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Abstract. We investigate a method to asses brain synchronization in individuals
who fulfill a cooperation task. Our input is a couple of signals from functional
Near-Infrared Spectroscopy Data Acquisition and Pre-processing technology that
is used to capture the brain activity of an individual by measuring the oxyhe-
moglobin (HbO) level. Then, we use the visibility graph approach to map each
HbO signal into a network. We estimate the signal synchronization by studying
a global measure, related to eigenvalues of Laplacian matrix, in each constructed
visibility graph. We consider the autonomous evolution of one isolated node to
be a Rössler function. Then, the synchronization of signals can be characterized
by a little number of parameters that could be employed to classify the sources of
signal. Unlike prior research in this area, our aim is to examine the circumstances
in which synchronization occurs in various individuals and within different hemi-
spheres of the prefrontal cortexes of the same individual. Experimental results
show that the conditions for synchronization vary in different individuals, and
they are different even for the distinct prefrontal cortical hemispheres of the same
individual.

Keywords: visibility graph · Laplacian · synchronization measure · brain
synchronization

1 Introduction

Network Science comes out as an efficient tool for identifying, representing and pre-
dicting distinct collective phenomena in numerous complex systems (Newman, 2018,
Halvin et al. 2012, Chen et al. 2015, Arenas et al. 2008, Boccaletti et al. 2006, Barrat
et al. 2008). Synchronization problem appears to be a hottest topic in dynamic processes
in networks (Ding et al. 2020). It is defined as a process wherein many systems adjust a
given property of their motion due to a suitable coupling configuration, or to an external
forcing (Boccaletti et al. 2006). Synchronization processes are everywhere in nature and
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they have been applied to a wide variety of areas such as biology, ecology, climatology,
sociology, technology, smart grid, secure communication, neurology and many more
(Pikovsky et al. 2001, Osipov et al. 2007, Arenas et al. 2008, Dörfler & Francesco 2014,
Jiruska et al. 2013).

Visibility graphs present a powerful technique to study time series in the context
of complex networks (Lacasa et al. 2008). These kinds of graphs were established as
a method to map time series into networks (Lacasa et al. 2008) with the purpose of
making use of the tools of network science to describe the structure and dynamics
of time series. Explorations on visibility graphs are mainly focused on two different
directions: (i) canonical dynamics such as stochastic and chaotic processes (Brú et al.
2017, Gonçalves et al. 2016, Lacasa et al. 2009, Luque et al. 2012, Luque et al. 2011); (ii)
a feature extraction procedure to make statistical learning (Bhaduri & Ghosh 2016, Hou
et al. 2016, Long et al. 2014). The implementation of visibility graph to neuroscience is
in its beginning and has been limited to the analysis of the electroencephalogram (EEG)
(Mira- Iglesias et al. 2016, Bhaduri & Ghosh 2016) and functional magnetic resonance
imaging (fMRI) data (Sannino et al. 2017).

In this paper we use visibility graphs to map functional Near-Infrared Spectroscopy
Data Acquisition and Pre-processing (fNIRS) time series into networks and then study
the synchronization dynamics in the constructed networks. fNIRS is a technology used
to measure brain activity (Li et al. 2020). The HbO signals are captured by the optodes
positioned in left and right hemispheres of the prefrontal cortices (PFC)of the participants
in the experiment. Then, we identify a few parameters that permit to characterize the
synchronization process. These parameters could be used further to classify the sources
of signal. The analysis of the synchronization phenomena in these signals show that the
synchronization does not happen under the same conditions for different participants in
the experiment, but even for different PFC hemispheres of one participant. However,
these are preliminary results and need to be compared to alternative methods.

Recent research articles (Li et al. 2021, Wang et al. 2022) have outlined an approach
to studying the synchronization of individuals’ brain when collaborate to complete a
particular task. They propose using theWavelet TransformCoherence (WTC) to identify
locally phase locked behavior between two time- series by measuring cross- correlation
between the time series as a function of frequency and time. Furthermore, they used
sliding windows approach and k- mean clustering to obtain a set of representative inter-
brain network states during different communication tasks. Our experiment is performed
only in one communication task and our goal in this paper is to compare the conditions
under which synchronization is achieved in different individuals and also in different
PFCs of the same participant.

