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Preface

Dear Colleagues, Participants, and Readers,
We present the 12th Complex Networks Conference proceedings with great pleasure

and enthusiasm. Like its predecessors, this edition proves complex network research’s
ever-growing significance and interdisciplinary nature. As we navigate the intricate web
of connections that define our world, understanding complex systems, their emergent
properties, and the underlying structures that govern them has become increasingly
crucial.

The Complex Networks Conference has established itself as a pivotal platform for
researchers, scholars, and experts from various fields to converge, exchange ideas, and
push the boundaries of knowledge in this captivating domain. Over the past twelve years,
we havewitnessed remarkable progress, breakthroughs, and paradigm shifts highlighting
the dynamic and complex tapestry of networks surrounding us, from biological systems
and social interactions to technological infrastructures and economic networks.

This year’s conference brought together an exceptional cohort of experts, including
our keynote speakers:

• Michael Bronstein, University of Oxford, UK, enlightened us on “Physics-inspired
Graph Neural Networks”

• Kathleen Carley, Carnegie Mellon University, USA, explored “Coupling in High
Dimensional Networks”

• Manlio De Domenico, University of Padua, Italy, introduced “An Emerging Frame-
work for the Functional Analysis of Complex Interconnected Systems”

• Danai Koutra, University of Michigan, USA, shared insights on “Advances in Graph
Neural Networks: Heterophily and Beyond”

• Romualdo Pastor-Satorras, UPC, Spain, discussed “Opinion Depolarization in
Interdependent Topics and the Effects of Heterogeneous Social Interactions”

• Tao Zhou, USTC, China, engaged us in “Recent Debates in Link Prediction”

These renowned experts addressed a spectrumof critical topics and the latestmethod-
ological advances, underscoring the continued expansion of this field into ever more
domains.

We were also fortunate to benefit from the expertise of our tutorial speakers on
November 27, 2023:

• Tiago de Paula Peixoto, CEU Vienna, Austria, guided “Network Inference and
Reconstruction”

• Maria Liakata, QueenMary University of London, UK, led us through “Longitudinal
language processing from user-generated content”

We want to express our deepest gratitude to all the authors, presenters, reviewers,
and attendees who have dedicated their time, expertise, and enthusiasm to make this
event successful. The peer-review process, a cornerstone of scientific quality, ensures
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that the papers in these proceedings have undergone rigorous evaluation, resulting in
high-quality contributions.

We encourage you to explore the rich tapestry of knowledge and ideas as we dive
into these four proceedings volumes. The papers presented here represent not only the
diverse areas of research but also the collaborative and interdisciplinary spirit that defines
the complex networks community.

In closing,we extendour heartfelt thanks to the organizing committees andvolunteers
who have worked tirelessly to make this conference a reality. We hope these proceed-
ings inspire future research, innovation, and collaboration, ultimately helping us better
understand the world’s networks and their profound impacts on science, technology, and
society.

We hope that the pleasure you have reading these papers matches our enthusiasm
for organizing the conference and assembling this collection of articles.

Hocine Cherifi
Luis M. Rocha
Chantal Cherifi

Murat Donduran
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Linear Stochastic Processes on Networks and Low Rank Graph Limits . . . . . . . . 395
Alex Dunyak and Peter E. Caines

Uniform Generation of Temporal Graphs with Given Degrees . . . . . . . . . . . . . . . . 408
Daniel Allendorf

AMulti-order Adaptive NetworkModel for Pathways of DNAMethylation
and Its Effects in Individuals Developing Post-traumatic Stress Disorder . . . . . . . 421
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Abstract. Integral to the problem of detecting communities through
graph clustering is the expectation that they are “well-connected”. Sur-
prisingly, we find that the output of multiple clustering approaches–the
Leiden algorithm with either the Constant Potts Model or modularity
as quality function, Iterative K-Core Clustering, Infomap, and Markov
Clustering–include communities that fail even a mild requirement for
well-connectedness. As a remediation strategy, we have developed the
“Connectivity Modifier” (CM), which iteratively removes small edge cuts
and re-clusters until all communities detected are well-connected. Results
from real-world networks with up to 75,025,194 nodes illustrate how CM
enables additional insights into community structure within networks,
while results on synthetic networks show that the CM algorithm improves
accuracy in recovering true communities. Our study also raises questions
about the “clusterability” of networks and mathematical models of com-
munity structure.

Keywords: community detection · connectivity · citation networks

1 Introduction

Community detection is of broad interest and is typically posed as a graph
partitioning problem, where the input is a graph and the objective is a par-
titioning of its vertices into disjoint subsets, so that each subset represents a
community [12,23,24]. The terms community and cluster overlap heavily, so we
use them interchangeably herein. While community detection has many appli-
cations [8,18], our interest is largely related to identifying research communities
from the global scientific literature. Accordingly we are especially focused on
methods that can scale to large citation networks [36,37].

A general expectation is that the vertices within a community are better
connected to each other than to vertices outside the community [7,16], implying
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greater edge density within a community. However, a cluster may be dense while
still having a small min cut (the smallest edge set whose removal would discon-
nect the cluster) [3]. In other words, some dense clusters can be disconnected
by small min cuts. Thus, edge density and well-connectedness are expected but
separable properties of communities.

The potential for modularity optimization to produce poorly connected clus-
ters, for example, two large cliques connected by a single edge, is well established
[11,36]. Less well studied, however, is the question of whether other clustering
methods also produce poorly connected clusters. One of the commonly used clus-
tering methods is the Leiden algorithm [36] optimizing the Constant Potts Model
(CPM) [35]. Clusters produced by CPM-optimization with resolution parameter
r have the desirable property that if an edge cut splits the cluster into compo-
nents A and B, then the edge cut size will be at least r×|A|×|B| (Supplementary
Materials of reference [36]). This guarantee is strong when the edge cut splits a
cluster into two components of approximately equal size, but is weaker when it
produces an unbalanced split and weakest when the cut separates a single node
from the remaining nodes in the cluster. Importantly, the guarantee depends on
r, and small values of r produce weak bounds. It is also important to note that
this guarantee applies to CPM-optimal clusterings but not to heuristics.

In using the Leiden software optimizing CPM, we observe that it produces
clusters with small min cuts on seven different real-world networks of varied
origin ranging in size from approximately 34,000 to 75 million nodes. We also
observe that the number of clusters with small min cuts increases as the resolu-
tion parameter is decreased. Intrigued by this observation, we perform a broader
study to evaluate the extent to which clusters produced by algorithms of interest
meet even a mild standard for a well-connected cluster.

We formalize the notion of “poorly-connected” clusters by considering func-
tions f(n) with the interpretation that if a cluster of size n has an edge cut
of size at most f(n) then the cluster will be considered poorly connected. We
want f(n) to grow very slowly so that it serves as a mild bound. We also want
f(n) ≥ 1 for all n that are large enough for the cluster to be considered a poten-
tial community. We choose f(n) = log10 n from three examples of slow growing
functions [25], since it imposes the mildest constraint on large clusters and grows
more slowly than the bound for optimal CPM clusterings [36].

We examine min cut profiles from four additional clustering methods on
the seven networks: Leiden optimizing modularity [24]; the k-core based Iter-
ative k-core Clustering (IKC) [37]; and two flow-based methods, Infomap [31]
and Markov Clustering (MCL) [9]. All the methods we tested produce poorly
connected clusters on these networks, some produce tree clusters, and some
even produce disconnected clusters. These observations reveal a gap between
the expectation of well-connected clusters and what is actually being produced
by these community finding methods.

To address this gap, we have developed the Connectivity Modifier (CM) [29]
that takes a clustering as input and recursively removes small edge cuts and
reclusters until all clusters are well-connected. Using CM on seven real-world
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networks, we demonstrate the insights that CM can provide into community
structure in networks. These findings also raise questions about the “clusterabil-
ity” [22] of networks and whether only portions of a network exhibit community
structure. Additional analyses on synthetic networks provide evidence that CM
improves community detection accuracy under many conditions [25].

2 Results

2.1 Initial Observations

Fig. 1. Percentage of well-connected clusters in seven real-world networks. The net-
works studied range in size from 34,546 nodes to 75,025,194 nodes. Only Leiden and
IKC ran to completion on all seven networks. Only Leiden-CPM with the largest tested
resolution parameter (0.5) and IKC had 80% or more of their clusters considered well-
connected. Five clustering methods were explored: (a) Leiden optimizing CPM at dif-
ferent resolution values and Leiden optimizing modularity, and (b) IKC, Infomap, and
MCL. IKC did not return any clusters from the wiki talk network. Infomap completed
on all but Open Citations. MCL completed only on cit hepph.

In an exploratory experiment, we clustered seven networks (Table 1, Materials
and Methods), ranging in size from 34,546 nodes to 75,025,194 nodes, with Lei-
den, IKC, Infomap, and MCL, and computed the percentage of clusters whose
min cuts were greater than f(n). Under the conditions used, Leiden and IKC ran
to completion on all seven networks, Infomap failed on the largest network, and
MCL returned output only from the smallest network (cit hepph) we analyzed.

This experiment (Fig. 1) revealed that all clustering methods generate clus-
ters that are not well-connected, with the extent depending on the clustering
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Fig. 2. Connectivity Modifier Pipeline Schematic. The four-stage pipeline depends on
user-specified algorithmic parameters: B (default 11), the minimum allowed size of
a cluster, and f(n) (default log10(n)), a bound on the minimum edge cut size for a
cluster with n nodes, and clustering method. Stage 1 : a clustering is computed. Stage
2 : clusters are pre-processed by removing trees and those clusters of size less than
B. Stage 3 : the CM is applied to each cluster, removing edge cuts of sizes at most
f(n), reclustering, and recursing on clusters. Stage 4 : clusters are post-processed by
removing those of size less than B.

method and network. Most significantly, only IKC and Leiden-CPM at a large
resolution value returned a high fraction of well-connected clusters.

For Leiden clustering optimizing CPM, the frequency of well-connected clus-
ters decreases with resolution value, and results from modularity are similar to
the lowest resolution value for CPM that was tested. In comparison, nearly all
IKC clusters were well-connected, with percentages that varied between 85.9%
and 94% of the total number of clusters but with lower node coverage [25].
The percentage of well-connected clusters produced by Infomap varied from 5%
(orkut) to 92.4% (cit patents). For the single network that MCL completed on,
81.3% of the clusters were well-connected. Interestingly, both Infomap and MCL
generated clusters that were disconnected, a limitation that had been previously
noted for Louvain optimizing modularity [36].

2.2 Connectivity Modifier

To remediate poorly connected clusters, we developed the Connectivity Modifier
(CM) [29], which takes a clustering as input and returns well-connected clusters.
CM presently provides support for Leiden optimizing either CPM or modularity
and IKC, the methods that scaled to the largest network we studied. CM is
implemented in a pipeline (Fig. 2), which allows the user to specify two param-
eters: f(n) (the bound on the size of a min cut) and B, the minimum allowed
size of a cluster. In our study we explored f(n) = log10(n) and B = 11, but
the user can provide different settings. A pre-processing (filtering) step discards
clusters that are trees or of size less than B, noting that any tree with ten or
more nodes is not well-connected according to our definition of f(n). CM then
checks each cluster to see if it contains an edge cut of size at most f(n), and
if so CM removes the edge cut, following which the resultant subnetworks are
reclustered. This process repeats until the current iteration produces no change.
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A post-processing step removes any small clusters of size less than B that may
have resulted from repeated cutting.

Fig. 3. Reduction in node coverage after CM treatment of Leiden clusters. The Open
Citations (left panel) and CEN (right panel) networks were clustered using the Leiden
algorithm under CPM at five different resolution values or modularity. Node coverage
(defined as the percentage of nodes in clusters of size at least 2) was computed for (i)
Leiden clusters (green), (ii) Leiden clusters with trees and clusters of size 10 or less
filtered out (orange), and (iii) after CM treatment of filtered clusters (blue).

To further understand the nature of the modifications effected by CM, we
also classified the Leiden clusters based on the impact of CM-processing: extant,
reduced, split, and degraded, where “extant” indicates that the cluster was not
modified by CM, “reduced” indicates that the cluster is reduced in size, “split”
indicates that the cluster was divided into at least two smaller clusters, and
“degraded” indicates that the cluster was reduced to singletons or a cluster of
size 10 or less [25]. All methods produced split clusters, suggesting“resolution
limit” behavior that has already been documented for modularity [11]. Our study
shows this also occurs at some non-negligible frequency for CPM-optimization
using small resolution values, as well as for the other clustering methods.

2.3 Effect of CM on Clustered Real World Networks

We studied the effect of CM on clusterings generated by Leiden-modularity,
Leiden-CPM, and IKC, the only methods that scaled to the largest network
we studied and did not produce disconnected clusters. We present results here
from the Open Citations and CEN networks, the two largest networks out of
seven studied. Results on the remaining five networks show similar trends [25].
In assessing the impact of CM on node coverage, we do not consider very small
clusters (n ≤ 10) of practical interest, therefore, unless otherwise described, node
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coverage is reported in this submission as the percentage of nodes in clusters of
at least size 11.

With Leiden, maximum node coverage was 24.6% for the CEN and 68.7% for
Open Citations for six conditions tested. Post-CM node coverage was smallest
when using CPM-optimization with resolution value r = 0.5 and largest when
optimizing CPM with one of the two smallest resolution values, r = 0.001 for
CEN and r = 0.0001 for Open Citations. In comparison to Leiden, the IKC-
clustering results in relatively low node coverage, 23.6% and 3.8% in the case
of the Open Citations and CEN networks respectively. CM treatment of these
clusterings has a small effect on node coverage. Results for the other five networks
show similar trends and are available at [25].

The impact of CM depends on both the clustering method and the input
network. A more detailed examination shows the following trends. For CPM-
optimization, the impact of pre-processing is large for the two larger resolution
values, but decreases with resolution value. In contrast, the step of the CM
pipeline that iteratively finds and removes small edge cuts and reclusters has
a minimal impact at larger resolution values and an increasing impact as the
resolution value decreases. Modularity returned results most similar to CPM-
optimization with the smallest tested resolution value.

These trends suggest the possibility that only a fraction of the nodes in a
network belong in clusters that are sufficiently well-connected and sufficiently
large. In other words, and through the lens of our mild standard for connectivity
and size, real-world networks may not be fully covered by “valid” communities,
in contrast to what is often assumed in mathematical models of community
structure in networks.

2.4 Synthetic LFR Networks

To evaluate the impact of CM-processing on accuracy, we examined synthetic
networks produced using LFR software [19]. For this experiment, we computed
statistics for the Leiden clusterings of the seven real-world networks we previ-
ously explored, and used them as input to the LFR software [19] (see Materials
and Methods). We produced a collection of 34 LFR networks with ground truth
communities and clustered each of these 34 LFR networks using Leiden with the
same clustering parameters used to provide empirical statistics to LFR.

We examined the impact of CM-processing on clustering accuracy; results
for Normalized Mutual Information (NMI) and Adjusted Mutual Information
(AMI) are shown in Fig. 4. Adjusted Rand Index (ARI) data are available in
supplementary data [25]. CM-processing improves NMI accuracy for modularity
and also for CPM-optimization when used with small resolution values. CM-
processing tends to be otherwise neutral for NMI, and was only detrimental in
two cases. The impact on AMI accuracy is more variable. For example, CM-
processing reduced AMI accuracy for all conditions with wiki talk except for
CPM-optimization with r = 0.1, where accuracy was very low and the impact
was neutral. CM-processing also reduced AMI accuracy for CPM-optimization
on some network:clustering pairs for large resolution values. However, the cases
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Fig. 4. Impact of CM-processing on accuracy of synthetic networks. The left panels
show accuracy measured in terms of NMI and AMI with respect to the LFR ground-
truth communities. Each condition on the x-axis corresponds to a different LFR net-
work, generated based on Leiden-modularity or Leiden-CPM with that specific resolu-
tion parameter. The right panels show (top) node coverage when restricted to clusters
of size at least 11, and (bottom) percent of clusters that are disconnected. Under most
conditions, CM improves the accuracy of the original Leiden clustering, except when
the ground-truth communities have many (at least 60%) disconnected clusters, or the
node coverage by clusters of size at least 11 is relatively low (at most 70%).

where CM-processing produced a noteworthy reduction in accuracy for NMI
or AMI are those where there are many disconnected ground truth clusters or
where there are many clusters of size less than 11 in the “ground-truth clusters”.
Interestingly, CM can still have a positive impact even when there are many small
clusters or some disconnected clusters.

It is easy to see why low node coverage by clusters of size at least 11 could
reduce accuracy for CM-processing, since CM with B=11 automatically removes
all clusters below size 11. Therefore, CM-processing will not be beneficial where
there is interest in recovering small communities unless the bound B is replaced
by a smaller value. In contrast, the occurrence of disconnected ground-truth
clusters in the LFR networks is striking and problematic, since an expectation of
a community is that it is connected [36]. Hence, we assert that it is unreasonable
to evaluate accuracy with respect to a ground-truth set of communities if the
communities are not connected. The fact that LFR networks had ground truth
clusters that were not connected also indicates the failure of LFR software to
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reproduce features of the input network:clustering pairs, which by construction
always have 100% of the clusters connected.

Once the comparison between CM-processed clusters and original clusters is
restricted to the LFR networks, which do not have disconnected clusters and
which have high node coverage after restriction to clusters of size at least 11),
we find that CM ranges from neutral to beneficial in terms of the impact on
accuracy. Thus, there is a potential benefit in using CM to modify clusters that
are not well-connected.

3 Discussion

In this study we report that multiple clustering methods produce clusters that do
not meet a mild standard for well-connectedness. To enforce user-defined stan-
dards for connectivity and cluster size, we developed the Connectivity Modifier
(CM), an open-source tool [29] that presently provides support for the Leiden
and IKC software. We show that the CM enables users to assess hidden commu-
nity structure within clusters.

How significantly CM-processing changes a given clustering depends on the
network itself, as some networks seem to be more impacted by CM-processing.
It also depends on the choice of clustering algorithm and the parameter settings
used.

An important implication of our study using CM on seven real world com-
munities is the possibility that portions of real world networks may not exhibit
robust community structure. A related study using a different approach [22] con-
siders the question of whether a graph can be considered clusterable. Moreover,
since many clustering methods aim to maximize node coverage, such approaches
are likely to merge weakly connected parts of a network into communities that
fail modest standards for connectivity. Thus, there is a trade-off between node
coverage and well-connectedness that the user must consider in exploring com-
munity structure.

The finding that LFR networks produce different patterns than empirical
networks is not surprising. First, the LFR methodology assumes that the degree
distribution and cluster size distributions follow a power law, which may not
apply well to many real-world networks [2,5,28,33]. Second, the degree distribu-
tion and cluster size distributions were imperfectly fitted by LFR software in our
study. Another questionable assumption in the LFR methodology is that every
node is in a community; our study suggests that this assumption may only be
reasonable if the communities can be small and/or poorly connected. Exploring
the value of improved generators such as ABCDo [17] is a next step.

Several questions remain unanswered. First, to be able to distinguish between
the existence of a community and the ability to detect it with a given cluster-
ing method. Second, to assess whether too many or too few nodes are being
dropped. While we emphasize leaving the definition, use, and interpretation of
well-connected to users, these questions merit attention. We also recognize that
our emphasis on well-connected clusters may result in narrow descriptions of
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communities. Additionally, informative weaker links [13] may be lost from com-
munities since CM partitions input clusters that are poorly connected into sets
of well-connected clusters. On the other hand, these well-connected communities
could be useful in defining cores of core-periphery structures [4,30,37] that could
subsequently be augmented by adding peripheral components. Last, future work
should incorporate evaluation criteria relevant to the input network.

Materials and Methods

Table 1. Real world networks used in this study

network # nodes # edges average node deg reference

Open Citations 75,025,194 1,363,303,678 36.34 [27]

CEN 13,989,436 92,051,051 13.16 [15]

cit hepph 34,546 420,877 24.37 [21]

cit patents 3,774,768 16,518,947 8.75 [21]

orkut 3,072,441 117,185,083 76.28 [38]

wiki talk 2,394,385 4,659,565 3.89 [20]

wiki topcats 1,791,489 25,444,207 28.41 [39]

Data. The publicly available Open Citations dataset was downloaded in Aug
2022. The CEN is a citation network constructed from the literature on exosome
research. From the SNAP repository, we downloaded cit hepph, an High Energy
Physics citation network; cit patents, a citation network of US patents; orkut,
a social media network; wiki talk, a network containing users and discussion
from the inception of Wikipedia until January 2008; and wiki topcats, a web
graph of Wikimedia hyperlinks. All networks were processed to remove self-
loops, duplicate edges, and parallel edges before clustering.

LFR (Synthetic) Networks. To create simulated networks with ground truth
communities, we used the LFR software [10,19], which takes the following eight
parameters as input:

– Network properties: Number of nodes N , average and maximum node degrees
(k and kmax respectively), and negative exponent for degree sequence (τ1).

– Community properties: Maximum and minimum community sizes (cmax and
cmin), and negative exponent for the community size distribution (τ2).

– Mixing parameter μ, that is the ratio between the degree of a node outside
its community and its total degree, averaged over all nodes in the network.

To emulate the empirical networks using LFR graphs, we estimated all eight
parameters described above for a given pair of network G and a clustering C.
N, k, kmax, cmin and cmax were computed using networkX [14,34]. To estimate
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μ, we performed a single iteration over all edges of the network, and for each edge,
if the nodes on the two sides of it were in different communities, that edge con-
tributes to the ratio μ of these two nodes. The total μ of the network:clustering
pair is the average μ across all the nodes.

To estimate τ1 and τ2, we fitted a power-law distribution to the node degree
sequence and the community size distribution, using the approach from [6] that
is implemented in the powerlaw Python package [1]. Because the power-law
property may not hold for the whole distribution, following [6], we estimated
xmin, the minimum value for which the power-law property holds as well as the
exponent α for the tail of the distribution.

After computing these parameters based on the Leiden clusterings of the
empirical networks using both modularity and CPM with a range of resolution
parameters, we simulated LFR networks [19]. For networks with more than 10
million nodes, i.e., Open Citations and the CEN, we limited the number of
vertices to 3 million, due to scalability limitations of the LFR benchmark graph
generator [32], while preserving the edge density reflected by average degree, and
the mixing parameter. The numbers of nodes of the other LFR graphs exactly
match the number of nodes in the corresponding empirical network. In some
cases, due to the inherent limitations of the LFR graph generator, we had to
modify the ranges of the community sizes, i.e., increase cmin and decrease cmax,
to generate the network. We calculated NMI, AMI, and ARI using the Python
Scikit-Learn package [26].
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Abstract. A network autocorrelation model may be embedded within
a hierarchical data structure involving a complex network, when the peer
effect (also referred to as social influence or contagion) is believed to act
between units (e.g., hospitals) above the level at which data is observed.
We develop two hierarchical network autocorrelation models to represent
peer effects between hospitals when modeling individual outcomes of the
patients who attend those hospitals. We use a Bayesian approach for
model estimation and assess the performance of the models and sensitiv-
ity of results to different prior distributions using a simulation study. We
construct a United States New England region patient-sharing hospital
network and apply our models and Bayesian estimation procedures to
study the diffusion of the adoption of robotic surgery and hospital-peer
effects in the quality of patients outcomes using a cohort of United States
Medicare beneficiaries in 2016 and 2017.

Keywords: Bayesian inference · Complex network · Diffusion of
Robotic surgery · Hierarchical network autocorrelation model · Peer
effect

1 Introduction

As one of the most important models in social network analysis, the network
autocorrelation model (NAM) has been developed and implemented with the
belief that one actor’s behavior may be influenced by the behavior of other
linked actors in the network [1]. Several types of NAMs have been proposed in
the last 40 years. For instance, [2,3] describe the model: Y = ρWY +Xβ+ε, ε ∼
N

(
0, σ2I

)
, where Y is a vector containing realizations of a dependent variable,
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W is a matrix whose elements are social ties between pairs of actors, X is a matrix
of covariates and ρ is the level of peer-to-peer influence that underlies diffusion
across the network. However, none of these models examined the interdependence
among the actors when they are at least one level higher in the data structure
than the units on which observations are made. An example in the case of a two-
level hierarchical data structure occurs in a study in which interest centers on
peer-effects among providers (e.g., physicians or hospitals) and whether patient
outcomes are directly impacted by the peers of their provider. Such a study is
important as knowing whether a hospital’s adoption of a technology impacts
the outcomes of a greater population of patients than just their own patients is
important for policy-makers to understand in order to make decisions regarding
the priority of different incentive programs aiming to improve the quality of
patient care and outcomes.

In the similar but distinct area of spatial statistical analysis (spatial data
typically has a simpler typology than network data in that distances between
points or areas are compliant with the triangle inequality), [4] introduces a family
of hierarchical spatial autoregressive models (HSAR) to model hierarchical data
structures involving geographic units. The HSAR is given by:

Y = ρWY + Xβ + Zγ + Δθ + ε with θ = λMθ + u,

where X and Z are matrices for the lower and cluster level covariates, θ is a vector
of random effects for higher level spatial units, Δ is a design matrix linking θ to Y ,
and W and M are spatial weight matrices (or neighborhood connection matrices)
at the lower and higher levels, respectively. The specification of W and M is nat-
urally based on geographical contiguity (areal spatial data) although the model
could be adapted to the case when it is based on geographical distances separating
units (point-referenced spatial data). Finally, ρ and λ measure the strength of the
dependencies at the observation and the cluster levels, respectively.

In this paper, we first develop the basic hierarchical network autocorrelation
model by adapting the HSAR in [4] to social network data assuming the peer
effects of actors at a higher level (e.g., hospitals) of the hierarchical structure
than the level at which observations are made (e.g., patients). Second, we develop
a novel extended hierarchical network autocorrelation model that includes an
extra parameter to allow direct across-level influence of actors such as hospitals
on individuals (e.g., patients) attributed to other actors. This extended model
relaxes the “no direct effect” restriction of the basic HSAR model in which peer
hospitals may indirectly impact the patients from the focal hospital through their
impact on the focal hospital (i.e., an indirect effect of peer hospitals) but does
not allow direct impact of peer hospitals on patients from the focal hospital. The
basic HSAR model can be considered as a special case of the extended model
in which direct impact is not allowed. We study the first two moments of the
observation-level outcomes as a function of these two network autocorrelation
parameters to gain insights into the mechanisms that they represent. The adap-
tation of HSAR to social network data has not been studied in the literature to
date while the extension of the model to allow for direct (across-level spillover)
effects is an entirely new topic.
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Due to the complexity of the data and network structure, we complete
Bayesian model specifications so that Bayesian computational methods can be
employed to fit the hierarchical network autocorrelation models. A series of
simulation studies are conducted to investigate the properties and demonstrate
the performance of the resulting estimators under different prior distributions;
the sensitivity of posterior inferences to the prior distribution assumed for the
peer effect parameter ρ is of particular interest. To alleviate some concerns with
commonly-used priors for ρ, we also develop a new prior that imposes uniformity
on a natural transformation of ρ.

Motivating this work is an observational study seeking to understand the full
impact of the adoption of robotic surgery on the time to discharge from hospital
of patients undergoing prostatectomy surgery. Robotic surgery is a robotically-
assisted and minimally-invasive procedure in which a surgeon operates robotic
arms via a console to perform surgeries. It is believed that the use of robotic
surgery is associated with the improvement of patient health outcomes, such as
shorter hospital stays, less pain, and lower risk of infection [5]. Robotic surgery
is commonly used in prostatectomy for prostate cancer [6] and also assists in
the treatment of lung cancer, kidney cancer and colorectal cancer [7–9]. The
network upon which we examine peer-effects of is the United States (US) New
England region hospital network for patients with prostate, lung, kidney and
colorectal cancer and is constructed using the 2016 US fee-for-service Medicare
claims data. We study the peer effects among hospitals on prostatectomy time to
discharge post-surgery of US Medicare patients in 2017 to allow a lagged peer-
effect of network interdependency and to partially protect inferences against
reverse causality.

The estimation of the above-described peer-effects of robotic-surgery will
advance our understanding of the diffusion of robotic surgery, potentially pro-
viding policy makers the insights needed to provide incentives for the adoption
of other medical technologies or to decide which ones to prioritise. In general, the
extended hierarchical network autocorrelation model will provide insights into
whether a hospital’s adoption of technologies have a general beneficial effect on
patients in a local area (e.g., by improving general standards of surgical quality
including strengthening infection control measures in emergency rooms) such
that patients who receive surgeries at other hospitals also benefit. The results
will be of potential use to policy-makers hoping to provide incentives to hospitals
to adopt technologies that are beneficial to patients.

The remainder of the paper is organized around three main methodological
contributions and their illustration in the motivating application. In Sect. 2 we
specify notation and develop the basic and extended hierarchical network auto-
correlation models assuming the peer effects of actors are at a higher level of the
hierarchical structure than the level at which observations are made and allowing
direct and indirect across-level peer effects of actors on individuals attributed
to actors. The end of Sect. 2 contains the development and in depth exploration
of the marginal mean and variance of the expected value of the outcome as a
function of the network parameters for both models while in Sect. 3 we specify
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prior distributions, including a new transformed uniform prior distribution for
ρ, and describe our Bayesian estimation approach. Section 4 consists of a sim-
ulation study that includes the sensitivity of posterior inferences to the prior
distribution assumed for ρ. The robotic surgery motivating example and the
interpretation of the results are presented in Sect. 5, while the paper concludes
with a discussion in Sect. 6.

2 Notation and Models

2.1 Hierarchical Network Autocorrelation Model

We adapt the HSAR presented in [4] and introduce the underlying hierarchi-
cal model to illustrate the interdependency of actors at a higher-level of the
data assuming first that no direct interdependency exists at the observational
level. That is, peer-effects only act on individual subjects generating observations
through their impact on the cluster-effects of the units (the network actors) in
which the individuals are grouped, such as in the following model:

Y = Zθ + Bδ + ε

δ = ρWδ + Xβ + τ
(1)

where ε ∼ N
(
0, σ2IN

)
, τ ∼ N

(
0, ω2Ig

)
, Y is a vector of length N containing

the values of a response variable for N observations, Z is a N × k matrix for k
observation level covariates whose first column is a vector of 1s corresponding
to the intercept parameter, X is a g × l matrix for l cluster level covariates, δ
is a vector of length g representing the random effect of network actors and B
is a N × g matrix linking the random effect δ back to Y . In addition, ε and τ
represent the errors at the observational and cluster levels and W is a g×g matrix
quantifying the relationships between the actors in the associated network. The
ijth entry of W , Wij , represents the influence of actor j on actor i. The term
“ego” refers to the focal actor being studied while the term “alter” refers to the
actors with network edges with the ego, also referred to as “peers”.

The matrix W is constrained to be a non-negative row-normalized matrix,
reflecting the absence of negative influences and that relative exposures are the
conduit through which social influence transmits. The diagonal of W consists
of zeros as self-ties are not permitted in the network. The focal parameter ρ is
the peer effect corresponding to the indirect effect of alters (actors to which the
focal actor is connected) on the outcomes of the individuals of other actors.

Letting A = Ig − ρW , to ensure A is non-singular and the determinant of A,
|A| �= 0, the range of ρ needs to be restricted. Following [10–12], we restrict the
parameter space of ρ to (1/λmin, 1/λmax), where λmax and λmin are the maximum
and minimum eigenvalues of the row-normalized W . For a row-normalized W ,
1/λmax = 1 and 1/λmin ≤ −1 [13] with the value of 1/λmin becoming more
negative with increasing network density. Network density equals M/(g(g − 1))
for directed networks and 2M/(g(g − 1)) for undirected networks, where (M) is
the number of observed ties and g(g − 1) is the number of possible ties.
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We compute the marginal mean and variance of Y to explore and interpret
the peer effect. If A is non-singular, the marginal mean and variance satisfy:

E(Y ) = Zθ + BA−1Xβ

var(Y ) = BA−1ω2IgA
−1T BT + σ2IN

Applying the Neumann series, when the norm of ρW , |ρW | < 1, it follows that:

A−1 = Ig + (ρW ) + (ρW )2 + . . . + (ρW )N + . . . =
∞∑

h=0

(ρW )h

The above demonstrates that both the marginal mean and variance of the model
depend on ρ and that A−1 is a high-order polynomial function of ρ and W .

