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Abstract. We present two new seeding strategies for the Influence Max-
imization Problem for Viral Marketing, based on graph connectivity and
spectral graph theory. Specifically, the first approach CVSP uses the cut
vertices and the separation pairs as the starting seeds. The second app-
roach ER uses the vertex ranking based on the effective resistance values
of the incident edges. CVSP and ER are efficient, and can be imple-
mented in linear and near linear time, respectively.

Experiments using the Independent Cascade diffusion model with
real-world data sets show that our new seeding strategies perform sig-
nificantly better than the existing methods, such as centrality measures,
k-core and the state-of-the-art IMM, in particular for the scale-free net-
works with globally sparse, locally dense clusters with small diameters, in
the final influence spread. Moreover, visual analysis enables more refined
comparison between the methods, demonstrating that our methods have
more globally wide influence spread pattern than other methods with
locally dense influence spread pattern.

Keywords: Influence Maximization · Viral Marketing · Network
Visualization

1 Introduction

In today’s fast developing technology and increasing information availability,
network models are growing increasingly complex. Coupled with the substantial
growth of social media in recent years, businesses have realized the potential of
analyzing these social networks, particularly with the notion of Viral Marketing.

Through Viral Marketing, a business’ marketing message is transmitted by
word-of-mouth exchanges in an exponentially growing manner [10]. The Viral
Marketing Strategy can be extremely effective because it is crucially based on
trust within individuals’ social network [28]. In this way, influence and product
adoption can spread from a few key seed influencers to a large portion of users
in the network. Analyzing the spread of influence of Viral Marketing may also
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have applications in other areas, such as epidemiology, since Viral Marketing is
considered analogous to the transmission of infectious disease in an epidemic.

Unfortunately, choosing these initial seed users such that influence is max-
imized, known as the Influence Maximization Problem (IMP), is shown to be
NP-hard [11]. It is difficult to efficiently choose the optimal seed set, especially
with a limited budget [5]. Nevertheless, a number of heuristics and algorithms
are presented in the literature, see Sect. 2.3 for details.

In this paper, we introduce two new seeding strategies for the IMP problem.
The first strategy CVSP is based on the connectivity of the graph, i.e., the
decomposition from one-connected graphs into biconnected components, and
then from biconnected graphs into triconnected components [6,7]. Specifically,
we use cut vertices as well as separation pairs as the starting seeds. The second
strategy ER is based on the spectral graph theory. Specifically, we use a vertex
ranking defined by the effective resistance values [24,25].

Extensive comparison experiments using real-world data sets demonstrate
that our new seeding strategies outperform the existing methods [3,8,14,17,20],
such as various centrality measures, k-core index as well as the state-of-the-art
IMM [26], in particular for the scale-free networks with globally sparse, locally
dense clusters with short diameter.

Specifically, we experiment using the most widely used diffusion model, Inde-
pendent Cascade (IC), and compare the final influence spread rate with existing
seeding strategies. For scale-free graphs with small diameters, ER and CVSP out-
perform, with the final influence spread rate of 71.9% and 67.6% respectively,
compared to IMM with 50.5%. For biological networks with long diameter, IMM
performs the best with the final influence spread of 52.1%, followed by ER and
CVSP with 35.1% and 29.5%, respectively.

Since cut vertices and separation pairs can be computed in linear time [6,7],
and the effective resistance values can be computed in near linear time [24], our
new seeding strategies CVSP and ER are not only effective, but also efficient,
matching the near linear time complexity of IMM [26]. Furthermore, visual anal-
ysis allows more sophisticated comparison between the methods, showing that
our methods have more global influence spread pattern than other methods with
local influence spread pattern.

2 Related Work

2.1 Influence Maximization Problem

The Influence Maximization Problem (IMP) [13] involves finding a set of seed
vertices in a network such that the eventual spread of influence under a stochastic
diffusion model is maximized. The problem is shown as NP-hard [11] and has
specific applications in Viral Marketing [4,19,22].

Roughly speaking, the spread of influence in a network under a diffusion
model is modelled as follows: (i) A set of k seed vertices are chosen and activated;
(ii) A diffusion model, which imitates the spread of influence, repeatedly runs
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through a new set of activated vertices at each diffusion step, until the spread
converges (i.e., no new vertices are activated). Let I(S) denote the number of
activated vertices when the diffusion process finishes using the initial set of
activated vertices, the seed set S. Let G = (V,E, ω) be a graph with a vertex
set V and the edge set E, where ω(u, v) represents the weight of an edge (u, v).
Let M be a stochastic diffusion model with a positive integer k, representing the
budget. Formally, the Influence Maximization Problem asks to find a seed set
S∗ such that S∗ ⊆ V ∧ |S| = k maximizes E[I(S)].

