
Mosaic Benchmark Networks: Modular
Link Streams for Testing Dynamic
Community Detection Algorithms

Yasaman Asgari1,3,4(B), Remy Cazabet2, and Pierre Borgnat1

1 Univ de Lyon, ENS de Lyon, CNRS, Laboratoire de Physique, 69342 Lyon, France
2 Univ Lyon, UCBL, CNRS, INSA Lyon, LIRIS, UMR5205,

69622 Villeurbanne, France
3 University of Zurich UZH Digital Society Initiative, Rämisttrasse 69,

8001 Zürich, Switzerland
yasaman.asgari@math.uzh.ch

4 University of Zurich, Institut für Mathematik Winterthurerstrasse 190,
8057 Zürich, Switzerland

Abstract. Community structure is a critical feature of real networks,
providing insights into nodes’ internal organization. Nowadays, with the
availability of highly detailed temporal networks such as link streams,
studying community structures becomes more complex due to increased
data precision and time sensitivity. Despite numerous algorithms devel-
oped in the past decade for dynamic community discovery, assessing
their performance on link streams remains a challenge. Synthetic bench-
mark graphs are a well-accepted approach for evaluating static commu-
nity detection algorithms. Additionally, there have been some propos-
als for slowly evolving communities in low-resolution temporal networks
like snapshots. Nevertheless, this approach is not yet suitable for link
streams. To bridge this gap, we introduce a novel framework that gener-
ates synthetic modular link streams with predefined communities. Subse-
quently, we evaluate established dynamic community detection methods
to uncover limitations that may not be evident in snapshots with slowly
evolving communities. While no method emerges as a clear winner, we
observe notable differences among them.

Keywords: Temporal networks · Dynamic community detection ·
Network generator

1 Introduction

Community structure is a common feature in real networks. Essentially, a com-
munity represents a network pattern where nodes have strong connections within
the community and weaker connections with nodes outside[1]. Network sci-
ence initially emerged when real-world temporal network data, which captures
the changing structure of networks over time, was scarce. Consequently, early
research on community detection primarily focused on static networks [2]. With
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1142, pp. 209–222, 2024.
https://doi.org/10.1007/978-3-031-53499-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-53499-7_17&domain=pdf
https://doi.org/10.1007/978-3-031-53499-7_17

210 Y. Asgari et al.

the increasing availability of low-resolution temporal data, such as network snap-
shots, attention naturally shifted to the dynamic community detection[3]. Nowa-
days, we have access to highly detailed temporal networks like link streams,
making the study of community structures more intricate due to the increased
data granularity and time-sensitive nature.

One approach to quantitatively evaluate community detection algorithms is
to employ synthetic graph generators to assess their performance and accuracy
against a reference ground truth. Recently, several synthetic temporal network
generators have been established to simulate snapshots with “slowly evolving”
communities, i.e., having a meaningful community structure at each discrete time
step. However, link streams fail to meet this criterion. Within a link stream, the
frequency of interactions per node per unit of time is exceedingly low. Conse-
quently, during a specific time instance, we can only discern a minimal number
of connections, and these connections do not reveal clear community structures.
Although we can employ varying or fixed window sizes to segment our net-
work into multiple time slices to achieve low-resolution temporal networks like
snapshots, a new line of research has emerged, aiming to develop algorithms
tailored to the continuous-timed nature of instantaneous edges [4]. Motivated by
this challenge, we intend to address the issue of the absence of a benchmark net-
work for simulating modular link streams. To address this need, we introduce the
“Mosaic benchmark network.” Mosaic is designed to provide a reliable framework
for evaluating and benchmarking dynamic community detection algorithms. It
generates modular temporal networks with continuous-time edges built upon
randomly planted partition networks, creating adjustable ground truths.

The paper’s organization is outlined as follows: It begins by briefly reviewing
the current literature concerning benchmarks used for creating modular net-
works. Moving on to Sect. 3, a mathematical framework for link streams and the
definition of a temporal community adapted for the context are presented. Then,
we explain a comprehensive framework called “Mosaic” for creating link streams
with communities. Finally, Sect. 4 involves the application of some dynamic com-
munity detection algorithms to the benchmark, aiming to uncover their capabil-
ities and limitations.

