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Abstract. Numerous disinformation campaigns are operating on social
networks to influence public opinion. Detecting these campaigns primar-
ily involves identifying coordinated communities. As disinformation cam-
paigns can take place on several social networks at the same time, the
detection must be cross-platform to get a proper picture of it. To encode
the different types of coordination, a multi-layer network is built. We
propose a scalable coordination detection algorithm, adapted from the
Louvain algorithm and the Iterative Probabilistic Voting Consensus algo-
rithm. This algorithm is applied to the previously built multi-layer net-
work. Users from different social networks are then embedded in a com-
mon space to link communities with similar interests. This paper intro-
duces an interpretable and modular framework used on three datasets to
prove its effectiveness for coordination detection method and to illustrate
it with real examples.

Keywords: Coordination detection · User Alignment · Social
Networks

1 Introduction

Although disinformation campaigns always existed, they are now ubiquitous on
online social networks (OSN). Disinformation is understood here as purpose-
fully spreading misleading or inaccurate information in order to influence public
opinion. These campaigns use various techniques such as creating deepfakes, fake
news, or astroturfing. Some examples include the 2016 US presidential election
[8], the COVID-19 pandemic [25], or the recent Spamouflage Operation [3].

Among disinformation tactics, the focus here is on Coordinated Inauthentic
Behaviours (CIB) as defined by Meta [1]. It is based on using multiple social
media accounts to mislead the online debate [25]. These campaigns are seen as a
threat to freedom of speech and the war on them is intensifying. OSNs, such as
Facebook, are at least since 2018 studying how to prevent them and are regularly
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deleting troublesome accounts. Between 2017 and 2021, Facebook identified 17
billion fake accounts [23]. Similarly, independent and state-run organisations,
such as the EU Disinfo Lab, are fighting against disinformation by detecting
these campaigns and alerting the relevant authorities [2].

However, CIB detection is not an easy task. Users taking part in such cam-
paigns may be split into different OSNs [17,36], which complicates the detection
of the whole operation. In addition, coordination and inauthenticity are very
different concepts. Coordination can be defined as the organisation, intentional
or not, of actors to achieve common goals. On the other hand, a user is con-
sidered inauthentic if his behaviour falls outside the norms observed on the
network: for instance troll farms or bots. Consequently, these notions can be
unrelated: activists’ accounts on OSNs can spread disinformation on the same
subject without being coordinated, while a group of users can have a coordinated
but authentic behaviour, as coordination arises naturally from shared interests
or opinions. The issue of authenticity is not directly discussed here as the focus
is on coordination detection which is a mandatory first step in the process of
CIB detection. When needed, the inauthenticity is assessed manually but this
question has already been addressed in similar cases [29,34].

Contributions. In this article, a technical framework is proposed to detect
coordinated communities spanning across multiple OSNs. First, a multi-layer
network adapted to coordination detection is built from the collected interac-
tions between users. This network encodes the various behaviours and types of
coordination through graphs of interactions with various time thresholds. Then,
a scalable community detection algorithm, adapted from a consensus clustering
algorithm, is applied to this multi-layer network to get communities. Finally,
similar users from different OSNs are found by embedding them in a shared
latent space without using prior knowledge of identical users on several OSNs.
These users can then be used to link communities with shared interests.

2 Related Work

The detection of CIB is an understudied topic from an academic point of view
but may overlap with bot detection [18] or fake-news detection [37], including
multimodal and cross-platform methods [22]. Generative models can be used
to generate embeddings used for coordination detection [33] but are not easily
interpretable. A common way of doing such detection while keeping the inter-
pretability is to look at content propagation and to study graphs of interactions.
In this context, an OSN can be represented as a multi-layered network [28], a
widely used object [11]. Each action, such as mention or quote, is considered
separately to build interaction or co-interaction graphs [28,34]. In interaction
graphs, the edges represent the actions and are directed from the user to the
object of the action. In co-interaction graphs, the nodes represent the users and
two nodes are linked if their users performed the same action. The temporal
dimension of the co-interaction can be encoded in the edges of the graph. To
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this end, time thresholds are introduced. Two nodes are neighbours if the users
did the same action within a limited time period [34].

