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Abstract. In recent years, there has been a growing recognition that
higher-order structures are important features in real-world networks.
A particular class of structures that has gained prominence is known
as a simplicial complex. Despite their application to complex processes
such as social contagion and novel measures of centrality, not much is
currently understood about the distributional properties of these com-
plexes in communication networks. Furthermore, it is also an open ques-
tion as to whether an established growth model, such as scale-free net-
work growth with triad formation, is sophisticated enough to capture the
distributional properties of simplicial complexes. In this paper, we use
empirical data on five real-world communication networks to propose a
functional form for the distributions of two important simplicial complex
structures. We also show that, while the scale-free network growth model
with triad formation captures the form of these distributions in networks
evolved using the model, the best-fit parameters are significantly differ-
ent between the real network and its simulated equivalent. An auxiliary
contribution is an empirical profile of the two simplicial complexes in
these five real-world networks.

Keywords: Simplicial complex · communication networks ·
higher-order structures · analytical approximation

1 Background

Complex systems have undergone intense, interdisciplinary study in recent
decades, with network science [3,28] having emerged as a viable framework
for understanding complexity in domains ranging from economics and finance
[15,16,22,23,26], to ‘wicked’ social problems such as human trafficking and ter-
rorism [21,24,25,40]. Communication networks, as well as many other natural
and social networks that are modeled as complex systems, have the scale-free
topology in common. The preferential attachment model [8,44] has been sug-
gested as a candidate network evolution or ‘growth’ model to yield such topolo-
gies in complex networks by formalizing the intuition that highly connected
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Fig. 1. Illustration of an S* simplicial complex and T* simplicial complex, defined in
the text.

nodes increase their connectivity faster than their less connected peers. The
degree distribution of such networks exhibits power-law scaling [20].

While early studies in network science tended to be limited to lower-order
structures like dyadic links or edges [14,32,34,37] (and later, triangles), a recent
and growing body of research has revealed that deep insights can be gained
from the systematic study of non-simple networks, multi-layer networks [33] and
‘higher-order’ structures [46] in simple networks [1,5,13,19,43].

One such higher-order structure that continues to undergo study is a simpli-
cial complex (often just referred to as a ‘complex’) [4,17,42]. The study of sim-
plicial complexes first took root in mathematics (especially, algebraic topology)
[6,10,27,30,31], but in the last several years, have found practical applications
in network science (as discussed in Related Work). Figure 1 provides a practical
example of two such simplicial complexes that have been studied in the litera-
ture, especially in theoretical biology and protein interaction networks. Due to
space limitations, we do not provide a full formal definition; a good reference is
[9], who detailed some of their properties and even proposed centrality measures
due to their importance. An S-complex1 is defined by a ‘central’ edge A-B, with
one or more triangles sharing that edge. A T-complex is similar but the central
unit is a triangle (A-B-C). Furthermore, non-central (or peripheral) triangles
in a T-complex should not also participate in quads with the central triangle
i.e., given central triangle A-B-C and peripheral triangle A-B-V3, there should
be no link between V3 and C in a valid T-complex. As we detail subsequently,
the adjacency factor of either an S*- or T*-complex is the number of triangles
flanking the central structure (an edge or triangle respectively).

Simplicial complexes have been widely used to analyze aspects of diverse
multilayer systems, including social relation [45], social contagion [35], protein
interaction [39], linguistic categorization [12], and transportation [29]. New mea-
surements, such as simplicial degree [39], simplicial degree based centralities
[9,38], and random walks [36] have all been proposed to not only measure the

1 Technically, we refer to these in this paper as S*- and T-* complexes, with the *
indicating that we are considering the maximal definition of the complex e.g., an
S*-complex is not a strict sub-graph of another S-complex.



18 K. Shen and M. Kejriwal

relevance of a simplicial community and the quality of higher-order connections,
but also the dynamical properties of simplicial networks.

However, to the best of our knowledge, the distributional properties of such
complexes, especially in the context of communication networks, have not been
studied so far. A methodology for conducting such studies has also been lack-
ing. Therefore, given the growing recognition that these two structures play an
important role in real networks, and with this brief background in place, we
propose to investigate the following research questions (RQs):

RQ1: In real-world communication networks, what are the respective distri-
butions of S*- and T*-complexes? Can good functional fits be found for these
distributions?

RQ2: Can (and to what extent) the scale-free network growth model
(with triad formation) accurately capture these distributions? Or are additional
parameters and steps (beyond triad formation) needed to model these higher-
order structural properties in real-world networks?

