ∼ N (0, I). The latent code z0 can then be fed as input to
the decoder (D) to generate novel samples from data distribution p(x).

1.2 Memorization Assessment

Although LDMs have outperformed their counterpart generative models in med-
ical image synthesis in terms of image quality and diversity [9,12], their capacity
to memorize training samples remains relatively unexplored. This is surprising,
considering that one of the main goals of sharing synthetic data is to preserve
patient privacy. Memorization of patient data defeats this purpose, and the qual-
ity of the synthesized samples becomes secondary.

Since the primary focus of this work is memorization, it is important to first
define what constitutes “memorization”. Akbar et al. [1] define memorization
as a phenomenon where generative models can generate copies of training data
samples. However, they do not explicitly define what a “copy” means, and their
use of “copy” seems to be limited to a synthesised sample that is identically
oriented to a training sample and shares the same anatomical structures with
minor differences such as image quality. They detect potential copy candidates
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Fig. 2. a - A self-supervised model is trained based on contrastive learning to learn
a lower dimensional embedding where augmented versions of the same sample are
attracted and different samples are repelled. b - The trained model is then used to
identify if the synthetic samples are copies of the real samples

by computing pairwise normalized correlation between synthesized and training
samples. This fails to take into account that synthetic samples can also be flipped
or rotated versions of the training samples, which can easily result as a conse-
quence of data augmentation strategies typically used for training deep models.
In our work, we expand the definition of “copy” to further include rotated and
flipped versions of a training sample. This definition can further be broadened to
include other forms of variations such as slight deformation. However, for sim-
plicity here we limit the additional variations to flipping and rotation. To detect
potential copies, we first train a self-supervised model based on the contrastive
learning approach (Fig. 2). The aim is to have a low dimensional latent represen-
tation of each sample such that the augmented versions of a sample have similar
latent representations, and different samples have distinct representations. The
model is trained to minimize the following loss function [14]:

Lcon(θcon) = Ep(x)

[
max(0,

∥∥fθcon
(x) − fθcon

(x+)
∥∥
2

− ∥∥fθcon
(x) − fθcon

(x−)
∥∥
2
)
]

(3)

where x corresponds to a training volume, x+ is the similar sample which is an
augmented version of x, x− denotes the dissimilar sample which is just a different
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volume, and fθcon
(.) is the networks with trainable parameters θcon that maps

input x to a low dimensional representation.
After training fθcon

(.), we compare the embeddings of the synthesized sam-
ples with the real samples in the low dimensional representational space.

2 Methods

2.1 Datasets

To demonstrate memorization in medical imaging, we selected two datasets cov-
ering a range of properties in terms of imaging modalities, organs, resolutions, 3D
volume sizes, and dataset sizes. We conducted experiments on in house photon-
counting coronary computed tomography angiography (PCCTA) dataset and a
publicly available knee MRI (MRNet) dataset [2]. PCCTA images were acquired
from 65 patients on a Siemens Naeotom Alpha scanner at the University Med-
ical Centre Mannheim. Ethics approval was approved by the ethics commit-
tee of Ethikkommision II, Heidelberg University (ID 2021–659). Images were
acquired with a resolution of approximately 0.39 mm × 0.39 mm × 0.42 mm. In
all patients, coronary artery plaques were annotated by an expert radiologist.
Sub-volumes of size 64 × 64 × 64 surrounding plaques were extracted, resulting
in 242 sub-volumes for training and 58 sub-volumes for validation in total. In
MRNet, T2-weighted knee MR images of 1130 subjects were analyzed, where 904
subjects were used for training and 226 for validation. All volumes were cropped
or zero-padded to have sizes of 256 × 256 × 32. In both datasets, each volume
was normalized to have voxel intensity in the range [–1, 1].

2.2 Networks

LDM architecture, training procedures and loss functions were directly adopted
from Khader et al. [9]. For the training of the diffusion and autoencoder models,
all hyperparameters were matched with the ones selected in Khader et al. [9]. The
only exception was the batch size in the diffusion models, which was set to 10 to
fit models into the GPU VRAM. For contrastive learning, network architecture
was adopted from the encoder in the latent encoding model. The encoder was
used to reduce the sub-volume dimensions to 4×4×4 and 8 channels. Afterwards,
flattening was performed followed by two densely connected layers to reduce the
latent space embeddings to dimensions 32×1. All hyperparameters except for the
learning rate and epochs were identical to the latent encoding model. Learning
rate and epochs were tuned using a held out validation data.

3 Results

3.1 Memorization Assessment

First, 1000 synthetic PCCTA samples (approx. 4 × training data) were gen-
erated using the trained LDM. All synthetic and training samples were then
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Fig. 3. MSD distributions of copy candidates (Synthesized) and closest validation sam-
ples (Real-Val) in a - PCCTA and c - MRNet datasets are shown. Higher density near
zero implies more similarity. MSD distributions of copy candidates in b - PCCTA and
d - MRNet datasets manually annotated as copies or novel samples are shown.

passed through the self-supervised models (Sect. 1.2) to obtain corresponding
lower dimensional embeddings. Next, mean square distance (MSD) was com-
puted between all training and synthetic embeddings. For each training sample,
the closest synthetic sample was considered as a copy candidate. Figure 3a shows
MSD distribution of the candidate copies. To get a better idea of the MSD scale,
for each training sample the closest real validation sample in the embedding space
was also considered (Fig. 3a). Low values on the x-axis denote lower distance or
high similarity. The MSD distribution of synthetic samples is more concentrated
near zero compared to the MSD distribution of real validation samples.

To further assess if the candidate synthesized samples are indeed copies, each
candidate copy was also labelled manually as a copy or a novel synthetic sample
via visual assessment by consensus of two users. As shown in Fig. 3b, most of
the candidates with low MSD values are copies. Upon comparing copies with
novel samples in 3b, we also observe that 59% of the training data has been
memorized. This number is alarming, as it indicates memorization at a large
scale. It is also important to note that this percentage is based on just 1000
synthesized samples. Increasing the synthetic samples could lead to an increased
number of copies. Figure 4a shows some copy candidates. It can be seen that
synthetic samples show stark resemblance with the training samples.
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Fig. 4. Representative samples and copy candidates from the a - PCCTA and b -
MRNet dataset are shown. Columns corresponds to real or synthesized (Synth) samples,
and rows correspond to six cross sections selected from the sub-volumes. Synthesized
samples have a stark resemblance with the real training samples. A copy candidate
that is a flipped version of a training sample is also shown (b - Volume 1).

We then assess memorization in the MRNet dataset, which is relatively a
larger dataset containing 904 training volumes. 3600 synthetic samples (approx.
4 × training data) were generated using the LDM trained on the MRNet dataset.
Figure 5c shows MSD distribution of synthetic candidate copies and validation
samples. We observe similar patterns in the MRNet dataset. However, MSD
distribution of synthetic candidate copies in MRNet is further away from zero
compared to the PCCTA dataset. This can be explained by the training data
size, as models with large training datasets get to learn distribution from many
diverse samples and thus are less likely to memorize the data. We also annotated
150 randomly selected copy candidates as copy or novel samples (Fig. 5d). We
find 33% of the copy candidates to be copies. Figure 4-b also shows representative
samples.

3.2 Data Augmentation

We also analyze the effect of data augmentation on memorization by comparing
MSD distribution of copy candidates generated by models trained with augmen-
tation (augmented models) and without augmentation (non-augmented models)
on the PCCTA dataset. Figure 5 compares the MSD distributions. MSD dis-
tribution of the non-augmented model tends to have higher density near zero.
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Overall, 41% of the training dataset is memorized in augmented models com-
pared to 59% in non-augmented models. This suggests that the non-augmented
models tend to memorize more than the augmented models. One possible expla-
nation could be artificial expansion of datasets through augmentation, which can
in turn lead to fewer repetitions of identical forms of a sample during training.

Fig. 5. a - MDS distribution of copy candidates for models trained with and without
data augmentation. b - MSD distributions of copy candidates manually annotated as
copies or novel samples on models trained with data augmentation.

4 Discussion

There has been a considerable amount of focus on generative models in medical
image synthesis. Here, we tried to assess if these models actually learn to synthe-
size novel samples as opposed to memorizing training samples. Our results sug-
gest that LDMs indeed memorize samples from the training data. This can have
broad implications in the medical imaging community, since leakage of patient
data in the form of medical images can lead to violation of patient privacy.

An interesting future prospect could be to understand the underlying reasons
leading to memorization. This will also enable us in suggesting potential solutions
to mitigate memorization. Somepalli et al. [16] suggests that data duplication
during training could be an important factor, as a repeated sample is seen many
more times during training. They further suggest that unconditional models
primarily suffer from data memorization in low data regimes, which is similar
to what we observe when we compare memorization in PCCTA and MRNet
datasets. Nonetheless, it is an important research direction which warrants future
work. Another interesting future direction could be to compare memorization in
different diffusion models such as 2D diffusion models, text conditioned diffusion
models, and 3D diffusion models with different training settings.

To our knowledge, this is the first study assessing memorization in 3D LDMs
for medical image synthesis. Another independent study recently investigated
memorization in deep diffusion models [1]. There are several differences between
our study and Akbar et al. : 1) Akbar et al. trained 2D models on medical
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images, whereas we trained 3D models which are more coherent with the nature
of the medical images. 2) Akbar et al. is based on diffusion models in pixel space,
which are not easily applicable to 3D medical images due to high computational
demands. To the contrary, here we used LDMs, which first project the data onto
a low dimension latent space to reduce computational complexity while ensuring
that the relevant semantic information is preserved. 3) Akbar et al. used cor-
relation between images in the pixel space to assess memorization. While this
approach detects identical copies, it cannot detect augmented or slightly different
copies. Here, we trained a self-supervised model that can also account for aug-
mented versions of the training samples, which might be missed by computing
regular correlations in pixel space. 4) We also assessed memorization on models
that were trained using augmented data. This is a more realistic scenario while
training deep models on medical images due to data scarcity.
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Abstract. Generative AI has received substantial attention in recent
years due to its ability to synthesize data that closely resembles the orig-
inal data source. While Generative Adversarial Networks (GANs) have
provided innovative approaches for histopathological image analysis, they
suffer from limitations such as mode collapse and overfitting in discrimi-
nator. Recently, Denoising Diffusion models have demonstrated promis-
ing results in computer vision. These models exhibit superior stability
during training, better distribution coverage, and produce high-quality
diverse images. Additionally, they display a high degree of resilience
to noise and perturbations, making them well-suited for use in digital
pathology, where images commonly contain artifacts and exhibit signif-
icant variations in staining. In this paper, we present a novel approach,
namely ViT-DAE, which integrates vision transformers (ViT) and diffu-
sion autoencoders for high-quality histopathology image synthesis. This
marks the first time that ViT has been introduced to diffusion autoen-
coders in computational pathology, allowing the model to better capture
the complex and intricate details of histopathology images. We demon-
strate the effectiveness of ViT-DAE on three publicly available datasets.
Our approach outperforms recent GAN-based and vanilla DAE methods
in generating realistic images.

Keywords: Histopathology · Diffusion Autoencoders · Vision
Transformers

1 Introduction

Over the last few years, generative models have sparked significant interest in
digital pathology [9]. The objective of generative modeling techniques is to cre-
ate synthetic data that closely resembles the original or desired data distribu-
tion. The synthesized data can improve the performance of various downstream
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tasks [24], eliminating the need for obtaining large-scale costly expert annotated
data. Methods built on Generative Adversarial Networks (GANs) have provided
novel approaches to address various challenging histopathological image analysis
problems including stain normalization [20], artifact removal [3], representation
learning [1], data augmentation [27,29], etc. However, GAN models experience
mode collapse and limited latent size [17]. Their discriminator is prone to over-
fitting while producing samples from datasets with imbalanced classes [28]. This
results in lower quality image synthesis.

Diffusion models, on the other hand, are capable of producing images that
are more diverse. They are also less prone to overfitting compared to GANs [28].
Recently, Denoising Diffusion Probabilistic models (DDPMs) [8] and score-based
generative models [23] have shown promise in computer vision. Ho et al. present
high quality image synthesis using diffusion probabilistic models [8]. Latent dif-
fusion models have been proposed for high-resolution image synthesis which are
widely applied in super resolution, image inpainting, and semantic scene synthe-
sis [18]. These models have been shown to achieve better synthetic image quality
compared to GANs [4]. Denoising Diffusion Implicit models (DDIMs) construct
a class of non-Markovian diffusion processes which makes sampling from reverse
process much faster [22]. This modification in the forward process preserves the
goal of DDPM and allows for deterministically encoding an image to the noise
map. Unlike DDPMs [15], DDIMs enable control over image synthesis owing to
the latent space flexibility (attribute manipulation) [17].

Motivation: Diffusion models have the potential to make a significant impact
in computational pathology. Compared with other generative models, diffu-
sion models are generally more stable during training. Unlike natural images,
histopathology images are intricate and harbor rich contextual information which
can make GANs difficult to train and suffer from issues like mode collapse where
the generator produces limited and repetitive outputs failing to capture the
complex diversity in histopathology image distribution. Diffusion models, on the
contrary, are more stable and provide better distribution coverage leading to
high fidelity diverse images. They are considerably more resistant to perturba-
tions and noise, which is crucial in digital pathology because images routinely
contain artifacts and exhibit large variations in staining [10]. With desirable
attributions in high quality image generation, diffusion models have the capac-
ity to enhance various endeavors in computational pathology including image
classification, data augmentation, and super resolution. Despite their potential
benefits, diffusion models remain largely unexplored in computational pathology.

Recently, Preechakul et al. [17] proposed a diffusion autoencoder (DAE)
framework which encodes natural images into a representation using semantic
encoder and uses the resulting semantic subcode as the condition in the DDIM
image decoder. The encoding of histopathology images, however, presents a sig-
nificant challenge, primarily because these images contain intricate microenvi-
ronments of tissues and cells, which have complex and diverse spatial arrange-
ments. Thus, it is imperative to use a semantic encoder that has a high capac-
ity to represent and understand the complex and global spatial structures
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Fig. 1. Overview of the proposed ViT-DAE framework. Training: In Stage-1, an input
image is encoded into a semantic representation by the ViT. This representation is
taken as the condition for the conditional DDIM to decode the noisy image. In Stage-
2, a latent DDIM is trained to learn the distribution of semantic representations of
data. Generative sampling: We synthesize the semantic representations from the
latent DDIM and feed it to the conditional DDIM along with randomly initialized
noisy image to generate new histopathology samples.

present in histopathology images. Towards this direction, we propose to intro-
duce vision transformer (ViT) [5] as the semantic encoder instead of their con-
volutional neural network (CNN) counterpart in DAE; our proposed method
is called ViT-DAE. The self-attention [25] mechanism in ViT allows to better
capture global contextual information through long-range interactions between
the regions/patches of images. A previous study [16] has shown that 1) ViTs
perform better than CNNs and are comparable to humans on shape recognition,
2) ViTs are more robust against perturbations and image corruptions. Based
on these findings, ViT presents a promising solution in encoding meaningful
and rich representations of complex and noisy tissue structures, where shape
and spatial arrangement of biological entities form two crucial motifs. Hence we
hypothesize that a transformer-based semantic encoder in DAE would result in
higher quality histopathology image synthesis.

To summarize our main contributions, (1) We are the first to introduce
conditional DDIM in histopathology image analysis, and (2) We enhance the
conditional DDIM by incorporating ViT as a semantic encoder, enabling it to
holistically encode complex phenotypic layout specific to histopathology. We
demonstrate the effectiveness of ViT-DAE on three public datasets; it outper-
forms recent GAN-based and vanilla DAE methods, in generating better images.
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2 Proposed Method

To generate histopathology images that are meaningful and of diagnostic quality,
we propose ViT-DAE, a framework that utilizes a transformer-enhanced diffusion
autoencoder. Our method consists of two stages of training. Stage-1 comprises
i) a ViT-based semantic encoder, which captures the global semantic information
of an input image, and ii) a conditional DDIM which is an autoencoder, takes
in input the semantic representation by ViT as a condition and the noisy image
to reconstruct the input image. In Stage-2 with the frozen semantic encoder, a
latent DDIM is trained to learn the distribution of semantic representation of
the data in the latent space. Following this, for Generative sampling, first the
latent DDIM is fed with a noisy vector, outputting a synthesized sample from
the learned semantic representation distribution. This, along with a randomly
initialized noisy image is then fed to the conditional DDIM for image generation.
An overview of the proposed framework is shown in Fig. 1.

Vision-Transformer Enhanced Semantic Encoder. An input image x0 is
encoded into a semantic representation zsem via our ViT based semantic encoder
zsem = Encφ(x0). We split the input image into patches and apply a linear pro-
jection followed by interacting them in the transformer encoder. The output
class token, cls, is projected to dimension d = 512 via a linear layer, and then is
used as a condition for the decoder part of DAE. The semantic representations
from the input images encoded by the ViT provide an information-rich latent
space which is then utilized as the condition in DDIM following [17].

Conditional DDIM. A Gaussian diffusion process can be described as the
gradual addition of small amount of Gaussian noise to input images in T steps
which leads to a sequence of noisy images x1, ...,xT [8,17]. At a given time t (out
of T ), the diffusion process can be defined as q(xt|xt−1) = N (

√
1 − βtxt−1, βtI),

where βt are the noise level hyperparameters. The corresponding noisy image
of x0 at time t is another Gaussian q(xt|x0) = N (

√
αtx0, (1 − αt)I) where

αt =
∏t

s=1(1−βs). This is followed by learning of the generative reverse process,
i.e., the distribution p(xt−1|xt) [8,17]. DDIM [22] proposes this reverse process
as a deterministic generative process, given by:

xt−1 =
√

αt−1

(
xt − √

1 − αtε
t
θ(xt)√

αt

)

+
√

1 − αt−1ε
t
θ(xt) (1)

where εt
θ(xt), proposed by [8], is a function which takes the noisy image xt and

predicts the noise using a UNet [19]. The inference distribution is given by:

q(xt−1|xt,x0) = N
(

√
αt−1x0 +

√
1 − αt−1

xt − √
αtx0√

1 − αt
,0

)

(2)

The conditional DDIM decoder takes an input in the form of z = (zsem,xT )
to generate the output images. Conditional DDIM leverages the reverse process
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defined in Eqs. 3, 4 to model pθ(xt−1|xt, zsem) to match the inference distribution
q(xt−1|xt,x0) defined in Eqs. 2.

pθ(x0:T |zsem) = p(xT )
T∏

t=1

pθ(xt−1|xt, zsem) (3)

pθ(xt−1|xt, zsem) =

{
N (fθ(x1, 1, zsem),0) if t = 1
q(xt−1|xt, fθ(xt, t, zsem)) otherwise

(4)

where fθ in Eqs. 4 is parameterized as the noise prediction network
εθ(xt, t, zsem) from Song et al. [22]:

fθ(xt, t, zsem) =
1√
αt

(xt − √
1 − αtεθ(xt, t, zsem)) (5)

This network is a modified version of a UNet from [4].

Generative Sampling. To generate images from the diffusion autoencoder, a
latent DDIM is leveraged to learn the semantic representation distribution of
zsem = Encφ(x0), x0 ∼ p(x0). We follow the framework from [17] to leverage
the deep MLPs (10–20 layers) with skip connections as the latent DDIM net-
work. Loss Llatent is optimized during training with respect to latent DDIM’s
parameter, ω:

Llatent =
T∑

t=1

Ezsem,εt

[
||εω(zsem,t, t) − εt||1

]
(6)

where εt ∈ R
d ∼ N (0, I), zsem,t =

√
αtzsem +

√
1 − αtεt and T is the same as

our conditional image decoder.
The semantic representations are normalized to zero mean and unit variance

before being fed to the latent DDIM, to model the semantic representation dis-
tribution. Generative sampling using diffusion autoencoders involves three steps.
First, we sample the zsem from the latent DDIM which learns the distribution
of semantic representations and unnormalizes it. Then we sample xT ∼ N (0, I).
Finally we decode z = (zsem,xT ) via the conditional DDIM image decoder. Note
that for generating class-specific images, an independent latent DDIM model is
trained on semantic distribution for each class. Whereas for class-agnostic sam-
pling, just one latent DDIM is trained on the complete cohort.

3 Experiments and Results

3.1 Datasets and Implementation Details

In this study, we utilized 4 datasets. The self-supervised (SSL) pretraining of
the semantic encoder - vision transformer (ViT) [5] using DINO [2] framework is
carried out on TCGA-CRC-DX [12], NCT-CRC-HE-100K [11], and PCam [26].
The corresponding pre-trained ViT models are then used as semantic encoders
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for training separate diffusion autoencoders [17] on Chaoyang [30], NCT-CRC-
HE-100K [11], and PCam [26] datasets, respectively. Since the Chaoyang dataset
contains only a few thousand images, DINO pre-training is conducted on another
dataset (TCGA-CRC-DX) consisting of images from the same organ (colon). For
NCT-CRC and PCam, the official train split provided for each dataset is used
for self-supervision and diffusion autoencoder training. TCGA-CRC-DX [12]
consists of images of tumor tissue of colorectal cancer (CRC) WSIs in the TCGA
database (N=368505). All the images are of size 512 × 512 pixels (px). This
dataset is just utilized for self-supervised pre-training. Chaoyang [30] contains
a total of 6160 colon cancer images of size 512 × 512 px. These images are
assigned one of the four classes - normal, serrated, adenocarcinoma, and adenoma
by the consensus of three pathologists. The official train split is used to train
the diffusion autoencoder as well as patch classification model; the official test
split [30] is used to report the downstream classification performance. NCT-
CRC-HE-100K [11] contains 100k (224×224 px) non-overlapping images from
histological images of human colorectal cancer (CRC) and normal (H&E)-stained
tissue. There are nine classes in this dataset. PCam [26] includes 327,680 images
(96 × 96 px) taken from histopathologic scans of lymph node sections in breast.
Each image has a binary annotation indicating the presence of metastatic tissue.
Environment: Our framework is built in PyTorch 1.8.1 and trained on two
Quadro RTX 8000 GPUs. We use ViT-Small as our transformer encoder. It
is pretrained via DINO using default parameters [2]. All images are resized to
224 × 224 px for SSL. In contrast, due to memory constraints for generative
model training, the images are scaled to 128 × 128 px. To optimize the diffusion
autoencoder, we adopted default parameters and configurations from DAE [17].

Evaluation Metrics: We employ Frechet inception distance (FID), Improved
Precision, and Improved Recall to evaluate the similarity between the distribu-
tion of synthesized images and real images [7,14]. For FID computation [21],
the real and synthesized images are fed into an Inception V3 model [13] to
extract features from pool 3 layer. The FID method then calculates the differ-
ence between mean and standard deviation from these features. A lower FID
score indicates a higher similarity between the distributions. For NCT-CRC and
PCam, we computed FID scores between all the real images from training set and
our 50k generated images. For Chaoyang, FID is computed between all the train-
ing images and the generated 3k images. Improved Precision (IP) and Recall
(IR) estimate the distribution of real images and synthesized images by forming
explicit, non-parameteric representations of the manifolds [14]. IP describes the
probability that a random generated image falls within the support of the real
image manifold. Conversely, IR is defined as the probability that a random real
image belongs to the generated image manifold.
For the downstream classification analysis with generated samples by ViT-DAE
on Chaoyang dataset, we report accuracy as well as class-wise F1 score.
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Manifold Visualization: Motivated by [14], we generate manifolds to demon-
strate the superior performance of our method. We employ Principal Component
Analysis (PCA) to reduce the dimensionality of the representation space; the top
two PCs represent the transformed 2D feature space. We compute the radii for
each feature vector by fitting the manifold algorithm to the transformed space.
We then generate a manifold by plotting circles with the 2D vector as their cen-
ters and their corresponding radii as radius. A lower FID score indicates better
IP, meaning the generated images are visually closer to the real images. It also
suggests better IR, indicating that the generated images cover a larger portion
of the real image manifold and exhibit higher diversity. This provides a com-
prehensive visualization and allows for an intuitive understanding of the learned
representations.

Table 1. Comparison of FID, IP, IR on three datasets.

Dataset NCT-CRC PCam Chaoyang

Metric FID ↓ IP ↑ IR ↑ FID ↓ IP ↑ IR ↑ FID ↓ IP ↑ IR ↑
VQ-GAN [6] 27.86 0.57 0.26 15.99 0.56 0.22 51.35 0.43 0.53

DAE [17] 14.91 0.58 0.30 39.42 0.32 0.28 35.69 0.50 0.44

ViT-DAE (ours) 12.14 0.60 0.40 13.39 0.60 0.44 36.18 0.51 0.50

3.2 Results

We compared two contemporary methods, Diffusion Autoencoder (DAE) [17]
and VQ-GAN [6], which are built on the latest advances in diffusion and
GAN-based algorithms, respectively. Table 1 compares the quality of synthesized
images produced by ViT-DAE with other methods.

Quantitative Analysis: Images produced by ViT-DAE have the lowest FID
scores and highest IP and IR for the NCT-CRC and PCam datasets; the
results are comparable with the other two approaches, particularly DAE, on
the Chaoyang dataset. This consistent improvement may be attributed to ViT’s
replacement of the convolution-based semantic encoder. ViT has a far greater
capacity to learn the contextual information and long-range relationships in the
images than its CNN counterparts. As a result, a ViT-based semantic encoder
could more effectively capture high level semantic information and provide more
meaningful representation as the condition of DDIM, which improves the quality
of generated images. CNN-based conditional DDIM faces the difficulty of encod-
ing the complex spatial layouts in histopathology images. Since the CNN-based
semantic encoder and the ViT-based encoder consist of comparable number of
parameters (24.6M and 21.6M, respectively), we attribute this improvement to
the superior global modeling of ViTs.

Qualitative Analysis: The similarity between distribution coverage of real and
generated images is visually evaluated using manifold visualization in Fig. 2.
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For the NCT-CRC and PCam datasets, our synthesized images have a closer
distribution to the real image manifold compared to VQ-GAN and DAE. For
Chaoyang (in supplementary), DAE and ViT-DAE generate distributions that
are very comparable to real images while outperforming the generated mani-
fold from VQ-GAN. We also provide class-wise samples along with pathologist’s
interpretations of synthesized images generated by ViT-DAE in Fig. 3. We can
see that our method captures the distribution sufficiently well and generates rea-
sonably plausible class-specific images (more in supplementary). Here we sum-
marize our pathologist’s impressions on “How phenotypically real are the synthe-
sized images?” for the different classes in NCT-CRC. Normal mucosa: Realistic
in terms of cells configured as glands as the main structural element of colonic
mucosa, location of nuclei at the base of glands with apical mucin adjacent to
the central lumen. Lymphocytes: Realistic in terms of cell contours, sizes, color,
texture, and distribution. Mucus: Color and texture realistic for mucin (mucoid
material secreted from glands). Smooth Muscle: Realistic with central nuclei in
elongated spindle cells with elastic collagen fibers and no striations. Cancer asso-
ciated stroma: Realistic in terms of reactive stroma with inflammatory infiltrate
(scattered lymphs, neutrophil) and increased cellularity of stromal cells. Tumor:
Realistic with disordered growth via nuclear crowding with a diversity of larger
than normal epithelial (glandular epithelial) cells and irregular shaped cells.

Downstream Analysis: To assess the efficacy of synthesized images, we con-
ducted a proof-of-concept investigation by designing a classification task on

Fig. 2. Manifold visualization. Higher overlap indicates greater similarity.
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Fig. 3. Real and synthesized images using ViT-DAE on NCT-CRC
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the Chaoyang dataset. We trained a classification model exclusively on class-
conditioned synthesized images and evaluated its performance on real images
from official test split [30]. The performance was comparable to that of a classi-
fication model trained solely on real images from provided train split. Our results
demonstrate that a hybrid training approach, where we combine real and synthe-
sized images, can significantly improve the classifier performance on small-scale
datasets like Chaoyang, especially for underrepresented minority classes by up
to 4–5%. Our findings (results in supplementary) highlight the potential utility
of synthesized images in improving the performance of downstream tasks.

4 Conclusion

Our study proposes a novel approach that combines conditional DDIM with
a vision transformer-based semantic encoder (ViT-DAE) for high-quality
histopathology image synthesis. Our method outperforms recent GAN-based
and vanilla DAE methods, demonstrating its effectiveness in generating more
realistic and diverse histopathology images. The use of vision transformers in
semantic encoder of DAE enables the holistic encoding of complex layouts spe-
cific to histo-pathology images, making it a promising solution for future research
on image synthesis in digital pathology.
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10. Kanwal, N., Pérez-Bueno, F., Schmidt, A., Engan, K., Molina, R.: The devil is
in the details: whole slide image acquisition and processing for artifacts detection,
color variation, and data augmentation: a review. IEEE Access 10, 58821–58844
(2022)

11. Kather, J.N., Halama, N., Marx, A.: 100,000 histological images of human colorec-
tal cancer and healthy tissue. Zenodo10 (2018)

12. Kather, J.N., et al.: Deep learning can predict microsatellite instability directly
from histology in gastrointestinal cancer. Nat. Med. 25(7), 1054–1056 (2019)

13. Kynkäänniemi, T., Karras, T., Aittala, M., Aila, T., Lehtinen, J.: The role of
imagenet classes in fr\’echet inception distance. arXiv preprint arXiv:2203.06026
(2022)

14. Kynkäänniemi, T., Karras, T., Laine, S., Lehtinen, J., Aila, T.: Improved pre-
cision and recall metric for assessing generative models. In: Advances in Neural
Information Processing Systems, vol. 32 (2019)

15. Moghadam, P.A., et al.: A morphology focused diffusion probabilistic model for
synthesis of histopathology images. In: Proceedings of the IEEE/CVF Winter Con-
ference on Applications of Computer Vision, pp. 2000–2009 (2023)

16. Naseer, M.M., Ranasinghe, K., Khan, S.H., Hayat, M., Shahbaz Khan, F., Yang,
M.H.: Intriguing properties of vision transformers. Adv. Neural. Inf. Process. Syst.
34, 23296–23308 (2021)

17. Preechakul, K., Chatthee, N., Wizadwongsa, S., Suwajanakorn, S.: Diffusion
autoencoders: toward a meaningful and decodable representation. In: Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
10619–10629 (2022)

18. Rombach, R., Blattmann, A., Lorenz, D., Esser, P., Ommer, B.: High-resolution
image synthesis with latent diffusion models. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 10684–10695 (2022)

19. Ronneberger, O., Fischer, P., Brox, T.: U-net: convolutional networks for biomed-
ical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F.
(eds.) MICCAI 2015, Part III. LNCS, vol. 9351, pp. 234–241. Springer, Cham
(2015). https://doi.org/10.1007/978-3-319-24574-4 28

20. Runz, M., Rusche, D., Schmidt, S., Weihrauch, M.R., Hesser, J., Weis, C.A.: Nor-
malization of he-stained histological images using cycle consistent generative adver-
sarial networks. Diagn. Pathol. 16(1), 1–10 (2021)

21. Seitzer, M.: pytorch-fid: FID Score for PyTorch. https://github.com/mseitzer/
pytorch-fid (August 2020), version 0.3.0

22. Song, J., Meng, C., Ermon, S.: Denoising diffusion implicit models. arXiv preprint
arXiv:2010.02502 (2020)

23. Song, Y., Sohl-Dickstein, J., Kingma, D.P., Kumar, A., Ermon, S., Poole, B.: Score-
based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456 (2020)

24. Tellez, D., et al.: Quantifying the effects of data augmentation and stain color
normalization in convolutional neural networks for computational pathology. Med.
Image Anal. 58, 101544 (2019)

25. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information
Processing Systems, vol. 30 (2017)

26. Veeling, B.S., Linmans, J., Winkens, J., Cohen, T., Welling, M.: Rotation equiv-
ariant CNNs for digital pathology. In: Frangi, A.F., Schnabel, J.A., Davatzikos,
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Abstract. Single image super-resolution (SISR) methods aim to gen-
erate a high-resolution image from the corresponding low-resolution
images. Such methods may be useful in improving the resolution of
medical images including chest x-rays. Medical images with superior
resolution may subsequently lead to an improved diagnosis. However,
SISR methods for medical images are relatively rare. We propose a SISR
method for chest x-ray images. Our method uses multi-level informa-
tion rendering by utilizing the cue about the abnormality present in the
images. Experiments on publicly available datasets show the superiority
of the proposed method over several state-of-the-art approaches.

Keywords: Super-resolution · Multi-level information rendering ·
Chest x-ray · Anomaly guided

1 Introduction

A superior resolution of x-ray images may lead to an improved diagnosis com-
pared to their low-resolution counterparts. Chest X-ray images are one of the
most widely used imaging techniques in medical diagnosis, and enhancing the res-
olution of these images can result in improved and faster diagnoses. Single image
super-resolution (SISR) techniques [1], have proven to be effective in improving
the resolution of medical images, potentially leading to better diagnoses.

However, the use of SISR methods for medical images including chest x-rays is
relatively unexplored. Among the few existing methods, in [1], the authors embed
a modified squeeze and excitation block in EDSR [2] for the super-resolution of
retinal images. Zhang et al. have proposed a method for the super-resolution of
medical images from different modalities [3]. A progressive GAN architecture has
been used for the super-resolution of pathology and magnetic resonance images
[4]. See [5] for the use of multi-level skip connections to perform medical image
super-resolution. The less abundance of SISR methods for medical images may
be primarily attributed to the ill-posed nature of the SISR problem [6]. In this
paper, we propose an anomaly guided SISR method for chest x-rays that uses
Multi-label information rendering. We make the following major contributions:
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Mukhopadhyay et al. (Eds.): DGM4MICCAI 2023, LNCS 14533, pp. 77–85, 2024.
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Fig. 1. 32 times super-resolution of a chest X-ray image from 32 × 32 pixels to 1024
× 1024 pixels using the proposed model

– We propose a method for SISR of chest X-ray images using Multi-level Infor-
mation Rendering (MLIR).

– We propose a novel loss function that utilizes the abnormality if present in
the chest x-rays for SISR.

– We design a two-stage training process where initially (stage 1) we train
utilizing only MLIR integrated into the baseline model. Subsequently, in stage
2 of training, we exploit the information about the abnormality present in
images.

The rest of the paper is organized as follows. In Sect. 2, we discus our method
followed by experiments and results in. Section 3. Finally, we conclude the paper
in Sect. 4.

2 Method

We use a Generative Adversarial Network (GAN) [7] to implement multi-label
information rendering for SISR. Our model consists of a generator and a dis-
criminator. Our generator tries to construct a super-resolved (SR) image from
its low-resolution (LR) counterpart. The discriminator tries to differentiate the
generated SR images from ground truth high-resolution (HR) images.

2.1 The Generator

Our generator is built on the generator architecture of ESRGAN [8] which in turn
was built upon the SRGAN [9]. A block diagram of the generator is presented
in Fig. 2. The generator utilizes the concept of generative adversarial networks
along with the ResNet [10] architecture. We introduce multi-Level information
rendering (MLIR) to design our generator.
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Fig. 2. A block diagram of the ESRGAN [8] generator architecture (Conv: convolution
layer with kernel size 3 × 3, Upsample: upsampling layer with pixel-shuffle layers that
increases the dimensions by 4 times).

Multi-level Information Rendering Blocks: Our MLIR approach is inspi-
red by [11]. It is based on the intuition that different levels of abstraction of the
input data may contain complementary information. Combining this information
may help in better performance. We implement MLIR blocks to improve the
performance of the generator by capturing more information from LR images.
Our goal is to retain more low-level features for the super-resolution of the LR
images. We also expect this to result in giving us improved finer-level details.

MLIRBasic
Block

Conv 3X3
+ LReluMLIR MLIR MLIR

MLIR

Conv 1X1
+ LRelu

Conv 3X3
+ LRelu

Conv 3X3
+ LRelu

Conv 5X5
+ LRelu

Fig. 3. The structure and contents of the Basic Block and MLIR block. Conv Y × Y
represents a convolution layer with filter size Y × Y and LReLu represents the Leaky
Rectified Linear Activation function.

Each MLIR block consists of three parallel convolutional blocks. By connect-
ing the convolutional blocks in parallel rather than in series, we can capture
various levels of information from each block and effectively combine them to
produce high-quality feature maps. We connect a series of MLIR blocks to con-
struct a basic block as shown in Fig. 3. Our generator is similar to that of Fig. 2
with the difference that our basic blocks are designed using MLIR blocks, unlike
the ESRGAN.
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2.2 The Discriminator

We use the Relativistic Discriminator from the Relativistic average GAN
(RaGAN) [12]. This discriminator is used in ESRGAN. The Relativistic Dis-
criminator computes a probability score that takes into account the relationship
between the generator’s output and the ground truth. Specifically, instead of just
comparing the generated sample and the real sample, the Relativistic Discrimi-
nator compares the difference between the generated sample and the average of
the real samples, to the difference between a real sample and the average of the
generated samples.

2.3 The Loss Function

If there is any abnormality present in the LR images, we want to enhance the
details of the abnormality in the super-resolved images. To that end, we intro-
duce a bounding box loss (LBB). Bounding box loss is the generator loss of [8]
computed using the region containing the anomaly in the HR image and that
region in the corresponding generated SR image. We also compute the loss for
the whole image (LI) by computing the generator loss. Our generator loss is
similar to that of ESRGAN [8]. This loss is computed using the HR images and
the corresponding SR images. Therefore, the total loss of the generator is

LT = LI + λLBB (1)

where λ ∈ (0, 1) is a hyperparameter indicating the relative weight of the afore-
mentioned losses. For the discriminator, we use a loss similar to that of ESRGAN.
Thus, the information about the anomaly present in the x-ray image help in the
training of our model. Based on the validation performance on 50 images, a value
of 0.2 is chosen for λ.

2.4 Training

We use images from the NIH Chest X-ray dataset [13] for training our model.
From the original images, we create LR images through bicubic downsampling
and normalization of the original images. The HR images were created by the
normalization of the original images. We use a two-stage training procedure as
follows.

