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Abstract. In this paper, a first-order adaptive self-modeling network model is
introduced tomodel information overload in the context of cyclical usage of smart-
phone apps. The model consists of interacting attention resources and emotional
responses to both attention taxation and the app engagements. The model makes
use of first-order reification to simulate the agent’s learning of the connections
between app engagement and emotional responses, and strategic use of attention
resources. Furthermore, external factors, such as context and influence of the envi-
ronment to use the apps, are included to model the usage decision of the agent.
Simulations in two scenarios illustrate that the model captures expected dynamics
of the phenomenon.
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1 Introduction

Information overload is often referred to as a major source of distress in contemporary
world by both publicmedia and in the academic literature (Arnold et al. 2023; Rutkowski
and Saunders 2018; Stephens 2018). However, the models of the phenomenon tend to
be either descriptive or statistical (e.g., Graf and Antoni 2023; Rutkowski and Saunders
2018) with a lack of computational formalism. Meanwhile, smartphone apps are used
to facilitate travel, education, entertainment, and more. A study found that a normal
person has around 40 apps installed on their phone, while average person only uses
18 of those apps for 89% of the time (Kataria 2021). Information overload caused
by excessive information supply through apps can lead to users experiencing stress
and ultimately for them to stop using the apps (Pang and Ruan 2023; Ye et al. 2023).
Since smartphone apps are a major channel of receiving information in everyday life,
it is important to understand its psychological effect on the average person, that is, the
information overload they cause.
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In this paper, a computational model of information overload while interacting with
multiple smartphone apps is proposed. An adaptive network model was designed that
makes use of first-order learning, which is linked to emotional responses and attention
capacity in relation to the app usage. The usage of the apps reflects how much they
capture users’ attention resources and arouses their emotional valence. Meanwhile, the
emotional responses and the available attentional resources determines the user’s deci-
sion to continue using the app. Model also incorporates effects of the environmental
influences to use the apps, such as notifications, and the contextual factor which levels
the attention and emotions.

By simulating different scenarios, the model illustrated expected dynamics of atten-
tion, emotions, and behavior as described in the literature on information overload (Graf
and Antoni 2023; Rutkowski and Saunders, 2018). In the scenarios, user engagement
with the apps initially arouses positive emotions in the user, but once the overuse of
multiple attention taxes the attention capacities, the emotional responses turn negative.
Furthermore, the cognitive and emotional dynamics result in user disengagement with
the apps, as is expected.

2 Background

In this section, we present background of the phenomenon and propose a research ques-
tion. Information overload refers to “a state of being overwhelmed by information, where
one perceives that information demands exceed one’s information processing capacity”
(Graf and Antoni 2023, 2). Outcomes of information overload include stress, fatigue,
poor task performance, and information avoidance (Graf and Antoni 2023). Information
overload has been studied extensively, and causes, such as work environment and com-
munication channel richness, and interventions, such as emotional coping training, have
been proposed (Arnold et al. 2023). Information overload is often theorized in terms of
limitations in human cognitive processing capacities, that is, the limitations of work-
ing memory or attention. However, many qualitative attempts to theorize information
overload include descriptions of both cognitive and emotional processes and outcomes
(Belabbes et al. 2023; Graf and Antoni 2023; Pang and Ruan 2023; Rutkowski and
Saunders 2018).

Emotional-Cognitive Overload Model (Rutkowski and Saunders 2018) presents the
building blocks of the model for information overload. ECOM includes information
and the request to use information technology as the inputs of the model, cognitive
processing – which consists of short-term memory chunking and long-term memories
of past emotional-cognitive overload experiences – as the mental process, and cognitive
overload (e.g., leaving part of the task undone, poorer decisions, shedding tasks) and
emotional overload (e.g., stress, frustration) as the outcomes. Prior computational model
of information overload (Gunaratne et al. 2020) considers only the attention limitations
as the process of the information overload. The approach presented in this paper seeks
to integrate the cognitive and emotional aspects to model information overload.
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3 Network-Oriented Modeling

The network model presented in this paper adopts the network-oriented modeling app-
roach. In this section, a brief introduction to network-oriented modeling approach is
given. Generally, in this approach, network model is represented with a graph where
nodes represent states of the modeled phenomenon, and the dynamics of the state
changes are modeled by designating directed links between nodes with assistance of
link weights, functions that map the values from sending nodes to receiving node, and
speed factors, which determine how fast the sending nodes influence the state of the
receiving node. More formally, temporal-causal network architecture is defined by the
following characteristics (Treur 2020):

• Connectivity of the network

A connection weight ωX,Y for each connection from state (or node) X to state Y.

