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Abstract. Integral to the problem of detecting communities through
graph clustering is the expectation that they are “well-connected”. Sur-
prisingly, we find that the output of multiple clustering approaches–the
Leiden algorithm with either the Constant Potts Model or modularity
as quality function, Iterative K-Core Clustering, Infomap, and Markov
Clustering–include communities that fail even a mild requirement for
well-connectedness. As a remediation strategy, we have developed the
“Connectivity Modifier” (CM), which iteratively removes small edge cuts
and re-clusters until all communities detected are well-connected. Results
from real-world networks with up to 75,025,194 nodes illustrate how CM
enables additional insights into community structure within networks,
while results on synthetic networks show that the CM algorithm improves
accuracy in recovering true communities. Our study also raises questions
about the “clusterability” of networks and mathematical models of com-
munity structure.
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1 Introduction

Community detection is of broad interest and is typically posed as a graph
partitioning problem, where the input is a graph and the objective is a par-
titioning of its vertices into disjoint subsets, so that each subset represents a
community [12,23,24]. The terms community and cluster overlap heavily, so we
use them interchangeably herein. While community detection has many appli-
cations [8,18], our interest is largely related to identifying research communities
from the global scientific literature. Accordingly we are especially focused on
methods that can scale to large citation networks [36,37].

A general expectation is that the vertices within a community are better
connected to each other than to vertices outside the community [7,16], implying
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greater edge density within a community. However, a cluster may be dense while
still having a small min cut (the smallest edge set whose removal would discon-
nect the cluster) [3]. In other words, some dense clusters can be disconnected
by small min cuts. Thus, edge density and well-connectedness are expected but
separable properties of communities.

The potential for modularity optimization to produce poorly connected clus-
ters, for example, two large cliques connected by a single edge, is well established
[11,36]. Less well studied, however, is the question of whether other clustering
methods also produce poorly connected clusters. One of the commonly used clus-
tering methods is the Leiden algorithm [36] optimizing the Constant Potts Model
(CPM) [35]. Clusters produced by CPM-optimization with resolution parameter
r have the desirable property that if an edge cut splits the cluster into compo-
nents A and B, then the edge cut size will be at least r×|A|×|B| (Supplementary
Materials of reference [36]). This guarantee is strong when the edge cut splits a
cluster into two components of approximately equal size, but is weaker when it
produces an unbalanced split and weakest when the cut separates a single node
from the remaining nodes in the cluster. Importantly, the guarantee depends on
r, and small values of r produce weak bounds. It is also important to note that
this guarantee applies to CPM-optimal clusterings but not to heuristics.

In using the Leiden software optimizing CPM, we observe that it produces
clusters with small min cuts on seven different real-world networks of varied
origin ranging in size from approximately 34,000 to 75 million nodes. We also
observe that the number of clusters with small min cuts increases as the resolu-
tion parameter is decreased. Intrigued by this observation, we perform a broader
study to evaluate the extent to which clusters produced by algorithms of interest
meet even a mild standard for a well-connected cluster.

We formalize the notion of “poorly-connected” clusters by considering func-
tions f(n) with the interpretation that if a cluster of size n has an edge cut
of size at most f(n) then the cluster will be considered poorly connected. We
want f(n) to grow very slowly so that it serves as a mild bound. We also want
f(n) ≥ 1 for all n that are large enough for the cluster to be considered a poten-
tial community. We choose f(n) = log10 n from three examples of slow growing
functions [25], since it imposes the mildest constraint on large clusters and grows
more slowly than the bound for optimal CPM clusterings [36].

We examine min cut profiles from four additional clustering methods on
the seven networks: Leiden optimizing modularity [24]; the k-core based Iter-
ative k-core Clustering (IKC) [37]; and two flow-based methods, Infomap [31]
and Markov Clustering (MCL) [9]. All the methods we tested produce poorly
connected clusters on these networks, some produce tree clusters, and some
even produce disconnected clusters. These observations reveal a gap between
the expectation of well-connected clusters and what is actually being produced
by these community finding methods.