Stage 1: During the first stage of training, we minimize loss LI for the generator.
After the LR and HR image pairs were generated, the size of all the LR images
are 256 × 256 whereas the HR images retained their original dimensions of 1024
× 1024. These images were then given as input to the main model and the model
was run for 200 epochs on PyTorch version 22.02 using an Nvidia DGX-2 server
that had 16 V100 GPUs and ran on Ubuntu 18.04 LTS. From these 200 epochs,
the best model was taken using validation by 50 images.
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Stage 2. After the best model was obtained, images from the NIH dataset that
had bounding boxes were used to train that model for another 100 epochs. In
this training, we minimize the loss function of (1) for the generator. Once the
model is trained, we use it for generating super-resolved x-ray images.

3 Experiments and Results

3.1 Datasets

We perform experiments on several publicly available chest x-ray datasets. The
primary dataset is the NIH Chest X-ray dataset [13]. This dataset consists of
a total of 112120 images. Out of these, there are more than 800 images that
have bounding boxes showing the regions containing abnormalities. We also use
two other datasets, namely CheXpert [14] dataset containing 224316 images,
and VinBigData Chest X-ray [15] dataset containing 18,000 images. All of the
images in the VinBigData Chest X-ray dataset have bounding boxes.

We use 30000 images from the NIH dataset for training, 50 images for vali-
dation, and 25595 images for testing. In order to look into the generalizability
of the training, the model trained on the NIH dataset is tested on the CheXpert
and VinBigData datasets. We have used all the frontal images from the CheX-
pert dataset (191027 images) and all the images of the VinBigData dataset for
testing. For CheXpert dataset, we have performed only ×4 super-resolution.

3.2 Comparative Analysis of Performance

We evaluate the performance of our proposed model in terms of peak signal-
to-noise ratio (PSNR) (the higher the better) and mean squared error (MSE)
(the lower the better). We compare the performance of our model with several
state-of-the-art models, namely, ESRGAN [8], EDSR [2], and USRNET [16].
The comparative performances of different methods for ×4 super-resolution are
presented in Table 1. Notice that our method achieves superior results compared
to most of the approaches. We can also observe that our model trained on the
NIH dataset shows consistent performance across other datasets. This shows the
generalizability of the proposed model.

We also perform experiments for ×32 super-resolution. The comparative per-
formances are presented in Table 2. Notice that our method outperforms ESR-
GAN for this task as well. Visual results of ×32 super-resolution using our model
are presented in Fig. 4 and Fig. 5. Figure 6 presents a visual comparison of the
generated images from different models.
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Table 1. Performances of different methods trained on NIH dataset for ×4 super-
resolution (LR input: 256 × 256 pixels, SR output: 1024 × 1024 pixels) on various test
datasets).

ESRGAN [8] USRNET [16] EDSR [2] Proposed

NIH [13] PSNR(dB) 39.61 40.01 40.31 40.72

MSE 7.66 6.49 6.05 5.84

CheXpert [14] PSNR(dB) 29.52 28.04 32.86 32.17

MSE 72.53 102.11 33.66 40.2

VinBig [15] PSNR(dB) 38.29 38.79 40.57 39.98

MSE 9.64 8.59 5.70 6.53

Fig. 4. Visual results of ×32 super-resolution using the proposed method on the NIH
chest X-ray dataset (LR: low-resolution image, SR: super-resolved images by our model,
HR: ground truth high-resolution image).

3.3 Ablation Studies

Impact of the Bounding Box Loss: We first look into the impact of the
bounding box loss. To that end, we perform experiments excluding the bounding
box loss in our model (abbreviated as ‘With MLIR’). The result of this experi-
ment is presented in Table 2. Notice that for both ×4 and ×32 super-resolution,
the proposed model outperforms ‘With MLIR ’. This shows the impact of bound-
ing box loss in the proposed model. Visual results of this experiment are pre-
sented in Fig. 7.

Impact of the MLIR Blocks: Next, we evaluate the impact of the MLIR
blocks in our model. For this purpose, we perform experiments without the MLIR
blocks (abbreviated as ‘With BB Loss ’) on the NIH dataset. The results of this
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Fig. 5. Visual results obtained on the NIH chest X-ray dataset using the proposed
model. This figure shows the detailed results in small selected regions of the images
(I: input image, LR: low-resolution image, GT HR: the high-resolution image of the
selected region of ground truth image, SR: super-resolved image.)

Fig. 6. Visual comparisons showing the output of different models for ×32 super-
resolution in small selected regions of the images (I: input image, LR: low-resolution
image, GT HR: the high-resolution image of the selected region of ground truth image).
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Table 2. PSNR and MSE values for different models. ESRGAN is the baseline model.
With BB loss represents our model trained with bounding box loss but without MLIR
blocks., With MLIR represents our model without bounding box loss. The results are
presented for ×4 (LR input: 256 × 256 pixels, SR output: 1024 × 1024 pixels) and
×32 (LR input: 32 × 32 pixels, SR output: 1024 × 1024 pixels) super-resolution for
the NIH test dataset.

ESRGAN [8] With BB loss With MLIR Proposed

×4 PSNR(dB) 39.61 40.28 40.31 40.72

MSE 7.66 6.54 6.52 5.84

×32 PSNR(dB) 32.32 32.75 32.70 32.84

MSE 39.80 35.92 36.57 35.26

Fig. 7. Visual comparisons showing the impact of various components of the proposed
method in small selected regions of the images (I: input image, LR: low-resolution,
GT HR: the high-resolution image of the selected region of ground truth image, ESR-
GAN: baseline ESRGAN model without any added components, W.BB loss: model
with Bounding box loss, W.MLIR: model with MLIR, Proposed: our model with both
Bounding box loss and MLIR integrated).

experiment are reported in Table 2. Notice that our method outperforms this
ablation study. This shows the importance of the MLIR blocks. Visual results of
this experiment are presented in Fig. 7.

4 Conclusions

We propose a SISR method for chest x-ray images. Our method is designed using
multi-level information rendering. We exploit the information about the region
containing anomaly to design the loss function. The results on publicly available
datasets show the generalizability of the proposed method. In the future, we will
evaluate the quality of the super-resolved images on various downstream tasks.
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Additionally, we will extend our method to other radiology imaging modalities,
such as CT. We will also look into 3D information fusion in this context.

Acknowledgement. The authors thank the National Institutes of Health Clinical
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Abstract. Recently, denoising diffusion probabilistic models (DDPM)
have been applied to image segmentation by generating segmentation
masks conditioned on images, while the applications were mainly limited
to 2D networks without exploiting potential benefits from the 3D formu-
lation. In this work, we studied the DDPM-based segmentation model for
3D multiclass segmentation on two large multiclass data sets (prostate
MR and abdominal CT). We observed that the difference between train-
ing and test methods led to inferior performance for existing DDPM
methods. To mitigate the inconsistency, we proposed a recycling method
which generated corrupted masks based on the model’s prediction at a
previous time step instead of using ground truth. The proposed method
achieved statistically significantly improved performance compared to
existing DDPMs, independent of a number of other techniques for reduc-
ing train-test discrepancy, including performing mask prediction, using
Dice loss, and reducing the number of diffusion time steps during train-
ing. The performance of diffusion models was also competitive and visu-
ally similar to non-diffusion-based U-net, within the same compute bud-
get. The JAX-based diffusion framework has been released at https://
github.com/mathpluscode/ImgX-DiffSeg.

Keywords: Image Segmentation · Diffusion Model · Prostate MR ·
Abdominal CT

1 Introduction

Multiclass segmentation is one of the most basic tasks in medical imaging, one
that arguably benefited the most from deep learning. Although different model
architectures [15,25] and training strategies [6,16] have been proposed for spe-
cific clinical applications, U-net [21] trained through supervised training remains
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the state-of-the-art and an important baseline for many [9]. Recently, denoising
diffusion probabilistic models (DDPM) have been demonstrated to be effective
in a variety of image synthesis tasks [7], which can be further guided by a scoring
model to generate conditioned images [5] or additional inputs [8]. These genera-
tive modelling results are followed by image segmentation, where the model gen-
erates segmentation masks by progressive denoising from random noise. During
training, DDPM is provided with an image and a noise-corrupted segmentation
mask, generated by a linear interpolation between the ground-truth and a sam-
pled noise. The model is then tasked to predict the sampled noise [2,13,26,27]
or the ground-truth mask [4].

However, existing applications have been mainly based on 2D networks and,
for 3D volumetric medical images, slices are segmented before obtaining the
assembled 3D segmentation. Challenges are often encountered for 3D images.
First, the diffusion model requires image and noise-corrupted masks as input,
leading to an increased memory footprint resulting in limited batch size and
potentially excessive training time. For instance, the transformer-based archi-
tecture becomes infeasible without reducing model size or image, given clinically
or academically accessible hardware with limited memory. Second, most diffu-
sion models assume a denoising process of hundreds of time steps for training
and inference, the latter of which in particular leads to prohibitive inference time
(e.g., days on TPUs/GPUs).

This work addresses these issues by aligning training with evaluation pro-
cesses via recycling. As discussed in multiple studies [4,13,14,28], noise does not
necessarily disrupt the shape of ground truth masks and morphological features
may be preserved in noise-corrupted masks during training. By training with
recycling (Fig. 1), the prediction from the previous steps is used as input, i.e.
rather than the ground truth used in existing methods, for noisy mask sampling.
This proposed training process emulates the test process since the input is also
from the previous predictions at inference time for diffusion models, without
access to ground truth. Furthermore, this work directly predicts ground-truth
masks instead of sampled noise [27]. This facilitates the direct use of Dice loss in
addition to cross-entropy during training, as opposed tp L2 loss on noise. Lastly,
instead of denoising with at least hundreds of steps as in most existing work, we
propose a five-step denoising process for both training and inference, resorting
to resampling variance scheduling [17].

With extensive experiments in two of the largest public multiclass seg-
mentation applications, prostate MR (589 images) and abdominal CT images
(300 images) [9,16], we demonstrated a statistically significant improvement
(between 0.015 and 0.117 in Dice score) compared to existing DDPMs. Com-
pared to non-diffusion supervised learning, diffusion models reached a compet-
itive performance (between 0.008 and 0.015 in Dice), with the same computa-
tional cost. With high transparency and reproducibility, avoiding selective results
under different conditions, we conclude that the proposed recycling strategy
using mask prediction setting with Dice loss should be the default configura-
tion for 3D segmentation applications with diffusion models. We release the first
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unit-tested JAX-based diffusion segmentation framework at https://github.com/
mathpluscode/ImgX-DiffSeg.

2 Related Work

The diffusion probabilistic model was first proposed by Sohl-Dickstein et al. [23]
as a generative model for image sampling with a forward noising process. Ho
et al. [7] proposed a reverse denoising process that estimates the sampled error,
achieving state-of-the-art performance in unconditioned image synthesis at the
time. Different conditioning methods were later proposed to guide the sam-
pling process toward a desired image class or prompt text, using gradients
from an external scoring model [5,19]. Alternatively, Ho et al. [8] showed that
guided sampling can be achieved by providing conditions during training. Dif-
fusion models have been successfully applied in medical imaging applications
to synthesise images of different modalities, such as unconditioned lung X-Ray
and CT [1], patient-conditioned brain MR [18], temporal cardiac MR [11], and
pathology/sequence-conditioned prostate MR [22]. The synthesised images have
been shown to benefit pre-training self-supervised models [10,22] or support
semi-supervised learning [28].

Besides image synthesis, Baranchuk et al. [3] used pre-trained diffusion mod-
els’ intermediate feature maps to train pixel classifiers for segmentation, showing
these unsupervised models capture semantics that can be extended for image
segmentation especially when training data is limited. Alternatively, Amit et
al. [2] performed progressive denoising from random sampled noise to generate
segmentation masks instead of images for microscopic images [2]. At each step,
the model takes a noise-corrupted mask and an image as input and predicts
the sampled noise. Similar approaches have been also applied to thyroid lesion
segmentation for ultrasound images [27] and brain tumour segmentation for MR
images with different network architectures [26,27]. Empirically, multiple stud-
ies [4,13,28] found the noise-corrupted mask generation, via linear interpolation
between ground-truth masks and noise, retained morphological features during
training, causing potential data leakage. Chen et al. [4] therefore added noises
to mask analog bit and tuned its scaling. Young et al. [28], on the other hand,
tuned the variance and scaling of added normal noise to reduce information
contained in noised masks. Furthermore, Kolbeinsson et al. [13] proposed recur-
sive denoising instead of directly using ground truth for noise-corrupted mask
generation.

These works, although using different methods, are all addressing a similar
concern: the diffusion model training process is different from its evaluation pro-
cess, which potentially hinges the efficient learning. Moreover, most published
diffusion-model-based segmentation applications have been based on 2D net-
works. We believe such discrepancy would be more significant when applying 3D
networks to volumetric images due to the increased difficulty, resulting in longer
training and larger compute cost. In this work, building on these recent devel-
opments, we focus on a consistent train-evaluate algorithm for efficient training
of diffusion models in 3D medical image segmentation applications.

https://github.com/mathpluscode/ImgX-DiffSeg
https://github.com/mathpluscode/ImgX-DiffSeg
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Fig. 1. Illustration of training with and without recycling and inference, using mask
prediction. For training without recycling (top left), the noisy mask xt is calculated
using the ground truth mask. For training with recycling (top right), xt is calculated
using prediction from the previous step, which is similar to the inference (bottom right).

3 Method

3.1 DDPM for Segmentation

The denoising diffusion probabilistic models (DDPM) [7,12,17,23] consider a
forward process: given sample x0 ∼ q(x0), noisy xt for t = 1, · · · , T follows a
multivariate normal distribution, q(xt | xt−1) = N (xt;

√
1 − βtxt−1, βtI), where

βt ∈ [0, 1]. Given a sufficiently large T , xT approximately follows an isotropic
multivariate normal distribution N (xT ;0, I). A reverse process is then defined to
denoise xt at each step, for t = T, · · · , 1, pθ(xt−1 | xt) = N (xt−1;μθ(xt, t), β̃tI),
with a predicted mean μθ(xt, t) and a variance schedule β̃tI. β̃t = 1−ᾱt−1

1−ᾱt
βt,

where αt = 1 − βt, ᾱt =
∏t

s=0 αs. μθ(xt, t) can be modelled in two different
ways,
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μθ(xt, t) =
√

ᾱt−1βt

1 − ᾱt
x0,θ(xt, t) +

1 − ᾱt−1

1 − ᾱt

√
αtxt, (Predict x0) (1)

μθ(xt, t) =
1√
αt

(xt − βt√
1 − ᾱt

εt,θ(xt, t)), (Predict noise εt) (2)

where x0,θ(xt, t) or εt,θ(xt, t) are the learned neural network.
For segmentation, x represents a transformed probability with values in

[−1, 1]. Particularly, x0 ∈ {1,−1} are binary-valued, transformed from mask.
x0,θ and xt (t ≥ 0) have values in [−1, 1]. Moreover, the networks x0,θ(I,xt, t)
or εt,θ(I,xt, t) takes one more input I, representing the image to segment.

3.2 Recycling

During training, existing methods samples xt by interpolating noise εt and
ground-truth x0, which results in a certain level of data leak [4,28]. Kolbeinsson
et al. [13] proposed recursive denoising, which performed T steps on each image
progressively to use model’s predictions at previous steps. However, this extends
the training length T times. Instead, in this work, for each image, the time step
t is randomly sampled and the model’s prediction x0,θ from the previous time
step t + 1 is recycled to replace ground-truth (Fig. 1).

Similar reuses of the model’s predictions have been previously applied in 2D
image segmentation [4], however x0,θ was fed into the network along with xt

which requires additional memories and still has data leak risks. A further dif-
ference to these previous approaches is that, rather than stochastic recycling,
usually with a probability of 50%, it is always applied throughout the train-
ing (which was empirically found to lead to more stable and performant model
training). Formally, the recycling technique at a sampled step t is as follows,

xt+1 =
√

ᾱt+1x0 +
√

1 − ᾱt+1εt+1, (Noise mask generation for t + 1) (3)
x0,θ = StopGradient(x0,θ(I, t + 1,xt+1)), (Mask prediction) (4)

xt =
√

ᾱtx0,θ +
√
1 − ᾱtεt, (Noise mask generation for t) (5)

where x0,θ is the predicted segmentation mask from t+1 using ground-truth, with
gradient stopping. εt and εt+1 are two independently sampled noises. Recycling
can be applied to models predicting noise (see supplementary materials Sect. 1
for derivation and illustration).

3.3 Loss

Given noised mask xt, time t, and image I, the loss can be,

Lseg,x0(θ) = Et,x0,εt,ILseg(x0, x0,θ), (6)

Lseg,εt
(θ) = Et,x0,εt,I‖εt − εt,θ‖22, (7)
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where model predict noise εt,θ or mask x0,θ and Lseg represents a segmentation-
specific loss, such as Dice loss or cross-entropy loss. t is sampled from 1 to T ,
εt ∼ N (0, I), and xt(x0, εt) =

√
ᾱtx0 +

√
1 − ᾱtεt. When model predicts noise,

segmentation loss can still be used as the mask can be inferred via interpolation.

3.4 Variance Resampling

During training or inference, given a variance schedule {βt}T
t=1 for T = 1000,

a subsequence {βk}K
k=1 for K = 5 can be sampled with {tk}K

k=1, where tK = T ,
t1 = 1,βk = 1− ᾱtk

ᾱtk−1
, β̃k =

1−ᾱtk−1

1−ᾱtk
βtk . αk and ᾱk are recalculated correspondingly.

4 Experiment Setting

Prostate MR. The data set1 [16] contains 589 T2-weighted image-mask pairs
for 8 anatomical structures. The images were randomly split into non-overlapping
training, validation, and test sets, with 411, 14, 164 images in each split, respec-
tively. All images were normalised, resampled, and centre-cropped to an image
size of 256 × 256 × 48, with a voxel dimension of 0.75 × 0.75 × 2.5 (mm).

Abdominal CT. The data set2 [9] provides 200 and 100 CT image-mask pairs
for 15 abdominal organs in training and validation sets. The validation set was
randomly split into non-overlapping validation and test sets, with 10 and 90
images, respectively. HU values were clipped to [−991, 362] for all images. Images
were then normalised, resampled and centre-cropped to an image size of 192 ×
128 × 128, with a voxel dimension of 1.5 × 1.5 × 5.0 (mm).

Implementation. 3D U-nets have four layers with 32, 64, 128, and 256 chan-
nels. For diffusion models, noise-corrupted masks and images were concatenated
along feature channels and time was encoded using sinusoidal positional embed-
ding [20]. Random rotation, translation and scaling were adopted for data aug-
mentation during training. The segmentation-specific loss function is by default
the sum of cross-entropy and foreground-only Dice loss. When predicting noise,
the L2 loss has a weight of 0.1 [27]. All models were trained with AdamW for
12500 steps and a warmup cosine learning rate schedule. Hyper-parameter were
configured empirically without extensive tuning. Binary Dice score and 95%
Hausdorff distance in mm (HD), averaged over foreground classes, were reported.
Paired Student’s t-tests were performed on Dice score to test statistical signifi-
cance between model performance with α = 0.01. Experiments were performed
using bfloat16 mixed precision on TPU v3-8. The code is available at https://
github.com/mathpluscode/ImgX-DiffSeg.

1 https://zenodo.org/record/7013610#.ZAkaXuzP2rM.
2 https://zenodo.org/record/7155725#.ZAkbe-zP2rO.

https://github.com/mathpluscode/ImgX-DiffSeg
https://github.com/mathpluscode/ImgX-DiffSeg
https://zenodo.org/record/7013610#.ZAkaXuzP2rM
https://zenodo.org/record/7155725#.ZAkbe-zP2rO
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5 Results

Recycling. The performance of the proposed diffusion model is summarised
in Table 1. With recycling, the diffusion-based 3D models reached a Dice score
of 0.830 and 0.801 which is statistically significantly (p < 0.001) higher than
baseline diffusion with 0.815 and 0.753, for prostate MR and abdominal CT
respectively. Example predictions were provided in Fig. 2.

Diffusion vs Non-diffusion. The diffusion model is also compared with U-net
trained via standard supervised learning in Table 2. Within the same comput-
ing budget, the diffusion-based 3D model is competitive with its non-diffusion
counterpart. The results in Fig. 2 are also visually comparable. The difference,
however, remains significant with p < 0.001.

Ablation Studies. Comparisons were performed on prostate MR data set for
other modifications (see Table 3), including: 1) predicting mask instead of noise
2) using Dice loss in addition to cross-entropy, 3) using five steps denoising
process during training. Improvements in Dice score between 0.09 and 0.117 were
observed for all modifications (all p-values < 0.001). The largest improvement
was observed when the model predicted segmentation masks instead of noise.
The results were found consistent with the consistency model [24], which requests
diffusion models’ predictions of x0 from different time steps to be similar. Such
requirement is implicitly met in our applications as the segmentation loss requires
the prediction to be consistent with the ground truth mask given an image. As
a result, the predictions from different time steps shall be consistent.

Limitation. In general, all methods tend to perform better for large regions of
interest (ROI), and there is a significant correlation (Spearman r > 0.8 and p <

Fig. 2. Example predictions from diffusion and non-diffusion U-net models.
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0.01) between ROI (regions of interest) area and mean Dice score per ROI/class,
indicating room of future improvement by addressing small ROIs.

Table 1. DDPM with recycling.

Recycling Prostate MR Abdominal CT
Dice Score Hausdorff Dist. Dice Score Hausdorff Dist.

N 0.815± 0.095 5.485± 1.069 0.753± 0.131 9.526± 2.232

Y 0.830± 0.094 5.424± 1.176 0.801± 0.109 9.125± 2.564

Table 2. Comparison between diffusion models and non-diffusion models.

Diffusion Prostate MR Abdominal CT
Dice score Hausdorff Dist. Dice score Hausdorff Dist.

N 0.838± 0.088 5.197± 1.184 0.816± 0.100 9.091± 2.475

Y 0.830± 0.094 5.424± 1.176 0.801± 0.109 9.125± 2.564

Table 3. Ablation results (prostate MR). HD stands for Hausdorff distance.

(a) Mask or noise prediction
Output Dice Score HD
Noise 0.713 23.855
Logits 0.830 5.424

(b)Dice loss
Dice Loss Dice Score HD

N 0.812 5.463
Y 0.830 5.424

(c)#steps (training)
Steps Dice Score HD
1000 0.821 5.223

5 0.830 5.424

6 Discussion

In this work, we developed a novel denoising diffusion probabilistic model for
3D image multiclass segmentation. By recycling the model’s predictions at pre-
vious time steps to replace ground truth during training, the method aligns
diffusion training and segmentation evaluation, resulting in significant perfor-
mance improvements compared to existing diffusion methods. Other techniques
mitigating training and test inconsistency further improved the diffusion model’s
performance . However, the diffusion model did not outperform the non-diffusion-
based segmentation models, which have long been well-established. We believe it
is important to report this lack of superior performance in 3D medical image seg-
mentation, especially when experiments are limited to the same compute budget.
Future work could consider other diffusion models such as discrete diffusion and
more memory-efficient implementation to enable more complex architectures.
Although the presented experimental results primarily demonstrated method-
ological development, the fact that these were obtained on two large clinical
data sets represents a promising step towards real-world applications. Localising
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multiple anatomical structures in prostate MR images is key to MR-targeted
biopsy, radiotherapy and tissue-preserving focal treatment for patients with uro-
logical diseases, while abdominal organ outlines can be directly used in planning
gastroenterological procedures and hepatic surgery.
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Abstract. Despite continued advancement in recent years, deep neural
networks still rely on large amounts of training data to avoid overfitting.
However, labeled training data for real-world applications such as health-
care is limited and difficult to access given longstanding privacy, and
strict data sharing policies. By manipulating image datasets in the pixel
or feature space, existing data augmentation techniques represent one of
the effective ways to improve the quantity and diversity of training data.
Here, we look to advance augmentation techniques by building upon the
emerging success of text-to-image diffusion probabilistic models in aug-
menting the training samples of our macroscopic skin disease dataset. We
do so by enabling fine-grained control of the image generation process via
input text prompts. We demonstrate that this generative data augmen-
tation approach successfully maintains a similar classification accuracy
of the visual classifier even when trained on a fully synthetic skin disease
dataset. Similar to recent applications of generative models, our study
suggests that diffusion models are indeed effective in generating high-
quality skin images that do not sacrifice the classifier performance, and
can improve the augmentation of training datasets after curation.

Keywords: Data augmentation · Skin condition classification · AI for
dermatology · Diffusion models · Synthetic medical datasets

1 Introduction

The last months have witnessed the emergence of diffusion probabilistic models
(DPM) [10] as a powerful generator of high-fidelity synthetic datasets, leading
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Fig. 1. Synthetic melanoma images generated by the stable diffusion model after fine-
tuning it with melanoma images using the input text prompt “melanoma”.

to record-breaking performances in various applications such as image synthe-
sis [21], natural language processing [4], and computational chemistry [3], to
name a few. When compared to other types of generative models, such as gen-
erative adversarial networks (GANs) and variational autoencoders, DPMs are
easier to train and offer state-of-the-art image generation quality [7]. Given that
synthetic images play a crucial role in privacy-preserving generation and small
dataset augmentation, DPMs attracted significant attention in the medical imag-
ing field. Table 1 provides an overview of the prior studies of DPMs, including
their medical applications and dataset domains. At first glance, the reader can
identify that the study in [23] is the closest one to this work where synthetic
images were generated from seed images in the Fitzpatrick 17k dataset using
the OpenAI’s DALL·E 2 model [19].

Table 1. Summary of existing applications of diffusion models in medical imaging.

Medical applications Dataset domain Papers

Image generation lungs X-Ray, CT, MRI [2,5,16,17]

Image segmentation MRI, CT, ultrasound [9,13,30]

Image inpainting MRI [22]

Image denoising MRI, CT, retinal OCT [6,11,32]

Lesion detection MRI [24,29,31]

Image translation MRI, CT [13,15]

Seed-image based augmentation Dermatology [23]

Skin disease classification using large synthetic datasets Dermatology This work

Inspired by the recent early success of DPMs, we propose to use diffusion mod-
els for image augmentation as part of supervised machine learning pipelines.
More specifically, we study how diffusion models can i) increase the classifi-
cation metrics for skin diseases, and ii) augment skin condition datasets by
effectively manipulating the generated images’ features conditioned on the input
text prompts. This paper makes the following contributions:

– We study the potential of DPMs for skin disease classifications by fine-tuning
them on six different disease conditions: basal cell carcinoma, melanoma,
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actinic keratosis, atypical melanocytic nevus, lentigo, seborrheic keratosis.
We do so by learning the embeddings of each disease using text inversion.

– We demonstrate that the classification accuracies of skin disease classifiers
trained on generated synthetic images is similar to training on real images,
where the performance is maintained when using half the number of real
images, and only slightly deteriorates when using a fully synthetic dataset.
This result suggests that the recent success of generative models can help
minimize the barriers of sharing labeled medical datasets, with minimal per-
formance deterioration.

– We illustrate how DPMs are powerful tools to add visual aspects of skin
images guided by domain experts in complementing training datasets.

2 Diffusion-Based Data Augmentation

In this section, we begin by describing the methods used for training the embed-
dings of the aforementioned six skin diseases on our macroscopic skin images.
Then, we present the datasets associated with the two DPM training scenarios:
a hybrid dataset compromising 50% synthetic and 50% real images, and a 100%
fully synthetic dataset generated by the trained embeddings.

2.1 Stable Diffusion

The stable diffusion model proposed in [21] is not a monolithic model, but rather
a pipeline of three components, as depicted in Fig. 2:

1) Text encoding, based on the CLIP model [18], which transforms each token
of the input text prompt into an embedding vector.

2) Latent space U-Net generator, which takes all the token embeddings and a
random noise array (a.k.a., latent array) and sequentially generates multiple
arrays that better resemble the input text and the visual images on which
the U-Net has been trained.

3) Image decoder, based on a variational autoencoder (VAE) to transform the
obtained latent array into the pixel space.

In this pipeline, the embedding vectors of the text encoding control both the
generation of the U-Net latent space representations as well as the VAE decoding.

2.2 Training Dataset for Synthetic Image Generation

The limited number of available labeled images is one of the leading limita-
tions faced by medical classification applications. Our internal macroscopic image
dataset consists of thousands of skin condition images curated and classified by
dermatologists to cover more than 700 different diseases. Here, we choose six
widely spread classes across three distinct categories:
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– Malignant classes: basal cell carcinoma and melanoma;
– Pre-malignant classes: actinic keratosis and atypical melanocytic nevus;
– Benign classes: lentigo and seborrheic keratosis.

Fig. 2. The diffusion model pipeline for synthetic skin image generation.

Table 2 provides an overview of the number of images used for each disease in
training the text embedding with the stable diffusion model.
In order to train the text embeddings associated to each skin disease, we use the
stable diffusion architecture [20] based on latent diffusion models [21]. Using a
model of the latter pretrained on multiple LAION datasets [1], we fine-tune each
embedding on our real-world image skin condition dataset for two million steps
using the default hyperparameters proposed in [25]. We use PyTorch for both
training and inference. Each embedding is trained on three NVIDIA GeForce
RTX 3090 GPUs.
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Table 2. The number of real training images for the considered skin diseases.

Category Skin disease Data source

Benign Seborrheic keratosis 2134

Lentigo 680

Pre-malignant Actinic keratosis 3298

Atypical melanocytic nevus 623

Malignant Basal cell carcinoma 7081

Melanoma 3381

2.3 Curation of Generated Images

While most of the generated skin disease images are of high quality, it is not
unusual to obtain generated images of medium or low quality. To isolate high-
quality images from lower qualities, Fig. 3 depicts the full pipeline for augmenting
our skin disease dataset composed of the following four steps:

Fig. 3. Summary of the four steps of the generation pipeline for skin disease data
augmentation.

1) Syntheticdatageneration:UsingthestablediffusionmodeldescribedinSect. 2.1,
we generate 30.000 images for each one of the considered six skin diseases to get a
synthetic dataset.

2) Non-skin image filtering : We run the obtained synthetic dataset in 1) through
a pretrained binary EfficientNet classifier [26] to filter out any non-skin
images. The binary classifier has been trained on the skin images of the macro-
scopic dataset presented in Table 2 and non-skin images from ImageNet. The
accepted images as skin images by the binary classifier represent more than
99% of the generated images and constitute the filtered synthetic dataset.
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3) Skin disease image filtering : We use the filtered synthetic dataset to pre-
dict the skin disease label using a pretrained ensemble model composed of
two CNN models (EfficientNetV2 [27], RegNet [8]) and a visual transformer
(Swin-Transformer [14]). This ensemble model has been pretrained on the
macroscopic dataset presented in Table 2.

4) Data augmentation: We use the correctly labeled images by the pretrained
ensemble classifier as the data source for augmenting our initial dataset.

3 Experiments and Results

3.1 Dataset Scenarios for Synthetic Image Generation

Based on the filtered images whose labels were correctly predicted by the pre-
trained ensemble classifier, we build a fully synthetic dataset consisting of 500
images per skin disease. For the real images, we randomly sample 500 images
per class from our macroscopic skin image dataset. To examine the impact of the
synthetic dataset on classification metrics, we consider the following datasets:

– a small real dataset (real-small) containing 250 real images only,
– a real dataset containing 500 real images only,
– a hybrid dataset consisting of 250 real images and 250 synthetic images,
– a synthetic dataset containing 500 synthetic images only.

Note that the four datasets are balanced across skin diseases with varying pro-
portions of real and synthetic images. This allows us to assess the efficiency of
substituting real data with synthetic ones.

3.2 Medical Synthetic Data Samples Using Text Prompt Inputs

Here, we demonstrate the quality of the synthetic skin disease images stemming
from the generation pipeline in Fig. 3 by providing four synthetic images for
each disease. Similar to the synthetic melanoma images in Fig. 1, we present
synthetic images of seborrheic keratosis, lentigo, atypical melanocytic nevus,
basal cell carcinoma and actinic keratosis in Figs. 4, 5, 6, and 7, respectively.

Fig. 4. Synthetic seborrheic keratosis images generated by the stable diffusion model
after fine-tuning it with seborrheic keratosis images using the input text prompt “seb-
orrheic keratosis”.
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Fig. 5. Synthetic lentigo images generated by the stable diffusion model after fine-
tuning it with lentigo images using the input text prompt “lentigo”.

While the impressive generative capabilities of AI models have already been
established for normal and glaucomatous eyes in [12], our generated macroscopic
images for different skin diseases similarly establishes the effectiveness for der-
matology using larger synthetic datasets. This is to be opposed to seed-image
based augmentation in [23] where synthetic datasets where not used to fine-tune
the generative model.

Fig. 6. Synthetic synthetic atypical melanocytic nevus images generated by the stable
diffusion model after fine-tuning it with atypical melanocytic nevus images using the
input text prompt “atypical melanocytic nevus”.

Fig. 7. Synthetic basal cell carcinoma images generated by the stable diffusion model
after fine-tuning it with basal cell carcinoma images using the input text prompt “basal
cell carcinoma”.

3.3 Classification of Skin Conditions

In this section, we first describe the training and inference procedures of the skin
disease ensemble classifier on the four datasets described in Sect. 3.1.
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The Training Step. We start by training three networks of the ensemble clas-
sifier (i.e., Swin-Transformer [14], EfficientNetV2 [27], and RegNetZ [8]) on each
one of the datasets (i.e., real, hybrid, and synthetic). We do so using the PyTorch
Image Models library [28]. We make use of the default training hyperparameters
and set the number of training epochs and batch size to 100 and 8, respectively.
We also use early stopping1 by monitoring the validation loss, and opt for the
stochastic gradient descent (SGD) optimizer. We also use a data split of 80%
and 20% for training and validation dataset sizes, respectively.

For every dataset, we calculate the mean and standard deviation for each
one of the RBG image channels. They are accustomed to preprocessing the input
images to normalize the images fed to all the networks. It is worth noting that the
early stopping criterion occurs when we train the models on the fully synthetic
dataset only. This is as opposed to training on real or hybrid datasets, where
early stopping does not occur because the validation accuracy stagnates with
very little increase, and peaks at 89% only. This observation suggests that the
fully synthetic dataset generated with stable diffusion exhibits non-perceptible
differentiating features that is allowing for faster training and convergence.

The Inference Step. We evaluate the trained ensemble model by running
inference on our test dataset consisting of 3582 real images. Table 3 shows their
distribution across the skin disease categories and classes.

Table 3. The number of test images for the six considered skin diseases

Category Skin disease Number of images

Benign Seborrheic keratosis 1597

Lentigo 293

Pre-malignant Actinic keratosis 282

Atypical melanocytic nevus 885

Malignant Basal cell carcinoma 345

Melanoma 180

We do not carry out any preprocessing to the test images other than the same
normalization applied to the training images.

3.4 Classification Results

We now evaluate three ensemble classifiers where each classifier is separately
trained on one of the real-small, real, hybrid and synthetic datasets, as described
in Sect. 3.1. We run inference on our test dataset and report in Table 4 the

1 Here, early stopping occurs as soon as the validation accuracy does not improve over
10 consecutive epochs.
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associated top-k classification accuracy. The latter computes the number of times
where the correct skin disease is among the top-k predicted diseases (ranked from
highest to lowest predicted scores).

Table 4. Top-1 to top-5 skin disease classification accuracy on real-small, real, hybrid
and fully synthetic datasets.

Dataset # of images Accuracy

Real Synthetic Top-1 Top-2 Top-3 Top-4 Top-5

Real-small 250 0 53.41% 73.51% 83.22% 89.75 % 95.45%

Real 500 0 54.05% 73.95% 84.84% 91.49 % 96.96%

Hybrid 250 250 54.13% 73.23% 85.01% 92.16% 96.65%

Synthetic 0 500 47.29% 70.71% 84.09% 92.16% 96.85%

From Table 4, it can be seen that the top-k accuracies of the four classifiers are
very comparable. More importantly, we observe how the use of synthetic images
improves the overall accuracy of skin classifiers. Indeed, their performances on
the real and hybrid datasets have been improved. As ascertained by our clin-
ical partners at Semmelweis University, this result confirms that beyond their
impressive visual quality across thousands of images, diffusion models also pro-
vide significant benefit as synthetic images for real-world medical applications.

4 Conclusion

In this paper, we demonstrate the impressive generative capabilities of proba-
bilistic diffusion models in generating macroscopic skin disease images. We show
how it is possible to condition the probabilistic diffusion-based generation on
text prompt inputs in obtaining fine-grained synthetic images. Furthermore, we
propose a closed loop data augmentation pipeline to automatically curate the
generated images while complementing real-world skin disease datasets. Finally,
our classification task of six skin diseases highlights how synthetic images are
reliable data sources given that they have been demonstrated beneficial for skin
disease classification. This result underlines the importance of the recent gen-
erative modelling success for medical applications as an effective means of data
sharing without infringing confidentiality issues. Several exciting avenues for
further investigation remain open such as conditioning the image generation in
relation to skin tone, with skin tone diversification in datasets being another
leading limitation, or the use of input images in addition to the text prompt.
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Abstract. The use of deep generative models for unsupervised anomaly
detection is an area of research that has gained interest in recent years
in the field of medical imaging. Among all the existing models, the vari-
ational autoencoder (VAE) has proven to be efficient while remaining
simple to use. Much research to improve the original method has been
achieved in the computer vision literature, but rarely translated to med-
ical imaging applications. To fill this gap, we propose a benchmark of
fifteen variants of VAE that we compare with a vanilla autoencoder and
VAE for a neuroimaging use case relying on a simulation-based evalu-
ation framework. The use case is the detection of anomalies related to
Alzheimer’s disease and other dementias in 3D FDG PET.

We show that among the fifteen VAE variants tested, nine lead to a good
reconstruction accuracy and are able to generate healthy-looking images.
This indicates that many approaches developed for computer vision appli-
cations can generalize to the unsupervised detection of anomalies of vari-
ous shapes, intensities and locations in 3DFDGPET.However, thesemod-
els do not outperform the vanilla autoencoder and VAE.