• Aggregation of the multiple connections in the network

A combination function cY (..) for each state Y determining the aggregation of
incoming impacts from other connected states.

• Timing in the network

A speed factor ηY for each state Y determining the speed of change from incoming
impacts.

The model dynamics can be simulated with execution of following difference
equation to each state Y on each timestep �t:

Y (t + �t) = Y (t) + ηY
[
cY

(
ωX1,Y X1(t), . . . ,ωXk ,Y Xk(t)

)−Y (t)
]
�t (1)

This generic difference equation based on the above characteristics has been imple-
mented in MATLAB software (see Treur 2020, Ch. 9). Based on this, simulations are
run by declaring the network characteristics of the model in the software and the soft-
ware procedurally executes the difference equation for all states in parallel. The model
is defined using role matrices which designate each specification of the network char-
acteristics ωX,Y , cY (..), and ηY for each of the states in the network in a standard table
format. The role matrices specified for the model presented in this paper can be found
from the Appendix A (available as Linked Data at https://www.researchgate.net/public
ation/373490260).

The combination functions used in network-oriented modeling and implemented in
the software are called basic combination functions. For any model, any number m of
them can be selected for the model design. The standard notation for them is bcf1(..),
bcf2(..), …, bcfm(..). The basic combination functions use parametersπ1,i,Y ,π2,i,Y , such
as μ, σ, τ in the basic combination functions, which further define the combination
function characteristics. The basic combination functions used in the current model and
their parameters are presented in Table 1. Using this notation, the combination function
can be written as follows:

cY
(
t,π1,1(t),π2,1(t), . . . ,π1,m(t),π2,m(t),V1, . . . ,Vk

)

= γ1,Y (t)bcf1(π1,1,Y (t),π2,1,Y (t),V1,...,Vk)+...+γm,Y (t)bcfm(π1,m,Y (t),π2,m,Y (t),V1,...,Vk)
γ1,Y (t)+...+γm,Y (t)

(2)

https://www.researchgate.net/publication/373490260
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Substituting the combination function into the above defined Eq. (1) gives the
formula:

(3)

The above characteristics form the base-level architecture for the network model.
However, many phenomena in the world are adaptive. To incorporate the adaptive char-
acteristics into the network model, the principle of reification of the network model (also
called self-modeling) is introduced. The adaptive characteristics are added to the model
in a form of self-model states. In the case of the first-order adaptive network, the self-
model states include states that represent the network characteristics ωX,Y , cY (..), and
ηY of the base-level network. For example, the model presented in this paper makes use
of self-model states WX,Y , which represents adaptive weight ωX,Y of connection from
state X to state Y aggregated by Hebbian learning function, and TY , which represents the
basic combination function excitability threshold τY. The reification level is visualized
in Fig. 1. Similarly, all of the network characteristics can be reified: HY (self-model
state of speed factor ηY),WX,Y (self-model state for the connection weight), Ci,Y (self-
model state of the combination function weight), and Pi,j,Y (self-model state for basic

Table 1. The combination functions used in the network model.

Notation Formula Parameters

Advanced
logistic sum

alogisticσ,τ(V1,…, Vk) [ 1
1+e−σ(V1+...+Vk−τ)

– 1
1+eστ ](1

+ e–στ)

Steepness σ > 0,
Excitability
threshold τ

Hebbian
Learning

hebbμ(V1, V2, V3) V1 V2 (1 – V3) + μV3 V1, V2 activation
levels of connected
states; V3
activation level of
first-order
self-model state
representing the
connection weight,
Persistence factor
μ

Identity
function

id(V ) V Activation level of
state V

Random step
function

randstep-modα,β(..) 0 if mod(t, α) < β,

else 1
2 + rand(1,1)

2 ;
rand() function returns a
random draw from uniform
distribution

Time t
Repeated time
duration α,
Duration β until
value 1,
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combination function parameters) are the standard notations of the reification states for
the adaptive characteristics of the network.