2.2 Diffusion Models

The most widespread influence propagation diffusion models are the Independent
Cascade model and the Linear Threshold model, which are used as a general
framework for IMP [12].

The Independent Cascade (IC) model generalizes the Susceptible-Infected-
Recovered (SIR) model, one of the most ubiquitous diffusion models [23]. In
these models, all vertices are initially susceptible (able to be infected) except for
the infected vertices (the initial seed vertices), which only have a single chance
to infect (influence) their neighbors.

At each time step k, an infected vertex u will independently infect each of
its susceptible neighbors v with probability β in the SIR model, and βu,v in the
IC model. At step k + 1, every infected vertex from the previous step enters
the recovered state. This diffusion process ends once there are no more infected
vertices and thus no more possible activation. The spreading influence of the ini-
tial seed set is defined as the number of resulting recovered vertices [20]. The IC
model is often used to simulate influence propagation and it models, for example,
how independent recommendations and reviews may induce a purchase [15].

In contrast, the Linear Threshold (LT) model describes a process in which
all vertices that were active in the last time step remain active, and thus each
vertex’s tendency to become active increases monotonically [13]. This is in line
with the notion that an individual’s perceived value of a product increases as
more people in their network adopt the product.

2.3 Seeding Strategies for the IMP

Kempe et al. [13] introduce the two diffusion models IC and LT, and then show
that under these two models, the IMP problem is NP-Hard. They propose a
greedy algorithm with a guarantee that the final influence spread is within(
1 − 1

e − ε
)
, where ε is a tunable parameter. However, the greedy algorithm

has poor scalability. Leskovec et al. [16] present the CELF algorithm, using the
submodularity properties of the influence spread function for both IC and LT
models to terminate the greedy algorithm early, with a 700 times speed up with
the same performance guarantee.

Since then, a plethora of methods have been developed to solve the IMP,
either heuristics or with performance guarantees for the sake of runtime. For
example, IMM by Tang et al. [26] is one of the most well-known algorithms
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considered as the state-of-the-art, based on the Reverse Influence Sampling (RIS)
framework by Borgs et al. [2], which runs in near linear time, i.e., O((k + l)(n +
m) log n/ε2), where l and ε are tunable parameters, n = |V |, m = |E|, k = |S|.
IMM can return a

(
1 − 1

e − ε
)

approximation with at least 1 − 1
nl probability.

Since the IMP is NP-hard, many heuristic algorithms are presented, where
the typical method is to rank all vertices according to a certain measure and
select the k highest ranking vertices as the initial seed set. With the goal of
identifying the most important and connected vertices, natural measures to uti-
lize are centrality measures and k-core index from social network analysis [27].

The Degree centrality of a vertex, defined as the number of adjacent vertices,
is a simple but intuitive index used to identify a vertex’s influence. Despite
its simplicity and low computation cost, Liu et al. [17] report that when the
spreading rate is small, Degree centrality outperforms Eigenvector centrality and
the k-core index. However, Chen et al. [3] argue that Degree centrality has low
accuracy and propose the Semi-Local Centrality (SLC) measure, which considers
both the nearest and the next nearest neighbors of a vertex.

The Closeness centrality of a vertex is defined based on the sum of the short-
est paths from the vertex to all the other vertices, to reflect how efficiently
a vertex exchanges information with others [20]. Closeness centrality has been
shown to outperform Degree and Betweenness centrality in terms of spreading
influence [3]. However, computing the Closeness centrality requires significantly
more time (i.e., O(n3) time [9]) than other measures, such as Degree centrality
and k-core, its practical application can be limited.

The Betweenness centrality of a vertex is defined based on the number of the
shortest paths that pass through the vertex, representing its potential power in
controlling the information flow in a network. In contrast to Chen et al. [3], Lu et
al. find that Betweenness centrality outperforms Closeness centrality in terms of
the ratio of final recovered (infected) vertices [20]. Unfortunately, the high com-
putational complexity of Betweenness centrality (i.e., O(n3) for general graphs;
for sparse graphs, O(nm) time for unweighted graphs and O(nm + n2 log n) for
weighted graphs [9]) means that for large networks, its scalability is infeasible.