Keywords: Variational autoencoder · Deep generative models ·
Unsupervised anomaly detection · PET · Alzheimer’s disease

1 Introduction

Recent advances in medical image analysis have allowed the emergence of algo-
rithms that can perform complex tasks such as computer-aided diagnosis [7,10]
with pseudo-healthy reconstruction for unsupervised anomaly detection (UAD).
Contrary to supervised approaches,UADdoes not require human annotations that
are costly and time consuming, and enables the detection of any type of anoma-
lies, without having seen them before. Most approaches rely on generative models
to reconstruct healthy looking images, also called pseudo-healthy images [1,7,10].
The assumption is that if a model is trained with images from subjects diag-
nosed as healthy, the reconstruction of images with a pathology should not contain
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pathology-specific features and look like a healthy image. Comparing the pseudo-
healthy reconstruction with the real image then allows the detection of anomalies.

The application context of our work is the detection of metabolic changes
visible in brain 18F-fluorodeoxyglucose (FDG) positron emission tomography
(PET) caused by Alzheimer’s disease and other dementias [8]. These subtle
changes appear several years before the first symptoms and can be used for
early diagnosis [16]. In neuroimaging, deep learning methods for UAD have not
been much applied for the diagnosis of dementia [9]. It is a challenging task
because the metabolic abnormalities are diffuse and little intense, which makes
them difficult to detect [3].

The different pseudo-healthy reconstruction approaches that have been devel-
oped for medical imaging rely on variational autoencoders (VAEs) [19], genera-
tive adversarial networks (GANs) [12] and more recently diffusion models [15].
We aim to compare VAE-based models as they have shown their efficacy for UAD
in medical imaging [1,7], are easy to train, easily scalable, with good interpre-
tation capacity thanks to their regularized latent space, and are able to handle
small datasets. Much research to improve the original VAE has been achieved in
the computer vision literature [2,5,11,14,18,21–23,25,27,29,30,32,36], but only
a few have been translated to medical imaging applications [1,6,9,24,31].

We propose a benchmark of seventeen VAE-based models and show results in
the context of pseudo-healthy reconstruction for dementia from 3D FDG PET.
As far as we know, the only study that has compared VAEs for neuroimaging
data is that of Baur et al. [1]. However, it was restricted to models that had
already been used for medical imaging applications. Many other VAE extensions
have thus not been assessed. Also, it was dedicated to the detection of very sharp
and intense anomalies, such as brain tumors or multiple sclerosis lesions, which
is very different from the identification of subtle anomalies found in PET images
of patients with cognitive disorders. Finally, it was performed in 2D. Our work
aims to contribute to this effort by evaluating a much wider set of approaches,
including many that were never used in medical imaging, relying on the work
of Chadebec et al. [4]. This will provide an insight into the performance that
such models can achieve in detecting anomalies in 3D data when trained with
a relatively small dataset (few hundreds of images) compared to most datasets
used in the computer vision literature (several tens of thousands images). The
models will be evaluated and compared based on reconstruction quality and
on their ability to generate healthy looking images using a previously proposed
simulation framework [13].

2 Methods

2.1 Variational Autoencoder Framework for Pseudo-healthy Image
Reconstruction

Let D be a set of medical images of the same modality acquired following a
similar protocol. D can contain healthy and pathological images and can be
divided in respectively two complementary subsets Dh and Dp. Let’s take as
an example a set of FDG PET images x ∈ Dh whose distribution is p(x).
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The goal of pseudo-healthy image reconstruction is to generate an FDG PET
image of healthy appearance. The idea is to approximate the healthy image
true distribution p(x) with a chosen model pθ(x) such that pθ(x) ≈ p(x). Then,
during reconstruction, the images (of healthy subjects or patients) are projected
into that “healthy images” learned subspace by the generative model.

This can be modeled using the VAE framework [19] by assuming that a latent
variable z is involved in the generation process of x: pθ(x) =

∫
z
p(z)pθ(x | z)dz

where z ∼ pθ(z) is the prior distribution on the latent space and pθ(x | z) is
the generative model (or the decoder) that learns to generate healthy images
from z. To compute the appropriate z for each data input x of our dataset, we
need the posterior distribution pθ(z | x). Since it is untractable, we approximate
it using variational inference by introducing another model qφ(z | x) such that
qφ(z | x) ≈ pθ(z | x). qφ(z | x) is the inference model (or encoder). Both the
decoder and encoder are parametric models whose parameters are given by a
neural network.

The objective is to maximize the likelihood of pθ(x), which is equivalent to
maximizing the evidence lower bound, which defines our loss function Lθ,Φ [20]

log (pθ(x)) ≥ Lθ,Φ(x) = EqΦ(z|x)
[
log

(
pθ(x | z))

]
− DKL

(
qΦ(z | x)‖pθ(z)

)
(1)

with DKL the Kullback-Leibler divergence.
During the training process, we learn an approximation of the posterior dis-

tribution qφ(z | x) for x ∈ Dh as we train our model using only healthy subjects.
When using the model for inference, we use this approximate posterior to esti-
mate the latent variable z for x ∈ D (it can be from Dh or Dp).

2.2 Extensions to the Variational Autoencoder Framework

As explained in detail in [4], several contributions have been proposed to improve
the VAE framework. They can be divided into four categories that correspond
to different objectives:

– improve the prior distribution p(z) by using a variational mixture of poste-
riors as prior (VAMP) [30], by learning the prior on a discrete latent space
with vector quantized-VAE (VQVAE) [32], or by substituting the prior with
a density estimation method using regularization with a gradient penalty
(RAE-GP), or an �2 penalty on the decoder (RAE-�2) [11];

– better estimate the lower bound by using importance weighting (IWAE) [2],
and using a linear normalizing flow (VAE-lin-NF) [25] or an inverse autore-
gressive flow (VAE-IAF) [21] to better estimate the posterior;

– encourage disentanglement of the features in the latent space by adding a
weight to balance the terms of the loss in Eq. 1 (β -VAE) [14], decomposing
the loss to show a total correlation term (β -TC VAE) [5], or by encouraging
the distribution of the latent variable q(z) to be factorial (FactorVAE) [18];
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– and change the distance computed between the distributions by adding the
mutual information between x and z as regularization (InfoVAE) [36], using
another divergence term in the loss such as the maximum mean discrepancy in
the Wasserstein autoencoder (WAE) [29] or a discriminator to differentiate a
prior’s sample from a posterior’s sample in the adversarial autoencoder (AAE)
[23], or by changing the reconstruction metric for another similarity metric
such as the multi-scale structural similarity (MSSSIM-VAE) [27], or for the
prediction of a discriminator on the output of the VAE (VAEGAN) [22].

In our benchmark, these models will be compared to the autoencoder (AE)
and VAE [19], which makes a total of seventeen models. All of these methods
have shown great results in other fields of computer vision, and, since VAE-based
models can learn the data distribution on a small dataset, we keep the focus on
them and aim to assess their performance in the context of medical imaging.

2.3 Evaluation of the Models

We can distinguish two main objectives when generating pseudo-healthy images:
preserving the subject’s identity in the reconstructed image and ensuring that
the reconstruction appears healthy [35].

For the subject identity preservation, we evaluate the models on real images
from healthy subjects only: the pseudo-healthy reconstruction of an image of a
healthy subject should be identical to the input. This is assessed using three
commonly used paired reconstruction metrics: the mean-squared error (MSE),
the peak signal-to-noise ratio (PSNR) and the structural similarity (SSIM) [33].

To evaluate the capability of each model to reconstruct healthy looking
images, since we do not have access to ground-truth lesions masks, we use
the evaluation framework that has been introduced in [13]. It consist in sim-
ulating the effect of the disease by reducing the intensity of the PET uptake
within regions associated with different dementias, thus mimicking regional
hypometabolism [3]. After locally reducing the intensity of the image by a certain
percentage, a Gaussian smoothing is applied to have a realistic result and dif-
fuse anomalies. That way we can have pairs of diseased images with the original
healthy scan that is used as ground-truth for the pseudo-healthy reconstruction
as we do not have ground truths for images from real patients in our dataset.
We simulate five different dementias on images of healthy subjects: Alzheimer’s
disease (AD), behavioral variant frontotemporal dementia (bvFTD), logopenic
variant primary progressive aphasia (lvPPA), semantic variant PPA (svPPA)
and posterior cortical atrophy (PCA). This allows us to evaluate the capability
of the model to generalize to anomalies caused by different dementia subtypes. In
addition, we simulate different degrees of AD severity by varying the reduction
in intensity from five to seventy percents to study the sensitivity of the UAD
approaches on subtle and severe anomalies. We compute the reconstruction error
in the whole image, in the region associated with the simulated dementia and in
the complementary of this region in the brain.
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2.4 Materials

FDG PET scans used in this study were obtained from the publicly available
ADNI database [17] (https://adni.loni.usc.edu). We selected FDG PET images
co-registered, averaged and uniformized to a resolution of 8 mm FWHM to reduce
the variability due to the use of different scanners. The images were then linearly
registered to the standard MNI space, normalized in intensity using the average
PET uptake in a region comprising cerebellum and pons, and cropped using the
Clinica [26] pet-linear pipeline. We finally down-sampled the images to a voxel
size of 80 × 96 × 80 to reduce their dimension and the memory usage.

ADNI includes a total of 733 FDG PET scans of cognitively normal (CN)
participants with a stable diagnosis over a three-year window (corresponding
to 301 subjects). We discarded 144 images that were not correctly registered
according to the quality check algorithms implemented in ClinicaDL [28].

2.5 Experimental Setting

We split our dataset of 247 remaining CN subjects at the subject’s level to avoid
data leakage [34]: 50 CN subjects (50 images) compose the test set, 19 subjects
(19 images) belong to the validation set and 178 subjects (452 images) are used
to train our models. The split is stratified by sex and age to reduce biases. The
50 images of the CN subjects from the test set are also used to simulate the
hypometabolic images mimicking various dementias and AD severity degrees.

For the comparison to be as fair as possible, all the models share the same
encoder and decoder architecture. The encoder is composed of three blocks that
are the succession of a 3D convolutional layer and a batch normalization with a
ReLU activation. Then the tensor is flatten and passes through a dense layer to
output a one dimensional latent space. The decoder is almost symmetrical: it is
composed of a dense layer followed by three blocks that are composed of a 3D
deconvolutional layer and a batch normalization with a leaky ReLU activation.
We tested several sizes of latent space (16, 64, 128 and 256), but as we observed
similar performance, we report the results for a size of 128, consistent with the
choice made in [1].

We also use the same training parameters and environment to train all the
models. We trained each model on 300 epochs with a learning rate of 10−5 and
a batch size of 24 on a HPC with Nvidia Tesla V100 GPUs that have 32GB
of memory. We are aware that model performance can greatly vary depending
on these parameters, but for fair comparison we decided to choose the best
parameters on the VAE and use the same for all models. It takes on average
between 1’ and 1’30” to train one epoch with comparable performance for each
model on our computer cluster, meaning around 7 h per model for 300 epochs.

VAE-based model implementation relies on Pythae [4] and neuroimage pro-
cessing on ClinicaDL [28], two open source software tools. The code used for
this study is available on GitHub and can be used to reproduce the experiments:
https://github.com/ravih18/VAE-models-for-UAD.

https://adni.loni.usc.edu
https://github.com/ravih18/VAE-models-for-UAD
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3 Results

3.1 Pseudo-healthy Reconstruction from Images of Control
Subjects

We first assessed whether the different models could preserve the subject’s iden-
tity by computing the MSE, PSNR and SSIM between the input and recon-
structed images of the CN subjects. Results are reported in Table 1. We observe
that no model clearly outperforms the others. On the other hand, VAMP [30],
VAE-lin-NF [25], MSSSIM-VAE [27] and VAEGAN [22] perform less well than
the others (MSE > 0.05, PSNR < 20 dB, SSIM < 0.5). A possible explanation
is that the dataset is too small for these models to learn the data distribution.

Table 1. Reconstruction metrics computed between the pseudo-healthy reconstruc-
tions obtained with the various models evaluated and the original healthy PET image
of CN subjects from the test set. Light gray highlights the worst performing models.

Model MSE ↓ PSNR (dB) ↑ SSIM ↑
AE 0.02694 ± 0.00603 25.78 ± 0.84 0.725 ± 0.033

VAE [19] 0.02471 ± 0.00517 26.15 ± 0.79 0.771 ± 0.027

VAMP [30] 1.09029 ± 0.10416 9.64 ± 0.41 0.057 ± 0.015

RAE-GP [11] 0.02363 ± 0.00480 26.34 ± 0.79 0.750 ± 0.030

RAE-�2 [11] 0.02385 ± 0.00532 26.31 ± 0.83 0.761 ± 0.029

VQVAE [32] 0.02645 ± 0.00608 25.87 ± 0.85 0.731 ± 0.032

IWAE [2] 0.03531 ± 0.00711 24.60 ± 0.80 0.692 ± 0.030

VAE-lin-NF [25] 0.12887 ± 0.02875 18.99 ± 0.89 0.483 ± 0.036

VAE-IAF [21] 0.02900 ± 0.00560 25.45 ± 0.77 0.706 ± 0.032

β -VAE [14] 0.03927 ± 0.00654 24.12 ± 0.71 0.708 ± 0.028

β -TC VAE [5] 0.02819 ± 0.00499 25.55 ± 0.67 0.729 ± 0.031

FactorVAE [18] 0.02869 ± 0.00550 25.49 ± 0.74 0.704 ± 0.032

InfoVAE [36] 0.03223 ± 0.00566 24.97 ± 0.69 0.706 ± 0.030

WAE [29] 0.02920 ± 0.00509 25.40 ± 0.66 0.690 ± 0.032

AAE [23] 0.02919 ± 0.00597 25.43 ± 0.81 0.709 ± 0.032

MSSSIM-VAE [27] 1.22541 ± 0.18918 9.17 ± 0.73 0.167 ± 0.027

VAEGAN [22] 0.86575 ± 0.03080 10.63 ± 0.15 0.073 ± 0.014

The other models obtain a similar performance with, on average, an MSE
< 0.04, PSNR > 24 dB and SSIM comprised between 0.69 and 0.75. Not surpris-
ingly, the AE leads to a good performance for this reconstruction task according
to the MSE as it is the optimized metric. The vanilla VAE [19] seems to be one
of the best models but does not stand out from the other models. It is probable
that some models would benefit from hyper-parameter fine tuning to perform
better, but it is interesting to see that optimal parameters obtained on classic
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computer vision datasets do generalize to this different application for many
models.

3.2 Pseudo-healthy Reconstruction from Images Simulating
Dementia

In the following, we discarded the four models that did not give acceptable
reconstructions. We first report, for the five dementia subtypes considered simu-
lated with a hypometabolism of 30%, the MSE and SSIM between the simulated
image and their reconstructions within the binary mask where hypometabolism
was applied (e.g. between X ′ and X̂ ′ within the binarized mask M in Fig. 1).
All the models reach a very similar performance with an MSE on average across
models of 0.0132 (min MSE of 0.0096 for the RAE GP [11] and max MSE of
0.0183 for the IWAE [2]) and an average SSIM of 0.710 (min SSIM of 0.684 for
the IWAE [2] and max SSIM of 0.733 for the RAE-�2 [11]). This means that
the VAE-based models can generalize to various kinds of anomalies located in
different parts of the brain, and that none of the tested models can be selected
based on this criteria. The average MSE over all the models and all the dementia
subtypes (between X ′ and X̂ ′) is 0.0132 in the pathological masks M against
0.0072 outside the masks, which makes a 58.6% difference between both regions.
The average SSIM is 0.710 inside masks M against 0.772 outside the masks for
a 8.4% difference. This shows that the reconstruction error is much larger in
regions that have been used for hypometabolism simulation, as expected. For
comparison, the percentage difference is only 10.2% for the MSE and 0.2% for
the SSIM when computed between the pseudo-healthy reconstruction X̂ ′ and the
real pathology-free images X. This illustrates that the models are all capable of
reconstructing the pathological regions as healthy.

We then report in Fig. 2 the MSE within the mask simulating AD when
generating hypometabolism of various degrees (5% to 70%) for each model. It is
interesting to observe that most of the models could be used to detect anomalies
of higher intensity as they have an increasing difference in terms of MSE for
hypometabolism of 20% and more. The same trend was observed with the SSIM.
The RAE-�2 [11] does not scale as well as other models, probably because the

Fig. 1. Example of FDG PET image of a CN subject (X) with the corresponding

pseudo-healthy reconstruction ( ̂X) and difference image (Δ), followed by an image
simulating AD hypometabolism obtained from X (X ′) with the corresponding pseudo-

healthy reconstruction (̂X ′) and difference image (Δ′), and the mask used to gener-
ate X ′ (M). The pseudo-healthy reconstructions were obtained from the vanilla VAE
model.
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regularization is done on the decoder weights so nothing prevents the encoder
from learning a posterior that is less general. We also notice that the IWAE
[2] has a worse reconstruction on the pathological region compared to other
models, and this becomes more pronounced when the severity of the disease is
increased. However this does not mean that IWAE [2] better detects pathological
areas since the reconstruction is poor in the whole image as well, meaning that
IWAE [2] cannot perform well when the image is out of the training distribution.
Surprisingly, the simple autoencoder gives similar results as other methods.

Fig. 2. Bar plot of the evolution of the MSE when computed within the mask charac-
teristic of AD between the image simulated with different degrees of hypometabolism
and its reconstruction. We observe that most models can scale to large anomalies.

4 Conclusion

The proposed benchmark aimed to introduce the use of recent VAE variants
with medical imaging data of high dimension and compare their performance on
the detection of dementia-related anomalies on 3D FDG PET brain images. We
observed that most models have a comparable reconstruction ability when fed
with images of healthy subjects and that their outputs correspond to healthy
looking images when fed with images simulating anomalies. Exceptions are the
VAEGAN [22], VAMP [30], VAE-lin-NF [25], MSSSIM-VAE [27], RAE-�2 [11]
and IWAE [2]. Thanks to the evaluation framework that consists in simulating
images with anomalies from pathology-free images, we showed that most models
can generalize pseudo-healthy reconstruction to different dementias and different
severity degrees. These results are interesting as it means that VAE-based models
developed for natural images can generalize well to other tasks (here 3D brain
imaging): they are easy to use and do not necessarily require a large training set,
which might not be the case for other types of generative models. We also showed
that in our scenario (small dataset of complex 3D images) the simplest models
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(vanilla AE and VAE) lead to results comparable to that of the more complex
ones. Nevertheless, the results are for now limited to the detection of simulated
anomalies. An evaluation on real images would be necessary to confirm these
observations.

The proposed benchmark could be used in future work to assess whether the
posterior learned by the different models is the same for images from healthy and
diseased subjects using the simulation framework to compare the latent repre-
sentation of both the original and simulated images, thus explaining the results
of the models. It would also be interesting to compare some of the VAE-based
models to GANs or diffusion models, and assess whether it would be possible to
improve reconstruction quality while learning the distribution of healthy subject
images.
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Abstract. Mitotic figure detection in histology images is a hard-to-
define, yet clinically significant task, where labels are generated with
pathologist interpretations and where there is no “gold-standard” inde-
pendent ground-truth. However, it is well-established that these inter-
pretation based labels are often unreliable, in part, due to differences in
expertise levels and human subjectivity. In this paper, our goal is to shed
light on the inherent uncertainty of mitosis labels and characterize the
mitotic figure classification task in a human interpretable manner. We
train a probabilistic diffusion model to synthesize patches of cell nuclei for
a given mitosis label condition. Using this model, we can then generate a
sequence of synthetic images that correspond to the same nucleus tran-
sitioning into the mitotic state. This allows us to identify different image
features associated with mitosis, such as cytoplasm granularity, nuclear
density, nuclear irregularity and high contrast between the nucleus and
the cell body. Our approach offers a new tool for pathologists to interpret
and communicate the features driving the decision to recognize a mitotic
figure.

Keywords: Mitotic Figure Detection · Conditional Diffusion Models

1 Introduction

Mitotic figure (MF) count is an important diagnostic parameter in grading cancer
types including meningiomas [9], breast cancer [18,20], uterine cancer [24], based
on criteria set by World Health Organization (WHO) [9,18,24]. Due to the size
of the whole slide images (WSIs), scarcity of MFs, and that presence of cells that
mimic the morphological features of MFs, the detection process by pathologists is
time consuming, subjective, and prone to error. This has led to the development
of algorithmic methods that try to automate this process [3,6,14,16,23].

Earlier studies have used classical machine learning models like SVMs or ran-
dom forests [2,5] to automate MF detection. Some of these works relied on mor-
phological, textural and intensity-based features [14,17]. More recently, modern
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deep learning architectures for object detection, such as RetinaNet and Mask-
RCNN have been employed for candidate selection, which is in turn followed
by a ResNet or DenseNet-style classification model for final classification [8,22].
Publicly available datasets and challenges such as Canine Cutaneous Mast Cell
Tumor (CCMCT) [6] and MIDOG 2022 [4], have catalyzed research in this area.

An important aspect of MF detection is that there is no independent ground-
truth, other than human-generated labels. However, high inter-observer vari-
ability of human annotations has been documented [11]. In a related paper [7],
the examples in the publicly available TUPAC16 dataset were re-labeled by
two pathologists with the aid of an algorithm, which revealed that the updated
labels can markedly change the resultant F1-scores. In another study, patholo-
gists found the lack of being able to change the z axis focus, a limiting factor for
determining MFs in digitized images [21]. Despite high inter-observer variability
and inherent difficulty of recognizing MFs, all prior algorithmic work in this area
relies on discrete labels, e.g. obtained via a consensus [1,4,6]. One major area
that hasn’t been studied is the morphological features of the cell images that
contribute to the uncertainty in labeling MF.

Diffusion probabilistic models (DPMs) have recently been used to gener-
ate realistic images with or without conditioning on a class [10], including in
biomedical applications [12,15]. In this paper, we trained a conditional DPM
to synthesize cell nucleus images corresponding to a given mitosis score (which
can be probabilistic). The synthetic images were in turn input to a pre-trained
MF classification model to validate that the generated images corresponded to
the conditioned mitosis score. The prevailing MF classification literature con-
siders MF labels as binary. Embracing a probabilistic approach with the help of
DPMs offers the opportunity to characterize the MF features, thus improves the
interpretability of the MF classification process. Our DPM allows us to generate
synthetic cell images that illustrate the transition from a non-mitotic figure to a
definite mitosis. We also present a novel approach to transform a real non-mitotic
cell into a mitotic version of itself, using the DPM. Overall, these analyses allow
us to reveal and specify the image features that drive the interpretation of expert
annotators and explain the sources of uncertainty in the labels.

2 Methodology

2.1 Datasets

Canine Cutaneous Mast Cell Tumor: CCMCT is a publicly available
dataset that comprises 32 whole-slide images (WSI) [6]. We used the ODAEL
(Object Detection Augmented Expert Labeled) variant which had the highest
number of annotations. The dataset has a total of 262,481 annotated nuclei
(based on the consensus of two pathologists). 44,880 of them are mitotic figures
and the remainder are negative examples. We used the same training and test
split as the original paper: 21 slides for training and 11 slides for test.

Meningioma: We created a meningioma MF dataset using 7 WSIs from a
public dataset (The Digital Brain Tumour Atlas [13,19]) and 5 WSIs from our
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Fig. 1. Label distribution from a meningioma slide (left) and real cell images from a
meningioma slide labeled with pathologists’ scoring (right).

own hospital. The WSIs were non-exhaustively annotated for mitotic figures by
two pathologists. The pathologists were allowed to give a score of 0, 0.5 and 1 to
each candidate cell, 0.5 representing possible MFs where the annotator was not
fully certain. There are a total of 6945 annotations, with 4186 negatives, 1439
definite MFs and 1320 annotations with scores varying between 0 and 1.

For 11 slides in the dataset each cell was seen by one of our two patholo-
gists. For one slide in the dataset a total of 2095 cells were annotated by two
pathologists using an in-house software that showed the cells to the annotators
repetitively in a shuffled manner. The 2095 cells were independently annotated
by both pathologists, up to three times each, yielding 6138 annotation instances.
Figure 1 (left) shows the distribution of scores given to cells that are possibly
MFs (i.e. have a non-zero score). The bar plot has also been color coded to show
how many votes have been gathered for each score. This figure clearly demon-
strates the probabilistic nature of the ground-truth label. Figure 1-right shows
12 cell examples with 4 different scores. Each of these cells has been annotated at
least 3 times. The uncertainty of the scoring can be explained by visual inspec-
tion. In column 0, the pathologists are in consensus that these examples are
not mitotic. In the top two examples, cytoplasmic membranes are indistinct or
absent and the basophilic material that might prompt consideration of a mitotic
figure does not have the shape or cellular context of condensed chromatin that
would be encountered in a MF. The bottom example is a cell with a hyper-
chromatic nucleus that is not undergoing mitosis. In the examples with a 0.33
score, we observe that there is some density in the chromatin which can con-
found the interpreter. Yet, the lack of cellular borders make it challenging to
interpret the basophilic material, and the putative chromatin appears smoother
and lighter compared to the more confident examples. The second row in 0.67 is
likely an example of telophase, and the uncertainty is attributable to the lighter
and blurry appearance of the upper daughter cell. Also the potential anaphase
in the third row of 0.67 shows an indistinct to absent cytoplasmic membrane,
introducing uncertainty for a definitive mitotic figure call. The cell examples in
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column 1.0 depict strong features such as high chromatin density and irregu-
larity in the nucleus and are good examples of metaphase due to the elongated
appearance.

2.2 Training

We trained a ResNet34 model on the CCMCT dataset training set (21 WSIs) to
discriminate mitotic and non-mitotic cells. The model was initialized with Ima-
geNet pretrained weights. We used the Adam optimizer with a 1e−05 learning
rate, batch size of 128, and binary cross entropy loss. The mitotic figures were
sampled randomly in each mini batch with an equal number of randomly sam-
pled negative examples. 64× 64 RGB tiles were created around each cell nucleus
and re-sampled to 256× 256 to match Resnet34’s input requirement. Each WSI
was used in training and validation, with a 75% division in the y axis. The
model was trained until validation loss converged. We randomly initialized with
3 different seeds during training and ensembled the three converged models by
averaging to obtain final scores. This ResNet34 ensemble reached 0.90 accuracy
and 0.81 F1-score in test data, similar to the numbers reported in the CCMCT
paper with ResNet18 [6].

For the conditional DPM, we used an open-source PyTorch implementa-
tion1. The input embedding layer was changed into a fully connected layer that
accepts a real-valued (probabilistic) input. Two DPMs were trained. One model
was trained on the CCMCT dataset with the 11 test slides that were not seen
by the classification model during training. Importantly, the CCMCT includes
binary (i.e., deterministic) labels. The second DPM was trained on the menin-
gioma dataset that comprised 12 slides with probabilistic labels. The models
were trained on 64× 64 images, with Adam optimizer, learning rate of 1e-04 and
a batch size of 128. The trained model weights, code, and our expert annotations
for The Brain Tumor Atlas Dataset is made publicly available2.

2.3 Inference

During inference time, for a given random noise seed input, the DPM was run
with a range of scores between 0 and 1, at 0.1 increments, as the conditional
input value. This way, we generated a sequence of synthetic cell images that
corresponds to a random generated cell nucleus transitioning into the mitosis
stage.

We were also interested in using the DPMs to visualize the transformation
of a real non-mitotic cell nucleus into a MF. To achieve this, we ran the DPM
in forward diffusion mode, starting from a real non-mitotic cell image and itera-
tively adding noise. At intermediate time-points, we would then stop and invert
the process to run the DPM to denoise the image - this time, conditioning on an
MF score of 1 (i.e., definite mitosis). This allowed us to generate a sequence of

1 https://github.com/lucidrains/denoising-diffusion-pytorch.
2 https://github.com/cagladbahadir/dpm-for-mitotic-figures.

https://github.com/lucidrains/denoising-diffusion-pytorch
https://github.com/cagladbahadir/dpm-for-mitotic-figures
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Fig. 2. Generated images from the diffusion model is tested on the ResNet34 classifica-
tion model. The plot on the left shows the ResNet34 scores on the CCMCT generated
test data and the plot on the right shows the scores for the synthetic meninigoma data.
The shaded regions correspond to the standard error of the distribution of classification
scores for every condition value.

images, each corresponding to different stopping time-points. Note that earlier
stopping time-points yield images that look very similar to the original input
non-mitotic image. However, beyond a certain time-point threshold, the syn-
thesized image looks like a mitotic version of the input. We can interpret this
threshold as a measure of how much an input image resembles a mitotic figure.

3 Results

3.1 Generated Cells with Probabilistic Labels

1000 sets of cells were generated with the two DPMs. Each set is a series of
11 synthetic images generated with the same random seed and condition values
between 0 and 1, with 0.1 increments. The generated images were then input
to the ResNet34 classification model. Figure 2 visualizes the average ResNet34
model scores for synthetic images generated for different condition values.

The CCMCT results presented on the left shows a steep increase in median
classification scores given by the prediction model, starting from the conditional
value of 0.6. The meningioma model which was trained on probabilistic labels,
shows a more gradual trend of increase in the classification scores. This differ-
ence is likely due to fact that the CCMCT DPM was trained with binary labels
and thus was not exposed to probabilistic conditional values, whereas the menin-
gioma DPM was trained with probabilistic scores. The utilization of continuous
labels obtained from pathologist votes during the training of DPMs enhances
the comprehension of underlying factors that contribute to labeling uncertainty.

3.2 Selecting Good Examples

In order to select good synthetic images to interpret, we passed each set to
the classification model. The identification of “good synthetic” images is con-
tingent upon task definition and threshold selection. In our study, we adopted
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Fig. 3. Synthetic cell sets generated with the CCMT DPM. Rows represent cell sets
generated from the same random noise, transitioning from non-mitotic (left) to definite
mitotic figures (right). Condition values are listed above.

a selection process focused on visually evaluating smooth transitions between
synthetic images. If a synthetic image set started with predicted mitosis score of
less than 0.1, reached a final score greater than 0.9 and the sequence of scores
were relatively smooth (e.g., the change in scores was less than 0.30 between
each increment), we included it in our visual analysis presented below.

3.3 CCMCT Visual Results

Figure 3 shows the selected examples from the diffusion model trained on the
CCMCT dataset. Each row represents one set that was generated with the same
random seed. This visual depiction shows that there are a wide variety of mor-
phological changes that correlate with transitioning from a non-mitotic to a
mitotic cell. In cells 1 and 5 there are several dark areas at lower probabilities
in the first image. The model merges several of the spots to one, bigger and
darker chromosomal aggregate in cell 1 and two dense chromosomal aggregates
in cell 5, mimicking telophase. The surrounding dark spots are faded away and
the cell membrane becomes more defined. In cells 2 and 6, condensed chromatin
is generated from scratch as the conditional value is increased. In cell 3, the
faint elongated structure in the center of the image gradually merges into a
denser, more defined, irregular and elongated chromosomal aggregate, mimick-
ing metaphase. In cell 4, the cell body size increases around the nucleus while
gradually creating more contrast by lowering the darkness of the cytoplasm,
sharpening the edges and increasing the density of the chromatin.
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Fig. 4. Sets of synthetic cells generated with the Meningioma DPM. Each row illus-
trates a non-mitotic nucleus transitioning to a mitotic figure.

3.4 Meningioma Visual Results

Figure 4 shows selected examples from the DPM trained on the meningioma
dataset. In cells 1, 4 and 5, the nucleus size stays roughly the same while the
chromatin gets darker and sharper, accentuating the irregularity in the chro-
matin edges. In cells 2 and 6, the dense chromatin is created from a blurry and
indistinct starting image. The sharp, dense and granular chromatin in cell 6 even-
tually resembles prophase. In cell 3 the intensity of the chromatin increases while
elongating and sharpening, resembling metaphase. Note that, the differences
between the first and last columns are in general very subtle to the untrained
eye.

3.5 Generating Mitotic Figures from Real Negative Examples

Mitotic figure variants can also be generated from real negative examples. In a
DPM, the forward diffusion mode gradually adds noise to an input image over
multiple time-points. Inverting this process, allows us to convert a noisy image
into a realistic looking image. When running the inverse process, we conditioned
on a mitosis score of 1, ensuring that the DPM attempted to generate a mitotic
figure. Note that, in our experiments below, we always input a non-mitotic image
and run the forward and backward modes for a varying number of time-points.
The longer we run these modes, the less the output image resembles the input
and the more mitotic it looks.

In Fig. 5, 6 negative cell examples from 6 different WSIs are shown in the
real column. Each column corresponds to a different number of time-points that
we used to run in the forward and inverse modes. We can appreciate that the
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real negative cell examples are slowly transitioning into MFs, with a variety of
changes occurring in intermediate steps. Each cell was annotated by a pathologist
retrospectively to mark the earliest time-point where the cell resembles a MF,
indicated with the yellow frame, and when the example becomes a convincing
MF, indicated with the green frame. We can see that the examples that reach the
yellow frame earlier, such as cells 1 and 6, already exhibit features associated with
mitosis, such as dense and elongated chromatin. Conversely, examples that reach
the yellow frame later can be thought of as more obvious negative examples.
Examples such as cell 3, where the jump from the yellow to green state occurs in
a single frame, allow us to isolate the changes needed for certainty. In this case,
we observe that the increased definition of the cell body while the chromatin
remains the same, is the driving feature. Overall, the relative time points in
which the real negative cell examples morph into a mitotic figure can also be
used as a marker to determine which examples are likely to be mistaken for
mitotic figures by classification models, and the data sets can be artificially
enhanced for those examples to reduce misclassification.

Fig. 5. Generated Mitotic Figures from real negative examples from CCMCT dataset
during intermediate time points.

4 Discussion

Detecting mitotic figures is a clinically significant, yet difficult and subjective
task. There is no gold-standard ground-truth and we rely on expert pathologists
for annotations. However, the variation and subjectivity of pathologist annota-
tions is well documented. To date, there has been little focus on the uncertainty
in pathologist labels and no systematic effort to specify the image features that
drive a mitosis call.
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In this paper, we proposed the use of a diffusion probabilistic model, to char-
acterize the MF detection task. We presented strategies for visualizing how a
(real or synthetic) non-mitotic nucleus can transition into a mitosis state. We
observed that there is a wide variety of features associated with this transition,
such as intensity changes, sharpening, increase of irregularity, erasure of cer-
tain spots, merging of features, redefinition of the cell membrane and increased
granularity of the chromatin or cytoplasm.

There are several directions we would like to explore in the future. The condi-
tional DPM can be used to enrich the training data or generate training datasets
comprising only of synthetic images to train more accurate MF detection models,
particularly in limited sample size scenarios. The synthetic images can be used
to achieve more useful ground-truth labels that do not force pathologists to an
arbitrary consensus, but instead allows them to weigh the different features in
order to converge on a probabilistic annotation. These probabilistic labels can, in
turn, yield more accurate, calibrated and/or robust nucleus classification tools.
We also are keen to extend the DPM to condition on different nucleus types and
tissue classes.
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Abstract. Generative modelling and synthetic data can be a surrogate
for real medical imaging datasets, whose scarcity and difficulty to share
can be a nuisance when delivering accurate deep learning models for
healthcare applications. In recent years, there has been an increased
interest in using these models for data augmentation and synthetic
data sharing, using architectures such as generative adversarial networks
(GANs) or diffusion models (DMs). Nonetheless, the application of syn-
thetic data to tasks such as 3D magnetic resonance imaging (MRI) seg-
mentation remains limited due to the lack of labels associated with the
generated images. Moreover, many of the proposed generative MRI mod-
els lack the ability to generate arbitrary modalities due to the absence of
explicit contrast conditioning. These limitations prevent the user from
adjusting the contrast and content of the images and obtaining more
generalisable data for training task-specific models. In this work, we pro-
pose brainSPADE3D, a 3D generative model for brain MRI and associ-
ated segmentations, where the user can condition on specific pathologi-
cal phenotypes and contrasts. The proposed joint imaging-segmentation
generative model is shown to generate high-fidelity synthetic images and
associated segmentations, with the ability to combine pathologies. We
demonstrate how the model can alleviate issues with segmentation model
performance when unexpected pathologies are present in the data.

1 Introduction

In the past decade, it has been shown that deep learning (DL) has the potential
to ease the work of clinicians in tasks such as imaging segmentation [10], an oth-
erwise time-consuming task that requires expertise in the imaging modality and
anatomy. Nonetheless, the performance and generalisability of DL algorithms is
linked to how extensive and unbiased the training dataset is [14]. While large
image datasets in computer vision are widely available [9], this is not the case
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for medical imaging because images are harder to acquire and share, as they are
subject to tight data regulations [23]. In addition, most state-of-the-art segmen-
tation algorithms are supervised and require labels as well as images, and because
obtaining these requires substantial time and expertise, they tend to focus on a
specific region of interest, making dataset harmonisation harder. In brain MRI,
where studies are tailored to a pathology and population of interest, obtaining a
large, annotated, multi-modal and multi-pathological dataset is challenging. An
option to overcome this is to resort to domain randomisation methods such as
SynthSeg [5], but their performance in the presence of highly variable pathologies
such as tumours has not been tackled. Alternatively, data augmentation via deep
generative modelling, an unsupervised DL branch that learns the input data dis-
tribution, has been applied in recent years to enrich existing medical datasets,
producing realistic, usable synthetic data with the potential to complement [3] or
even replace [11] real datasets, using architectures such as generative adversar-
ial networks (GANs) and the more recent diffusion models (DMs) [21,26]. One
of the major roadblocks, though, when it comes to applying synthetic data to
segmentation tasks is that of producing labelled data. Conditioning can give the
user some control over the generated phenotypes, such as age [21]. However, to
our knowledge, only a handful of works deliver segmentations to accompany the
data. In the case of published models generating data based on real labels [22],
we must consider that labels are not usually shared, as they are sometimes con-
sidered protected health information, due to the risk of patient re-identification
[27], and due to the above-mentioned difficulty to produce. Therefore, it may be
beneficial that the labels themselves are also algorithmically generated from a
stochastic process. Few works in the literature provide synthetic segmentations
[4,11,12], especially enclosing healthy and multiple diseased regions. Among the
latter, these models are limited to 2D, and they hardly allow the user to modu-
late their content (e.g., selecting the subject’s pathology or age), limiting their
applicability.