2 Methodology

Since our primary goal in this paper is to understand whether (and to what
extent) the scale-free network growth (with triad formation) model can accu-
rately and empirically capture the two simplicial complexes described in the
introduction, we first briefly recap the details of the growth model below. Full
details are provided in [18].

2.1 Scale-Free Network Growth with Triad Formation

Networks with the power-law degree distribution have been classically modeled
by the scale-free network model of Barabási and Albert (BA) [2]. In the original
BA model, the initial condition is a network with n0 nodes. In each growth
timestep, an incoming node v is connected using m edges to existing nodes in
the network. The connections are determined using preferential attachment (PA),
wherein an edge between v and another node w in the network is established
with probability proportional to the degree of w.

The growth model informally described above is known to generate a net-
work with the power-law degree distribution; however, other work has found
that such networks lack triadic properties (including observed clustering coef-
ficient) in real networks. In order to incorporate such higher-order properties,
the growth step in BA model was extended by [18] to include a triad formation
(TF) step. Specifically, given that an edge between nodes v and w was attached
using preferential attachment, an edge is also established from v to a random
neighbor of w with some probability. If all neighbors of w are connected to v,
this step does not apply.

In summary, when a ‘new’ node v comes in, a PA step will first be performed,
and then a TF step will be performed with probability Pt (in other words, the
probability of PA without TF is 1−Pt). These two steps are performed repeatedly
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per incoming node until m edges are added to the network. Pt is the control
parameter in the model. It has been shown to have a linear relationship with
the network’s average (over all nodes) clustering coefficient2.

Table 1. Details on five real communication networks (including average clustering
coefficient) used in this paper.

Number of Nodes Number of Edges Average Clustering Coefficient

Email-Enron 36,265 111,179 0.16

Email-DNC 1,866 4,384 0.21

Email-EU 32,430 54,397 0.11

Uni. of Kiel 57,189 92,442 0.04

Phone Calls 36,595 56,853 0.14

2.2 Adjacency Factor

To understand the distributional properties of the S*- and T*- complexes in the
generated network versus real communication networks, we use the notion of
the adjacency factor. From the earlier definition, we know that an S*-complex
is defined by a ‘central’ edge (A-B in Fig. 1 (a)) that is adjacent to a certain
number of triangles. Given an edge in the network, therefore, we denote the
adjacency factor (with respect to S*-complexes) as the (maximal) number of
triangles adjacent to that edge. For example, the adjacency factor of edge A-B
in Fig. 1 (a) would be 3, not 1 or 2. While we record adjacency factors of 0 also3

to obtain a continuous distribution, only cases where adjacency factor is greater
than 0 constitute valid S*-complexes.

Similarly, the adjacency factor (with respect to T*-complexes) applies to
triangles in the network. For every triangle A-B-C (see Fig. 1 (b)), the adjacency
factor is the (maximal) number of triangles adjacent to it4 in the T*-complex
configuration. If no (non-quad) triangles are adjacent to any of the edges of the
central A-B-C triangle, then the adjacency factor is 0, meaning that the triangle
does not technically participate in a T*-complex.

Hence, depending on whether we are studying and comparing S*- or T*-
complex distributions, an adjacency factor can be computed for each edge and
each triangle (respectively) in the network. We compute a frequency distribution
over these adjacency factors to better contrast these higher-order structures in
the grown versus the actual networks from a distributional standpoint.
2 A measure of the degree of clustering, the clustering coefficient γv of node v is

given by |E(Γv)|
kv(kv−1)

2

, where |E(Γv)| is the number of edges that exist between node v’s

neighbors.
3 These are edges that are not part of any triangles.
4 But subject to the ‘quad’ constraint noted in the Introduction.
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3 Experiments

Fig. 2. Frequency distribution of adjacency factors (described in the text) of S*-
complexes in the real Email-EU, Email-DNC, and University of Kiel email networks
(distributions for the other two datasets are qualitatively similar) and the generated
networks with the PA-TF generated networks sharing the same number of nodes, edges,
and average clustering coefficient (Table 1) as their real counterparts. In all plots, the
actual adjacency-factors distribution is always shown as a solid line and the corre-
sponding estimated function with best-fit parameters (Eqs. 1) as a dashed line. Both
figures are on a log-log (with base 10) scale.