Replacing now the network characteristics in (3) with the corresponding self-model
state values gives the following:

(4)

The self-model states change based on the three network cracteristics that were
presented above, and by self-model state values changing they alter the behavior of the
base-level network. The reification can be applied to implement reifications of multiple
order (first-order, second-order, third-order, …) as has been shown in Treur (2020, Ch.
8). However, these are out of the scope for the current model.

4 Adaptive Network Model of Information Overload

In this section, the model design is presented. The goal of the model was to simulate
how cognitive limitations and emotional responses together interact to generate effects
of the information overload (Rutkowski and Sanders 2018), that is, stress, information
avoidance, and disengagement from the apps (Graf and Antoni 2023; Pang and Ruan
2023). In the context of app usage, we interpreted this to be exemplified in continuous
negative emotions and disengagement with the apps that otherwise would be enjoyable
to the user. Next, the architecture of the network model is described. The nodes of the
model are listed and explained in Table 2, and the full architecture is illustrated in Fig. 1.
Unless specified differently, all the nodes described below use advanced logistic function
as the combination function. Detailed specification of the role matrices is presented in
the Appendix A.

First 
reification 
level

Base 
level

Wemo3

Tattn

Wemo2

Wemo1

Fig. 1. Architecture of the adaptive network model

First, the user needs to have a source of information that they attend to. In the model,
three appswere implemented to account for the effect of different numbers of information
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sources. In the model, app nodes represent the engagement with the app by the user, and
ranges from 0 to 1 indicating none to full engagement. Although the current includes
three app nodes, the model could be updated by implementing different number of app
nodes.

Second, engaging with any object requires the user to attend to it. This requirement
is facilitated by the attention node, whose values range from 0 to 1. A value of 0 indicates
that the user has the most attention available to divert to their app usage, whilst 1 means
that the user has no attention left to use the smartphone apps. The attention node is the
crux of the entire model, for it dictates how invested the user can be. The attention node is
connected to the app engagement negatively since they divide the attentional resources.

To simulate a natural form of replenishment and longevity of a user’s attention, a
context nodewas also added. The context node represents the specific situation in which
the user is attending to the apps, and thus changing context restores the attention by
attention re-allocation. The same applies to emotions since context also facilitates how
the emotions change. Thus, the context node is connected to the attention node as well as
the emotion nodes. The model treats context as a constant, and thus the identity function
was used as its combination function.

Table 2. Explanations of the nodes of the network model

State Explanation Level
X1 app1 Agent's engagement with application 1

Base level

X2 app2 Agent's engagement with application 2

X3 app3 Agent's engagement with application 3

X4 attn Agent's attention capacity

X5 emo1 Agent's emotional response to application 1

X6 emo2 Agent's emotional response to application 2

X7 emo3 Agent's emotional response to application 3

X8 act1 Agent's decision to use application 1

X9 act2 Agent's decision to use application 2

X10 act3 Agent's decision to use application 3

X11 cont Context influence on the agent

X12 inf1 Influence from the environment to use application 1

X13 inf2 Influence from the environment to use application 2

X14 inf3 Influence from the environment to use application 3

X15 Wemo1 Weight self-model state for connection from app1 to emo1
First  

reification 

level 

X16 Wemo2 Weight self-model state for connection from app2 to emo2

X17 Wemo3 Weight self-model state for connection from app3 to emo3

X18 Tattn Excitability of attn threshold parameter

The emotion nodes represent the emotional valence that the app nodes cause on
the user. The user’s emotions drive their interest in their smartphone app usage. This
can be seen as the user’s (dis)enjoyment of the app. A value of 1 would indicate that
the app evokes very positive emotions for the user, whilst a value of 0 would indicate
that the app evokes very negative emotions for the user; 0.5 means neutral emotional
response. Furthermore, since information overload is hypothesized to be caused by the
over taxation of the cognitive resources, the attention node has a high impact on the
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emotion nodes, meaning that the more the attention is taxed, the more negative emotions
the user will have.

The action node represents the user’s decision to use the app. The purpose of the
action node is to regulate the respective app node. Higher the decision to use the app,
the more the user will engage with it. The action nodes are influenced by the attention
nodes, the emotion nodes, and the influence nodes. Thus, the decision to use the app
is a combination of the user’s positive emotion toward the app, the availability of the
attentional resources, and the strength of the environment’s influence to use the apps.