The k-core of a graph G is the maximal subgraph where all vertices have
degree at least k. Specifically, the k-core decomposition assigns an integer (core-
ness) ks to each vertex, representing its location in the network based on its
k-shell layer, where a vertex with larger coreness indicates that it is located
in a more central, core position. The efficiency (i.e., linear time [1]) of k-core
decomposition allows it to be applied to large-scale networks. Moreover, Kitsak
et al.[14] find that the most efficient spreaders in the SIR model are those in
the core of the network as identified by the k-core analysis, rather than vertices
that are highly connected. However, Liu, et al. [18] find that due to the low
granularity of k-core decomposition, higher k-core vertices often link locally to
other vertices within the shell and, as such, are not good spreaders.
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3 New Seeding Strategies

3.1 CVSP: Connectivity-Based Seeding Strategy

Our first strategy, CVSP (Cut Vertex Separation Pair), is based on the connectiv-
ity of the graph, specifically the decomposition from one-connected graphs into
biconnected components, and then from biconnected graphs into triconnected
components.

A cut vertex of a connected graph G is a vertex whose removal from G
increases the components in G, i.e., disconnected [6]. Similarly, a separation pair
of a biconnected graph G is a pair of vertices whose removal from G increases the
components in G, i.e., disconnected [7]. Note that the cut vertices and separation
pairs can be computed in linear time [6,7].

Cut vertices and separation pairs are structurally important in terms of graph
connectivity and topology, since the removal of such vertices disconnect the
remaining graph, meaning that they disable communication and increase the
vulnerability. In particular, cut vertices have been shown to be important actors
in social network analysis, such as brokers, often with high betweenness central-
ity [27], indicating their potential use as seed vertices for the IMP problem.

To compare the performance of CVSP to other seeding strategies, such as
various centrality measures, with resource restrictions, such as the budget which
are conventionally modelled by the number of starting seed vertices k, we need
to compute a vertex ranking by sorting the cut vertices and the separation pairs
based on their degree. Specifically, CVSP can be described as follows:

1. Compute cut vertices of a one-connected graph G and sort them in the
decreasing order of their degree to form the set CV . Ties are broken ran-
domly to avoid introducing bias.

2. For each biconnected component Bi of G, compute the separation pairs to
form the set SP . Sort the vertices in SP based on their degree, as in Step 1.

3. Compute the ordered connectivity set C by attaching SP at the end of CV .
Select the top k vertices from C as the starting seed set.

3.2 ER: Spectral Seeding Strategy

Our second strategy, ER (Effective Resistance), is based on the spectral graph
theory, which is concerned with the eigenvalues and eigenvectors of matrices
associated with graphs. The spectrum of a graph is the list of eigenvalues of its
Laplacian matrix L, which is defined using the Degree matrix D and Adjacency
matrix A as L = D − A. The spectrum of a graph is closely related to a number
of structural properties of graphs, such as the connectivity.

For example, a spectral sparsifier is a subgraph whose Laplacian quadratic
form is approximately the same as the original on all real vector inputs. Spielman
and Teng [25] proved that every n-vertex graph has a spectral approximation
with O(n log n) edges. Specifically, spectral sparsification is a stochastic sampling
method, where edges are sampled based on the effective resistance values, which
is related to the commute distances in the graph.
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Modelling a graph as an electrical network, the effective resistance of an
edge is defined as the voltage drop across the edge and its value is equivalent
to the probability of the edge to be included in a random spanning tree of the
graph [24]. Note that the effective resistance values of edges in a graph can be
computed in near linear time [24].

Since effective resistance values are closely related to the commute distance
(i.e., the expected length of a random walk between two vertices), as well as
structural roles (positions) of actors based on how they are embedded in a social
network [27], these indicate potential use as seed vertices for the IMP problem.
Specifically, ER can be described as follows:

1. Compute the effective resistance value ER(v) of each vertex v as the sum of
the effective resistance value ER(e) of each incident edge e of v: i.e. ER(v) =∑

e∈I(v) ER(e), where I(v) is the set of incident edges of v.
2. Compute a vertex ranking R in a decreasing order of ER(v). Select the top

k vertices from the vertex ranking R as the initial seed set.

4 Comparison Experiments

4.1 Experiment Design, Implementation and Data Sets

We compare our two new seeding strategies CVSP and ER against the following
popular seeding strategies, described in Sect. 2.3: BC (Betweenness Centrality),
CC (Closeness Centrality), DC (Degree Centrality), KC (k-core) and IMM.

We implement CVSP and ER, and diffusion simulations in Python. For the
IC model, we use an implementation from [3], and initialize βu,v values to 0.5.
We use NetworkX to compute centrality measures and k-core, and OGDF to
compute the cut vertices, separation pairs and graph layouts. For IMM, we use
implementation from [26] with the recommended setting of the tunable param-
eter ε = 0.5.

