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Abstract. Understanding how cooperation spreads across social groups
is fundamental in predicting how people will interact with each other in
relation to the use and exploitation of the resources they are provided
with. When social interactions can be mapped to a network, questions
arise about the impact of the connection structure which can benefit
from the literature developed for a dynamical systems. One model that
is widely used as a model to understand the dynamics of cooperation is
the replicator equation. While research has been proposed to adapt that
equation to a structured graph, we offer a straightforward approach by
benefiting from the networked SI diffusion model and replicator equa-
tion to create a replicator equation on a network with state-dependent
diffusive constant. This approach can be applied to any network struc-
ture and features separation of the game and the information diffusion
mechanism. The equilibria towards which the system evolves are here
characterised and discussed.
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1 Introduction

Promoting cooperation in populations of selfish individuals is an extensive field
of research. Numerous studies have used well-mixed or fully connected networks
as a model [15]. At the beginning of the 21st century, it was recognised that
some systems are well suited to be modelled as networks, which prompted the
investigation of the evolution of cooperation in structured networks [8].

A completely connected network, where individuals represented by the ver-
tices of the graph and the edges specify who interacts with whom, can also
represent a well-mixed population in which everyone can interact with everyone
else [5]. However, this does not exploit the flexibility of using a network to cap-
ture the variety of social connections [13] influencing the game. Because of that,
other kinds of simple networks were proposed in this context, including trees,
star networks [16], bipartite and line graphs [3].

A lattice network was proposed in [18,22] as the model, which was appropri-
ate to capture emerging behaviour in the classical prisoner dilemma [10], as also

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1142, pp. 362–370, 2024.
https://doi.org/10.1007/978-3-031-53499-7_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-53499-7_29&domain=pdf
https://doi.org/10.1007/978-3-031-53499-7_29


Replicator Evolutionary Dynamics and Diffusive Models 363

mentioned in [4]. The more frequent use of lattice networks followed from using
a uniform, yet not fully mixed, environment in which most of the models origi-
nating in statistical physics can be used to describe the emergence and evolution
of cooperation [12]. Despite their dissimilarity to real social networks, they offer
a beneficial starting point to investigate how structure affects the development
of cooperation [12]. Beyond regular graphs [4], more complex network structures
have been considered, including the random geometric network [5] and the scale-
free network [17]. Although more rare, some games dynamics and control studies
have considered generic network structures [16].

Replicator dynamics is widely used in the evolution of the strategy and the
literature offers a number of enhancement and variation to the original formu-
lation. It works on the assumption that the strategies adopted by players who
are successful in the game are adopted by players who are less successful. The
probability of switching strategy is a function of the difference in player’s payoff
average between each strategy in the game. The strategy of players with greater
fitness or reward is replicated by those with lower achievement in the game as
the game is played repeatedly [20].

Related to structure, the dynamics of the conventional replicator assumes
that the players are engaged in a game and the adoption of global strategies.
Each player engages with a representative sample of the population, and if a
strategy produces a payoff that is higher than the average, the strategy will
be chosen and spread[6]. Understanding that the game could be played on a
structured population with a general network, the individual best strategy may
be different from player to player, as each engage in games with a different set of
neighbours. This, motivates us to consider a multiplier, function of the perceived
payoff from choosing a strategy, to model its dynamics in a general network.

Recently, there has been an increasing interest in the research community in
studying replicator equation on graph. One of the graph structures is the regular
graph [11] which has been considered also in multiplex graphs [14]. Another
approach is to modify the regular graph into a modular regular graph [2]. Beyond
that, the replicator equation has been used in conjunction with different types
of network, including random regular networks, Erdos-Rényi networks, Watts-
Strogatz small world networks, and Barabási-Albert scale-free networks[19].

Application to even more general graphs has been attempted in [7][21]. This
offers some benefit to understanding the impact of network structure on evolu-
tionary dynamics. However, It is quite popular to assume the strategy change
happens simultaneously, with consequent overlooking of dynamic aspects of the
game and information diffusion. Understanding this potential for contribution,
we develop a model to capture evolutionary dynamics that can be implemented
in any population structure with some additional features.

The model mimic the shape of the usual susceptible-infected (SI) diffusion
model on a network. Relating it to the structure of the replicator equation, the
SI model’s infection rate is defined based on the payoff matrix of the replicator
model and the payoffs the players acquire from it. This combination of the repli-



364 R. Aurachman and G. Punzo

cator equation and the susceptible-infected (SI) model hints at mechanisms of
information diffusion in the evolution of the strategy on a general network.