The influence node dictates the environment’s role in using the app. There are many
types of influences that the environment can pose on individuals to use some apps.
These include notifications, work context, social influence, and peer pressure, or context-
dependent need. The influence node represents the total sum of environment-based influ-
ences to the user ranging from 0 to 1. For the influence nodes, random step mod function
was used that simulates the effects of stochastic activation of the influence. Practically,
it means that environment acts on the individual in periods of time while being inactive
else and the activation level of the influence is stochastically determined.

The adaptive elements of the network are rooted in the Wem nodes and τattention.
State Wem is a first-order adaptive weight self-model state which dictates the strength
of the connection between the app and emotion nodes by applying Hebbian learning.
The more that an app is used, the greater the connection between the app engagement
and the emotion that is evoked from the app, thus there is a greater impetus for the user
to use the app in the case where the emotion evoked is positive. The state τattention is
used to represent the attention node’s ability to increase its capacity for using multiple
apps. While the threshold of the attention function adapts through repeated usage, the
attention is taxed less in relation to the app usage. As apps are being used more and
more, the user can distribute their attention more easily between apps without becoming
overloaded by app overuse.

5 Simulation Results

Two simulated scenarios are presented to illustrate how the model works. In scenario
one, only one smartphone app is active and interacting with the user. In the second
scenario, three parallel apps are active and interactingwith the user in parallel illustrating
a common situation where the user needs to allocate their attention between multiple
apps. For more simulations that illustrate the model behavior in different scenarios, see
Appendix B.

In both scenarios it is assumed that the apps the user engages with influence the
positive emotions in the user, that is, the user likes the apps. It is also assumed that
initially the user has neutral emotional relation to the apps (Em1–3 = 0.5), and that
each app is equally engaging, equally emotion provoking, and equally attention taxing,
that is, the weight of the connections in the network are equal for the three apps. These
parameters are defined in more detail in Appendix A.

Scenario 1: One application active.
The Figs. 2 and 3 present the simulation results of the scenario one with different

time frames. Figure 2 shows how in the beginning (0–5 t) the user starts by using
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the app (Act1; blue dash-dotted line). Next (5–10 t) the user engagement with the app
(App1; blue solid line) gives rise to the positive emotions (Em1; blue dashed line), while
engaging with the app taxes the user’s attention (Attention; purple line). Furthermore,
there is an outside influence to use the app (Infapp1; dotted line) which strengthens the
user’s next decision to use the app. After a while (10–15 t) the user disengages with the
app (App1), which results in attention resources recovering slightly (Attention). What
follows is a series of engaging and disengaging with the app each followed by taxing
and recovering of the attention resources.

Fig. 2. Base level states of simulation of scenario one (50 time steps)

Fig. 3. Base level states of simulation of scenario one (200 time steps)

Figure 3 shows the results of the same simulation with a longer time frame. Figure 3
shows the same dynamical behavior as Fig. 2 but what is easier to perceive here is the
influence from the environment (Infapp1; dotted line). Within each 60 time step interval
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(60 t, 120 t, 180 t, …), the influence gradually increases and then drops which results
in users disengaging from the app (App1) slightly more. What is also visible from the
figure is the general trend of the emotional response (Em1) losing the positive valence
and converging to the neutral zone (Em1 ≈ 0.5).

Scenario 2: Three applications active.
Figures 4 and 5 present simulation results from scenario two with the similar time

frames to the previous section. As Fig. 4 shows, in the beginning (0–5 t) user starts
to use the apps (Act1–3; blue, red, and yellow dash-dotted lines). After this (5–10 t),
the user engages with the apps (App1–3; blue, red, and yellow solid lines) which is
followed by the combined positive emotional response (Em1–3; blue, red, and yellow
dashed lines). Furthermore, there are influences from the environment to use the three
apps to which the user’s decision to use the apps increases (Infapp1–3; blue, red, and
yellow dotted lines). The app engagements (App1–3) are followed by the proportional
attention taxation (10–15 t; Attention, purple line). As there are more apps than in
scenario one, the attention taxation (Attention) is significantly higher which leads to
stronger disengagement (App1–3) and negative emotional response (15–25 t; Em1–3).

Fig. 4. Base level states of simulation of the scenario two (50 time steps)

What is shown in Fig. 5 is the results of the same simulation in a longer time frame.
The figure shows that when the user engages with three apps (App1–3), the constant
attention taxation (Attention) is higher than in the single app case. The emotion lowering
is also steeper, and the overall outcome is that the emotions converge towards negative
emotions (Em1–3 < 0.5).