We experiment with two types of real-world datasets: (1) scale-free networks:
globally sparse, locally dense clusters with the Power law degree distribution and
short diameters; (2) biological networks (RNA sequence graphs): globally sparse
(i.e. path or almost tree structure), locally dense clusters with long diameters,
called the GION graphs [21]. For the details of the data sets, see Table 1.

For each graph, we run the Independent Cascade (IC) diffusion model
with each seeding strategy five times and take the average, due to the non-
deterministic nature of the model. We set the budget (i.e., the number of starting
seed vertices) as k = |CV | + |SP |.

4.2 Final Influence Spreading Rate Comparison

Table 1 and Fig. 1 show the final influence spreading rate (i.e., percentage of the
activated vertices over the total number of vertices after IC converges). Clearly,
ER performs the best on the scale-free graphs, followed by BC and CVSP, and
DC performs on par with CVSP. Interestingly, IMM performs the worst for
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Table 1. The average final influence spread rate (i.e., percentage of the activated
vertices over the total number of vertices in the graph), where the number of starting
seed vertices k = |CV | + |SP |, den means the density, and dia means the diameter of
a graph. ER performs the best for scale-free graphs, followed by BC and CVSP; IMM
performs the best for GION graphs, followed by ER and CVSP.

Dataset BC CC DC KC CVSP ER IMM |V | |E| den dia k

soc h 58.8 53.2 54.8 51.2 53 60 33.8 2000 16097 8.05 10 326

yeastppi 83.8 74.4 81.6 73.8 83.6 85.6 59.4 2224 7049 3.17 11 674

oflights 81.2 65.4 75.6 68.2 76.4 81.4 44.2 2905 15645 5.39 14 709

facebook 49.2 47 45.6 9.8 46.8 49.2 52.6 4039 88234 21.8 8 109

p2p-Gnutella05 80.4 72.8 77.6 73.2 78.4 83.2 62.4 8842 31837 3.60 9 2636

Avg. Scale-free 70.68 62.56 67.04 55.24 67.64 71.88 50.48

gion2 31 17.4 26.4 20.6 32.6 39.4 53.2 1159 6424 5.54 58 183

gion5 37.4 23.2 23.8 20.2 38.4 46.8 57.8 1748 13957 7.98 63 270

gion6 29.8 18.4 26.8 17.4 30.8 34 51.6 1785 20459 11.5 41 198

gion7 13.8 8.4 13.8 10.2 20.2 21.2 46.2 3010 41757 13.9 77 161

gion8 28.6 12.4 23.4 16.8 25.4 34 51.8 4924 52502 10.7 121 491

Avg. GION 28.12 15.96 22.84 17.04 29.48 35.08 52.12

Fig. 1. Average final influence spread rate (i.e., percentage of activated vertices): ER
performs the best for scale-free graphs; IMM performs the best for GION graphs.

scale-free graphs. On the other hand, IMM performs the best on the GION
graphs, followed by ER and CVSP. Overall, experiments demonstrate excellent
performance by ER and CVSP, in particular for scale-free graphs. Note that the
time complexity of CVSP and ER is much faster than BC.

Figure 2 shows how fast the diffusion is carried out for different seeding strate-
gies, and where the rate of diffusion peaks, by showing the number of newly acti-
vated vertices at each diffusion step. In terms of the influence rate, we observe
that most of the diffusion occurs in the first few steps across all seeding strate-
gies. The highest influence rate occurs at the second (or the third) diffusion
step, and then drops quickly in particular for scale-free networks. Therefore,
what determines which method will activate the most vertices after convergence
is which method activates the most vertices in the first few diffusion steps. As
such, the role of the starting seed vertices is critical.

Figure 3 shows the final influence rate after convergence, where the number
of starting seed vertices k is varied. Clearly, the relative performances of seeding
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Fig. 2. Dynamics of diffusion: the number of newly activated vertices at each diffusion
step. For all strategies, most of the diffusion occurs in the second step.

Fig. 3. Final influence rate after convergence, where the number of starting seed ver-
tices k is varied. In general, the relative performances of seeding strategies do not
change, based on the size of k.

strategies do not change, based on the size of k. We observe that varying the
number of starting seed vertices k has minimal effect on the results observed in
Table 1. Roughly speaking, when a particular seeding strategy is strong relative
to the rest, it remains strong for all k values, and when two seeding strategies
are comparable, they remain comparable for all k.