There are some novel benefits of the combination. First, it becomes possible
to separate the game and information diffusion process using this new model. The
effect of the game and the diffusion process toward cooperation can be better
understood separately. As this can also be extended into multilayer network
games, it opens up the development of a novel model that uses other diffusion
processes or opinion dynamics and other game types.

2 The Model

The network is modelled as a graph G = (V,E). The node vi is in the set of
nodes V . It can be written as

vi ∈ V. (1)

E is a set of ordered pair of nodes, also known as edges, that is ε ⊆ υ × υ.

Every node will have specific interactions with other nodes based on the con-
nection structure, as captured by the adjacency matrix A = [aij ]. It is necessary
to add the new variable of the neighbour set Hi, which indicates the neighbour
of i.

We consider a Public Goods game with continuous strategy set x := [0, 1]
mapping the extent by which each node is contributing (hence cooperating) to
the public good. With xi indicating the amount by which a node cooperates,
1 − xi will be the proportion of defection. This approach is often referred to as
individual-based mean field [9], where the state variable can be intended as a
continuous variable or as the probability that the node is in one of the binary
states 0 (defection) or 1 (cooperation). In each round of the game, interactions
will incur some payoff for each player or agent, which is the function of xi(t) and
xj(t) as written in Equation

πi(t) = f(xi(t), xj(t)) where vj ∈ Hi. (2)

After receiving the payoff, each player will update their strategy. This change
is modelled in the concept of strategy update dynamics, which depend on strat-
egy and payoff in the neighbourhood. It is written as follows;

ẋ(t) = l({xj(t), xi(t), πi(t), πj(t) : i, j ∈ Hi}), (3)

where the initial condition is xi(0) and the control is ui(t) for each agent
i ∈ V .

3 Replicator Equation Model Development

3.1 Related Model

Before the game dynamics is introduced, let us introduce the dynamics of a well-
known epidemic model, known as Susceptible-Infected (SI) model. In fact, we
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shall note how the diffusion of cooperation within the network can be modelled
as a pandemic, and in particular by means of the SI model. For a constant
size of the population, only the fraction of infected can be considered, with the
susceptible being the complement to 1 to it. The differential model in scalar and
vector form is [1]

ẋi(t) = β(1 − xi(t))
n∑

j=1

aijxj(t), (4)

ẋ(t) = β(In − diag(x(t))) · Ax(t). (5)

The ak
ij has a value 0 or 1, which 1 means that there is an edge between vi

and vj in the layer k. This is the networked version of the basic SI model in a
well-mixed population, which is expressed as

ẋ = β · (1 − x) · x. (6)

It comes from the idea that the cooperation condition is transformed from its
fraction of defection multiplied by its interaction with the neighbour’s fraction
of cooperation, summed up.

Understanding the nature of replicator equation and network SI model, there
is an opportunity to combine these two functions to model replicator equation
in a general network. The connection between two models is as follows:

– Differential equations can represent the replicator and SI epidemic models
with continuous time dynamics,

– The population is divided into many segments or groups in both models, often
called compartments in the SI model,

– In both models, the rates of change depend on how people in the population
interact with each other,

– Both models have equilibrium points that represent stable or steady-state
conditions.

– Both models can be examined using related mathematical methods, such as
stability analysis, to determine how the system behaves around equilibrium
points.

Considering the similarity and connection between two models, the following
section will explain the combination process of the two models.

3.2 Combining the SI Model and Replicator Equation

The payoff matrix that will be used for cooperation and defection is
[
P Q
R S

]
. (7)

The basic equation of replicator is [5]

ẋ = x · (fc − f̄) (8)
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where,
f̄ = x · fc + (1 − x) · fd . (9)

The equation introduces new variables fc, fd, and f̄ which mean the average
payoff of the cooperator, the defector, and the population, respectively. Based
on Eqs. 9 and 8, the modified replicator equation will be:

ẋ = x · (fc − x · fc − (1 − x) · fd), (10)

or,
ẋ = x · (1 − x) · (fc − fd). (11)

The equivalence between an SI model in Eq. 6 and the replicator Eq. 11 becomes
evident when considering

β := fc − fd. (12)

Understanding the similarity between the networked SI model in Eq. 6 and
the replicator equation for the evolutionary game in Eq. 11, the networked evolu-
tionary game can be modelled as a cooperation contagion process. Rather than
representing infectious, the variables x represent cooperation and 1−x represent
defection. The β value is probability of contagion of cooperation, which represent
how superior cooperation compared to defection, and influenced by the amount
of cooperator (namely, x)

3.3 The Network Structure of Information Diffusion

Using the concept from [1], (1−x) ·x can be a diffusion process in the SI model.
Therefore, it means that 1 − x is a percentage of defection in the nodes. It may
change by the proportion of cooperation x with its neighbour, multiplied by the
contagion factor β. The new equation will be

ẋ(t) = β(In − diag(x̄(t)))Ax̄(t) = (fc − fd)(In − diag(x̄(t)))Ax̄(t). (13)

where x̄(t) is the average value of x according to its neighbour at time t or

x̄(t) = diag−1(A1)Ax(t). (14)

Because the information dissemination process will include not only the
neighbour but also self-reinforcing belief loops A will be given by the adjacency
matrix added with the identity matrix or A = A∗ + I.