The rest of the paper is organized as follows. In the second section we define pre-
liminaries on network theory, introduce the visibility graph and its properties and give
the mathematics behind the synchronization measure through undirected, unweighted
networks. The third section describes the generation of the data used in this study. In
addition, we provide the reader with results obtained when studying and analyzing syn-
chronization dynamics in brain activity data. Conclusion summarizes once more all the
work conducted and results obtained from our analysis.
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2 Background and Methods

2.1 Preliminaries in Networks

Throughout this paper we will refer to a graph (network) as a pair G = (V ,E) where V
is called the vertex set and E is the edge set. This study is focused only on undirected
and unweighted networks with symmetric adjacency matrix A whose entries are aij = 1
if there exit a link between nodes i and j and 0 otherwise. The degree of one node i is
defined as ki = ∑|V |

j=1 aij, i = 1, 2, . . . , |V | and the Laplacian matrix associated to G

is L = D − A, where D = diag
{
k1, k2, . . . , k|V |

}
. It is known that L is positive semi-

definite matrix and all its eigenvalues are real and non- negative. In addition, they can
be ordered as 0 = λ1 < λ2 < λ3 < . . . < λN , where λ2 is known as the algebraic
connectivity of the network (Newman 2018, Estrada andKnight 2015, Barabási & Pósfai
2016, Boccaletti et al. 2006).

2.2 The Visibility Graph

The procedure to construct a visibility graph is described in detail in (Lacasa et al.
2008, 2009, 2012). Let’s consider a time series with N data measured at times ti, i =
1, 2, . . . ,N with values xi, i = 1, 2, . . . ,N and consecutive time points (ti, xi), (tk , xk)
and

(
tj, xj

)
. Time points (ti, xi) and

(
tj, xj

)
are visible and consequently will become two

connected nodes in the visibility graph if for any point (tk , xk) between them, they fulfill
the following inequation:

xk < xj +
(
xi − xj

) tj − tk
tj − ti

(1)

The network constructed by the above condition has four main properties: it is
connected, undirected, invariant under affine transformations of the series data and it
can be applied to every kind of time series (Lacasa et al. 2008). The construction of
visibility graph is illustrated schematically in Fig. 1 given a time series with N = 20.

Fig. 1. Construction of visibility graph corresponding to a univariate time series. Adapted from
Lacasa at el. 2008.
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2.3 Synchronization Dynamic

Synchronization is the process where many systems adjust a given property of their
motion due to a suitable coupling configuration, or to an external forcing (Arenas et al.
2008, Boccaletti et al. 2006, Barrat et al. 2008).

Let’s consider a system (connected network) formed by N identical m dimen-
sional dynamical system (oscillators) whose states are represented by the vector X =
{x1, x2, . . . , xN } where each of xi is a m-dimensional vector (xi stands for the nodes in
the network). The evolution of the vector field xi could be determined by the ordinary
differential equation xi = f (xi) (f : Rm → Rm). The equation of motion is defined as:

xi = f (xi) − σ

N∑

j=1

Lijh
(
xj

)
(2)

where L is the Laplacian matrix, h : Rm → Rm is a vectorial output function and σ is
the coupling strength. The completely synchronized state of this network with identical
dynamics is computed as the solution of Eq. (2) where x1(t) = x2(t) = . . . xN (t) = s(t).
In this synchronized state, s(t) is also solution of the equation ṡ = f (s). This subspace
in the state space of Eq. (2) where all the oscillators evolve synchronously on the same
solution of the isolated oscillator f is called the synchronization manifold. Once, all
the oscillators are set at the synchronization manifold, they will remain synchronized
and the most important topic now is to evaluate the stability of the synchronized man-
ifold in presence of small perturbations δxi. The synchronized manifold is stable if the
perturbations decay in time, otherwise it is not stable.

The stability of the synchronized manifold is measured making use of the master
stability function. We consider the evolution of small δxi as linear and write xi = s(t) +
δxi. Furthermore, we write the Taylor series for the functions f and h as f (xi) = f (s) +
Jf (s)δxi and h(xi) = h(s) + Jh(s)δxi, where Jf (s) and Jh(s) are the Jacobian matrices
of the functions f and h on s and obtain the variational equations for δxi:

δxi = Jf (s)δxi − σJh(s)
N∑

j=1

Lijδxj (3)

Then, δx is projected into the eigenspace spanned by the eigenvectors of theLaplacian
matrix and the linear variational equations are written below:

ξl = [
Jf (s) − σλlJh(s)

]
ξl (4)

where ξl is the eigenmode corresponding to the eigenvalue λl of L. Since, all the vari-
ational equations have the same form, but only differ from the term α = σλl , we can
write the variational equations in vectorial form:

ξ̇ = [
Jf (s) − αJh(s)

]
ξ (5)

To evaluate the stability of the synchronization manifold, one computes the largest
Lyapunov exponent λmax as a function of α based on the master variational equation.
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The synchronization manifold will be stable for all α, which give a negative value for
λmax. This approach is given in detail by (Pecora and Carroll, 1998). Therein one finds
a better understanding of the Master Stability Function (MSF) and its three possible
classes. Here, our intention is to determine α1 and α2, so that σλl > α(α1 < σλl <

α2, l = 2, . . . ,N ) in case of class II (III) MSF. Since, the eigenvalues of the Laplacian
matrix are non-negative we can obtain the following inequalities:

σλ2 ≤ σλ3 ≤ . . . ≤ σλN > α(α1 < σλ2 ≤ σλ3 ≤ . . . ≤ σλN < α2) (6)

The synchronization manifold s will be stable only for:

σ >
α

λ2

(
λ2

λN
< σ <

α2

α1

)

(7)

The synchronization error is computed as:

E = lim
T→∞ ∫T0

∑

j �=1

xj(t) − x1(t) (8)

3 Experimental Results

3.1 Experiment Setup

One cooperative task called “MapTask” is given to two participants, which together
create a dyad. The guide participant (pA) had 35 icons and a path drawn on its screen.
The follower participant (pB) had exactly the same icons but didn’t have the path drawn
on its screen. The target of the experiment is that at the end of the task, pB should have
drawn the same path as shown on the pA’s screen using the arrows in the keyboard and
the instructions given by pA.

The technology used to measure brain activity is Functional Near-Infrared Spec-
troscopy Data Acquisition and Pre-processing (fNIRS). Each of the participants had two
optodes over their PFCs: one positioned in the left hemisphere (hL) and the other in the
right hemisphere (hR). These optodes captured the oxyhemoglobin (HbO) and deoxyhe-
moglobin (HbR) signals. Considering that the HbO signal is more sensitive to changes
in cerebral blood flow than the HbR signal, we focused on the HbO signal (Wang et al.
2022). 18 participants took part in the experiment and they were divided in 9 dyads.
We consider the signal in the first five minutes of the beginning of the experiment. The
cooperation task given to the participants in the experiment is illustrated in Fig. 2. A
HbO signal is given too.
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Fig. 2. Cooperative task “MapTask” and HbO signals of one dyad

3.2 Brain Synchronization

The HbO time series are mapped into visibility networks as described in Sect. 2. All the
network constructed have the same number of nodes (3148 nodes) which corresponds
to the time points in the first five minutes of the duration of the experiment. There are
two networks for each participant, corresponding to the signals obtained by measuring
the HbO in left (lPFC) and right prefrontal cortex hemispheres (rPFC). To study the syn-
chronization in each network we have considered as the autonomous evolution function
of one isolated node the Rössler function f = [−y − z;x + 0.2y;0.2 + z(x − 9.0)] and as
the output function h = [

0, y, 0
]
, which determines a class II MSF. For simplicity, from

now on we will refer as pAhL (pAhR) the lPFC (rPFC) HbO signals of pA and as pBhL
(pBhR) the lPFC (rPFC) HbO signals of pB.

The results showed that different participants reach the synchronization state for
different conditions. Furthermore, even the two PFCs of the same participant do not
reach synchronization under the same conditions. Here we represent each participant
by the algebraic connectivity of its corresponding visibility graph. The values of the
parameter decrease with the increasing values of the algebraic connectivity. The values
of the parameter σ for which the synchronization state is stable and the synchronization
errors are reported in Fig. 3 for pAhL and pAhR signals and in Fig. 4 for pBhL and
pBhR signals.

The error of synchronization (Ding et al. 2020) is computed for each oscillator as.
Ei(t) = [

xi(t) − sxi (t), yi(t) − syi (t), zi(t) − szi (t)
]
, i = 1, . . . ,N and the total.

synchronization error is computed as E(t) =
√

1
N

∑N
i=1 E

T
i Ei.

In Fig. 5, there are two participants of the first dyad and their lPFC and rPFC HbO
signals.

Figure 5 indicates that the higher the value of algebraic connectivity, more strongly
connected is the network and synchronization state is reached faster. In this dyad, the
pA participant reaches synchronization faster than the pB participant. If we focus on
one participant both PFC hemispheres need approximately the same time to reach syn-
chronization. One different case is reported in Fig. 6, taking into consideration another
dyad, when the two PFC hemispheres of one participant need different amounts of time
to be synchronized.