4.3 Visual Analysis and Comparison

Visual analysis enables more refined comparison between the methods other than
the efficiency and effectiveness. For example, in terms of efficiency, CVSP, DC
and KC all run in linear time. For scale-free graphs, Table 1 shows that both
CVSP and DC perform on par in terms of effectiveness (i.e., influence spreading
rate). However, visual comparison in Fig. 4 reveals that the seed vertices by
CVSP have a more global influence compared to the seed vertices by DC or KC
with relatively local influence.
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Fig. 4. Visual analysis and comparison of the influence spread by CVSP (left), DC
(middle) and KC (right) on the facebook network. Note that the final diffusion step in
the last row is 5 (CVSP), 10 (DC) and 19 (KC), respectively. Red (resp., Blue) means
newly (resp., previously) activated vertices/edges, and Grey means not yet activated.
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Specifically, we can observe that in the first two steps, CVSP produces more
widely spread influenced vertices (in red), compared to more concentrated, sus-
tained local influence spread by DC and KC, suggesting that their seed vertices
are highly locally linked, leading to redundancy. Moreover, the final influence
(in blue recovered vertices) of CVSP, DC and KC are achieved in 5, 10 and
19 diffusion steps respectively (in the last row), implying that the initial seed
vertices by CVSP are more effective influencers than the seeds by DC and KC.

4.4 Summary and Recommendation

In summary, extensive comparison experiments demonstrate that our new seed-
ing strategies CVSP and ER are not only efficient with linear and near-linear
time complexity, but also effective in terms of the influence spreading rate, as
shown in Table 1. Overall, ER and CVSP outperform IMM for scale-free graphs
with globally sparse, locally dense clusters with ultra small diameters. On the
other hand, IMM performs the best for GION graphs, followed by ER and CVSP.

We also conducted experiments with the LT diffusion model, and obtained
similar results. Based on our extensive empirical experiments, we conclude with
the following recommendation and guidelines:

– For scale-free graphs with globally sparse, locally dense clusters and short
diameters, we recommend ER for both effectiveness and efficiency.

– For graphs with globally sparse, locally dense clusters and long diameters, we
recommend IMM for both effectiveness and efficiency.

– When efficiency is the most important consideration, we recommend CVSP
over DC or KC, for global influence spread pattern, based on visual analysis
and comparison.
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20. Lü, L., Chen, D., Ren, X.L., Zhang, Q.M., Zhang, Y.C., Zhou, T.: Vital nodes
identification in complex networks. Phys. Rep. 650, 1–63 (2016)

21. Marner, M.R., Smith, R.T., Thomas, B.H., Klein, K., Eades, P., Hong, S.H.: Gion:
interactively untangling large graphs on wall-sized displays. In: GD 2014, pp. 113–
124 (2014)

22. Richardson, M., Domingos, P.: Mining knowledge-sharing sites for viral marketing.
In: SIGKDD 2002, pp. 61–70 (2002)

23. Shakarian, P., Bhatnagar, A., Aleali, A., Shaabani, E., Guo, R.: Diffusion in Social
Networks. SCS, Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23105-
1

24. Spielman, D.A., Srivastava, N.: Graph sparsification by effective resistances. SIAM
J. Comput. 40(6), 1913–1926 (2011)

25. Spielman, D.A., Teng, S.H.: Spectral sparsification of graphs. SIAM J. Comput.
40(4), 981–1025 (2011)

26. Tang, Y., Shi, Y., Xiao, X.: Influence maximization in near-linear time: a martin-
gale approach. In: SIGMOD 2015, pp. 1539–1554 (2015)

27. Wasserman, S., Faust, K., et al.: Social network analysis: methods and applications
(1994)

28. Zhu, T., Wang, B., Wu, B., Zhu, C.: Maximizing the spread of influence ranking
in social networks. Inf. Sci. 278, 535–544 (2014)

https://doi.org/10.1007/978-3-540-31955-9_4
https://doi.org/10.1007/978-3-540-31955-9_4
https://doi.org/10.1007/978-3-319-23105-1
https://doi.org/10.1007/978-3-319-23105-1

	New Seeding Strategies for the Influence Maximization Problem
	1 Introduction
	2 Related Work
	2.1 Influence Maximization Problem
	2.2 Diffusion Models
	2.3 Seeding Strategies for the IMP

	3 New Seeding Strategies
	3.1 CVSP: Connectivity-Based Seeding Strategy
	3.2 ER: Spectral Seeding Strategy

	4 Comparison Experiments
	4.1 Experiment Design, Implementation and Data Sets
	4.2 Final Influence Spreading Rate Comparison
	4.3 Visual Analysis and Comparison
	4.4 Summary and Recommendation

	References