3.4 Network Structure on Game

As has been introduced in Eq. 12, we assume that the rate at which coopera-
tion spreads depends on the expected payoff difference between cooperation and
defection. In particular, in well-mixed population, a player will expect a payoff
from cooperating equal to fc = x ·P +(1−x) ·Q, which x considers the fraction
of population expected to cooperate and 1 − x expected to defect. Likewise, the
expected reward from defection will be fd = x · R + (1 − x) · S.
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Introducing the role of network structure on β, will modify the equation to
become:

βi = fc − fd =
∑

j

[xj · P + (1 − xj) · Q] − [xj · R + (1 − xj) · S]. (15)

This can be simplified to become

βi =
∑

j

[xj · (P − R) + (1 − xj) · (Q − S)]. (16)

Equation 16 shows the possible role of the network structure in the game. The
variable β represents the cooperator payoff minus the defector payoff. Equation
xj(P − R) means that the player i has the value β which is the result of payoff
of cooperation (P) minus payoff of defection (R), multiplied by xj . The variable
xj is the fraction of cooperation of the neighbour of i. The same applies for
(1 − xj)(Q − S) but for the defecting neighbour. When the neighbour is related
to the network structure, Eq. 16 can be modified into

βi =
∑

j

aij [xj · (P − R) + (1 − xj) · (Q − S)]. (17)

In the matrix form it will become,

β = [A(x · (P − R) + A(1 − x) · (Q − S))] . (18)

Then the complete equation from 18 and 13 will be

ẋ(t) = x̄−x+[Ax · (P − R) + A(1 − x) · (Q − S)]�(In−diag(x̄)) ·Ax̄(t), (19)

where � is the hadamard product between two vectors or two matrices.

4 Results

We can then offer some results about the system’s equilibrium through numerical
simulations. After experimenting with other kinds of networks which produce
consistent results, We present a result from the Erdos-Renyi network with ten
nodes. The initial value of x are equally spread between 0 and 0.9 A key difference
with the classical SI dynamics is in the value of β = fc − fd, which in this
case is between -1 and 1. This is because in the SI model, β is a probability
of transformation 1 − x into x. Therefore, it should not be greater than 1 for
positive value of ẋ (Increasing x) and should not be less than 1 for negative
value of ẋ (decreasing x). In other words −1 ≤ β ≤ 1. Therefore, |Q − S| ≤ 1
and |P − R| ≤ 1.

The simulation is set as an anticoordination game. For the anticoordination
game, Q and R in the payoff matrix should be the highest value. Therefore,
0 ≤ max{Q,R} − min{P, S} ≤ 2
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Looking at Eq. 19, the payoff matrix component that affects ẋ is not P ,Q,R,
or S individually, but P −R and Q−S. It is consistent that if the value of P and
R is changed but the value of P − R remains the same, the equilibrium point
will not change. The same applies for Q − S. The equilibrium point will remain
the same even if the pay-off matrix is changed, as long as P − R and Q − S are
the same.

Thus, we suggest that the equilibrium point is related to the ratio between
the difference of P ,R and the difference of Q,S. Or in other words,

x(T ) ∝ |Q − S

P − R
|. (20)

The simulation also shows that the higher |Q−S
P−R | will make the equilibrium

of x higher. The result of the simulation using some value of |Q−S
P−R | is shown in

Fig. 1.

Fig. 1. Value of x using dynamical equation Eq. 19 where value of |Q−S
P−R

| equal to (a)
0.1,(b) 1, and (c) 10.

5 Conclusion

The replicator dynamics, originally implemented in a well-mixed population, is
one of the most widely used methods as is or developed with some enhancement
and variation. We propose a new approach to model the replicator equation
in a general graph. Although some of the previous findings merge the game
and strategy diffusion process, we try to separate those. Taking advantage of
the replicator equation and SI model, the mechanism of the game and strategy
diffusion process can be better understood.

This modelling approach opens up possibilities for future development. With
the separate mechanism of game and information diffusion, it can be extended
into a two-layer network. The diffusion process can also be exchanged with
another spreading mechanism in the network, such as the opinion dynamic and
another more complex model and mechanism.
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