Contributions: in this work, we propose a 3D generative model of the brain
that provides multi-modal brain MR images and corresponding semantic maps
generated by giving the user the power to condition on the pathological pheno-
type of the synthetic subject. We showcase the benefits of using these synthetic
datasets on a downstream white matter hyperintensity (WMH) segmentation
task when the test dataset contains also contains tumours.

2 Methods

2.1 Data

For training, we used the SABREv3 dataset consisting of 630 T1, FLAIR and
T2 images [17], a subset of 66 T1 and FLAIR volumes from ADNI2 [16], and 103
T1, FLAIR and T2 volumes from a set of sites from BRATS [1,2,19]. Due to the
large computational costs associated with training generative models, it is not
tenable to train them using full resolution, full size 3D images: we circumvented
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this issue by, on one hand, mapping images to a 2 mm isotropic MNI space,
resulting in volumes of dimensions 96 × 128 × 96, and on the other hand, by
operating with patches, taken from 1 mm data of dimensions 146 × 176 × 112.
Bronze-standard partial volume (PV) maps of the cerebrospinal fluid (CSF), grey
matter (GM), white matter (WM), deep grey matter (DGM) and brainstem were
obtained using GIF [6], masking out tumours for BRATS. These healthy labels
were overlaid with manual lesion labels provided with the datasets: WMH for
the first two; and gadolinium-enhancing (GDE), non-enhancing (nGDE) tumour
and edema for BRATS.

2.2 Algorithm

Our pipeline consists of a conditional generator of semantic maps and an image
generator, depicted in Fig. 1. It is based on the generative model proposed in
[11]: a label generator, consisting of a latent diffusion model (LDM), is trained
on the healthy tissue and lesion segmentations. Independently, a SPADE-like
[20] network is trained on the PV maps and the multi-modal images. For the
1 mm3 data, patches of 146 × 176 × 64 had to be used for the image generator.

Label Generator: The proposed label generator is based on a latent diffusion
model (LDM), made up of a spatial variational auto-encoder (VAE) and a diffu-
sion model (DM) operating in its latent space. The VAE of the 2 mm3 resolution
model had 3 downsamplings, and the 1 mm3 had 4, resulting in latent spaces of
shapes 32 × 24 × 32 and 24 × 24 × 16, respectively. The VAE is trained using
focal loss (γ = 3), Kullback-Leibler distance (KLD) loss to stabilise the latent
space, Patch-GAN adversarial loss and a perceptual loss based on the features
of MED3D [7], implemented using MONAI [8]. For the diffusion model, we pre-
dict the velocity using the v-parametrization approach from [24] and optimise it

Fig. 1. Architecture of our two-stage model: the left block corresponds to the label
generator, and the right block to the image generator. Training and inference pathways
are differentiated with black, red and dashed arrows. (Color figure online)
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via an l2 loss. We used T = 1000 timesteps. We used a PNDM [18] scheduler to
sample data, predicting only 150 timesteps. In addition, disease conditioning dc
was applied using a cross-attention mechanism. For each subject j and disease
type l, we have a label map Mjl, from which we produce a conditioning value
dcjl reflecting the voxels labelled as l in the map, normalised by the maximum
number of l voxels across the dataset, i.e.:

dcjl =
∑N

n=1 Mjl

maxj

∑N
n=1 Mjl

, (1)

where the sum is across all voxels in the map. We trained the VAE for 250 epochs
and the DM for 400, on an NVIDIA A100 DGX node.

Image Generator: We modified the SPADE model used in [11] to extend the
2D generator and multi-scale discriminator to 3D. The encoder, which should
only convert the contrast of the input image to a style vector, was kept as a 2D
network, as it was found to work well while being parsimonious. To ensure that
the most relevant brain regions informed the style, we used sagittal slices instead
of axial ones as done in [11], selecting them randomly from the central 20 slices of
each input volume. We kept the original losses from [20] to optimise the network.
We replaced the network on which the perceptual loss is calculated with MED3D
[7], as its features are also in 3D and fine-tuned on medical images, which are
more domain-pertinent. We ran a full ablation study on the losses introduced
in [11]; we dropped the modality-dataset discriminator loss, as it did not lead
to major improvements but kept the slice consistency loss. To train the 1 mm3

model, we used random patches of size 64 along the axial dimension. During
inference, we used a sliding-window approach with a 5-slice overlap. We trained
the networks for 350 epochs on an NVIDIA A100 GPU. Further details are
provided in the supplementary materials. Code is available at https://github.
com/virginiafdez/brainSPADE3D rel.git.

2.3 Downstream Segmentation Task

To compare the performance in segmentation tasks of our synthetic datasets, we
performed several experiments using nnUNetv2 [15] as a strong baseline architec-
ture, adjusting only the number of epochs until convergence. The partial volume
maps were converted to categorical labels via an argmax operator.

3 Experiments

3.1 Quality of the Generated Images and Labels Pairs

Without established baselines for paired 3D healthy and pathological labels and
image pairs, we assess our synthetic data by comparing them to real data and
showing how they can be applied to downstream segmentation tasks. Examples

https://github.com/virginiafdez/brainSPADE3D_rel.git
https://github.com/virginiafdez/brainSPADE3D_rel.git
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of generated labels and images are depicted in Fig. 2. In one case, we used a con-
ditioning unseen by the model during training, WMH + all tumour layers: both
1 mm3 and 2 mm3 label generators show the capability of handling this unseen
combination, resulting in both lesions being present in the resulting images.
However, we observed a lower ability of extrapolating to unseen phenotypes in
the 1 mm3 model, with only about 37% of the labels inferred using such condi-
tioning resulting in the desired phenotype being met, as opposed to the 2 mm3

model which manifested both lesion types in 100% of the generated samples.

Quality of the Labels: As the label generator is stochastic, we cannot compute
paired similarity metrics. Instead, we compare the number Vi,j , for image i and
region j, of CSF, GM, WM, DGM and brainstem voxels across subjects between
a synthetic dataset of 500 volumes and a subset of the training dataset of the
same size, excluding tumour images, but allowing for low WMH values as these
don’t disrupt the anatomy of the brain. The number of voxels Vi,j is calculated
as: Vi,j =

∑N
n=1(in==j), where N is the number of pixels in the image. Table 1

reports mean values and standard deviations, demonstrating that our model
generates labels with mean volumes similar to real data. By comparing the labels,
we saw that the considerable discrepancy between Vi,CSF at 1 mm3 is due to a
loss of details in the subarachnoid CSF, which is very thin, likely due to the
high number of VAE downsamplings at 1 mm3 (visual comparison is available in

Fig. 2. Example synthetic 1 mm3 and 2 mm3 isotropic labels and images generated
using tumour+WMH (left) and WMH (right) conditioning. The augmented frame in
the top left images shows the small WMH lesions near the ventricles.
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supplementary Fig. 1). However, we observe a lower standard deviation in the
tissue volumes, indicating that the label generator does not capture the natural
variability of brain tissues.

Table 1. Mean number of voxels and standard deviation of brain regions across real
and synthetic datasets. Every value has been multiplied by 10−4.

Dataset CSF GM WM DGM Brainstem

Real (1 mm3) 20.3422.830 37.6341.747 44.8722.270 4.3010.581 1.2380.269

Synthetic (1 mm3) 14.1410.964 43.5830.735 42.0291.728 6.7130.592 1.0660.102

Real (2 mm3) 4.7900.573 9.8790.585 7.4360.512 0.4530.080 0.3630.036

Synthetic (2 mm3) 4.6410.163 8.5640.297 7.0080.198 0.5870.978 0.3430.013

Quality of the Generated Images: To assess the performance of our image
generator, we use a hold-out test set of PV maps and corresponding T1, FLAIR
and T2 images, to compute the structural similarity index (SSIM) between the
ground truth images and the image generated when the real PV map and a
slice from the ground truth were used as inputs to the models. The mean SSIMs
obtained are summarised in Table 2, showing that the model performs similarly
across different contrasts. Discrepancies between real and synthetic images can
be explained by the stochasticity of the style encoder.

Synthetic Data for Healthy Region Segmentation: We assess the perfor-
mance of our generated pairs on a CSF, GM, WM, DGM and brainstem seg-
mentation task. We train an nnU-Net model, Mhealthy on the T1 volumes of the
real subset of 500 subjects mentioned earlier, and M ′

healthy on the 500 synthetic
T1 and label pairs, then test both models on a hold-out test set of 30 subjects
from the SABRE dataset. The Dice scores on all regions are reported in Table 3.
Although Mhealthy performs better in all regions, the M ′

healthy trained on purely
synthetic data demonstrated a competitive performance for all regions except the
DGM. DGM is a complex anatomical region comprising several small structures
with intensities ranging between those typical for GM and WM. Thus, the PV
map value for a voxel in this region will split its probability between DGM, WM
and GM rather than favouring just one class, which is problematic for nnU-Net,
as it requires categorical inputs to train the model, resulting in noisy ground
truth labels that cause a larger distribution shift for the region. Examples of
these noisy training and test labels are showcased in supplementary Fig. 2.

3.2 WMH Segmentation in the Presence of Tumour Lesions

Aim: The main aim of this work is to show how synthetic data can increase the
performance of segmentation models when training datasets are biased towards
a specific phenotype. We focus on WMH segmentation. Our target dataset is a
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Table 2. SSIM values obtained between real and synthetic images for T1, FLAIR and
T2 contrasts for both models, generated using real PV maps.

1 mm3 2 mm3

T1 FLAIR T2 T1 FLAIR T2

0.8420.083 0.7980.082 0.7940.075 0.9220.010 0.9100.030 0.9090.025

subset of 30 unseen volumes from BRATS (a different set of sites from those seen
by the generative model) containing WMH lesions and tumours. We hypothesis
that a WMH segmentation model trained on images that do not contain tumours
will label these as WMH, as tumours and WMH share some intensity similarities
in the FLAIR contrast typically used to segment WMH [25]. With the proposed
generative model, we can generate synthetic data containing subjects with both
tumours and WMH, which should make the training model robust to cases where
both diseases are present, therefore reducing false positives.

Table 3. Mean Dice score and standard deviation obtained for the models trained on
real and synthetic data. Asterisks denote significantly better performance.

Resolution Model CSF GM WM DGM Brainstem

1 mm3 Mhealthy 0.9570.005* 0.9590.003* 0.9710.003* 0.8750.015* 0.9580.021*

1 mm3 M ′
healthy 0.8840.014 0.9120.009 0.9360.005 0.6840.034 0.8740.036

2 mm3 Mhealthy 0.9470.057* 0.9580.046* 0.9680.039* 0.8870.065* 0.9620.024*

2 mm3 M ′
healthy 0.8690.057 0.8950.052 0.9310.047 0.7030.100 0.9050.025

We ran this experiment with 2 mm3 isotropic data, as the phenotype condi-
tioning worked better (see Sect. 3.1) in this model. From a stack of 500 real
FLAIR volumes from the SABRE dataset, and a stack of 500 FLAIR syn-
thetic volumes generated from synthetic labels conditioned on both tumours
and WMH, we train several models MRPRSPS

, varying the % proportions PR
and PS of real and synthetic data respectively. In addition, even if the premise
of this work is that users do not have access to real data containing tumours, we
train model MRWMHRtum

on the real FLAIR volumes from the SABRE dataset,
and the BRATS tumour volumes used to train the synthetic model, leaving the
training labels empty, as no prior WMH segmentations are available for BRATS.
We calculate the Dice score on WMH on a hold-out test set of 30 subjects from
the SABRE dataset. As we do not have WMH ground truth labels for our test
set from BRATS, but we have tumour labels, we compute the proportion of
tumour pixels incorrectly labelled as WMH and note this metric FPtum.
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Table 4. Mean Dice score, precision and recall obtained on the SABRE dataset by all
the WMH segmentation models we trained, and FPtum ratio on the BRATS holdout
dataset. Asterisks indicate statistical significance (SAB: SABRE dataset).

Model Dice (SAB) ↑ precision (SAB) ↑ recall (SAB) ↑ FPtum (BRATS) ↓
MR100S0 0.7280.281* 0.7610.236 0.7510.132* 0.3250.232

MR75S25 0.7130.208 0.7450.231 0.7430.137 0.9020.187

MR50S50 0.7160.211* 0.7420.227 0.7540.132* 0.1080.209

MR25S75 0.7220.210 0.7550.225 0.7220.138 0.0790.171

MR5S95 0.6420.210 0.7160.243 0.6280.146 0.0230.078

MR0S100 0.3620.147 0.7260.294 0.2630.104 0.0010.002*

MRWMHRtum 0.7100.233 0.7420.250 0.7410.131 0.0260.140*

Fig. 3. Sample WMH predictions on the BRATS dataset (top) and the SABRE dataset
(bottom) for all our models, in red. The leftmost column shows the tumour mask for
the BRATS dataset (in blue) and the ground truth WMH for the SABRE dataset.
(Color figure online)

Results: Results are reported in Table 4. Example segmentations and predicted
WMH masks on both test sets are depicted in Fig. 3. MR100S0 achieved the top
Dice on WMH for its in-domain test set, but it has one of the worse FPtum scores
on the BRATS set. While MR0S100 achieved a low Dice on the SABRE dataset,
it had a FPtum score that is significantly lower than that of Mtum−real. All the
models trained on a combination of real and synthetic data achieve a competitive
FPtum without compromising the WMH Dice. While all models have a compa-
rable precision, MR0S100 has low recall; caused by an underestimation of WMH,
as seen in Fig. 3. Interestingly, besides MR0S100 and MR5S95 , the edematous area
of the tumours still gets partially segmented as WMH. MRWMHRtum

achieves
very good Dice, precision, recall and FPtum metrics; but, while examining the
WMH segmentations on the BRATS dataset, all the segmentations were empty,
as shown in Fig. 3, which indicates that, because the WMH training labels for
BRATS were empty, the model has mapped the appearance and/or phenotype
of the BRATS dataset to an absence of WMH.
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4 Discussion and Conclusion

This work presents a label and multi-contrast brain MRI 3D image genera-
tor that can supplement real datasets in segmentation tasks for healthy tis-
sues and pathologies. The synthetic data provided by our model can boost
the precision and robustness of WMH segmentation models when tumours are
present in the target dataset, showing the potential for having content and style-
disentangled generative models that can combine the phenotypes seen in their
training datasets. While disentanglement is covered in [11], 3D can help produce
data usable in scenarios where the context of neighbouring slices is meaningful,
such as segmenting small lesions. In addition, disease conditioning, which was not
implemented in [11], can be challenging in 2D, as some diseases depend on the
axial location, such as WMH. Our current set-up has, however, some limitations.
First, there is a caveat in using 2 mm3 isotropic data or patching at 1 mm3. Even
so, diffusion models for high resolution 3D images have to operate in a latent
space that causes loss of semantic variability (See Sect. 3.1) and small details,
affecting the downstream segmentation task, partly because a gap appears in the
image synthesis process between synthetic and real labels. Further work should
attempt to harmonise the semantic synthetic and real domains. Although one of
the causes of this limitation is capacity, the latest advances in diffusion models
show that higher performance and resolution can be achieved [13], potentially
leading to better labels and, effectively, less domain shift between real and syn-
thetic domains. Secondly, conditioning on variables such as age or ventricle size
could also translate into more variability across the generated volumes [21], over-
coming the limitation in tissue variability observed in Table 1. The method can
be scaled to more pathologies and tasks, as model sharing allows for fine-tuning
on more pathological labels, thus making segmentation models more generalis-
able to the diverse phenotypes of real brain MR data.
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Abstract. Multi-modal MRIs are essential in medical diagnosis; how-
ever, the problem of missing modalities often occurs in clinical practice.
Although recent works have attempted to extract modality-invariant rep-
resentations from available modalities to perform image completion and
enhance segmentation, they neglect the most essential attributes across
different modalities. In this paper, we propose a unified generative adver-
sarial network (GAN) with pairwise modality-shared feature disentan-
glement. We develop a multi-pooling feature fusion module to combine
features from all available modalities, and then provide a distance loss
together with a margin loss to regularize the symmetry of features. Our
model outperforms the existing state-of-the-art methods for the miss-
ing modality completion task in terms of the generation quality in most
cases. We show that the generated images can improve brain tumor seg-
mentation when the important modalities are missing, especially in the
regions which need details from various modalities for accurate diagnosis.

Keywords: Modality completion · Unified GAN · Missing-domain
segmentation

1 Introduction

Magnetic resonance imaging (MRI) provides a range of imaging contrasts (e.g.,
T1, T1ce, T2 and FLAIR) for diagnosis of brain tumor, in which the tumor
boundaries can be identified by comparing different modalities, as they pro-
vide complementary features [20]. To improve the performance of brain tumor
segmentation, previous works [11,18] use all the modalities simultaneously. How-
ever, such a treatment is inappropriate due to practical limitations, e.g., long
scanning time and image corruption [22]. To solve this problem, a direct way
is to train a series of independent models dedicated to each missing situation
[8,9,12,19,20,23]. Van Tulder et al. [19], Liu et al. [12] and Hu et al. [9] syn-
thesized the missing modalities with available ones using a task-specific model.
Wang et al. [20], Hu et al. [8] and Yang et al. [23] used knowledge distillation to
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transfer knowledge from the full modality model to a modality-specific model.
However, all these methods need more than one model, which are complicated
and time-consuming.

Another solution is to build a unified framework for all possible missing sit-
uations during inference [3–7,24]. Havaei et al. [7] and Dorent et al. [6] fused
multi-modal information by computing mean and variance across individual fea-
tures. Instead of fusing the layers by computing mean and variance, Chen et
al. [4] fused each modality into a modality-invariant representation model which
gains robustness to missing modality data by feature disentanglement. Zhou et
al. [24] introduced a correlation approach to exploring the latent multi-source
correlation representation. In addition to making the model robust against miss-
ing situation, designing a unified image synthesis model [3,14,16,17] achieves
image completion purpose, in which the complementary imaging modalities are
available during inference. Shen et al. [17] and Ouyang et al. [14] used represen-
tation disentanglement to learn the modality-invariant representations and the
modality-related representations and further use the modality-invariant repre-
sentations to perform image synthesis.

The main motivation for our work lies in the limitations of acquiring a full
battery of multi-modal MRI data, for example, high examination cost, restric-
tive availability of scanning time and image corruptions frequently crop up,
especially in large scale studies. Although the existing works attempt to solve
this issue by learning modality-invariant features shared by all available modal-
ities for synthesizing missing data, the whole learning procedure overlooks the
pairwise modality-shared features (which are exclusively shared between each
pair of two modalities) resulting in inefficient usage of information as omission
of real matched information. It is precisely this information can be used to iden-
tify tumor boundaries and improve the accuracy of segmentation. Our method
addresses this limitation by explicitly learning the pairwise modality-shared fea-
tures for each modality. By constructing the pairwise modality-shared feature
disentanglement, our model can better capture the complementary information
from multiple modalities and generate more accurate and diverse data for miss-
ing modalities.

Specifically, we propose a novel pairwise modality-shared feature disentangle-
ment method by building a unified synthesis model to generate missing modali-
ties. The main contributions of this paper are summarized as follows:

– We propose a novel unified GAN-based framework for random missing modal-
ity completion with the representation disentanglement, i.e., learning the T1-
shared, T1ce-shared, T2-shared and FLAIR-shared features for each modality.

– Experimental results show that the proposed method achieves better per-
formance in most cases than the previous approaches of multi-domain MRI
image completion.

– We demonstrate that the generated multi-modality data can improve the
performance of brain tumor segmentation.
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Fig. 1. The proposed unified GAN. The number of available modalities |M| = 3 is
given in this example. Available modalities are disentangled into pairwise modality-
shared features one by one, where ci is computed by multi-pooling fusion (MP Fusion)
of all the extracted pairwise modality-shared features {sim | m ∈ M} extracted by the
encoder Ei. These networks are then trained by the reconstruction loss Limg, latent
consistency loss Llatent, symmetrical loss Lsym and adversarial loss Ladv.

2 Methods

2.1 Pairwise Modality-Shared Feature Disentanglement

To complete missing modalities from available modalities, as shown in Fig. 1, our
model contains pairwise modality-specific encoders Ei to extract the features
sij = Eij(xj) shared in modality i from any modality input xj (1 ≤ i ≤ M, 1 ≤
j ≤ M), where M is the number of modalities with M = 4 in this task. For
each modality, we extract M pairwise modality-shared features including itself
and we perform image translation according to the pairwise modality-shared
features. Specifically, we want to learn the T1-shared, T1ce-shared, T2-shared
and FLAIR-shared features for each available modality and fuse features from
available modalities to do modality completion. The generator Gi reconstructs
xi from the fused pairwise modality-shared features ci = Fusing {sij | j ∈ M}
extracted from available modality set M.

Conditional Modality Encoder. Considering that each modality data is
encoded by an independent encoder, generating M output modalities from M
input modalities requires M2 encoders with pair-wise learning, which is too com-
plex and difficult to implement. Inspired by [14], we use M conditional modality
encoders composed by conditional convolution (CondConv) [21]. The parame-
ters of CondConv are decided by the input modality i using a mixture-of-experts
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model CondConv(x; i) = σ
((

βi
1 · W1 + . . . + βi

n · Wn

)
� x

)
, where σ(·) is the

sigmoid activation function, � denotes a regular convolution, {W1, ...,Wn} are
the learnable kernels associated with n experts, and {βi

1, ...β
i
n} are the modality-

specific mixture weights. Therefore, for each modality, e.g., modality j, the set
of independent encoders {Eij(xi)} is coupled into one encoder Ej(xi; i), and the
training data to each encoder increased M -fold, which makes the model more
robust and easier to train.

Multi-pooling Feature Fusion. In modality-missing situations, suppose avail-
able modalities set are M, and for the target modality we want to translate
into, we will get |M| pairwise modality-shared features {s1, ..., s|M|}, which is
not fixed.

To fuse all features into a fixed size as the input for decoders, we first con-
catenate the output of pooling functions MaxPool, MeanPool and MinPool to
keep as much information as possible. Then, we use 1 × 1 convolution to make
the number of channels equal to the output of encoders. Compared with a single
pooling function, this multi-pooling fusion method can keep different perspective
features, which allows our fused features to provide more details to the following
network. For the fusion operation, although the number of available modalities
is randomly, the input size of decoders is the same as the output of the encoders,
and thus we can perform a latent consistency loss.

2.2 Training Objectives

Image Consistency Loss. Generator Gi is supposed to synthesize an image
that is similar to the input image xi ∼ Xi. To make the generated images similar
to our targets, we employ an image consistency loss as:

Limg =
M∑

i=1

Exi∼Xi
[‖Gi (ci) − xi‖1] , (1)

where ci = Fusing {Ei(xj ; j) | j ∈ M} fuses modality-i-shared features from
the available modality set M. Here, we use the L1 loss to strengthen structure
related generation.

Latent Consistency Loss. The latent consistency loss is another common loss
used in image-to-image translation, which encourages the features derived from
raw inputs to be similar to the ones from the synthesized images,

Llatent =
M∑

i=1

Exi∼Xi
[‖Ei (Gi (ci) ; i) − ci‖1] . (2)

Specifically, the fused modality-i-shared features ci are the target to be recovered
by our encoder Ei.
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Adversarial Loss. To minimize the difference between the distributions of
generated images and real images, we define the adversarial loss as:

Ladv =
M∑

i=1

Exi∼Xi
[log (1 − Di (Gi (ci))) + log Di (xi)] , (3)

where Di is the discriminator for modality i to distinguish the generated images.

Symmetrical Loss. An ideal pairwise modality-shared feature is symmetrical,
for example, T1-shared features extracted from T2 should be similar to T2-
shared features extracted from T1. To enforce that pairwise modality-shared
features are disentangled well, we add the similarity regularization as:

Lsym =
∑

i∈M

∑

j∈M

M∑

k=1,k �=i,j

E [‖sij − sji‖2 + max(0, α − d(sij , sji) + d(sij , sik)] ,

(4)
where d(·, ·) calculates the L2 distance between two tensors and sij = Ei(xj ; j)
denotes modality-i-shared features extracted from modality j. The L2 loss term
encourages pairwise modality-shared features between the same two modalities
to be similar, and the margin loss prevents the encoder from mapping all pairwise
modality-shared features into the same location in the feature space.

Total Loss. The encoders, generators and discriminators are jointly trained to
optimize the total objective function as:

L = λimgLimg + λlatentLlatent + λadvLadv + λsymLsym. (5)

The ultimate goal of the overall co-training procedure is to optimize the function
via minE,G maxD L .

3 Experiments

3.1 Experimental Settings

Dataset and Preprocessing. We evaluate our proposed method with the
multimodal brain tumor segmentation dataset (BraTS 2018) [1,2,13], which pro-
vides multi-modal brain MRI with four modalities: T1, T1ce, T2, and FLAIR.
We divide regions into three parts: whole tumor (WT), tumor core (TC), and
enhancing tumor (ET) according to the provided labels. Specifically, 200, 27 and
58 subjects are randomly selected for training, validation and testing and then
we select the middle axial slices of each MRI volume and discarding the volumes
with fewer than a certain threshold of valid pixels. We normalize the intensity
of each slice to [−1, 1]. A patch of size 224 × 224 is randomly cropped during
training as input to the network.
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Fig. 2. Comparison of generated images on BraTS with a single missing modality.
The missing modalities are shown in rows, while the compared methods are shown in
columns.

Implementation Details. Experiments are implemented in Pytorch and per-
formed on a single NVIDIA RTX3090 GPU. In all experiments, we set λimg = 10,
λlatent = 1, λadv = 1, λsym = 1 and α = 0.1 in Lsym.

The proposed encoder includes a down-sampling procedure along with resid-
ual blocks, which are composed of convolutional blocks. Specifically, a 7 × 7
conditional convolutional block with stride equal to 1 and two 4 × 4 conditional
convolutional blocks with stride equal to 2 are involved in our down-sampling
module. In total, four residual blocks are included, in which each block has two
convolutional blocks with size of 3 × 3, 256 filters and stride equal to 1. The
decoder contains four residual blocks, where each one has two convolutional
blocks with size of 3 × 3, 256 filters and stride equal to 1. To up-sample the
fused features matching to the original image size, two nearest-neighbor upsam-
pling layers together with a 5 × 5 convolutional block having stride equal to
1 are employed, where the filter numbers are from 64 to 128 to 256 to 128 to
64. The reconstructed image can then be generated using a 7 × 7 convolutional
block with stride equal to 1 combining with a filter. As for the discriminator, it
has four convolutional blocks with size of 4 × 4, and sets stride of 2, with filter
numbers ranging from 64 to 128 to 256 to 512. We use leaky ReLU with slope
of 0.2 in the discriminator. During training, the number of available modalities
is random, except 0, and for each missing situation, the available modalities are
also randomly distributed.
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Table 1. Comparison with the n-to-n image translation method ReMIC [17] for the
different combinations of available modalities denoted by �.

Modalities PSNR(dB) SSIM

FLAIR T1 T1ce T2 ReMIC Ours ReMIC Ours

� � � 27.00 27.68 0.915 0.923

� � � 26.83 27.29 0.895 0.909

� � � 26.68 27.01 0.918 0.925

� � � 25.30 25.23 0.874 0.870

� � 25.67 25.61 0.892 0.891

� � 25.94 25.99 0.884 0.887

� � 25.25 25.50 0.878 0.880

� � 25.62 25.94 0.893 0.899

� � 26.50 26.94 0.901 0.913

� � 26.54 27.05 0.899 0.910

� 24.98 25.18 0.872 0.875

� 25.12 25.31 0.875 0.878

� 24.89 25.13 0.875 0.875

� 24.57 24.60 0.870 0.872

Mean 25.78 26.03 0.889 0.893

Table 2. Comparison with the 1-to-1 image translation method MUNIT [10]. For 1-to-
1 case, we use the same modality as MUNIT to perform image translation. For n-to-1
case, our method uses all the other modalities to generate the missing modality data.

Missing modality MUNIT Ours (1-to-1) Ours (n-to-1)

PSNR SSIM PSNR SSIM PSNR SSIM

T1 21.23 0.865 25.75 0.902 27.01 0.925

T1ce 22.99 0.867 26.25 0.892 27.29 0.909

T2 22.47 0.855 25.51 0.893 27.68 0.923

FLAIR 20.22 0.807 23.49 0.844 25.23 0.870

Baseline Methods. 1 To evaluate the performance of our model, we compare
it with the existing state-of-the-art image translation methods, i.e., MUNIT [10]
and ReMIC [17]. MUNIT is a 1-to-1 image translation method between two
domains through representation disentanglement. We use T1 data to generate
other modalities data, and FLAIR data to generate T1 images. ReMIC builds
a unified n-to-n image translation like our method. However, ReMIC uses
modality-invariant feature disentanglement while our method is based
on pairwise modality-shared feature disentanglement.

1 Due to the scarcity of works in unified modality completion and lack of open-source
implementations, we were only able to compare our method against few approaches.
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3.2 Results and Analysis

Evaluation on Image Completion. We evaluate the methods on the missing
modality completion task with different datasets. Figure 2 shows the qualitative
results on a single missing modality. Both ReMIC and ours generate the missing
modalities with a better quality, considering the incorporated complementary
information from multiple available modalities. Comparing with ReMIC, our
method keeps more details, e.g., the tumor region boundary is clearer, which is
achieved by learning pairwise modality-shared features in each available modal-
ity. Besides, artificial details often presented in the MUINT results do not appear
in ours. Furthermore, as shown in Table 1 abd Table 2, our method outperforms
the baselines in terms of peak-signal-noise ratio (PSNR) and structural similar-
ity index (SSIM) in most cases, which suggests that our method produces more
realistic MRI images.

Table 3. The performance of segmentation under missing-modality situation (Dice %).

Missing modality Tumor Core Whole Tumor Enhancing

ReMIC Ours ReMIC Ours ReMIC Ours

None 75.5 89.8 73.2

T1 73.8 74.6 89.3 89.2 71.9 72.5

T1ce 49.8 54.6 87.5 87.8 14.8 25.2

T2 75.1 75.2 88.6 87.8 71.8 72.0

FLAIR 74.2 75.7 85.3 87.2 71.3 72.9

Table 4. Effectiveness of each module on missing modality completion (PSNR in dB).

Methods Missing modality

T1 T1ce T2 FLAIR

Baseline 26.32 26.57 26.89 24.84

Baseline + CME 26.88 26.93 27.30 25.11

Baseline + CME + MP Fusion 26.94 27.04 27.38 25.18

Baseline + CME + MP Fusion + Lsym 27.01 27.29 27.68 25.23

Evaluation on Segmentation. Segmentation with missing modalities can be
solved by our method. We evaluate the segmentation performance in missing
situations with Dice coefficient on U-Net [15], pre-trained on a complete dataset
with all modality images. The result is shown in Table 3. None means performing
segmentation without any missing modalities. We observe that our method per-
forms well in segmenting tumor core and enhancing tumor, while ReMIC is only
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competitive in segmenting whole tumor. The whole tumor region can be distin-
guished in all the modalities, and in this way it belongs to the modality-invariant
features used in ReMIC. Through pairwise modality-shared feature disentangle-
ment, our method can provide more information than mere modality-invariant
features. Particularly for enhancing tumor and distinguishing tumor core with
more modality-specific information, our method shows better performance.

Ablation Study. In addition, we investigate the effectiveness of each compo-
nent in our method in single modality completion. We first set up a baseline
network with the traditional convolution and use MaxPool for fusion. Then, we
add the conditional modality encoder (CME), the multi-pooling feature fusion
(MP Fusion), and the symmetrical loss one by one into the baseline network.
The results are shown in Table 4. From Table 4, we note that the qualities of gen-
erations for different missing modality data are improved simultaneously, which
proves the superiority of the proposed fusion module and the symmetrical loss.

4 Conclusions

In this work, we proposed a unified GAN-based network by investigating our
pairwise modality-shared features between modalities, rather than directly using
modality-invariant features for missing modality completion. We introduced a
conditional modality encoder, a multi-pooling feature fusion method, and a
symmetrical loss to improve the model performance. Experimental results illus-
trated that the proposed method achieves better performance than the previous
approaches in multi-domain MRI image completion. In addition, we demon-
strated that our generated images can improve the performance of the down-
stream task like brain tumor segmentation, in missing situations, especially in
the region which needs details from different modalities for accurate analysis.
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Abstract. Conventional histopathology requires chemical staining to
make tissue samples usable by pathologists for diagnosis. This introduces
cost and variability and does not conserve the tissue for advanced molecu-
lar analysis of the sample. We demonstrate the use of conditional denois-
ing diffusion models applied to non-destructive autofluorescence images
of tissue samples in order to generate virtually stained images. To demon-
strate the power of this technique, we would like to measure the percep-
tual quality of the generated images; however, standard measures like the
Frechet Inception Distance (FID) are inappropriate for this task, as they
have been trained on natural images. We therefore introduce a new per-
ceptual measure, the Frechet StainNet Distance (FSD), and show that our
model attains significantly higher FSD than competing pix2pix models.
Finally, we also present a method of quantifying uncertain regions of the
image using the variations produced by diffusion models.

Keywords: Diffusion · Pathology

1 Introduction

Conventional histopathology involves obtaining tissue sections from patient biop-
sies and applying chemical staining protocols which highlight different biological
features of the tissue. This stained tissue can then be assessed and diagnosed
by pathologist using a brightfield (BF) microscope. There are many chemical
stains corresponding to different features to be highlighted. However, the pro-
cess of staining can be destructive. A given stained tissue sample often cannot be
used again for other analyses. Therefore, the cost of advanced testing, research
or second opinions, which are often required for newer/rarer diseases, can be
prohibitive. Additional drawbacks of histochemical staining include expensive
laboratory infrastructure, slow processing times and the inherent variability in
equipment and expertise.

Virtual staining [3,15,18,19] is an AI-enabled alternative which removes the
need for chemical staining. Tissue samples are imaged using a non-destructive
auto-fluorescence (AF) scanner. The AF image records the spatial distribution
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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Fig. 1. Diffusion models are able to generate virtual stained outputs with both high
fidelity to the target image and high perceptual quality.

emission spectra of the tissue after exposing it to excitation lasers and therefore
contains information about both the condition and location of different biological
features of the tissue. An image-to-image translation model can then be used to
learn the mapping from the AF image of the tissue to its stained BF image.
If this virtually stained image can capture all of the clinical features of real
stained tissues, the pathologist can use the translated image for clinical diagnosis.
Since the same AF image can be used for any number of stain types and the
original tissue is preserved, virtual staining can greatly reduce the cost and
effort of clinical pathology. The crucial step in this process is the image-to-image
translation algorithm. In this paper, we apply conditional diffusion models to this
task. We make the following key contributions:

1. Diffusion Models for Staining. We present a conditional diffusion model
for virtual staining, which maps AF images to chemically stained BF images.

2. Frechet StainNet Distance (FSD). We develop a new technique for evalu-
ating the perceptual quality of our output, referred to as the Frechet StainNet
Distance. As compared to FID, FSD is much more appropriate for evaluat-
ing stained microscopy images. We note that FSD may be applied to other
scenarios beyond that described in this paper.

3. Significantly Improved Perceptual Quality. We show empirically that
as compared to conditional GANs, the diffusion models perform significantly
better on perceptual quality as measured by FSD, while remaining compara-
ble on distortion measures.

4. Uncertainty Quantification. We use the capabilities of our diffusion
method to provide a reliable approximation of the uncertainty associated
with the stained estimate per each pixel (Fig. 1).

2 Related Work

Virtual Staining: Until recently, the state-of-the-art in image-to-image trans-
lation were conditional GANs such as pix2pix [11] for paired datasets, and
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CycleGANs [26] for unpaired ones. To prevent the GAN generator from halluci-
nating realistic images unrelated to the input, pixel-wise losses such as Lp dis-
tance between the virtual images and their corresponding ground truth are also
used in addition to adversarial losses. A major drawback of GANs is that they
are hard to train due to loss instability and mode collapse, e.g. see [2]. Previous
efforts in virtual staining have used both pix2pix and CycleGANs [3,15,18,19].
These prior work often only report distortion measures such as Lp norms. How-
ever, for virtual stains to replace chemical stains in a clinical workflow, they must
also look similar to human pathologists. Therefore it is important to benchmark
these models on perceptual quality. In this work, we benchmark our models
against a pix2pix model inspired by Rivenson et al. [19] with 128× 128 reso-
lution inputs, two discriminator losses (conditional and unconditional) and two
pixel-wise losses (L1 and rotated L1).

Diffusion: Diffusion models [22] have recently emerged with impressive results
on the task of unconditional image generation, beating GANs for generating
images with high diversity and perceptual quality [6,8]. An important variation
of these techniques is the conditional diffusion model, see e.g. [9,21,23,25] which
is the basis of our current work. Saharia et al. [9,21] show that diffusion models
can produce images with high perceptual quality without losing the structural
and semantic information of the input image on a number of image-to-image
translation tasks.

Perceptual Measures: The FID score [7] is commonly used to quantify per-
ceptual quality. However, since the standard InceptionV3 model [24] used in FID
has been trained on natural images, the measure is likely to have difficulty differ-
entiating between varying distributions of histological images, which can be close
to each other in the space of natural images. This has been documented previ-
ously for other data types such as audio and molecular data [12,16]. The tradeoff
between the distortion between the expected and the predicted images, and the
perceptual quality of the predicted image has been well studied [5]. Regression
models that minimize the distortion between the labels and the prediction can-
not produce outputs belonging to the expected output distribution. Therefore
such models have low perceptual quality, i.e. they do not produce images that
look like real images to humans. In contrast, GANs and diffusion models have
the ability to generate images of high perceptual quality.

Uncertainty Quantification: Quantifying uncertainty in deep learning is dif-
ficult due to the lack of a closed form expression for the density. Determinis-
tic models that produce a single output per input require complex interrogation
to extract such information. Perturbative methods, such as LIME [17], involve
repeated inference with varying data augmentations to estimate the effect of input
variations on the output. In contrast, integrated methods, such as quantile regres-
sion [13], involve adding credible interval bound estimation as an additional train-
ing objective, either during the original training or after it. Generative models pro-
vide a new opportunity as they can sample different outputs from the target dis-
tribution upon repeated inference. Following [10], in conditional diffusion models
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we apply a series of inference rounds and generate multiple results to approximate
the distribution of the output conditioned on the input.