2.2 Extended Hierarchical Network Autocorrelation Model

A restriction on the model in (1) is that conditional on δi there is no direct
dependence between the vector of observations Yj and Yi for actors j and i,
respectively, for any j �= i. In practice, one could imagine situations in which
alters may directly influence the individuals associated with the ego in ways other
than their impact on the ego. Such situations may arise when a network at the
observational level is unmeasured. For example, the patients of one hospital may
benefit from improved quality of care at a peer hospital through the patients of
the peer-hospital incentivising better health behaviors in the patients of another
hospital, or the peer-hospital directly impacting the patients of another hospital
by sharing resources. To allow for this possibility, we introduce an extended
hierarchical network autocorrelation model with an extra parameter quantifying
direct across-level influence of hospitals on patients of other hospitals:

Y = Zθ + B [δ + αW1δ] + ε

δ = ρW2δ + Xβ + τ
(2)

where ε ∼ N
(
0, σ2IN

)
, τ ∼ N

(
0, ω2Ig

)
, and α is an unrestricted parameter that

quantifies the direct network effect of alters on the outcome of individuals from
the ego. The matrices W1 and W2 could represent different types of relationships
between actors; e.g., W1 could be built on geographical distances between hos-
pitals while W2 could be built on patient-sharing information between hospitals.
With only a single source of network relationship information, in our study we
set W1 = W2 = W . Model 1 is the special case of model 2 in which α = 0.
Letting G = B [Ig + αW ], we compute the marginal mean and variance of Y
under (2):

E(Y ) = Zθ + GA−1Xβ

var(Y ) = GA−1ω2IgA
−1T GT + σ2IN

and to help interpret α and ρ as well as distinguish the model in (2) from that
in (1), we evaluate these expressions across a range of values of α and ρ.
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2.3 Illustration of Marginal Mean and Variance of Extended Model
with Simulated Data

We simulated 100 datasets under the extended model assuming a network con-
taining 50 hospitals and 30 individuals per hospital. To determine how the
marginal mean and variance of the model change with increasing ρ, we plot
the average of the mean of the elements of E(Y ) and the average of the diagonal
elements of var(Y ) over 100 drawn values on the vertical-axis against ρ on the
horizontal-axis (Fig. 1.a. and Fig. 1.b.). Similarly, we evaluate the relationship
between α and the marginal mean and variance of the model (Fig. 1.c. and 1.d).
Finally, we investigate the association between the network density d and the
marginal mean and variance of the model (Fig. 1.e. and 1.f.).

Figure 1.a. and Fig. 1.b. show that the magnitude of the marginal average
mean and variance of Y increases when the value of ρ increases and accelerates
exponentially upwards when ρ approaches its upper boundary of 1. When ρ
approaches 1, the determinant of A, |A|, is close to zero and the entries of A−1

are relatively large resulting in extreme exponential behavior. Similar results are
found for negative values of ρ. Figure 1.c. reveals a linear decreasing association
between the marginal average mean of Y and α while Fig. 1.d. shows that the
corresponding marginal variance increases with α. From Fig. 1.e. and Fig. 1.f.,
we find that the marginal mean and variance display volatile behavior when
the network density is smaller than 0.1. When the network density is small,
e.g., d < 0.1, the simulated network often contains isolated nodes. To overcome
the computational issues in matrix row-normalization that occur with isolated
nodes, we assume that isolates are equally influenced by all other actors in our
specification of W . The volatile behavior of the marginal mean and variance of
Y as density approaches 0 is due to the rapid escalation in the frequency of
isolates and their resulting impartiality with respect to peer-influence from all
other actors in the network.

3 Bayesian Hierarchical Network Autocorrelation Model
and Estimation

Under model 1, the likelihood function is given by:

f
(
Y | θ, δ, σ2

)
=

(
2πσ2

)−N/2
exp

(
− (Y − Zθ − Bδ)T (Y − Zθ − Bδ)

2σ2

)
,

and the conditional prior distribution of δ as:

p
(
δ | β, ω2, ρ

)
= |A| (2πω2

)− g
2 exp

(
− (Aδ − Xβ)T (Aδ − Xβ)

2ω2

)

Due to the bounds on the range of values that ρ may take, the prior distribution
of ρ may have a nontrivial impact on the posterior distribution and ensuing pos-
terior inferences. To further investigate prior sensitivity and its influence on the
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Fig. 1. The marginal mean and variance of the model along with the change of ρ, α
and network density

posterior distribution, we specify three priors for ρ and compare the resulting
posterior inferences under them. First, we use the flat prior p(ρ) ∝ 1 over the
range 1/λmin < ρ < 1/λmax to ensure that the matrix A is non-singular. Second,
we retain a uniform prior for ρ but truncate its range to (−1, 1), a symmetric
and more restricted parameter space given that 1/λmax = 1 and 1/λmin becomes
much smaller than −1 when network density increases. Third, to develop a proce-
dure that emulates the popular Jeffery’s prior family of non-informative seeking
prior distributions, we impose prior uniformity on a parameter corresponding to
a transformation of ρ whose range is the entire real line. Using the generalized
logit function, we assign an improper flat prior on the transformed parameter

g(ρ) = log
(
1/λmax − ρ

ρ − 1/λmin

)

and then derived the implied prior for ρ:

p(ρ) ∝ 1
(1/λmax − ρ) (ρ − 1/λmin)

which has positive support for ρ ∈ (1/λmin, 1/λmax). In contrast to the flat prior
for ρ, the “transformed uniform” prior is “U-shaped” and has more prior mass at
its boundary values {1/λmin, 1/λmax} than near its center. To complete the prior
specification, we assign improper flat priors on σ and ω that are equivalent to
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(
σ2, ω2

) ∝ 1/(σω). (Alternatively, a half Cauchy prior can be used for ω2 [14];
the results using the half Cauchy prior are essentially indistinguishable from
those for the improper flat prior on ω in our analysis.) We specify the flat prior
p(θ, β) ∝ 1 for (θ, β), although similar results are found from assigning normal
priors centered at 0 with large variances (“non-informative normal priors”) for θ
and β.

Due to the complexity of the model and the large number of parameters,
the joint posterior distribution is non-standard and direct sampling from it
is intractable. Therefore, we use a hybrid Gibbs-sampling Metropolis-Hastings
algorithm that sequentially draws from the conditional posterior distribution of
each parameter given the data and current values of all other parameters [15].
The conditional posterior distributions for each of σ2, ω2, β, θ and δ have well-
known conjugate forms making sampling from them straightforward. In contrast,
the conditional posterior of ρ:

p
(
ρ | β, ω2, δ, σ2, θ, Y

) ∝ |A| exp
(

− (Aδ − Xβ)T (Aδ − Xβ)
2ω2

)
p(ρ) (3)

does not have a form conducive for direct sampling. Therefore, in (3) we approx-
imate ln |A| using a quadratic polynomial Taylor series approximation at ρ = 0
and use a Metropolis Hastings step with an independent candidate generat-
ing function for direct sampling [11]. As demonstrated in the derivation in
the Supplementary Material in our GitHub site specified at the end of the
paper, the resulting candidate generating distribution of ρ when p(ρ) ∝ 1,
1/λmin < ρ < 1/λmax, is the truncated normal distribution (TN):

p
(
ρ | β, ω2, δ, σ2, θ, Y

) ∼ TN (μ∗, V ∗) for 1/λmin < ρ < 1/λmax with

μ∗ =
δT WT (δ − Xβ)

ω2
∑

λi
2 + δT WT Wδ

V ∗ =
ω2

ω2
∑

λi
2 + δT WT Wδ

(4)

where λi for i = 1, . . . , g are the eigenvalues of W . Under p(ρ) ∝ 1, −1 < ρ < 1,
the implied candidate generating distribution of ρ is TN (μ∗, V ∗) with support
−1 < ρ < 1. For the transformed uniform prior of ρ, we use the same candidate
generating distribution in Eq. (4) to sample ρ.

Similar to model 1, we use the same prior distributions and MCMC sampling
procedure to fully specify and estimate model 2. In addition, we assign a flat
prior to the additional parameter α; that is, p(α) ∝ 1. The conditional posterior
of α is then:

p
(
α | β, ω2, ρ, σ2, θ, Y, δ

) ∼ N

(
δT WT BT K

δT WT BT BWδ
,

σ2

δT WT BT BWδ

)
,
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where K = Y − Zθ − Bδ. As with model 1, the derivation of the conditional
posteriors of all other parameters are presented in the Supplemental Materials
(see link to our GitHub site at the end of the paper).

4 Simulation Study

We conducted a simulation study involving hypothetical patients receiving care
from hospitals in a hospital network to evaluate the performance of model 1
and 2 and their Bayesian estimation procedures under different priors for ρ. The
number of hospitals was set to 50 with 30 individuals per hospital. We generated
undirected binary-valued network matrices W with density of 0.2, 0.4, 0.6 and
0.8, ρ = −0.5,−0.2, 0, 0.2, 0.5 and α = 2, 5. For each model, three patient-level
and hospital-level covariates were included. For each scenario, we generated 500
simulated datasets and for each drew 20,000 samples from the fitted posterior
distribution.

Table 1. Bias, mean squared error (MSE), and 95% coverage rates (Rate) of ρ using
uniform priors (Unif 1 for 1/λmin < ρ < 1/λmax and Unif 2 for −1 < ρ < 1) and
transformed uniform prior (T Unif) and α.

Network Density (d) ρ = −0.2 ρ = 0 ρ = 0.2

Unif 1 Unif 2 T Unif Unif 1 Unif 2 T Unif Unif 1 Unif 2 T Unif

d = 0.2 Bias of ρ 0.024 0.049 0.069 0.010 0.009 0.071 0.002 0.022 0.071
MSE of ρ 0.059 0.057 0.074 0.053 0.050 0.073 0.049 0.055 0.068
Rate of ρ 0.958 0.966 0.934 0.962 0.960 0.926 0.952 0.932 0.920
Bias of α −0.046 0.035 −0.043 0.005 −0.022 −0.048 0.042 0.018 −0.053
MSE of α 4.211E−06 2.421E−06 3.761E−06 5.278E−08 9.363E−07 4.663E−06 3.484E−06 6.321E−07 5.711E−06
Rate of α 0.942 0.956 0.934 0.958 0.956 0.928 0.946 0.946 0.934

d = 0.4 Bias of ρ −0.017 0.134 0.230 v0.105 0.021 0.155 −0.164 -0.123 0.074
MSE of ρ 0.212 0.145 0.394 0.232 0.125 0.298 0.204 0.135 0.217
Rate of ρ 0.980 0.984 0.932 0.972 0.984 0.938 0.952 0.980 0.930
Bias of α 0.103 0.119 0.203 −0.071 0.204 0.236 0.189 0.516 0.267
MSE of α 2.112E−05 2.837E−05 8.276E−05 1.016E−05 8.332E−05 1.112E−04 7.146E−05 5.329E−04 1.429E−04
Rate of α 0.972 0.978 0.920 0.974 0.978 0.922 0.958 0.968 0.934

Note: For each value of ρ, the results represent the bias, MSE and Rate of ρ and α. The results are
rounded to 3 decimal places.

In general, the simulations reveal that our posterior median estimators of
ρ have minimal bias across the three prior distributions with small differences
in the corresponding mean squared error (MSE) and the coverage rate of the
95% equal-tailed credible interval. For example, under model 2 the bias of the
posterior median estimator of ρ when the network density d = 0.2, the indirect
peer-effect parameter ρ = 0.2, the direct peer-effect parameter α = 2, and the
prior distribution for ρ is uniform over the full range of possible values of ρ is
0.002 (Table 1). Under the same settings but when d = 0.4, bias is −0.164. To
provide a sample of the results we generated in studying the estimators, results
for the estimators of ρ and α under model 2 for all combinations of d = 0.2, 0.4,
ρ = −0.2, 0, 0.2, and the three prior distributions when α = 2 are also shown
in Table 1. Consistent findings are observed for other values of ρ and α under
model 1.
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We also found that the bias of the posterior median estimators of ρ and
α increase with increasing network density, an observation consistent with the
findings for classic linear NAMs in [11,16]. The MSE of ρ and α also increase
with increasing network density but this is largely a consequence of the trend for
bias as it dominates the MSE. As expected, due to the asymmetric interval of
support for ρ, 1/λmin < ρ < 1/λmax, the uniform prior of ρ leads to the posterior
median estimator of ρ exhibiting an asymmetric bias pattern either side of 0. In
contrast, bias is much more symmetric around 0 under the uniform (−1, 1) prior
for ρ, especially when network density is large. Additionally, for ρ > 0 and a large
network density, the bias for the transformed uniform prior of ρ is significantly
smaller than that under the uniform priors on ρ itself, implying that the mass of
the posterior distribution for ρ is pulled more towards its upper boundary under
the transformed uniform prior.

Across many settings of the simulation parameters, we have observed similar
results implying that as network density increases, it becomes more challenging
for the model to identify ρ (see GitHub site for detailed full results). Intuitively,
as density increases the information in the data about ρ declines due to the vast
number of connections in the network making the variation across the actors
in the extent to which they are more or less connected with other actors much
lower than when density is low. It is in this high density scenario that slight
differences in the non-informative prior specification for ρ nontrivially impact
the posterior distribution.

5 The Impact on Patient Quality of Hospitals’ Adoption
of Robotic Surgery

To explore whether the extent to which peer-hospital adoption of robotic surgery
is associated with the prostatectomy time to discharge post-surgery at a hospi-
tal, we construct a US New England region patient-sharing hospital network
comprising the six Northeastern US states (Maine, New Hampshire, Vermont,
Massachusetts, Connecticut, and Rhode Island) for patients with prostate, lung,
kidney and colorectal cancer by adapting the approach in [17–19]. The result-
ing undirected weighted hospital network matrix is row normalized to form
the weight matrix used in models 1 and 2 (the network density is 0.779 with
1/λmax = 1 and 1/λmin = −1.660). US Medicare fee-for-service health insurance
claims data from 2016 were used to build the patient-sharing hospital network
and to evaluate hospital covariates while the corresponding 2017 Medicare data
is used to evaluate all patient outcomes and covariates. We include patient’s
age, disability, whether receiving a robotic surgery and the Charlson Comorbid-
ity Index [20] as patient-level covariates. For the hospital-level covariates, we
include the number of beds, percentage of robotic prostatectomy and number
of peer hospitals in the network as covariates. The resulting cohort contains 45
hospitals and 1306 patients.

We use the posterior median as our Bayesian point estimator and compute
95% equal-tailed credible intervals of ρ and α. In addition, we compute the



Bayesian Hierarchical Network Autocorrelation Model 25

Deviance Information Criterion (DIC) [21] for model comparison due to its self-
determined evaluation of the effective degrees-of-freedom of the model to penalize
our Bayesian hierarchical models for model complexity and thus guard against
over-fitting when comparing the extended to the basic hierarchical network auto-
correlation model.

Table 2. Estimates, credible interval and DIC for model 1 and 2.

Predictors and Key Model Parameters Estimate (95% Equal-tailed Credible Interval)

Intercept 0.971(0.922, 1.021) 0.973(0.921, 1.029)

Whether done by robotic surgery −0.164(−0.214,−0.114) −0.164(−0.214,−0.114)

Age 0.052(0.029, 0.076) 0.052(0.029, 0.076)

Disability 0.184(0.112, 0.256) 0.184(0.112, 0.257)

Charlson Comorbidity Index 0.145(0.046, 0.244) 0.144(0.045, 0.243)

Beds −0.015(−0.039, 0.008) −0.016(−0.045, 0.007)

Percentage of robotic prostatectomy 0.004(−0.018, 0.027) 0.006(−0.016, 0.029)

Number of peer hospitals 0.010(−0.013, 0.032) 0.007(−0.017, 0.031)

ρ (peer effect) −0.048(−1.164, 0.771) −0.525(−1.481, 0.804)

α (incremental direct effect of peers on outcome) NA 1.355(−2.539, 4.168)

σ2 (residual variance) 0.127(0.117, 0.137) 0.127(0.117, 0.137)

ω2 (variance of random effects) 1.673E-04 (3.465E−07, 1.772E−03) 2.150E−04 (2.663E−07, 2.173E−03)
DIC (Deviance Information Criterion) 1018.878 1016.843

Note: The results are for the prior p(ρ) ∝ 1, 1/λmin < ρ < 1/λmax; similar findings are
observed for the other two priors. Numbers are rounded to 3 decimal places.

Table 2 indicates that robotic surgery and number of beds are negatively
associated with patients’ time to discharge post prostatectomy surgery (i.e.,
shorter hospital stays occur). In contrast, age, disability, Charlson Comorbidity
index, percentage of robotic prostatectomy procedures and the number of peer
hospitals are positively associated with time to discharge post-prostatectomy
of patients (i.e., longer hospital stays occur). Comparing the two models, we
observe a significant change in the magnitude of ρ. With the inclusion of α
(α̂ = 1.355(−2.539, 4.168)), ρ̂ changes from −0.048 to −0.525. The value α̂ =
1.355 > 0 suggests that peer hospitals’ propensity to adopt robotic surgery is
directly associated with longer patient hospital stays whereas ρ̂ = −0.525 < 0
indicates that peer hospitals’ propensity to adopt robotic surgery is indirectly
associated with shorter hospital stays. The wide credible intervals for both ρ and
α overlap 0 and imply that with a very large network density (i.e., 0.779) in our
study, the information in the data about ρ and α is limited (much more so than
if density were lower). The two models have very close DICs with the DIC of
model 2 slightly smaller than the DIC for model 1, suggesting that model 2 fits
the data better.
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6 Discussion

In this paper, we extended the classic linear NAM to develop two hierarchical net-
work autocorrelation models to study the direct and indirect peer-effects of actors
at a higher level of the data than that at which observations are made. The novel
contributions include the exploration of peer effects among higher-level actors
and the impact of peer-actor behavior on an observation-level outcome within a
two-level hierarchical data structure. A special case of our models is the spillover
effects model in which network diffusion occurs when an individual’s behavior is
influenced by their alters’ covariates. In addition, we proposed a Bayesian app-
roach for estimation and compared the performance of the resulting estimators
under different prior distributions for ρ to gain insights into which prior leads to
the most stable posterior inferences and the extent to which the posterior distri-
bution is sensitive to the prior. In general, our model is designed for the analysis
of hierarchical models when actor interdependency or peer-effects occurs at a
higher-level of the model than that at which observations are made. Although
we focused on continuous outcomes, a natural avenue for further research is
to generalize the hierarchical and extend hierarchical network autocorrelation
models to non-continuous outcomes. Although our simulation study confirmed
that our models are estimable, further study of the relationship between network
features and the precision of estimation of peer-effects is warranted.

Our model and methodological development were applied to data from an
observational study of the diffusion of the adoption of robotic surgery on the
quality of patient outcomes. We specifically investigated whether hospital peer
effects regarding the adoption of robotic surgery are associated with patient time
to discharge post prostatectomy. Although our findings were indecisive, a conse-
quence of insufficient information in the data about the peer-effect parameters
due to the densely connected network, in general our models have the potential
to be widely applied and to reveal important scientific findings in relation to
the impact on the outcomes of patients at a hospital of the adoption of a health
technology by its peer hospitals, from which important policy recommendations
may be derived.

Supplementary Materials

The data used for the motivating analyses contain patient identifiable informa-
tion and so cannot be made available. However, template R code for performing
the simulations (which can be easily adapted to analyze a real data set) have been
uploaded to the paper’s GitHub site at: https://github.com/chen918/HNAM.
The derivation of the conditional posterior distributions and results for the sim-
ulation study are also available on the GitHub site.
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Abstract. We propose a model for network community detection using
topological data analysis, a branch of modern data science that lever-
ages theory from algebraic topology to statistical analysis and machine
learning. Specifically, we use cellular sheaves, which relate local to global
properties of various algebraic topological constructions, to propose three
new algorithms for vertex clustering over networks to detect communi-
ties. We apply our algorithms to real social network data in numeri-
cal experiments and obtain near optimal results in terms of modularity.
Our work is the first implementation of sheaves on real social network
data and provides a solid proof-of-concept for future work using sheaves
as tools to study complex systems captured by networks and simplicial
complexes.

Keywords: Cellular sheaves · community detection · modularity ·
opinion dynamics · topological data analysis

1 Introduction

Networks are used to describe, study, and understand complex systems in many
scientific disciplines. One of the most important features in complex systems
that networks are able to capture is the presence of communities. In networks,
communities can be seen as partitioning a graph into clusters, which are sub-
sets of vertices with many edges connecting the vertices within the subset, and
comparatively fewer edges connecting to different subsets in the rest of the net-
work. These clusters or communities can be considered as relatively independent
components of a graph. The problem of community detection is to locate those
clusters in networks which are more strongly connected than the whole network
is, on average. Community detection is a challenging and active area of research
in network science: a key aspect that makes the problem difficult is that there is
no single, universally accepted definition of a community within a network and
it is largely dependent on context or the specific system being studied.

Topological data analysis (TDA) is a recently-emerged approach to data
science that uses principles from pure mathematics to extract meaningful infor-
mation from large and complex datasets that may not possess a rigorous metric
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1142, pp. 29–42, 2024.
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or vector space structure which is often required in classical data analysis. In
our work, we focus on sheaves, which are a tool that relates local to global
properties of various constructions in algebraic topology and have been used
to reinterpret and generalize many significant results in classical geometry and
algebraic topology. Sheaves allow for information to be assigned to subsets of
topological spaces; when the topological space is a network and the information
is vector space-valued, a computational framework for sheaves becomes available
similar to that of persistent homology, which is a well-developed and the most
widely-used tool in TDA; see [2] for complete details.

In this paper, we propose a topological approach to community detection
based on sheaves. Specifically, we show that sheaves may be used to rigorously
model the problem of community detection on a network and propose three
novel, sheaf-based community detection algorithms. We test and compare their
performance with numerical experiments on a real-world benchmarking dataset
and show that we are able to attain near optimal community detection results.

Related Work. Particularly relevant to our work, sheaves have been previously
used to model various dynamics of opinions over social networks, including
bounded confidence models, stubbornness, and the formation of lies [3]. In a
similar spirit, propagation of gossip has also been theoretically modeled using
sheaves [5]. However, it is important to note that no implementations nor applica-
tions to real data exist of these sheaf social network models. In a non-topological
setting, the formation of opinion clusters has been investigated in the bounded
confidence model [4]; another contrast to our work is that they use dynamics
with discrete time steps and sharp confidence bounds. Very recently, the only
other TDA approach to community detection that we are aware of was proposed
[6], however, it is based on persistent homology, rather than sheaves, as in our
work.

2 Background: Sheaves and Social Networks

In this section, we define sheaves and present sheaf-theoretic notions in the
context of social networks that will be used in our proposed community detection
algorithms.

2.1 Sheaves and Sheaf Cohomology

Sheaves assign data to open subsets of topological spaces X in a consistent
manner. This compatibility is what enables them to relate local (i.e., the pure
data) and global (i.e., having an assignment of compatible data) properties of
X. Cellular sheaves are a special case where X is a cellular complex (which is
a generalization of a simplicial complex) and the data are vector spaces. In this
paper, we will further restrict to the case that the cellular complex is a graph
G = (V,E); we consider undirected graphs without loops or multiple edges.
We write edges as ordered tuples e = (v1, v2), ordered arbitrarily. Under these
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restrictions to graphs, we now outline how important concepts from graph theory
generalize to the topological setting of sheaves which will be relevant to our work
further on.

The graph G becomes a topological space when exploiting the fact that the
subface relation allows G to be viewed as a partially ordered set and to be
equipped with the Alexandrov topology. A sheaf on G turns out to be uniquely
determined by the following data [2].

Definition 1. A (cellular) sheaf F assigns finite-dimensional real vector spaces,
called stalks, F(v) to each vertex and F(e) to each edge of a graph, and a linear
map Fv⊂e : F(v) → F(e) (called a restriction) to each incidence v ⊂ e.

Fig. 1. Example of a cellular sheaf

Figure 1 illustrates a cellular sheaf. Other examples that can be defined for
any graph G are the constant sheaves R

n for n ∈ N, where all stalks are R
n and

all restrictions the identity map.
Algebraic topology is a field of pure mathematics that uses abstract alge-

bra to study topological spaces; specifically, it defines algebraic ways of counting
properties of topological spaces that are left unaltered under continuous deforma-
tions of the topological space, such as stretching or compressing. Such properties
are referred to as invariants; cohomology groups are examples of such invariants.
Sheaves over topological spaces give rise to sheaf cohomology groups. In our set-
ting, these are obtained from a collection of vector spaces and maps between
them, called the cochain complex [7, Theorem 1.4.2]

0 −→ C0(G,F) δ−−−→ C1(G,F) −→ 0 −→ · · ·
with cochain groups

C0(G,F) :=
⊕

v∈V

F(v), C1(G,F) :=
⊕

e∈E

F(e).

Here, the linear coboundary map δ : C0(G,F) → C1(G,F) is defined by acting
linearly on stalks. On F(v), it acts according to

xv �→
∑

e=(vk,v)

Fv⊂e xv −
∑

e=(v,vl)

Fv⊂e xv.

The sheaf cohomology groups of interest are then

H0(G,F) = ker(δ) H1(G,F) = C1(G,F)
/
im(δ) = coker(δ).
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Example 1. The graph in Fig. 1 has trivial cohomology with respect to the illus-
trated sheaf, even though the classical (e.g., simplicial) cohomology is nontrivial.
This shows that these two cohomology theories need not agree.

Sheaf cohomology is in fact a generalization of classical cohomology, because
for the constant sheaf R

1, the sheaf cohomology yields precisely the cellular
cohomology of G. In this case, δ = B� is the transpose of the signed incidence
matrix B which is defined by

Bv,e =

⎧
⎪⎨

⎪⎩

1 ∃w ∈ V : e = (v, w),
−1 ∃w ∈ V : e = (w, v),
0 otherwise.

Recall that the classical graph Laplacian can be obtained as L = BB�. This
notion may be generalized to obtain the following definition.

Definition 2. For a cellular sheaf F over G, the sheaf Laplacian is LF := δ�δ.

It can be shown that neither sheaf cohomology nor the sheaf Laplacian depend
on the initially chosen orientation.

2.2 Discourse Sheaves and Opinion Dynamics

By considering social networks G where persons are modeled by vertices and
acquaintanceship is modeled by connections, the distributions of opinions may
be expressed by a discourse sheaf F [3]; see Fig. 2 for an illustration.

Fig. 2. Sketch of a discourse sheaf

Each person v is ass-
igned an opinion space
R

nv = F(v) and opin-
ion xv ∈ F(v). A basis
of F(v) can be seen as
collection of basic topics
that v cares about and
the component of xv in a
basis direction expresses
the opinion about that topic (e.g., how much v supports a certain politician).

Edges stand for discourse about topics in R
ne = F(e). There need not be a

relation between bases of different stalks. However, each person v projects their
opinion of the discussed topics on e via Fv⊂e. There is consensus along e = (u, v)
if Fv⊂e xv = Fu⊂e xu.

In this framework, several models have been proposed to describe how opin-
ions expressed by such a sheaf evolve over time [3]. The basic model assumes
that everyone changes their opinion in order to minimize the difference to the
average opinion of their friends, i.e.,

d

dt
xv(t) =

∑

v
e∼u

F�
v⊂e(Fu⊂e xu − Fv⊂e xv)
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Here v
e∼ u denotes that v and u share a common edge e. Combining all opinions

to one vector x, this can be written as
d

dt
x(t) = −LF x. Solutions converge

exponentially to consensus on all edges ([3], Theorem 4.1).
The more realistic bounded confidence model assumes that the influence of

a friend’s opinion on v decreases if their opinions differ too much. The decay
is expressed by a monotonically decreasing “bump” function φ : [0,∞) → [0, 1]
that vanishes precisely whenever some threshold D is surpassed, as shown in
Fig. 6. The modified dynamics are described by

d

dt
xv(t) =

∑

v
e∼u

φ (||Fu⊂e xu − Fv⊂e xv||) F�
v⊂e(Fu⊂e xu − Fv⊂e xv). (1)

Configurations are stable if on each edge the difference is zero or at least D. In
such a stable configuration, disregarding all edges without consensus and con-
sidering the connected components of the remaining graph provides a partition
of the vertex set V (persons in the social network).

3 Methods and Experimental Design

In this section, we outline our proposed sheaf-theoretic algorithms used for com-
munity detection. We propose two algorithms that generate partitions of a given
graph at random and one deterministic algorithm and evaluate their ability to
detect communities. For the sake of comparability, we consider partitions of the
full vertex set of a fixed graph (see Fig. 3 for an example of such a partition)
and evaluate how well they represent the community structure of the graph.
The common evaluation measure that we will use in this work is modularity,
which is computed in an assessment step to determine whether the division into
communities is “relatively good.”

Definition 3. Let G = (V,E) be a graph and V be subdivided into N subsets
{Vc | c = 1, . . . , N}, with Ec being the set of edges between nodes from Vc. Then
the modularity Q is given by

Q :=
N∑

c=1

[
|Ec|
|E| −

(∑
v∈Vc

deg(v)
2|E|

)2
]

∈ [−1, 1]. (2)

Intuitively, the quantity Q captures how many more edges than the average are
within the subsets Vc, so high modularity indicates a good partitioning.
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3.1 Detecting Communities with Constant Sheaves

Fig. 3. “Karate club” graph partitioned
into three communities.

Our first algorithm considers con-
stant sheaves and models dynamics
after the sheaf-theoretic bounded con-
fidence model previously described in
Sect. 2.2.

In Step 2 of Algorithm 1, we have
included a stopping criterion for time
efficiency: If the evolution does not
converge after 1000 time units, the cal-
culation is aborted. In Sect. 3.2, we
explain why this is necessary. We keep
track of the number of abortions and
take them into account in our reported
results below, when providing uncertainties.

Algorithm 1: Community Detection with Constant Sheaves R
n

Input: dimension parameter n, parameter for diameter d
1 Initialize by picking a random opinion vector for each vertex stalk uniformly

from B(0, d
2
)

2 Evolve the system using Eq. (1) until for no edge e = (u, v), the difference
‖xu − xv‖ ∈ (0.0033, 1); abort if that does not happen within 1000 time units

3 Obtain primary partition by grouping neighbors w, w′ together if and only if
‖xw − xw′‖ ≤ 0.0033

4 if we find a single-vertex community v then
5 add the vertex to that adjacent community C, which has maximal

2|E| kC − deg(v) · ∑
w∈C deg(w), where kC is the number of neighbors of v

belonging to C

Output: The obtained partition

Fig. 4. Sketch of a possible situa-
tion in the proof of Proposition 1
with k1 = 3, k2 = 1, kn = 2

We impose the positive value of 0.0033
for the computed difference in Steps 2 and
3 as another stopping criterion and trade-off
between precision and time-efficiency.

Step 4 resolves single-vertex clusters by
adding the vertex v to the cluster of that
neighbor of v which is optimal in the sense of
modularity. Proposition 1 justifies this choice
by showing that each of these moves increases
modularity.

Proposition 1. Single vertex clusters can be
removed in a way that increases modularity.
The removal of single vertex clusters implemented in Algorithm1 is optimal in
the sense of modularity.
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Proof. Consider a vertex v, the clusters C1, . . . , Cn to which its neighbors belong,
and let ki be the number of neighbors of v that are in Ci, see Fig. 4. Adding v
to Ci increases the modularity of the given partition by

Δi :=
ki

|E| − 2 deg(v) · ∑w∈Ci
deg(w)

4 |E|2 .

Notice that the value that we maximize in Step 5 is 2|E|Δi (for the cluster
Ci considered in Step 5). We must show that at least for one i, Δi is positive.
Observe that

4|E|2
n∑

i=1

Δi =
n∑

i=1

4|E|ki − 2 deg(v)
n∑

i=1

∑

w∈Ci

deg(w)

> 4|E|deg(v) − 2 deg(v) · 2|E| = 0,

because
∑n

i=1

∑
w∈Ci

deg(w) is bounded from above by the sum of all degrees
of vertices that are not v which is 2|E| − deg(v). This completes the proof.

3.2 Convergence of Algorithm 1: Community Detection
with Constant Sheaves

The following example shows why we need the abortion criterion in Step 2 of
Algorithm 1.

Fig. 5. Example of a network in which Algorithm 1 is aborted in Step 2

Example 2. Consider the graph shown in Fig. 5 and the constant sheaf R on that
graph. Let

φ(x) =

{
1 − x 0 ≤ x ≤ 1
0 x ≥ 1

.

Initialize with values a0 and b0 such that 1 + a0 > b0 > a0, making sure that
none of the connections drawn in Fig. 5 is ignored. Applying Eq. (1), we check
that all vertices with value a(t) and 1 + a(t) as well as all with b(t) and 1 + b(t)
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follow the same derivative. Therefore, the opinions in the network will remain in
the pattern shown in Fig. 5 and the values a(t) and b(t) evolve according to

da(t)
dt

= (b(t) − a(t))(1 + a(t) − b(t)) = −db(t)
dt

.

This yields

a(t) =
1
2

(
a0 + b0 − 1

e2t+c + 1

)

b(t) =
1
2

(
a0 + b0 +

1
e2t+c + 1

)

with c = ln
(

1
b0−a0

− 1
)
. In particular, 1 + a(t) − b(t) = 1 − 1

e2t+c+1 < 1, but
it converges to one. Thus, the difference over the edge in the middle of Fig. 5,
between b(t) and 1 + a(t) will always end up in the interval (0.0033, 1) and
Algorithm 1 will be aborted in Step 2.