2 Related Works

Assessing and comparing community detection algorithms presents a significant
challenge. Although real-world datasets can offer valuable insights, it has been
shown that node metadata are not the same as ground truth and that treating
them as such induces severe theoretical and practical problems [5].

To overcome this limitation, researchers have developed benchmarks to gen-
erate synthetic networks for examining algorithm behavior on networks with
diverse predefined properties[6]. Synthetic network Benchmarks enable checking
an algorithm against:
– Definition of communities: since there is no universal definition of community,

a benchmark with its ground truth defines what we want to find and check if
the method recognizes it.

Mosaic Benchmark Networks 211

– Stability : the efficiency of a community detection method can be evaluated by
testing it on numerous network instances that share similar characteristics.

– Scalability : gradually increasing the network size makes it possible to deter-
mine how well the algorithm handles larger and more complex networks.

Numerous network benchmarks have been introduced to establish modular
static networks. Stochastic Block Models (SBM, also random planted partition
graphs) [7] generate networks where edges between nodes in and within commu-
nities depend on a provided probability matrix.

As the need for synthetic temporal networks increased, several methods have
been outlined in the literature to generate benchmark graphs for evolving com-
munities. An evolving community scenario is defined as a structure characterized
by fundamental events for communities such as birth, death, merging, splitting,
expansion, contraction, iterative continuation, and the Ship of Theseus, as illus-
trated and described in [3].

Temporal network benchmarks have been developed with diverse perspectives
and aims, yet they all share a common trait: they generate snapshots that reveal
clear community structures. For instance, Granell et al. [8] propose two cyclic
scenarios (migration and merge-split), and in each snapshot, communities are
defined using SBMs. Bazzi et al. [9] introduce a method for generating multilayer
networks with community structures by incorporating an SBM with additional
interlayer dependency tensors. However, Cazabet et al. [10] argue that utilizing
an SBM independently for generating edges in each snapshot is impractical.
Therefore, they have developed a method that allows for evolving structures
while maintaining the stability of most edges from one time step to the next.

Differing from all preceding approaches, our proposed benchmark introduces
a framework that accomplishes two crucial objectives: 1) It enables the repre-
sentation of novel scenario description generators that do not necessitate the
inclusion of progressively evolving structures, and 2) It facilitates the generation
of continuous-timed instantaneous edges while maintaining a low computational
cost.

3 Mathematical Framework

3.1 Link Stream

Link streams, the category of temporal networks examined in this study, can
be perceived as a collection of vertices denoted by V , which engage with one
another at specific instances, and the duration of these engagements is considered
negligible.

Based on this definition, we can formulate a link stream mathematically as:

Definition 1. Link Stream: A link stream L is defined as a triple (V,E, T),
where V represents the set of nodes involved in interactions within a defined
time domain, T = [Ts, Te) ⊆ R, and E ⊆ V ×V ×T is the set of temporal edges.
Each temporal edge, l = (u, v, t) ∈ E signifies an instantaneous interaction that
took place between node u ∈ V and node v ∈ V at time t ∈ T [4].

212 Y. Asgari et al.

The illustration in Fig. 1 presents a link stream featuring a set of vertices
V = {v1, v2, v3, v4} where multiple temporal edges are observed. For example,
nodes v1 and v4 establish a connection twice within the given time domain,
T = [0, 10).

Fig. 1. Modular Link stream: A link stream (V, E, T) is shown, containing 4 nodes
V = {v1, v2, v3, v4} interacting several times with each other within the time domain
T = [0, 10). A mosaic partitioning, C = {c1, c2, c3} is also observed. This partitioning
covers {v1, v2, v3, v4} × [0, 10) without any overlap.

3.2 Mosaic: A Definition for a Community in Link Streams

Defining a community in a link stream is a challenging task due to the fine-
resolution temporal dimension involved. However, any new definition must align
with the intuitive understanding of real-world applications. To give an intuition
of the meaning of communities in this setting to unfamiliar readers, we illustrate
it using a well-known link-stream dataset.