3 Methodology

3.1 Denoising Diffusion Probabilistic Models

A denoising diffusion probabilistic model [8] can be described as a parameterized
Markov chain. The forward diffusion process is a series of steps that add small
amounts of Gaussian noise to the data until the signal is destroyed. Given data x0

which we consider a sampling of the distribution q(x0), we can create T vectors
{x1, ..., xT } of the same dimensions as x0 defined by the forward diffusion process:

q(xt|xt−1) = N (
√

1 − βtxt−1, βtI) for t = 1, 2, . . . , T,

i.e. xt is constructed as a mixture of xt−1 with a Gaussian noise, with the scaling
variance parameter βt ∈ (0, 1). It immediately follows from the above:

q(xt|x0) =
t∏

i=1

q(xi|xi−1) = N (
√

αtx0, (1 − αt)I) for t = 1, 2, . . . , T,

where αt =
∏t

i=1(1 − βi). The number of steps T and the variance schedule
βt are chosen such that xT is pure Gaussian noise, while at the same time the
variances βt of the forward process are small. Under these conditions, we can
learn a reverse process pθ which can be defined as

pθ(xt−1|xt) = N (μθ(xt, t), σθ(xt, t)) for t = T, T − 1, . . . , 1. (1)

Note that chaining these probabilities leads to a sampled outcome x0 following
the probability density function

pθ(x0) = p(xT )
1∏

t=T

pθ(xt−1|xt).

Returning to our goal of reversing the diffusion process, we can leverage the
following relationship:

q(xt−1|xt, x0) = N
(√

αt−1βt

1 − αt
x0 +

√
1 − βt(1 − αt−1)

1 − αt
xt,

1 − αt−1

1 − αt
βtI

)
(2)

Observe the similarity between Eq. (1) and the above expression, where the
later adds the knowledge of x0. Thus, we can approximate pθ by aligning the
two moments of these Gaussians, which imply that we use a learned denoiser
neural network Tθ(xt, t) for estimating x0 from xt and t:

μθ(xt, t) =
√

αt−1βt

1 − αt
Tθ(xt, t) +

√
1 − βt(1 − αt−1)

1 − αt
xt. (3)
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During inference, this denoising neural network is recursively applied, starting
from pure Gaussian noise, to produce samples from the data distribution.

In conditional diffusion, the denoiser is modified to include AF images of
tissue sample, y, concatenated to the input, both during training and inference.
As a result, with the modified denoiser Tθ(xt, y, t), the output of the diffusion
model is a sample from the posterior data distribution q(x0|y). This allows con-
ditional diffusion models to be used for image-to-image translation where the
input image is used as the condition.

3.2 Architecture

As is common practice in the diffusion literature [21], rather than learning
Tθ(xt, t) which returns the clean signal, one learns the noise itself (which is
trivially related to the clean signal). To learn this noise estimator, we adopt the
UNet [20] denoiser architecture, as proposed by Ho et al. [8] for diffusion models,
and the improvements proposed by Saharia et al. [21]. The UNet model uses a
stack of 6 blocks, each made of 2 residual layers and 1 downsampling convolution,
followed by a stack of 6 blocks of 2 residual layers and 1 upsampling convolution.
Skip connections connect the layers with the same spatial size. In addition, we
use a global attention layer with 2 heads at each downsampled resolution and
add the time-step embedding into each residual block.

3.3 Perceptual Quality Measures

For each model, we run inference on 20,000 128× 128 tiles and evaluate the virtual
stain results against real stain patches. In addition to standard Lp-based distor-
tion measures, we consider the following two measures of perceptual quality:

FID: The Frechet Inception Distance (FID) score is a perceptual measure shown
to correlate well with human perception of realism [7]. FID measures the Frechet
distance between two multivariate Gaussians fit to features of generated and real
images extracted by the pre-trained InceptionV3 model [24].

FSD: We created a new custom measure to characterize the perceptual qual-
ity of stained images, which we dub the Frechet StainNet Distance (FSD). We
create a dataset where each training example is a 128 × 128 patch of a stained
BF images with a corresponding label representing the slide-level clinical Non-
Alcoholic SteatoHepatitis (NASH) steatosis score (for more details on this score,
see Sect. 4.1). We then train a classification model, StainNet, on this dataset.
The features from StainNet are then taken to be the outputs of the penulti-
mate layer of the StainNet network. Analogously to FID, FSD then measures
the Frechet distance between two multivariate Gaussians fit to the StainNet fea-
tures: the first Gaussian for the generated images and the second Gaussian for
the real images. We note that FSD may be applied to other scenarios beyond
that described in this paper.
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Table 1. Quantitative evaluation results of different methods. All evals are done on
20,000 test image patches.

Model FID FSD L1 L2

Regression 356.4 624.8 10.5 13.8

pix2pix 115.7 54.1 12.7 18.1

Diffusion-B 82.2 15.2 15.1 21.1

Diffusion-B/R 81.7 34.5 13.5 19.3

Diffusion-L 69.1 4.5 13.4 19.3

3.4 Sample Diversity and Uncertainty

To calculate pixel-wise 90% credible intervals (i.e. we expect 10% of samples to
fall outside the bounds), we follow the approach proposed by Hoshen et al. [10].
We sample 20 outputs for every input image, and use these to approximate the
output image distribution and its 5th and 95th quantiles as the bounds. The cred-
ible interval size is then the difference between the upper and the lower bound
values for each pixel. This well-motivated but heuristic notion of uncertainty
is then properly calibrated using a calibration factor λ to the interval bounds,
which is determined using our validation set [1,4,10].

4 Experiments

4.1 Experimental Setup

Dataset. We use a proprietary dataset collected from a clinical study of patients
diagnosed with Non-Alcoholic SteatoHepatitis (NASH). The dataset contains
192 co-registered pairs of images of whole slides of liver tissue: one AF image (26
spectral channels) and one H&E chemically stained BF image (3 RGB channels).
The whole slides are captured at 40x resolution yielding large gigapixel images of
variable shapes and sizes. We split the slides into train/val/test data in 0.5:0.2:0.3
ratio. Finally, we extract paired patches of size 128× 128 from both AF and BF
images, and all of the training and evaluation is done at the patch level. Each slide
is between 1000 to 10000 pixels height and width and corresponds to between 700
and 3000 patches; thus the combined dataset is approximately 200,000 patches.
In addition, for each slide we also have a clinical steatosis score. This score
is an ordinal class between 0–3 assigned by human expert hepatopathologists
quantifying the amount of liver disease features they observe in the whole slide.

Training. The diffusion model is trained on 16 TPUv3 cores in parallel. We
use a batch size of 16 and a learning rate of 1e−5 throughout the entire training
for 1.5 million steps or 120 epochs. We choose the number of diffusion steps
T = 1000 and set the forward diffusion variances βt to increase following a
cosine function from β1 = 10−4 to βT = 0.02, in accordance with the findings of
Nichol and Dhariwal [14].
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Fig. 2. We compare our Diffusion-L model with the target and benchmark it against
regression and pix2pix models. Images generated by our diffusion model are closer to
the target images in both texture and color.

Model Variants. In addition to our large diffusion model Diffusion-L, which
has already been described, we train a number of variants. Diffusion-B is our
base model which is similar to Diffusion-L but with only one single head attention
layer at the 16× 16 layer. The Diffusion-B/R model is the base model trained
with an additional feature, in which a random part of the target image is masked
and used as a prior; during inference, however, the prior is completely masked
so that the generation is comparable to the other models.

4.2 Image Quality

We compare our diffusion model described above with a naive regression model,
as well as a pix2pix (conditional GAN) model. Both models also use a UNet
architecture, and the pix2pix model has additional unconditional and conditional
adversarial losses. The results are presented in Table 1, which shows both the
FID and FSD scores which measure perceptual quality, as well as L1 and L2
norms which measure distortion. Qualitative examples are shown in Fig. 2.

All of the diffusion models do score better (lower) in terms of FID scores;
nevertheless, as previously noted, FID is not a very discriminative perceptual
measure for stained pathology images, as it has been trained on natural images.
For example, the Diffusion-B and Diffusion-B/R models attain almost identical
FIDs. By contrast, FSD is much more discriminative and clearly shows that
Diffusion-B/R has worse perceptual quality. Overall, the best result is attained
by the Diffusion-L model, which receives an FSD score of 4.5; this is considerably
better than the scores attained by the regression and pix2pix models, which are
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Fig. 3. Examples of per-pixel credible interval bound estimation using generative sam-
pling. The 5th and 95th percentile for each pixel is used as the lower and upper bounds
of the credible interval.

624.8 and 54.1, respectively. This perceptual advantage is demonstrated qualita-
tively in Fig. 2: images generated by Diffusion-L are closer to the target images
in both texture and color than pix2pix and the regression model.

It has been theoretically established that attaining a better perceptual score
leads to worse performance on distortion [5]. It is thus not surprising that the
regression model attains the best distortion measures, as its loss is completely
focused on the distortion; as a consequence, its FSD is very poor. Both pix2pix
and the diffusion models aim at optimizing a combination of distortion and
perceptual measures. Comparing the Diffusion-L and pix2pix models, we note
that they have comparable distortion scores, despite the Diffusion-L model’s
significant performance advantage on perceptual scores.

4.3 Uncertainty Estimation

Figure 3 shows examples of our per-pixel uncertainty estimation. The interval size
is the difference between the lower bound and the upper bound of the credible
interval, thus larger intervals indicate greater uncertainty. Using our validation
set, we observe a calibration factor λ = 1.32. As we can see in Fig. 3, nuclei are
an important source of uncertainty in stains. This finding might motivate the
development of future methods which focus on nuclei, e.g. through the use of
manual annotation of some nuclei and weighted losses emphasizing these regions.

5 Conclusion

In this work, we demonstrate conditional diffusion models for synthesizing highly
realistic histopathology images. We test the perceptual quality of these models
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using a custom Frechet distance measure. The lack of resolution of the standard
Frechet distance FID and the increased discrimination using our custom Frechet
distance FSD, indicates that embeddings trained on natural image datasets are
not general enough to capture perceptual quality for pathology images. More
work is needed to determine whether new quality measures can generalize across
a variety of medical image type or must being tailored to each specific image
type such as the measure for NASH pathology images in this work. Our results
suggest that conditional diffusion models are a promising approach for image-to-
image translation tasks, even when we expect outputs with high fidelity and low
sample diversity. The observed sample diversity itself can be usefully employed
to compute an empirical measure of uncertainty.
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Abstract. The Circle of Willis (CoW) is the part of cerebral vasculature
responsible for delivering blood to the brain. Understanding the diverse
anatomical variations and configurations of the CoW is paramount to
advance research on cerebrovascular diseases and refine clinical inter-
ventions. However, comprehensive investigation of less prevalent CoW
variations remains challenging because of the dominance of a few com-
monly occurring configurations. We propose a novel generative approach
utilising a conditional latent diffusion model with shape and anatomical
guidance to generate realistic 3D CoW segmentations, including different
phenotypical variations. Our conditional latent diffusion model incorpo-
rates shape guidance to better preserve vessel continuity and demon-
strates superior performance when compared to alternative generative
models, including conditional variants of 3D GAN and 3D VAE. We
observed that our model generated CoW variants that are more realistic
and demonstrate higher visual fidelity than competing approaches with
an FID score 53% better than the best-performing GAN-based model.

Keywords: Image Synthesis · Deep Learning · Brain Vasculature ·
Vessel Synthesis · Diffusion · Latent Diffusion

1 Introduction

The Circle of Willis (CoW) comprises a complex network of cerebral arteries that
plays a critical role in the supply of blood to the brain. The constituent arteries
and their branches provide a redundant route for blood flow in the event of occlu-
sion or stenosis of the major vessels, ensuring continuous cerebral perfusion and
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mitigating the risk of ischaemic events [16]. However, the structure of the CoW
is not consistent between individuals and dozens of anatomical variants exist in
the general population [6,17]. Understanding the differences between these vari-
ants is essential to study cerebrovascular diseases, predict disease progression,
and improve clinical interventions. Previous studies have attempted to classify
and describe the anatomical variations of CoW using categorisations such as the
Lippert and Pabst system [6,17]. However, more than 80% of the general popu-
lation has one of the three most common CoW configurations [2]. The study of
anatomical heterogeneity in CoW is limited by the size of available angiographic
research data sets, which may only contain a handful of examples of all but
the most common phenotypes. The goal of this study is to develop a genera-
tive model for CoW segmentations conditioned on anatomical phenotype. Such
a model could be used to generate large anatomically realistic virtual cohorts
of brain vasculature, and the less common CoW phenotypes can be augmented
and explored in greater numbers. Synthesised virtual cohorts of brain vascula-
ture may subsequently be used for training deep learning algorithms on related
tasks (e.g. segmenting brain vasculature, classification of CoW phenotype, etc.),
or performing in-silico trials.

Generative adversarial networks (GANs) [4] and other generative models
have demonstrated success in the synthesis of medical images, including the
synthesis of blood vessels and other anatomical structures. However, to the best
of our knowledge, no previous study has explored these generative models for
synthesising different CoW configurations. Additionally, no previous study has
explored the controllable synthesis of different CoW configurations conditioned
on desired phenotypes. The synthesis of narrow tubular structures such as blood
vessels using conventional generative models is a challenge. Our study builds
upon the foundations of generative models in medical imaging and focusses on
utilising a conditional latent diffusion model to generate visually realistic CoW
configurations with controlled anatomical variations (i.e., by conditioning rel-
evant anatomical information such as CoW phenotypes). Medical images like
brain magnetic resonance angiograms (MRA’s) tend to be high-dimensional and
as a result are prohibitively memory intensive for generative models. Diffusion
models and latent diffusion models (LDM) have recently been used for medi-
cal image generation [11] and have been shown to outperform GANs in medical
image synthesis [18]. Diffusion models have also been successfully used to gen-
erate synthetic MRIs [9,19,20] but to the best of our knowledge there are no
studies that use latent diffusion models are diffusion models to generate synthetic
brain vasculature.

We propose a conditional latent diffusion model that learns latent embed-
dings of brain vasculature and, during inference, samples from the learnt latent
space to synthesise realistic brain vasculature. We incorporate class, shape, and
anatomical guidance as conditioning factors in our latent diffusion model, allow-
ing the vessels to retain their shape and allowing precise control over the gen-
erated CoW variations. The diffusion model is conditioned to generate differ-
ent anatomical variants of the posterior cerebral circulation. We evaluate the
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performance of our model using quantitative metrics such as multiscale struc-
tural similarity index (MS-SSIM) and Fr’echet inception distance (FID). Com-
parative analyses are conducted against alternative generative architectures,
including a 3D GAN and a 3D variational auto-encoder (VAE), to assess the
superiority of our proposed method in reproducing CoW variations.

2 Methodology

Data and Pre-processing. We trained our model on the publicly available IXI
dataset [8] using the 181 3T MRA scans acquired at the Hammersmith Hospital,
London. Images were centred, cropped from 512×512×100 to 256×256×100, and
the intensity normalised. We then used a Residual U-net [10] to extract vessel
segmentations from the MRA. The authors manually labelled each case with
the presence/absence of one or both peripheral communicating arteries in the
CoW. Class 1 includes cases where both the peripheral communication arteries
are present (PComA), Class 2 includes cases with only one PComA, while Class
3 includes cases where both PComAs are absent.

Latent Diffusion Model. Recent advances in diffusion models for medical
image generation have achieved remarkable success. Diffusion models define a
Markov chain of diffusion steps to add random Gaussian noise to the observed
data sequentially and then learn to reverse the diffusion process to construct
new samples from the noise. Although effective, vanilla diffusion models can
be computationally expensive when the input data is of high dimensionality
in image space (256 × 256 × 100 in our study). Hence, we employ the latent
diffusion model (LDM), comprising a pretrained autoencoder and a diffusion
model. The autoencoder learns a lower-dimensional latent embedding of the
brain vasculature, while the diffusion model focusses on modelling the high-level
semantic representations in the latent space efficiently.

Following [18], the diffusion process can be defined as forward and reverse
Markov chains, where the forward process iteratively transforms the data x0

(i.e. the latent features from the autoencoder in our approach) into a standard
Gaussian XT as following:

q (x1:T |x0) =
T∏

t=1

q (xt|xt−1) , q (xt|xt−1) := N
(
xt;

√
1 − βtxt−1, βtI

)

where q (xt|xt−1) is the transition probability at the time step t based on the
noise schedule βt. Therefore, the noisy data xt can be formulated as q (xt|x0) =
N (xt;

√
ᾱtx0, (1 − ᾱt)I), where αt := 1 − βt, ᾱt :=

∏t
s=1 αs.

The reverse process, achieved via a deep neural network parameterised by θ,
can then be defined as:

pθ (x0|xT ) = p (xT )

T∏

t=1

pθ (xt−1|xt) , pθ (xt−1|xt) := N (xt−1;µθ (xt, t) ,Σθ (xt, t))
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Fig. 1. Overview of the latent diffusion process.

The simplified evidence lower bound (ELBO) loss to optimise the diffusion
model by Ho et al. [18] can be formulated as a score-matching task where the
neural network predicts the actual noise ε added to the observed data. The
resulting loss function is Lθ := Ex0,t,C,ε∼N (0,1)

[
‖ε − εθ (xt, t, C)‖2

]
where C is

the condition in conditional generation.
We pretrained a multitask attention-based autoencoder using a combination

of L1 loss and Dice loss. The encoder transforms the brain image K0 into a
compact latent representation x0 with dimensions of 256 × 256 × 1. Once the
compression model is trained, the latent representations from the training set
serve as inputs to the diffusion model for further analysis and generation.

We employ a model with a U-net-based architecture as the diffusion model.
Our model has 5 encoding blocks and 5 decoding blocks with skip connections
between the corresponding encoding and decoding blocks. We replace the simple
convolution layers in the encoding and decoding blocks with a residual block
followed by a multihead attention layer to limit information loss in the latent
space. Each encoding and decoding block takes the class category (based on
CoW phenotypes) as an additional conditional input, while, only the decoding
blocks take shape and anatomy features as additional conditional inputs (Fig. 1).

Shape and Anatomy Guidance. Angiographic medical images exhibit intri-
cate anatomical structures, particularly the small vessels in the peripheral cere-
bral vasculature. Preserving anatomical integrity becomes crucial in the genera-
tion of realistic and accurately depicted vessels. However, diffusion models often
face challenges in faithfully representing the anatomical structure, which can
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be attributed to their learning and sampling processes that are heavily based
on probability density functions [5]. Previous studies have demonstrated that
the inclusion of geometric and shape priors can improve performance in medical
image synthesis [1,22]. Additionally, latent space models are susceptible to noise
and information loss within the latent space. To this end, we incorporate shape
and anatomy guidance to improve the performance of our CoW generation.

The shape guidance component involves incorporating class-wise Hu and
Zernike moments as conditions during model training [7,12]. This choice stems
from the nature of our image dataset, which comprises both vessel and back-
ground regions. By including these shape-related moments as conditions, we
aim to better preserve vascular structures within the synthesised images. Hu
and Zernike moments are a set of seven invariant moments and a set of orthog-
onal moments, respectively, commonly used for shape analysis. These moments
are typically computed on greyscale or binary images. To incorporate the Hu
and Zernike moments as conditions, we first calculate and concatenate these
moments for each class. An embedding layer comprising a dense layer with a
SiLU activation function [3] and a reshape layer is then introduced to ensure
that the data are reshaped into a suitable format for integration as a condition
within the decoding branches.

To further enhance the performance of our model, we incorporate anatomy
guidance using principal component analysis (PCA) on images from each class.
As the majority branches within the CoW exhibit a consistent configuration
with minor variations attributed to the presence or absence of specific branches,
the model tends to capture an average or mean representation of the CoW
and generates synthetic images with very little variation between them. This
characteristic becomes significant due to the limited number of images available
per class. To address this, we use PCA components as conditions to enable
the model to discern distinctive features specific to each class. We extract seven
principal components along with the mean component for each class, concatenate
them, and reshape the data. The resulting features are then passed through
a multi-head attention block, followed by a dense layer and another reshape
operation for integration into the decoding branches.

Figure 2 shows the effect of incorporating shape moments and PCA as con-
ditions in our diffusion process. By incorporating shape and anatomy guidance
conditions during the training of our diffusion model, we leverage specific fea-
tures and knowledge related to the vessel structures and the general anatomy
of the images. This approach promotes the generation of more realistic images,
contributing to an improved anatomical fidelity.
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Fig. 2. Row 1: Comparison of output of the latent diffusion network with and without
using shape guidance as conditional input. In each column, the image on the left shows
the output of our latent diffusion model and the image on the right shows the result
of passing the output through the pretrained decoder and obtaining the Maximum
Intensity Projection (MIP); Row 2: compares the output of the network with and
without using anatomy guidance as conditional input. The generated images displayed
on the right, which are produced without the incorporation of anatomy guidance,
consistently exhibit a similar variation of the circle of Willis. Conversely, the images
presented on the left, which are generated with the inclusion of anatomy guidance,
demonstrate a greater degree of realism and variability in the synthesised circle of
Willis variations.

3 Experiments and Results

Implementation Details. All models were implemented in TensorFlow 2.8 and
Python 3. For the forward diffusion process we use a linear noise schedule with
1000 time steps. The model was trained for 2000 epochs with a learning rate of
0.0005 on a Nvidia Tesla T4 GPU and 38 Gb of RAM with Adam optimiser.

Results and Discussion. To assess the performance of our model, we compared
it against two established conditional generative models: 3D C-VAE [13] and a
3D-α-WGAN [14] along with a vanilla LDM and an LDM with shape guidance.
We use the FID score to measure the realism of the generated vasculature. To
calculate FID we used a pre-trained InceptionV3 as a feature extractor. A lower
FID score indicates higher perceptual image quality. In addition, we used MS-
SSIM and 4-G-R SSIM to measure the quality of the generated images [15,21].
MS-SSIM and 4-G-R SSIM are commonly used to assess the quality of syn-
thesised images. Typically, a higher score is indicative of better image quality,
implying a closer resemblance between the synthesised CoW and the ground
truth reference. MS-SSIM and 4-G-R SSIM were calculated over 60 synthesised
CoW cases for each model. Table 1 presents the evaluation scores achieved by
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our model, 3D CVAE, and the 3D-α-WGAN and the above metrics. As seen in
Table 1, our model demonstrates a better FID score, suggesting that the distri-
bution of CoW variants synthesised by our model is closer to that observed in
real CoW data, compared to the other models. Additionally, our model achieves
higher MS-SSIM and 4-G-R SSIM scores compared to the other methods. These
higher scores indicate better image quality, implying that the generated CoW
samples resemble the real CoW images more closely. Figure 3 provides a quali-
tative comparison among the generated samples obtained from the three models
to provide additional context to the quantitative results presented in Table 1. As
the output of each model is a 3D vascular structure, maximum intensity projec-
tions (MIP) over the Z-axis which condense the volumetric representation into
a 2D plane are used to visually compare the synthesised images.

Table 1. Quantitative evaluation of Synthetic CoW vasculature

Model FID ↓ MS-SSIM ↑ 4-G-R SSIM ↑
3D CVAE 52.78 0.411 0.24

3D-α-WGAN 12.11 0.53 0.41

LDM 176.41 0.22 0.13

LDM + Shape Guidance 8.86 0.58 0.47

Ours (LDM + Shape & Anatomy Guidance) 5.644 0.61 0.51

Fig. 3. Comparison between the maximum intensity projections (MIPs) of a real Circle
of Willis(CoW) against those synthesised with 3D CVAE, 3D-α-WGAN, and our model.

Figure 3 reveals that the 3D CVAE model can only generate a limited number
of major vessels with limited details. On the other hand, although the 3D-α-
WGAN model produces the overall structure of the CoW, it exhibits significant
anatomical discrepancies with the presence of numerous phantom vessels. On the
contrary, our model demonstrates a faithful synthesis of the majority of CoW,
with most vessels identifiable. To generate variations of the CoW based on the
presence or absence of the posterior communicating artery, our latent diffusion
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model uses class-conditional inputs where the classes represent different CoW
phenotypes. Consequently, to demonstrate the class-conditional fidelity of the
proposed approach, we also evaluate the model’s performance in a class-wise
manner. The qualitative performance of our model for different classes, compared
to real images belonging to those classes, is shown in Fig. 3

Fig. 4. Comparison between the real and synthesised maximum intensity projections
(MIPs) for each of the three classes

Table 2. Quantitative class-wise evaluation of Generated CoW vasculature

Class FID Score ↓ MS-SSIM ↑ 4-G-R SSIM ↑
Class 1 4.41 0.65 0.65

Class 2 3.88 0.52 0.52

Class 3 7.63 0.41 0.41

Overall 5.64 0.61 0.51

The results presented in Fig. 4 demonstrate the performance of our model
in generating realistic variations of the Circle of Willis. Particularly notable
is the model’s proficiency in producing accurate representations for classes 1
and 2, surpassing its performance in class 3 due to the limited sample size of
the latter. Our model excels in synthesising the posterior circulation and the
middle cerebral arteries, showing remarkable fidelity to anatomical structures.
However, it faces challenges in effectively generating continuous representations
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of the anterior circulation. Further investigation and refinement may be required
to enhance the model’s ability in this specific aspect. In addition to the visual
assessment, we also compute class-wise FID scores, along with the MS-SSIM
and 4-G-R SSIM scores. These quantitative evaluations serve to provide a more
comprehensive understanding of the model performance with respect to each
class. The class-wise performance scores shown in Table 2 are consistent with
our observations from Fig. 4, that the model’s performance for class 3 is worse
than its performance on classes 1 and 2.

4 Conclusion

We proposed a latent diffusion model that used shape and anatomy guidance to
generate realistic CoW configurations. Quantitative qualitative results showed
that our model outperformed existing generative models based on a conditional
3D GAN and a 3D VAE. Future work will look to enhance the model to capture
wider anatomical variability and improve synthetic image quality.
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Abstract. Medical radiography segmentation, and specifically dental
radiography, is highly limited by the cost of labeling which requires spe-
cific expertise and labor-intensive annotations. In this work, we propose
a straightforward pre-training method for semantic segmentation lever-
aging Denoising Diffusion Probabilistic Models (DDPM), which have
shown impressive results for generative modeling. Our straightforward
approach achieves remarkable performance in terms of label efficiency
and does not require architectural modifications between pre-training
and downstream tasks. We propose to first pre-train a Unet by exploit-
ing the DDPM training objective, and then fine-tune the resulting model
on a segmentation task. Our experimental results on the segmentation of
dental radiographs demonstrate that the proposed method is competitive
with state-of-the-art pre-training methods.

Keywords: Diffusion · Label-Efficiency · Semantic Segmentation ·
Dataset Generation

1 Introduction

Accurate automatic semantic segmentation of radiographs is of high interest in
the dental field as it has the potential to help practitioners identify anatomical
and pathological elements more quickly and precisely. While deep learning meth-
ods show robust performances at segmentation tasks, they require a substantial
amount of pixel-level annotations which is time-consuming and demands strong
expertise in the medical field. Accordingly, many recent state-of-the-art meth-
ods [2,5,6,9,22,23] use self-supervised learning as a pre-training step to improve
training and reduce labeling effort in computer vision.

C. Alaka, E. Covili, H. Mayard and L. Misrachi—These authors contributed equally
to this work.

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-3-031-53767-7 17.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
A. Mukhopadhyay et al. (Eds.): DGM4MICCAI 2023, LNCS 14533, pp. 174–182, 2024.
https://doi.org/10.1007/978-3-031-53767-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-53767-7_17&domain=pdf
https://doi.org/10.1007/978-3-031-53767-7_17
https://doi.org/10.1007/978-3-031-53767-7_17


PTDR 175

Inspired by the renewed interest in denoising for generative modeling, we
investigate denoising as a pre-training task for semantic segmentation. Denois-
ing autoencoder is a classic concept in machine learning where a model learns to
separate the original data from the noise, and implicitly learns the data distribu-
tion by doing so [16,17]. In particular, denoising objective can be easily defined
pixel-wise, making it especially well suited for segmentation tasks [4].

Recently, a new class of generative models, known as Denoising Diffusion
Probabilistic Models (DDPM) [10,13,15], have shown impressive results for gen-
erative modeling. DDPM outperform other state-of-the-art generative models
such as Generative Adversarial Networks (GANs) [8] in various tasks, including
image synthesis [7].

DDPM learn to convert Gaussian noise to a target distribution via a sequence
of iterative denoising steps, yielding impressive results in image synthesis out-
performing GANs [7,8].

Fig. 1. PTDR method overview. top - εθ is pre-trained on unlabeled dataset X1

using the training procedure of DDPM [10]. bottom - εθ is then fine-tuned on a small
labeled dataset X2. Y represents the set of ground truth semantic maps.

Following the success of DDPM for generative modeling, [1,18–20] explore
their ability to directly generate semantic maps in an iterative process by condi-
tioning each denoising steps with a raw image prior. [3] shows that DDPM are
effective representation learners whose feature maps can be used for semantic
segmentation, beating previous pre-training methods in a few label regime.

In this paper, we propose Pre-Training with Diffusion models for Dental
Radiography segmentation (PTDR). The method consists in pre-training a
Unet [14] in a self-supervised manner by exploiting the DDPM training objective,
and then fine-tuning the resulting model on a semantic segmentation task.

To sum up our contributions, our method is most similar to [3] but does
not require fine-tuning a different model after pre-training. The whole Unet
architecture is pre-trained in one step at the difference of [4] which requires
two. At inference, only one forward pass is used, making it easier to use than
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[1,3]. Finally, we show that our proposed method surpasses other state-of-the-art
pre-training methods especially when only few annotated samples are available.

2 Methodology

2.1 Background

Inspired by Langevin dynamics, DDPM [10] formalize the generation task as a
denoising problem where an image is gradually corrupted for T steps and then
reconstructed through a learned reverse process. Generation is done by applying
the reverse process to pure random noise.

Starting from an image x0, the forward diffusion process iteratively produces
noisy versions of the image {xt}Tt=1, and is defined as a Gaussian Markov chain
where {βt ∈ (0,1)}Tt=1 is the variance schedule:

q (xt | xt−1) := N
(
xt;

√
1 − βtxt−1, βtI

)
(1)

A noisy image xt is obtained at any timestep t from the original image x0

with the following closed form, let αt = 1 − βt and ᾱt =
∏t

s=1 αs we have:

q (xt | x0) = N (
xt;

√
ᾱtx0, (1 − ᾱt) I

)
(2)

When the diffusion steps are small enough, the reverse process can also be
modeled as a Gaussian Markov chain:

pθ (xt−1 | xt) := N (
xt−1;μθ (xt, t) , σ2

t I
)

(3)

where:

μθ (xt, t) =
1√
αt

(
xt − 1 − αt√

1 − ᾱt
εθ (xt, t)

)
σ2

t =
1 − ᾱt−1

1 − ᾱt
βt (4)

with εθ the neural network being optimized.
The training procedure is finally derived by optimizing the usual variational

bound on the negative log-likelihood, and consists of randomly drawing samples
ε ∼ N0,I, t ∼ U1,T, x0 ∼ q(x0) and taking a gradient step on

∇θ

∥∥εθ

(√
αtx0 +

√
1 − αtε, t

) − ε
∥∥2

(5)

2.2 DDPM for Semantic Segmentation

The proposed method is based on two steps. First, a denoising model is pre-
trained on a large set of unlabeled data following the procedure presented in
Sect. 2.1. Second, the model is fine-tuned for semantic segmentation on few anno-
tated data of the same domain by minimizing the cross-entropy loss.
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Our method is similar to [3] which leverages a pre-trained DDPM-based
model as a feature extractor. Their method involves upsampling feature maps
from predetermined activation blocks - from several forward passes at differ-
ent timesteps - to the target resolution and training an ensemble of pixel-wise
classifiers on concatenated feature maps. [3] showed that semantic information
carried by feature maps highly depends on the activation block and the diffusion
timestep. The latter are thus important hyper-parameters that need to be tuned
for each specific semantic task. This method originally introduced in [24] - in
the context of GANs - is well-suited for generative models feature extraction but
does not leverage the DDPM architecture as PTDR does.

Our approach, by simply re-using the DDPM-trained denoising model for the
downstream task, does not need extra classifiers and does not depend on activa-
tion blocks hyper-parameter. Moreover, PTDR fine-tuning and inference phases
only require one forward pass in which the timestep is fixed to a predetermined
value. To that extent, the proposed method is simpler both in terms of training
and inference.

3 Experiments and Results

3.1 Experimental Setup

In our experiments, a Unet*1 based DDPM is trained on unlabeled radiographs,
the Unet* is then fine-tuned on a multi-class semantic segmentation task as
illustrated in Fig. 1. We experiment with regimes of 1, 2, 5 and 10 training
samples and compare our results to other state-of-the-art self-supervised pre-
training methods. We used a single NVIDIA T4 GPU for all our experiments.

Datasets: Our main experiment is done on dental bitewing radiographs col-
lected from partner dentists, see Fig. 2. The pre-training dataset contains 2500
unlabeled radiographs. Additionally, 100 bitewing radiographs are fully anno-
tated for 6 classes namely: dentine, enamel, bone, pulp, other and background
as semantic maps; and is randomly split into 10 training, 5 validation, and 85
test samples. There is no intersection between the pre-training and fine-tuning
dataset. For our experiments, we use random subsets of the train set of size 1, 2,
5 and 10 respectively. Images are resized to 256 × 256 resolution and normalized
between −1 and 1.

Pre-training: The Unet* implemented in pytorch is trained with a batch size
of 2 and follows the training procedure of [7] with 4000 diffusion steps T . We
use the official pytorch implementation of [7]. The training was performed for
150k iterations and we saved the weights at iteration 10k, 50k, 100k and 150k
for fine-tuning comparison.

Fine-Tuning: The batch size is set at 2. We use a random affine augmentation
strategy with the following parameters: rotation angle uniformly sampled from

1 Unet* denotes the specific Unet architecture introduced in [7].
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Fig. 2. Comparison on test dental bitewing radiographs of ground truth (GT) against
predicted semantic maps from PTDR fine-tuned on 10 labeled images.

[−180, 180], shear sampled from [−5, 5], scale sampled from [0.9, 1.1], and trans-
late factor sampled from [0.05, 0.05]. Fine-tuning is done for 200 epochs using
the Adam optimizer [11] with a learning rate of 1e−4, a weight decay of 1e−4,
and a cosine scheduler.

Baseline Methods: The DDPM training procedure is performed for 150k iter-
ations and used for both PTDR and [3] which is referred to as DDPM-MLP for
the next sections. We also pre-train a Unet* encoder with MoCo v2 [6] and then
fine-tune the whole network on the downstream task. We refer to this method as
MoCo v2. Finally, we pre-train a Swin Transformer [12] using SimMIM [22] and
use it as an Upernet [21] backbone. We refer to this method as SimMIM. As the
Swin backbone relies on batch normalization layers, we do not train SimMIM in
the 1-shot regime. For all these methods, we use the same hyper-parameters as
proposed in the original papers.

Evaluation Metric: We use mean Intersection over Union (mIoU) as our eval-
uation metric to measure the performance of the downstream segmentation task.

3.2 Results

We compare our method with other baseline pre-training methods and compare
their performances on the multi-class segmentation downstream task in the 10-
labeled regime as shown in Table 1.

Our method outperforms all other methods, improving upon the second-best
method by 10.5%. Qualitative results on bitewing radiographs are shown in Fig. 3
with predicted semantic maps produced by all compared methods for 1, 5, and
10 training samples. For all regimes, predictions from our method are less coarse
than others.

Label Efficiency: In this experiment, we compare our method with baseline
methods in different data regimes. Figure 4 illustrates the comparison between
methods fine-tuned on 1, 2, 5, and 10 training samples.
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Table 1. Comparison of pre-training methods when fine-tuned on 10 labeled samples

Model Pre-training mIoU

SwinUperNet None 59.58

SimMIM [22] 70.69

Unet* None 61.40

MoCo v2 [6] 64.10

DDPM-MLP [3] 69.64

PTDR (ours) 76.96

Fig. 3. Semantic maps produced by different methods, PTDR, DDPM-MLP, MoCo
v2 and SimMIM. The DDPM pre-training procedure is performed for 150k iterations.
Semantic maps were produced by models trained on 1, 5, and 10 training samples to
illustrate label efficiency.

Fig. 4. Label efficiency. Comparison of pre-training methods when fine-tuning in
several data regimes (1, 2, 5, and 10 training samples).
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Results show that our method yields better performance, in any regime,
than all other pre-training methods benchmarked. On average, over all regimes,
PTDR improves upon DDPM-MLP, its closest competitor, by 7.08%. Moreover,
we can observe in Fig. 4, that our method trained on only 5 training samples
outperforms all other methods trained on 10 samples.

Saturation Effect: We explore the influence of the number of DDPM pre-
training iterations on the final segmentation performance. In Fig. 5, we observe
strong benefits of pre-training between 10k and 50k iterations with an absolute
mIoU increase of +7% for PTDR and +6% for DDPM-MLP. As we advance
in iteration steps, the pre-training effectiveness decreases. For both methods,
we observe that beyond 50k iterations, the performance saturates reaching a
plateau. This suggests pre-training DDPM can be stopped before reaching ultra-
realistic generative performance while still providing an efficient pre-trained
model.

Fig. 5. Saturation effect. Impact of the number of pre-training steps on mIoU for
PTDR and DDPM-MLP trained on 10 training samples.

Timestep Influence: We investigate the influence of timestep, which conditions
the Unet* and the amount of Gaussian noise added during the diffusion process.
We empirically show in Table 2 that timestep 1 is the optimal setup during fine-
tuning. This is intuitive as this timestep corresponds to the first diffusion step
during which images are almost not corrupted which mirrors the fine-tuning
setup on raw images. We did not find any benefits from letting the network
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learn the timestep value. However, it is worth mentioning that when we do so,
the timestep converges to 1.