Even though there are configurations without convergence, in our experiments
we observed a convergence within 1000 time steps for more than 95% of starting
configurations for any choice of parameters.

3.3 Detecting Communities with a Non-constant Sheaf

We now consider a second community detection algorithm that uses the non-
constant sheaf defined by setting F(v) = R

deg(v) (we think of it as one copy of R
for every edge that uses v), F(e) = R, and restriction maps being the projections
onto the corresponding edges.

At the vertices, there is no interaction between the directions corresponding
to different edges, so each direction can be treated separately. If for an edge
e = (v, w), the difference between the initial components xv,e and xw,e is less
than D, edge e will “survive” the evolution and otherwise not. Therefore, picking
initial values at v uniformly from [−d

2 , d
2 ]deg(v) amounts to keeping each edge with

the same probability p (which depends only on d) and ignoring it otherwise. We
thus obtain Algorithm 2.

Algorithm 2: Community Detection with a Non-constant Sheaf
Input: probability parameter p

1 Obtain primary partition by grouping neighbors w, w′ together with probability
p

2 Remove single-vertex clusters as in Algorithm 1, Step 4
Output: The obtained partition
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3.4 Deterministic Sheaf Community Detection

A more general version of the bounded confidence model allows different func-
tions φe for different edges. In the case of the non-constant sheaf, this means
that the probability p can depend on the edge and the local structure of the
graph.

With the idea in mind that we want to retain edges if the vertices belong
to the same community, it should be more likely for e = (u, v) to be retained
if the number of common neighbors of u and v, denoted Nu,v, is not too small
compared to the total number of neighbors of u and v. In an extreme case, this
likelihood is either zero or one, and we arrive at Algorithm3.

Algorithm 3: Deterministic Community Detection
Input: two parameters a ∈ [0, 1] and b ∈ R

1 Obtain primary partition by grouping the two ends u, v of an edge e together if
a · (deg(u) + deg(v)) < b + Nu,v

2 Remove single-vertex clusters as in Algorithm 1, Step 4
Output: The obtained partition

3.5 Experimental Setup

We tested the performance of Algorithm 1 by considering its dependence on d
for n = 1 and the different bump functions φ shown in Fig. 6, as well as for
n ∈ {2, 3, 5, 10} and φ1. Note that for sake of comparability we fixed D = 1 to
be the threshold for ignoring. On the interval [0, 1), the φi are given by:

φ1(x) = 1 − x φ2(x) = 1 − x2

φ3(x) = (1 − x)2 φ4(x) = 1 − x − sin(2π x)/7

Algorithm 2 was run for various values of p and Algorithm 3 with different
values of a and b.

All tests were performed on Zachary’s karate club graph G, shown in Fig. 3,
which represents a social network of a karate club studied by sociologist Wayne
Zachary from 1970 to 1972 [8]. The network captures 34 members of the karate
club and includes links between pairs of members who interacted outside the
club. The maximal possible modularity of a partition of G for this graph is
Qmax(G) ≈ 0.42 [1]. All experiments were implemented in Python and the code
is freely and publicly available at https://github.com/ArneWolf/Bd confidence
communities.

https://github.com/ArneWolf/Bd_confidence_communities
https://github.com/ArneWolf/Bd_confidence_communities


38 A. Wolf and A. Monod

4 Experimental Results

Fig. 6. The different functions φ

We report the results of our
numerical experiments for our
three proposed sheaf-theoretic
community detection algorithms
from Sect. 3. We compare the
performance in terms of average
number of clusters and modu-
larity (Definition 3).

Algorithm 1: The Constant
Sheaves. To justify our stop-
ping criterion of 0.0033 in Step
2 of Algorithm 1 and estimate the error caused, we compared the partitions
to those obtained for running the evolution longer so that for every edge
‖xu − xv‖ ∈ (0.001, 1) instead. The more precise calculations took, on aver-
age, a factor of 100 longer. Out of 2930 runs we performed, the first stopping
criterion applied 175 times and for the remaining 2755 runs, the two obtained
partitions agreed. We thus concluded that 0.0033 is small enough to not cause
a significant error.

Each parameter combination was simulated N = 1000 times. Figure 8 shows
the average values of X (number of clusters, modularity) and an error bar with
radius

Xerror = σX +
#early stoppings

N
X̄,

where X̄ denotes the average and σ the standard deviation.
We immediately see that a larger width d of the distribution from which

the initial opinions are picked results in more clusters. Neither the number of
clusters nor the modularity depends significantly on the choice of φ.

Fig. 7. Likelihood of most likely parti-
tion for different diameters d of the ini-
tial distribution

In the case of smaller d, however,
φ3 tends to create more clusters than
the others. Intuitively, this behavior can
be explained by comparing φ3 to lin-
early decaying bump functions: it is more
similar to a bump function that decays
quicker than φ1, than to φ1. Quicker
decay means a smaller threshold D < 1.
That in turn corresponds to having D =
1 and a bigger d. Thus, the properties of
φ3 tend to make d appear larger.

For large d, the influence of removing
singleton clusters (compared to the pri-
mary partition) grows. This explains why
the differences in the number of clusters
as well as modularity for different choices
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of φ and d become smaller. Looking at p = 0 in Fig. 10 shows that resolving sin-
gleton clusters from a collection of only singleton clusters yields a modularity
of about 0.191. This is one explanation for having higher modularites for larger
d. Another explanation is that small d are likely to result in one big cluster
containing all the points. This trivial partition has modularity 0. Figure 7 shows
the likelihood of the most likely partition for φ1 and n = 1. For d ≤ 4, whenever
there is a partition that is significantly the most likely one, this is the trivial
partition. The same qualitative behavior is observed for other φ and n.

If d is large enough, the number of clusters increases as n increases. This is
significant for n = 10, but the tendency can be observed in Fig. 9 for smaller
n as well. This can be explained by larger n corresponding to more topics of
discussion, which in turn increases the chances that persons can disagree. The
modularity for small d seems to depend on n non-monotonously: n = 10 gives
the highest values, followed by n = 1 and n = 2. If d is large, the differences
become insignificant.

Algorithm 2: The Non-Constant Sheaf. For Algorithm 2, Fig. 10 shows the
expected decrease of the number of clusters with increasing p. The modularity
has a maximum of about 0.26 near p = 0.12. For smaller p → 0, the modularity
becomes 0.191 and for large p it goes to zero due to the dominance of the trivial
partition.

Algorithm 3: The Deterministic Algorithm. Due to the affine linear con-
dition in Step 1 of Algorithm 3, the modularity and number of clusters change
along affine lines displayed in Fig. 11. The deterministic algorithm reaches a
maximal modularity of about 0.407, which comes close to Qmax = 0.42. How-
ever, the portion of the parameter space that reaches this value is small—the
other algorithms had broader ranges of maxima for their modularities. The par-
tition yielding Q = 0.407 consists of four clusters, just as the partition obtaining
Qmax.

5 Discussion

In this work, we showed that sheaves are a viable algebraic topological tool to
model the problem of community detection on networks. We proposed three
different algorithms, two of which had random initializations and were based
on constant sheaves and a non-constant sheaf, and a third deterministic ver-
sion that allows for different bump functions for different edges of the graph.
The deterministic sheaf-theoretic community detection algorithm, in particular,
performed well in terms of modularity and achieved values near the maximal
modularity value. Ours is the first work to computationally implement sheaves
on real-world social network data and the first use of sheaves in the problem
of community detection on networks. Moreover, our work provides a proof-of-
concept for future work adapting the potential of cellular sheaves to studying
complex systems captured by networks and simplicial complexes, in general.

Directions for future work involve combining various notions from the dif-
ferent algorithms to, for instance, allow bump functions in Algorithm1 or the
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Fig. 8. Average number of clusters and modularity for n = 1, different bump functions
φ and different diameters of the initial opinion distributions

Fig. 9. Average number of clusters and modularity for different dimensions n, bump
function φ1 and different diameters of the initial opinion distributions
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Fig. 10. Average number of clusters and modularity for the non-constant sheaf algo-
rithm for different probabilities p of keeping an edge

Fig. 11. Modularities (left) and numbers of clusters (right) for several parameter com-
binations for the deterministic Algorithm 3

probability p in Algorithm 2 to depend on the edge, which may potentially
improve performance. An optimization procedure may also be proposed to find
optimal parameters, and thus, optimal partitions for a network.
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Abstract. Communities are often defined as sets of nodes that are
more densely connected to each other than to those outside the com-
munity, i.e., high-modularity partitions. It seems obvious that isolating
high-modularity communities is a good way to prevent the spread of
cascading failures. Here we develop a heuristic approach informed by
Moore-Shannon network reliability that focuses on dynamics rather than
topology. It defines communities directly in terms of the size of cascades
they allow. We demonstrate that isolating communities defined this way
may control cascading failure better. Moreover, this approach is sensitive
to the values of dynamical parameters and allows for problem-specific
constraints such as cost.

Keywords: cascading failure · dynamics · reliability

1 Introduction

The notion of community in a network is often introduced to characterize an
aspect of network structure that may place important constraints on dynamical
phenomena. Hence the assumption that the “proper” definition of community
in Zachary’s karate network [22] would match its eventual partition in two.
Among the most important dynamical phenomena in networked systems are
cascading failures, e.g., the spread of infectious disease across a contact network
or the spread of power outages across an electrical power distribution network.
The inverse of Granovetter’s “strength of weak ties” is the fragility of inter-
community cascade: although it may be difficult to prevent cascades within a
community, by cutting the edges between communities we can prevent system-
wide cascades. This motivates defining communities as nodes that are more
densely connected to each other than to those outside the community [17].

Under this definition, finding communities reduces to maximizing modularity.
This is a clustering problem that has been extensively studied in the computer
and network science literatures [1,7,11,13,18,21]. In particular, a k-means clus-
tering of eigenvectors of the adjacency matrix yields partitions with high mod-
ularity and low cost in undirected networks and can be extended to directed,

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1142, pp. 43–54, 2024.
https://doi.org/10.1007/978-3-031-53499-7_4
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weighted networks. However, modularity only captures local coupling, not long-
range interaction. Moreover, because it is independent of any dynamics operat-
ing over the network, there is no a priori reason that it should be relevant for
cascading failures.

We might consider extending the definition of community by replacing “den-
sity of edges” with “strength of interactions” as determined by some dynamics.
We characterize the strength of an interaction between two nodes (not necessar-
ily connected by an edge) as the influence of node A on node B under dynamics
D. Specifically, the influence is the probability that a disturbance to A’s state –
e.g., a “failure” – will propagate to B. For a deterministic system, the influence
is either 0 or 1 for every pair of nodes; for stochastic systems it is more nuanced.
This is true whether the stochasticity arises from the dynamics D, as for infec-
tious disease transmission, or from an imperfect knowledge of the system’s state,
such as electric power networks which may have hidden failures in the control
system. Influence is not necessarily symmetric, and it depends in complicated
ways on all paths, not just the shortest ones, connecting A to B.

A hallmark of complex networks is that, just like a lens, they can focus
propagating disturbances so that, for example, two distant nodes’ states may be
much more closely related than any of those on paths joining them. What does
a community look like in such networks under this definition? Unfortunately, it
is not necessarily consistent with our intuitive notions of community:

1. Connectivity: if A strongly influences B, but only indirectly through a large
set of weakly coupled vertices, should A and B be placed in the same com-
munity? What about the weakly coupled intermediate vertices?

2. Direction: should communities be strongly connected components? Con-
versely, should all the nodes of a strongly connected component be placed
in a single community?

3. Reflexivity: if B is in A’s community, should we require that A be in B’s?
4. Transitivity: if B is an element of A’s community and C an element of B’s,

should we require that C is also an element of A’s?
5. Scale and hierarchy: should there be different communities defined at different

scales, and, if so, should they be nested?

Rather than answer all these questions to find communities that are, after
all, only plausible candidates for preventing system-wide cascades, we present
here a way to find cuts that prevent cascades directly and define communities
as connected components of the subgraph induced by the cuts. The analysis
does not depend on the spectrum of the adjacency matrix, so it can be applied
immediately to directed networks. Moreover, it incorporates dynamics essen-
tially, so it is sensitive to dynamical parameters that are not captured in a
purely static, topological statistic. It is motivated by Moore-Shannon Network
Reliability (MSNR) [15], but it is not simply minimizing inter-community influ-
ence, which is essentially the two-point reliability. It relies on being able to find
highly probable failure cascades. For comparison to modularity based communi-
ties, we only need good cuts, and we do not claim that MSNR finds the optimal
cuts.
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In this paper, we compare the size of cascading failures to both the modu-
larity and the inter-community influence on partitions defined by the directed
Louvain (DL) algorithm [3,12] and MSNR. DL is designed to produce high-
modularity partitions and does so; MSNR is designed to produce small cascades
and does so. On one hand, for a set of planted, �-partition (PLP) graphs, we
show that the two methods produce comparable partitions, and that all three
metrics are strongly associated with the cost of the edge cut induced by the
partitions, and are thus themselves closely related. On the other hand, for a
set of directed, weighted commodity trade networks with edge costs, there is no
obvious relationship among the three metrics for either method.

If the goal of network structural analysis is to determine a good strategy for
controlling dynamical phenomena such as the maximum size of cascading failure
on a network, the MSNR approach produces better communities. In complex
networks, modularity is not sufficiently relevant to the task. We expect that
for other goals that can be formulated in terms of network reliability, such as
isolating a specific set of nodes, analogous direct methods will also be superior.

2 Methods

We simulate epidemics of infectious “failure” with varying overall transmissibility
over a collection of networks, both artificial and real, and compare the distribu-
tions of total number infected to simulated distributions on subgraphs of isolated
communities determined by the (directed, weighted) Louvain and MSNR algo-
rithms. We consider whether the reduction in size of the cascade is related to
the modularity or inter-community influence of either collection of communities.
Here we describe the MSNR algorithm, the networks, the simulated dynamics,
and estimation of inter-community influence.

2.1 MSNR

We have previously [14] constructed communities using a greedy algorithm that
iteratively removes edges that contribute most to the probability of a large out-
break. This probability is a kind of Moore-Shannon reliability and is thus prov-
ably hard to evaluate [19,20]. We have used two approximations: simulation
and perturbative approximation [2,4]. In general, we find that the difference in
contributions between edges is so small it requires enormous numbers of sim-
ulations to estimate confidently. Perturbative approximation can, in principle,
resolve these small differences, but also requires sampling from a universe that
is combinatorially large in the number of edges E. If S is the number of samples,
the kth nonzero term in the perturbation series captures interactions among
k samples and requires Sk computations. It is not yet clear how the quality
of approximation depends on the sample size, but it does not seem likely the
approach will scale to extremely large networks.

We thus turn to the following heuristic. A cascade of failures resulting from
the failure of a single node v can be thought of as a subgraph G′ of the network
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that includes only the failed nodes and the edges among them. Assuming that
failure must spread along edges, the conditional probability of the cascade given
that v fails is the probability that the dynamics “picks” any of the combina-
torially many minimal subsets of edges required to generate failures in exactly
the nodes of G′. For complex contagions, these minimal subsets may be compli-
cated structures like k-cores; but for the dynamics we are concerned with here,
described in Sect. 2.3, they are spanning trees. Hence the probability of a cascade
of size N that includes a particular node v is as least as large as the probability
of the most probable tree with N vertices that includes v. This simple heuristic
leads to a deterministic algorithm that scales linearly with V and with CE/V ,
where C is the maximum tolerable size of a cascade, because the bulk of the
work is finding V paths of length C.

Our approach has two stages:

1. identify, for each node v, a set of nodes Sv that is highly probable to be
involved in any cascade that is undesirably large involving v.

2. construct a partition of the node set that is reasonably consistent with the
collection Sv and their probabilities and satisfies our intuitive notions of com-
munity, i.e., our answers to the questions posed in the Introduction.

The first stage is implemented as a breadth-first greedy optimization from v
(both upstream and downstream if the network is directed) that chooses the
most probable node on the frontier at each step. The computation of downstream
probabilities can take into account multiple paths from v, although we see no
simple way to do this for upstream nodes. The second stage is left intentionally
vague to allow construction of communities meeting different criteria. It is the
same problem as identifying communities in a friendship network where each
person has nominated N friends and one must decide how to represent these
non-symmetric, non-transitive lists as a collection of communities.

For the results described here, we implemented the second stage as follows.
Starting from a randomly chosen node v, we consider the intersection of the
sets Sw for each w in Sv. If this intersection contains more than the node v, we
label it a community; otherwise, we choose a node that has not yet been chosen
or assigned a community and repeat the process. We clean up the remaining
isolated vertices by including them in the most likely upstream or downstream
community with fewer than C nodes, if any. In a final pass, we coalesce any
communities that are connected in the original network if their sizes allow.

2.2 Networks

Planted �-Partition (PLP) Networks. A PLP network is equivalent to an
instance of a stochastic block model. It is a random graph with known commu-
nity structure. We have planted four “communities”, each with 25 nodes. The
mean degree of each node is 16, and on average, k of each node’s neighbors
are in a different community. As k increases from one, the planted communities
become less obvious until, at k = 8, they are completely invisible. We created
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ten uniformly weighted, undirected PLP instances for each value of k from 1 to
7.

PLP networks are designed for testing algorithms to optimize modularity.
Importantly, algorithms can be evaluated against the correct partition instead
of each other. The free parameter k can be used conveniently to adjust the opti-
mal modularity and the difficulty of the optimization problem. Their structure
is highly artificial, however, and as we show below, results on PLP may not
generalize to more complex, real networks.

Commodity Networks. We consider weighted, directed commodity trade net-
works described in [14,16]. These are country-to-country networks from the Food
and Agriculture Organization’s Trade Matrix database [6] and U.S. domestic
food networks from the Freight Analysis Framework [5]. Weights on each edge
represent the volume of commodity shipped from one region to another. We
interpret these weights as both costs and transmission probabilities, but in dif-
ferent ways. We define the fractional cost associated with removing an edge as
its weight relative to the total volume of trade. However, we treat the weights
as Poisson process rates in the dynamics, as described in Sect. 2.3.

2.3 Dynamics

Characterizing communities with respect to dynamical processes is an emerg-
ing body of work. Ghosh et al. [8] define a generalized Laplacian matrix that
captures a class of linear dynamical processes. They introduce the notion of
generalized conductance to measure the quality of communities with respect to
the dynamical process. However, their work is limited to undirected networks.
In another line of work, Zhang et al. [23] consider the problem of discovering
clusters of nodes that have similar roles in a dynamical process (e.g., influential
nodes or bridges).

Propagation in Random Media. A natural metric of interaction strength
in a dynamical system is the response of each node’s state to a perturbation of
another node’s state. However, in many systems there is no natural metric on
the states themselves. An alternative is the change in the probability distribu-
tion of each element’s state when the system is perturbed. We call the set of all
node states at time t the system’s configuration C(t). The dynamics transform a
probability distribution over system configurations PC(t) to PC(t + 1). Perturb-
ing the system at time t means introducing a different probability distribution
PC(t) → P ′

C(t). This, in turn, leads to a different probability distribution at
t + 1: PC(t + 1) → P ′

C(t + 1). Our definition of community flexibly allows for
restrictions on both the kinds of perturbations and the features of the difference
between P and P ′ that are of interest. Here we restrict the initial perturbation
to a change of state in a single node and use as a metric the difference in the
range of the top two quartiles of P and P ′.
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SIR. In some cases, we can model the spread of a perturbation as an SIR
process on a directed, weighted network. That is, we consider a node whose
state has not been perturbed to be “Susceptible”; a node whose state has been
perturbed will be considered “Infectious” immediately after the perturbation,
and “Recovered” after that. We can represent the probability that an infection
(perturbation) will be transmitted from one node to another by a transmission
probability on the edge connecting them. When the underlying dynamical system
is stochastic, this is perfectly natural; even when it is deterministic, there may
be many unobserved factors that control whether a perturbation spreads from
one node to another. For example, in a model for cascading failure in an electric
power distribution network, the (unknown) status of protective relays can be
modeled as a probability of transmitting a failure. For plant disease or pest
epidemiology, such SIR-like models have previously been considered [9,10].

Overall Transmissibility X. The weights along each edge determine the con-
ditional probability of transmission from the source to the destination, given
that the source is infectious, under a Poisson process. Specifically, for edge (i, j)
from vertex i to vertex j with weight wi,j ≥ 0, the probability that i transmits
to j when i is infected and j is susceptible is given by

pi,j(y) ≡ 1 − e−wi,jy, (1)

where y ∈ [0,∞) is a parameter that sets the scale of transmissibility. Notice
that as y → 0, pi,j(y) → 0 and as y → ∞, pi,j(y) → 1 regardless of the value
of wi,j . Notionally, we can change variables to x̃ ≡ 1 − e−y ∈ [0, 1] and think of
x̃ as a measure of average transmissibility. More precisely, we define μ(y) as the
geometric mean probability of transmission taken across all edges:

μ(y) ≡ exp

(
|E|−1

∑
e∈E

ln(1 − e−wey)

)
. (2)

and take the geometric mean transmissibility as the fundamental control param-
eter, X, using y = μ−1(X) to evaluate the probability of transmission across any
particular edge.

Calibration. The distribution of outbreak sizes is the order parameter in a
phase transition where the control parameter (cf. temperature) is the mean
transmissibility X. We know from watching water boil1 that the order parame-
ter does not change uniformly across the system as the control parameter varies,
but rather localized bubbles of one phase form and grow in the middle of a sea
of the other phase. The resulting distributions have two or more widely sepa-
rated local maxima and are poorly represented by statistics such as the mean or
median. Figure 1 illustrates this behavior. In the following we characterize these
multimodal distributions with a point at the third quantile and “error bars”

1 Or, for the culinarily challenged, from equilibrium statistical mechanics.



Modularity and Cascades 49

indicating the range from median to maximum. Thus we analyze neither the
worst nor the typical case, but instead the worst half of the outbreaks.

Although the transition to epidemicity depends on the network, we have
chosen the values X ∈ {0.1, 0.5, 0.9} for the commodity networks and X ∈
{0.05, 0.1, 0.2} for the PLP networks to represent, respectively, the non-epidemic,
transition, and fully epidemic phases across all the commodity networks.

Fig. 1. Distributions of outbreak size on the 2000 corn and 2010 tomato commodity
trade networks for several choices of the control parameter, the overall transmissibility
X. Notice that near the transition to epidemicity, a local maximum appears at a large
value of outbreak size while the local maximum at 0 shrinks but does not vanish. As
X increases, the local maximum both moves to the right and grows larger. The tomato
network shows that this local maximum may itself exhibit complicated fine structure.

2.4 Quality of Partition

We consider three aspects of subgraphs induced by a partition into communities,
in addition to the conventional weighted modularity:

1. fractional cost of edges removed, i.e., the fraction of the sum of weights over
all edges that is attributable to nodes in different communities.

2. inter-community influence. We define the influence of node v on node w as the
probability with which an infection starting at the single node v infects w. We
estimated the influence for each pair of nodes in each network using 100 SIR
simulations per node. The inter-community influence is the fraction of the
sum of over all pairs that is attributable to nodes in different communities.

3. outbreak size distribution. We estimated the size of an SIR outbreak using
10,000 simulations for each initially-infected node.

3 Results

Figure 2 shows the outbreak size distribution generated from 10,000 simulated
outbreaks on each of 10 instances of PLP networks with varying inter-partition
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Fig. 2. Left: The range of the top two quartiles of outbreak size distribution under
three partitions (‘O’ for the original planted partition, ‘L’ for Louvain, and ‘M’ for
MSNR) for each of ten instances of a PLP network, as a function of the inter-partition
degree k. Right: The 3rd quartile of the outbreak size distribution for the Louvain and
MSNR partitions of the same PLP networks as a function of the partition’s modularity.

degree k for three values of transmissibility on the original network, MSNR cuts,
and Louvain cuts. In all these cases, the Louvain algorithm recovers the planted
partition; in most, but not all, of them, MSNR also recovers the planted partition.
It is no surprise, then, that the outbreak size distribution and modularity (Fig. 2)
are similar for each of these methods. MSNR does not maximize modularity as
consistently as Louvain.

The situation is different for commodity networks. As shown in Fig. 3,
MSNR’s partitions exhibit smaller outbreaks but worse modularity and influence
than DL partitions on all networks. The difference in outbreak size is significant
for the “corn”, “other”, and perhaps “cereal” networks but not for “tomato”
networks; the difference in modularity and influence is significant for all. Fur-
thermore, modularity and outbreak size do not seem to have a consistent or
even monotonic relationship. Figure 4 shows typical differences between DL and
MSNR in the same commodity network.

4 Discussion

The differences between outbreak size and modularity produced by DL and
MSNR are not surprising. After all, we have allowed MSNR to construct par-
titions that are designed to cap the size of the largest outbreak without regard
to the cost of the partition, while DL finds low-cost, high-modularity partitions
regardless of outbreak size. Since both modularity and outbreak size depend on
the cost of the partition, we would expect a relationship between the two. What
we find surprising is that this mutual dependence on cost is not strong enough to
induce a tight association between modularity and outbreak size. The strength
of the association—and thus the value of using modularity as a guide to find
communities whose isolation prevents large outbreaks—depends on aspects of
network structure that are not yet well-understood.
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Fig. 3. Analogs of Fig. 2 for the commodity trade networks, with a range of values
C ∈ {40, 20, 10, 5} for the maximum allowed outbreak size parameter of the MSNR
approach. Unlike for the PLP networks, there are significant differences in the out-
break size distributions for several of these networks, and the difference depends on
X. Moreover, there is no obvious relation between modularity and outbreak size. Left:
Overall transmissibility X = 0.9 Right: X = 0.5.

Many questions remain to be answered about this approach. Perturbations
in some systems spread like a generalized epidemic in which transmission from
different neighbors is not independent. In this case, spanning trees will not be the
right minimal structure to define candidate communities. Resetting the state of
perturbed nodes, i.e., repairing failures, may take much longer than the failure
takes to spread, or repair may leave the node susceptible to failing again in
the same cascade. In these cases, SI or SIS models, respectively, may be more
appropriate than SIR. Simulating the distribution of outbreak sizes under these
dynamics is obviously still possible, but the analysis of minimal structures may
be more complicated.

Nevertheless, MSNR holds great promise for its flexibility in applications.
Constraints that are often difficult to represent in other approaches can be han-
dled without artificial manipulation of cost functions. For example, the islands
in a power distribution network could be designed to include sufficient generat-
ing capacity to supply the demand of the community. Furthermore, the freedom
to specify the maximum tolerable outbreak size C allows system operators to
explore the efficient frontier of cost-size trade-offs.
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Fig. 4. Example partitions of the same network (the FAF cereal trade network) deter-
mined by Louvain (top row) and MSNR with C = 40 for X = 0.9 (middle row) and
X = 0.1 (bottom row), with the intra-community edges on the left and inter-community
edges on the right.
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Abstract. In this paper we explore the role of matrix scaling on a matrix
of counts when building a topic model using non-negative matrix factor-
ization. We present a scaling inspired by the normalized Laplacian (NL)
for graphs that can greatly improve the quality of a non-negative matrix
factorization. The results parallel those in the spectral graph cluster-
ing work of [12], where the authors proved adjacency spectral embed-
ding (ASE) spectral clustering was more likely to discover core-periphery
partitions and Laplacian Spectral Embedding (LSE) was more likely to
discover affinity partitions. In text analysis non-negative matrix factor-
ization (NMF) is typically used on a matrix of co-occurrence “contexts”
and “terms” counts. The matrix scaling inspired by LSE gives significant
improvement for text topic models in a variety of datasets. We illustrate
how matrix scalings in NMF can dramatically improve the quality of
a topic model on three datasets where human annotation is available.
Using the adjusted Rand index (ARI), a measure cluster similarity we
see an increase of 50% for Twitter data and over 200% for a newsgroup
dataset versus using counts, which is the analogue of ASE. For clean
data, such as those from the Document Understanding Conference, NL
gives over 40% improvement over ASE. We conclude with some analy-
sis of this phenomenon and some connections of this scaling with other
matrix scaling methods.

Keywords: Laplacian · Topic Modelling · NMF

Introduction

In their paper [12] the authors provide a clear and concise demonstration of the
“two-truths” in spectral graph clustering. Their results prove that the choice of
the first step-spectral embedding of either Laplacian spectral embedding (LSE)
or adjacency spectral embedding (ASE) will identify different underlying struc-
tures, when present in a graph. The results were later made precise using Cher-
noff information and a stochastic block model of the underlying graphs.

The two-truth property was observed empirically while computing on con-
nectome models of the human brain [12]. It was previously thought ASE and
LSE would give comparable partitions.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1142, pp. 55–67, 2024.
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The advantage of using a non-negative matrix factorization for data analy-
sis was first noted by [11] and five years later its power was demonstrated in
the Nature article [7]. In computational linguistics a matrix of co-occurrence of
terms with their context is often employed. A context is the set of one or more
terms that precede or follow a word in a collection of text [2]. Depending on the
application a context could be a set of two or more consecutive words, a sentence,
or one or more documents. (In this work, our main examples will be in the latter
case of one or more documents as the context in our models.) The spectral meth-
ods applied in the text application uncover topic models, clusters of words (or
more generally terms) that are related for LSE for a set of documents and ASE
will tend to find “key concepts” versus “less important” information (peripheral
ideas). An example using a spectral method in computation linguistics to find
the key sentences was successfully used by [17].

This work tests the two-truth phenomenon on non-negative matrices, which
are common in text data. Unlike the graph and their corresponding 0–1 sym-
metric adjacency matrices from the connectome problem, text models generally
consist of integer count values and are weighted bipartite graphs as opposed to
simple graphs. As the entries are counts, a non-negative matrix factorization
(NMF) is often used in text analysis.

1 Bipartite Laplacian and Other Matrix Scalings

The motivation of the matrix scaling comes from a scaling of a symmetric matrix
A, the adjacency matrix of a graph. Our application is a weighted bipartite
graph. So, we adapt the technique with a block matrix construction. For a matrix
M with all non-negative entries, representing our document-term matrix, con-

struct the specific matrix, A, as A =
[

0 M
MT 0

]
, and we denote n as the number

of documents and m the number of terms, giving the number of rows and columns
of M, respectively.

Let Dr,A = diag(A1), where 1 is the all ones vector, i.e., Dr,A is the diagonal
matrix of row sums of A. We also note that we can use this to define the column
sum diagonal as Dc,A = Dr,AT

The matrix A may be viewed as the adjacency matrix of a weighted bipartite
graph, where we connect every word to each document by an edge weighted
by the number of times that word appears in that document. With a weighted
bipartite graph model, we can consider the usual variants of the graph Laplacian.

Markov: AMarkov = D−1
r,AA

Laplacian: L = Dr,A − A
Random Walk Normalized Laplacian (RWNL): Lrwnl = I − AMarkov

Normalized Laplacian (NL): Lnl = I − D
− 1

2
r,AAD

− 1
2

r,A = I − Anl

The normalized Laplacian scaling for the matrix M can be expressed as
Mnl = D

− 1
2

r,MMD
− 1

2
c,M . In addition to this matrix scaling the algebra suggests sev-

eral other representations. In particular: normalizing within the documents, i.e.,
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row scaling (RS), Mr = D−1
r,MM ; normalizing term counts across documents, i.e.

column scaling (CS), Mc = MD−1
c,M ; and normalizing the rows and columns inde-

pendently, which is the exponential of point-wise mutual information (PWMI),
Mrc = D−1

r,MMD−1
c,M . These four scalings in addition to the matrix M will be

used as alternative matrices in our NMF factorization.
Recall that we aim to consider non-negative matrix factorization of scalings

of the weighted bipartite graph. Let us posit the model [4] representation of a
general matrix M

M = WH + E

where W is a m by k non-negative matrix, H is a k by m non-negative matrix,
and E is a matrix of residual errors. The low-rank non-negative factorization is
frequently interpreted as a topic model of k topics and the factors W and H
are proportional to counts. In this way, the row normalized version of W and
H are thought of as multinomial distributions expressing each document as a
mixture of k topics. Each topic is a multinomial distribution over the words in
the vocabulary. The mixing weights over the topics for each document are used
to “assign” (associate) each document to a primary topic. The resulting factors
W̃ and H̃ are then scaled by the inverse of the diagonal scaling applied a priori.
Thus, the following pre and post scaling is done in the proposed diagonally scaled
NMF.

1. Pre-scaling: Let Dr and Dc be the diagonal scaling matrices for the rows and
columns of our data matrix M ; we then form M̃ = D−1

r MD−1
c .

2. Factorization: Compute a non-negative matrix factors W̃ and H̃ where M̃ =
W̃ H̃ + Ẽ.

3. Post-scaling: Compute W = DrW̃ and H = H̃Dc.

2 Computational Results

In this section we demonstrate the relative performance of the five matrix scalings
when using a NMF to cluster a set of documents into topics. We first introduce
the datasets, then discuss how the data are processed, and finally present the
evaluation measures and results.