Excitability of the attention.
Another feature of the model that is not visible in the sub-1000 time frame is the

effect of the excitability of the attention node. Figures 6 to 8 shows how the excitability
changes the behavior of the model in a long time frame in scenario two. The rise of the
excitability factor (τattention; black dashed line) during the 1000 first time steps gradually
increases the threshold of the advanced logistic function of the attention node (Attention;
purple line) which can be seen in Fig. 6.
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Fig. 5. Base level states of simulation of the scenario two (200 time steps)

Fig. 6. Activation levels of the attention node in simulation of the scenario two (10 000 time
steps).

Meanwhile, rise of excitability factor (τattention) results in major change in the
emotional responses (Em1–3; blue, red, and yellow dashed lines) which is visible in
Fig. 7.

Figure 8 shows that as the excitability factor and emotion connection weights are
increased (Wapp-em; purple, pink, and green solid lines), the attention reacts less to the
engagement with the apps and engaging with the apps evokes more positive emotions,
which in turn leads to more engagement with the apps (App1–3; blue, red, and yellow
solid lines). Increased threshold shows how learning attention results in increase of
the available attention resources and less negative emotions due to attention limits not
being constantly exceeded. In fact, after the 1000 time steps the model exhibits constant
positive emotions again related to the app usage.
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Fig. 7. Activation levels of the emotion nodes and the reification level nodes in simulation of the
scenario two (10 000 time steps).

Fig. 8. App engagement and excitability factor dynamics in simulation of the scenario two (10
000 time steps).

6 Discussion

In the literature, information overload is often defined as a state in which an individual
cannot process all the information available in the situation due to cognitive limits of
information processing capacity, which leads to negative emotional reaction and poorer
performance (Graf and Antoni 2023; Rutkowski and Saunders 2018). The proposed
model formalizes the key components of the individual information overload as a pro-
cess where attention limitations and emotional responses interact to produce engaging
and disengaging behavior related to the information sources, for instance, smartphone
apps. As smartphones are ubiquitous in modern society and one of the main sources of
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information for individuals, the presentedmodel exhibits one realistic case of information
overload.

The results of the simulation scenarios seem to demonstrate that the proposed model
captures the key dynamics of the information overload in the case of using several
smartphone apps. Both scenarios simulate similar behavior where the user seeks to
disengage with the apps when the emotions start to become negative due to the taxation
on attention resources. In the situations where the taxation of attention resources starts to
reach the bearable limit (Attention≈ 0.8) in the model, the positive emotions elicited by
the engagement with the apps are not enough to keep the user’s emotional level positive
but rather leads to negative emotions and stronger likelihood of disengagement.

The model also suggests that information overload can in this limited case be over-
come with learning. As the simulation with 10 000 time steps shows, the first-order
adaptive excitability of the attention node’s function threshold affects how the attention-
emotion dynamics can be altered. As the threshold increases, the maximum attention
taxation is lowered to level of 0.7 and the fluctuation of the attention is dampened. The
natural interpretation of this effect is that as the user adapts to use three apps in parallel,
the attention resources are usedmore andmore strategically leading to less over taxation.
This effect is well-known in psychology as the role of expertise in attention allocation
and better chunking abilities (Pulido 2021).

For the future work, the parameters of the model could be adjusted to simulate differ-
ent types of scenarios. For example, if the apps would have different levels of engaging
features (i.e., some engage users more than the others), this could be modeled by adjust-
ing the connection weights, function parameters, and the speed factors related to the
engagement nodes. As an example, one can think of engaging features of short-form
video apps and contrast them with the ones of a calculator. By adjusting the connection
weights between the app engagement and the attention capacity, one can model perfor-
mance in situations where the apps have different levels of attention requirements (e.g.,
intense gaming apps vs. photo gallery). Furthermore, the model parameters can be fitted
to account for individual differences and different environmental situations. By adding
app nodes, the model can be simulated in the situation where the number of apps varies.
By adjusting the first-order reification level components, one can simulate different indi-
vidual characteristics such as emotional sensitivity (i.e., Wem states) or expertise (i.e.,
τattention parameter). In the future, themodel can be improved by including further details
from the ever-growing body of literature on human cognition. Some further examples of
specifications and simulation results are presented in the Appendix available as Linked
Data at https://www.researchgate.net/publication/373490260.
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