The total synchronization error for all dyads is illustrated in Fig. 7.
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Fig. 3. A: The values of parameter σ whenMLE becomes negative for pAhL. Inset illustrates the
same for pAhR. B: The synchronization error for all pAhL participants in the main figure and for
pAhR in the inset. Main plot’ (‘Inset’) legend corresponds to the main (insets) plots in A and B.
Red dashed line is used here to identify when MLE becomes negative.

Fig. 4. A: The values of parameter σ when MLE becomes negative for pBhL. Inset illustrates the
same for pBhR. B: The synchronization error for all pBhL participants in the main figure and for
pBhR in the inset. ‘Main plot’ (‘Inset’) legend corresponds to the main (insets) plots in A and B.
Red dashed line is used here to identify when MLE becomes negative.

We can identify three classes of HbO synchronization in the experiment conducted:
(i) the HbO signals are approximately synchronized at the same time (dyad 6 and dyad
9 despite the pBhR signal and dyad 3 despite the pAhL); (ii) the HbO signals of the
pA are synchronized faster than the ones of pB (dyad 1); (iii) the HbO signals of pB
are synchronized faster than the ones of pA (dyad 5, 7 and 8). Comparing the HbO
synchronization of the hemispheres of the PFC it is noticed that in half of the participants
the synchronization is reached at the same time for both hemispheres (dyads 1, 3, 5, 6,
8).

Furthermore, results indicate that if two individuals interacting as one dyad do not
synchronize at approximately the same time, regardless of whether their two PFCs
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Fig. 5. Time needed for one dyad to be synchronized considering both PFC hemispheres of each
participant for all oscillators. pAhL refers to the lPFC of participant pA. The values of parameter
σ = 13.48 (from now when MLE becomes negative) and λ2 = 0.0186. pAhR refers to the rPFC
of participant pA. The values of parameter σ = 14.41 and λ2 = 0.0173. pBhL refers to the lPFC
of participant pB with σ = 127.03 and λ2 = 0.002. pBhR refers to the rPFC of participant pB
with σ = 111.68 and λ2 = 0.0022.

Fig. 6. Time needed for both PFC hemispheres of one guider participant to be synchronized.
pAhL refers to the lPFC of participant pA. The values of parameter σ = 172.4 and λ2 = 0.0015.
pAhR refers to the rPFC of participant pA. The values of parameter σ = 79.55 and λ2 = 0.0031.

synchronize simultaneously, they require more time to complete the experiment (dyad
1 and dyad 5 completed the experiment in 10.48 and 22.1 min). In cases when the
PFCs of different participants partnering within one dyad achieve synchronization at
approximately the same time, the experiment is finished in a shorter time (dyad2 anddyad
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Fig. 7. Total synchronization error. Dyad 1 is the same dyad presented in Fig. 5 and Dyad 2 refers
to the same participants presented in Fig. 6. The legend is the same for all plots.

9 completed the experiment in 8.1 and 8.5 min). In other cases, when synchronization
is achieved at approximately the same time only for two PFCs of different participants
collaborating within a dyad, the duration of the experiment is larger than in the previous
scenario (dyad 3, 4, 6, 7, 8 accomplished the experiment in 11.9, 14.8, 14.9, 17.9 and
12 min respectively).

4 Conclusions

In this paper we have investigated the brain synchronization problem from the perspec-
tive of complex networks. The human brain activity was measured using the fNIRS
technology during the ‘MapTask’ experiment. There were 18 participants who took part
in the experiments, grouped in 9 dyads. Two optodes positioned in the left and right
hemispheres of the prefrontal cortex were used to capture the HbO signals. Further-
more, we have used the visibility graph approach to convert the HbO time series into
networks, where each node represents one time point and two nodes are linked if their
corresponding time point has visibility with each other. In addition, we have used the
constructed networks to study the global synchronization phenomena.

Experimental results indicated that different participants reached the synchroniza-
tion state under different conditions. Furthermore, we have observed that even the two
prefrontal cortexes of the same participant do not reach synchronization for the same
conditions. The total synchronization error displayed in Fig. 7 suggested that in 8 par-
ticipants (dyads 1, 3, 5, 6, 8) both prefrontal cortex hemispheres reach synchronization
approximately at the same time. This work pointed out that when PFCs of different
participants collaborating within same dyad synchronize roughly at the same time, the
experiment is finished faster than in cases when they do not fulfil this property, even
though both PFCs of same individual synchronize at the same time.
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