To address this gap, we have developed the Connectivity Modifier (CM) [29]
that takes a clustering as input and recursively removes small edge cuts and
reclusters until all clusters are well-connected. Using CM on seven real-world
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networks, we demonstrate the insights that CM can provide into community
structure in networks. These findings also raise questions about the “clusterabil-
ity” [22] of networks and whether only portions of a network exhibit community
structure. Additional analyses on synthetic networks provide evidence that CM
improves community detection accuracy under many conditions [25].

2 Results

2.1 Initial Observations

Fig. 1. Percentage of well-connected clusters in seven real-world networks. The net-
works studied range in size from 34,546 nodes to 75,025,194 nodes. Only Leiden and
IKC ran to completion on all seven networks. Only Leiden-CPM with the largest tested
resolution parameter (0.5) and IKC had 80% or more of their clusters considered well-
connected. Five clustering methods were explored: (a) Leiden optimizing CPM at dif-
ferent resolution values and Leiden optimizing modularity, and (b) IKC, Infomap, and
MCL. IKC did not return any clusters from the wiki talk network. Infomap completed
on all but Open Citations. MCL completed only on cit hepph.

In an exploratory experiment, we clustered seven networks (Table 1, Materials
and Methods), ranging in size from 34,546 nodes to 75,025,194 nodes, with Lei-
den, IKC, Infomap, and MCL, and computed the percentage of clusters whose
min cuts were greater than f(n). Under the conditions used, Leiden and IKC ran
to completion on all seven networks, Infomap failed on the largest network, and
MCL returned output only from the smallest network (cit hepph) we analyzed.

This experiment (Fig. 1) revealed that all clustering methods generate clus-
ters that are not well-connected, with the extent depending on the clustering
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Fig. 2. Connectivity Modifier Pipeline Schematic. The four-stage pipeline depends on
user-specified algorithmic parameters: B (default 11), the minimum allowed size of
a cluster, and f(n) (default log10(n)), a bound on the minimum edge cut size for a
cluster with n nodes, and clustering method. Stage 1 : a clustering is computed. Stage
2 : clusters are pre-processed by removing trees and those clusters of size less than
B. Stage 3 : the CM is applied to each cluster, removing edge cuts of sizes at most
f(n), reclustering, and recursing on clusters. Stage 4 : clusters are post-processed by
removing those of size less than B.

method and network. Most significantly, only IKC and Leiden-CPM at a large
resolution value returned a high fraction of well-connected clusters.

For Leiden clustering optimizing CPM, the frequency of well-connected clus-
ters decreases with resolution value, and results from modularity are similar to
the lowest resolution value for CPM that was tested. In comparison, nearly all
IKC clusters were well-connected, with percentages that varied between 85.9%
and 94% of the total number of clusters but with lower node coverage [25].
The percentage of well-connected clusters produced by Infomap varied from 5%
(orkut) to 92.4% (cit patents). For the single network that MCL completed on,
81.3% of the clusters were well-connected. Interestingly, both Infomap and MCL
generated clusters that were disconnected, a limitation that had been previously
noted for Louvain optimizing modularity [36].

2.2 Connectivity Modifier

To remediate poorly connected clusters, we developed the Connectivity Modifier
(CM) [29], which takes a clustering as input and returns well-connected clusters.
CM presently provides support for Leiden optimizing either CPM or modularity
and IKC, the methods that scaled to the largest network we studied. CM is
implemented in a pipeline (Fig. 2), which allows the user to specify two param-
eters: f(n) (the bound on the size of a min cut) and B, the minimum allowed
size of a cluster. In our study we explored f(n) = log10(n) and B = 11, but
the user can provide different settings. A pre-processing (filtering) step discards
clusters that are trees or of size less than B, noting that any tree with ten or
more nodes is not well-connected according to our definition of f(n). CM then
checks each cluster to see if it contains an edge cut of size at most f(n), and
if so CM removes the edge cut, following which the resultant subnetworks are
reclustered. This process repeats until the current iteration produces no change.
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A post-processing step removes any small clusters of size less than B that may
have resulted from repeated cutting.