Table 2. Influence of timestep value on PTDR’s fine-tuning performance

Timestep value 1 100 1000 2000 4000 learnt

mIoU 76.96 76.94 76.61 74.86 73.60 76.80

Generalization Capacity: In appendix 1, we further investigate the general-
ization capacity of our method to another medical dataset.

Dataset Generation: In appendix 2, we qualitatively illustrate the method’s
ability to generate a high-quality artificial dataset with pixel-wise labels.

4 Conclusion

This paper proposes a method that consists of two steps: a self-supervised pre-
training using denoising diffusion models training objective and a fine-tuning of
the obtained model on a radiograph semantic segmentation task. Experiments
on dental bitewing radiographs showed that PTDR outperforms baseline self-
supervised pre-training methods in the few label regime. Our simple, yet power-
ful, method allows the fine-tuning phase to easily exploit all the representations
learned in the network during the diffusion pre-training phase without any archi-
tectural changes. These results highlight the effectiveness of diffusion models in
learning representations. In future works, we will investigate the application of
this method to other types of medical datasets.
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Abstract. Motion-resolved reconstruction for abdominal magnetic res-
onance imaging (MRI) remains a challenge due to the trade-off between
residual motion blurring caused by discretized motion states and under-
sampling artefacts. In this work, we generate blurring-free motion-
resolved abdominal reconstructions by learning a neural implicit rep-
resentation directly in k-space (NIK). Using measured sampling points
and a data-derived respiratory navigator signal, we train a network to
generate continuous signal values. To aid the regularization of sparsely
sampled regions, we introduce an additional informed correction layer
(ICo), which leverages information from neighboring regions to correct
NIK’s prediction. The proposed generative reconstruction methods, NIK
and ICoNIK, outperform standard motion-resolved reconstruction tech-
niques and provide a promising solution to address motion artefacts in
abdominal MRI.

Keywords: MRI Reconstruction · Neural Implicit Representations ·
Parallel Imaging · Motion-Resolved Abdominal MRI

1 Introduction

Magnetic resonance imaging (MRI) is a non-invasive medical imaging modal-
ity with a high diagnostic value. However, its intrinsically long acquisition
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times make MRI more sensitive to motion than other imaging modalities. Espe-
cially respiration, which causes local non-rigid deformation of abdominal organs,
induces non-negligible motion artefacts. Knowledge of the current state within
the breathing cycle, e.g., using external or internal navigators, allows for selection
of data to reconstruct from solely one breathing position and reduce artifacts
[10]. However, a large portion of data is discarded in this type of reconstruction,
resulting in unnecessary prolongation of the acquisition time.

Respiratory-resolved abdominal MRI reconstruction aims to provide high-
quality images of one breathing position (typically at end-exhale), while lever-
aging acquired data points from all states in the respiratory cycle. To effectively
utilize information from different breathing states, it is essential to be aware
of the specific breathing state during data acquisition. Certain radial sampling
trajectories, acquiring data points in a non-Cartesian manner, enable the deriva-
tion of a respiratory surrogate signal for motion navigation [17]. Based on such
a self-navigator, a common approach is to retrospectively bin the acquired data
into multiple motion states and regularize over the motion states to obtain one
high-quality reconstruction [2]. While a high number of motion states (i.e., high
temporal resolution) decreases residual motion blurring, it minimizes the avail-
able data points per motion state. Consequently, undersampling artefacts occur
due to the violation of the Nyquist criterion.

Deep learning has emerged as a powerful technique to cope with undersam-
pling in MR, i.e., when fewer data points are available than required to recon-
struct an image from the frequency domain [5,7]. Learned denoisers have shown
promising results by leveraging information from multiple dynamics [8,9,13], but
require pretraining on fully sampled ground truth data. Deep generative models
can be trained on acquired undersampled data to infer unavailable information,
with the benefit of being independent of such expensive ground truth data [12]. In
particular for abdominal motion-resolved MR reconstruction, generative models
have been proposed to infer a dynamic sequence of images from a latent space,
either directly through a CNN [16] or with intermediate motion modelling [18].
Lately, Feng et al. [1] propose to learn a neural implicit representation of the
dynamic image and regularize over multiple dynamics. While these approaches
consider data consistency of the predicted images with the original acquired data
in k-space, they all rely on binning of the dynamic data to generate images at
some point of the training stage, risking residual motion blurring. Additionally,
due to the non-uniform sampling pattern, the non-uniform fast Fourier trans-
form (NUFFT) [3], with computationally expensive operations such as regridding
and density compensation, is required at each step of the optimization process.
Recently, learning a neural implicit representation of k-space (NIK) [6] has shown
promising results for binning-free ECG-gated cardiac reconstruction. The train-
ing and interpolation is conducted completely in the raw acquisition domain
(k-space) and thereby, provide a way to avoid motion binning and expensive
NUFFT operations within the optimization and at inference. However, in radial
sampling patterns, sampling points sparsify when moving away from the k-space
center to high frequency components, resulting in a compromised reconstruction
of high frequency information.
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In this work, we adapt NIK to respiratory-resolved abdominal MR recon-
struction to overcome the challenge of motion-binning of classical reconstruction
techniques. We extend NIK’s capability to leverage classical parallel imaging con-
cepts, i.e., that missing k-space points can be derived from neighboring points
obtained with multiple coils [4]. We perform an informed correction (ICo) by
introducing a module which learns this multi-coil neighborhood relationship.
Based on the inherently more densely sampled region in the center of k-space,
we inform the ICo module of the existing relationship by calibrating its weight
and use it to correct sparsely sampled high frequency regions. Our contributions
are three-fold:

1. We modify NIK [6] to learn the first binning-free motion-resolved abdominal
reconstruction guided by a data-derived respiratory navigator signal.

2. Inspired by classical MR reconstruction techniques, we perform an informed
correction of NIK (ICoNIK), leveraging neighborhood information by apply-
ing a kernel which was auto-calibrated on a more densely sampled region.

3. To demonstrate the potential of our work, we present quantitative and quali-
tative evaluation on retrospectively and prospectively undersampled abdom-
inal MR acquisitions.

2 Methods

2.1 Motion Navigation and Classical Motion-Binned Reconstruction

In 3D abdominal imaging, knowledge of the current motion state can be deducted
by acquiring data with a radial stack-of-stars (SoS) trajectory with Cartesian
encoding in the feet-head direction. One spoke in the kx/ky plane is acquired
in each kz position before moving to the next partition, i.e., next set of spokes
(Fig. 1A). By projecting the k-space center of each partition and applying princi-
pal component analysis, a 1D curve (nav) indicating the global relative feet-head
motion over time t can be derived. Since breathing motion is mainly driven in
the feet-head direction, the extracted curve can be used as respiratory navigator
signal. We refer the reader to [2] for more details on the respiratory navigator
signal derivation.

Consecutively, the navigation signal is used in motion-resolved reconstruc-
tion methods to bin the spokes into a pre-defined number of dynamic states nd

(Fig. 1B). A popular representative of motion-resolved reconstruction methods
is XD-GRASP [2] which applies a total variation regularization in the dynamic
motion state dimension. An inverse Fourier transform can be performed along
this dimension and the dynamic images x = x1...nd

are obtained by solving the
following optimization problem:

min
x

‖ FSx − y ‖22 +λΦ(x). (1)

where y = y1...nd
is the multi-coil radial k-space data sorted for each motion

state d, F the NUFFT and S the coil sensitivity maps. Total variation in the
temporal and spatial dimension is imposed by the second term, which consists
of the finite difference operator Φ and regularization weight λ ∈ R+.
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Fig. 1. Graphical overview: (A) Derivation of a motion navigation signal nav from the
radial SoS trajectory, associating one nav to each acquired kx/ky sample. (B) Classical
motion-resolved reconstruction using motion binning based on the surrogate signal. (C)
ICoNIK: (1) NIK is pretrained using samples of one slice obtained with the radial SoS
and optimized with the corresponding measured values. Network weights are frozen for
further processing. (2) Neighbours of sampling points are queried and their predicted
values p fused within the ICo layer. The ICo weights are optimized on a restricted ACR.
(3) At inference, a cartesian grid is sampled to generate the k-space and processed to
generate dynamic reconstructions.

2.2 Binning-Free Neural Implicit k-Space for Abdominal Imaging

To avoid binning of the acquired data, we propose to learn a continuous implicit
representation of k-space (NIK) [6] conditioned on the data-derived respiratory
navigator signal. The representation is learned by a neural network Gθ in the
form of a mapping from k-space coordinates to the complex signal values. In
contrast to the original NIK [6], we predict the signal space for each coil simulta-
neously rather than including the coil dimension in the input to reduce training
effort and enable further post-processing in the coil dimension. Based on the
radial sampling trajectory, N coordinates vi = [navi, kxi, kyi] i = 1, 2, . . . , N,
vi ∈ R3 representing the current navigator signal value and trajectory
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position as well as its corresponding coil intensity values yi ∈ Rnc can be queried
(Fig. 1C.1). The network Gθ is then optimized with the sampled data pairs
(vi, yi) to approximate the underlying coordinate-signal mapping:

θ∗ = arg min
θ

‖Gθ(v) − y‖22 . (2)

To account for the increased magnitude in the k-space center, the optimiza-
tion is solved with a high-dynamic range loss, as described in [6]. At inference,
k-space values can be queried for any combination of coordinates within the
range of the training data. This allows for sampling based on a Cartesian grid
v̄ (Fig. 1C), which enables a computationally efficient inverse Fourier transform
F−1 instead of NUFFT. Final images are obtained by combining the inverse
Fourier-transformed images using the complex conjugate coil sensitivities SH

c :

x̂ =
nc∑

c

SH
c F−1(Gθ∗(v̄)). (3)

2.3 Informed Correction of Neural Implicit k-Space (ICoNIK)

The radial trajectory required for motion navigation and used to train NIK
comes at the cost of increased data sparsity towards the outer edges of k-space,
which represent the high frequencies and, therefore, details and noise in image
domain. To increase the representation capability of NIK, we include neighbor-
hood information by processing NIK’s multi-coil prediction with a informed cor-
rection module (ICo). Accelerated classical reconstruction methods have shown
that k-space values can be derived by linearly combining the neighbouring k-
space values of multiple coils. The set of weights can be auto-calibrated on a
fully sampled region and consecutively applied to interpolate missing data points
[4,11]. We leverage this relationship and correct individual data points with the
combination of the surrounding neighbors. As shown in Fig. 1C.2, we sample np

neighboring points around the input coordinate vi to obtain vp ∈ R3×np . We
predict its multi-coil signal values yp ∈ Rnc×np with NIK and fuse the informa-
tion in the ICo module using a convolutional network Kψ to obtain the corrected
signal values ỹi ∈ Rnc for vi.

ỹi = Kψ(Gθ∗(vp)). (4)

In general, predictions in the center region of k-space are assumed to be more
representative due to the higher amount of ground truth sampling points within
this region (inherent by the radial trajectory). Therefore, we “inform” the cor-
rection module by calibrating it on NIK’s predicted center of k-space, marked as
autocalibration region (ACR) in Fig. 1C.2. We select sample points only within
a certain distance r to the k-space center for the optimization of the kernel
weights ψ∗ and at inference, apply the informed correction module to regularize
all predictions yi and output ỹi:
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vACR ∈ V (d(vi) < r), with d(vi) =
√

k2
x + k2

y, (5)

ψ∗ = arg min
ψ

‖Kψ(G∗
θ(vACR)) − y‖22 . (6)

3 Experimental Setup

Data. Free-breathing golden angle stack-of-star acquisitions are obtained at
3T (Ingenia Elition X, Philips Healthcare) with a FOV = 450× 450 × 252 mm3,
flip angle = 10◦, voxel size = 1.5× 1.5× 3 mm3, TR/TE1/TE2 = 4.9/1.4/2.7 ms,
Tshot = 395 ms after approval by the local ethics committee (Klinikum rechts der
Isar, 106/20 S-SR). One prolonged sequence and one accelerated were acquired
on two separate volunteers, resulting in a set with 1800 (considered as reference
R1) and with 600 radial spokes (accelerated by a factor of 3 compared to R1),
respectively. Each dataset consists of 84 slices in z dimension and 600 samples per
spoke (nFE) were acquired. Due to computational limitations and anisotropic
spacing, further processing is conducted on the 2D slices as proof-of-principle.
Coil sensitivity maps are estimated using ESPIRiT [14].

Training and Inference. We adapt NIK’s architecture (Fourier encoding, 8
layers, 512 features) [6] to output signal values in the coil dimension. We rescale
the surrogate motion signal to [−1,1] and use the predefined selected number of
spokes (1800 or 600) for training. NIK’s training is stopped after 3000 epochs
and the model with the lowest residual loss selected for further processing. The
ICo module consists of three 3 × 3 complex kernel layers with interleaved com-
plex ReLUs, and acts on neighboring samples spaced δx, δy = n−1

FE from the
original coordinate. The ACR region was empirically determined as r = 0.4, and
optimization is conducted for 500 epochs. Both modules are trained using an
Adam optimizer with a learning rate of 3 ·10−5 and batch size 10000, optimizing
for the linearized high dynamic range loss with σ = 1, ε = 1 · 10−2 and λ = 0.1.
Computations were performed on an NVIDIA RTX A6000, using Python 3.10.1
and PyTorch 1.13.1 (code available at: https://github.com/vjspi/ICoNIK.git).
NIK/ICo module training took about 12/4 h and 1.5/0.5 h for the reference and
the accelerated version, respectively. Reconstruction of 20 respiratory phases
with a matrix size of 300× 300 after training takes about 15 s.

Evaluation. Reference motion-resolved 2D slices are reconstructed using
inverse NUFFT (INUFFT) and XD-GRASP [2] (total variation in the spa-
tial/temporal domain with factor 0.01/0.1) for 4 motion bins [2]. Results for the
end-exhale state (first motion bin) are compared with the adapted NIK [6] and
ICoNIK reconstructions at t within the same end-exhale state. For the prolonged
sequence, the INUFFT of the gated data from one motion state is considered as
approximately fully sampled and used as reference for computing quantitative

https://github.com/vjspi/ICoNIK.git
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Table 1. Quantitative results for 10 slice reconstruction, (*) and (+) mark statistical
significance (p < 0.05) compared to conventional XD-GRASP and NIK, respectively

SSIM ↑ PSNR (dB) ↑ NRMSE ↓
R1 R3 R1 R3 R1 R3

INUFFT - 0.80 ± 0.01 - 26.55 ± 0.68 - 0.65 ± 0.03

XD-GRASP 0.85 ± 0.01 0.79 ± 0.01 28.19 ± 0.73 25.73 ± 0.56 0.56 ± 0.03 0.73 ± 0.03

NIK 0.91 ± 0.01* 0.82 ± 0.01* 32.01 ± 0.89* 27.47 ± 0.75* 0.35 ± 0.02* 0.59 ± 0.03*

ICoNIK 0.91 ± 0.01* 0.82 ± 0.01* 32.13 ± 0.82* 27.36 ± 0.73* 0.32 ± 0.02*+ 0.60 ± 0.02*

evaluation measures, i.e., peak signal-to-noise ratio (PSNR), structural similar-
ity index (SSIM) [15] and normalized root mean squared error (NRMSE) for
10 slices. Qualitative evaluation was performed on the full 1800 spokes (R1),
retrospectively and prospectively downsampled 600 spokes (R3-retro/R3-pro).

4 Results

The mean and standard deviation of the reconstruction results from 10 slices
compared to the reference are shown in Table 1. Both generative binning-free
methods, NIK and ICoNIK, significantly outperform XD-GRASP regarding
SSIM, PSNR and NRMSE for both, the reference and accelerated acquisition.
ICoNIK additionally shows increased PSNR and significantly reduced NRMSE
for the reference scan R1 compared to NIK For R1, a slight decrease of PSNR
and increase NRMSE is noticable for ICoNIK compared to NIK.

Qualitative reconstructions are visualized in Fig. 2. Retrospective and
prospective undersampling results (R3-retro and R3-pro) show the potential of
XD-GRASP, NIK and ICoNIK to leverage information from different motion
states to encounter undersampling artefacts originally present in INUFFT. The
generative binning-free reconstruction methods (NIK and ICoNIK) indicate
sharper images compared to the conventionally binned XD-GRASP, e.g., at the
lung-liver edge (green arrow). Furthermore, vessel structures originally visible
for the reference (R1-INUFFT) are only represented in NIK and ICoNIK (blue
arrow). For the accelerated reconstructions (R3), undersampling artefacts are
reduced for all motion-resolved methods and ICoNIK generates smoother recon-
struction compared to NIK, while still maintaining structural information. This
is supported by the quantitative finding of an increased PSNR for ICoNIK com-
pared to NIK, while maintaining a similar SSIM. Since ICoNIK is capable of
interpolating in the time dimension, an arbitrary number of motion states can
be generated, allowing for a movie-like reconstruction (see suppl. material).
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Fig. 2. Motion-resolved reconstructions for the reference (R1), the retrospective down-
sampled (R3-retro) and prospectively accelerated (R3-pro) acquisition. Both generative
binning-free methods (NIK and ICoNIK) show less motion-blurring compared to tradi-
tional motion-binned reconstruction (green arrow) and maintain vessel structures (blue
arrow). ICoNIK smooths the reconstruction results compared to NIK (orange arrow).
(Color figure online)

5 Discussion and Conclusion

In this work, we showed the potential of learning a neural implicit k-space rep-
resentation to generate binning-free motion-resolved abdominal reconstructions.
We leveraged parallel imaging concepts and induced neighborhood information
within an informed correction layer to regularize the reconstruction. Due to the
direct optimization in k-space and the learned dynamic representation based on
the data-based respiratory navigator, we can generate motion-resolved images at
any point of the breathing cycle. Both generative reconstruction methods, NIK
and ICoNIK, outperform the traditional reconstruction approach. Additionally,
ICoNIK is capable of smoothing reconstructions. While ICoNIK was developed
for abdominal MR reconstruction using a radial SoS, we are confident that it
can be transferred to other applications and sampling trajectories.

The presented reconstruction technique benefits from its adaptability to non-
uniform sampling patterns due to the continuous representation of k-space. Still,
the errors may propagate when calibrating ICo on interpolated data, increasing
the risk of erroneous calibration weights. The improved performance of ICoNIK
for R1 compared to R3, where less ground truth points are available for kernel
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calibration, supports this indication. Further investigation of the ideal patch
retrieval method as well as ACR selection is planned.

ICoNIK is inherently designed to handle inter-subject variability due to
subject-specific reconstructions, but requires retraining for each application.
Methods for preconditioned neural implicit networks are subject of further devel-
opment to reduce the retraining cost. Similarly, information transfer between
slices could be transferred to facilitate 3D applications at minimized computa-
tional cost. Intra-subject variation, e.g., due to changes in breathing pattern, can
be captured by ICoNIK as long as the motion navigation signal is representative.
Yet, bulk motion and temporal drifts may affect data-based motion surrogates,
and thereby influence interpolation capability, motivating us to further look into
the robustness of the neural implicit representation.

Lastly, the difficulty to obtain a motion-free ground truth without binning
data into motion states remains a significant obstacle in the evaluation process,
also for our presented work. More reliable reference acquisition and evaluation
techniques are still an active field of research, not only for learning-based recon-
struction techniques based on deep generative models. To conclude, our promis-
ing findings encourage further investigation of combining traditional parallel
imaging concepts with novel deep generative reconstruction models.
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9. Küstner, T., et al.: CINENet: deep learning-based 3D cardiac CINE MRI recon-
struction with multi-coil complex-valued 4D spatio-temporal convolutions. Sci.
Rep. 10(1), 13710 (2020)

10. McClelland, J.R., Hawkes, D.J., Schaeffter, T., King, A.P.: Respiratory motion
models: a review. Med. Image Anal. 17(1), 19–42 (2013)

11. Seiberlich, N., Ehses, P., Duerk, J., Gilkeson, R., Griswold, M.: Improved radial
GRAPPA calibration for real-time free-breathing cardiac imaging. Magn. Reson.
Med. 65(2), 492–505 (2011)

12. Spieker, V., et al.: Deep learning for retrospective motion correction in MRI: a
comprehensive review. IEEE Trans. Med. Imaging 43(2), 846–859 (2024). https://
doi.org/10.1109/TMI.2023.3323215

13. Terpstra, M., Maspero, M., Verhoeff, J., van den Berg, C.: Accelerated
respiratory-resolved 4D-MRI with separable spatio-temporal neural networks,
arXiv: 2211.05678v1 (2023)

14. Uecker, M., et al.: ESPIRiT-an eigenvalue approach to autocalibrating parallel
MRI: where SENSE meets GRAPPA. Magn. Reson. Med. 71(3), 990–1001 (2014)

15. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE Trans. Image Process. 13(4),
600–612 (2004)

16. Yoo, J., Jin, K.H., Gupta, H., Yerly, J., Stuber, M., Unser, M.: Time-dependent
deep image prior for dynamic MRI. IEEE Trans. Med. Imaging 40(12), 3337–3348
(2021)

17. Zaitsev, M., Maclaren, J., Herbst, M.: Motion artifacts in MRI: a complex problem
with many partial solutions. J. Magn. Reson. Imaging 42(4), 887–901 (2015)

18. Zou, Q., Torres, L.A., Fain, S.B., Higano, N.S., Bates, A.J., Jacob, M.:
Dynamic imaging using motion-compensated smoothness regularization on mani-
folds (MoCo-SToRM). Phys. Med. Biol. 67(14) (2022)

https://doi.org/10.1109/TMI.2023.3323215
https://doi.org/10.1109/TMI.2023.3323215
http://arxiv.org/abs/2211.05678v1


Ultrasound Image Reconstruction
with Denoising Diffusion Restoration

Models

Yuxin Zhang(B), Clément Huneau, Jérôme Idier, and Diana Mateus
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Abstract. Ultrasound image reconstruction can be approximately cast
as a linear inverse problem that has traditionally been solved with
penalized optimization using the l1 or l2 norm, or wavelet-based terms.
However, such regularization functions often struggle to balance the
sparsity and the smoothness. A promising alternative is using learned
priors to make the prior knowledge closer to reality. In this paper,
we rely on learned priors under the framework of Denoising Diffusion
Restoration Models (DDRM), initially conceived for restoration tasks
with natural images. We propose and test two adaptions of DDRM to
ultrasound inverse problem models, DRUS and WDRUS. Our experi-
ments on synthetic and PICMUS data show that from a single plane
wave our method can achieve image quality comparable to or bet-
ter than DAS and state-of-the-art methods. The code is available at
https://github.com/Yuxin-Zhang-Jasmine/DRUS-v1/.

Keywords: Ultrasound imaging · Inverse Problems · Diffusion models

1 Introduction

Ultrasound (US) imaging is a popular non-invasive imaging modality, of wide-
spread use in medical diagnostics due to its safety and cost-effectiveness trade-
off. Standard commercial scanners rely on simple beamforming algorithms, e.g.
Delay-and-Sum (DAS), to transform raw signals into B-mode images, trading
spatial resolution for speed. Yet, many applications could benefit from improved
resolution and contrast, enabling better organ and lesion boundary detection.

Recent techniques to improve US image quality include adaptive beamform-
ing techniques, e.g. based on Minimum Variance (MV) estimation [2,26], or
Fourier-based reconstructions [6]. Other methods focus on optimizing either
pre- [1,15] or post-processing steps [16]. Today, there is an increasing interest
in model-based approaches [9,20] that better formalize the problem within an
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optimization framework. A second branch of methods for improving US image
quality leverages the power of Deep Neural Networks (DNNs). Initial approaches
in this direction have been trained to predict B-mode images directly [11], the
beamforming weights [8,18] or used as post-processing denoisers under super-
vised training schemes [21,27]. Despite their effectiveness, these methods require
datasets of corresponding low-high quality image pairs and therefore do not gen-
eralize to other organs/tasks.

Recent hybrid approaches have focused on improving generalizability by com-
bining the best of the model-based and learning worlds. For instance, Chennake-
shava et al. [4] propose an unfolding plane-wave compounding method, while
Youn et al. [29] combine deep beamforming with an unfolded algorithm for
ultrasound localization microscopy. Our work falls within this hybrid model-
based deep learning family of approaches [23].

We propose the use of DNN image generators to explore and determine the
available solution space for the US image reconstruction problem. In practice, we
leverage the recent success of Denoising Diffusion Probabilistic Models (DDPMs)
[7,10,19], which are the state-of-the-art in image synthesis in the domain of
natural images. More specifically, we build on the Denoising Diffusion Restora-
tion Models (DDRMs) framework proposed by Kawar et al. [14], which adapts
DDPMs to various image restoration tasks modeled as linear inverse problems.
The main advantage of DDRMs is exploiting the direct problem modeling to
bypass the need to retrain DDPMs when addressing new tasks. While the com-
bination of model-based and diffusion models has been explored in the context of
CT/MRI imaging [25], this is, to the best of our knowledge, the first probabilistic
diffusion model approach for ultrasound image reconstruction.

Our methodological contributions are twofold. First, we adapt DDRMs from
restoration tasks in the context of natural images (e.g. denoising, inpainting,
superresolution), to the reconstruction of B-mode US images from raw radiofre-
quency RF channel data. Our approach can be applied to different acquisition
types, e.g. sequential imaging, synthetic aperture, and plane-wave, as long as
the acquisition can be approximately modeled as a linear inverse problem, i.e.
with a model matrix depending only on the geometry and pulse-echo response
(point spread function). Our second contribution is introducing a whitening step
to cope with the direct US imaging model breaking the i.i.d. noise assumption
implicit in diffusion models. In addition to the theoretical advances, we provide
a qualitative and quantitative evaluation of the proposed approach on synthetic
data under different noise levels, showing the feasibility of our approach. Finally,
we also demonstrate results on the PICMUS dataset. Next, we review DDRM
and introduce our method in Sect. 3.

2 Denoising Diffusion Restoration Models

A DDPM is a parameterized Markov chain trained to generate synthetic images
from noise relying on variational inference [7,10,19]. The Markov chain consists
of two processes: a forward fixed diffusion process and a backward learned gen-
eration process. The forward diffusion process gradually adds Gaussian noise
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with variance σ2
t (t = 1, . . . , T ) to the clean signal x0 until it becomes random

noise, while in the backward generation process (see Fig. 1a), the random noise
xT undergoes a gradual denoising process until a clean x0 is generated.

Fig. 1. (a) DDPMs vs. (b) DDRMs Generation. While DDPMs are unconditional gen-
erators, DDRMs condition the generated images to measurements yd.

An interesting question in model-based deep learning is how to use prior
knowledge learned by generative models to solve inverse problems. Denoising
Diffusion Restoration Models (DDRM) [14] were recently introduced for solv-
ing linear inverse problems, taking advantage of a pre-trained DDPM model
as the learned prior. Similar to a DDPM, a DDRM is also a Markov Chain
but conditioned on measurements yd through a linear observation model Hd

1.
The linear model serves as a link between an unconditioned image generator
and any restoration task. In this way, DDRM makes it possible to exploit pre-
trained DDPM models whose weights are assumed to generalize over tasks. In
this sense, DDRM is fundamentally different from previous task-specific learning
paradigms requiring training with paired datasets. Relying on this principle, the
original DDRM paper was shown to work on several natural image restoration
tasks such as denoising, inpainting, and colorization.

Different from DDPMs, the Markov chain in DDRM is defined in the spectral
space of the degradation operator Hd. To this end, DDRM leverages the Singular
Value Decomposition (SVD): Hd = UdSdVt

d with Sd = Diag (s1, . . . , sN ), which
allows decoupling the dependencies between the measurements. The original
observation model yd = Hdxd + nd = UdSdVt

dxd + nd, can thus be cast as a
denoising problem that can be addressed on the transformed measurements:

yd = xd + nd

with yd = S†
dU

t
dyd, xd = Vt

dxd, and nd = S†
dU

t
dnd, where S†

d is the gen-
eralized inverse of Sd. The additive noise nd being assumed i.i.d. Gaussian:
nd ∼ N (

0, σ2
dIN

)
, with a known variance σ2

d and IN the N ×N identity matrix,
we then have nd with standard deviation σdS

†
d.

Each denoising step from xt to xt−1 (t = T, ..., 1) is a linear combination of
xt, the transformed measurements yd, the transformed prediction of x0 at the
current step xθ,t, and random noise. To determine their coefficients which are

1 We use subscript d to refer to the original equations of the DDRM model.



196 Y. Zhang et al.

denoted as A, B, C, and D respectively, the condition on the noise, (Aσt)2 +
(Bσd/si)2 + D2 = σt−1

2, and on the signal, A + B + C = 1, are leveraged, and
the two degrees of freedom are taken care of by two hyperparameters.

In this way, the iterative restoration is achieved by the iterative denoising,
and the final restored image is x0 = Vdx0. For speeding up this process, skip-
sampling [24] is applied in practice. We denote the number of iterations as it.

3 Method: Reconstructing US Images with DDRM

We target the problem of reconstructing US images from raw data towards
improving image quality. To model the reconstruction with a linear model, we
consider the ultrasonic transmission-reception process under the first-order Born
approximation. We introduce the following notations: τ , k, x, and r respectively
denote the time delay, the time index, the reflectivity function, and the observa-
tion position in the field of view. When the ultrasonic wave transmitted by the
ith element passes through the scattering medium Ω and is received by the jth

element, the received echo signal can be expressed as

yi,j(k) =
∫

r∈Ω

ai(r)aj(r)h(k − τi,j(r))x(r)dr + nj(k), (1)

where nj(k) represents the noise for the jth receive element, function h is the
convolution of the emitted excitation pulse and the two-way transducer impulse
response, and a represents the weights for apodization according to the trans-
ducer’s limited directivity.

The discretized linear physical model with N observation points and K time
samples for all L receivers can then be rewritten as y = Hx+n, where x ∈ R

N×1,
n ∈ R

KL×1, and H ∈ R
KL×N is filled with the convolving and multiplying

factors from h and a at the delays τi,j . Due to the Born approximation, the
inaccuracy of h and a, and the discretization, the additive noise n does not only
include the white Gaussian electronic noise but also the model error. However,
for simplicity, we still assume n as white Gaussian with standard deviation γ,
which is reasonable for the plane wave transmission [5].

While iterative methods exist for solving such linear inverse problems [9,20],
our goal is to improve the quality of the reconstructed image by relying on recent
advances in diffusion models and, notably, on DDRM. Given the above linear
model, we can now rely on DDRM to iteratively guide the reconstruction of the
US image from the measurements. However, since DDRM relies on the SVD of
H to go from a generic inverse problem to a denoising/inpainting problem, and
since this SVD produces huge orthogonal matrices that cannot be implemented
as operators, we propose to transform the linear inverse problem model to:

By = BHx + Bn, (2)
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where B ∈ R
N×KL is a beamforming matrix that projects channel data to the

image domain. After this transformation, we then feed the new inverse problem
(Eq. 2) to DDRM to iteratively reconstruct x from By observations. In this way,
the size of the SVD of BH becomes more tractable. We call this first model
DRUS for Diffusion Reconstruction in US.

However, the noise of the updated direct model Bn is no longer white and
thus, it does not meet the assumption of DDRM. For this reason, we introduce
a whitening operator C ∈ R

M×N , where M � N , and upgrade the inversion
model to its final form:

CBy = CBHx + CBn, (3)

where C is such that CBn is a white noise sequence. In order to compute C,
we rely on the eigenvalue decomposition BBt = VΛVt where Λ ∈ R

N×N is a
diagonal matrix of the eigenvalues of BBt, and V ∈ R

N×N is a matrix whose
columns are the corresponding right eigenvectors. Then, the covariance matrix
of the whitened additive noise CBn can be written as

Cov(CBn) = E[CBnntBtCt] = γ2CBBtCt = γ2CVΛVtCt.

Now, let C = PΛ− 1
2Vt with P = [IM ,0M×(N−M+1)] ∈ R

M×N . It can be easily
checked that CVΛVtCt = IM , proving the noise CBn is white.

Besides, discarding the smallest eigenvalues by empirically choosing M ,
rather than strictly limiting ourselves to zero eigenvalues, can compress the size
of the observation vector CBy from N × 1 to M × 1 and make the size of the
SVD of CBH more tractable.

In order to adapt DDRM to the final inverse model in Eq. 3, we consider
yd = CBy and nd = CBn as input and compute the SVD of Hd = CBH. We
name this whitened version of the approach WDRUS. In summary:

– DRUS model relies on (2) with yd = By, Hd = BH and nd = Bn
– WDRUS model relies on (3) with yd = CBy, Hd = CBH and nd = CBn.

4 Experimental Validation

In our study, we employed an open-source generative diffusion model [7] at res-
olution 256 × 256 pre-trained on ImageNet [22]. We evaluated our method with
it = 50 on both synthetic data and on the Plane Wave Imaging Challenge
in Medical UltraSound (PICMUS) [17] dataset. For the latter, we also exper-
imented with the same unconditional diffusion model but this time fine-tuned
with 800 high-quality unpaired ultrasound images acquired with a TPAC Pio-
neer machine on a CIRS 040GSE phantom. Image samples and data acquisition
parameters for fine-tuning are in the supplementary material.

All evaluations in this paper are performed in plane-wave modality. The
baseline for synthetic data is beamformed by applying matched filtering B =
Ht. The references for the PICMUS dataset apply DAS with 1, 11, and 75
transmissions. Our proposed DRUS and WDRUS are compared against the DAS
references by taking measurements of a single-transmission as input.
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4.1 Results on Synthetic Data

We simulate data from two phantoms, a synthetic SynVitro and Field II fetus
[12,13]. The model matrix H includes receive apodization using Hann window
and f-number= 0.5, and the beamformer B = Ht. We simulated channel data
y = Hx + n with six levels of additive noise (γ = 0.3, 0.7, 1.0, 1.5, 2.0, 2.5).

The restoration quality for SynVitro is quantitatively evaluated with both
resolution and contrast metrics. For the fetus phantom, we measure the Struc-
tural SIMilarity (SSIM) [28] and the Peak Signal-to-Noise Ratio (PSNR). Reso-
lution is measured as the -6dB Full Width at Half Maximum (FWHM) in axial
and lateral directions separately on the six bright scatterers. For evaluating the
contrast, we rely on both the Contrast to Noise Ratio (CNR) and the generalized
Contrast to Noise Ratio (gCNR):

CNR = 10 log10

( |μin − μout|2
(σ2

in + σ2
out) /2

)
, gCNR = 1−

∫ ∞

−∞
min {fin(v), fout(v)} dv,

both measured on the four anechoic regions, where the subscripts ‘in’ and ‘out’
indicate inside or outside the target regions, v denotes the pixel values, and
f refers to the histograms of pixels in each region. The restored images and
metrics are summarized in Fig. 2. The metrics for SynVitro are averaged over
the different noise levels for simplicity.

Qualitatively and quantitatively, both DRUS and WDRUS significantly out-
perform the matched-filtering baseline Hty, and WDRUS is generally superior to

Fig. 2. Comparison of restored images on synthetic data. it = 50 for DRUS and
WDRUS. All images are in decibels with a dynamic range [−60,0]. The fetus images
are normalized between 0 to 1 for calculating the SSIM and PSNR.
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DRUS in terms of noise reduction and contrast enhancement. The two proposed
approaches even outperform the ground truth for resolution at low-noise condi-
tions (e.g. γ = 0.3, 0.7, 1.0), while the resolution of images restored by WDRUS
under high-noise conditions (e.g. γ = 1.5, 2.0, 2.5) is worse than that of DRUS.

4.2 Results on PICMUS Dataset

There are four phantoms in the PICMUS [17] dataset. SR and SC are Field II [12,
13] simulations while ER and EC were acquired on a CIRS 040GSE phantom. We
use the PICMUS presets where the beamformer B comprises receive apodization
using Tuckey25 window and f-number= 1.4, while H has no apodization.

In addition to using FWHM, CNR, and gCNR for evaluating resolution (for
SR and ER) and contrast (for SC and EC) introduced in Sect. 4.1, we also use the
Signal to Noise Ratio (SNR) μROI/σROI and the Kolmogorov-Smirnov (KS) test
at the 5% significance level, for evaluating the speckle quality preservation (for
SC and EC), where ROI is the region of interest. SNR ≈ 1.91 and passing the KS
test under a Rayleigh distribution hypothesis are indicators of a good speckle
texture preservation. The positions of the ROIs and the p-values of the KS test
are in the supplementary material

Using single plane-wave transmission (1PW), we compare our approaches
with DAS (1PW, 11PWs, and 75 PWs) qualitatively and quantitatively in
Fig. 3 and in Table 1, respectively. We also compare with the scores of six
other approaches in Table 1, including the Eigenspace-based Minimum Variance
(EMV) [2] which does adaptive beamforming, the traditional Phase Coherence
Imaging (PCF) [3], a model-based approach with regularization by denoising
(RED) [9], and three learning-based approaches MobileNetV2 (MNV2) [8], Adap-
tive Ultrasound Beamforming using Deep Learning (ABLE) [18] and DNN-λ∗ [30].
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Fig. 3. Reconstructed images comparison on the PICMUS [17] dataset using various
approaches. All images are in decibels with a dynamic range [−60,0].
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MNV2 [8] and ABLE [18] are supervised learning techniques designed for adap-
tive beamforming based on MV estimation. MNV2 [8] utilizes convolution layers
to process in-phase and quadrature (IQ) channel data, while ABLE [18] employs
fully connected layers to handle radio-frequency (RF) channel data. DNN-λ∗ [30]
represents a model-based self-supervised approach, relying on a loss function based
on prior assumptions of the desired data. It is worth noting that the scores of the
first four approaches are sourced from [9], whereas the scores of the latter two
approaches are obtained from their respective cited papers.

Table 1. Image quality metrics on the PICMUS SR, SC, ER, EC datasets. A and L
denote axial and lateral directions respectively.