Sociopatterns1 is a renowned database for real-world link streams acquired in
various contexts since 2008 [11]. In these experiments, RFID sensors track real-
time proximity, creating co-presence networks between individuals. For example,
a substantial dataset comes from a primary school study where 230 pupils and
10 teachers wore sensors for two consecutive days. This study recorded 125,000
face-to-face interactions over 32 h, with a temporal resolution of 20 s. Previous
research often viewed its communities as evolving structures influenced by node
and edge additions/deletions, identifying them by segmenting time into different
slices with various window sizes and then applying dynamic community detection
techniques.

In this study, we can observe communities emerging during specific time-
frames from students interacting. For instance, students and teachers interact
during lecture hours within their respective classes. During lunchtime, students
with stronger friendships tend to dine together. An empty community exists at
night, indicating no interactions occur during that period.

1 http://www.sociopatterns.org/.

http://www.sociopatterns.org/

Mosaic Benchmark Networks 213

This perspective can be extended to other contexts like people discussing a
particular topic on social networks, company meetings, or sports players partici-
pating in a match together. Building on this idea, we introduce a new definition
called “Mosaic,” which is a straightforward adaptation of non-overlapping com-
munities from static networks to link streams.

A “Mosaic” community is defined as follows:

Definition 2. A Mosaic, denoted as c, is defined as a pair of (nodes, period):
c = (Vc, Tc). Vc is set of n nodes denoted as {v1, v2, · · · , vn}. Tc ⊂ R is an time
interval, Tc = [Tcs, Tce) where, Tcs and Tce represent the start and end times of a
Mosaic c, respectively. It represents the interval in which nodes V are considered
part of the community c.

According to this definition, each node is assigned to only one community at
any given time, and these communities collectively cover the entire link stream;
refer to Fig. 1 for an example. In cases where nodes do not interact significantly
for a certain duration, they are assigned to an “empty community”, c∗. Therefore,
a Mosaic partitioning can be defined as follows:

Definition 3. Mosaic partitioning: Given a link stream L = (V,E, T), C is a
partitioning containing k mosaics, {c1, c2, · · · , ck, c∗}, that cover the link stream
fully without any overlap. This requirement can be written as follows:

⋃

c∈C
Vc × Tc = VL × TL

⋂

c∈C
Vc × Tc = ∅

The mosaic c∗ stands for an empty community.

3.3 Mosaic Link Stream Benchmark

Now, we delve into discussing the Mosaic Benchmark. The proposed framework
follows a straightforward five-step process, as depicted in Fig. 2. The whole pro-
cedure is implemented as a user-friendly Python library2.

2 https://pypi.org/project/mosaic-benchmark/.

https://pypi.org/project/mosaic-benchmark/

214 Y. Asgari et al.

Fig. 2. Random Mosaic Link Stream Benchmark: This figure illustrates a five-
step process. Step A involves generating a scenario. Step B focuses on removing mosaics
with a probability of γ to create an empty community named c∗. Steps C and D add
internal and external edges, respectively. Finally, in the last step, each edge in the link
stream can be rewired with a probability of η.

We can condense these five steps into two primary stages:

1. Scenario description: The user describes communities using a scenario, either
ad-hoc or generated from a provided scenario generator (Step A). Addition-
ally, some communities may be emptied to match real-world properties (Step
B).

2. Edge generation: Initially, edges are formed within the communities (Step C),
followed by establishing connections between communities with overlapping
timeframes (Step D). Some edges may be rewired to introduce imperfections
into the community structures (Step E).

3.4 Scenario Description

In the proposed framework, we use Mosaic partitioning to generate modular link
streams according to a scenario. Mosaic partitioning consists of multiple com-

Mosaic Benchmark Networks 215

munities in which nodes interact within and between them. It can be generated
using three proposed scenario generators in our Python library: Experimental,
Snapshots, and Random. A visualization can be found in Fig. 3.