We use five publicly available communication networks in our experiments,
including Enron email communication network (Email-Enron5), 2016 Demo-
cratic National Committee email leak network (Email-DNC6), a European
research institution email data network (Email-EU7), the email network based
on traffic data collected for 112 d at University of Kiel, Germany [7], and a mobile
communication network [41]. Details are shown in Table 1. These networks are
available publicly and some (such as Enron) have been extensively studied, but
to our knowledge studies involving simplicial complexes and their properties have
been non-existent with respect to these communication networks. While our pri-
mary goal here is not to study these properties for these specific networks, a
secondary contribution of the results that follow is that they do shed some light
on the extent and distribution of such complexes in these networks.

In the Introduction, we had introduced two separate (but related) research
questions. Below, we discuss both individually, although both rely on a shared
set of results.

RQ1: For each network, using the numbers of nodes and edges, and the observed
average clustering coefficient, we generate 10 networks using the PA-based
5 http://snap.stanford.edu/data/email-Enron.html.
6 http://networkrepository.com/email-dnc.php.
7 http://networkrepository.com/email-EU.php.

http://snap.stanford.edu/data/email-Enron.html
http://networkrepository.com/email-dnc.php
http://networkrepository.com/email-EU.php
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Fig. 3. Frequency distribution of adjacency factors (described in the text) of T*-
complexes in the real Email-EU, Email-DNC, and University of Kiel email net-
works (distributions for the other two datasets are qualitatively similar). The actual
adjacency-factors distribution is shown as a solid line, and the corresponding estimated
function with best-fit parameters (Eqs. 2) as a dashed line.

growth model (with TF). We obtain the frequency distributions (normalized to
resemble a probability distribution) of adjacency factors of T*- and S*-complexes
in both the real and generated networks, and visualize these distributions in8

Fig. 2 and 3. Besides the direct comparison between the distribution curves, the
figures suggest two functions that could fit the distributions (for the S*- and
T*-complexes respectively):

fS∗(x; a, b, c) = c(bx−a)log x (1)

fT∗(x;μ, λ, σ) =
λ

2
e

λ
2 (2μ+λσ2−2x)erfc(

μ + λσ2 − x√
2σ

) (2)

where erfc(x) = 2√
π

∫ ∞
x

e−t2dt.
Both functional fits were discovered empirically using the Enron dataset as

a ‘development’ set; however, as we show in response to RQ2, the functions fit
quite consistently for all five datasets (but with different parameters, of course),
although the first function diverges after a point (when the long tail begins). A
theoretical basis for the functions is an interesting open question. We note that
the second function is an Exponentially modified Gaussian (EMG) distribution,
which is an important and general class of models for capturing skewed distri-
butions. It has been broadly studied in mathematics, and has found empirical
applications as well [11].

RQ2: We tabulate the best-fit parameters for each real world network, and
the generated networks, in Table 2 and 3. For the real world networks, there
8 The differences between generated networks corresponding to the same real network

were found to be very minor, so we just show one such network (per real network) in
the Fig. 2. However, subsequently described statistical analyses make use of all the
generated networks.
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Table 2. Best-fit parameter estimates for Eq. 1 in both the real / generated network.
The MND and reference baseline is described in the text.

a / a′ b / b′ c / c′ MND / MND′ / ref. MND

Email-Enron 0.25/0.82 0.75/0.59 0.19/0.53 0.68/0.79/0.71

Email-DNC 0.07/1.25 0.50/0.15 0.18/0.85 0.64/0.33/0.71

Email-EU 0.06/1.79 0.33/0.09 0.33/0.92 0.67/0.34/0.74

Uni. of Kiel 0.16/1.35 0.15/0.02 0.67/0.97 0.49/0.47/0.55

Phone Calls 0.65/1.78 0.44/0.11 0.55/0.90 0.56/0.28/0.84

Table 3. Best-fit parameter estimates for Eq. 2 in both the real / generated network.
The MND and reference baseline is described in the text.

λ / λ′ μ / μ′ σ / σ′ MND / MND′ / ref. MND

Email-Enron 0.02/0.21 6.82/0.87 5.08/0.79 0.37/0.83 /0.91

Email-DNC 0.07/0.76 10.86/0.00 5.06/0.00 0.33/0.53 /0.90

Email-EU 0.05/1.59 13.81/0.00 7.58/0.00 0.70/0.84 /0.90

Uni. of Kiel 0.03/3.13 0.37/0.00 0.57/0.00 0.68/1.07 /0.74

Phone Calls 0.43/1.42 0.00/0.00 0.00/0.00 0.44/0.79 /0.76

is only one set of best-fit estimates. For the generated networks there are ten
best-fit estimates per parameter (since we generate 10 networks per real-world
network), for which we report the average in the table. We also compute a
2-tailed Student’s t-test and found that, for all parameters and all networks,
the generated networks’ (averaged) parameter is significantly different from the
corresponding real network’s best-fit parameter at the 99% level. This suggests,
intriguingly, that despite the distributional similarities between Fig. 2 (a) and
(b) (i.e., between the real and generated networks) the best-fit parameters are
significantly different in both cases.