2.1 Three Datasets of Varying Difficulty

We illustrate the performance of the method on three datasets, which vary from
relatively “well-separated” topics to “well-mixed” topics. The datasets are:

1. Document Understanding Conference 2004 (DUC 2004) multidocument sum-
marization data. These data are 500 newswire documents which were selected
to answer query needs for 50 topics. The documents were carefully chosen.
First, a search engine was used to retrieve documents for each topic based
on a human query. For each topic, a human selected the 10 most relevant
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documents. This data set is known to be of high quality and is one of many
widely used in the summarization literature.1

2. The 20 newsgroups training data set, which consists of approximately 11K
posts to one of 20 newsgroups. Each newsgroup has roughly between 400 and
600 posts. We note that the newsgroups data topics are more broadly defined
than the DUC 2004 documents and will have the occasional post which may
be off the group’s topic.

3. Russian Troll Twitter dataset. The English port of these data were labeled by
the Clemson University researchers [9] into one of eight troll types. ‘Commer-
cial.’ ‘Fearmonger’, ‘HashtagGamer’, ‘LeftTroll’, ‘NewsFeed’, ‘NonEnglish’,
‘RightTroll’, and ‘Unknown.’ Limiting the focus to the English tweets, there
are 1648 trolls which have been assigned one of the 8 labels.2 These labels
define how the Twitter actors behaved. Each actor’s behavior would span mul-
tiple topics in the normal notion of a text topic model. We include these data
as a challenge dataset and also as a dataset which will have text properties
not generally found in newswire documents or newsgroup posts.

Here we apply the five matrix scalings: the original counts (None); column scaling
(CS); row scaling (RS); pointwise mutual information (PWMI); and, normalized
Laplacian (NL).

As the matrices are document-term matrices, RS scaling turns each row into
the maximum likelihood multinomial distribution for a document’s vocabulary.
Similarly, CS estimates the term distributions across the contexts (a.k.a. docu-
ments in this case). PWMI scales the counts by the row and column marginals,
while NL scales them by the square roots of these marginals. To the extent that
the spectral result of [12] carries over to NMF applied to text we would expect
NL to be best at recovering latent topics.

2.2 From Data to Matrices

In this subsection we describe how the data are processed to create context-
term matrices upon which we perform the five variants of non-negative matrix
factorization.

Before we model the documents as a context-term matrix of counts, we must
first define the notion of a context. The down stream task, in our case, clustering,
defines how the data are separated into contexts. For the newswire dataset, a
context is simply a single newspaper article. Similarly, a context for the news-
group data is an individual post. For the Russian Troll tweets, the task is to
cluster individual users, which are known trolls, actors who by nature of some

1 See https://www-nlpir.nist.gov/projects/duc/data.html for the DUC 2004 and other
DUC data. Also, see https://tac.nist.gov/data for similar data and their descriptions.

2 https://fivethirtyeight.com/features/why-were-sharing-3-million-russian-troll-
tweets/.

https://www-nlpir.nist.gov/projects/duc/data.html
https://tac.nist.gov/data
https://fivethirtyeight.com/features/why-were-sharing-3-million-russian-troll-tweets/
https://fivethirtyeight.com/features/why-were-sharing-3-million-russian-troll-tweets/
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their tweets have malicious intents.3 So, here the natural notion of context is the
collection of tweets from a given Twitter account.

Once the contexts are identified they are then broken into parts, which we
call terms. Notionally, a term could be thought of as a word, but more formally,
it is a function which maps documents to a vector of counts of fixed length, n,
the number terms. The term definition is data dependent and is specified by a
series of three parts; more formally the function can be viewed as composition
of three functions. From the introduction of the vector space model [15] nearly
50 years ago it was realized that words (tokens) which occur either too frequently
or too rarely do not have discriminating power and are best removed from the
index. We employ information theoretic methods to remove such common and
rare tokens from the index.

1. Mapping from text to terms: We employ two approaches to break docu-
ments into terms: first the CountVectorizer provided by the python mod-
ule sklearn.feature extraction.text4 and second a tokenization method
popular with neural net models, sentencepiece. sentencepiece is used in
Text to Text Transformer Transfer learning (T5) [13] and code supported by
huggingface.com.5

2. Removing Common Tokens: The procedure for removing common tokens is
often done with a fixed list, commonly called a stop word list of the most
common words in the language. The approach here is algorithmic and data
dependent. The choice of what tokens are removed is based on a likelihood
score. The tokens are sorted by frequency and a model is posed that assumes
there is a change point between the commonly occurring tokens and the
tokens specific to the given data. Given a count threshold, the counts are
divided into two populations. For each population the first two moments are
computed and a likelihood score is computed assuming normality of the two
populations. The threshold giving the maximum likelihood is then chosen
to divide the populations of tokens. Tokens with the higher counts are then
removed.

3. Removing Rare Tokens: The procedure for removing rare tokens is quite basic,
but like the common token removal, data dependent. Token counts are sorted
and a cumulative sum of the counts is computed and a threshold is chosen so
as to keep 99% of the total of the counts.

2.3 Clustering with an NMF and Evaluating Performance

To cluster the contexts we compute a NMF for the data for a given rank, k.
In the matrix factorization WH, each row of the matrix W gives non-negative
3 “In Internet slang, a troll is a person who posts inflammatory, insincere, digres-

sive, extraneous, or off-topic messages in an online community ...” (See https://en.
wikipedia.org/wiki/Internet troll).

4 https://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature
extraction.text.

5 https://huggingface.co/docs/transformers/model doc/t5.

https://en.wikipedia.org/wiki/Internet_troll
https://en.wikipedia.org/wiki/Internet_troll
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_extraction.text
https://scikit-learn.org/stable/modules/classes.html#module-sklearn.feature_extraction.text
https://huggingface.co/docs/transformers/model_doc/t5
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values which are the relative strength of each “topic.” We assign each document
to the topic for which it has the largest weight.6

As the quality of the factorization may vary based on the choice of k, we
compute factorizations for a range of values of k. We use a likelihood method due
to Zhu and Ghodsie (ZG) [19] to estimate the number of topics and implemented
by graspy7. The singular values of the matrix M are computed and use the
“second elbow,” as discovered by the likelihood method. NMF factorization using
all five variants of the dimension given by this elbow as well as 10 to the left and
10 to right of the chosen range of dimensions evaluated.

The quality levels of the resulting clusters are then evaluated using the
Adjusted Rand Index (ARI) [5,10,14]. The Rand index allows for comparing
two clustering methods, each of which may have a different numbers of clusters.
The Rand index [14] is defined simply as the fraction of times the two clustering
methods agree whether pairs of items are in the same cluster or not. It is based
on all pairs of items. There are

(
m
2

)
of these, where m is the number of the items

being clustered. The adjustment part, as proposed by [5] and further studied by
[10], subtracts off the expected Rand index for a random partitioning of size k,
where k is the number of clusters found in the model. The values of an ARI are
bounded above by 1, but can be negative when a clustering performs worse than
random.

Figures 1 through Fig. 3 give the ARI for the five scalings of NMF for the
range of values around the maximum likelihood estimated dimension. Here we
see rather strong performance with an ARI of about 0.7 and the NL scaling
gives slightly better results than the second best scaling of RS, which normalizes
within the documents (Fig. 2).

Fig. 1. Adjusted Rand Index for 5 matrix scalings: DUC 2004 Dataset.

6 We observe that with this simple approach the post scaling has no affect on the
clustering, i.e. using W̃ instead of W would yield the same clusters.

7 https://github.com/bdpedigo/graspy.

https://github.com/bdpedigo/graspy
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The 20 newsgroup data are overall more challenging to cluster, but here the
NL scaling gives a sizable improvement over the alternative methods.

Fig. 2. Adjusted Rand Index for 5 matrix scalings:20 News Groups Dataset.

Finally, for the Twitter data, the most challenging dataset studied, the per-
formance as measured by ARI is lower still, but with NL giving better results.

Fig. 3. Adjusted Rand Index for 5 matrix scalings: Russian Twitter Trolls.

Each of the above experiments used CountVectorizer to tokenize the data.
To illustrate that the results can vary substantially based the tokenization
we present the last dataset again comparing CountVectorizer with the T5’s
sentencepiece, the unigram language model. Figure 4 gives these results, where
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we see both original scaling (Counts) and the normalized Laplacian (NL) improve
significantly and perform comparably.8

Fig. 4. Comparison of sentencepiece vs CountVectorizer Tokenization: Russian
Twitter Trolls.

3 Discussion

Here we point out that the computations that we are doing are ultimately based
on sklearn’s routine for non-negative matrix factorization, NMF. We mostly use
the default parameters, but it is worth discussing a few of the major ones and
the impact that they have. Specifically, we note that by default, and hence in
our calculations there is no explicitly regularization. The package allows for both
L1 and L2 or a combination of them.

The second important parameter we will spend some time investigating is
that of the loss function itself. In any case, the goal is to minimize a component-
wise loss function, L : R × R → R.

min
n∑
i,j

L(Mij , (WH)ij)

Indeed, sklearn’s documentation shows an input to NMF called beta loss.
This can be passed a float or one of three special strings. The special strings are:
frobenius, LFrob(x, y) = (x − y)2; kullback-leibler, LKL(x, y) = x log x

y ; or
itakuru-saito, LIS(x, y) = x

y − log x
y − 1. They correspond to the values 2, 1,

and 0 respectively.
The main point is that interaction of loss function and feature scaling is

extremely important. Specifically, we note that when we scale both x and y by
the same constant α the Frobenius loss is multiplied by α2, the Kullback-Leibler
8 Using the T5 tokenizer on the DUC 2004 and newsgroups data give somewhat lower

performing clustering, but the relative performance of the scalings remains about
the same.
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loss is multiplied by a single factor of α and the Itakuru-Saito loss is unaffected.
I.e.,

LFrob(αx, αy) = α2LFrob(x, y)
LKL(αx, αy) = αLKL(x, y)
LIS(αx, αy) = LIS(x, y)

Since we are using the Frobenius norm as our loss in this setting, we see
that the loss will be dominated by large values. The quadratic scaling of the
penalty means that the NMF will work very hard to match the large terms in
the summed loss function.

For ease of notation, we will look at what specifically happens to the entries
in these scalings for the very simple two documents with two words each setting.
That is, we will be looking at 2 × 2 matrices. We will think of documents as the
rows and the terms index the columns.

When the matrix, A =
[
a b
c d

]
, is nothing more than the counts of words in

each document, then as previously mentioned, the Frobenius norm will focus on
the entries with larger values. Those will be ones that are either common words
or those corresponding to longer documents. The algorithm will put much more
emphasis on getting those entries correct. Obviously all of the entries here lie in
N.

When we consider the row scaling, D−1
r,AA =

[ a
a+b

b
a+b

c
c+d

d
c+d

]
, then we find that

the preference for long documents is neutralized. Common words, however, are
still emphasized. Also, it is clear that all of the entries in this case lie in the unit
interval, [0, 1].

The column scaling setting, where AD−1
c,A =

[ a
a+c

b
b+d

c
a+c

d
c+d

]
, is the opposite as

the preference for common words is neutralized, but the preference for long
documents is not. Again, the entries here lie in [0, 1].

The Normalized Laplacian setting strikes a balance between the two. The
preference for frequent words and for long documents are both partially neutral-
ized. Again, the entries lie in the unit interval.

D
− 1

2
r,AAD

− 1
2

c,A =

⎡
⎣

a√
(a+b)(a+c)

b√
(a+b)(b+d)

c√
(a+c)(c+d)

d√
(c+d)(b+d)

⎤
⎦

The (exponentiated) point-wise mutual information scaling really came about
from a very nice theoretical analysis done in [8]. The authors looked at the
critical points of the objective function of word embeddings. At critical points,
the embedding vectors form a low rank factorization of the pointwise mutual
information matrix.
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APWMI =

[
a

(a+b)(a+c)
b

(a+b)(b+d)
c

(a+c)(c+d)
d

(c+d)(b+d)]

]

First of all the name comes from the fact that entries resemble the summand
(or integrand) of the definition of the mutual information between two variables,
I(X;Y ) =

∑
xi,yj

p(xi, yj) log p(xi,yj)
p(xi)p(yj)

.
If we look inside the log, we find the ratio of a joint probability with the

product of the marginals. In this way, it can be seen as a measure of how far
two random variables are from independent. In this text setting, it measures
the deviation from the expected word count if we just took into account the
overall word frequency and the length of the document. The calculation below
normalizes the numerator and denominators in the matrix by n, the total number
of words in the corpus. There, we can see that the entries are the maximum
likelihood estimates of the probabilities given the corpus and match the form of
the point-wise mutual information.

nD−1
r,AAD−1

c,A = n

[
a

(a+b)(a+c)
b

(a+b)(b+d)
c

(a+c)(c+d)
d

(c+d)(b+d)]

]
=

⎡
⎣

a
n

( a+b
n )( a+c

n )

b
n

( a+b
n )( b+d

n )
c
n

( a+c
n )( c+d

n )

d
n

( c+d
n )( b+d

n )]

⎤
⎦

Perhaps a little less obvious is the relationship between the pointwise mutual
information and the Normalized Laplacian formulation. The calculation below

P (X = 1, Y = 1)
P (X = 1)P (Y = 1)

=
a
n

a+b
n

a+c
n

=
an

(a + b)(a + c)
=

a√
(a+b)(a+c)√
a+b
n

a+c
n

(1)

looks at the top left entry of the matrix in particular (APWMI)11 =
a
n

a+b
n

a+c
n

and

relates it to the top left entry of the Normalized Laplacian matrix (ANL)11 =
a√

(a+b)(a+c)
. In particular, we see that

(APWMI)11 =
(ANL)11√

a+b
n

a+c
n

We further note that the denominator of the right hand side in Eq. 1 is the
geometric mean of the two marginals. It has the possibility of being small and
so the entries in the pointwise mutual information matrix are not necessarily
constrained to lie in the unit interval and, hence, are sensitive to the quadratic
scaling of LFrob discussed earlier. It reintroduces a bias towards rare words or
short documents.

4 Related Work

Unlike, the singular value decomposition (SVD), the solution to the NMF prob-
lem is NP-hard [18]. Not only that, but it is ill-posed; there is often not a
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unique answer. For example A = WH = WTT−1H = (WT )(T−1H) = Ŵ Ĥ for
any invertible matrix T . This makes a similar analysis to that done in [12] less
promising.

There are situations where NMF does indeed have a well-behaved unique
solution. Donoho and Stodden gave a nice geometric characterization of one
such case where the matrix is called separable [3]. This was further brought into
the text domain in [1]. Here the separability is a relatively mild assumption. It
corresponds to the presence of so-called ‘anchor’ words. An anchor word is one
that is supported on one and only one topic. This is plausible for text data. For
example, it is likely that the word ‘homeomorphism’ only really appears in a topic
about mathematics or ‘EBITDA’ really only appears in a topic about finance.
Under these assumptions, there are unique answers and efficient algorithms to
find them. These algorithms are, however, sensitive to the condition number of
the matrices involved. So, there is a line of work that aims to remedy these
algorithms by preconditioning the matrix, M . For example, [4] uses semidefinite
programming to compute a minimum volume ellipsoid. We conjecture that our
Normalized Laplacian method is related to a relaxation of this problem where
the ellipsoid is constrained to be axis aligned.

The authors [6] propose using diagonal row and column scaling of a matrix of
counts, i.e., Sinkhorn balancing, when employing spectral clustering. The authors
show that when a block structure of count matrix is present that the singular
vectors of the balanced matrix exhibit a “square-wave” pattern, when reordered.
They propose an algorithm using a few singular vectors to permute a matrix of
counts into a block structure. A natural question is how to best extend such an
approach to rectangular matrices. The authors are currently working on such
an approach. Such approaches should also be studied for a non-negative factor-
ization. The authors [16] formulate a low-rank Sinkhorn algorithm for optimal
transport. They in effect are computing a NMF of a doubly stochastic matrix.

5 Conclusions

In this paper we proposed a new family of non-negative matrix factorizations
inspired by normalized Laplacian and spectral graph theory. Previous work in
spectral graph theory suggests that the normalized Laplacian gives rise to graph
partitions which are more likely to find affinity communities in a graph versus
spectral partitions based on the adjacency matrix, which tend to recover core-
periphery partitions. In the non-negative matrix applications, it suggested that
perhaps a normalized Laplacian scaling of the counts may give rise to better
topic models. In this paper we gave strong evidence for the normalized Laplacian
giving better topic models as illustrated in three text clustering datasets. In
addition, we found that the choice of tokenization can significantly affect the
matrix scaling and related work.
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Abstract. In recent decades, several community detection methods
have been proposed to uncover densely connected groups in a network.
In many cases, there is the necessity of detecting such a group around
a seed node that may be of particular topological importance or the
external knowledge enable that node to be significant for the specific
subgroup. In this way, local community detection algorithms can dis-
cover subgroups faster than global community detection algorithms that
cover the entire network. This study aims to introduce new variants of
an existing local community detection algorithm that uncover a single
community and establish the positive aspects of identifying better com-
munities. We experimentally evaluate our proposed methods in synthetic
and real datasets compared to the baseline method, three state-of-the-art
methods in local community detection, and a global community detection
method.

Keywords: local community detection · static networks · seed

1 Introduction

Networks are widely used to represent complex systems, as they can effectively
depict the natural structures and operations of many different fields, including
communication, biology, and the World Wide Web. Community detection, which
focuses on identifying groups of nodes that are closely connected and loosely con-
nected to nodes in other groups in the network, has attracted the interest of many
scientists. Global community detection methods aspire to discover the network
partition, i.e. communities. In the last decades, many efforts have been made to
identify global communities, by partitioning the whole network into subgroups.
However, many researchers only focus on finding communities around specific
nodes. As a consequence, the interest is focused on discovering local communi-
ties based on a few nodes [4,18]. In addition, regarding the computational cost,
local community detection (henceforth also called lcd) is the most appropriate
way to identify communities in large networks e.g. social networks.

In local community detection, the typical method is to start from a set of
seed nodes and detect their community. In the literature, the selection of seed
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1142, pp. 68–81, 2024.
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nodes can either be random [1,8] or based on topological characteristics drawn
on certain metrics [7,16,20] e.g. degree, closeness centrality or similarity metrics.
However, these strategies are not always the best since they do not guarantee
that the selected seeds are the appropriate nodes for local community detection.
Authors in [2] take into account a different view of the seed in lcd, assuming
that seed(s) are nodes of particular importance for their community. In this way,
information from the network’s external environment (metadata) determines the
nodes’ importance, which may not be related to their topological features.

In the current study, we create seven variants of an already existing static
algorithm, which is presented in [19]. Consequently, we conducted experiments
that used the aforementioned strategies to select seed nodes. We evaluate our
proposed methods compared to the baseline method, three state-of-the-art in
the field of local community detection, and a global one. Another merit of the
proposed variants is that they can be extended naturally to allow for incremental
updates in the local community supporting removals and insertions of nodes in
this community without resorting to computation from scratch for insertions, as
was the case until now.

The remaining sections are organized as follows. In Sect. 2, we review the
literature on local community detection algorithms. In Sect. 3 we discuss prelim-
inaries and give useful definitions as well as provide the baseline method and its
seven variants. In Sect. 4, we present an extensive analysis of our experimental
results for both synthetic and real datasets and discuss the major results of our
experiments. Finally, we conclude in Sect. 5 with future work.

2 Related Work

In the literature, there are many lcd methods based on the technique to add
nodes in the community on the strict condition that the inserted node maximizes
the quality function. In what follows, we cite some interesting works that use
the aforementioned greedy method.

The NewLCD method based on the minimal cluster is described in [22]. This
algorithm has two phases, first discovers the minimal cluster and consequently
finds the local community, which is extended from the minimal cluster using the
LWP [15] quality function. In [6], the metric L, which is the ratio between internal
and external community edges, is proposed to identify local communities. A new
metric is introduced in [21]. The authors use the Closeness-Isolation (CI) metric
to quantify the quality of the local community, considering the weights of the
edges between neighboring nodes, which represent the similarity between two
nodes. It combines the closeness of nodes within the community and the isolation
of nodes from the rest of the network. An lcd method (LCDMD), which splits
the lcd problem into two, is proposed in [11]. There are two key characteristics
of this method: 1)The core area discovery stage, utilizing the modularity density
to measure the distribution of nodes and edges, and 2) the community expansion
based on the influence and the similarity between nodes and local community.
Experiments in several real and synthetic datasets show high accuracy and very
good results in terms of precision, recall, F1 score, and conductance.
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Authors in [8], propose the local modularity R, which is the fraction of
the boundary edges that are internal to the community. Here, the size of the
community is predefined and the intuition is the merging of neighbor nodes to
increase the R-value. The proposed approach is utilized in both synthetic and
real datasets giving good results in the recall, but low precision. A new algorithm,
LTE, is discussed in [14] based on a quality metric, called similarity-based tight-
ness. Authors using the aforementioned metric, estimate the internal similarity
among community nodes. It is a parameter-free method and can be used in both
weighted and unweighted networks. The method achieves good results in terms
of precision, recall, and NMI. The TCE algorithm that is introduced in [12],
describes a method based on the expansion of the triangle community, using the
fact that the edges within the community form triangles. In each step, a node
is inserted in the community when the aforementioned admission is held. The
method can be applied to both weighted and unweighted graphs. Furthermore,
the authors suggest that the largest clique of the seed neighborhood is the best
start to expand the community.

A very nice study, the Hint Enhancement Framework (HEF), is presented in
[2]. HEF is a two-fold procedure. More precisely, given the seed node called hint,
re-weighting and rewiring strategies are used, and an existing lcd algorithm is
applied to the modified network. Here, the hint is a predefined and of particular
importance node. The choice of hint encompasses external knowledge, which is
derived from an expert of a certain domain or can be retrieved from the network’s
metadata.

Table 1. List of basic symbols used in the present work.

Symbol/Abbreviation Description

G The network

V The node set of G

N The total number of nodes in G

E The edge set of network G

U0 The seed node

C(U0) The initial community which contains only the seed U0

kCi
in The internal degree of C, when the i-th node is inserted to the

community

kCi
out The external degree of C, when the i-th node is inserted to the

community C

N(u) The set of neighbors of node u

LCD The baseline Local Community Detection

LCD − TE Local Community Detection using the Tree Expansion model

LCD − TEG Local Community Detection using the Tree Expansion model
preserving the Global condition

LCD − E Local Community Detection with Expansion

LCD − EG Local Community Detection with Expansion preserving the Global
condition

LCD − DEG Local Community Detection with Double Expansion preserving the
Global condition

LCD − DLE Local Community Detection with Double Linear Expansion

LCD − Tr Local Community Detection with Triangles
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3 Variants of a Local Community Detection with Seeds

3.1 Preliminaries and Problem Formulation

A network G = (V,E) consists of a set of nodes V = 1, ..., n and a set of edges E,
where E ⊆ V ×V represent connections between the nodes in the network. This
study considers G as an unweighted and undirected network. The neighbors of a
node v are the nodes that are connected to v with a direct link, and the degree
of a node is the number of its neighbors. Moreover, when two neighbors of a
node v are connected, then we call this a Triangle of connections. Given a seed
node A, we aim to detect the community around the seed. Seed may be a node
of particular importance based on external knowledge, a node with significant
topological features, or a randomly chosen node. A Local Community (LC) is
defined as the community to which the seed node belongs. Hence, a network G
can be divided into LC and the rest of the network G − LC = U .

In a greedy Local community detection method there are several quality met-
rics to measure the quality of a local community. In this study, the metric used
is fmonc (henceforth called fitness score) which describes the sum of the internal
community edges divided by the total sum of the internal and external edges
of the community [13]. An internal edge is defined as the connection between
two nodes that belong to the local community. On the other hand, an external
edge is defined as the connection between two nodes, where one belongs to the
community and the other belongs to its neighborhood. In Eq. 1 below, kCin and
kCout are the internal and external edges of community C, respectively. In Table 1
we summarize the notation used throughout the paper.

fmonc(C) =
2kCin + 1

2kCin + kCout
, (1)

Algorithm 1. Baseline LCD

Input: G,U0

C(U0)
fC = 0
while add new nodes in C do

max = 0
fmax = 0
for u ∈ N(C) do

fu ← f(C∪{u})
if fu > fC and fu >

fmax then
fmax ← fu
max ← u

end if
end for
C ← C ∪ {max}
fC ← fmax

end while

In what follows, the baseline LCD frame-
work is presented in more detail, see
Algorithm 1. Given a network G and a seed
U0, each time we aim to add a new member
node in C. Initially, the community contains
only the seed, C(U0), and its fitness score
is fC = 1

kC
out

. Consequently, the algorithm
searches, between all community neighbors, to
find the node whose potential insertion in the
community maximizes its fitness score. When
the algorithm finds the node whose affiliation
offers the maximum fitness score for the com-
munity, the next step is to check whether the
estimated fitness score is higher than the fit-
ness score of the current community state i.e.
without the new node. If this condition is sat-
isfied, then the new node is added to the com-
munity. In this way, whenever a new node is
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added in C the fitness score of C increases, and at the end of the process, we
get the fitness scores in increasing order. For instance, let’s suppose that a com-
munity C contains only the seed U0. Searching the neighbors of U0, we find that
U1 offers the maximum fitness score for C, compared to all neighbors of U0,
and the insertion of that node in C increases the community fitness score, e.g.
fU1 > fU0 = fC . Subsequently, the node is added to C and the new community
fitness score is fC = fU1 . The process continues until no new candidate node can
increase the fitness score of C. In Table 2 we summarise the process.

Table 2. Community evolution depending on the fitness scores order.

Sequence 0 1 2 n

Nodes U0 U1 U2 Un

Internal edges K0,in K1,in K2,in Kn,in

External edges K0,out K1,out K2,out Kn,out

Fitness score of C fU0 fU1 fU2 fUn

3.2 Proposed Variants

Given an unweighted network G, with a set of nodes V and a set of edges E, we
propose seven methods to detect local communities. All methods are variants of
the baseline LCD. In what follows, we give an extensive description of each one.

1. LCD-TE : The Local Community Detection method using the Tree Expansion
model (LCD-TE) is the first variant of LCD. The basic idea of this method
is that we can add in C at most two nodes each time, and the community is
represented as a tree. For example, given a seed node U0 and its neighbors
U1, U2, U3, U4 and U5, we apply the Algorithm 1, see Fig. 1. Let’s assume
that after the first iteration the fitness scores, fUi

, of the possible community
members are the following: fU3 > fU1 > fU4 > fU2 > fU5 > fU0 = fC . From
the above inequality, we see that the community reaches the maximum fitness
score if U3 is added in C and the second maximum if U1 is added in C. The

Fig. 1. Illustration of LCD - TE(G) process. a) The initial network G, b) Community
of 3 nodes, c) Community of 4 nodes, and d) Community of 6 nodes
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next step is to insert them in C and represent its members as a tree that
consists of the parent U0 and the two children U3 and U1, where U3 is the
left and U1 the right child. We keep this order because fU3 > fU1 and so, the
node that offers the maximum fitness score is added always as the left child.

Taking into account the formed community in Fig. 1b, which consists of two
community groups, (U0, U1) and (U0, U3), the next step is to apply the Algo-
rithm 1 to these groups individually. We always start from the left-hand side
group because the left children always offer the maximum fitness score, and
we do this as a reward for these nodes. One restriction is that the neighbor-
hood of each group consists only of neighboring nodes that are not members
of other community groups.
Applying the Algorithm 1 to the group (U0, U3), holds that fU2 > fU3 > fU4 .
Then, only node U2 is added to this group as a leaf, see Fig. 1c. Now the
formed groups are P2 = (U0, U3, U2) and P1 = (U0, U1), where Pi is the
group of nodes from root U0 to leaf Ui. Consequently, Algorithm 1 is applied
to P2. If no other node can be added to this group, we apply the Algorithm
1 to the next group, P1. Let’s assume that fU5 > fU4 > fU1 , then both nodes
U5 and U4 are added as leaves under the parent U1. The new formed groups
now are P5 = (U0, U1, U5) and P4 = (U0, U1, U4), see Fig. 1d. We observe that
any time we work in a group, two community groups may be formed e.g. from
P1, the groups P5 and P4 are formed. Afterward, Algorithm 1 is applied to
P5. Due to the fact that no other node can be added to group P5, we apply
Algorithm 1 to group P4. Assuming again that no other node can be added to
P5, the process is terminated since there is no other community group. Thus,
we always apply Algorithm 1 to the left-hand side group, and the process
terminates when no other node can be inserted into any community group.
The termination condition is the same for all methods.

2. LCD-TEG : The Local Community Detection method using the Tree Expan-
sion model preserving the Global condition (LCD-TEG), is the second variant
of LCD. The process of this variant is the same as the LCD-TE. The main
difference is one extra condition that holds whenever we check whether a
node should be added to a group Pi. For this reason, we keep a record of
the global fitness score. More precisely, we calculate the fitness score of the
entire community fC , merging the member nodes of all groups. Let’s make
the assumption that nodes Ui and Uj are the two candidate nodes for inser-
tion, and hold that fUj

> fUi
. First, we check for node Ui whether the extra

condition fUi
> w ·fC is satisfied (w is a threshold that will be defined in the

experiment section). If the extra condition holds, node Ui is added as a leaf
under the corresponding group and the entire community fitness score fC is
recalculated. Consequently, we do the same for node Uj . If for both nodes Ui

and Uj the global condition is satisfied, Uj is added as the left child and Ui

as the right child. We always check last the node that offers the maximum
fitness score to the current community group.

3. LCD-E : The Local Community Detection Expansion Method (LCD-E) is the
third variant of LCD. This method is more simplified since there is no tree
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expansion; instead, we add as leaves under the seed the first two neighbors
whose affiliation in C(U0) offers the maximum fitness score. Then, for the
formed two groups (see Fig. 1b) we use Algorithm 1 for each one individually,
and each time only one node can be added to the corresponding group. Like
the previous methods, we start always from the left-hand side group.

4. LCD-EG : The Local Community Detection Expansion method preserving
the Global condition (LCD-EG), is the fourth variant of LCD. The LCD-EG
method is the same as LCD-E. The only difference is the global condition.
Thus, two community groups are formed but the insertion of a new node Ui

in the corresponding group depends also on the fitness score of the entire
community fC , e.g. if fUi

> w · fC is satisfied.
5. LCD-DEG : The Local Community Detection with Double Expansion method

preserving the Global condition (LCD-DEG), is the fifth variant of LCD. In
this method, two community groups are formed like in LCD - EG and LCD
- E. On the other hand, at most two nodes can be added to each community
group, preserving the global condition fUi

> w ·fC . The key difference of this
method compared to LCD - TEG is that when two nodes should be added to
a group, they are added one after the other, and not as leaves in a tree. In
this way, no more new groups are formed except for the initial two.

6. LCD-DLE : The Local Community Detection with Double Linear Expansion
Method (LCD-DLE) is the sixth variant of LCD. This is the most simplified
variant of all seven. The process is the same as the baseline LCD. The only
difference is that, unlike LCD, each time we add at most two nodes to the
C. Thus, the two neighbors that offer the maximum fitness score to C and
their fitness scores are greater than the score of the current community, are
inserted into C. When two nodes should be inserted in C, we always add last
the node that offers the maximum fitness score to C.

7. LCD-Tr : The Local Community Detection with Triangles (LCD-Tr) method
is the seventh and last variant of LCD. In this approach, given a seed U0, we
find its neighboring nodes that form triangles with U0. After this preliminary
work, all these nodes are added to the C. Consequently, the fitness score of
the developed community is estimated and the baseline LCD is applied.

Time Complexity

Given that n is the community size and d is the average degree, the time com-
plexity of the LCD [19] is given O(n2d). For both LCD-TE and LCD-TEG, the
execution time is equal to O(mn2d), where m is the number of different com-
munity groups in which the Algorithm 1 is applied. Indeed, m � n since the
number of leaves in the tree is much less than the number of nodes in C. The
above analysis is very pessimistic, while the size of each community group is less
than the size n of the entire community C. Subsequently, the time complexity
of both algorithms is ≈ O(n2d).

Regarding the LCD-E, LCD-EG, and LCD - DEG methods, the complexity
is nearly the same as LCD. In these methods, only two community groups are
created. Thus, the time that we need to run the algorithm is O(2n2d), so it would
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still be O(n2d). For the LCD-DLE method in the worst case, the complexity is
equal to the LCD, since in this method there is only one community group.
This method can add two nodes in C, and consequently, in the best case the
time can be reduced to half, compared to the LCD. Lastly, the LCD-Tr method
needs extra time to find the nodes which form triangles with the seed. For this
preliminary work, the time complexity is equal to the degree of the seed. Given
the average degree d, the overall time will be O(d + n2d). Consequently, in the
worst case it would still be O(n2d).