Various methods have been studied to detect communities on a multi-layer
graph. The simplest would be using a single layer, such as the co-retweet layer
[14], collapsing the multi-layer graph to a simple graph by summing the weight of
the edges [35] or creating a similarity graph using all the layers [4,15]. Classical
community detection algorithms such as the Louvain algorithm [7] can then be
used to detect communities [24]. These methods are straightforward but involve
a loss of information. To avoid this, community detection algorithms adapted to
multi-layer graphs can also be used but are often adapted to small graphs [16].

Features, such as the mean degree or the main K-Core number for each layer,
can be extracted for each community. Embeddings from deep learning models
could also be used to replace or to enrich feature vectors. These vectors are
finally used to train a classifier to detect coordination [29,34].

Coordinated campaigns are not limited to a single platform [17,36]. To the
best of our knowledge, cross-platform coordination detection methods exist but
their results cannot be easily interpreted [38]. In order to go further and perform
interpretable multi-platform community detection, the various multi-layer net-
works of each platform need to be aligned. To do so, a cross-platform network
user identification is done, which means finding users with the same identity on
different social networks. Digital footprints such as username, description, profile
picture, or even location can be used to find some correspondences [21]. Another
method is to perform graph alignment by using pre-aligned users across the net-
works, called anchors, and deep learning methods [13,19,20]. These aligned users
can then be used to find similar communities from different social networks.

3 Dataset

Community Detection Benchmark. A first dataset called politic-ie [15], was
used to evaluate the multi-layer community detection algorithm. This dataset is a
9-layer network created with 267K tweets from 348 Irish politicians and political
organisations split into 7 communities according to their political affiliation.

Cross-platform Dataset. Two datasets from different OSNs are used to study
community alignment. The first is the Pushshift telegram dataset [5]. This
dataset consists of 317M messages sent on 27,801 channels by 2.2M users between
2015 and 2019. The second is a Twitter dataset [12], which is composed of 88M
tweets from 150K users. This dataset was used as it is one of the largest directly
available, regarding the recent restrictions on Twitter dataset availability.

Both datasets contain messages on a wide range of topics. In order to have
comparable data volume, only messages sent in January 2019 are used. In addi-
tion, on Telegram, messages from chats are ignored, only messages from public
channels are kept. Messages without text and links are removed; these messages
often contained photos or videos that were not included in the original dataset.
After this filtering step, the Twitter dataset contains 421K messages from 32K
users and the Telegram dataset contains 624K messages from 9K users.
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Fig. 1. Overview of the proposed framework in the case of two OSNs

Ukraine War Dataset. To present an application of the method, the algo-
rithms were tested on another dataset related to an ongoing event. This dataset
is composed of about 1M messages from three different OSNs: Twitter (440K
Tweets), Telegram (424K messages), and VK (191K). This dataset is built from
messages containing a list of keywords related to the Ukraine War posted in May
and June 2023 and is composed mainly of messages in English and Russian.

4 Method

The method consists of two independent algorithms applied successively and
explained in the following sections. The results of both algorithms are finally
used to link communities with shared interests.

4.1 Multi-layer Network Community Detection

Multi-layer Network. Through OSNs, users can interact with each other by
performing a variety of actions such as posting messages, hashtags, or even links.
Here, an OSN is represented as a multi-layer network. Each layer is an undirected
graph corresponding to an interaction and a time threshold δ. Two nodes are
linked if they did the same action within δ seconds from each other. The studied
interactions are the following: co-message, co-share (for instance, co-retweet on
Twitter), co-hashtag, co-URL and co-domain. Two layers, the co-message and
co-domain layers are special. The co-message layer is based on an embedding
of the message obtained with the Sentence-Bert Model [30]. In this layer, two
nodes are linked if their embeddings have a very high cosine similarity value. This
layer is used to detect extremely similar content, such as copy and paste with few
modifications. The co-domain layer uses the domain name of the URLs instead
of the full URLs and can therefore detect users following similar media. The
weight of the edges is the natural logarithm of the number of co-interactions
within the time threshold between the two accounts. This reweighting avoids
having extremely heavy edges that could interfere with the general clustering.

The layers are filtered to remove natural interactions between users. First,
co-interactions too often performed are ignored: retweeting a mainstream article
does not provide useful information about coordination as it is widely shared.
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Then, the lowest weighted edges are removed from each layer to suppress weak
or spurious connections. To avoid using an arbitrary weight threshold, a fixed
percentage of edges is removed from each layer. Finally, nodes of degree zero are
removed from each layer. As a result, many nodes are not present on all layers.