Metric DAS no fine-tuning after fine-tuning EMV PCF RED MNV2 ABLE DNN-λ∗

1 11 75 DRUS WDRUS DRUS WDRUS [2] [3] [9] [8] [18] [30]

SR FWHM
[mm]

A↓ 0.38 0.38 0.38 0.30 0.32 0.34 0.31 0.40 0.30 0.37 0.42 0.22 0.28

L↓ 0.81 0.53 0.56 0.47 0.31 0.39 0.28 0.10 0.38 0.46 0.27 0.70 0.32

SC CNR[dB]↑ 10.41 12.86 15.89 16.37 15.20 15.74 16.33 11.21 0.46 15.48 10.48 11.91 10.85

gCNR↑ 0.91 0.97 1.00 0.99 0.99 0.99 0.99 0.93 0.41 0.94 0.89 / /

SNR | KS 1.72|� 1.69|� 1.68|� 2.06|� 1.98|� 2.03|� 1.99|� / | � / | � / | � / | � / /

ER FWHM
[mm]

A↓ 0.56 0.54 0.54 0.34 0.34 0.27 0.22 0.59 5.64 0.48 0.53 / 0.52

L↓ 0.87 0.54 0.56 0.63 1.05 0.55 0.69 0.42 0.76 0.76 0.77 / 0.52

EC CNR[dB]↑ 7.85 11.20 12.00 9.00 -7.25 11.75 13.55 8.10 3.20 14.70 7.80 / 11.6

gCNR↑ 0.87 0.94 0.95 0.88 0.69 0.96 0.97 0.83 0.68 0.98 0.83 / /

SNR | KS 1.97|� 1.91|� 1.92|� 1.91|� 1.50|� 2.11|� 1.92|� / | � / | � / | � / | � / /

In terms of resolution and contrast, our method is overall significantly better
than DAS with 1 plane-wave transmission and can compete with DAS with 75
plane-wave transmissions, as seen in Table 1. However, when the diffusion model
is not fine-tuned (using the pre-trained weights from ImageNet [7]), artifacts
on the EC image are recovered by WDRUS, which can be explained from two
perspectives.

First, while a pre-trained model is a powerful prior and frees the user from
acquiring data and training a huge model, there is still a gap between the dis-
tribution of natural vs. ultrasound images. This point can be confirmed by com-
paring the performance of DRUS and WDRUS in Fig. 3 before [col(4,5)] and
after [col(6,7)] fine-tuning the diffusion model. With the latter, both DRUS and
WDRUS reconstruct images with less distortion, particularly for the anechoic
regions on SC and EC, and the hyperechoic region on ER.

Second, due to the approximation of the impulse responses, matrix B has a
certain degree of error which is propagated through the eigenvalue decomposition
of B and the whitening matrix C. Eventually, such errors may lead to a larger
error in WDRUS than in DRUS, as seen when comparing WDRUS [col(5,7)]
and DRUS [col(4,6)], despite better contrast and SSIM metrics in Fig. 2c. These
errors may also explain why WDRUS is weaker than DRUS in terms of lateral
resolution (FWHM L in Table 1) of scatterers in the ER phantom.
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Finally, although our method can reconstruct high-quality SR, SC, and EC
images using the fine-tuned diffusion model, it is still difficult to retain speckle
quality for ER, which is a current limitation.

5 Discussion and Conclusion

Regarding the computing time, our approaches need 3–4 min to form one image,
which is slower than DAS1, PCF [3], MNV2 [8], ABLE [18] and DNN-λ∗ [30], but
faster than EMV [2] and RED [9], which need 8 and 20 min, respectively. RED is
slow because each iteration contains an inner iteration while EMV spends time
on covariance matrix evaluation and decomposition. Our iterative restoration
approaches require multiple multiplication operations with the singular vector
matrix, which currently hinders real-time imaging. Accelerating this process is
one of our key focuses for future work.

In conclusion, for the first time, we achieve the reconstruction of ultrasound
images with two adapted diffusion models, DRUS and WDRUS. Different from
previous model-based deep learning methods which are task-specific and require
a large amount of data pairs for supervised training, our approach requires
none or just a small fine-tuning dataset composed of high-quality (e.g., DAS101)
images only (there is no need for paired data). Furthermore, the fine-tuned dif-
fusion model can be used for other US related inverse problems. Finally, our
method demonstrated competitive performance compared to DAS75, and other
state-of-the-art approaches on the PICMUS dataset.
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Abstract. MRI imaging is crucial for knee joint analysis in osteoarthri-
tis (OA) diagnosis. The segmentation and thickness estimation of knee
cartilage are vital steps for OA assessment. Most deep learning algo-
rithms typically produce a single segmentation mask or rely on architec-
tural modifications like Dropout to generate multiple outputs. We pro-
pose an alternative approach using Denoising Diffusion Models (DDMs)
to yield multiple variants of segmentation outputs for knee cartilage seg-
mentation and thus offer a mechanism to study predictive uncertainty
in unseen test data. We further propose to integrate sparsity adaptive
losses to supervise the diffusion process to handle intricate knee carti-
lage structures. We could empirically validate that DDM-based models
predict more meaningful uncertainties when compared to Dropout based
mechanisms. We have also quantitatively shown that DDM-based mul-
tiple segmentation generators are resilient to noise and can generalize to
unseen data acquisition setups.

1 Introduction

MRI imaging can capture the structural details of the knee joint highlighting fine
morphological changes better than any other imaging modality [2]. The clinical
diagnostic protocol for Osteoarthritis (OA) is generally carried out by analyzing
MRI scans to delineate the knee cartilages, followed by thickness calculation. The
delineation of knee cartilages is often subjective, due to their resemblance to tis-
sue features surrounding the cartilages. When building segmentation algorithms
for such structures, having a single annotation restricts the learning, leading
to closer mimicking of the available annotation. This also affects the predictive
power of segmentation on unseen data.

Deep learning-based algorithms usually result in a single output segmenta-
tion, which is typically a single or multi-channel softmax output representing
voxel-wise classification posterior probability. If the model has Dropout layers,
using them at test-time results in random masking of the layer’s inputs, offering
an architectural mechanism to obtain variations at the output. We seek to pro-
duce an alternative approach for generating multiple segmentation outputs and
study it in comparison with the Monte Carlo Dropout technique.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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Fig. 1. The outline of our method indicating the integration of the Diff-UNet structure
with the losses we have introduced and our devised STAPLE-based mechanism to
extract variability generated by the model.

Denoising diffusion models (DDM) [5,10,11] are a new generative method
that has emerged as high-quality image generators. They use a learned
parametrized iterative denoising process which is the reverse of a Markovian
diffusion process to yield a ‘sample’, and various inverse problems involving
image restoration and synthesis have been demonstrated building upon the DDM
sampling framework. Specifically, they offer strong sample diversity and faith-
ful mode coverage of the learned data distribution. Both of these are valuable
in generalizing segmentation to unseen data under the aleatoric uncertainty of
training annotations.

Related Work. U-Net based architectures such as nnUNet [6,8] represent
standard baselines in automatic knee cartilage segmentation. Going beyond
architectural adaptability, the need for precise segmentation of certain localized
and sparse structures led to Attention-based transformer models such as Tran-
sUNet [3] which encode strong global context by treating the image features as
sequences. Towards supporting application-specific requirements such as thick-
ness measurements, PCAM [8], introduces a morphologically constrained module
to ensure continuity in the cartilage segmentation.

DDM-based segmentation models [14–16] can generate multiple samples
which are variants of label maps. This is because the input to DDMs is a noised
image, and by changing the additive noise, a slightly different sample is yielded
at the output. By supervising the diffusion model to generate outputs close to
a specified single annotation, we aim to study the characteristics of the gener-
ated multiple outputs with regard to two capabilities: First, handling noisy MRI
scans, Second, handling data acquisition variabilities.

For supervising the diffusion process towards segmentation, we have adopted
the Diff-UNet [16], and build upon it to address the sparse and intricate char-
acteristics of knee cartilage, which exhibits less inter-tissue variability. Our con-
tributions are:
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– a method of leveraging the stochastic capabilities of Diff-UNet to yield mul-
tiple variants of segmentation maps for knee cartilage segmentation, offering
a mechanism to study predictive uncertainty in unseen test data.

– integration of sparsity adaptive losses to supervise the diffusion process, which
has shown quantitative improvement in the segmentation of cartilages in the
presence of noise, and for scans acquired from a different setup.

2 Methods

Diffusion UNet. We adopt a new diffusion-based segmentation model Diff-
UNet, due to its superior tri-fold capabilities: First, Diff-UNet enables volumetric
prediction of the segmentation maps, which is essential to capture the complete
structure of the cartilages and enforce consistency across multiple 2D slices,
which are inherently sparse in appearance. Second, Diff-UNet enables multi-
label prediction of the segmentation maps, which is vital in labeling the different
cartilages which share similar tissue appearances. Diff-UNet enables volumetric
multi-label prediction of segmentation maps (x0) of dimension N×W×H by con-
verting it to multi-channel labels (X0) through one-hot encoding. The iterative
noising process generates Xt and X̂0 at each time step, followed by learning to
denoise Xt to Xt−1, integrating MRI volume M ∈ R

1×N×W×H using bi-phased
integration: concatenating M with Xt and employing an additional encoder for
multi-scale feature maps. The architectural flow of Diff-UNet is represented in
Fig. 1.

Third, in Diff-UNet the losses for supervision are enforced on X̂0 predicted
at each time step. This is unlike other diffusion models for segmentation which
usually do not enforce constraints directly on X̂0, making the Diff-UNet capable
of precise structural mapping.

Loss Integration (Diff-UNetL). The enforcement of losses on the predicted
X̂0 enables the incorporation of additional losses, which is necessary to better
adapt to the sparse knee cartilage structures. We formulate Diff-UNetL by the
addition of boundary enforcement loss (LBD) [7], focal loss (LFocal), and Haus-
dorff distance-based loss (LHD) [9], along with the existing Diff-UNet losses:
MSE loss, Dice loss, and BCE loss (LDiff−UNet). Surface losses LBD, LHD are
added as both the structures of interest femoral cartilage and tibial cartilage
share an adjacent boundary which is difficult for the model to differentiate the
dilating boundary. In order to mitigate the challenge posed by the class imbal-
ance problem, we incorporate the LFocal loss, which is designed to tackle the
inherent size variation between the tibial, femoral cartilage structures and the
non-cartilage regions within the MRI scan. In Fig. 3 the effect of loss integration
is indicated by the differences in the segmentation output.

Ltotal = λ1(LBD + LFocal + LHD) + λ2LDiff-UNet (1)

Multiple Generations and Uncertainty Estimation. The stochastic nature
of DDMs enables the generation of multiple segmentation outputs (X̂i

0) while
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Fig. 2. The top row (a) displays variations in samples from Diff-UNetL and TransUNet.
STAPLE was applied to five samples from each model, and a similarity metric (sensi-
tivity) was calculated between the samples and the STAPLE output. The plots show
that TransUNet samples exhibit minimal variation, while Diff-UNetL samples have a
wider spread with some outliers. The second row provides a clearer visualization of the
variations, with TransUNet showing concentrated variation and Diff-UNetL exhibiting
meaningful spread. The third row illustrates two consecutive slices with a noticeable
abrupt change in GT labels in the right femoral region, where Diff-UNetL displays
more variability in that region.

the deterministic class of models like TransUNet enables stochastic generations
can be obtained if the Dropout technique is used. While Dropout based uncer-
tainty stems from the change of configuration of the models, the DDM-based
uncertainty highlights the model’s uncertainty about the underlying true data
distribution. Based on these differences, we aim to investigate the following ques-
tions, First, “What are the differences between the samples which are generated
from inherent stochastic models and the Dropout simulated ones?”, Second, “Are
the variations within the samples meaningful and resemble the variations which
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Fig. 3. The top block represents the output of our model compared to the Diff-UNet,
TansUNet, and our model, TransUNet in the cross-dataset setup. S-O implies a model
trained on the SKM dataset and inferred on the OZ dataset. The second block rep-
resents the output of our model compared with TransUNet in two noisy setups. The
blue boxes depict better performance of our model, The pink boxes depict better per-
formance of TransUNet. (Color figure online)

can naturally occur during manual annotator based segmentations?” To address
these questions, we have proposed the following experimental formulation. We
utilized a group of segmentation samples, denoted as X̂i

0, which were processed
through the STAPLE [13] algorithm. This allowed us to generate a consensus-
based segmentation mask called E1. This was utilized to measure the similarity
between each sample X̂i

0 and E1, referred to as STAPLEsm. A higher degree of
similarity between X̂i

0 and E1 indicates reduced variability among the samples
produced by the model. These STAPLEsm was calculated for both diffusion-
based model and deterministic segmentation models. We have estimated the
Uncertainity from the ensemble of the segmentation samples.

Table 1. Table indicating the performance of our model with the baselines on OZ
dataset.

Model Femoral Cartilage Tibial Cartilage
DSC(%) ASSD(mm) DSC(%) ASSD(mm)

nnUNet 89.03 0.255 86.00 0.211
TransUNet 89.31 0.180 84.82 0.227
nnUNet+PCAM 89.35 0.239 86.11 0.216
Diff-UNet 87.63 0.238 84.44 0.247
Diff-UNetL 88.11 0.210 84.84 0.239
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Table 2. Table indicating the performance of the models in different noisy setups on
OZ dataset.

Model Femoral Cartilage (DSC%) Tibial Cartilage (DSC%)
No Noise Gaussian

Noise
Rician
Noise

No Noise Gaussian
Noise

Rician
Noise

TransUNet 89.31 86.63 87.68 84.82 80.67 82.71
Diff-UNetL 88.11 86.68 87.79 84.84 83.59 84.26

Noise Resilience and Generalisation. The segmentation of sparse cartilage
structures in knee MRI becomes more challenging when the acquisition is noisy.
To assess the noise resilience capability of the Diff-UNetL, we have simulated
noisy knee MRI scans by introducing Gaussian noise N (μ, σ2) and Rician noise
R(μ, σ2). The adaptability of the models in different acquisition setups is very
essential for deploying models in practical use cases. To evaluate the generaliz-
ability of Diff-UNetL, we trained it on one dataset and tested its performance on
other datasets (cross-dataset setup). This cross-dataset setup poses higher vari-
ation within the set due to the OZ dataset being DESS and the SKM dataset
being qDESS.

Thickness Estimation. One of the crucial aspects of assessing OA is estimating
the thickness of cartilage. In order to better quantify and visualize the segmen-
tation results in terms of clinically relevant metrics, we have adopted a simple
yet efficient thickness estimation from [12]. This method creates a refined 3D
model, split the mesh into inner and outer components, and computes thickness
using the nearest neighbor method. The thickness maps are visualized through
2D projection.

3 Experimental Setup

Datasets. We have made use of two publicly available datasets knee MRI
datasets OAI ZIB [1] (OZ) and SKM-Tea dataset [4] (SKM). OZ includes 507
3D DESS MR data with a sagittal acquisition plane with a voxel spacing of
0.3645× 0.3645× 0.7 mm. SKM has 155 3D knee MRI volumes acquired using a
5-min 3D quantitative double-echo in steady-state (qDESS) sequence. The voxel
spacing is 0.3125×0.3125×0.8 mm. In order to ensure consistency in OZ data we
have adopted the following standardization protocol. We center crop the Region
Of Interest (ROI) of the volume with a dimension of 256 × 256 × 120, perform
Non-local means filtering, and Normalise intensity levels across volumes. For the
SKM dataset such intra-volume variability doesn’t exists within a volume, so we
have applied only an ROI cropping protocol similar to the OZ dataset. We have
considered training and test split as given within the datasets.

Metrics. Dice Similarity Coefficient (DSC), Average symmetric surface Distance
(ASSD) are adopted for quantitative analysis between predicted and ground
truth. The STAPLEsm is evaluated by calculating the sensitivity between the
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Table 3. Table indicating the performance of the models when tested in a cross-dataset
setup.

Model Femoral Cartilage (DSC %) Tibial Cartilage (DSC %)
OZ train
SKM test

SKM train
OZ test

OZ train
SKM test

SKM train
OZ test

TransUNet 73.72 72.50 75.66 74.37
Diff-UNetL 77.20 72.64 81.51 79.19

samples (X̂i
0) and STAPLE output (E1). In order to visually highlight the vari-

ances of the samples we have considered Mean Subtracted STAPLEsm while
plotting as in Fig. 2.

Implementational Details. We have implemented our methods in the
PyTorch framework. We assigned higher weightage to sparsity and boundary
constraints in the loss function (LBD, LFocal, LHD) where λ1 = 2, as compared
to LDiff−Unet where λ2 = 1. For the model, we have adopted similar parameters
as used in the Diff-UNet implementation [16]. We have compared with our per-
formance with nnUNet [6] TransUNet [3], nnUNet+PCAM [8], Diff-UNet [16],
Diff-UNetL. For the noisy and generalization case we have compared between
TransUNet and Diff-UNetL. The STAPLE-based uncertainty estimation utilized
5 samples per volume. For TransUNet, the Dropout probability is 0.3. We have
introduced noise within the volumes by adding Gaussian and Rician noise with
N (μ = 0, σ2 = 0.01) and R(μ = 0, σ2 = 0.01) parameters respectively. For the
cross-dataset setup, we have trained the models on OZ dataset and inferred on
SKM dataset and vice-versa.

Fig. 4. The 2D projection of Thickness maps from ground truth(GT), TransUNet and
Diff-UNetL

4 Results

The Fig. 3 qualitatively shows the effect of the additional losses integrated with
the Diff-UNet. The addition of losses has ensured better consistency within the
femoral and tibial cartilage for Diff-UNetL, as highlighted in the first row of
Fig. 3 with blue boxes. From Table 1 we can infer that the results of our model
are comparable to the baselines. The mean error thickness values, comparing
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GT with respect to Diff-UNetL and TransUNet femoral cartilage is 0.073mm &
0.061mm and tibial cartilage is 0.073mm & 0.058mm.
Multiple Segmentation and Uncertainty. From the box plots of Mean sub-
tracted STAPLEsm for TransUNet and Diff-UNetL in Fig. 2(a), it is clearly
quantifiable that the variance of Diff-UNetL is much higher TransUNet. The
median of the box plots of the Diff-UNetL is higher than that of TransUNet for
all the samples. The qualitative visualization of the variations is in Fig. 2(b). In
Fig. 2(c), our model effectively detects the uncertain regions in the left femoral
regions, which were unmarked by annotators in the first slice but marked in
the following slice. This consecutive slice comparison highlights the presence of
uncertainty in that specific region. These uncertain regions are well demarcated
by our model but missed by TransUNet.

Resilience to Noise. From Table 2, it is clearly evident Diff-UNetL has better
performance than TransUNet in both the noise addition setup. Although in both
the cases of Femoral and Tibial cartilage, Diff-UNetL has better quantification of
results, in the latter case the relative increment is much higher when compared
to the former. The appearance of the tibial cartilage in MRI scans is more sparse
in nature when compared to the Femoral ones, so they have been more affected
by the addition of noise. The qualitative visualisation of the results are in the
lower block of the Fig. 3.

Generalisation in Cross-Dataset Setup. From Table 3 it is indicative
that Diff-UNetL compared to TransUNet, performs better when the model was
trained on OZ dataset & was tested on the SKM dataset and vice versa. Despite
the cross-dataset setup, the model has shown incremental performance. The
qualitative visualization of the results are in the lower block of the Fig. 3. From
the Fig. 4 is observable that the overall structure of the cartilages predicted by
the Diff-UNetL is relatively smooth.

5 Discussions

The integration of losses has shown better performance mostly in predicting the
cartilages since they are sparse structures in MRI and need additional enforce-
ment. The better quantification of variances and qualification of uncertainty
maps from our model are due to DDM’s capability of providing meaningful vari-
ations when there is allowable stochasticity. This is further attributed to the
model’s capacity to generalize beyond specific annotations and adapt to the
intrinsic structures present in the scans, despite being trained on a single anno-
tation. Diff-UNetL outperforms in noisy setups due to DDMs’ unique denoising-
based sampling process, enabling better adaptation to noisy conditions during
mapping from Gaussian to target distributions. The better generalization of the
model is due to the fact that DDMs can better capture the distributional prop-
erties of the target without being biased to a certain set of data shown to the
model during training.
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6 Conclusion

Our proposed DDM-based multiple segmentation generator has shown to have
a higher variability within the regions of generations which are natural causes of
uncertainty while manual annotation. We have quantitatively and qualitatively
verified that diffusion-based models better highlight uncertainty than Droput-
based techniques. We have shown that after the addition of Gaussian and Rician
noise, our model has better DSC % as compared to TransUNet. Also, in the
cross-dataset setup, our method has better performance.
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Abstract. As a new emerging and promising type of generative mod-
els, diffusion models have proven to outperform Generative Adversarial
Networks (GANs) in multiple tasks, including image synthesis. In this
work, we explore semantic image synthesis for abdominal CT using con-
ditional diffusion models, which can be used for downstream applica-
tions such as data augmentation. We systematically evaluated the per-
formance of three diffusion models, as well as to other state-of-the-art
GAN-based approaches, and studied the different conditioning scenarios
for the semantic mask. Experimental results demonstrated that diffusion
models were able to synthesize abdominal CT images with better qual-
ity. Additionally, encoding the mask and the input separately is more
effective than naïve concatenating.

Keywords: CT · Abdomen · Diffusion model · Semantic Image
Synthesis

1 Introduction

Semantic image synthesis aims to generate realistic images from semantic seg-
mentation masks [17]. This field has a broad range of applications that range
from data augmentation and anonymization to image editing [4,7,12–14,20]. For
instance, Lau et al. used a conditional Generative Adversarial Network (GAN)
and semantic label maps to synthesize scar tissues in cardiovascular MRI for
data augmentation [12]. Hou et al. employed a StyleGAN to synthesize patho-
logical retina fundus images from free-hand drawn semantic lesion maps [7]. Shin
et al. utilized a conditional GAN to generate abnormal MRI images with brain
tumors, and to serve as an anonymization tool [20]. Mahapatra et al. lever-
aged a conditional GAN to synthesize chest x-ray images with different disease
characteristics by conditioning on lung masks [13]. Blanco et al. proposed editing
histopathological images by applying a set of arithmetic operations in the GANs’
latent space [4]. The main objectives of these works were to address the issues
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of data scarcity, given the time-consuming, labor-intensive, and extremely costly
of obtaining high-quality data and annotations [5]. These studies have demon-
strated the effectiveness of using synthetic data for downstream tasks, assuming
that GAN-based generative models can generate photo-realistic images.

More recently, several studies have illustrated that diffusion models surpassed
GAN-based models in multiple image synthesis tasks [2,18], demonstrating an
ability to generate realistic and high-fidelity images. Similarly, diffusion mod-
els draw an increasing attention in medical imaging, including registration [11],
segmentation [25], reconstruction [1], image-to-image translation [16], anomaly
detection [24], and etc. Kazerouni et al. provided a comprehensive review on lat-
est research progress regarding diffusion models for medical imaging [10]. Despite
being the de facto standard for image synthesis, the application of diffusion mod-
els for medical semantic image synthesis remain relatively unexplored. To the
best of our knowledge, few studies exist for this task. Zhao et al. employed the
Semantic Diffusion Model (SDM) to synthesize pulmonary CT images from seg-
mentation maps for data augmentation [27], while Dorjsembe et al. developed a
diffusion model to simulate brain tumors in MRI [3].

Fig. 1. The semantic image synthesis for abdominal CT using a diffusion model. The
CT image mask xmask guides the diffusion process, which synthesizes a CT image that
matches the semantic layout of the mask xmask. pθ is the neural network parameterized
by θ, and xct

t is the output of the network at time step t. Different colors of xmask

represent different abdominal organs and structures.

As prior work primarily used GAN-based models and focused on the head
and thorax, our study investigates the use of conditional diffusion models for the
semantic medical image synthesis of abdominal CT images as shown in Fig. 1.
The abdomen is anatomically complex with subtle structures (e.g., lymph nodes)
interwoven with large organs (e.g., liver). Consequently, the associated seman-
tic segmentation maps are dense and complex. This complexity presents a far
greater challenge when conducting image synthesis for the abdomen. We ini-
tially explored different conditioning configurations for diffusion models, such
as channel-wise concatenation, encoding the mask in a separated encoder, and
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the use of auxiliary information. Then we assessed the performance of the condi-
tional diffusion models against GAN-based models in terms of image quality and
learned correspondence. Our experimental evaluation demonstrated that encod-
ing the mask and the input enabled the diffusion model to converge earlier and
gain improved performance. Moreover, the results showed that conditional dif-
fusion models achieved superior image quality in terms of Fréchet Inception Dis-
tance score (FID), Structural Similarity Index Measure (SSIM) and Peak Signal
to Noise Ratio (PSNR) scores within a large, publicly available dataset. While
diffusion models excelled at learned correspondence in large organs, they were
outperformed by GAN-based methods in small structures and organs. Despite
this, the conditional diffusion models still yielded promising results.

Our contributions are two-fold: (1) we demonstrate the effectiveness of dif-
fusion models in the task of semantic image synthesis for abdomen CT and pro-
vided a comprehensive comparative evaluation against other State-of-The-Art
(SOTA) GAN-based approaches; (2) we empirically show that encoding masks
in a separated encoder branch can achieve superior performance, shedding light
on finding a more effective way to leverage the semantic mask information.

2 Method

Although the process of synthesizing a CT image from a given semantic segmen-
tation mask is a form of conditional image generation, it fundamentally relies
on (unconditional) diffusion models. This study focuses on Denoising Diffusion
Probabilistic Models (DDPM) [15].

The DDPM model consists of a forward diffusion process and a reverse diffu-
sion process. The forward process progressively transforms a clean image into an
image with isotropic Gaussian noise. Mathematically, considering a clean image
sample xct

0 and a set of time steps {1, · · · , t, · · · , T}, Gaussian noise is progres-
sively added to the image at time step t by:

q(xct
t |xct

t−1) = N (xct
t ;

√
1 − βtx

ct
t−1, βtI), (1)

where βt is the scheduled variance. Then, using Markov chain rule, the forward
process of xct

t from xct
0 can be formulated by:

q(xct
t |xct

0 ) = N (xct
t ;

√
ᾱtx

ct
0 , (1 − ᾱ)I), (2)

where αt = 1−βt and ᾱt =
∏t

s=1 αs. Accordingly, for ε ∈ N (0, I), a noisy image
xt can be expressed in terms of x0 in a closed form:

xct
t =

√
ᾱtx

ct
0 +

√
1 − ᾱtε. (3)

On the other hand, the reverse diffusion process gradually removes Gaussian
noise by approximating q(xt−1|xt) through a neural network pθ parameterized
by θ,

pθ(xct
t−1|xct

t ) = N (xct
t−1;μθ(xct

t , t), Σθ(xct
t , t)), (4)
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Fig. 2. Different conditions of diffusion models for semantic image synthesis of abdom-
inal CT images: (a) channel-wise concatenating, denoted as “conditional DDPM”; (b)
mask guidance where the conditioning mask is encoded in a U-Net encoder, denoted as
“mask-guided DDPM”; (c) using other auxiliary information, e.g., semantic edge map,
denoted as “edge-guided DDPM”.

where μθ and Σθ are predicted mean and variance. Thus, the image sample xt−1

at time step t − 1 can be predicted as:

xct
t−1 =

1√
αt

(
xct

t − βt√
1 − ᾱt

εθ(xct
t , t)

)
+ σtz, (5)

where εθ is the trained U-Net, σt is the learned variance, and z ∈ N (0, I). A
detailed formulation of DDPM can be found in [15].

The aforementioned formulation of DDPM is an unconditional image synthe-
sis process, meaning that the synthetic CT images are generated from random
anatomic locations. However, our goal is a conditional image synthesis process.
The aim is to generate the CT images in such a way that the synthetic CT images
preserve the same semantic layout as the given input CT masks. The input CT
image mask, denoted by xmask, should guide the diffusion process and synthesize
an image that matches the semantic layout of the mask. In this pilot work, to
assess the effectiveness of various conditioning methods, we have presented three
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different conditioning scenarios: (1) channel-wise concatenating, denoted as “con-
ditional DDPM”; (2) mask guidance where the conditioning mask is encoded in
a separated network branch, denoted as “mask-guided DDPM”; (3) using other
auxiliary information, e.g., semantic edge map, denoted as “edge-guided DDPM”.

Conditional DDPM. In this method, the idea was to concatenate the mask xmask

together with the input image xt in an additional input channel. The network
architecture was as the same as the DDPM model, as shown in Fig. 2(a). Then,
in this case, Eq. (5) became:

xct
t−1 =

1√
αt

(
xct

t − βt√
1 − ᾱt

εθ(xct
t ⊕ xmask, t)

)
+ σtz, (6)

where xct
t ⊕ xmask is the channel-wise concatenation of the input image xt and

the given mask xmask.

Mask-Guided DDPM. The second strategy was to encode the mask separately by
employing another U-Net-like encoder, and injecting the encoding information
directly into the main U-Net branch. More specifically, feature maps from the
convolutional layers before each downsampling layer of the U-Net-like encoder
were concatenated to the corresponding feature maps of the main U-Net branch
encoder and decoder, as shown in Fig. 2(b). This idea was similar to SPADE [17].
Then in this case, Eq. (5) became:

xct
t−1 =

1√
αt

(
xct

t − βt√
1 − ᾱt

εθ(xct
t , xmask, t)

)
+ σtz. (7)

Edge-Guided DDPM. Finally, rather than using only the semantic mask, we
can leverage the semantic edge map, e.g., xedge, as the auxiliary information
to guide the diffusion process. The network architecture was a combination of
“conditional DDPM” and “Mask-guided DDPM”, as shown in Fig. 2(c). Then in
this case, Eq. (5) became:

xct
t−1 =

1√
αt

(
xct

t − βt√
1 − ᾱt

εθ(xct
t ⊕ xmask, xedge, t)

)
+ σtz. (8)

Our implementation was based on [15]. Specifically, we set the time step
T = 1000 and we used a linear noisy scheduler. The network used a ResNet
backbone [6]. A hybrid loss function consisting of a L2 loss item and variational
lower-bound loss item was utilized to train the network. The optimizer was Adam
with a learning rate of 1e−4. We trained the models for 150k iterations using a
batch size of 16.

3 Experiments

Dataset. We used the training set of AMOS22 [9] CT subset to train all mod-
els. This training dataset consisted of 200 CT volumes of the abdomen from
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200 different patients. The CT data was collected from multiple medical centers
using different scanners, with detailed image acquisition information available in
[9]. The dataset contained voxel-level annotations of 15 abdominal organs and
structures: spleen, right kidney, left kidney, gallbladder, esophagus, liver, stom-
ach, aorta, inferior vena cava, pancreas, right adrenal gland, left adrenal gland,
duodenum, bladder, prostate/uterus. We added an additional “body” class to
include the remaining structures beyond these 15 organs, and this was obtained
through thresholding and morphological operations. The testing split comprised
50 CT volumes from 50 subjects that were taken from the AMOS22 CT valida-
tion set. We pre-processed the CT images by applying a windowing operation
with a level of 40 and a width of 400. Each 2D slice in the 3D CT volume was
extracted, normalized to the range of [0, 1], and resized to 256 × 256 pixels.
This resulted in 26,069 images from 200 subjects for the training set, and 6559
images from 50 subjects for the testing set.
Baseline Comparisons. To comprehensively evaluate the performance of the
proposed diffusion-based approaches, we compared them with several SOTA
semantic image synthesis methods. These included GAN-based methods, such
as SPADE [17], OASIS [19], Pix2Pix [8], as well as an existing diffusion-based
approach SDM [22]. All comparative methods were implemented in PyTorch.
The learning rates for SPADE and Pix2Pix were set at 5e−4. For OASIS, the
learning rates were set at 4e−4 for the Discriminator and 1e−4 for the Generator.
We used the Adam optimizer to train all models, for 300 epochs, with the most
recent checkpoint used for evaluation. For the SDM model, we adhered to the
same training scheme used for DDPM-based models.
Evaluation Metrics. We evaluated the performance based on both visual qual-
ity and learned organ correspondence. To assess visual quality, we used FID,
SSIM, and PSNR. For assessing learned organ correspondence, we utilized an
off-the-shelf, CT-only multi-organ segmentation network named TotalSegmen-
tator (TS) [23]. This network was used to predict segmentation masks from
synthetic CT volumes. Subsequently, Dice coefficients (DSC) were computed to
compare these predicted masks with the ground-truth annotations.

4 Results and Discussion

Training Iteration Study. We initially evaluated the three different condi-
tioning strategies after 50k, 100k, and 150k training iterations. Table 1 presents
the numerical results. The overall trend indicated that the performance of all
three proposed models converged after 150k training iterations. The mask-guided
DDPM model outperformed the others by a small margin in most metrics at the
150k iteration mark. However, at earlier stages of training, specifically after
50k training iterations, the mask-guided DDPM model surpassed the condi-
tional DDPM and edge-guided DDPM models, implying an earlier convergence.
Furthermore, we observed that using auxiliary edge-map information did not
improve performance. Figure 3 visualizes sample images after 10k, 50k, 100k,
and 150k training iterations, respectively.
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Table 1. FID, PSNR, SSIM, and DSC scores. The highest performance in each column
is highlighted for different iterations setups.

Iter. Methods DSC (%)↑
FID↓ PSNR↑ SSIM↑ Sple. Liv. Kid_l Kid_r Panc. Stom. Aorta Gall_bld Espo. Adr_r. Adr_l. Duod. Cava. Bladder

50k Conditional DDPM 30.57 14.17 0.589 77.6 75.0 91.1 87.8 57.3 60.6 90.4 30.4 66.4 54.1 53.8 61.7 77.7 64.4
Mask-guided DDPM 19.06 14.58 0.603 83.9 84.8 90.3 90.2 62.1 73.4 89.2 40.0 73.2 53.2 56.6 54.1 75.2 57.0
Edge-guided DDPM 35.97 13.43 0.576 56.4 56.7 86.6 82.5 51.2 52.2 86.8 10.6 58.3 52.6 58.2 53.6 73.7 61.2

100k Conditional DDPM 11.27 16.07 0.643 93.8 95.3 93.9 92.5 73.8 85.0 91.1 64.5 76.6 66.5 62.8 65.1 81.0 70.8
Mask-guided DDPM 10.89 16.10 0.642 93.8 95.8 93.9 93.1 75.3 86.9 91.5 63.9 79.6 65.9 68.5 68.0 82.5 71.6
Edge-guided DDPM 10.32 16.14 0.644 93.6 95.1 94.1 93.4 73.8 85.1 90.8 65.0 77.3 64.9 64.1 64.5 80.6 71.0

150k Conditional DDPM 10.56 16.26 0.646 94.0 95.6 93.9 91.2 76.3 86.4 90.8 64.0 78.2 67.2 66.0 65.6 80.9 70.0
Mask-guided DDPM 10.58 16.28 0.646 93.9 95.6 93.9 90.9 75.6 87.1 91.3 66.0 79.5 67.2 65.1 65.6 81.3 70.7
Edge-guided DDPM 10.64 16.20 0.646 93.5 95.4 93.8 92.8 75.0 86.7 90.3 64.5 78.1 65.4 64.1 65.3 79.6 69.3

Fig. 3. Sampling results for three conditioning scenarios after 10k, 50k, 100k, and 150k
training iterations. The first row shows the results after 10k training iterations; the
second row shows results after 50k training iterations; the third row shows the results
after 100k training iterations; the fourth row shows the results after 150k training
iterations. The color map for different organs: liver (dark red), stomach (indigo), spleen
(green), aorta (light brown), and inferior vena cava (aqua blue green). (Color figure
online)

Comparison Study. We carried out a quantitative evaluation of the diffusion
models against other SOTA algorithms such as Pix2Pix, OASIS, SPADE, and
SDM methods, as shown in Table 2. In terms of image quality metrics such as
FID, PSNR, and SSIM, the diffusion models outperformed non-diffusion-based
methods. However, in terms of learned correspondence metrics like DSC, diffu-
sion models surpassed other models for larger organs such as the liver, spleen,
and kidneys. The OASIS method achieved superior performance for relatively
small organs and structures like gallbladder and left adrenal gland. This may
be because OASIS was good at synthesizing the clear boundary between small
organs and the background, resulting in better segmentation results by TS and
thus having higher DSC scores. Figure 4 presents multiple results ranging from
the lower to the upper abdomen, from different methods. It is worth noting that
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from the top row of Fig. 4 GAN-based methods struggled to synthesize images
when the number of mask classes was sparse. For example, Pix2Pix and SPADE
were unable to generate realistic images. OASIS generated an image from the
upper abdomen, which was inconsistent with the location of the given mask.
The bottom row illustrated the same trend. GAN-based models failed to syn-
thesize the context information within the body mask, for example, the heart
and lung. On the contrary, diffusion models including the SDM model succeed
to generate reasonable images based on the given masks. One explanation was
that diffusion models were more effective when the number of masks decreased
and the corresponding supervision became sparser.

Table 2. FID, PSNR, SSIM, and DSC scores for comparable methods. The highest
performance in each column is highlighted.

Methods DSC(%)↑
FID ↓ PSNR ↑ SSIM ↑ Sple. Liv. Kid_l Kid_r Panc. Stom. Aorta Gall_bld. Espo. Adr_r. Adr_l. Duod. Cava. Bladder

Pix2Pix 78.86 15.04 0.561 79.3 94.7 94.5 92.0 68.8 86.5 80.8 53.5 67.9 58.4 61.8 61.0 75.9 56.0
OASIS 43.57 14.75 0.560 91.8 93.5 92.0 88.1 73.4 88.9 88.6 78.9 80.1 69.0 75.6 71.7 86.3 74.5
SPADE 60.22 15.27 0.594 92.6 95.4 92.7 91.2 66.6 86.5 86.2 44.8 65.6 61.7 59.3 59.5 79.1 63.9
SDM 12.68 15.12 0.607 91.9 94.3 93.5 93.2 79.3 87.8 89.0 71.9 77.5 69.7 69.6 66.7 81.5 66.2
Conditional DDPM 10.56 16.26 0.646 94.0 95.6 93.9 91.2 76.3 86.4 90.8 64.0 78.2 67.2 66.0 65.6 80.9 70.0
Mask-guided DDPM 10.58 16.28 0.646 93.9 95.6 93.9 90.9 75.6 87.1 91.3 66.0 79.5 67.2 65.1 65.6 81.3 70.7
Edge-guided DDPM 10.64 16.20 0.646 93.9 95.4 93.8 92.8 75.0 86.7 90.3 64.5 78.1 65.4 64.1 65.3 79.6 69.3

Fig. 4. Results from different semantic image synthesis methods. The color map for
different organs: body (beige), spleen (green), liver (dark red), right kidney (blue),
left kidney (yellow), stomach (indigo), aorta (light brown), duodenum (light purple),
pancreas (gray), right/left adrenal gland (dark/light green), inferior vena cava (aqua
blue green), bladder (shallow brown), prostate (purple). (Color figure online)

Future Work. One important application of generative models in medical imag-
ing is to synthesize images for data augmentation. In the future work, we will
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use diffusion models as a data augmentation strategy and evaluate it in down-
stream segmentation, classification, or detection tasks. Compared with GAN-
based generative models, the major limitation of diffusion models is that sam-
pling procedures are more time-consuming and computationally expensive [10].
Nevertheless, multiple recent works successfully showed that using a reduced
number of denoising steps was able to obtain high-quality samples, leading to
faster inference procedures [21,26]. Therefore, by incorporating these techniques,
we will investigate the role of conditional masks in fast sampling for synthesizing
abdominal CT images.