4 Experiments

4.1 Experiment Design

To evaluate the results of our proposed variants, we use precision, recall and
the F1 score as evaluation metrics. Given a detected community and the corre-
sponding ground truth, precision is equal to the ratio between correctly detected
nodes and the total number of detected nodes. The recall is the fraction of rele-
vant nodes that are detected successfully. F1 score or measure F is the harmonic
mean of precision and recall [10]. The harmonic mean is used instead of the sim-
ple average because it combines precision and recall in a way that gives equal
weight to both.

We compare the proposed variants with the baseline LCD and three of the
most effective algorithms for detecting local communities, LTE [14], NewLCD
[22], and TCE [12]. Additionally, we use the Louvain method [5] on the real
datasets. This method attempts to find the partition that maximizes the mod-
ularity of the network, using a greedy heuristic that iteratively moves nodes to
different communities and merges communities into larger ones. We chose Lou-
vain because it is fast, scalable, and has been used in various domains such as
social network analysis, biology, and physics.

To experimentally assess the fitness score threshold w, for the methods that
preserve the global condition (LCD - TEG, LCD - EG, and LCD - DEG), we
use w = 0.5, w = 0.7, and w = 0.9. Experiments for w = 1 are also conducted,
but not presented in this study since the results are not worth mentioning. We
conducted our experiments on an Intel Core i7 processor with a speed of 2.9 GHz
and 16 GB of RAM. We used Python programming language and the NetworkX,
igraph, and numpy libraries to implement the methods.

4.2 Experiments on Synthetic and Real Datasets

In this study, we use both synthetic and real datasets. Synthetic datasets that
have been used are created using the RDyn [17] generator. RDyn generator cre-
ates dynamic networks concerning real network attributes with multiple time-
dependent ground-truth partitions. Regarding the parameters, the generator
uses two user-defined parameters. The first is the number of nodes and the
second is the number of iterations. Each iteration consists of edge insertions and
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deletions, and after each iteration, the corresponding ground-truth communi-
ties are generated. Considering we work in static networks, the whole synthetic
network is loaded and we assume as ground-truth communities the last created
communities. In our experiments, we use two different datasets produced by the
RDyn generator. The basic attributes of the synthetic datasets are described in
Table 3.

Regarding the real datasets, we tested our proposed variants on three quite
large networks [9]. More specifically, the first dataset we used is the email Eu
core, which was generated using email data from a large European company.
Edges represent email communications between employees (nodes). The ground-
truth communities are provided and represent the departments to which each
employee belongs.

The second real dataset is the Amazon product co-purchasing network. The
network is created by spidering the Amazon website. The network is based on the
Consumers Who Bought This Item Also Bought feature of the Amazon website.
An undirected edge between two products i and j means that both products
are regularly co-purchased. The provided ground-truth community represents a
product class.

The third and last dataset is the DBLP collaboration network. The DBLP
dataset contains thorough records of computer science papers. The generated
undirected co-authorship network represents the connection between two authors
(nodes) i and j as the co-publication of at least one paper. Regarding the ground-
truth communities, the authors who published in a specific journal or conference
shape a community. The basic characteristics of these datasets are described in
Table 4.

Table 3. Properties of the synthetic
datasets.

Dataset Nodes Iterations Edges

SD1 1000 5000 4917

SD2 2000 2000 16413

Table 4. Properties of the real datasets.

Dataset Nodes Edges

email-Eu 1005 25571

Amazon 334863 925872

DBLP 317080 1049866

To begin with, for both synthetic datasets, experiments were carried out
using several nodes of low, average and high-degree centrality, and the most
noteworthy results are presented. Regarding the figures, the y-axis represents
the F1 score and the x-axis the different methods. As discussed in the previous
subsection, we compared our LCD variants with four baseline lcd algorithms,
LCD, LTE, TCE and NewLCD. The obtained F1 score for each of the proposed
methods represents the average score of the several nodes, which have been used
as seeds. The dashed line in each of the figures serves as a separator between the
proposed and the baseline methods.
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Fig. 2. The average F1 score of the pro-
posed methods compared to the base-
lines.

Fig. 3. The average F1 score of the pro-
posed methods compared to the base-
lines.

In Fig. 2 we present the results of the experiments with SD1 dataset. This
network consists of n = 1000 nodes and m = 4917 edges. Analyzing the results
we realize that most of the proposed methods outperform the baselines. More
precisely, we obtain an improvement of 25% for the F1 score when the LCD -
Tr method is used. On the other hand, the LCD - TEG method presents the
worst results since recall performance is too low. Regarding the approaches that
preserve the global condition (LCD - DEG, LCD - EG and LCD - TEG), we see
that for w = 0.7 and w = 0.5 we get the best results.

In Fig. 3, we present the results of the experiments with SD2 dataset. This
network is quite dense since it consists of n = 2000 nodes and m = 16413 edges.
The results of this experiment are similar since the maximum improvement for
the F1 score between LCD - DEG and NewLCD, is 13%. All the proposed
methods perform very well compared to the baselines. The LCD - TEG method
obtains again poorly results in the F1 score but is much better compared to
the SD1 dataset. The LCD -TEG method can discover small partitions since
the detected communities consist only of a few nodes. Moreover, regarding the
methods that preserve the global condition, when w = 0.7 we obtain again the
best results. On the other hand, on both synthetic datasets, when w = 0.9 the F1
score is decreased since we observe a significant reduction in the recall metric.
So, after evaluating the parameter w, for the rest of the experiments, we use
w = 0.7 as the fitness score threshold.

In Figs. 4, 5, 6, and 7, we present the results of the experiments of LCD vari-
ants utilizing the real datasets. We use the same representation as in synthetic
datasets. Besides the four baseline algorithms, for the sake of comparison, we also
use the global community detection algorithm Louvain. Louvain performs very
well only on the email-EU-core network, since in the rest networks the results
are below average.

The results of the experiments with the email-EU-core network are presented
in Fig. 4. For this network, we use as seed a node of particular importance,
retrieved from metadata [3]. The selected seed is the manager of a certain depart-
ment, and applying our proposed variants to the chosen seed, we discover the
corresponding department. For this network, Louvain performs better than the
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Fig. 4. The F1 score of the proposed
methods compared to the baselines.

Fig. 5. The F1 score of the proposed
methods compared to the baselines.

rest of the algorithms. More precisely, its F1 score is almost 98% and LCD,
LCD - E, LCD - DLE, LCD - DEG and LCD - EG follow with nearly 96%. On
the other hand, the LCD - Tr method has low precision and, for this reason,
its F1 score is reduced. In addition, as a result of the extremely low recall, the
LCD - TEG method performs below average. In this experiment, we see that
the obtained results of the proposed variants are almost equal to LCD. However,
execution time is refined in all of the proposed methods. More precisely, the F1
score of LCD - TE is 88% but its execution time is 3 times faster than LCD.
Similar examples can also be given for the rest of the proposed algorithms. On
the other hand, there is a slight decrease in time efficiency for some of the pro-
posed approaches, compared to LTE, TCE and NewLCD. Lastly, with regard to
the F1 results, LTE, TCE and NewLCD algorithms do not perform well, and
their scores are below the average.

In Fig. 5 we present the results of the experiments with the Amazon network.
For this network, we work in a different way to choose the seed node. Initially,
we randomly choose a quite large community and find the central node of the
chosen community, using the degree centrality as a measure. For this network,
three of the proposed methods (LCD - E, LCD - DEG and LCD - EG) reach the
score of 62%, which is the maximum F1 score for this experiment. The result,
on average, is improved by 28% for recall, 13% for precision and 30% for F1
score. One more time we observe the extremely low recall value of the LCD -
TEG method, and as a consequence, its F1 score is decreased more than the rest
proposed variants. In this experiment, both the retrieved results and execution
time realise considerable improvement, compared to the baseline methods.

The last two experiments are conducted for the DBLP network, and in Figs. 6
and 7 we present the obtained results. For the experiment in Fig. 6, we randomly
choose a community and find its central node using the degree centrality as
a measure. Utilizing that node as a seed, five of the proposed methods have
remarkable results. More precisely, the F1 score for the LCD - Tr, LCD - E,
LCD - DEG, LCD - EG and LCD - TE methods is almost 75%. The result,
on average, is improved by 50% for the F1 score and more than 40% for recall,
compared to the baselines. On the other hand, the low F1 score of the LCD -
DLE and LCD - TEG methods reflects to the 10% of their recall value.
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Fig. 6. The F1 score of the proposed
methods compared to the baselines.

Fig. 7. The average F1 score of the pro-
posed methods compared to the base-
lines.

Finally, in Fig. 7, we present the results of the experiments with the DBLP
network, using multiple nodes as seeds. More precisely, we choose randomly a
community and use all its nodes, one by one, as seeds. Consequently, Fig. 7
shows the average F1 score for each of the proposed methods. Once again, the
results show the dominance of our proposed methods, since almost all approaches
outperform the baseline methods. In more detail, the result is improved by 11%
for the F1 score and by 23% for recall, compared to the baselines. A notable result
of this experiment is the quite high F1 score of LCD - TEG, compared to the
previous experiments. The explanation for this is that the chosen community
is not large, and the LCD -TEG method can discover small partitions since
its detected communities consist only of a few nodes. One more time, both the
retrieved results and execution time realize considerable improvement, compared
to the baseline methods for both experiments in the DBLP network.

Discussion
The experiments demonstrate that the proposed LCD variants improve the com-
munity detection results. Experiments are conducted in both synthetic and real
datasets using different seed selection methods each time. Furthermore, an exper-
imental evaluation is done for the fitness score threshold w, selecting the thresh-
old that gives the best results for our proposed models. The current study is
focused on differences in F1 score between the proposed variants and the baseline
methods. The results show that the proposed variants outperform the baselines
in terms of the F1 score.

On average, all the proposed methods perform better than the baselines,
except for LCD-TEG. Examining carefully the retrieved results, we observe that
the LCD-TEG method experiences better results for the recall metric when
the detected community is small. This indicates that the LCD-TEG method is
suitable for discovering communities consisting only of a few member nodes. In
addition, the execution time of the proposed approaches, in the worst case, is at
least equal to the LTE, TCE, and NewLCD methods when the network is sparse,
e.g. Amazon and DBLP. On the other hand, when the network is dense, e.g. SD2
and email network, there is a slight decrease in time efficiency for some of the
proposed approaches. Finally, Louvain is the most time-consuming algorithm.
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5 Conclusions and Future Scope

In recent years, scientists have been intrigued by the concept of local community
detection. This paper focuses on the identification of local communities that
contain significant nodes, referred to as seeds. The importance of a node is
obtained from metadata or extracted from the topological characteristics of the
network. To accomplish the process of local community detection, we propose
seven variants of an existing lcd algorithm. An experimental evaluation of the
proposed variants is conducted, using two synthetic and three real datasets. For
the sake of comparison, we used four local and one global community detection
algorithm, as the baseline methods. Our findings demonstrate that the proposed
variants outperform the baseline methods in terms of the F1 score. In addition,
in most cases, we obtain better execution time.

This work contains results on static networks and we intend to extend these
results along the following axis: 1. Expand the proposed variants to discover local
communities on dynamic networks. 2. The proposed strategies can be extended
to support removals and insertions of nodes in the local community without
resorting to computation from scratch for insertions, as was the case until now.
3. In addition to detecting local communities, we intend to identify anomalies in
dynamic networks.
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Abstract. The significance of pyramid structures in dominating social
networks is often mentioned, but the concept lacks a precise definition
and comprehensive empirical analysis. To fill this gap, this paper offers a
rigorous definition of pyramid structure, characterizing it as an expand-
ing rooted tree. Empirical evidence, drawn from an extensive study of
real-world social networks, corroborates existing hypotheses about the
prevalence of large pyramid structures in such networks. Additionally,
we identify a unique network characteristic: pyramid sizes vary across
different types of networks. This finding suggests that existing models
may not be sufficient for accurately representing real-world social net-
works and calls for the development of a new model. The paper also
explores more characteristics and applications of pyramid in developing
network metrics and structures, touching on aspects like degree distri-
bution, clustering coefficient, core-periphery structures, and small-world
networks.

Keywords: social network · pyramid structure · representative
nodes · small world · core-periphery structure

1 Introduction

Since the late 1990s, network analysis has emerged and rapidly attracted the
interest of an increasing number of researchers from diverse disciplines [1,5,8,20,
30]. A variety of tools and theories have been developed for that purpose, includ-
ing but not limited to degree distribution, clustering coefficient, average distance,
and core-periphery structure, as well as the Watts-Strogatz (WS) model [29] and
the Barabási-Albert (BA) model [3] (see [2] for a survey).

In the existing literature, the term “hierarchical structure” is frequently
employed. Typically, this refers to the categorization of network nodes based
on specific structural properties, such as degree, reachability within k hops, or
participation in a given number of triangles. Nodes sharing the same structural
characteristic are grouped into the same partition [6,14,16].

However, the concept of “pyramid structure” is often less precisely defined,
despite its recurring appearance in academic studies. Sometimes it is ambigu-
ously used or treated as a synonym for hierarchical structures (e.g., [6,12]). It’s
crucial to distinguish between the two: a pyramid structure expands from a sin-
gle point at the top and grows progressively larger toward the bottom, whereas
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1142, pp. 82–94, 2024.
https://doi.org/10.1007/978-3-031-53499-7_7
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hierarchies can manifest in various shapes. For instance, the Great Pyramid of
Giza serves as an iconic example of a pyramid, not a “Great Hierarchy of Giza.”

The distinction between pyramid and hierarchical structures is not merely
semantic; it has practical implications for the study of networks. Pyramid struc-
tures, with their characteristic expanding or growing features, offer specific advan-
tages for network analysis. For example, Taagepera [24] employed a pyramid-
based model (Fig. 1(a)) to explore “social mobilization,” leveraging its structural
properties to formulate a mathematical theory that enabled him to estimate the
size of an assembly based on the total population and adult literacy rates.

Fig. 1. Historical illustrations of pyramid structures in representing in a social network.
Source: (a) Taagepera [24] (Fig. 2); (b) Zhao and Peng [30] (Fig. 2).

Analogously, Zhao and Peng [30] studied the size of representative nodes in
social networks with a hypothesis on the existence of large pyramid structures.
They provided a more rigid definition as follows (see Fig. 1(b) for an illustration).
Rooted at a (representative) node set W �= ∅, a pyramid consists of κ ≥ 1 layers of
nodes. The k-th layer Γ (W ; k − 1) consists of all nodes of distance k − 1 from W ,
such that |Γ (W ; k)| ≈ c|Γ (W ; k − 1)| for some constant c > 1, 1 ≤ k ≤ κ. They
call it a pyramid of an expansion rate c. With some reasonable assumptions, they
developed the world-first theoretical analysis to explain the phenomenon that the
size of a national parliament scales to the 0.4-th power of the population [30].

However, while Taggepera’s work [24] offered a theoretical model, it lacked
empirical validation. Similarly, Zhao and Peng [30] only studied one real-world
social network, and presented an overly simplistic model that do not fully capture
the complexities of actual situations.

To remedy this shortfall, our study introduces a novel and practical defini-
tion of pyramid structure. Empirical evidence from a broad range of real-world
social networks reinforces the hypotheses previously suggested. Importantly, we
uncover a new structural characteristic: pyramid sizes show distinct patterns
across different types of networks. They tend to be small in road networks, large
in networks generated by the WS or BA models, and exhibit a diverse range in



84 W. Lyu and L. Zhao

social networks. This pattern points to the need for a new, more nuanced model
to accurately represent real-world social networks. Moreover, we demonstrate
that networks can also be characterized by the average minimum and maxi-
mum expansion ratios of pyramids, the proportion of large basic pyramids with
a minimum expansion ratio that is no less than 2, and the identification of the
pyramid-based core.

Furthermore, our findings have implications for the design of network met-
rics and structures. Elements like degree distribution, clustering coefficient, core-
periphery structure, and the concept of small-world networks can all be recon-
sidered in the light of our more refined understanding of pyramid structures.
Consequently, our work not only fills a gap in the current academic discourse
but also provides valuable insights for the development of future network analysis
tools and methodologies.

2 Preliminary

Let G = (V,E) denote an undirected graph with a set V of n nodes and a
set E of m edges. Without loss of generality, we assume that G is simple and
connected. The degree of a node v is denoted by deg(v) = |{(u, v) ∈ E}|. The
distance between nodes u and v in graph G is denoted by distG(u, v), which is
the minimum number of edges needed to connect u and v. For any W ⊆ V ,
let ΓG(W ; k) = {v ∈ V | minw∈W distG(w, v) = k} denote the set of nodes of
distance k from W in graph G, k ≥ 0. Notice that ΓG(W ; 0) = W . A subgraph
G′ = (V ′, E′) of G is said induced if E′ = E ∩ (V ′ × V ′).

The degree distribution P (k) is the proportion of nodes of degree k in a
network, k ≥ 0. Barabási and Albert [3] found that in many types of networks,
including the social networks, P (k) follows a power law, i.e.,

P (k) ∼ k−γ (1)

for some constant γ > 0. This is called the scale-free phenomenon and has been
widely applied to account for various behaviours [18,26]. Barabási and Albert [3]
also provided a BA model that can generate networks with this phenomenon.

The clustering coefficient is used to evaluate how nodes tend to knit together
in a network. There are three kinds of them. The local clustering coefficient
LCC(v) for a node v ∈ V is defined as 0 if deg(v) ≤ 1, otherwise (deg(v) ≥ 2)

LCC(v) =
|triangles to which v belongs|

deg(v) × (deg(v) − 1)/2
. (2)

The average clustering coefficient ACC(G) of a graph G is defined by

ACC(G) =
∑

v∈V LCC(v)
n

. (3)

And the global clustering coefficient GCC(G) is defined by

GCC(G) =
3 × |triangles in G|

|open triplets in G| + 3 × |triangles in G| , (4)
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where open triplet is an induced subgraph of G with three nodes and two edges.
Clustering coefficients are widely used in studying social networks as social net-
works usually have greater clustering coefficients than random networks [29].

Another commonly used metric for studying social networks is the average
distance d̄(G). It is well-known that the average distance between two people in
the real world is small, known as the small-world phenomenon [15]. In network
science, a type of networks is said small-world if

d̄(G) ∝ log n (5)

and GCC(G) is not small (e.g., ≥ 0.2), as explained by the WS model [29].
Notice that this description cannot tell if a given network is small-world. Some
studies [9,19,25] try to define if a given network is small-world by comparing it
with random networks and/or lattice networks. Nonetheless, it is hard to say that
these approaches are convincing since they rely on the definition of a so-called
“equivalent” graph, which is not well-defined (thus there are various definitions).

Lastly, core-periphery structure is often considered in network studies [10,13,
17,23,27,28]. This term is intuitive and was initially employed to qualitatively
describe the structural positions in a system and the dynamics among them (see,
e.g., [10,23]). A rigid and universally accepted definition, however, is still under
debate [7]. The core structure may have different meanings in different studies.
For instance, studies based on clique [4], group densities [11], and centrality [21],
are employed under different assumptions.

3 The Proposed Pyramid Structure

We propose a definition of pyramid structure. Let T = (VT , ET , r) denote a tree
with node set VT , edge set ET and root r. It is called a pyramid if

1 < ρmin ≤ |ΓT (r; i + 1)|
|ΓT (r; i)| ≤ ρmax (6)

for some constants (called the expansion ratios) ρmin ≤ ρmax, i = 0, 1, . . . , h − 1,
where h is the height of T . For simplicity, a singleton r is called a trivial pyramid
of height 0. A pyramid T = (VT , ET , r) is said maximal in a graph G if there is
no other r-rooted pyramid T ′ = (VT ′ , ET ′ , r) in G such that VT ′ � VT .

For any graph and a node r, we can find a maximal r-rooted pyramid in G by
a Breadth-First Search (BFS) started from r. Let T ∗ be the spanning tree found
by the BFS. Let h = max {k ≥ 0 | |ΓT ∗(r; i)| > |ΓT ∗(r; i − 1)|, i = 0, 1, . . . , k}.
The partial tree T of T ∗ consisting of nodes of distance h and less from r is a
maximal pyramid with ρmin = min{|ΓG(r; i)|/|ΓG(r; i − 1)|} > 1 and ρmax =
max{|ΓG(r; i)|/|ΓG(r; i − 1)|}. Let us call such a pyramid a basic pyramid. We
summarize the above argument as the following theorem.

Theorem 1. A basic pyramid for an arbitrary root can be found in linear time.

Based on the nature of BFS, we have the following Lemma.
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Lemma 1. There can be more than one basic pyramid with the same root. Nev-
ertheless, they share the same height and the same set of nodes for each layer.

The following arguments and empirical studies rely only on the set of nodes.
Thus we do not differ basic pyramids of the same root for simplicity. See Fig. 2
for some examples.

Fig. 2. An illustration of (basic) pyramids. Notice that T2 and T ′
2 are of the same root,

same node set, but different edge sets. (Source of the network: karate [22])

The proposed pyramid structure can provide alternative definitions of many
metrics for networks. For instance, the degree distribution can be replaced by
the size distribution of the height-1 maximal pyramids, since the degree of a
node v is the size of the (unique) height-1 maximal pyramid of root v minus one
(except for the degree-1 nodes where we do not need to subtract one).

For the clustering coefficients, we can view an open triplet a minimal non-
trivial pyramid and vice versa. On the other hand, triangles can be viewed as
an open triplet with an complemented edge. Depending on the complemented
edge, we can view a triangle in exactly three different ways. Therefore, we can
rewrite the definitions of the clustering coefficients using pyramids too.

Pyramid can also be used in studying the small-world phenomenon. Notice
that the height h of a pyramid T = (VT , ET , r) satisfies h = O(log |VT |) by
definition. Thus, for any two nodes u, v ∈ VT , distT (u, v) = O(log |VT |) since
distT (u, v) ≤ 2h. Therefore, if a network G has a large enough pyramid, we can
expect that the average distance of G is O(log n). This connects the existence
of large pyramid and the small-world phenomenon. We will further discuss it
in the next section. Moreover, pyramid can be used to define a core-periphery
structure of a given network. See the next section.
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4 Empirical Studies and Applications

We study real social networks with the proposed pyramid structure. The net-
works were downloaded from the Network Repository site [22] of size not too
small and not too large. As the result, we picked up 127 online social networks
with 62 to 154, 908 nodes. The list of them is provided in the appendix.

Let us call a pyramid in a graph G large if it consists of no less than n/2
nodes in G. This 1/2 proportion can be decided depending on the application.
For example, 2/3 may be better in studying some representing issues.

4.1 On the Existence of Large Pyramid

We first study the large basic pyramids for each of 127 online social networks.
By Lemma 1, we can use only one basic pyramid for each root. Thus, there are
n basic pyramids in a graph of size n. Figure 3 shows the mean values of ρmin

and ρmax and Fig. 4 shows the mean values and variances of the height for all
large basic pyramids, respectively. Let

p∗
ρ≥2 =

#large basic pyramids with ρmin ≥ 2
n

. (7)

We observed that p∗
ρ≥2 > 0 for all networks studied. Moreover, there are 123

networks with p∗
ρ≥2 > 0.2, 113 with p∗

ρ≥2 > 0.5, and 65 with p∗
ρ≥2 > 0.7, showing

that large pyramids are usually wide and common in a social network. Let

p∗
h≤3 =

#large basic pyramids with h ≤ 3
n

. (8)

We observed that there are 110 networks with p∗
h≤3 > 0.2, 105 with p∗

h≤3 > 0.5,
and 104 with p∗

h≤3 > 0.7, indicating that basic pyramids are usually short and
large in a social network.

Fig. 3. Mean values of ρmin and ρmax for the 127 online social networks studied, where
n denotes the number of nodes. Log-log scale is used with base 10.

This is surprising. It suggests that dominating (representing) a majority in a
social network is much easier than what we thought, in the sense that it is highly
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possible a small set of nodes to reach a majority of nodes in O(log n) hops. This
phenomenon provides an evidence to the hypothesis by Zhao and Peng [30], who
used it to provide an accurate estimation on the size of a parliament.

Fig. 4. Mean values (the y-axis value of points) and variances (the length of the lines)
of heights for all large basic pyramids for the 127 online social networks studied, where
n denotes the number of nodes. The logarithm scale on the x-axis is used with base 10.

We further study p∗
ρ≥2 for different types of networks. We studied four net-

works with almost the same number of nodes: road-minnesota is a road net-
work (n = 2, 640), socfb-USFCA72 is an online social network (n = 2, 672), a
network generated by the WS model, and a network generated by the BA model.
The latter two were generated by the generators watts strogatz graph(n = 2672,
k = 50, p = 0.3) and barabasi albert graph(n = 2672, m = 25) in the NetworkX
package of Python. The values of p∗

ρ≥2 were 0, 0.69, 0.17, and 0.90, respectively,
different among different types of networks. An interesting observation was found
when adjusting the probability p of rewiring edges in WS model. Adjusting p
from 0.3 to 1.0, p∗

ρ≥2 increases as p increases, eventually becoming close to 1.

4.2 A Novel Structural Feature Revealed by Pyramid

In this subsection, we demonstrate a structure feature of networks that has not
been known in the literature. Given a network with n nodes, let the normal-
ized size of a pyramid T of size nT be nT

n . Figure 5 shows the distributions of
the normalized size of basic pyramids of four networks including a road net-
work road-minnesota, an online social network socfb-USFCA72, and two
generated networks used in Subsect. 4.1.

It can be observed that in the road network road-minnesota, pyramids
are all small (the normalized size is much less than 0.5), whereas in the social
network socfb-USFCA72, most pyramids are large, and there is an obvious gap
in the normalized size between small and large pyramids. Such a phenomenon
can be observed in most of the real social networks studied (125 out of 127). On
the other hand, all pyramids in WS model generated networks and BA model
generated networks are large. This suggests, not surprisingly, that real social
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Fig. 5. Distributions of normalized sizes of basic pyramids of four networks.

networks usually mix connections by close location and location-independent
virtual connections, for which existing models (the WS and the BA models) may
fail to reproduce. Therefore, a new model is needed to study social networks.

4.3 Large Pyramid as a Core Structure

We first hypothesize that large pyramids contributes largely to the small-world
phenomenon in social networks. Let TB be a large pyramid with a node set
VB in a graph G with a set V of n nodes. As discussed in Sect. 3, every pair
of nodes in TB has distance O(log n), satisfying the most important feature of
small-world networks. To study the clustering coefficients, we consider the two
induced subgraphs GB and GB̄ with node sets VB and V \ VB respectively.
Table 1 shows the results for two online social networks, where two large basic
pyramids with ρmin ≥ 2 were used. It can be observed that ACC(GB) is greater
than 0.2 for both of the networks.

Table 1. Empirical results for two online social networks.

network n ACC(G) |VB | ACC(GB) ACC(GB̄)

socfb-USFCA72 2,672 0.2668 1,337 0.2700 0.2503

socfb-Haverford76 1,446 0.3230 1,067 0.3088 0.3539

We can also observe a difference between the results for the two networks:
ACC(GB) = max{ACC(G),ACC(GB),ACC(GB̄)} holds for socfb-USFCA72
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but not socfb-Haverford76. This suggests that structural importance of large
pyramids may depend on the network. To address this issue and define a small-
world network, we propose the next definition.

Definition (Small-World for a Single Network). A network G is said a
(ρ, c)-small-world if there exists a large pyramid TB in G such that ρmin ≥ ρ and
ACC(GB) ≥ c for some constants ρ > 1, c > 0.

We remark that this is a well-defined definition for any given network. Such
a definition of small-world for a given network is significant [25].

Next, we use pyramid to define a core structure in the network as follows. Let
T be a large basic pyramid in a network G with root r. Let Vj =

⋃
0≤i≤j ΓT (r; i)

denote the set of nodes on T within distance j from r, j ≥ 0. And let k be the
minimum j such that all connected components of the subgraph G′

k induced by
the node set V \Vj are small (i.e., with size less than n/2). We call the subgraph
Gk induced by Vk a (connected) core of G. See an illustration in Fig. 6.

Fig. 6. A visualization of the proposed core structure for an online social network
socfb-USFCA72 (n = 2, 672), for which k = 2.

Table 2 shows clustering coefficients for the core defined above in the network
socfb-USFCA72. It shows ACC(Gj) = max{ACC(G),ACC(Gj),ACC(G′

j)}
for j = 1, 2, which suggests that Gj has strong inter-connection. Figure 7 visu-
alizes two more instances, showing the core structure defined by this study is
powerful.
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Table 2. Clustering coefficients for Fig. 6, where ACC(G) = 0.2668.

k |Vk| ACC(Gk) ACC(G′
k)

0 1 0.0000 0.2667

1 71 0.6328 0.2675

2 1, 337 0.2700 0.2503

Fig. 7. Visualization of the decomposition of two more online social networks.

5 Conclusion

Pyramid structures have been previously invoked in scholarly work to study
representative nodes in social networks. However, a gap exists in the literature
regarding both a precise definition and thorough empirical research on the topic.
This paper aims to fill that void by offering a rigorous definition of pyramid
structures. Our empirical studies, conducted across a wide array of real-world
social networks, corroborate existing hypotheses about the prevalence of large
pyramid structures in these networks.

Additionally, we identified a novel feature concerning pyramid sizes: they
are generally small in road networks, large in networks generated by the WS
and BA models, and variable in size within social networks. This observation
underscores the need for a new, more adaptable model for studying real-world
social networks.

Beyond contributing a clearer understanding of pyramid structures, our
research holds implications for the broader field of network studies. We discussed
how these insights could inform the design of network metrics and structures,
touching upon elements like degree distribution, clustering coefficient, core-
periphery structures, and the small-world phenomenon. Therefore, this study
not only addresses a specific gap in the existing literature but also offers a foun-
dation for more nuanced, effective approaches to network analysis in the future.

Acknowledgements. This research was funded by JSPS KAKENHI Grant Num-
bers 18K11182 and 23K10997. We thank the anonymous reviewers for their valuable
comments.

Appendix

This appendix lists the names of networks studied in this study. People who
are interested can download these networks by accessing the URLs which are in
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the form of “https://networkrepository.com/” + name of network + “.php”. For
example, one can download the data of fb-pages-artist by accessing https://
networkrepository.com/fb-pages-artist.php.

fb-pages-artist socfb-Columbia2 socfb-OR socfb-UGA50

fb-pages-company socfb-Cornell5 socfb-Penn94 socfb-UIllinois

fb-pages-food socfb-Dartmouth6 socfb-Pepperdine86 socfb-UMass92

fb-pages-government socfb-Duke14 socfb-Princeton12 socfb-UNC28

fb-pages-media socfb-Emory27 socfb-Reed98 socfb-UPenn7

fb-pages-politician socfb-FSU53 socfb-Rice31 socfb-USC35

fb-pages-public-figure socfb-Georgetown15 socfb-Rochester38 socfb-USF51

fb-pages-sport socfb-GWU54 socfb-Rutgers89 socfb-USFCA72

fb-pages-tvshow socfb-Hamilton46 socfb-Santa74 socfb-UVA16

soc-anybeat socfb-Harvard1 socfb-Simmons81 socfb-Vanderbilt48

soc-BlogCatalog socfb-Haverford76 socfb-Smith60 socfb-Vassar85

soc-brightkite socfb-Howard90 socfb-Stanford3 socfb-Vermont70

soc-buzznet socfb-Indiana socfb-Swarthmore42 socfb-Villanova62

soc-dolphins socfb-JMU79 socfb-Syracuse56 socfb-Virginia63

soc-douban socfb-JohnsHopkins55 socfb-Temple83 socfb-Wake73

soc-epinions socfb-Lehigh96 socfb-Tennessee95 socfb-WashU32

socfb-American75 socfb-Maine59 socfb-Texas80 socfb-Wellesley22

socfb-Amherst41 socfb-Maryland58 socfb-Texas84 socfb-Wesleyan43

socfb-Auburn71 socfb-Mich67 socfb-Trinity100 socfb-William77

socfb-Baylor93 socfb-Michigan23 socfb-Tufts18 socfb-Williams40

socfb-BC17 socfb-Middlebury45 socfb-Tulane29 socfb-Wisconsin87

socfb-Berkeley13 socfb-Mississippi66 socfb-UC33 socfb-wosn-friends

socfb-Bingham82 socfb-MIT socfb-UC61 socfb-Yale4

socfb-Bowdoin47 socfb-MSU24 socfb-UC64 soc-gemsec-HR

socfb-Brandeis99 socfb-MU78 socfb-UCF52 soc-gemsec-HU

socfb-Brown11 socfb-nips-ego socfb-UChicago30 soc-gemsec-RO

socfb-BU10 socfb-Northeastern19 socfb-UCLA soc-hamsterster

socfb-Bucknell39 socfb-Northwestern25 socfb-UConn soc-LiveMocha

socfb-Cal65 socfb-NotreDame57 socfb-UCSB37 soc-slashdot

socfb-Caltech36 socfb-NYU9 socfb-UCSC68 soc-themarker

socfb-CMU socfb-Oberlin44 socfb-UCSD34 soc-wiki-Vote

socfb-Colgate88 socfb-Oklahoma97 socfb-UF karate

road-minnesota

https://networkrepository.com/fb-pages-artist.php
https://networkrepository.com/fb-pages-artist.php
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Abstract. The structural organization of supply networks plays an
important role in their functioning. In this work, we discuss how standard
community detection analysis can be complemented by the definition of
communities in the networks’ plane dual. Such communities are char-
acterized not by weak but by strong connectivity between the different
components of the network. We extract dual communities in leaf vena-
tion networks, finding that they can reveal structural features not visible
to traditional community detection methods. Furthermore, we show that
the presence of dual community structures suppresses failure spreading
and that dual communities can be used to classify different leaf types.