Fig. 3. Reduction in node coverage after CM treatment of Leiden clusters. The Open
Citations (left panel) and CEN (right panel) networks were clustered using the Leiden
algorithm under CPM at five different resolution values or modularity. Node coverage
(defined as the percentage of nodes in clusters of size at least 2) was computed for (i)
Leiden clusters (green), (ii) Leiden clusters with trees and clusters of size 10 or less
filtered out (orange), and (iii) after CM treatment of filtered clusters (blue).

To further understand the nature of the modifications effected by CM, we
also classified the Leiden clusters based on the impact of CM-processing: extant,
reduced, split, and degraded, where “extant” indicates that the cluster was not
modified by CM, “reduced” indicates that the cluster is reduced in size, “split”
indicates that the cluster was divided into at least two smaller clusters, and
“degraded” indicates that the cluster was reduced to singletons or a cluster of
size 10 or less [25]. All methods produced split clusters, suggesting“resolution
limit” behavior that has already been documented for modularity [11]. Our study
shows this also occurs at some non-negligible frequency for CPM-optimization
using small resolution values, as well as for the other clustering methods.

2.3 Effect of CM on Clustered Real World Networks

We studied the effect of CM on clusterings generated by Leiden-modularity,
Leiden-CPM, and IKC, the only methods that scaled to the largest network
we studied and did not produce disconnected clusters. We present results here
from the Open Citations and CEN networks, the two largest networks out of
seven studied. Results on the remaining five networks show similar trends [25].
In assessing the impact of CM on node coverage, we do not consider very small
clusters (n ≤ 10) of practical interest, therefore, unless otherwise described, node
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coverage is reported in this submission as the percentage of nodes in clusters of
at least size 11.

With Leiden, maximum node coverage was 24.6% for the CEN and 68.7% for
Open Citations for six conditions tested. Post-CM node coverage was smallest
when using CPM-optimization with resolution value r = 0.5 and largest when
optimizing CPM with one of the two smallest resolution values, r = 0.001 for
CEN and r = 0.0001 for Open Citations. In comparison to Leiden, the IKC-
clustering results in relatively low node coverage, 23.6% and 3.8% in the case
of the Open Citations and CEN networks respectively. CM treatment of these
clusterings has a small effect on node coverage. Results for the other five networks
show similar trends and are available at [25].

The impact of CM depends on both the clustering method and the input
network. A more detailed examination shows the following trends. For CPM-
optimization, the impact of pre-processing is large for the two larger resolution
values, but decreases with resolution value. In contrast, the step of the CM
pipeline that iteratively finds and removes small edge cuts and reclusters has
a minimal impact at larger resolution values and an increasing impact as the
resolution value decreases. Modularity returned results most similar to CPM-
optimization with the smallest tested resolution value.

These trends suggest the possibility that only a fraction of the nodes in a
network belong in clusters that are sufficiently well-connected and sufficiently
large. In other words, and through the lens of our mild standard for connectivity
and size, real-world networks may not be fully covered by “valid” communities,
in contrast to what is often assumed in mathematical models of community
structure in networks.

2.4 Synthetic LFR Networks

To evaluate the impact of CM-processing on accuracy, we examined synthetic
networks produced using LFR software [19]. For this experiment, we computed
statistics for the Leiden clusterings of the seven real-world networks we previ-
ously explored, and used them as input to the LFR software [19] (see Materials
and Methods). We produced a collection of 34 LFR networks with ground truth
communities and clustered each of these 34 LFR networks using Leiden with the
same clustering parameters used to provide empirical statistics to LFR.