Fig. 3. Mosaic Partitioning Generation This figure illustrates three different
approaches for generating Mosaic Partitioning in the Benchmark. Type A: User-
defined nodes and periods create the desired scenario. Type B: The time domain
is divided into multiple frames or snapshots, and node sets are randomly assigned to
communities within each frame. Type C: Communities’ time interval and node-set
sizes are distributed inhomogeneously, covering the entire link stream.

Experimental: Using an experimental setup, we can intentionally generate
various Mosaic communities with specific node counts and time intervals. This
enables us to evaluate the performance and precision of a community detection
algorithm under straightforward scenarios, gradually increasing complexity to
gain insights into the algorithm’s capabilities and constraints.

Snapshots: This scenario generator simulates low-resolution temporal networks
resembling snapshots. It partitions the time domain into k segments defined by
either fixed or variable window sizes. In the fixed case, each segment has a size
of |T |

k , while in the varying case, the time domain is randomly divided. Then, we
establish static communities for each segment, ensuring they consist of at least
two or more nodes.

Algorithm 1. Snapshot Scenario Generator
1: procedure Snapshot(T, V, k, Mode)
2: Create an empty list C
3: Divide the time domain into k segments with fixed or varying window sizes and

name it S
4: for each s in S do
5: Distribute the nodes V randomly into static communities and name the

collection U
6: for each u in U do
7: Add (u, s) to C
8: return C

216 Y. Asgari et al.

Random: Generating random scenarios leading to mosaics with different node
counts and time intervals is essential for comprehending the capabilities and
constraints of a dynamic community detection algorithm. To accomplish this
objective, we will suggest a simple procedure for constructing random commu-
nities using k iterations in a recursive algorithm. Once we have obtained the
algorithm’s output, we will proceed to remove communities consisting of just
one node or communities that exist for less than a predefined time interval.

Algorithm 2. Random Scenario Generator
1: procedure Random(T, V, k)
2: Create a Mosaic M = (T, V)
3: for i in 0 to k do
4: if M .sub-mosaics is empty then
5: Divide M into 4 sub-mosaics and store them in M .sub-mosaics
6: else
7: Select one sub-mosaics from M .sub-mosaics and divide it into 4 sub-

mosaics
8: Flatten the Mosaic M into C
9: return C

Emptying Mosaics. We consider that Mosaics are assigned to an empty
Mosaic c∗ with a probability of γ. We mean that within this empty Mosaic,
no edges can be active that originate from either inside or outside, affecting the
nodes contained within it.

3.5 Generating Edges

This part focuses on generating edges between nodes within and across different
communities. We will follow two steps: creating a Backbone connectivity network
to establish static connections and using the Poisson Point Process to add a
temporal dimension above it; refer to Algorithm 3.

Mosaic Benchmark Networks 217

Algorithm 3. Edges Generation
1: procedure EdgesGeneration(C, α, λ, β)
2: Create an empty list E
3: for c in C\c∗ do � Generate internal edges
4: pc

in = (|Vc| − 1)α−1

5: List S =BackboneConnectivity(c,c,pc
in)

6: for e in S do
7: Add PoissonProcessEdge(e,Pc,λ

cc) to E

8: for (c, c′) in
(C\c∗

2

)
do � Generate external edges

9: pcc′
ext = β((|Vc| + |V ′

c |) − 1)α−1

10: List S =BackboneConnectivity(c,c′,pcc′
ext)

11: for e in S do
12: Add PoissonProcessEdge(e,Pc ∩ Pc′ ,λcc′

) to E

13: return E

Backbone Connectivity Network. This Benchmark assumes that the con-
nectivity between nodes, whether through internal or external edges, remains
stable throughout the specified period. This is why we refer to it as the back-
bone connectivity network. A backbone connectivity network with a parameter p
is a random graph in which each edge is present with probability p, independent
of others.