Keywords: Graph Duality · Supply Networks · Leaf Venation
Networks · Community Detection

1 Introduction

Understanding the structural organization of a network is a central aspect of net-
work science [17]. On a mesoscopic scale, the presence of community structures
is essential for the functioning and stability of a network. Typically, commu-
nities are defined as groups of nodes that have a higher connectivity within
each group than between the groups [22,24]. Due to this different connectivity,
the existence of community structures generally reduces the spreading of infor-
mation [21] or diseases [25]. Furthermore, the presence of communities strongly
affects the dynamic stability of a system [18,20] and its robustness to failures [32].

Many man-made and biological networks are spatially embedded and pla-
nar [1]. For each plane graph, i.e., each planar drawing of a planar graph, it is
possible to define its dual graph as follows. Every node of the dual graph corre-
sponds to a face of the original graph’s planar drawing (see Fig. 1). If two faces
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H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1142, pp. 95–107, 2024.
https://doi.org/10.1007/978-3-031-53499-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-53499-7_8&domain=pdf
https://orcid.org/0000-0002-3240-0442
https://orcid.org/0000-0002-7089-2249
https://orcid.org/0000-0002-7799-3368
https://orcid.org/0000-0002-0984-8038
https://orcid.org/0000-0002-3623-5341
https://doi.org/10.1007/978-3-031-53499-7_8
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Fig. 1. Primal and dual graphs a,b, Construction of the dual of a plane graph.
Every face of the original graph corresponds to one node of the dual graph. Two dual
nodes are connected if the facets share an edge. Primal and dual weights are reciprocal
according to Eq. (6). c,d, The venation network of a beech leaf and its plane dual.

share an edge, their corresponding dual nodes are connected by a dual edge. Dual
graphs turn out to be very useful in the analysis of flow networks [3], in networked
dynamical systems [19], and also in the design of network algorithms [13,28,29].

In this article, we will show that dual graphs can be very useful in revealing
patterns in the structure of networks that are undetected by a simple represen-
tation in terms of primal (i.e., original) graphs. In particular, we will review a
method introduced in Ref. [14] to define and study dual communities in supply
networks. Subsequently, we focus on the analysis of a particular case of biological
supply networks, namely leaf venation networks. We will show how dual com-
munities are closely related to the hierarchical organization of the network and
allow us to distinguish between leaf venation networks of different leaf species.

2 Dual Graphs of Weighted Spatial Networks

Graph duality was first introduced in the geometric study of Platonic solids and
has found numerous applications. Given a plane graph G(V,E), i.e., a graph
drawn in the plane without any edges crossing, consisting of a set of vertices V
and edges E, the dual G∗ is defined by the following geometric procedure. Every
face of the primal graph constitutes a vertex v∗ ∈ V ∗ of the dual graph. Two
dual vertices, i.e., two faces, are adjacent if they share at least one primal (i.e.,
original) edge.

Real spatial networks are often strongly heterogeneous, which is incorporated
by assigning weights we to the edges e ∈ E. For example, links in transportation
networks may strongly differ in their capacity. We must thus extend the definition
of the dual graph to obtain a meaningful dual representation of a spatial network.
The key question is: What is the weight of a dual edge and how is it related to
the weights of the primal (i.e., original) edges?

We base our analysis on two characteristic matrices defining the structure
of a graph, the Laplacian L ∈ R

N×N and weighted edge-node incidence matrix
I ∈ R

M×N where N = |V | and M = |E|. Notably, the Laplacian is also used in
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spectral graph bisection, which is a classic method to determine the community
structure of a graph [9]. The elements of the Laplacian are given by [23]

Lij =

⎧
⎨

⎩

−wij if i is connected to j,∑
(i,k)∈E wik if i = j,

0 otherwise,
(1)

where wij > 0 is the weight of an edge (i, j). To define the edge-node incidence
matrix we label the graph’s edges as � = 1, 2, . . . , M and fix an orientation for
each edge. The matrix elements of I are given by

I�n =

⎧
⎨

⎩

√
w� if line � starts at node n,

−√
w� if line � ends at node n,
0 otherwise.

(2)

Note that the incidence matrix defined in this way coincides with the gradient
in discrete calculus [6]. In terms of the incidence matrix, the Laplacian reads

L = I�I ∈ R
N×N , (3)

where the symbol � denotes the matrix transpose.
We now transfer these concepts to the dual graph G∗. To this end, we gener-

alize the initial geometric definition to a more general mathematical framework.
A formal abstract definition is provided by algebraic graph theory, based on the
duality between a graph’s cut space and its cycle space [5]. The fundamental
elements are cycle flows, i.e., flows that do not have a source or sink. The cycle
flows form a vector space of dimension N∗ = M − N + 1 which is equivalent to
the kernel of the incidence matrix I. This equivalence formalizes the property
that cycle flows have no source or sink. We can now find a basis of N∗ fundamen-
tal cycles and summarize them in the edge-cycle incidence matrix C ∈ R

M×N∗

which satisfies the fundamental relation

I�C = 0. (4)

In a plane graph, a distinguished basis is given by the N∗ faces of the graph.
The edge-cycle incidence matrix C ∈ R

M×N∗
is then given by

C�c =

⎧
⎨

⎩

1/
√

w� if edge � is part of face c,
−1/

√
w� if reversed edge � is part of face c,
0 otherwise.

The edge-cycle incidence matrix C encodes the structure of the dual graph in
the same way as the edge-node incidence matrix I encodes the structure of the
primal graph. We can thus define the Laplacian matrix of the dual graph in an
analogue way as

L∗ = C�C ∈ R
N∗×N∗

. (5)

One thus finds that edges in the dual graph are weighted with the inverse of
edge weights in the primal graph. More precisely, two dual nodes, i.e., two faces
c and d, are linked by a dual edge with weight
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Fig. 2. Dual communities by repeated spectral graph bisection. a, A leaf vena-
tion network of Bursera hollickii. The thickness of the lines indicates the conductivity
wij . The dual network and the dual Laplacian L∗ are computed as described in Sect. 2.
b, Dual nodes are assigned to a community according to the value of the dual Fiedler
vector, cf. Eq. (7). The value (v∗

2)i is indicated by colors (blue = positive, red = neg-
ative). The yellow line shows the detected community boundary. c, The process is
iterated to detect community boundaries at different hierarchical levels.

w∗
c,d =

∑

�∈c,d

1
w�

, (6)

where the sum runs over all edges � that are shared by the faces c and d. We
emphasize that primal and dual weights are reciprocal, which forms the basis of
our further analysis. An alternative derivation is given in [14].

3 Communities and Hierarchies in Dual Graphs

The dual of a spatial network can be analyzed in the same way as the original
primal network and, as we will now show, provides additional insights that are
hidden in the primal graph.

We focus on community structures in biological supply networks, more pre-
cisely in leaf venation networks. These are always plane networks, hence their
dual graphs can be computed as described above. We use a data set from
Ref. [27], which has been obtained from high-resolution photographs. The data
set that we used for classifying leaf venation networks consists of 40 leaves that
are classified into 6 species. Edges correspond to veins of the leaf, while nodes
are defined as the joints of the respective veins. The weight wij corresponds to
the conductivity of a vein (i, j). Assuming a laminar flow of water through an
edge, the conductivity scales as with the radius rij as wij ∝ r4ij according to the
Hagen-Poisseuille law [4].

To extract the dual communities, we apply two standard algorithms for com-
munity detection to the dual network. First, we use spectral graph bisection [9],
as it is based on the graph Laplacian, which plays a central role in the definition
of dual graphs. The eigenvalues of a Laplacian of an undirected graph are always
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real and non-negative and can be ordered as 0 = λ1 ≤ λ2 ≤ · · · ≤ λN . The sec-
ond eigenvalue λ2 provides a measure of the algebraic connectivity of the graph
and the associated eigenvector v2, also referred to as Fiedler vector, can be used
to decompose a network into two communities [8,9]. A vertex i is assigned to
community 1 or 2 according to the respective entry of the Fiedler vector v2,

sign(v2)i

{
> m ⇒ i belongs to community 1
< m ⇒ i belongs to community 2.

(7)

This process is iterated by splitting the network into components (i.e., communi-
ties) and applying spectral graph bisection separately to each part. An example
of this procedure is shown in Fig. 2. Given the original network, we first compute
the dual Laplacian L∗ and its Fiedler vector v∗

2 as shown in the figure. We then
iterate this procedure and map the community boundaries.

As a second method, we use the Louvain method for community detection [2]
to the dual network, which uses a combination of Refs. [2,34]. In short, the algo-
rithm starts by assigning every node to a different isolated community. Subse-
quently, each isolated single node i is assigned to its neighboring community
which leads to the maximal increase in modularity given by

ΔQ =
ki,in

2m
− ξ

Stot · ki

2m2
(8)

where m is the total number of edges in the graph, ki is the weighted degree
of node i, ki,in is the sum of the weights of the edges connecting node i to the
community C, Stot is the sum of the weights of all edges connecting to nodes
in C, and ξ is the resolution parameter that decides whether larger or smaller
communities are favored. The procedure is repeated until no further increase in
modularity can be achieved. In the following step, the discovered communities are
interpreted as nodes and the procedure is run iteratively. The entire procedure is
terminated if no increase in modularity above a small threshold is achieved. The
Louvain method is a standard benchmark algorithm for community detection.
We here use the implementation in Python’s NetworkX package [11] with a small
resolution parameter, i.e., ξ = 0.01 for the examples presented in Fig. 3, to obtain
larger communities.

For comparison, the results of the application of the two algorithms to the
dual graphs are shown in Fig. 3 together with those obtained for the original
primal graphs. A clear, interpretable community structure does not emerge from
the primal graphs. In the case of the Maple leaf, we may speculate that the
communities detected by the Louvain method correspond to the area mostly
served by one of the five strong veins emerging from the root. However, this
interpretation does not generalize to the case of the Beech leaf. Furthermore,
we find that spectral graph bisection decomposition and the Louvain method do
not yield consistent results.

In contrast, we observe a consistent and easily interpretable community struc-
ture in the dual graphs. The boundaries between the detected communities
mostly correspond to the primary and secondary veins of the leaf. Hence, dual
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Fig. 3. Primal and dual communities in leaf venation networks. Community
boundaries in the leaf venation network of a Maple (i.e., Acer platanoides) and a Beech
(i.e., Corylus avellana) leaf, respectively, as obtained by repeated spectral bisection
(colored lines in panels a, b, e and f) and by modularity maximization using the
Louvain method for community detection with resolution parameter ξ = 0.01 (orange
lines in panels c, d, g and h). Upper row: Primal graphs do not exhibit a clear,
interpretable community structure. Lower row: The community boundaries of the dual
graph clearly correspond to the primary and secondary veins of the leaf.

communities readily reveal the hierarchical organization of leaf venation net-
works. We find that Louvain method for community detection is especially suited
to identify the essential primary and secondary veins. Spectral graph bisection
is not as precise, but provides further information about the hierarchical organi-
zation, as different hierarchies are detected at successive steps of the algorithm.
These examples show that duality can provide a new, valuable perspective on
spatially embedded networks. We further underpin this finding in the following
by proposing a method for the classification of leaf venation networks.

4 Classification of Leaf Venation Patterns

The main elements of leaf venation networks are readily identified by commu-
nity detection algorithms applied to the dual graph as discussed above. Further
important properties of the network can be obtained from a more detailed anal-
ysis of the dual Laplacian L∗. First, the dual algebraic connectivity λ∗

2 provides
a measure of the strength of the central vein. It thus provides an important char-
acteristic associated with the first level of the hierarchical network. Second, the
Fiedler vectors v∗

2 encode structural information which may be used to classify
different types of leaves.
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Fig. 4. Three classes of leaf venation networks according to Hickey [12].
a, Craspedodromous: Secondary veins extend to the boundary. b, Brochidodromous:
Secondary veins join. c, Eucamptodromous: Secondary veins terminate within the leaf
without joining.

Hickey introduced an influential classification scheme of leaf venation net-
works [12,30]. Focusing on secondary veins, three different types of leaves are
sketched in Fig. 4. Secondary veins extend to the boundary for the Craspedodro-
mous type. They join for the Brochidodromous type, and they terminate within
the leaf for the Eucamptodromous type. Remarkably, the dual Fiedler vector
shows rather clearly whether secondary veins join or terminate and thus enables
the classification of leaf venation networks. We base our analysis on the second
iteration of the spectral bisection method, as the first iteration is dominated by
the primal vein. Consider for example a leaf of the species Carpinus betulus. We
see in Fig. 5c,d that the secondary veins do not join but extend to the bound-
ary. The areas between the secondary veins are identified by different values of
the dual Fielder vector v∗

2, encoded by different colors in the figure. However,
the differences diminish at the boundary of the leaf where secondary veins get
weaker. A different picture is observed for leaves of species Bursera simaruba.
(see Fig. 5g,h) or Protium sp. nov. 8 (see Fig. 6a,b). Secondary veins join and we
observe extended areas with almost constant values of the (v∗

2)i. Plotting these
values in ascending order reveals pronounced plateaus, which is not observed for
Carpinus betulus (see Fig. 6d,e).

As shown above, the dual Fiedler vector can provide valuable information on
the type of leaf venation networks. Hence, we propose the following classification
scheme for leaf venation networks based on the second splitting obtained by
repeated spectral bisection. We first calculate the dual Fiedler vector v∗,a

2 for
each community a and normalize the results to enable a comparison between
different species. To this end, we apply an affine-linear mapping to all vector
elements such that maxi(v∗

2)i = +1 and mini(v∗
2)i = −1. Finally, we sort the

entries of the vector in ascending order and evaluate the difference (Δv∗
2)i =

(v∗
2)i − (v∗

2)i−1 between subsequent changes. The distribution of these changes
p(Δv∗

2) is an indicator of the amount and flatness of plateaus of the dual Fiedler
vector and hence of its structure: We expect a network with plateaus that are
more strongly pronounced to yield larger jumps in the dual Fiedler such that
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Fig. 5. Secondary veins and dual Fiedler vectors for two species of leaves.
First, we separate both species into the two halves that were identified during the
first spectral clustering step. The resulting dual networks can be seen in panels a,b
and e,f for Carpinus betulus and Bursera simaruba, respectively. Second, we focus
on the results of the second iteration of the spectral bisection by evaluating the dual
Fiedler vector and plotting its elements (v∗

2)i, which is shown encoded by the color
(blue/red) in panels c,d and g,h. One clearly observes different areas separated by
the secondary veins. For Carpinus betulus secondary veins extend to the boundary of
the leaf (Caspedodromous type), but get weaker at the boundary where areas join
smoothly. For Bursera simaruba, secondary veins join (Brochidodromous type).

the probability of observing large jumps, pjump = p(Δv∗
2 > 10 · median(Δv∗

2)),
encodes this structural feature.

We evaluate the two structural features λ∗
2 and p(Δv∗

2 > 10 · median(Δv∗
2))

for various samples of leaves from different species. We find that each species
covers a characteristic area in feature space (see Fig. 6f). For instance, Carpinus
leaves are characterized by low values of pjump and medium values of λ∗

2. The
secondary veins extend to the boundary (Craspedodromous type) but they are
rather weak. Hence, the dual Fiedler spectrum is rather smooth, and pjump is
small. Bursera leaves are characterized by high values of both λ∗

2 and pjump,
indicating strong primary and secondary veins.

5 Dual Communities and Leaf Robustness

Dual community structures strongly affect a network’s robustness to edge fail-
ures [10,14]. For leaf venation networks, damages may be caused by pathogens,
insects, or herbivores [16,30]. Here we study the impact of a single edge failure
on network flows. A common model for venation networks assumes a laminar
flow through each vein (i, j). According to the Hagen-Poiseuille law, we thus find

Fi→j = wij(pi − pj), (9)
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Fig. 6. Dual communities reveal the hierarchical organization of leaf vena-
tion networks. a,b, Repeated spectral bisection in the dual graph of a Protium sp.
nov. 8 leaf using the Fiedler vector v∗

2 (color code) yields a hierarchical decomposition
of the network. c, Hierarchical levels reveal the structural differences between differ-
ent leaf genera. d,e, The differences between genera are captured by the sorted dual
Fiedler vector v∗

2 (top) and the distribution of its spacings (Δv∗
2)i = (v∗

2)i − (v∗
2)i−1

(bottom). f, The distribution of spacings along with the dual Fiedler value λ∗
2 allow for

a classification of leaves of different genera. The evaluation of the distribution is based
on the dual Fiedler vector of the second level of decomposition.

where the conductivity of a vein scales with the radius as wij ∝ r4ij . The flows
must further satisfy the continuity equation at every joint such that

∑

j

Fi→j = F in
i . (10)

For a leaf, we have an inflow F in
i > 0 only for a single node representing the root

of the primary vein. All other nodes consume water and nutrients and thus have
F in

i < 0. Fixing the in- and outflows F in
i , the two Eqs. (9) and (10) completely

determine the pressures and flows in the network. We note that the flows satisfy
the same fundamental equations as electric currents in resistor networks and we
can apply the same mathematical tools for their analysis.

We now examine the impact of the failure of a single vein (r, s). To this end,
we evaluate the flow change on every vein (n,m) after the failure, normalized by
the initial flow of the failing vein,

LODF(n,m),(r,s) =
F after

nm − F before
nm

F before
rs

. (11)

We note that this ratio is an important quantity in the monitoring of electric
power grids, where it is commonly referred to as a line outage distribution factor
(LODF) [28].
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Fig. 7. Dual communities determine the robustness to edge failures. We con-
sider the damage of a single vein in a leaf of Bursera hollickii (cf. Fig. 3) and evaluate
the normalized flow change in another vein after the damage according to Eq. (11).
The figure shows the median Ms,o(d) over all pairs of veins at a given distance d that
are either in the same (s) or the other (o) dual community with the shaded regions
indicating the 25% to 75% quantile. The impact of the failure is strongly suppressed
in the other dual community, Mo(d) � Ms(d), especially at small distance d.

To quantify the effect of the community boundary, we consider all pairs of
veins in the leaf (cf. Ref. [15]). We must take into account that LODFs generally
decrease with distance [33]. Thus, we take the median over all pairs at a fixed
unweighted distance d,

Ms,o(d) = median
dist[(n,m),(r,s)]=d

|LODF(n,m),(r,s)|. (12)

When evaluating the median, we take into account only pairs of veins that are
either in the same dual community (subscript s) or in the other community
(subscript o) as the failing link.

We observe that the dual community structure has a strong impact on the
flow changes [14] resulting in the flow changes between communities being sup-
pressed by order of magnitude for small to medium distances (see Fig. 7). In
other words, the central vein ‘shields’ the flow changes [10]. Remarkably, we
find that Ms(d) decreases strongly with the distance d as expected, while Mo(d)
shows only a weak dependence on d. Hence the difference of Ms(d) and Mo(d)
diminishes for very large distances.

6 Conclusion

In this work, we have used the concept of plane graph duality to study leaf vena-
tion networks. Detecting community structures in both the original (i.e., primal)
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graph and the corresponding dual graph, we have shown that dual communities
not only correspond to leaf components separated by primary and secondary
veins but also have important implications for the spreading of disturbances.
While primal communities are separated by weak mutual connectivity, dual com-
munities are separated by strong connectivity along the community boundary.
Both types of community boundaries provide a “shielding” effect. That is, the
impact of a failure remains contained in the respective community. Furthermore,
the community structure identified in the dual graph can be used to classify dif-
ferent types of leaf venation networks, which emphasizes the benefit of analyzing
the dual in tandem with the original primal graph.

Note that dual communities also play an important role in other supply net-
works such as electric power transmission grids [14]. It has been shown that the
emerging community structure depends on the fluctuations of in- and outflows,
which strongly increase during the transition to renewable power generation.
The concept of dual communities is not restricted to a certain algorithm – any
community detection algorithm can be applied to the dual graph. In particu-
lar, one can readily extend the analysis to overlapping [7] or hierarchical [26,31]
communities. We conclude that graph duality is a valuable tool in the analysis
of spatially embedded networks across disciplines.
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13. Hörsch, J., Ronellenfitsch, H., Witthaut, D., Brown, T.: Linear optimal power flow
using cycle flows. Electric Power Syst. Res. 158, 126–135 (2018). https://doi.org/
10.1016/j.epsr.2017.12.034
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16. Katifori, E., Szöllősi, G.J., Magnasco, M.O.: Damage and fluctuations induce loops
in optimal transport networks. Phys. Rev. Lett. 104, 048,704 (2010). https://doi.
org/10.1103/PhysRevLett.104.048704

17. Latora, V., Nicosia, V., Russo, G.: Complex networks: principles, methods and
applications, first edn. Cambridge University Press (2017)

18. Manik, D., Rohden, M., Ronellenfitsch, H., Zhang, X., Hallerberg, S., Witthaut,
D., Timme, M.: Network susceptibilities: Theory and applications. Physical Review
E 95(1) (2017). https://doi.org/10.1103/PhysRevE.95.012319

19. Manik, D., Timme, M., Witthaut, D.: Cycle flows and multistability in oscilla-
tory networks. Chaos: An Interdisciplinary J. Nonlinear Sci. 27(8), 083,123 (2017).
https://doi.org/10.1063/1.4994177

20. May, R.M.: Will a large complex system be stable? Nature 238(5364), 413 (1972).
https://doi.org/10.1038/238413a0

21. Nematzadeh, A., Ferrara, E., Flammini, A., Ahn, Y.Y.: Optimal Network Modu-
larity for Information Diffusion. Phys. Rev. Lett. 113(8) (2014). https://doi.org/
10.1103/PhysRevLett.113.088701

22. Newman, M.E.J.: Modularity and community structure in networks. Proc. Natl.
Acad. Sci. U.S.A. 103(23), 8577–8582 (2006). https://doi.org/10.1073/pnas.
0601602103

23. Newman, M.E.J.: Networks: An Introduction. Oxford University Press (2010)
24. Newman, M.E.J.: Communities, modules and large-scale structure in networks.

Nat. Phys. 8(1), 25–31 (2012). https://doi.org/10.1038/nphys2162
25. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic

processes in complex networks. Rev. Mod. Phys. 87(3), 925 (2015). https://doi.
org/10.1103/RevModPhys.87.925

26. Peixoto, T.P.: Hierarchical block structures and high-resolution model selection in
large networks. Phys. Rev. X 4(1), 011,047 (2014)

27. Ronellenfitsch, H., Lasser, J., Daly, D.C., Katifori, E.: Topological phenotypes
constitute a new dimension in the phenotypic space of leaf venation networks.
PLOS Comput. Biol. 11(12), e1004,680 (2015). https://doi.org/10.1371/journal.
pcbi.1004680
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Abstract. Analysts interested in understanding the community struc-
ture of a particular real-world network will often simply choose a popular
community detection algorithm and trust the generated results without
further investigation, but algorithm performance can vary depending on
the network characteristics. We demonstrate that by running experi-
ments on benchmark graphs tailored to match characteristics of a real-
world network of interest, a better understanding can be obtained on how
community detection algorithms will perform on the real-world network.
We show that the correlation between the performance of the community
detection methods on a publicly available dataset to the average perfor-
mance of the same methods on the corresponding tailored benchmark
graphs is high whereas the correlation with LFR benchmark graphs is
negative. This means the methods that performed well on the tailored
graphs also performed well on the real-world network but methods that
perform well on LFR graphs did not perform well on the real-world net-
work, demonstrating that the proposed methodology has merit.

Keywords: community detection · benchmark graphs · network
models

1 Introduction

A network is a graph - a structure containing pairwise relationships between
objects - that can serve as a representation of a real-world system. Networks
are often thought to have community structure meaning the objects in the net-
work can be easily partitioned into groups, called communities, that are more
densely connected within than between [8]. Most networks, such as people con-
nected by friendships in social networks or webpages connected by hyperlinks on
the Web, do not have meaningful ground truth communities, though knowing
its community structure may provide valuable information to an analyst [21].
Therefore, communities need to be detected with algorithms. A wide range of
algorithms have been proposed to detect communities but there is no one method
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that performs best on all networks, known as the No Free Lunch Theorem [21].
A common approach used to compare the performance of community detec-
tion methods is to measure their ability to detect ground truth communities in
benchmark graphs [11,16,17,30]. Studies that use this approach typically use
general parameters that create realistic community structure then provide guid-
ance on how to choose an appropriate method based on the performance results
[30]. Unfortunately, analysts may follow the guidance even though the real-world
network they are working with may not have any resemblance to the benchmark
graphs used in the study. Even for a specific benchmark model, algorithms can
perform differently (e.g., in sparse vs highly connected conditions). Additionally,
each study we have found has focused on a single type of community structure
without guidance on how to determine if a given network may have that type
of structure. We demonstrate that by running experiments on tailored bench-
mark graphs, a better understanding can be obtained on how well community
detection methods will work on a specific real-world network of interest.

To create tailored benchmark graphs, analysts should understand different
structural characteristics associated with their real-world network to help them
choose appropriate input parameters for a benchmark model. The most com-
mon benchmark model with community structure is the LFR benchmark [11],
but there exist real-world networks that have community structure that the
LFR benchmark cannot create. Therefore, analysts should also consider a newer
benchmark model called the nPSO benchmark [17] that can generate commu-
nity structure that is different than what the LFR benchmark can create. When
parameters are chosen for each model that attempt to match the real-world net-
work as best as possible, the analyst can explore how similar the resulting graphs
are to their real-world network and choose the best one to use for experiments.
A publicly available dataset is used to demonstrate the methodology.

The remainder of the paper is organized as follows. In Sect. 2 we introduce two
benchmark models with community structure. Section 3 introduces the publicly
available dataset analyzed and Sect. 4 demonstrates how we created tailored
benchmark graphs for the dataset and how we determined which were a better fit.
Section 5 contains the results of the community detection experiments run on the
tailored benchmark graphs and how they compare to the community detection
performance on the real-world network. Section 6 contains our conclusion and
discussion.

2 Background

2.1 LFR Benchmark Graphs

Proposed by Lancichinetti, Fortunato, and Radicchi in 2008, the LFR benchmark
is a planted partition model that allows for different numbers of vertices with
degree distributions and community size distributions that can be right-skewed
as observed in many real-world networks [11]. To generate LFR graphs from
the LFR benchmark, users can specify the number of vertices N , the average
degree 〈k〉, the maximum degree kmax, a degree distribution scaling parameter
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γ, a community size distribution scaling parameter β, the minimum and max-
imum community sizes denoted as cmin and cmax respectively, and the mixing
parameter μ. An example LFR graph can be seen in Fig. 1a. While the resulting
LFR graphs contain community structure, it does not explain the mechanisms
in which community structure may come about.

Fig. 1. Example graphs with 5 communities. Vertex color/shape indicate community.
Vertex size indicates degree. Internal vs external edges denoted by color.

2.2 nPSO Benchmark Graphs

The non-uniform Popularity Similarity Optimization (nPSO) benchmark is a net-
work growth model proposed by Muscoloni and Cannistraci that does provide an
explanation to the mechanisms in which community structure may about [17]. The
concept of popularity is the main force behind the preferential attachment mecha-
nism – newer vertices added to a model prefer to connect to more popular vertices
with higher degree than less popular vertices with lower degree [1]. Papadopoulos
et al. introduced another concept called similarity, which can be modeled using a
measure like cosine similarity, to determine the angular distance of vertices ran-
domly placed on a circle [20]. Muscoloni and Cannistraci added non-uniformity
in the angular coordinates to generate community structure specified by a user.
To generate nPSO graphs, users can specify the number of vertices N , a parame-
ter equal to half the average degree of a vertex m = 〈k〉/2, a degree distribution
scaling parameter γ, a temperature parameter T ∈ [0, 1) used to tune the mixing,
along with the means in radians, standard deviations in radians, and mixing pro-
portions of their desired communities. With these parameters, the user is able to
specify the number of communities and relative expected sizes of those communi-
ties. An example nPSO graph can be seen in Fig. 1b.

2.3 Related Work

While there have been a large number of studies on the performance of com-
munity detection algorithms on LFR graphs [2,7,10,14,30,31], less research has
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been conducted on studying the performance of community detection algorithms
on nPSO graphs, largely due to the fact that the nPSO benchmark was proposed
more recently. In the paper that introduced this new benchmark [17], an initial
glimpse at the detectability of its ground truth communities was conducted by
analyzing the NMI of the detected communities using the Louvain method for
a variety of parameter settings. A follow-up study was published the same year
by Muscoloni and Cannistraci where the performance of the Louvain method
was compared to Infomap, Walktrap, and Label Prop in a variety of parameter
settings [16]. No studies were found that analyzed more than one benchmark
model at a time.

There are common sets of parameters used to generally evaluate community
detection algorithms [10,11,16,17,30,31]. Few authors attempt to match bench-
mark parameters to a specific real-world network they are studying [2,19,27]
and those that do not compare the performance on the benchmark graphs to
the performance on the corresponding real-world network. Community detec-
tion algorithms can perform quite differently with different parameter settings
for the same network model (e.g., high vs low characteristic path length), so it
can be important to understand how similar a real-world network of interest is
to benchmark graphs used to validate the methods they are considering using.

3 The Real-World Network

SNAP datasets (the Stanford Large Network Dataset Collection) [12] contains
a large number of publicly available networks, but only one network has non-
overlapping ground truth communities, specifically, the email-Eu-core network
has 1,005 vertices, 25,571 edges, and 42 non-overlapping communities of vary-
ing sizes. Each vertex in the email-Eu-core network represents a member of a
research institution and an edge exists if the two members sent an email back
and forth to each other over an 18-month period of time. The ground truth
communities correspond to the department an individual member belongs to.
The nature of the dataset makes it a good candidate for community analysis
because it seems plausible that the department structure of the research institu-
tion would lead to groups in the network that are more densely connected within
than between [21] and determining department structure from email traffic may
be a use case an analyst would be interested in investigating. While the original
network is directed with self-loops, for community detection purposes a sim-
ple graph version, GEU , is made resulting in 1,005 vertices and 16,064 edges.
Additional graph-level metrics are the average degree: 32, minimum degree: 0,
maximum degree: 345, assortativity: −0.026, characteristic path length: 2.584,
average local clustering coefficient: 0.450, global clustering coefficient: 0.267, rich-
clubness (p-value): 0.000, number of communities: 42, minimum community size:
1, and maximum community size: 42. A cumulative degree distribution plot,
along with a hop plot [6] and a rich-clubness plot [15] are also helpful to deter-
mine the appropriate parameters for tailored benchmark graphs.
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4 The Real-World Network Compared to Tailored
Benchmark Graphs

The goal of creating benchmark graphs similar to GEU is not to find graphs that
match GEU exactly. For example, the fact that GEU has 1,005 vertices does not
need to be matched exactly.

An attempt is first made to create LFR graphs similar to GEU with an
emphasis placed on obtaining the most similar maximum degree vertices with the
most similar number of communities. To attempt to generate LFR graphs similar
to GEU , called LFR EU, the parameters N = 1, 000, 〈k〉 = 32, kmax = 345, γ =
2, β = 1.5, cmin = 3, cmax = 109, and μ = 0.55 were chosen. With LFR graphs,
differing numbers of communities are made for each realization. Because a high
degree vertex cannot be placed in a community unless its internal degree is less
than the community size [11], it is difficult for this particular set of parameters
to create the smaller community sizes that would be needed to get up to 42
communities. γ = 2 is used, yielding an instance that contained 41 communities
whereas using γ = 3 only ever produced a much smaller number of communities.
Out of an ensemble of 1,000 LFR graphs with the stated parameters used, the
graph with the greatest number of communities and highest degree is considered
the best LFR graph, GLFR, for the sole purpose of creating plots and metrics
for comparison to GEU .

Unlike LFR graphs, nPSO graphs allow the user to set the number of commu-
nities but the maximum degree of a graph is determined by the growth model
and is dependent on parameters m and γ. To obtain nPSO graphs similar to
GEU , called nPSO EU, the parameters were set to N = 1, 000, m = 16, and 42
equidistant means around the circle are set with standard deviations equal to
1
6 ∗ 2π

42 (* = scalar multiplication). The mixing proportions are used to create
unequal sized communities, specifically, the proportions are set using a power
law with exponent β = 2.6. T = 0.3 is used to create similar clustering and γ = 3
for the nPSO graphs so that maximum degree in each benchmark graph is sim-
ilar to GEU whereas setting γ = 2 creates vertices with much larger maximum
degrees. Out of an ensemble of 1,000 nPSO graphs with the stated parameters
used, the graph with the lowest maximum degree is considered the best nPSO
graph, GnPSO, for the sole purpose of creating plots and metrics for comparison
to GEU .