Community Detection. The final clustering is performed on all the nodes
of the multi-layer network, i.e. the union of the nodes of all layers. Given the
large number of nodes, the community detection algorithm needs to be fast and
memory efficient so each layer is first processed independently using the Louvain
algorithm [7]. For each layer l, it returns of partition function πl such that, for a
node x, πl(x) = k means that, in the layer l the node x is in the cluster k. Then,
an Iterative Probabilistic Voting Consensus (IPVC) algorithm is used [26]. This
algorithm aims at finding a clustering, called consensus clustering, by minimising
the average probability that two nodes do not belong to the same community in
a layer if they are from the same community in the consensus clustering (see 1).

π∗(x) = arg min
i∈[[1:m]]

L∑

l=1

P (πl(x) �= πl(x′)|x′ ∈ X, π∗(x′) = i) (1)

with π∗ the consensus clustering, m the number of clusters, L the number of
layers and X the set of nodes. This method aims at retaining as much information
from each layer as possible while being adapted to a large amount of data.

As layers do not have the same importance to detect coordination, the arith-
metic mean of the probabilities for each layer can be weighted. Weights are
selected as the values of the first singular vector of the distance matrix between
the clusterings of each layer. A constant based on the minimum value is finally
added to ensure that all weights are strictly positive. The distance used is the
Network Partition Distance [9], which corresponds to the fraction of nodes that
best-matching communities in two layers do not have in common. This matrix
shows which layers provide different coordination information. Its first singular
vector sums up the relations between the layers. A layer containing information
different from the others will have a higher weight and thus a greater impact.

4.2 Cross-Platform Community Alignment

The second step is to match up similar communities. Here, communities are
considered similar if they have similar users.

Similarity Graph. The method used is inspired by the Sim-Clusters algo-
rithm [31]. For each network, a bipartite graph composed of nodes representing
accounts and domain names is created. The weight of an edge between an account
and a domain name corresponds to the number of URLs containing the domain
name posted by the account. Nodes representing domains that are too common
or that do not carry information, for example, URL shorteners or OSNs (such
as twitter.com), are removed from the graph. Finally, the edges are normalised
so that each node representing a user is of degree one.
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Then the domain similarity graph is computed. This graph is a weighted undi-
rected graph whose nodes are domain names. The edges are weighted according
to the cosine similarity between the columns of the adjacency matrix of the
bipartite graph. Edges with weight inferior to a threshold are discarded to select
meaningful links and remove noise and spurious connections.

Common Domain Latent Space. Users on various OSNs often post links
from identical domains, which means common nodes in similarity graphs. The
set of pairs of nodes representing the same domain name on different OSNs is
noted N . These nodes are used as anchors to compute a common latent space
for all similarity graphs. To do so, similarity graphs of each OSN are linked
by adding edges between pairs of nodes, leading to a cross-platform similarity
graph.

An embedding of the nodes of this cross-platform similarity graph is then
computed using Spectral Embedding [6]. The embedding of a node n is noted
en. This relatively simple embedding allows discrimination of nodes present in
different connected components and does not involve any prior training. As the
pairs of nodes of N , represent the same domain name on different OSNs, their
embedding must be highly similar. To maximise this similarity without altering
the one between embeddings in a given OSN, the embeddings of each OSN are
multiplied by an orthogonal matrix O∗, computed by solving the Orthogonal
Procruste Problem for the embeddings of the anchor nodes [32]:

O∗ = arg min
OOT=I

∑

(n,m)∈N

||Oen − em||2 (2)

User Embedding. The user embeddings are defined as the frequency-weighted
average of the embedding of the domain names they posted. These embeddings
are only computed for users who posted more than a minimal number of messages
with links. The embedding of users with too few messages might be of poor
quality if these messages do not reflect their usual behaviour.

Community Linking. Pairs of users with high similarity across OSNs, or
from the same OSN can be created. These pairs are then used to quantify the
proximity between the communities previously detected. The similarity measure
between two communities is measured with the proportion of users paired in
each community and the number of pairs over the number of users paired. These
metrics illustrate the density of connections between the communities.

4.3 Overview of the Framework

An overview of the framework for two OSNs is shown in Fig. 1. First, for each
OSN a multi-layer network is created from the various co-interaction. Then com-
munity detection is performed on each network on each layer and combined using
the IPVC algorithm. Then the similarity graphs, defined Sect. 4.2, are also cre-
ated for each OSN. These graphs are linked through anchor nodes to create a
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cross-platform similarity graph which is then embedded using Spectral Embed-
ding. The similarity between the embeddings of anchor nodes is maximised by
using an orthogonal transformation. An embedding of the users is then obtained
by computing the average of the embeddings of the domain names. Finally, com-
munities sharing users with highly similar embeddings are linked.