We would like to emphasize that for establishing a well-defined internal struc-
ture of a community, it is necessary to utilize an appropriate range of values for
p. This range’s selection should depend on the number of vertices within the
community. To achieve this, we will adopt the model described in [10], which
provides the formula for pc

in as follows:

pc
in = (|Vc| − 1)α−1

Here, α ∈ (0, 1] is a hyperparameter named community density coefficient
shared between communities. When the value of α is increased, the probability
of pc

in also increases, leading to denser clusters. If α is set to 1, each community
in Mosaic becomes a clique.

The external probability between two communities c and c′ denoted as pcc′
ext

is defined as:
pcc′

ext = β(|Vc| + |V ′
c | − 1)α−1

This hyperparameter β ∈ [0, 1] is related to “community identifiability,” which is
shared among all communities. Increasing the value of β results in more external
edges between communities, making it more challenging for algorithms to iden-
tify each community as a separate cluster. In other words, β controls the external
density of backbone connectivity by treating two communities as a single entity.

Poisson Point Process. To simplify the analysis, we assumed that the edges in
a given backbone connectivity network follow a memory-less stochastic process

218 Y. Asgari et al.

for their activation times. For each edge e = (i, j) in the backbone connectivity
network, we generate an independent and identically distributed random Poisson
point process with a rate parameter |T |λ. This rate parameter determines the
average number of this edge active times within the time frame T . Then, we
use the uniform distribution to distribute this number of occurrences in the
selected period. This means the edge time arrivals are uniformly spread over the
interval T [12]. To establish connections within a community, we set T equal
to Tc and λ = λc

in. Conversely, when creating the connections between two
different communities c and c′, T is defined by the overlap between Tc and Tc′ .
Furthermore, to generate external edges between communities c and c′, we utilize
a coefficient λcc′

ext.
Combining these, to create the temporal dimension, we need a symmetric

matrix λ of size k ×k, where k represents the number of communities. The main
diagonal of this matrix will be utilized for generating internal edges, and non-
diagonal elements can be employed for external edges if there is a non-empty
time overlap (Tc ∩ T ′

c �= ∅) between the communities c and c′.
In both the step of generating backbone connectivity networks and adding a

Poisson point process layer, each community is handled independently, which can
be efficiently parallelized. This enables handling large networks in a reasonable
time. Additionally, finding an upper bound for memory and time complexity can
not be provided due to dependence both on time and structure.

Rewiring Noise. A prior study [13] proposed that it is possible to distinguish
a stable core within communities from random, short-lived fluctuations in real
temporal networks. In our Benchmark, edges go through a rewiring process with
a probability of η = [0, 1] to highlight imperfections in community structures.
During this step, for edge (u, v, t) selected for rewiring, we randomly choose two
communities c �= c∗ and c′ �= c∗ with non-empty time intersection. We then
select two nodes u ∈ Vc and v ∈ Vc′ where u �= v, with a timestamp t randomly
chosen within the Tc ∩ Tc′ time frame.

4 Experiments

In this section, we use different community detection algorithms on an instance of
our framework to assess their performance in identifying communities compared
to the ground truth. Among the many dynamic community detection algorithms
available, we have selected four that operate by aggregating the link stream into
snapshots using window sizes. These algorithms are previously implemented in
“tnetwork” Python package [14], as detailed in the existing literature review [3].

The algorithms compared in this paper are the following:

– No-Smoothing: the approach involves applying a static algorithm (in this
case, the Louvain method) to each snapshot. Then, the most similar commu-
nities in consecutive steps are matched based on the Jaccard Coefficient with
a coefficient named θ, set to 0.3 here.

Mosaic Benchmark Networks 219

– Implicit-Global: in this method, the Louvain algorithm is executed at each
snapshot, but instead of initializing it with each node in its own community,
the previous partition is utilized as the seed.

– Label Smoothing: this method first identifies communities in each slice.
Then, attempts are made to match communities across different snapshots,
forming a survival graph. A community detection algorithm is applied to this
survival graph, resulting in dynamic snapshot communities.