5 Conclusion

In this work, we systematically investigated diffusion models for image synthesis
for abdominal CT. Experimental results demonstrated that diffusion models out-
performed GAN-based approaches in several setups. In addition, we also showed
that disentangling mask and input contributed to performance improvement for
diffusion models.

Acknowledgments. This work was supported by the Intramural Research Program
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Abstract. CT scans are the standard-of-care for many clinical ailments,
and are needed for treatments like external beam radiotherapy. Unfor-
tunately, CT scanners are rare in low and mid-resource settings due
to their costs. Planar X-ray radiography units, in comparison, are far
more prevalent, but can only provide limited 2D observations of the 3D
anatomy. In this work, we propose a method to generate CT volumes
from few (<5) planar X-ray observations using a prior data distribution,
and perform the first evaluation of such a reconstruction algorithm for
a clinical application: radiotherapy planning. We propose a deep gener-
ative model, building on advances in neural implicit representations to
synthesize volumetric CT scans from few input planar X-ray images at
different angles. To focus the generation task on clinically-relevant fea-
tures, our model can also leverage anatomical guidance during training
(via segmentation masks). We generated 2-field opposed, palliative radio-
therapy plans on thoracic CTs reconstructed by our method, and found
that isocenter radiation dose on reconstructed scans have <1% error with
respect to the dose calculated on clinically acquired CTs using ≤4 X-ray
views. In addition, our method is better than recent sparse CT recon-
struction baselines in terms of standard pixel and structure-level metrics
(PSNR, SSIM, Dice score) on the public LIDC lung CT dataset. Code
is available at: https://github.com/wanderinrain/Xray2CT.

Keywords: CT Reconstruction · Radiation Planning · Sparse
Reconstruction · Deep Learning · Implicit Neural Representations

1 Introduction

CT scans are the standard-of-care for diagnosis and treatment of many diseases.
However, due to their costs and infrastructure requirements, global inequities in
access to CT scanners exist in many low-to-middle income countries (LMICs) [7].
This lack of CT access impacts many facets of healthcare such as external beam
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radiotherapy, in which a treatment planning system calculates the ionizing dose
to a patient’s tumor and surrounding tissues by utilizing the electron density
information from the CT voxels. In comparison, planar X-ray units are far more
prevalent in LMICs than CT units, and recent studies [16,22] demonstrate that
significant information in CT scans may be estimated from sparse observations
using deep generative networks trained over large datasets. With this motivation,
we propose a learning-based algorithm for synthesizing CT volumes from few
(<5) planar X-ray images, and demonstrate basic feasibility for radiotherapy
planning for post-mastectomy chest walls (extremely prevalent for women in
low-resource settings).

State-of-the-art CT reconstruction methods from sparse views are based on
learning complex priors with neural networks and operate in both the sino-
gram [15,18], and voxel [6,9,16,22] spaces. Several voxel-based methods use con-
volutional neural networks (CNNs) optimized on (CT, X-ray) supervised pairs
with <5 views [9,16,22]. Others use implicit neural representations (INRs), net-
works that map voxel coordinates to intensity values and can better reconstruct
high-frequency details than CNNs [21]. However, INRs are typically fit using only
the input views (i.e., self-supervised), and so require at least 20 views to attain
reasonable results [24]. If such an approach were used with planar radiography,
the large number of planar image acquisitions becomes practically infeasible, as
technologists would need to reposition the patient and detector per orientation.
In addition, previous studies provide limited evaluation, using only pixel-level
reconstruction metrics like PSNR and SSIM [20].

To the best of our knowledge, we propose the first supervised CT reconstruc-
tion algorithm from few (<5) planar X-ray views using INRs. We build on the
pixelNeRF [23] model design for sparse view synthesis problems. Our model first
extracts 2D feature images from each input planar X-ray using a CNN U-Net
[12]. For each 3D coordinate, it then uses an INR to predict the output CT’s
intensity given the coordinate, and a set of 2D features obtained by projecting
the coordinate onto each feature image based on the known geometry of the
X-ray imaging system. Our training loss function includes both a typical recon-
struction term, and a segmentation term (captured by a pretrained segmentation
network) which we hypothesize will be useful because radiotherapy plans rely
on accurate anatomical boundaries.

We evaluated our method on reconstructing CT scans from 1 to 4 input
planar X-rays. First, our method outperforms neural network baselines on the
public LIDC-IDRI [1] lung CT dataset in terms of pixel-level (PSNR, SSIM) and
structural (Dice Similarity Coefficient (DSC) [5]) metrics. Next, we evaluated
our method using an in-house thoracic CT dataset for post-mastectomy chest
wall radiotherapy, in which the tumor has been removed prior to the acquisition
of the CT scan and the target of the radiotherapy would need only consider
organs within the CT (e.g., chest wall, lungs, heart, spinal cord). 2-field opposed
radiotherapy plans generated from our model’s reconstructions obtain <1% error
with respect to isocenter dose compared to clinical scans, well below the criterion
for dose verification accuracy [25]. We conclude by discussing limitations and
steps to move towards clinical application.
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Fig. 1. Method overview. Our model takes different planar X-ray views as input and
outputs a predicted CT volume Ŷ . 2D U-Net gψ generates a feature image Wi from
each Xi. Then, for each 3D point p, the projection operator Π retrieves the aligned
feature vector Wi(Π(p, θi)) from each view and passes them into MLPs fρ and hτ to
predict intensity Ŷ (p). We train the model with a reconstruction loss and an optional
loss based on anatomical segmentation overlap (blue box). (Color figure online)

2 Method

Let X = {X1, · · · ,XK} represent K input planar X-rays acquired from different
orientations {θ1, · · · θK}, where Xi ∈ R

d×d×1, and Y ∈ R
d×d×d×1 represents the

associated ground truth CT volume1. Our goal is to learn a model that maps X to
Y . The main challenge of this reconstruction task is to combine the information
from the different X-ray views into one shared 3D space. The overview of key
components in our approach is illustrated in Fig. 1.

Building on pixelNeRF [23], we propose a model with three components: a
2D feature extraction network gψ(·) that extracts planar X-ray image features,
a projection operation Π(·, ·) that maps 3D coordinates and a viewing angle to
2D coordinates, and an INR (implemented with functions fρ(·) and hτ (·)) that
maps 3D coordinates and K 2D feature vectors to voxel intensities. We supervise
the entire model with a loss function consisting of a reconstruction error, and
an (optional) segmentation error penalizing incorrect anatomical boundaries.

X-ray CNN: We implement function gψ(·) with a 2D CNN U-Net [12], which
outputs an image Wi ∈ R

d×d×c encoding c multiscale features per pixel for Xi.

Projection: Π(·, ·) : R3 × R
1 → R

2 maps a 3D coordinate and angle θi to the
corresponding 2D location on image Wi based on the known X-ray imager geom-

1 We assume a uniform dimension d here for simplicity, but our method can handle
arbitrary dimensions.
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etry. For example, if the X-rays were generated via parallel beam radiation, each
point will be orthogonally projected onto Wi along angle θi. For fan-beam radi-
ation, each point will be projected based on rays emanating from a 3D source
point. The output of this operator is a feature vector Wi(Π(p, θi)) ∈ R

c.

Conditional INR: Next, we use features {Wi(Π(p, θi))}K
i=1 to estimate the

voxel intensity at location p. We use two multilayer perceptrons (MLPs) to do
this: fρ(·, ·) and hτ (·). fρ ∈ R

2 ×R
c → R

h operates on each view independently,
and is responsible for combining a Fourier feature transform [19] of p and fea-
ture vector Wi(Π(p, θi))) from view i into an embedding ri(p). Fourier feature
coordinate transforms empirically result in better high-frequency reconstructions
compared to the coordinates on their own. Next, we compute the average embed-
ding over all views r̂(p), and feed it into MLP hτ (·), which outputs Ŷ (p), an
estimate of the intensity value (a scalar) at p. We use three residual blocks for
both MLPs, containing fully-connected linear layers with 128 neurons and sinu-
soidal periodic activation functions [17].

Loss Function: We train our model using the loss: Ltotal = ‖Ŷ − Y ‖22 + λ ·
LDSC(Sα(Ŷ ), Sα(Ŷ )), consisting of a typical mean squared error (MSE) term,
and an (optional) term evaluating Dice score [5] between the segmentation masks
of the two scans, estimated by pretrained segmentation network Sα(·).

3 Experiments

We evaluated our model using the public Lung Image Database Consortium
(LIDC-IDRI) [1] lung CT dataset, and an in-house Thoracic CT dataset from
patients who received radiotherapy (gathered under an IRB approved proto-
col). LIDC includes 1018 patients, which we randomly split into 868/50/100
train/validation/test groups, and Thoracic includes 997 patients which we ran-
domly split into 850/47/100 train/validation/test scans. We clipped all voxel
values to [−1000, 1000] Hounsfield Units (HU). We resampled each scan to 1
mm3 resolution, cropped it to a cube, and then resized it to 1283 voxels. We
generated four planar X-ray views per CT at angles of: 0◦ (Lateral), 45◦, 90◦

(Frontal), and 135◦ using the Digitally Reconstructed Radiograph (DRR) gen-
erator Plastimatch [14], with energy level 50 keV. For our segmentation loss, we
trained one segmentation network per dataset using a UNet [2,12]. For LIDC,
we trained the segmentation network on 3 structures (left & right lung, nodule)
using the LUNA16 [13] dataset. For Thoracic, we trained on 9 structures (see
Fig. 3 for names) predicted by nnUNet network [8] used for contouring in the
clinic. In the following results, we call our models trained without the segmen-
tation loss Ours, and those trained with the segmentation loss Ours-Seg.

Metrics: We evaluated performance using three types of metrics: voxel level
(PSNR, SSIM [20]), structural level (Dice Similarity Coefficient [5], or DSC),
and radiation dose (Isocenter dose). Isocenter dose is defined as the calculated
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Fig. 2. Boxplots of PSNR, SSIM, and DSC between reconstructed and
ground truth CT scans using 100 test patients in LIDC. For 1 and 2 views,
we also show performance of the baseline X2CT-CNN [22] (X2CT-CNN does not work
with >2 views). Higher values are better.

dose (in centigray or cGy) deposited to a point in the patient’s body at a distance
of 100 cm away from a megavoltage X-ray source.

Baselines: We experimented with two neural network baselines: X2CT-
CNN [22] and Neural Attenuation Fields (NAF) [24]. X2CT-CNN is a CNN
for reconstructing CT scans from 1 or 2 (orthogonal) views. NAF is a recently
proposed implicit neural representation (INR) that handles arbitrary viewing
angles in CT reconstruction (like our model), but uses no prior training data.
We trained both baselines from scratch on each dataset separately.

Implementation: We implemented our models in PyTorch [11] and ran all
experiments on NVIDIA A100 GPUs with 40/80 GB of memory. We set the
batch size to 1 and trained for 100 epochs per model. We used the ADAM [10]
optimizer with an initial learning rate of 3e−5, and decreased the learning rate
to 3e−6 after 50 epochs.

Radiotherapy Planning: Using 10 randomly selected patients from the Tho-
racic dataset, we generated radiotherapy plans with 2-field opposed beam
arrangements using the RayStation commercial treatment planning system [3].
We set the isocenter within the thoracic spine of each clinical CT, fractional dose
to 200 cGy, beam energy to 15 MV, and the radiation field size to 10 × 10 cm2

at isocenter. We performed rigid image registration so that radiation plans may
be directly compared between the clinical and reconstructed CTs. Isocenter dose
was compared between clinical plans and plans made on reconstructed CTs.

3.1 Results

First, we compare our models to baselines on LIDC using PSNR, SSIM, and
DSC. NAF [24] performs poorly with a few number of views. For example, with 4
input views, 95% confidence intervals of PSNR, SSIM, and DSC are 23.23±0.81,
0.440 ± 0.057, and 0.44 ± 0.05, respectively. Figure 2 shows the performance of
our models and X2CT-CNN. Our models outperform X2CT-CNN for all views,
with a particularly striking difference in DSC.
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Fig. 3. Boxplot of Dice similarity coefficients (DSC) between reconstructed
and ground truth CT scans using the Thoracic dataset. We compare versions
of the proposed model Ours-Seg with different numbers of input views, on 100 test
subjects. Higher values are better.

Fig. 4. Example reconstruction results on Thoracic dataset. We show results
from two patients using the proposed model Ours-Seg. The first column shows the
ground truth center slice. The remaining columns show the model’s reconstructions
for different numbers of input views. The pink contour segments the left lung, and the
purple contour segments the heart.



Low-Resource Radiotherapy Planning from Few Planar X-Rays 231

Fig. 5. Radiation planning visual results. Comparison of radiation plans between
ground truth and reconstructed (columns 2–3) CTs for one patient using Ours-Seg. The
top and bottom rows represent axial and coronal views of the given CT and overlaid
dose distributions. Arrows in the top row indicate the (blue) region of maximum dose.
Isodose lines closely match across all scans. (Color figure online)

Table 1. Average % errors of isocenter dose on 10 random subjects from
Thoracic dataset. Our models obtain average errors under 1%. Standard deviations
in parentheses.

2 Views 4 Views

Ours 0.30 (0.35) 0.25 (0.26)

Ours-Seg 0.25 (0.26) 0.50 (0.57)

Moving from 1 to 2 views yields the largest marginal gains. Ours-Seg has
higher DSC than Ours, but has slightly lower PSNR/SSIM. See Supplementary
for a table with detailed results.

Next, Fig. 3 presents DSC boxplots of Ours-Seg with segmentation training
on Thoracic. Again, the largest improvement occurs moving from 1 to 2 views,
and the most difficult structures to contour are BrachialPlexus and Esophagus,
likely because these structures are small in size. We also show sample reconstruc-
tion results with overlaid contours for two patients in Fig. 4 visually confirming
the performance improvement near boundaries with more viewing angles.

Finally, Fig. 5 shows dose distribution results from treatment plans generated
on reconstructed CTs using 2 and 4 input views. The shapes of the isodose lines
closely resemble that of the ground truth, and in particular, for the high dose
region (pointed to by white arrow). Additionally, average isocenter dose errors
are under 1% (see Table 1), below the criterion for dose verification accuracy [25].
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4 Discussion and Conclusion

Results demonstrate the feasibility of reconstructing CTs from few planar X-ray
images. Segmentation guidance during training improves DSC (see Fig. 2), but
did not have a consistent effect on isocenter dose error. The simple planning
technique used in this work is used to treat regions in the spine and provide
robustness against small uncertainties in patient position. Thus, the radiother-
apy dose for this technique is not sensitive to small changes in CT voxel informa-
tion, which may explain why segmentation-guided training had minimal effects.
Further studies using complex, segmentation-driven treatment planning for mul-
tiple regions in the body would elucidate the relationship between subtle feature
changes in the CT and its impact upon dose. Structural and dose level metrics
presented here indicate that our approach also has potential for use with more
complex treatments.

Results also show that our model combining a 2D CNN and INR is better for
this task (in terms of voxel level metrics) than an INR only (NAF) that does not
leverage prior training data, or a traditional CNN (X2CT-CNN) which suffers
in modeling high-frequency details. Maximum performance gain occurs moving
from 1 to 2 views, which makes sense since two orthogonal views are generally
needed to confirm an object’s location within the body [4].

Virtually all existing sparse CT reconstruction studies evaluate results using
voxel-level metrics like PSNR and SSIM. This work makes the contribution
of additionally evaluating in terms of radiotherapy plans. This is important,
because all details need not be recovered for an algorithm to be clinically useful,
a fact overlooked by PSNR and SSIM.

There are several exciting next steps to push this work forwards. First, CT
reconstruction from few planar X-ray images is a highly ill-posed task and so
there are infinitely many possible solutions per planar X-ray image input(s). By
returning only one solution, our model is forced to produce scans that are the
perceptual “average” of possible solutions. Incorporating a probabilistic formula-
tion will help produce sharper results and quantify reconstruction uncertainties.
Second, while the inference power of neural networks are remarkable, they are
also known to “hallucinate” details. We will need further analysis into when and
why such models make errors, with a particular focus on atypical subject cases.
A focus of our next work will be 3-dimensional conformal radiotherapy planning
for chest wall (post-mastectomy). For this specific use case, the tumor and dis-
eased breast tissue is removed before the patient receives a CT and the target of
the radiotherapy is the chest wall. Thus, tumor hallucination can be avoided and
the development of such a technique will be extremely beneficial for women in
low-resource settings, since post-masectomy radiotherapy is extremely prevalent.
Finally, in practice we cannot assume that planar X-ray images are acquired at
precise angles and depths. Development (and evaluation) of a model that can
handle variable acquisition settings would therefore be a valuable contribution.
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Abstract. Electron microscopy (EM) images exhibit anisotropic axial
resolution due to the characteristics inherent to the imaging modal-
ity, presenting challenges in analysis and downstream tasks. Recently
proposed deep-learning-based isotropic reconstruction methods have
addressed this issue; however, training the deep neural networks require
either isotropic ground truth volumes, prior knowledge of the degrada-
tion process, or point spread function (PSF). Moreover, these methods
struggle to generate realistic volumes when confronted with high scaling
factors (e.g. ×8, ×10). In this paper, we propose a diffusion-model-based
framework that overcomes the limitations of requiring reference data or
prior knowledge about the degradation process. Our approach utilizes
2D diffusion models to consistently reconstruct 3D volumes and is well-
suited for highly downsampled data. Extensive experiments conducted
on two public datasets demonstrate the robustness and superiority of
leveraging the generative prior compared to supervised learning methods.
Additionally, we demonstrate our method’s feasibility for self-supervised
reconstruction, which can restore a single anisotropic volume without any
training data. The source code is available on GitHub: https://github.
com/hvcl/diffusion-em-recon.

Keywords: Diffusion models · Isotropic EM reconstruction ·
Super-Resolution

1 Introductions

While 3D electron microscopy (EM) provide exceptional lateral resolution of 3 to
5 nm per pixel, the prevalent technique of 3D EM imaging involves physically sec-
tioning tissue samples, resulting in a significantly lower axial resolution of approx-
imately 30 to 50 nm per pixel (i.e., section thickness). This lower axial resolution
poses challenges particularly for small structures such as synaptic clefts that
can be smaller than the section thickness. [13] Conventional approaches, such
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as interpolation and deconvolution, have been used to address this issue, offer-
ing fast solutions. However, these methods often produce unsatisfactory results,
particularly when dealing with texture-rich EM images.

In recent years, deep learning-based methods have emerged as promising
approaches for the isotropic reconstruction of EM images, outperforming the clas-
sical techniques. Heinrich et al. [8] leveraged isotropic FIB-SEM images to gen-
erate training data for supervised training of a 3D UNet-based super-resolution
model. However, acquiring isotropic data in real-world scenarios is not feasible
and there are cases where the downsampling process is unknown. On the other
hand, by leveraging the point spread function (PSF), several studies [22,23] pro-
posed a framework for fluorescence microscopy that does not require isotropic
training data. By convolving the PSF with laterally viewed high-resolution image
and subsampling, they simulated the anisotropic axial images. Training a 2D-
UNet-like architecture using the generated pairs, they achieved superior perfor-
mance compared to conventional deconvolution algorithms [14]. An interesting
aspect of such approaches is the potential for self-supervised learning, as the
target data itself can be used for training. Building upon this work, Deng et
al. [5] conducted further experiments under more realistic settings. They demon-
strated that self-supervised training using an inaccurate PSF could yield poor
results. To address the limitation, they adopted a cycle-GAN [26] framework to
implicitly learn the degradation process and generate proper low-resolution ver-
sions for training. Nevertheless, these works rely on deterministic reconstruction
models that aim to minimize the pixel-wise error; hence, when performed on
high-scaling factors (×8, ×10), the results are blurry and fail to preserve fine
structures.

In this study, to tackle a challenging scenario where no training data is avail-
able, we propose a novel approach that leverages the denoising diffusion prob-
abilistic model (DDPM) [9] for realistic 3D EM reconstruction. The diffusion
model is recently gaining attention due to its high fidelity and diverse genera-
tion compared to other generative models [6,17]. The diffusion model is adopted
in various tasks for not only natural image domains [1,15,16] but also for medical
image modalities [3,4,18,24]. They are also well known for handling inverse prob-
lems [2,10,20]. In particular, these methods are capable of restoring 2D images
without requiring task-specific training or datasets. Consequently, considering
that our 3D reconstruction problem can be regarded as a super-resolution (SR)
task, which inherently is an inverse problem, we leverage diffusion models to
address it. However, in the context of 3D generation, it becomes necessary to
employ a generative model that can capture the underlying 3D data. Training
such a model is challenging not only due to the significant memory resources
required but also acquiring isotropic 3D training data is not feasible. Hence, we
adopt a slice-by-slice approach by utilizing 2D diffusion models for the recon-
struction of the 3D volume. We train a 2D diffusion model to learn the data
distribution from high-resolution lateral images. Subsequently, we leverage the
diffusion prior of the laterally trained model in the sequential reconstruction of
the low-resolution axial images. In order to maintain coherence across the 3D
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: Training(lateral) slice

: Re slice

Fig. 1. (left): Reconstruction strategy for 3D EM via 2D diffusion models. The lateral
images are used for training a diffusion model. Once trained, consistent sampling can
be applied for any kind of 2D degradation (A). (right): Intuitive illustration of the
refinement process. The low-frequency components are replaced with A†yi to fit the
degradation process.

volume during the independent 2D reconstructions, we propose a sampling strat-
egy where the previously reconstructed slice is encoded and used as a reference
for the reconstruction of the next slice. We also introduce a heuristic method
that improves the interpolated approximation to handle cases where the PSF is
unknown, providing robustness in real-world scenarios. We validate the effective-
ness and stability of the two proposed strategies via experiments and ablation
studies. Our main contributions can be summarized as follows:

– We propose a sampling scheme that allows coherent 3D reconstruction using
only 2D diffusion models. This allows smooth and continuous transitions
between slices, therefore, eliminating artifacts when viewed in a perpendic-
ular direction.

– We offer a simple but effective heuristic that can be applied without knowing
the exact PSF which is often in practice. Moreover, the proposed approach is
interpretable, allowing the reconstruction process to be more reliable.

– We demonstrate the superior reconstruction of DDPMs compared to pre-
vious auto-encoder-based methods by conducting simulation studies on a
public dataset [19] for scenarios with/without prior information of the PSF.
We also assess the performance on a real serial-section transmission electron
microscopy (ssTEM) [7] volume without reference data or PSF information.

2 Method

As shown in Fig. 1(left), the whole process can be divided into two steps. We
initially train a 2D DDPM on the lateral images of our target volume. This allows
our generative model to learn “How high resolution images look like”. Later, the
laterally trained diffusion model is applied to reconstruct anisotropic axial planes
slice-by-slice. Especially, we follow the restoring process of diffusion null-space
model (DDNM) [20].
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Preliminaries. Diffusion models first define a T -step forward process that pro-
gressively perturbates an image to pure noise xT ∼ N (0, I) [9]. By defining the
noise schedule parameters βt, αt := 1 − βt and ᾱt :=

∏t
s=1 αs, the forward

process can be marginalized to a simple closed form of

q(xt|x0) = N (xt;
√

ᾱtx0, (1 − ᾱt)I), (1)

The reverse process can be thought of as sampling from the posterior distribution,
q(xt−1|xt,x0). Therefore, to estimate the true posterior with pθ(xt−1|xt), a noise
predicting model is trained by minimizing the loss:

Lt−1 = Ex0,ε,t[||ε − εθ(
√

αtx0 +
√
1 − αtε, t)||2] (2)

As described in DDIM [17], reparameterization allows inference in two steps by
estimating the noise with εθ as follows:

x0|t =
1√
ᾱt

(xt − εθ(xt, t)
√
1 − ᾱt) (3)

xt−1 =
√

ᾱt−1x0|t +
√

1 − ᾱt − σ2
t · εθ(xt, t) + σtε, ε ∼ N (0, I), (4)

with σt =
√

(1 − ᾱt−1)/(1 − ᾱt)
√
1 − ᾱt/ᾱt−1. Roughly speaking, at every iter-

ation the reverse process is first estimating the clean image x0|t at time t and
again perturbing it with noise level t − 1, gradually decreasing the noise until
t = 0.

DDNM [20] builds upon this inference process to solve linear inverse problems
that are generally defined as y = Ax, where we aim to restore the data x ∈ R

n×1,
given the degradation matrix A ∈ R

m×n and its observation y ∈ R
m×1. To

sample an image that fits the constrain given by A, range-space replacement is
added after Eq. 3 as follows:

x̂0|t = A†y + (I − A†A)x0|t (5)

where A† ∈ R
m×n is the pseudo-inverse of A which can be calculated by the

singular value decomposition (SVD) method. This refinement process ensures
x̂0|t to satisfy the linear condition, hence shifting the direction of the reverse
process to be consistent with the degradation. By substituting x0|t with x̂0|t
in Eq. 4, the noise mitigates the discrepancies between the replaced and original
components of x̂0|t. Figure 1(right) illustrates the refinement process for isotropic
reconstruction.

Diffusion Models for 3D EM Reconstruction. As the degradation process
occurs along the Z-axis of the 3D volume, it can be simplified as 2D degradations
of contiguous ZY(or ZX) images. The 2D degradation can be represented with
a matrix A = SfP, where Sf ∈ R

m×n is the sub-sampling operator choosing
every f rows and P ∈ R

n×n is the PSF convolution operator. Assuming that
we know the PSF and the downsampling factor, we can construct A and its
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Algorithm 1. Reconstruction of the ith slice
Require: yi, xi−1

0 , A, A†, εθ

for t = 0, ..., R − 1 do � Encode xi−1
0 deterministically

xi−1
0|t = 1√

ᾱt
(xi−1

t − εθ(xi−1
t , t)

√
1 − ᾱt)

xi−1
t+1 =

√
ᾱt+1xi−1

0|t +
√
1 − ᾱt+1 · εθ(xi−1

t , t)
end for
xi

R = xi−1
R

for t = R, ..., 1 do � DDNM reconstruction starting from xi−1
R

ε ∼ N (0, I)
xi
0|t =

1√
ᾱt

(xi
t − εθ(xi

t, t)
√
1 − ᾱt)

x̂i
0|t = A†yi + (I − A†A)xi

0|t
xi

t−1 =
√

ᾱt−1x̂i
0|t +

√
1 − ᾱt − σ2

t · εθ(xi
t, t) + σtε

end for

pseudo-inverse A†, therefore we directly apply the DDNM sampling procedure
to the ith low-resolution ZY slice yi to reconstruct xi. However, it is important
to regard that the diffusion model used in the 2D reconstruction does not take
into account the continuity between neighboring slices.

Therefore, we propose a consistent sampling strategy where the previous slice
is encoded by DDIM and used as a starting point for the subsequent slice gener-
ation. This approach brings continuity between neighboring slices by leveraging
the information encoded in the preceding slice. Moreover, most of the information
overlaps between neighboring slices, therefore referencing the previous slice eases
the reconstruction process for the diffusion model. Rather than beginning with
pure Gaussian noise, we start the generation process of image xi by encoding the
previously reconstructed images xi−1

0 in a sequence of [1, ..., R] and use xi−1
R as

a starting point. Specifically, by setting σt = 0 in Eq. 4 the DDIM iteration loses
its stochasticity and it is possible to encode an image through a deterministic
forward process. Given xi−1

R and yi, the ith slice is reconstructed by the reverse
process with [R − 1, ..., 0], but this time with the introduction of random noise.
As there is no previous reference for the first slice, the reverse diffusion process
starts from Gaussian noise (R = 1000). The overall process is described in Algo-
rithm 1. We also observed that, although our method allows smooth transition
along the sampling axis, the perpendicular planes do not directly leverage the
diffusion prior, thus showing unrealistic visual results. Therefore, we ensemble
the two reconstructions processed along the x-axis and y-axis. Additionally, due
to the generative model’s stochastic nature, averaging the two results show a
more steady and reliable generation.

In certain scenarios, the exact PSF is unknown. Therefore, we propose a
simple approximation where we set A as linear down-sampling and A† as a
linear interpolation operator. Despite the fact that linear interpolation is not the
exact pseudo-inverse of linear down-sampling, [1] adopts it as a low-frequency
guidance to generate an image in a desired direction. This approach enables the
diffusion model to fill in the missing high-frequency details on top of the blurry



240 K. Lee and W.-K. Jeong

interpolated observation A†y. As a result, the reconstructed data preserves the
low-frequency structural information of the interpolated observation and remains
interpretable without introducing abrupt changes. Although it has limitations
that the reconstruction is a heuristic that relies on interpolation, we demonstrate
through ablation that it gives better results compared to other assumptions of
A. We note that other kinds of interpolation methods can be used for A and A†

instead of linear, e.g. cubic or lanczos.

3 Experiments

We assess the performance of our framework using two widely-used EM datasets:
FIB-25 [19] and CREMI [7]. FIB-25 dataset is an isotropic FIB-SEM data com-
monly used for simulation studies, allowing quantitative evaluation of perfor-
mance. CREMI is a ssTEM dataset with an anisotropic axial resolution. It serves
as a real-world dataset for evaluating the performance of algorithms in handling
anisotropic data. We trained the diffusion model with a U-Net backbone follow-
ing [9] and adapted cosine scheduling [11] where T = 1000. The lateral training
image size is 512 × 512 and the batch size is 4 with a learning rate of 0.00002.
For sequential sampling, we reconstruct ZY images slice-by-slice along the x-
axis, where the encoding/decoding level is R = 200. Except for the first axial
slice, all slices were encoded by 4 steps and reconstructed (decoding) by 50 steps,
where strided steps allow faster sampling. We compare our method with three
auto-encoder-based approaches including 3D-SR-UNet [8], IsoNet [22,23] and
the framework proposed by Deng et al. [5]. All the methods were implemented
in Pytorch [12] and tested on a single NVIDIA RTX A6000 GPU.

Evaluation on Simulated Data. A randomly chosen subvolume of size 512×
512 × 512 from the isotropic FIB-25 data is convolved with a Gaussian filter
and downsampled by choosing every f ∈ {4, 8} lateral slices throughout the Z
direction to generate synthetic anisotropic data. All deep-learning approaches
except 3D-SR-UNet use only the target volume itself for training. 3D-SR-UNet
is trained in a fully supervised manner with 26 additional isotropic subvolumes.
Experiments are conducted for both cases where we know the PSF or not. For 3D-
SR-UNet and IsoNet, we use average downsampling to generate low-resolution
pair for blind-PSF. All methods require separate training for different PSF and
downsampling factors, whereas our method does not require additional training.
Performance is quantitatively evaluated by not only PSNR but also multi-scale
structural similarity (MS-SSIM) [21] and LPIPS [25], which are more sensitive
to fine patterns and structural details to demonstrate the realistic reconstruction
achieved by our approach.

For σ = 4 and f = 8, Table 1 shows that our method outperforms all
approaches for blind-PSF scenarios, especially in terms of LPIPS which mea-
sures the perceptual similarities between the reference and reconstructed images.
In the case where we know the exact PSF, 3D-SR-UNet and IsoNet show bet-
ter performance in PSRN and MS-SSIM. Nevertheless, the LPIPS score and



Reference-Free Isotropic 3D EM Reconstruction Using Diffusion Models 241

Table 1. Quantitative Comparison with other methods. With f = 8 and Gaussian
filter of σ = 4, the isotropic FIB25 volume is simulated to an anisotropic resolution
of 64 × 512 × 512 The baseline is linear interpolation. ⊥ and + indicate that the
reconstruction was done on ZX slices or is ensembled, respectively. The highest scores
are highlighted in bold.

PSF Method ZY ZX XY
PSNR↑ MS-SSIM↑ LPIPS↓ PSNR↑ MS-SSIM↑ LPIPS↓ PSNR↑ MS-SSIM↑ LPIPS↓

Baseline 26.12 0.842 0.567 26.11 0.840 0.555 26.18 0.848 0.379

Exact 3D-SR-UNet [8] 28.96 0.934 0.486 28.97 0.931 0.479 29.04 0.931 0.412
IsoNet [22] 28.62 0.928 0.490 28.56 0.924 0.495 28.67 0.922 0.328
Ours 27.92 0.914 0.375 27.93 0.916 0.434 28.03 0.913 0.296
Ours+ 28.39 0.924 0.426 28.39 0.922 0.425 28.49 0.920 0.264

Blind 3D-SR-UNet 27.52 0.894 0.512 27.52 0.891 0.503 27.57 0.895 0.426
IsoNet 27.60 0.897 0.503 27.29 0.888 0.515 27.35 0.889 0.363
Deng et al. [5] 27.65 0.901 0.496 27.65 0.901 0.504 27.75 0.900 0.408
Ours 27.55 0.901 0.391 27.55 0.903 0.448 27.64 0.901 0.325
Ours⊥ 27.57 0.905 0.453 27.57 0.900 0.393 27.66 0.901 0.280
Ours+ 27.95 0.911 0.431 27.95 0.909 0.433 28.04 0.908 0.284

GT 3D-SR-UNetpsf IsoNetpsf Ours-ZYpsf Ours-ensemblepsf

Linear interpola�on 3D-SR-UNet IsoNetDeng et al. Ours-ZY Ours-ensemble

Fig. 2. Qualitative comparison of FIB25 reconstruction viewed in ZY. f = 8 and a
Gaussian filter of σ = 4 was used. The superscript “psf” indicates that the exact point
spread function was used for reconstruction.

visual results confirm that they cannot generate high-quality results. Moreover,
3D-SR-UNet is trained with isotropic volumes, thus incomparable. As discussed
in Sect. 2, ‘Ours⊥’ shows that reconstruction along the ZX planes fails to gen-
erate realistic images viewed in ZY. Although the pixel-wise metrics preserve,
the LPIPS score drops dramatically. ‘Ours+’ averages the two reconstructions
along ZX and ZY, yielding a compromised result viewed in all directions and
resulting in higher PSNR and MS-SSIM scores. Figure 2 shows that the auto-
encoder-based approaches tend to produce blurry results. This may be due to
the limitation of the deterministic models based on pixel-wise loss functions,
which may not fully capture the complexity and intricate details of the data.
Furthermore, a noticeable quality gap exists between blind-PSF and exact-PSF
cases for all methods except ours, which supports the robustness of our proposed
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heuristic. Experimental results for σ = 2 and f = 4 are described in Table S1
and Fig. S1.

Visual Comparison with Real ssTEM Data. In this section, we present
reconstruction results of real anisotropic ssTEM data (CREMI) from 52×512×
512 to 512 × 512 × 512, which does not have PSF information nor isotropic
reference data. Thus, 3D-SR-UNet cannot be trained. For IsoNet, we use average
downsampling to generate the low-resolution pairs for training. Our method
uses the interpolation guidance method introduced in Sect. 2 for reconstruction.
Figure 3 shows the reconstructed ssTEM volumes viewed in ZY and XY. IsoNet
and Deng et al.’s method show blurry results for ZY. Moreover, the XY images
show severe artifacts indicating misalignment.

IsoNet Ours-ZY Ours-ensembleLinear interpola�on Deng et al.

IsoNet Ours-ZY Ours-ensembleLinear interpola�on Deng et al.

Viewed in ZY 

Viewed in XY 

Fig. 3. Visual results of the reconstruction of a CREMI volume viewed in ZY and XY.

Ablation Studies. We perform two ablation studies on the FIB-25 dataset
anisotropically simulated with σ = 4 and f = 8, starting with a comparison of
different assumptions for the degradation process in blind-PSF scenarios. Impu-
tation refers to the direct filling in of missing information, similar to the process
of inpainting. We also compare it with average downsampling and an incorrect
Gaussian filter of σ = 2 (note that σ = 4 is used to generate the synthetic
anisotropic data). Table S2 and Fig. S2 suggests that reconstructing on top of
the interpolated approximation gives better results than imputing or estimating
the degradation using an incorrect filter. Secondly, we investigate the impor-
tance of continuous sampling throughout the reconstruction process. As shown
in Fig. 4, when the previous slice is not encoded as a reference, the reconstruction
exhibits visible artifacts in XY and ZX views.
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GT Encoding No Encoding GT Encoding No Encoding

XY ZX

Fig. 4. Blind-PSF reconstructed volume viewed in XY and ZX. Reconstruction without
referencing the previous slice shows severe artifacts due to the misalignment of adjacent
slices.

4 Conclusion

We present a diffusion-model-based approach for reference-free isotropic recon-
struction on highly anisotropic 3D EM volumes. We introduced two additional
strategies that allow 2D diffusion models for consistent 3D reconstruction where
the PSF is unknown. Through quantitative and qualitative results, we demon-
strated its superiority compared to SOTA reconstruction methods and showed
the limitations of auto-encoder-based frameworks. In addition to generating high-
quality data, it exhibits efficacy in challenging conditions where training data is
scarce and prior information is minimal, thereby demonstrating its potential in
real-world applications. In the future, we plan to investigate the impact of our
methods on various downstream tasks in biomedical domains.
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