We examined the impact of CM-processing on clustering accuracy; results
for Normalized Mutual Information (NMI) and Adjusted Mutual Information
(AMI) are shown in Fig. 4. Adjusted Rand Index (ARI) data are available in
supplementary data [25]. CM-processing improves NMI accuracy for modularity
and also for CPM-optimization when used with small resolution values. CM-
processing tends to be otherwise neutral for NMI, and was only detrimental in
two cases. The impact on AMI accuracy is more variable. For example, CM-
processing reduced AMI accuracy for all conditions with wiki talk except for
CPM-optimization with r = 0.1, where accuracy was very low and the impact
was neutral. CM-processing also reduced AMI accuracy for CPM-optimization
on some network:clustering pairs for large resolution values. However, the cases
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Fig. 4. Impact of CM-processing on accuracy of synthetic networks. The left panels
show accuracy measured in terms of NMI and AMI with respect to the LFR ground-
truth communities. Each condition on the x-axis corresponds to a different LFR net-
work, generated based on Leiden-modularity or Leiden-CPM with that specific resolu-
tion parameter. The right panels show (top) node coverage when restricted to clusters
of size at least 11, and (bottom) percent of clusters that are disconnected. Under most
conditions, CM improves the accuracy of the original Leiden clustering, except when
the ground-truth communities have many (at least 60%) disconnected clusters, or the
node coverage by clusters of size at least 11 is relatively low (at most 70%).

where CM-processing produced a noteworthy reduction in accuracy for NMI
or AMI are those where there are many disconnected ground truth clusters or
where there are many clusters of size less than 11 in the “ground-truth clusters”.
Interestingly, CM can still have a positive impact even when there are many small
clusters or some disconnected clusters.

It is easy to see why low node coverage by clusters of size at least 11 could
reduce accuracy for CM-processing, since CM with B=11 automatically removes
all clusters below size 11. Therefore, CM-processing will not be beneficial where
there is interest in recovering small communities unless the bound B is replaced
by a smaller value. In contrast, the occurrence of disconnected ground-truth
clusters in the LFR networks is striking and problematic, since an expectation of
a community is that it is connected [36]. Hence, we assert that it is unreasonable
to evaluate accuracy with respect to a ground-truth set of communities if the
communities are not connected. The fact that LFR networks had ground truth
clusters that were not connected also indicates the failure of LFR software to
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reproduce features of the input network:clustering pairs, which by construction
always have 100% of the clusters connected.

Once the comparison between CM-processed clusters and original clusters is
restricted to the LFR networks, which do not have disconnected clusters and
which have high node coverage after restriction to clusters of size at least 11),
we find that CM ranges from neutral to beneficial in terms of the impact on
accuracy. Thus, there is a potential benefit in using CM to modify clusters that
are not well-connected.

3 Discussion

In this study we report that multiple clustering methods produce clusters that do
not meet a mild standard for well-connectedness. To enforce user-defined stan-
dards for connectivity and cluster size, we developed the Connectivity Modifier
(CM), an open-source tool [29] that presently provides support for the Leiden
and IKC software. We show that the CM enables users to assess hidden commu-
nity structure within clusters.

How significantly CM-processing changes a given clustering depends on the
network itself, as some networks seem to be more impacted by CM-processing.
It also depends on the choice of clustering algorithm and the parameter settings
used.

An important implication of our study using CM on seven real world com-
munities is the possibility that portions of real world networks may not exhibit
robust community structure. A related study using a different approach [22] con-
siders the question of whether a graph can be considered clusterable. Moreover,
since many clustering methods aim to maximize node coverage, such approaches
are likely to merge weakly connected parts of a network into communities that
fail modest standards for connectivity. Thus, there is a trade-off between node
coverage and well-connectedness that the user must consider in exploring com-
munity structure.

The finding that LFR networks produce different patterns than empirical
networks is not surprising. First, the LFR methodology assumes that the degree
distribution and cluster size distributions follow a power law, which may not
apply well to many real-world networks [2,5,28,33]. Second, the degree distribu-
tion and cluster size distributions were imperfectly fitted by LFR software in our
study. Another questionable assumption in the LFR methodology is that every
node is in a community; our study suggests that this assumption may only be
reasonable if the communities can be small and/or poorly connected. Exploring
the value of improved generators such as ABCDo [17] is a next step.