– Smoothed-Graph: in this approach, the Louvain method is run at each slice
t on a graph with a smoothed adjacency matrix defined as follows:

At
ij = α · At

ij + (1 − α) · Ct−1
ij ,

where Ct−1
ij = 1 if nodes i and j belong to the same community at step t − 1,

and 0 otherwise.

We considered a link stream L consisting of 100 nodes |V | = 100 interacting
over the time interval T = [0, 100). Then, we created a scenario using a Ran-
dom scenario generator(as detailed in 3.4) with an iteration parameter k = 30.
Additionally, we applied a probability μ = 0.2 to empty Mosaic communities,
resulting in |C| = 61 communities with an average node count of V̄c = 11.7 and
an average time interval of T̄c = 10.2, excluding the empty community c∗.

For the edge generation phase, we fine-tuned the parameters α = 0.9 and
β = 0.1. A high α value signifies strong connections among nodes within
the internal backbone connectivity networks, while a low β value indicates
sparse connections between communities in the external backbone connectivity
networks. This configuration results in clear and distinguishable communities
regarding the backbone structure.

To further emphasize this characteristic, we maintained the same values for
λin = 0.4 and λext = 0.1 for all communities, signifying that, in the Poisson
Point Process, the likelihood of an edge forming within a community is higher
than it is for an external one. It resulted in 28365 edges. Additionally, we exclude
the rewiring process for temporal edges.

Since the chosen dynamic community detection methods are not tailored for
link stream cases and are designed for low-resolution temporal networks, we
convert our sample modular link stream to snapshots with a relatively small
fixed window size 2. Subsequently, we applied community detection algorithms
to the aggregated snapshots and extracted these communities for the purpose of
comparison and visualization.

As depicted in Fig. 4, it is evident that different algorithms can yield vary-
ing interpretations of a benchmark network instance. Assessing the accuracy of
community detection algorithms under such circumstances can pose a significant
challenge. Similarly, when employing aggregation techniques on a link stream,
diverse interpretations may arise. In certain social and political contexts, these
variations can be contentious and potentially lead to misleading conclusions.

220 Y. Asgari et al.

Fig. 4. Experiments: Comparison of partitions obtained using all methods on a sam-
ple Random scenario

To conduct a more rigorous experiment, we introduce a new parameter
denoted as φ = 1 − α = β. A higher φ parameter value results in communi-
ties being less identifiable. We varied the φ value from 0 to 0.5 with the step of
0.1, did the same generation process, and aggregated the link streams to snap-
shots using a window size of 2, then identified communities ten times with the
algorithms.

Mosaic Benchmark Networks 221

Fig. 5. Experiments: Comparison of smoothness measures obtained using all methods
on a sample of a Random scenario.

Smoothness values were determined utilizing the formulas for smoothness
presented in the work by Cazabet et al. [10], namely SM-P, SM-N, and SM-L.
In all these smoothness metrics, a higher value indicates superior performance.
The obtained values were averaged for each φ.

As depicted in Fig. 5, in terms of smoothness, two methods have high scores
for the three aspects: Implicit-Global and Smoothed-Graph. Label-smoothing
has the highest scores in most settings for the SM-L scores, which measure
label smoothness. No Smoothing is the least stable in most cases. These results
support the findings of other benchmarks presented in [10].

5 Discussion and Conclusions

In summary, we introduced the Mosaic benchmark networks as a new frame-
work for generating modular link streams. These temporal networks enable the
evaluation of dynamic community detection algorithms in terms of accuracy and
performance. Additionally, we can provide a quantitative assessment based on
community definition, stability, and scalability by simulating adaptable ground
truth to determine an algorithm’s capabilities and constraints. Furthermore, our
framework acts as a foundational platform for assessing algorithms tailored for
link streams, especially in the later stages of research in this domain.

The time complexity of this framework can benefit from parallelization
because it avoids SBM calculations for each small step, and the future does
not depend on past or present data. Moreover, when simulating link streams
with millions of edges, it is crucial to efficiently organize edge and node storage.
Multi-layered hash functions can enhance memory allocation for storing network
edges instead of a large edge stream. To create directed modular link streams, we
propose using the benchmark network with an asymmetric Poisson rate matrix
(λ), along with two additional parameters, αout and βout for edge generation
phase. However, it is essential to carefully check if created communities match
the definition of communities in real-world directed link streams.