While a number of graph-level metrics similar to GEU can be created by
either type of benchmark model, GnPSO is much more similar to GEU than
GLFR is. A major difference is seen in the characteristics of the communities, as
seen in Fig. 2 (all plots and metrics are not shown due to space limitations). The
conductance (the ratio between the external and total degree of a community [7])
of each community in GLFR are quite uniform by design [11], whereas in the real-
world network GEU these values can vary quite significantly. Low degree vertices
are often connected to high degree vertices outside of their community in GEU ,
leading to high conductance values for smaller communities. This is expected
in networks with hierarchical structure [25]. nPSO benchmark graphs are able
to generate graphs with hierarchical community structure (see Fig. 2c) whereas
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LFR benchmark graphs cannot (see Fig. 2b), leading to community structure
much more similar to certain real-world networks (see Fig. 2a). This implies that
the benchmark nPSO EU is a potentially good benchmark for GEU , whereas
LFR EU is not.

Fig. 2. Conductance plots for the simplified email-Eu-core network, GEU , and for the
best LFR graph, GLFR, and best nPSO graph, GnPSO.

nPSO graphs do not have community structure similar to the conventional
paradigm [1]. Modularity is a measure often used to assess a partitioning of
a network into communities where, for an unweighted network, the fraction of
edges that fall within the communities is compared to what would be expected
in a randomized degree-preserving multigraph [4]. Small communities with high
conductance have a large fraction of their edges falling outside their communi-
ties – if a network is unweighted, these communities may negatively contribute
to the modularity score. Modularity maximization is one of the most common
techniques in density centric community detection, used by the popular Lou-
vain method [3]. By properly weighting the edges in a way that there are higher
weights within the communities and lower weights between communities, it is
possible to still utilize traditional community detection algorithms.

5 Results

As stated in the previous section, without proper weighting, community detec-
tion algorithms that maximize modularity are at risk of not being able to
resolve smaller communities with high conductance, as seen in nPSO graphs.
Pre-weighting graphs is a technique that has been used to solve a number of
existing problems with community detection algorithms, such as offsetting the
resolution limit [2] and mitigating problems with extreme degeneracy [10]. The
set of pre-weighting methods analyzed in this paper can be seen in Table 1. Note
that the InvPrLinkCo method was slightly modified to include only 2-hop and
3-hop weights, combined evenly. Just 2-hop and just 3-hop weights for the link
cohesion metrics is denoted by appending a S2 or S3 to the names, respectively.

The main community detection algorithm used for experiments will be the
Louvain method [3], but other community detection methods are used to under-
stand the benefits of pre-weighting with InvPrLinkCo - the best performing



114 C. Schwartz et al.

Table 1. Pre-weighting methods used for community detection. ‘◦’ = cycle-based.

Name Type Description Paper

Modified ECC Local◦ Modified edge clustering coefficient [23]

CN Ratio Local Percentage of common neighbor vertices [9]

RA2 Local A repulsion attraction rule [18]

NeighborCo Semi-Local◦ Neighborhood coherence [2]

SimRank3 Semi-Local Truncated SimRank after 3 iterations [31]

InvPrLinkCo Semi-Local◦ Inversely Proportional Link Cohesion [27]

LoCoLinkCo Semi-Local◦ Local Community Link Cohesion [29]

Inverse EB Global Normalized inverse edge betweenness [10]

Khadivi et al Global ‘Inverse EB’ multiplied by ‘CN Ratio’ [10]

RNBRW Global◦ Renewal non-backtracking random walks [14]

pre-weighting method for the Louvain method - for a wider range of algorithms.
These algorithms include Fast Greedy [5], Infomap [26], Walktrap [22], Label
Prop [24], and HSBM [13].

All experiments will utilize the nPSO EU benchmark built to be similar to
the GEU graph, described in Sect. 4. Because ground truth is available for the
benchmark graphs and GEU , the results are presented as normalized mutual
information abbreviated as NMI [7] and community count error abbreviated
as CCE where CCE = C̄/C (the ratio of the average number of detected
communities over the average number of real communities), as used in [30],
both with desired values equaling 1. Results are summarized from 30 random
repetitions. When comparing against the baseline methods, mean values are
plotted with 95% confidence intervals, assuming normal distributions. When
comparing against cycle-based methods, boxplots are shown.

5.1 Experiments with the Louvain Method

Because some of the cycle-based methods are more computationally expensive,
experiments are run on a single temperature, T = 0.3, instead of varying the
value, as is done with the other baseline methods. The community detection
results for nPSO EU are in Fig. 3, which shows InvPrLinkCo obtaining higher
NMI than the other baseline pre-weighting methods, both cycle-based and non-
cycle-based. The same experiments were run against other real-world parame-
ter settings with nPSO graphs, such as sparser settings, and InvPrLinkCo also
obtained higher NMI than the other pre-weighting methods in those cases.

Using the InvPrLinkCo S2 weights by themselves also works well on the
nPSO benchmark graphs with parameters chosen to be similar to specific real-
world networks, likely because there tends to be a larger number of smaller
communities and a few larger communities [11]. The InvPrLinkCo S2 weights
can be computed faster than the combined weights, so in certain situations,
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Fig. 3. Community detection results for nPSO EU using the Louvain method with
different pre-weighting methods. The unweighted graph is also used as a reference. (a)
and (b) report the NMI and CCE for non-cycle-based methods. (c) and (d) report for
T = 0.3 the boxplots of NMI and CCE for cycle-based methods.

such as when the characteristic path length is relatively low, it may be beneficial
to use just the S2 weights instead of both.

All of the methods undercount the number of true communities in nPSO EU
due to the high average degree and large number of small community sizes, as
expected due to the resolution limit [2]. The next best performing pre-weighting
methods are RA2 [18] and the measure proposed by Khadivi et al. [9,10].

InvPrLinkCo creates cycle-based weights that are better than the other cycle-
based baselines (see Fig. 3c) which cannot differentiate between triangles and
rectangles among high degree vertices created due to their popularity and trian-
gles and rectangles among low degree vertices tied together due to their similarity
(see Fig. 3d), demonstrating that taking the degree of the vertices along nearby
alternate paths into account can be beneficial.

5.2 Experiments with Other Community Detection Algorithms

InvPrLinkCo is not specific to the Louvain method and has the potential to
improve the communities detected by other algorithms. Therefore, Figs. 4 and 5
show results from experiments testing the potential performance improvements
from using InvPrLinkCo to pre-weight graphs for the other community detection
methods.

Pre-weighting the highly connected nPSO EU graphs with InvPrLinkCo pro-
vide higher mean NMI values (see Fig. 4) and more accurate predictions on
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Fig. 4. NMI for InvPrLinkCo verses unweighted on nPSO EU.

Fig. 5. CCE for InvPrLinkCo verses unweighted on nPSO EU.

the number of communities (see Fig. 5) for all community detection methods
tested. This was not necessarily true in all of the parameter settings tested for
nPSO graphs. While pre-weighting nPSO graphs with InvPrLinkCo for modular-
ity maximations algorithms (Louvain and Fast Greedy) improved results across
all parameter settings tested, methods like Infomap and Label Prop sometimes
degraded in performance with the added weights. A hypothesis for why this
occurred is that these methods are able to utilize cycles of higher order into
their solution on unweighted graphs, therefore focusing on only shorter cycles
when the characteristic path length is relatively high can be a problem.
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5.3 Comparing the Performance on Tailored Benchmark Graphs
to the Performance on the Real-World Network

Now that it is understood how pre-weighting affects the performance of com-
munity detection methods on the tailored benchmark graphs, the performance
is measured on the real-world network. The performance of all the community
detection algorithms with and without pre-weighting using InvPrLinkCo and
all baseline pre-weighting methods with the Louvain method was measured on
their ability to predict the ground truth communities of GEU , corresponding
to departments an individual belongs to. The NMI value of each approach was
compared to the mean NMI value obtained on nPSO EU when T = 0.3 for that
approach, with results shown in Fig. 6a. Three methods are left off of the plot,
specifically the pre-weighted and unweighted HSBM which threw an exception
probably due to the isolated vertices in the network and the unweighted Label
Prop which obtained an NMI of 0.03 due to placing all of the vertices in the
largest connected component into a single community.

While the NMI values on the real-world network GEU are consistently lower
than the mean NMI on the tailored benchmark graphs, the linear correlation
between the two sets of values is 0.93 across all of the community detection
methods that provided reasonable results. The two top performing approaches
switch ordering, with Infomap pre-weighted with InvPrLinkCo obtaining an NMI
of 0.75 and Label Prop pre-weighted with InvPrLinkCo obtaining an NMI of
0.71. Walktrap pre-weighted with InvPrLinkCo obtains the third highest NMI
of 0.68, the Louvain method pre-weighted with InvPrLinkCo obtains the fourth
highest NMI of 0.67, and the Louvain method pre-weighted with InvPrLinkCo S2
obtains the fifth highest NMI of 0.66.

Fig. 6. Comparison of the mean NMI from benchmark graphs to the NMI from GEU

of different the community detection approaches.

In contrast, Fig. 6b compares the NMI value from GEU of each approach
included in Fig. 6a to the mean NMI value obtained on the LFR benchmark
graphs from [27] with 〈k〉 = 30 and μ = 0.6, which we will refer to as LFR SSGC.
Here, the linear correlation is -0.25. Infomap on the unweighted LFR SSGC has
a mean NMI of 0.003, whereas it has an NMI among the top 50% on GEU . The
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top performing approach for LFR SSGC is the Louvain method pre-weighted
with LoCoLinkCo, which yields an NMI among the bottom third on GEU .

6 Conclusion and Discussion

The strong correlation between the performance of community detection meth-
ods on the real-world network to the average performance of the same methods
on the corresponding tailored benchmark graphs demonstrates that the pro-
posed methodology has merit. In an upcoming paper, this methodology is also
applied to another publicly available dataset that is assumed to have commu-
nity structure more similar to the LFR benchmark. While there was no ground
truth associated with that dataset, different characteristics of the performance
results were shown to be similar between the tailored benchmark graphs and
the real-world network. A tool was also created to help determine what type of
community structure a network may have independent of any ground truth. In
another study, the tool was used to demonstrate that sparse retweet networks are
similar to the nPSO benchmark and yield very different characteristics than typ-
ical nPSO graphs (regarding rich-clubness). The methods that performed best
on the tailored benchmark graphs for the email-Eu-core network were among the
worst performing algorithms on the tailored benchmark graphs for the retweet
networks even though both were generated from the nPSO benchmark, providing
further evidence that creating tailored benchmark graphs are important.

Not all networks will have community structure that closely matches one of
the benchmark models described in this paper. That said, understanding the
similarities and differences a specific real-world network has to the benchmarks
may help an analyst decide on what community detection methods to use. This
paper has focused on finding clusters that maximize internal density while min-
imizing outside connections [28], which may not be the type of community an
analyst needs for their specific problem.
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Abstract. Funding agencies and researchers are placing increasing
emphasis on interdisciplinary research (IDR) to promote innovation and
to address complex real-world problems. Understanding characteristics
of IDR early (as soon as projects get funded), can formatively shape a
research community at portfolio, project, and individual investigator lev-
els. This involves surfacing the interacting components and the context
that manifest IDR. We present a network-based methodology to model
and analyze IDR, and apply it to a three-year portfolio of awards in the
Research on Emerging Technologies for Teaching and Learning program.
Our IDR analysis features two network-based metrics (1) diversity of
expertise and (2) intensity of inter-expertise collaboration. It reveals the
organization of the 116 expertise areas that form the “building blocks”
for IDR in this community, while also highlighting potential for knowl-
edge integration, specifically within “hotspot” topics. It also reveals gaps
in IDR potential. Applying our network-based methodology for under-
standing IDR could enable other research domains and communities to
conduct early and rapid analyses of the emerging IDR profile in their
network, and could inform formative efforts to strengthen IDR.

Keywords: interdisciplinary research · scientific collaboration ·
network analysis · scientific expertise

1 Introduction

To enhance the productivity and efficiency of scientific research, the concept
of interdisciplinarity has gained significant attention [1,4]. For example, United
States, National Science Foundation (NSF), European Union, and Swiss National
Science Foundation (SNSF) have undertaken several interdisciplinary initiatives
(e.g., Convergence Accelerator, Research on Emerging Technology for teaching
and learning - RETTL, Horizon 2020). Emphasizing more cross-disciplinary pro-
posals [19], these programs are specifically designed to focus on complex societal
challenges aligned to national interest [13].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1142, pp. 121–132, 2024.
https://doi.org/10.1007/978-3-031-53499-7_10
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NSF defines interdisciplinary research (IDR) as research that “integrates
information, data, techniques, tools, perspectives, concepts or theories from two
or more disciplines or bodies of specialized knowledge, performed by teams or
individuals to advance the fundamental understanding or solve problems whose
solutions are beyond the scope of a single discipline or area of research practice”
[20, p. 2]. Although the concept is defined and portfolios of projects are awarded,
few contextual indicators of research [8] are available to analyze IDR in early
years of an initiative. Existing approaches (e.g., bibliometrics, social network
analysis, topic modeling, see, [23,25,29]) yield lagging indicators; they have often
only investigated IDR for mature portfolios of research that have many publi-
cations or that require network participants to take cumbersome surveys. These
techniques don’t apply in early days of an interdisciplinary initiative. The need
for early indicators is important because understanding the nature of IDR early
in the life cycle of an initiative could strengthen cross-disciplinary interactions,
navigate gaps, connect overlapping efforts and highlight opportunities.

We contribute a practical network-based IDR methodology that can read-
ily be applied as soon as initial awards are made in an interdisciplinary fund-
ing program. A particular novel aspect of this methodology combines the net-
work analysis with backwards tracing from research awards to researcher biogra-
phies. We analyze expertise collaboration networks (ECNs) by tracing from
award documents to PI and co-PI websites which reveal their existing expertise;
through network-based metrics, we examine the potential to connect expertises
in projects. To illustrate benefits of this methodology, we take a case-based [37]
approach. The case comprises awards within the NSF Research on Emerging
Technology for Teaching and Learning (RETTL1) program between 2021-23.
The program requests research proposals that form teams with both computer
science and learning sciences expertise to explore innovative designs of technol-
ogy for use in educational settings (e.g. new resources for learning in schools and
museums, see Sect. 4.1 for details). Using this case of RETTL, we (1) identify
and highlight varied “building blocks” of expertise, (2) identify collaborations
that connect expertises, and (3) identify dense “hotspots” and rare expertise
combinations. Thus we explore the potential of the ECN methodology to reveal
the nature of IDR.

Our approach identifies both, what expertise is available and how the team
structures that result from research awards bring or do not bring expertises
together. By analogy, the behavior of a compound cannot be predicted from the
behavior of the constituent elements alone, but is emergent from the conditions of
reactions between elements. We capture the early potential for IDR by examining
structures of planned interactions among expertises.

After a review of existing IDR methodologies and associated challenges,we
describe our methodology, present the RETTL case and discuss prospective
applications of ECN analysis beyond this specific case.

1 https://www.nsf.gov/pubs/2020/nsf20612/nsf20612.htm.

https://www.nsf.gov/pubs/2020/nsf20612/nsf20612.htm
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2 Related Work

Over recent years, the escalated interest in IDR has prompted development of
performance measures for IDR portfolios (for e.g., [12,34,35]), drawing on either
science of science scholarship or team science scholarship.

Science of science studies see IDR as a phenomenon that emerges from within
a larger knowledge system, which includes external drivers (e.g., complex prob-
lems, funding priorities). Studies use publication-based indicators. The method-
ology identifies disciplines and subdisciplines within an established hierarchy
of scientific publications, and thereby how a portfolio has connected exper-
tises. Researchers have used computational methods relating to natural language
processing like topic modeling (e.g.,[10,17,22,23,28]) to identify sub-disciplines
within publications and outcome reports. These use statistical methods (e.g.,
word embeddings) to cluster the keywords that indicate facets of IDR. The
identified topics are then subjected to manual expert judgment to arrange them
hierarchically against backdrop of existing scientific publications. The accuracy
of these methods relies on the availability of large bodies of text (e.g., publi-
cations, project reports), which pragmatically speaking, are absent for newly
awarded projects.

Team science studies represent the science system as a network of people, dis-
ciplines and projects. These studies defines IDR through network-based measures
like number of components, diameter, density, and transitivity of the networks
(e.g., [5,9,11]) and complex aggregative measures like betweenness, centrality,
diversity, and entropy (e.g., [15,25,29,33]). This approach provides the scien-
tific tools to evaluate the structure of collaboration for IDR within the networks
[2] across multiple granularities (e.g., authors, project teams and publications).
Some studies [5–9,16] leverage advances in graph-based machine learning and
visualization techniques to distill patterns of interactions and structure of the
relationships among and across people and disciplines. Despite advances, there
are pragmatic challenges. Data collection is difficult; response rates are low as
researchers fail to respond to surveys due to their personal and time-consuming
nature. Thus surveys are replaced with data from reports, publications, citations,
and public policies (e.g., [12,14]). Some researchers [27,31] have used authors’
current affiliations (e.g., discipline of highest degree, institution of affiliation) to
investigate IDR within co-authorship networks. However, these indicators pro-
vide a narrow, overly formulaic window on the true range of expertise available.

Many of the above methods are lagging because they rely on output com-
ponents of IDR. We focus on expertise inputs as a way of better understand-
ing researchers’ thought processes. Our methods are inspired by an intersection
between a science of science approach, where we use research topics to identify
overlaps and gaps in IDR, and by a team science approach, where we identify
patterns of collaboration. We seek to process publicly-available data in ways that
take context into account to drive understanding of newly-funded initiatives at
different granularities.
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3 Expertise-Collaboration Network (ECN) Methodology

3.1 Indicators

Researchers are known to include both past and current research interests in
their curriculum vitae and their professional websites indicative of the depth and
breadth of their work. These public artifacts describe changes that take place as
careers evolve [26]. Although a specific research proposal may explicitly name
just one or two expertise areas, researchers can bring their more comprehensive
career experience to bear.

3.2 Expertise-Collaboration Network (ECN) Model

An ECN is an undirected graph that maps the expertise among the collabo-
rating investigators (PI, co-PI) for a funded project. Each award, investigator
and area of expertise is represented as a node, and edges connect these entities
to represent collaboration. Figure 1 (left), represents a schematic of ECN for a
community. The award (blue nodes) is connected to investigator (red nodes)
with an “works on” relationship and with areas of expertise (green nodes) via
the “has expertise” edge. ECN for a project represents the potential for social
knowledge integration as investigators begin teamwork. Note that awards funded
as collaborative initiatives (separate awards to form a cross-institutional project)
are connected with an “in collaboration” edge. We included the award nodes as
opposed to single project nodes to account for the comparatively larger teams
that cummulative award amounts in the collaborative endeavors afford. The net-
work representation identifies the “building blocks” of expertise. Frequencies of
expertise at the investigator, project and community level can reveal potential
for IDR.

3.3 Measures

We use two network measures to analyze an ECN:
Network Diversity investigates relative differences in team configurations that

may result in investigators integrating expertise for a project, (how experts share
interest in an area). To quantitatively compare the project teams, we used the
degree of the expertise nodes within a project team ECN to calculate the diver-
sity and then compared differences in these scores to further characterize the
typology of expertise configuration. Diversity is a property of both the type
(richness) and number of items (abundance). We use the degree of the expertise
nodes to track the number of expertise and types of expertise being contributed
in a team through Shannon’s Diversity Index (H) [32]. This measure is often
used in information theory to quantify entropy in a collection of items, given by:

H = −
∑

pi log pi (1)

Where pi: represents the proportion of type i of items relative to the total number
of items. H is sensitive to both the evenness (different types of expertise) and
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abundance (number of experts contributing that expertise) for each team [32].
The H value between 1.5 to 3.5 indicates a diverse distribution. This metric
operates on the project level.

Network Intensity identifies the co-present areas of expertise which can be
considered as “hotspots,” within the community with intense inter-expertise col-
laboration. Rare combinations of areas of expertise with low intensity of inter-
expertise collaborations that are idiosyncratic to a few projects within the com-
munity are also identified as novel contributions of the community.

Fig. 1. Schematic projecting an expertise only monopartite graph with edges that
capture the reduction process.

This metric operates at the expertise level aggregated across the projects. We
measure intensity of collaboration by quantitatively reporting the frequency of
repeatability and qualitatively reporting the locus of the expertise collaborations.
The repeatability accounts for the intensity of co-occurrence of the expertise in
the projects that are the loci of the collaborations. For this, we construct a
monopartite projection of the areas of expertise (See Fig. 1 for the schematic
of the process) to characterize the intensity of collaborations. The projection
process reduces the ECN to only expertise nodes, preserving the co-presence on
a single project with the “common project” edges. For example, in the schematic
shown in Fig. 1, the dotted purple edges between areas of expertise 1 and 3 in the
projection represent co-occurring areas of expertise for the collaborative project
with awards P1 and P2 (see yellow nodes) in the ECN schematic. We additionally
include the number of co-presence instances as a weight of the edge, which we use
to identify “hotspot” areas and rare combinations (e.g., [3]). We conceptualize
the alignment between the expertise in rare combinations and the goals of the
community as areas of potential growth or improvement for the community.

We used python networkX and pyvis [24] library to visualize and analyze mea-
sures for the project level sub-networks. The graph was then exported to Neo4j
[21], a graph database repository that allows querying and analyzing graphs and
subgraphs, which was used to create the monopartite projections. We next dis-
cuss how our approach characterized the different aspects of IDR for the RETTL
community.
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4 Case-Study: IDR Within RETTL Community

4.1 Research Context: RETTL Program

The NSF-funded RETTL program investigates how people learn and teach with
emerging technology [18] with goals of enhancing equity, diversity, and inclusion
in education [36]. The program calls for innovative ideas that draw from learning
sciences and computer science to investigate educational technologies available
to learners in the next 5–10 years. Simple analyses indicated the actual expertise
in this research portfolio were more broad and diverse than only learning sciences
and computer sciences [30], but could not reveal the nature of IDR among the
many researchers and projects in the program. RETTL’s call for interdisciplinary
research and its breath of actual expertise provided fertile ground for exploring
the potential of our methodology to characterize IDR.

4.2 Data Collection

We collected publicly available project data from the NSF website2 by search-
ing for the identifier “Cyberlearn & Future Learn” applied to newly-awarded
projects by NSF program officers. We found 87 projects and 238 investigators in
awards made within 2021-23. The NSF website provided data such as a unique
award number, title of the project, abstract, and names of investigators. We
used the title and the abstract to identify collaborative awards (which share a
single title and abstract). We deidentified the award numbers of projects and
the investigator names with anonymous codes.

Data Consolidation. Terms to describe expertise had to be refined for con-
sistency. We used an existing hierarchical tag-based framework3 that identifies
popular areas of research interest in RETTL. Two researchers, who were not part
of the creation of this initial framework, labelled the investigators’ expertise. The
initial pass yielded low agreement 40%. We attribute the low agreement to the
fact that the tags within the framework were designed for labelling projects, not
people’s expertise. We thereafter refined definitions of terms and generated new
codes to better fit our intention. For example, we found it necessary to sepa-
rate “simulation” from “modeling.” We added additional expertise that applied
to people, but not necessarily to whole projects. Overall, we added 42 terms
to the framework resulting in 116 unique areas of expertise from the original
597 areas of expertise collected. These included specializations beyond broad
“computer science” and “learning sciences” such as medical science, psychology,
neuroscience, sociology, social science, education research, anthropology, civil
engineering, manufacturing and cognitive science. Within computer sciences,
there were specifics like Human-Computer Interaction (HCI), machine learning
and Artificial Intelligence (AI). Within Learning Sciences, there were specifics
like inquiry based learning and community partnerships.
2 https://www.nsf.gov/awardsearch/.
3 https://circls.org/project-tag-map.

https://www.nsf.gov/awardsearch/
https://circls.org/project-tag-map
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4.3 Analyzing Available Expertise in the RETTL Community

We constructed an ECN for each project (N = 87), where collaborative awards
were treated as a unified initiative. In particular, the ECN network for the
RETTL community formed by connecting 238 investigators, 116 areas of exper-
tise with 112 newly funded initiatives (blue nodes), between 2021-23. The top
ten specialization areas which included HCI, cognitive psychology/cognitive
science, Educational technology, Machine learning, Neuroscience, AI, Aug-
mented/virtual/mixed reality and few other expertise accounted for 32.97%
of identified expertise among 73.94% experts in the community. The strong
emphasis in HCI, which draws from both learning sciences and computer science
research, aligns to RETTL’s goal. Areas related to equity and ethics includ-
ing expertise in special populations, broadening participation, ethics, bias and
equity were identified to be moderately popular, but towards the lower end of
the frequencies. We also investigated areas of expertise with very low frequen-
cies. Interestingly, these were uniquely concentrated in ten RETTL projects and
included at least one disciplinary expert from medical science, material science,
civil engineering, industrial engineering, epidemiology, nanotechnology, philoso-
phy, mineral processing and sociology disciplines, indicative of novel educational
applications.

Investigating Expertise Configurations in Projects. The ECN revealed
that investigators on projects were integrating expertise in seemingly different
ways. In the examples shown below, both projects are three part collabora-
tive projects with four investigators. In Project A (left in 2, H = 1.22), social
welfare, development and responsibility expertise (studies conducted for socially
responsive technology design), natural language processing and collaboration are
shared among at least two team members, while all other 14 areas of expertise
are uniquely contributed. Contrastingly, in Project B (right, in Fig. 2, H = 0.95),
all four investigators shared expertise (AI, HCI, cognitive science, data mining,
math education, intelligent tutoring systems) except for investigator 274, who
contributes (right, upper left corner) four unique areas of expertise to the project
(creativity, affect and emotion in learning, software engineering, education).

In addition to qualitatively documenting the expertise on each project, we
also consider the different ways expertise is distributed. We identified three struc-
tural arrangements: (1) dispersed arrangement, where each expert on the team
contributes unique areas of expertise having a relatively high diversity (H > 1),
(2) shared arrangement, where investigators mostly share expertise with few
investigators bringing in specialized expertise that is rare (0.61 < H < 0.99),
and (3) collective arrangement, where investigators all share the expertise asso-
ciated with the project with low diversity (H < 0.6). Figure 3 shows examples
of different diversity categorization. Most projects had a dispersed configura-
tion (N = 49). Very few projects were categorized to be collective (N = 7).
Our future work will relate configurations to other metrics like project outcomes
and publications. Note that the diversity metric is not designed to make strong
claims about the extent of diversity of each team, rather we only make relative
comparisons.
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Fig. 2. ECN of Project A (left) and Project B (right) with different team configurations
of expertise sharing.

Fig. 3. Three different diversity configurations - dispersed arrangement (left, H = 1.12),
shared arrangement (center, H = 0.91) and collective arrangement (right, H = 0.6)
informing diversity of expertise integration.

IDR “Hotspots” and Growth Opportunities. We also found that active
expertise varied across time. This variation is indicative of the highly-emergent
research undertaken by the community which is responsive to new technologies
and educational possibilities [30]. We leveraged the edge weight between two
expertises in the expertise-only projection of the ECN for each year to determine
the high and low intensity areas in the community. In social network analysis,
hotspots are places with significantly high relationship traffic relative to others.
A greater frequency of related areas of expertise is indicative of a “hotspot” for
the community, whereas low intensity areas can help identify opportunities for
growth.

Evolving “Hotspots” of the RETTL Community. Expertise edges between HCI
and AI were found in 23 (7 in 2021, 8 in 2022, 8 in 2022) project collaborations,
HCI and cognitive psychology/cognitive science were found in 21 (9 in 2021, 6
in 2022, 6 in 2022) project collaborations, neuroscience and cognitive psychol-
ogy/cognitive science were found in 24 projects (8 in 2021, 11 in 2022, 5 in 2023),
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while Educational technology and HCI expertises were found for 20 (7 in 2021,
5 in 2022, 8 in 2022) projects. These areas were identified as “hotspots” for this
community. Despite relatively high edge frequency, the edges found in ECN for
only one of the three years, were not considered as “hotspots”. For example,
human-AI interaction and AI, alongside AI and Data mining were common to 7
projects in the year 2023 but had lower edge frequencies for the previous years
(1 in 2021, 3 in 2022). The ascent of AI to the top 3 areas of expertise has been
gradual, aligning with the huge strides in mainstream AI in recent years. The
strong emphasis of HCI and cognitive psychology/cognitive science across the
time periods emphasizes a human-centric approach that supports learning with
educational technologies. Our future work will plan for interviews with investi-
gators to learn more about “hotspots”.

Identifying Areas of Growth. By identifying the expertise important to the com-
munity, as highlighted in the RETTL call, as the areas of low intensity (with
edgefrequency ≤ 2 through the three years) we were able to identify the areas of
potential growth for the community. One such goal for the RETTL community
is to combine computer science and learning sciences research to address equity.
This objective is represented by six areas of expertise in our analysis: ethical AI,
equity in education, ethics of technology design, bias and equity in AI, special
populations, and broadening participation for underrepresented communities.
These six expertise currently represent a smaller area of focus for the RETTL
community, with an average of 5.66 investigators (SD = 3.8) and 5 projects
(SD = 3.2) related to each expertise. The co-presence of these expertise with
other expertise was observed to have low intensity (edgefrequency ≤ 2) which
dynamically changed through the years. For example, we found that ethics- and
equity-related expertises were connected to other expertise with a low edge fre-
quency indicating a small number of collaborations with experts in that area.
While research that involved creating educational technology for special popula-
tions was an expertise which had a low intensity in the year 2022 and 2023, but
was not included in the projects for the year 2021. Moreover, we found that often
just one investigator brought these expertise to the relatively small number of
projects that worked in this vein of research. These findings point to needs for
improvement of how equity related expertise is integrated into the work by this
community, guiding the research portfolio towards its goal.

5 Discussions and Conclusions

Our ECN methodology characterizes the emergent nature of IDR for newly
funded projects. It leverages expertise of the involved researchers as an attribute
of IDR, and can be extended to include more traditional indicators for IDR (e.g.,
surveys, publications), in turn affording a view into the knowledge integration
process within the teams. Through a case-based approach, we highlighted the
value of using the methodology to identify expertise, and the configurations and
intensities of integration of expertise within a interdisciplinary community. This
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methodology could be applied to any research community by collating the exper-
tise of the researchers involved in the conception of the awarded projects, which
is often publicly available information. Such computation of useful indicators
of interdisciplinarity early in the lifecycle of the research portfolio, well before
publication-based indicators are available, can help communities knowledgeably
navigate urgent and innovative research to address complex real-world problems
they are tasked to solve. An important aspect of this contribution is its value
in understanding the expertise integration within teams and its alignment with
the community goals that identified “hotspots” and opportunities for growth.
We argue that such insight could act as touch points for researchers not yet
involved in the community to contribute in an influential manner. This is rather
contradictory to publication based IDR investigations which have stopped short
of identifying areas of growth.

The utility of a network based approach is multi-granular, as it examines
the qualities of a portfolio, its projects, and the participating researchers. The
knowledge of different configurations of expertise could prove consequential for
the projects and community. For example, at the micro level, identifying low
intensity but valued areas like equity, the community can better manage human
capital. At a meso level, identifying the different IDR team and expertise config-
urations can be useful for research communities to create resources (e.g., panel
discussions and working groups to identify gaps and expose overlaps) that drive
innovation. At the macro (portfolio) level, it can inform high quality peer review
process by identifying the expertise available in the research community. Over-
all, we foresee that early analysis of IDR patterns via ECN could help funders,
project leaders, and individual researchers to act more quickly and with greater
insight as they forge innovative research directions and encourage improvements
in interdisciplinary scholarship.
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Abstract. A community structure that is often present in complex net-
works plays an important role not only in their formation but also shapes
dynamics of these networks, affecting properties of their nodes. In this
paper, we propose a family of community-aware node features and then
investigate their properties. We show that they have high predictive
power for classification tasks. We also verify that they contain infor-
mation that cannot be recovered completely neither by classical node
features nor by classical or structural node embeddings.

Keywords: node classification · community structure · node features

1 Introduction

In the context of relational data, node classification is a particularly important
problem in which data is represented as a network and the goal is to predict
labels associated with its nodes. It is widely used in various practical applica-
tions such as recommender systems [27], social network analysis [3], and applied
chemistry [12].