Of course, this does not answer the question as to whether the functions that
we empirically discovered and suggested in Eqs. 1 and 2 are good approxima-
tions or models for the actual distributions. To quantify such a ‘goodness of fit’
between an actual frequency distribution curve (whether for the real network or
the generated networks) and the curve obtained by using the models suggested
in Eq. 1 or 2 (with best-fit parameter estimates), we compute a metric called
Mean Normalized Deviation (MND). This metric is modeled closely after the
root mean square error (RMSE) metric. Given an actual curve f and a modeled
curve f ′, defined on a common support9 (x-axis) X = {x1, x2, . . . xn}, the MND
is given by:

MND(f, f ′, X) =
1

|X|
∑

x∈X

|f ′(x) − f(x)|
f(x)

(3)

9 In our case, this is simply the set of adjacency factors.
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Note that the lower the MND, the better f ′ fits f on support X. The MND
can never be negative for a positive function f , but it has no upper bound.
Hence, a reference is needed. Since we are not aware of any other candidate
functional fits for the simplicial complex distributions in the literature, we use a
simple (but functionally effective) baseline, namely the horizontal curve y = c,
where c is a constant that is selected to roughly coincide with the long-tail of
the corresponding real network’s distribution.

In Table 2, we report not just the MNDs of the real and grown networks, but
also the corresponding reference MND. Because of the significant long tails in
Fig. 2, this MND is already expected to be low. We find, however, that with only
three exceptions (over both equations10) for the generated networks (and none
for the real networks) does the reference fit the actual distributions better than
our proposed models (through a lower MND), despite being optimized to almost
coincide with the long tail. Interestingly, Eq. 2 has (much) lower MND scores
for the real network compared to the grown networks, as well as the reference
function. As we noted earlier, Eq. 1 did not seem to be capturing the long tail
accurately. We hypothesize that a piecewise function, where Eq. 1 is only used
for modeling the short tail of the S*-complex frequency distribution, may be a
better fit. In all cases, investigating the theory of this phenomenon is a promising
area of investigation for complex systems research.

Fig. 4. The best-fit parameter a and λ in the estimated function of S*- (left) and T*-
complexes (right) in generated networks with different numbers of nodes (N) and edges
(M) configurations. P denotes the probability of TF step.

10 Specifically, on the Eq. 1 model, the MND’ (average over generated networks) is
higher for Email-Enron than for the reference; on Equation refeq2, the MND’ is
higher for both Uni. of Kiel and Phone Calls.
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In our exploration, we further visualized the relationship between the esti-
mated function’s parameter of two simplices distribution and the configuration
setting P of the generated network in Fig. 4. Intriguingly, despite variations in the
configuration of the generated networks, the best-fit estimates seem to exhibit
convergence behavior. Specifically, as different settings for the probability of
TF steps in network generation are applied, the parameter, such as λ in T*-
simplices distribution estimation, tends to stabilize towards a consistent value.
This observed consistency may hint at some inherent properties of the two high-
order structures. Such invariance across diverse network configurations not only
underscores the potential utility and reliability of the parameter estimation but
also points towards deeper, fundamental characteristics of these structures.

4 Conclusion

Simplicial complexes have become important in the last several years for model-
ing and reasoning about higher-order structures in real networks. Many questions
remain about these structures, including whether they are captured properly by
existing (and now classic) growth models. In this paper, we showed that, for two
well-known complexes, the PA-model with triad formation captures the distribu-
tional properties of the complexes, but the best-fit parameters are significantly
different between the grown networks and the real communication networks. It
remains an active area of research to better understand the theoretical under-
pinnings of our proposed functional fits for the simplicial complex distributions,
and also to deduce what could be ‘added’ to the growth model to bring its
parameters into alignment with the real-world network. We are also investigat-
ing the properties of other growth models with respect to accurately capturing
these distributions. Finally, understanding the real-world phenomena modeled
by these complexes, which are fairly common motifs in all five networks we stud-
ied, continues to be an interesting research avenue in communication (and other
complex) systems.
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