Table 1. Clustering results with 1000 simulations on the politic-ie dataset

Clustering method AMIS ARS

Single (best layer) 0.835 ± 0.016 0.891 ± 0.012

Single (worst layer) 0.035 ± 0.025 0.034 ± 0.024

Collapsed 0.761 ± 0.053 0.770 ± 0.092

Similarity 0.859± 0.008 0.893 ± 0.003

Consensus 0.852 ± 0.025 0.908± 0.038

5 Results

Community Detection Benchmark. The method presented in Sect. 4.1 was
used on the dataset politic-ie. To assess the performance of the method, two
measures were computed on the detected communities: the Adjusted Mutual Info
Score (AMIS) and the Adjusted Rand Score (ARS) [10]. These two scores are
commonly used to measure agreement between partitions, and are here adjusted
(the expected value is zero when the partitions are made at random). Other
community detection methods were tested such as: using the Louvain algorithm
on a single layer, collapsing the network by summing edges’ weights of each layer
before using the Louvain algorithm, or computing a similarity graph [4].

Each method was applied 1000 times to get means and standard deviations
(Fig. 1). The quality of the community detection using a single layer is highly
variable, proving the benefits of using a multi-layered approach. The method
using the collapsed graph is worse than the method with the best layer but easier
to use, as there is no need to choose a layer. Similarity and consensus methods
provide the best results and their performances are similar and depend on studied
metrics. Our consensus method can thus be used on multi-layer networks.

Multi-layer Network. In this paragraph and the next two, the dataset used
is the Cross-platform Dataset. Various layers are presented in Fig. 2: two graphs
corresponding to co-domain, respectively with a time threshold of an hour and
a day, the third graph represents co-mention with a time threshold of a day.
As expected, the co-interaction graph with a time threshold of an hour has a
lower density than the others. Fewer interactions occur within a time threshold
of an hour than within the course of a day. The information on this graph is
therefore important, it indicates more coordinated users. However, this graph
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also contains fewer nodes, the other graphs are needed to identify the complete
communities. The graphs of co-mention and co-domain also help in this way. By
combining these graphs, more finely tuned communities can be identified.

Fig. 2. Various graphs of co-interaction computed on the Twitter dataset of the Cross-
platform dataset. The node colours correspond to communities obtained with the Lou-
vain algorithm. Left. Co-domain in an hour Middle. Co-domain in a day Right.
Co-mention in a day

Cross-platform Domain Name Embedding. Computing the embeddings is
the next step. To have significant similarity measures between domain names,
only names posted more than 10 times in our datasets are used to create the
similarity graphs. This results in a graph with 1048 nodes for Twitter and 584
nodes for Telegram. These two graphs are then linked using 105 pairs of anchor
nodes before doing a spectral embedding. After the orthogonal rotation, the
mean similarity value between the two embeddings of an anchor is 0.999 and the
minimal similarity is 0.992. A t-SNE of the embeddings is presented in Fig. 3. In
addition to anchors embeddings, other users’ embeddings from different OSNs
appear to be highly similar, some examples can be seen at the top of Fig. 3.
A post-hoc study shows that these nodes represent users with shared interests
which validates the approach. In some places, for example the left of Fig. 3, only
nodes from one OSN are present1. This can be explained by the fact that the
topics covered by the dataset do not totally overlap.

To ensure that the embeddings are meaningful, the domain name extensions
are studied. The embeddings corresponding to the 10 most frequent domain name
extensions (except .com, .org, and .net), are shown in Fig. 3. The embeddings
appear to be gathered by extension, for example at the bottom with the .ir
extension or at the top with the .de extension. They are therefore relevant, as
they enable identification of the geographical origin of a website. This gives us
good hope that both graphs are embedded in a common meaningful space.

Community Linking. Finally, communities from the two OSNs can be matched
using the metrics detailed paragraph 4.2. The community on Telegram speaks
1 It should be noted that once communities have been matched, OSNs communities

structures can be studied in detail for other purposes.
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Russian, while the Twitter one speaks English. Both communities discuss about
streaming video games and PlayStations. These communities share common
interests which are detected despite language differences.