Several questions remain unanswered. First, to be able to distinguish between
the existence of a community and the ability to detect it with a given cluster-
ing method. Second, to assess whether too many or too few nodes are being
dropped. While we emphasize leaving the definition, use, and interpretation of
well-connected to users, these questions merit attention. We also recognize that
our emphasis on well-connected clusters may result in narrow descriptions of
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communities. Additionally, informative weaker links [13] may be lost from com-
munities since CM partitions input clusters that are poorly connected into sets
of well-connected clusters. On the other hand, these well-connected communities
could be useful in defining cores of core-periphery structures [4,30,37] that could
subsequently be augmented by adding peripheral components. Last, future work
should incorporate evaluation criteria relevant to the input network.

Materials and Methods

Table 1. Real world networks used in this study

network # nodes # edges average node deg reference

Open Citations 75,025,194 1,363,303,678 36.34 [27]

CEN 13,989,436 92,051,051 13.16 [15]

cit hepph 34,546 420,877 24.37 [21]

cit patents 3,774,768 16,518,947 8.75 [21]

orkut 3,072,441 117,185,083 76.28 [38]

wiki talk 2,394,385 4,659,565 3.89 [20]

wiki topcats 1,791,489 25,444,207 28.41 [39]

Data. The publicly available Open Citations dataset was downloaded in Aug
2022. The CEN is a citation network constructed from the literature on exosome
research. From the SNAP repository, we downloaded cit hepph, an High Energy
Physics citation network; cit patents, a citation network of US patents; orkut,
a social media network; wiki talk, a network containing users and discussion
from the inception of Wikipedia until January 2008; and wiki topcats, a web
graph of Wikimedia hyperlinks. All networks were processed to remove self-
loops, duplicate edges, and parallel edges before clustering.

LFR (Synthetic) Networks. To create simulated networks with ground truth
communities, we used the LFR software [10,19], which takes the following eight
parameters as input:

– Network properties: Number of nodes N , average and maximum node degrees
(k and kmax respectively), and negative exponent for degree sequence (τ1).

– Community properties: Maximum and minimum community sizes (cmax and
cmin), and negative exponent for the community size distribution (τ2).

– Mixing parameter μ, that is the ratio between the degree of a node outside
its community and its total degree, averaged over all nodes in the network.

To emulate the empirical networks using LFR graphs, we estimated all eight
parameters described above for a given pair of network G and a clustering C.
N, k, kmax, cmin and cmax were computed using networkX [14,34]. To estimate
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μ, we performed a single iteration over all edges of the network, and for each edge,
if the nodes on the two sides of it were in different communities, that edge con-
tributes to the ratio μ of these two nodes. The total μ of the network:clustering
pair is the average μ across all the nodes.

To estimate τ1 and τ2, we fitted a power-law distribution to the node degree
sequence and the community size distribution, using the approach from [6] that
is implemented in the powerlaw Python package [1]. Because the power-law
property may not hold for the whole distribution, following [6], we estimated
xmin, the minimum value for which the power-law property holds as well as the
exponent α for the tail of the distribution.

After computing these parameters based on the Leiden clusterings of the
empirical networks using both modularity and CPM with a range of resolution
parameters, we simulated LFR networks [19]. For networks with more than 10
million nodes, i.e., Open Citations and the CEN, we limited the number of
vertices to 3 million, due to scalability limitations of the LFR benchmark graph
generator [32], while preserving the edge density reflected by average degree, and
the mixing parameter. The numbers of nodes of the other LFR graphs exactly
match the number of nodes in the corresponding empirical network. In some
cases, due to the inherent limitations of the LFR graph generator, we had to
modify the ranges of the community sizes, i.e., increase cmin and decrease cmax,
to generate the network. We calculated NMI, AMI, and ARI using the Python
Scikit-Learn package [26].

Acknowledgments and Funding. The authors acknowledge funding from the
Insper-Illinois partnership and an Oracle Research Award to TW. We thank three
anonymous reviewers for very constructive critique.

References

1. Alstott, J., Bullmore, E., Plenz, D.: powerlaw: a Python package for analysis of
heavy-tailed distributions. PloS ONE 9(1), e85,777 (2014)

2. Artico, I., Smolyarenko, I., Vinciotti, V., Wit, E.C.: How rare are power-law net-
works really? Proc. Roy. Soc. A 476(2241), 20190,742 (2020)
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