We applied our framework to explore differences among communities iden-
tified by various dynamic community detection algorithms. We emphasize that
the aggregation method using window sizes has its limitations, and there is a

222 Y. Asgari et al.

crucial need for a more comprehensive investigation into effectively handling
continuously timed edges rather than aggregating them.

In conclusion, it is important to explore the characteristics of communities
formed through the provided scenario generators. This framework incorporates
various parameters such as γ for emptying communities, and (α, β, λ) for edge
generation. Furthermore, the parameter η plays a crucial role in evaluating an
algorithm’s robustness. We advocate for further research to enhance the com-
prehension of dynamic community algorithms, achieved through the fine-tuning
of these parameters.

Funding. We thank the University of Zurich and the Digital Society Initiative for

(partially) financing this project conducted by Yasaman Asgari. The work has been

supported by the ANR grant DARLING ANR-19-CE48-0002, the ANR grant BITU-

NAM ANR-18-CE23-0004, and the CHIST-ERA grant CHIST-ERA-19-XAI-006, for

the GRAPHNEX ANR-21-CHR4-0009 project. We also thank Victor Brabant for his

valuable discussions.

References

1. Girvan, M., Newman, M.E.: Community structure in social and biological networks.
Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)

2. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3–5), 75–174 (2010)
3. Rossetti, G., Cazabet, R.: Community discovery in dynamic networks: a survey.

ACM Comput. Surv. (CSUR) 51(2), 1–37 (2018)
4. Latapy, M., Viard, T., Magnien, C.: Stream graphs and link streams for the mod-

eling of interactions over time. Soc. Netw. Anal. Min. 8, 1–29 (2018)
5. Peel, L., Larremore, D.B., Clauset, A.: The ground truth about metadata and

community detection in networks. Sci. Adv. 3(5), e1602548 (2017)
6. Lancichinetti, A., Fortunato, S.: Community detection algorithms: a comparative

analysis. Phys. Rev. E 80(5), 056117 (2009)
7. Holland, P.W., Laskey, K.B., Leinhardt, S.: Stochastic blockmodels: first steps.

Social networks 5(2), 109–137 (1983)
8. Granell, C., Darst, R.K., Arenas, A., Fortunato, S., Gómez, S.: Benchmark model

to assess community structure in evolving networks. Phys. Rev. E 92(1), 012805
(2015)

9. Bazzi, M., Jeub, L.G., Arenas, A., Howison, S.D., Porter, M.A.: Generative
benchmark models for mesoscale structure in multilayer networks. arXiv preprint
arXiv:1608.06196, p. 20 (2016)

10. Cazabet, R., Boudebza, S., Rossetti, G.: Evaluating community detection algo-
rithms for progressively evolving graphs. J. Complex Netw. 8(6), cnaa027 (2020)

11. Cattuto, C., Van den Broeck, W., Barrat, A., Colizza, V., Pinton, J., Vespignani,
A.: Dynamics of person-to-person interactions from distributed RFID sensor net-
works. PLOS ONE 5, e11596 (2010)

12. Ross, S.M.: Introduction to probability models. Academic Press (2014)
13. Kobayashi, T., Takaguchi, T., Barrat, A.: The structured backbone of temporal

social ties. Nat. Commun. 10(1), 220 (2019)
14. Cazabet, R., Boudebza, S., Jorquera, T.: tnetwork (2023)

http://arxiv.org/abs/1608.06196

	Mosaic Benchmark Networks: Modular Link Streams for Testing Dynamic Community Detection Algorithms
	1 Introduction
	2 Related Works
	3 Mathematical Framework
	3.1 Link Stream
	3.2 Mosaic: A Definition for a Community in Link Streams
	3.3 Mosaic Link Stream Benchmark
	3.4 Scenario Description
	3.5 Generating Edges

	4 Experiments
	5 Discussion and Conclusions
	References