Two metrics are used to assess the quality of matching. Messages related
to co-interactions in each community are extracted and embedded using the
Sentence-Bert model [30]. This embedding is then used to compute cosine sim-
ilarities between communities. The average similarity between this gamer Tele-
gram community and other communities on Twitter is 0.02 (with s.d. of 0.08),
meanwhile, the similarity between the two matched communities is 0.44.

Fig. 3. t-SNE of the domain names embeddings obtained with two OSNs on the Cross-
platform Dataset. The metric used is the cosine similarity. Only domain name embed-
dings whose extension is among the 10 most frequent are kept. Left. OSNs of origin
of the domain name. Right. Extension of the domain name

A similarity between two users can also be defined as the maximal cosine
similarity between the messages of these users. This user similarity can then be
averaged to obtain a similarity between communities. The community similarity
between the two linked communities is 0.215 meanwhile the average similarity
between one of the linked communities and the communities of the other OSN
is 0.072 (with s.d. of 0.047).

These metrics confirm that the heuristic used to match communities is mean-
ingful from a semantic point of view but the alignment performed goes further
than this. Users, and communities, that are brought together are those sharing
information sources and therefore narratives, hence the semantic similarity.

Detected Coordination Example. The framework was also applied to the
Ukraine War Dataset. All the layers presented in Subsect. 4.1, or their equivalent
on the corresponding OSN, coupled with three time thresholds (a minute, an
hour, and a day) were used to create the multi-layer network. On each OSN,
several types of coordinated communities were detected such as:

– Bot-like users sharing a similar narrative at the same time. This community
creates a clique in the co-message layer with a threshold of a minute. The
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coordination is confirmed by the near-identical user description. These facts
suggest a communication agency or a troll farm.

– A community of Russian embassy accounts and unknown users sharing pro-
Russian content. In this case, the coordination appears because of the heavy
edges on the various graphs with thresholds of an hour or even a day.

– Users whose only activity is to relay articles published by a given newspaper.
These users are neighbours in the co-URL layers.

The embedding of domains and users also helps identify useful connections.
For example, in the case of domain embeddings, American conspiracy websites
have highly similar embeddings. Hence, at the user level, people who regularly
promote these media have similar embeddings. Linking the coordinated commu-
nities to which these users belong, brings together communities with common
narratives. When these narratives are part of disinformation campaigns, it is
legitimate to assume that these linked communities are coordinated. Another
interesting example is the fact that the embeddings of journalists are very simi-
lar to the embeddings of the newspaper they are working for. These embeddings
therefore connect the different accounts of the newspapers and their journalists
on the different OSNs. In this case, the coordination is obvious.

6 Discussion

In this article, the process of creating a multi-layer network encoding the vari-
ous types of coordination was presented. Communities detected on various OSNs
were then matched using domain similarity graphs built from the links posted by
the users. Our clustering method was proven to be reliable on a labelled dataset.
Then, two cross-platform datasets were used to illustrate the coordination detec-
tion and the community matching with examples. Finally, various metrics were
introduced to demonstrate the effectiveness of the method.

Different types of coordination have been detected between journalists, offi-
cial entities, or users suspected of being bots. In addition, coordinated commu-
nities on different networks have been brought together as they post links from
similar websites. The examples shown were players from different countries who
spoke different languages, conspiracy theorists, or journalists and their newspa-
pers. Once communities have been linked, the various co-interactions between
the users and their temporality can easily be observed on the multi-layer graph.
This observation enables an analyst to identify the type of coordination and thus
assess its authenticity.

However, this method does not detect the source of coordination. For exam-
ple, if a user asks others to retweet him. The coordination related to the retweets
can be detected but the user who posted the initial tweet will not be included in
the community. Moreover, this method does not detect recurrent behaviours or
co-interaction with a time span greater than the time threshold. To solve these
problems, layers could be added to the multi-layer network, at the expense of
temporal and spatial complexities of the method.
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As stated in Sect. 2, once communities have been detected, features can be
extracted to get an embedding per community. These embeddings have then
been used, in other articles, to discriminate the communities into two cate-
gories: coordinated or uncoordinated communities [34]. This classification would
complete the CIB detection process. Furthermore, training an explainable clas-
sifier, such as an Explainable Boosting Model [27], would allow to have a better
understanding of the characteristic and of how these campaigns work.

Finally, the proposed framework is extremely modular. The network layers,
clustering and embedding algorithms or the community matching methods can
be freely modified to adapt the method to the available resources.
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