However, for classifiers to perform well, they must have access to a set of
highly informative node features that can discriminate representatives of differ-
ent classes. No matter how sophisticated classifiers one builds, they will perform
poorly as long as they do not get informative input concerning the problem at
hand. Hence, it is desirable to enrich a family of available features and apply
machine learning tools to features of various sorts.

In this paper, we investigate a family of features that depend on the com-
munity structure that is often present in complex networks and plays an impor-
tant role in their formation, affecting nodes’ properties. Such features are fur-
ther called community-aware features. Indeed, community structure of real-world
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1142, pp. 133–145, 2024.
https://doi.org/10.1007/978-3-031-53499-7_11
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networks often reveals the internal organization of nodes [10]. Such communities
form groups of densely connected nodes with substantially less edges touching
other parts of the graph. Identifying communities in a network can be done in
an unsupervised way and is often the first step the analysts take.

The motivation to study community-aware features is twofold. On one hand,
one can expect that for many node classification tasks such features can be highly
informative. For example, it might be important whether a given node is a strong
community member or, conversely, it is loosely tied to many communities. On
the other hand, one can expect that community-aware features are not highly
correlated to other features that are typically computed for networks. Indeed,
to compute community-aware features one needs first to identify the community
structure of a graph. This, in turn, is a complicated non-linear transformation of
the input graph, which cannot be expected to be easily recovered by supervised
or unsupervised machine learning models that are not designed to be community-
aware.

In this paper, we show that there are classes of node prediction problems in
which community-aware features have high predictive power. We also verify that
community-aware features contain information that cannot be recovered com-
pletely neither by classical node features nor by node embeddings (both classical
as well as structural). In our experiments, we concentrate on binary classification
to assure that the results can be reported consistently across different graphs.

There are some community-aware features already introduced in the liter-
ature such as CADA [15] (Community Aware Detection of Anomalies) or the
participation coefficient [14]; see Sect. 2 for their definitions. However, it is impor-
tant to highlight that both CADA and the participation coefficient ignore the
distribution of community sizes. We argue that taking community sizes into
account when computing community-aware features matters as it provides a
more detailed picture. Therefore, in this paper we propose a class of community-
aware features that, via the appropriate null model, take into account community
sizes and compare their predictive performance to the measures that have been
previously proposed in the literature.

This is a short proceeding version of a longer paper1. The longer version
includes a discussion about using the null models to design ML tools, including
the modularity function that is used by many clustering algorithms. More impor-
tantly, in the longer version we show how the null model is used to define one
of our community-aware features, namely, the Community Association Strength
(see Subsect. 2.3). Due to space limitations, we also do not include in this short
version various additional experiments (for example, on synthetic networks) and
discussion on computational complexity of the algorithms computing node fea-
tures.

1 The preprint of the longer version can be found on-line: https://math.torontomu.
ca/~pralat/research.html.

https://math.torontomu.ca/~pralat/research.html
https://math.torontomu.ca/~pralat/research.html
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2 Community-Aware Node Features

In this section, we introduce various community-aware node features. All of them
aim to capture and quantify how given nodes are attached to communities. It
will be assumed that a partition A = {A1, A2, . . . , A�} of the set of nodes V into
� communities is already provided; communities induced by parts Ai (i ∈ [�]) are
denser comparing to the global density of the graph. Such partition can be found
by any clustering algorithm. In our empirical experiments we use Leiden [25]
which is known to produce good, stable results.

To simplify the notation, we will use degAi
(v) to be the number of neighbours

of v in Ai.

2.1 Anomaly Score CADA

The first community-aware node feature is the anomaly score introduced in [16].
The anomaly score is computed as follows: for any node v ∈ V with deg(v) ≥ 1,

cd(v) =
deg(v)
dA(v)

, where dA(v) = max
{
degAi

(v) : Ai ∈ A
}
;

the denominator, dA(v), represents the maximum number of neighbouring nodes
that belong to the same community. In one extreme, if all neighbours of v belong
to the same community, then cd(v) = 1. In the other extreme, if no two neigh-
bours of v belong to the same community, then cd(v) = deg(v).

Note that cd(v) does not pay attention to which community node v belongs
to. Moreover, this node feature is unbounded, that is, cd(v) may get arbitrarily
large. As a result, we will also investigate the following small modification of
the original score, the normalized anomaly score: for any node v ∈ Ai with
deg(v) ≥ 1,

cd(v) =
degAi

(v)
deg(v)

.

Clearly, 0 ≤ cd(v) ≤ 1. Moreover, any reasonable clustering algorithm typically
should try to assign v to the community where most of its neighbours are, so
most nodes are expected to have cd(v) = 1/cd(v).

2.2 Normalized Within-Module Degree and Participation
Coefficient

In [14], an interesting and powerful approach was proposed to quantify the role
played by each node within a network that exhibits community structure. Seven
different universal roles were heuristically identified, each defined by a different
region in the (z(v), p(v)) 2-dimensional parameter space, where z(v) is the nor-
malized within-module degree of a node v and p(v) is the participation coefficient
of v. Node feature z(v) captures how strongly a particular node is connected to
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other nodes within its own community, completely ignoring edges between com-
munities. On the other hand, node feature p(v) captures how neighbours of v
are distributed between all parts of the partition A.

Formally, the normalized within-module degree of a node v is defined as fol-
lows: for any node v ∈ Ai,

z(v) =
degAi

(v) − μ(v)
σ(v)

,

where μ(v) and σ(v) are, respectively, the mean and the standard deviation of
degAi

(u) over all nodes u in the part v belongs to. If node v is tightly connected
to other nodes within the community, then z(v) is large and positive. On the
other hand, |z(v)| is large and z(v) is negative when v is loosely connected to
other peers.

The participation coefficient of a node v is defined as follows: for any node
v ∈ V with deg(v) ≥ 1,

p(v) = 1 −
�∑

i=1

(
degAi

(v)
deg(v)

)2

.

The participation coefficient p(v) is equal to zero if v has neighbours exclusively
in one part (most likely in its own community). In the other extreme situation,
the neighbours of v are homogeneously distributed among all parts and so p(v)
is close to the trivial upper bound of 1 − 1/� ≈ 1.

2.3 Community Association Strength

As already advertised, let us now introduce our own community-aware node
feature that takes the distribution of community sizes into account. Its derivation
is explained in the longer version of this paper. For any v ∈ Ai, we define the
community association strength as follows:

β∗(v) = 2
(
degAi

(v)
deg(v)

− λ
vol(Ai) − deg(v)

vol(V )

)
.

The lower the value of β∗(v), the less associated node v with its own community
is. In the derivation above we allow for any λ > 0, but in the experiments, we
will use λ = 1.

Let us also notice that when λ = 1, β∗(v) is essentially twice the normalized
anomaly score cd(v) after adjusting it to take into account the corresponding
prediction from the null model. A simplified version of this node feature was
already used in [18].

2.4 Distribution-Based Measures

Our next community-aware node features are similar in spirit to the partici-
pation coefficient, that is, they aim to measure how neighbours of a node v are
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distributed between all parts of the partition A. The main difference is that they
pay attention to the sizes of parts of A and compare the distribution of neigh-
bours to the corresponding predictions from the null model. They are upgraded
versions of the participation coefficient, similarly to the community association
strength being an upgraded counterpart of the normalized anomaly score.

Formally, for any node v ∈ V , let q1(v) be the vector representing fractions
of neighbours of v in various parts of partition A. Similarly, let q̂1(v) be the
corresponding prediction for the same vector based on the Chung-Lu model.
Note that q̂1(v) = q̂1 does not depend on v (of course, it should not!) but only
on the distribution of community sizes. Our goal is to measure how similar the
two vectors are. A natural choice would be any p-norm, but since both vectors
are stochastic (that is, all entries are non-negative and they add up to one), one
can also use any good measure for comparison of probability distributions. In
our experiments we tested the following node features: L1 norm L1

1(v), L2 norm
L2
1(v), Kullback–Leibler divergence kl1(v), and Hellinger distance h1(v).

The above measures pay attention to which communities neighbours of v
belong to. However, some of such neighbours might be strong members of their
own communities but some of them might not be. Should we pay attention that?
Is having a few strong members of community Ai as neighbours equivalent to
having many neighbours that are weak members of Ai? To capture these nuances,
one needs to consider larger ego-nets around v, nodes at distance at most 2 from
v. We define q2(v) to be the average value of q1(u) taken over all neighbours
of v. As before, q̂2(v) is the corresponding prediction based on the null model.
However, since q̂1(u) = q̂1 does not depend on u, q̂2(v) also does not depend on
v and, in fact, it is equal to q̂1. The difference between q2(v) and q̂2(v) may be
measured by any metric used before. In our experiments we tested L1

2(v), L2
2(v),

kl2(v), and h2(v), counterparts of L1
1(v), L2

1(v), kl1(v), and h1(v) respectively.
Let us mention that q1(v) and q2(v) have a natural and useful interpretation.

Consider a random walk that starts at a given node v. The ith entry of the q1(v)
vector is the probability that a random walk visits a node from community Ai

after one step. Vector q2(v) has the same interpretation but after two steps are
taken by the random walk.

One can repeat the same argument and define L1
i (v), etc., for any natural

number i by performing i steps of a random walk. Moreover, a natural alternative
approach would be to consider all possible walk lengths where connections made
with distant neighbours are penalized by an attenuation factor α, as it is done
in the classical Katz centrality [19].

Finally, let us note that the above aggregation processes could be viewed
as simplified versions of GNNs classifiers. Therefore, the investigation of these
measures additionally shows how useful community-aware measures could be
when used in combination with GNN models.
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3 Experiments

3.1 Graphs Used

We consider undirected, connected, and simple graphs so that all node features
are well defined and all methods that we use work properly. In each graph, we
have some “ground-truth” labels for the nodes which are used to benchmark
classification algorithms. For consistency of the reported metrics, we consider
binary classification tasks, so the ground-truth node features that are to be
predicted will always consist of labels from the set {0, 1} with label 1 being the
target class.

In the experiments, we used two families of graphs. The first family consists
of synthetic networks, the Artificial Benchmark for Community Detection with
Outliers (ABCD+o) [18]. The main goal of experiments on this family is to
perform a sanity test to evaluate whether the basic functionality of community-
aware node features is working correctly or not. The results (that are available
in the longer version of this paper) show that for this class of graphs community-
aware node features significantly outperform other features.

The second family of networks we used in our experiments are empirical real-
world graphs. We tried to select a collection of graphs with different properties
(density, community structure, degree distribution, clustering coefficient, etc.).
More importantly, some of them have highly unbalanced binary classes. Exper-
iments with these networks will serve as a more challenging and robust test for
usefulness of the proposed community-aware node features.

Empirical Graphs. For experiments on real-world, empirical networks, we
selected the following 5 datasets. In cases when multiple connected components
were present, we kept only the giant component. Self-loops, if present, were also
dropped before performing the experiments. We summarize some statistics for
those graphs in Table 1.

– Reddit [20]: A bipartite graph with 9,998 nodes representing users in one
part and 982 nodes representing subreddits in the other one. The target class
represents banned users.

– Grid [21]: A power grid network with attributed nodes. The target class
corresponds to nodes with “plant” attribute.

– Facebook [23]: Nodes correspond to official Facebook pages that belong to
one of the 4 categories and edges are mutual likes. The target class corresponds
to “politician” category.

– LastFM [24]: Nodes are users of the social network and edges represent
mutual followers. There are some nodes attributes including the location; the
target class corresponds to nodes with “country 17” attribute.

– Amazon [8]: Nodes are users and edges represent common product reviews.
The target class corresponds to users with less than 20% “helpful” votes, and
non-target correspond to users with more than 80% “helpful” votes.
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Table 1. Statistics of the selected real-world empirical graphs.

dataset # of nodes average degree # of clusters target class proportion

Reddit 10,980 14.30 12 3.661%
Grid 13,478 2.51 78 0.861%
LastFM 7,624 7.29 28 20.619%
Facebook 22,470 15.20 58 25.670%
Amazon 9,314 37.49 39 8.601%

3.2 Node Features Investigated

The community-aware node features that we tested are summarized in Table 2.
The features are computed with reference to a partition of a graph into commu-
nities obtained using the Leiden algorithm. The partition is chosen as the best
of 1,000 independent runs of the community_leiden function implemented in
the igraph library [7] (Python interface of the library was used). Each of such
independent runs was performed until a stable iteration was reached.

Table 2. Community-aware node features used in our experiments. A combination of
WMD and CPC is also used as a 2-dimensional embedding of a graph (WMD+CPC).

abbreviation symbol name subsection

CADA cd(v) anomaly score CADA 2.1
CADA* cd(v) normalized anomaly score 2.1
WMD z(v) normalized within-module degree 2.2
CPC p(v) participation coefficient 2.2
CAS β∗(v) community association strength 2.3
CD_L11 L1

1(v) L1 norm for the 1st neighbourhood 2.4
CD_L21 L2

1(v) L2 norm for the 1st neighbourhood 2.4
CD_KL1 kl1(v) Kullback–Leibler divergence for the 1st neighbourhood 2.4
CD_HD1 h1(v) Hellinger distance for the 1st neighbourhood 2.4
CD_L12 L1

2(v) L1 norm for the 2nd neighbourhood 2.4
CD_L22 L2

2(v) L2 norm for the 2nd neighbourhood 2.4
CD_KL2 kl2(v) Kullback–Leibler divergence for the 2nd neighbourhood 2.4
CD_HD2 h2(v) Hellinger distance for the 2nd neighbourhood 2.4

Classical (non-community-aware) node features are summarized in Table 3.
These are standard and well-known node features. We omit their definitions but,
instead, refer to the appropriate sources in the table or [17].

Finally, we will use two more sophisticated and powerful node features
obtained through graph embeddings. Embeddings can be categorized into two
main types: classical embeddings and structural embeddings. Classical embed-
dings focus on learning both local and global proximity of nodes, while structural
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embeddings learn information specifically about the local structure of nodes’
neighbourhood. We test one embedding from each class: node2vec [13] and
struc2vec [22].

Table 3. Classical (non-community-aware) node features that are used in our experi-
ments.

abbreviation name reference

lcc local clustering coefficient [26]
bc betweenness centrality [11]
cc closeness centrality [2]
dc degree centrality [17]
ndc average degree centrality of neighbours [1]
ec eigenvector centrality [4]
eccen node eccentricity [6]
core node coreness [17]
n2v 16-dimensional node2vec embedding [13]
s2v 16-dimensional struc2vec embedding [22]

3.3 Experiments

In this section, we present the results of two numerical experiments that were
performed to investigate the usefulness of community-aware features:

1. information overlap between community-aware and classical features;
2. combined variable importance for prediction of community-aware and classical

features.

From the computational perspective, all analytical steps (generation of graphs,
extractions of both community-aware and classical features, execution of exper-
iments) were implemented in such a way that all experiments are fully repro-
ducible. In particular, all steps that involve pseudo-random numbers were appro-
priately seeded. The source code allowing for reproduction of all results is avail-
able at GitHub repository2.

Information Overlap. In the first experiment, our goal was to test, using
a variety of models, to what extent each community-aware feature described
in Table 2 can be explained by all the classical features from Table 3. For each
community-aware feature, we independently measured how well it is explained
by each model via computing the Kendall correlation of the value of the selected

2 https://github.com/sebkaz/BetaStar.git.

https://github.com/sebkaz/BetaStar.git
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feature and its prediction. To consider possible non-linear relationships, the non-
parametric Kendall correlation was used; it checks how well the ordering of
predictions matches the ordering of the target. We also used measures such
as R2, which assumes linearity and homoskedasticity of prediction error of the
relationship, and the results were similar.

The tests were performed using 70/30 train-test split of data. To ensure that
the reported results are robust, for each community-aware feature, five models
were built using respectively random forest, xgboost, lightgbm, linear regression
and regularized regression. The maximum Kendall correlations we obtained are
reported.

The goal of this experiment is to show that community-aware features cannot
be explained completely by classical features (including two highly expressible
embeddings). The conclusion is that it is worth to include such features in predic-
tive models as they could potentially improve their predictive power. However,
this additional information could be simply noise and so not useful in prac-
tice. To verify the usefulness of the community-aware features, we performed
two more experiments, namely, one-way predictive power and combined variable
importance for prediction checks. In these experiments, we check if community-
aware features are indeed useful in node label prediction problems. In the longer
version of this paper the results of both experiments are reported. Here, due to
space limitation, we only describe the results of combined variable importance
for prediction experiment.

In general, for empirical graphs described in Sect. 3.1, the target is a binary
feature that measures some practical feature or a role of a given node. It is
important to highlight that these features are not derived from the community
structure of these graphs, at least not directly. Instead, they are characteris-
tics of nodes defined independently of the graph structure. Therefore, for these
networks, we do not expect that community-aware features will significantly
outperform other features. However, we conjecture that in many empirical net-
works, it may be the case that the prediction target is related to the fact that
a node is a strong member of its own community or not. We expect to see that
some community-aware features are still useful in prediction. It is important to
highlight that, as we have described in Sect. 3.1, we have not hand-picked a few
empirical networks that present good performance of community-aware features,
aiming for a diverse collection of networks.

Results and Observations. For empirical graphs, in Table 4 we observe cor-
relations significantly bounded away from 1. (For synthetic networks the correla-
tions are even lower—see the longer version of this paper). In particular, for the
Grid graph, the correlation values are the lowest in the family of the empirical
graphs (slightly above 0.2 for single-community measures).

In summary, the presented results confirm that the information encapsulated
in community-aware measures cannot be recovered completely using classical fea-
tures (even including embeddings). In the following experiments, we investigate
if this extra information is useful for the node classification task.
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Combined Variable Importance for Prediction. The second experiment
(combined variable importance for prediction) provides a way to verify the use-
fulness of community-aware features for node classification task. For each graph
we build a single model predicting the target variable (defined in the Empirical
Graphs section) that takes into account all community-aware as well as all clas-
sical features (including both embeddings) as explanatory variables. A random
forest classifier was built and the permutation variable importance [5,9] measure
was computed for each feature using APS (average precision score) as a target
predictive measure.

As in the previous experiment, a 70/30 train-test split was used. We report
the ranking of variable importance (rank 1 being the most important one) so
that the values are comparable across all graphs investigated in this experiment.
The raw importance scores have different ranges for various graphs.

Table 4. Information overlap between community-aware and classical features. The
maximum of Kendall correlation between target and predictions on test data set.

target Amazon Facebook Grid LastFM Reddit

CADA 0.5830 0.5666 0.2156 0.4815 0.6826
CADA* 0.6058 0.5828 0.2174 0.5058 0.6867
CPC 0.6338 0.5992 0.2193 0.5175 0.7193
CAS 0.6538 0.6257 0.2999 0.5594 0.7306
CD_L21 0.7052 0.6464 0.3496 0.5698 0.7574
CD_L22 0.7554 0.7355 0.3557 0.6295 0.7941
CD_L11 0.7251 0.7041 0.6978 0.6220 0.7735
CD_L12 0.7794 0.7785 0.6447 0.6884 0.7810
CD_KL1 0.7176 0.7516 0.7394 0.6289 0.7755
CD_HD1 0.7383 0.7482 0.7168 0.6459 0.7853
CD_KL2 0.7706 0.7826 0.7292 0.6853 0.8097
CD_HD2 0.8212 0.8173 0.6930 0.7369 0.8221
WMD 0.8447 0.8456 0.8488 0.8531 0.7638

Results and Observations. The results for empirical graphs are presented in
Table 5. The ranks range between 1 and 53 (with rank 1 being the best), since
there are 53 features in total (13 community-aware, 8 classical, 16 for node2vec,
and 16 for struc2vec). The rows are sorted by the arithmetic mean of rank
correlations across all graphs.

For one empirical graph (namely, the Facebook graph), no community-aware
measure appears in the top-10. It should be noted though, as can be seen by the
experiments included in the longer version of this paper, that both node2vec
and struc2vec embeddings provide almost perfect prediction for this graph. On
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Table 5. Variable importance ranks for community-aware features in models including
all features as explanatory variables. Values range from 1 (the best) to 53 (the worst).
Rows are sorted by best rank across the considered graphs.

variable Amazon Facebook Grid LastFM Reddit

WMD 49 25 1 8 31
CD_L22 25 28 3 11 49
CD_L12 24 53 20 7 4
CAS 16 17 6 6 40
CD_HD1 23 23 17 27 8
CD_KL1 18 20 14 9 30
CD_HD2 9 52 46 38 32
CD_L21 19 32 11 29 25
CADA* 37 34 26 14 50
CD_L11 14 22 18 45 27
CD_KL2 15 31 27 42 28
CADA 26 33 22 15 33
CPC 39 30 24 17 26

the other hand, for the Grid graph, community-aware features are important (3
of them are in the top-10). In general, the community-aware features that score
high for at least one graph are: CAS, CD_L22, WMD, CD_L12, CD_HD2, CD_HD1, and
CD_KL1. In particular, we see that the second-neighbourhood measures are well
represented. This indicates that looking at the community structure of larger
ego-nets of nodes is useful for empirical graphs. This is not the case for syn-
thetic ABCD+o graphs as their generation structure is simpler than the more
sophisticated mechanisms that lead to network formation of empirical complex
networks. (As before, we refer the reader to the longer version of this paper for
experiments on synthetic networks.)
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Abstract. Community detection for time series without prior knowl-
edge poses an open challenge within complex networks theory. Tradi-
tional approaches begin by assessing time series correlations and maxi-
mizing modularity under diverse null models. These methods suffer from
assuming temporal stationarity and are influenced by the granularity of
observation intervals.

In this study, we propose an approach based on the signature matrix,
a concept from path theory for studying stochastic processes. By employ-
ing a signature-derived similarity measure, our method overcomes draw-
backs of traditional correlation-based techniques.

Through a series of numerical experiments, we demonstrate that our
method consistently yields higher modularity compared to baseline mod-
els, when tested on the Standard and Poor’s 500 dataset. Moreover, our
approach showcases enhanced stability in modularity when the length of
the underlying time series is manipulated.

This research contributes to the field of community detection by intro-
ducing a signature-based similarity measure, offering an alternative to
conventional correlation matrices.

Keywords: Community Detection · Signature · Time Series

1 Introduction

In recent years, the exploration of structural properties within complex systems
has garnered considerable significance across diverse scientific domains, including
biological, social, communication, economical, and financial networks. Of partic-
ular interest is the investigation and identification of communities within such
networks. In fact, identifying communities within a network provides information
on how the nodes are connected and organized [1]. Especially challenging is the
task of community detection within financial time series data, given their tem-
poral dependencies, inherent noise, and non-stationarity [2]. Identifying stock
communities is particularly important for portfolio strategies and risk manage-
ment tasks [3]. Conventional methodologies for community detection involve
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1142, pp. 146–158, 2024.
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transforming time series into a graph-based representation by filtering the corre-
lation matrix [4,5]. Common techniques encompass the utilization of a threshold,
referred to as the “Asset Graph” approach [6,7], or employing alternative embed-
ding methods to reduce dimensionality. Notably, Random Matrix Theory (RMT)
[8,9] is a prevalent approach, which filters the correlation matrix by identifying
and eliminating eigenvalues associated with noise. However, reliance on the cor-
relation matrix for time series representation introduces biases, which can be
summarized, among other constraints, by assuming temporal stationarity, and
focusing on linear relationships [10].

In this study, we propose a paradigm shift by substituting the correlation
matrix with a similarity matrix derived from time series signatures [11,12].
The rationale behind employing the signature, as opposed to the original time
series, lies in its remarkable capability to encapsulate temporal information of
the underlying time series within a systematically structured sequence of tensors
[13,14].

The rest of the paper is organized as follows: Sect. 2 provides an overview of
core filtering techniques for correlation matrices and delves into the intricacies
of community detection in the context of financial time series. Section 3 summa-
rizes the “Asset Graph” approach, RMT, community detection, and signatures.
Section 4 defines the similarity matrix derived from the signature, Sect. 5 pro-
vides a numerical experimental comparison, and Sect. 6 concludes the paper.

2 Related Work

Analyzing the structural properties and filtering techniques in correlation matri-
ces of time series data can be approached through various methods. One straight-
forward approach is based on the “Asset Graph”, wherein the correlation matrix
is filtered using a threshold-based method [6,7]. Specifically, matrix elements are
retained if they are greater than or equal to a given threshold value. However,
the challenge lies in determining the optimal threshold value. Potential solutions
include considering statistically significant correlation coefficients [15] or setting
the threshold by imposing that nodes within the same community have larger
probabilities to be connected by edges than background edge probabilities [16].

Another filtering technique involves utilizing a Minimum Spanning Tree
(MST) [17]. This method selects a subset of edges forming a tree that con-
nects all nodes through the links associated with the largest correlation. MST
has been applied to filter the correlation matrix of the top 100 capitalized stocks
on the U.S. markets [18]. Building upon the MST concept, the Planar Maximally
Filtered Graph (PMFG) was introduced [19], which differs by retaining 3(n− 2)
links compared to MST’s n − 1 links, where n represents the number of nodes.
PMFG also allows for cliques and loops. PMFG was utilized to study the New
York Stock Exchange’s (NYSE) correlation matrix’s topological properties [20].

The Random Matrix Theory (RMT) [8,9] offers another approach for filter-
ing correlation matrices to extract meaningful information while removing noise.
RMT has been employed to study eigenvalues’ density and structural proper-
ties of empirical correlation matrices, such as those of Standard and Poor’s 500
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(S&P500) [21] and the Tokyo Stock Exchange [22]. Additionally, RMT has been
applied to filter the Financial Times Stock Exchange (FTSE) index’s correlation
matrix for portfolio creation [23], to analyze eigenvalue properties and cluster
stocks in the FTSE index and S&P500 [24], and for community detection in the
S&P500 [25].

Other clustering techniques include the Potts method [26], which detects
modules based on a dense weighted network representation of stock price corre-
lations, and node-based clustering [27], applicable to foreign exchange data and
capable of tracking temporal dynamics. The Generalized Autoregressive Con-
ditional Heteroskedastic (GARCH) model has been used to denoise Japanese
stock return correlation matrices, followed by spectral clustering [28]. Clustering
based on similarity in distribution of exchange rates in the international Foreign
Exchange (Forex) market has been explored [29].

Finally, the community detection problem is typically addressed using two
established algorithms: the Louvain Community Detection Algorithm [30] and
the Clauset-Newman-Moore Greedy Modularity Maximization Algorithm [31].

3 Preliminaries

In this section, we provide an overview of the primary methodologies employed
for filtering correlation matrices. Furthermore, we define the community detec-
tion problem and present the key algorithm utilized to address it. We subse-
quently introduce the concept of a time series signature and expand upon its
derivation from time series data.

Consider a collection of N univariate time series denoted as S, each
consisting of realizations over T discrete time steps, represented as Si =
{si(1), si(2), . . . , si(T )}. The entries of the correlation matrix C among the N
time series can be defined as follows:

Cij =
σSi,Sj√
σ2

Si

√
σ2

Sj

. (1)

Here, σSi,Sj
represents the covariance between time series i and j, while σ2

Si

denotes the variance of time series i. These are expressed empirically as:

σSi,Sj
=

1
T

T∑
t=1

si(t)sj(t) − 1
T

T∑
t=1

si(t)
1
T

T∑
t=1

sj(t) ,

σ2
Si

=
1
T

T∑
t=1

s2i (t) −
(

1
T

T∑
t=1

si(t)

)2

.

The correlation matrix in this study will be constructed based on the loga-
rithmic increments of the time series Si. Logarithmic increments are defined as
ri(t) = log

(
Si(t)

Si(t−1)

)
for all t belonging to the set {2, 3, . . . , T}.
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3.1 Asset Graph

The Asset Graph is based on the utilization of a threshold-based approach for
filtering the correlation matrix. Specifically, we retain those entries within the
correlation matrix that are greater than or equal to a predefined threshold. The
selection of an appropriate threshold can be approached through various meth-
ods. An initial method involves evaluating multiple threshold values and selecting
the one that generates a sparsely filtered matrix without introducing excessive
disconnected components. An alternative strategy, outlined in [15], centers on
retaining only those correlation entries that possess statistical significance.

3.2 Random Matrix Theory

The objective of this approach is to extract information from the correlation
matrix by discerning and retaining the relevant components while excluding the
noisy elements based on the eigenvalues’ distribution. Consider a correlation
matrix derived from a set of N completely random time series, each with a
length of T . Following the principles of RMT, when N → +∞, T → +∞,
and 1 < lim T/N < +∞, the eigenvalues of the correlation matrix follow the
Marcenko-Pastur distribution [21,32], denoted with ρ(λ):

ρ(λ) =
Q

2πσ2

√
(λ+ − λ)(λ − λ−)

λ
if λ ∈ [λ−, λ+] (2)

and zero otherwise. Here, Q = lim T
N , λ± = σ2

(
1 ±

√
1
Q

)2

, and σ2 is the vari-

ance of the elements, often set empirically as σ2 = 1 − λmax

N , where λmax rep-
resents the maximum eigenvalue of the correlation matrix. In RMT, eigenvalues
greater than λ+ are statistically significant, while the rest are largely attributable
to random noise. As such, any correlation matrix can be decomposed into the
sum of a structural component C(s) comprising eigenvalues above λ+, and a
noise component C(r) which can be expressed as:

C(r) =
∑

i:λi≤λ+

λiviv
†
i . (3)

Here, vi represents the eigenvector associated with eigenvalue λi, and v†
i is

its conjugate transpose.
However, in case of the empirical log-returns correlation matrix for N stocks,

an eigenvalue often is significantly greater than the rest, and is commonly
referred to as the “market mode” [5,8,21]. The market mode encapsulates the
market’s overall behavior, impacting all other stocks. Consequently, removing
the market mode is essential for enhancing the detection of valuable correlations
by reducing noise interference. The correlation matrix for N stocks can thus be
decomposed into three components:

C = C(r) + C(m) + C(g) , (4)
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where C(r) represents the noise component, C(m) is the market component,
and C(g) is the remaining significant correlation, after the removal of noise and
market mode components. Specifically:

C(m) = λmaxvmaxv†
max , (5)

C(g) =
∑

i:λ+<λi<λmax

λiviv
†
i , (6)

where vmax represents the eigenvector associated with the maximum eigenvalue
of the correlation matrix. Finally, the filtered correlation matrix utilized for the
community detection problem (see the next subsection) is C(g).

3.3 Community Detection

Community detection aims to identify groups of nodes within a network that are
more likely to be interconnected among themselves than with nodes from other
communities [1,33]. For the identification of non-overlapping communities, we
employ the modularity optimization approach [35], chosen for its foundation
in defining a null model that serves as a reference to evaluate the network’s
structure. Modularity acts as a metric to assess the quality of the identified par-
tition. Indeed, partitions with high modularity have, respectively, dense/sparse
connections of nodes within/between their clusters.

Consider a network with N nodes and the associated adjacency matrix A ∈
R

N×N . In the context of an undirected unweighted graph, the entries of the
adjacency matrix, aij , are such that aij = 1 if a link exists between nodes i and
j, and 0 otherwise. Our goal is to find non-overlapping communities represented
by an N -dimensional vector η, where the i-th component ηi indicates the set to
which node i belongs, as defined in [25]. The modularity, denoted as Q(η), is
defined as follows:

Q(η) =
1

Atot

∑
i,j

[Aij − 〈Aij〉] δ(ηi, ηj) , (7)

where δ(ηi, ηj) is the Kronecker delta function equal to 1 if ηi = ηj , and 0
otherwise, signifying that only nodes within the same community are considered.
Atot =

∑
i,j Aij = 2l is twice the total number of links l, and 〈Aij〉 represents

the employed null model. Traditionally, it is the so-called configuration model,
in which 〈Aij〉 = kikj

2l , with ki as the degree of node i [33].
In the presence of finite time series data having a global mode in the corre-

lation matrix, the modularity can be expressed as follows:

Q(η) =
1

Cnorm

∑
i,j

[
Cij − C

(r)
ij − C

(m)
ij

]
δ(ηi, ηj) =

1
Cnorm

∑
i,j

C
(g)
ij δ(ηi, ηj) ,(8)

where C(r), C(m), and C(g) represent the noise, market, and significant corre-
lation components, respectively, as defined in equations (3), (5), and (6). Addi-
tionally, Cnorm =

∑
i,j Cij . Research such as [22,23,34] has demonstrated that
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the eigenvector components of C(g) exhibit alternating signs, allowing for the
identification of groups of stocks influenced by similar factors. This provides an
effective basis for community detection in financial networks.

The modularity Q(η) assumes values within the interval [−0.5, 1], indicating
the edge density within communities relative to edges between communities.
Higher modularity values denote a stronger community structure, with nodes
forming distinct clusters, while lower values suggest a more uniform distribution
of edges across the network.

3.4 Signature

The concept of signature derives from the field of path theory, providing a struc-
tured and comprehensive representation of the temporal evolution within a time
series. Its potency lies in capturing both temporal and geometric patterns embed-
ded within the time series. Temporal patterns encompass long-term dependen-
cies and recurrent trends across time, while geometric patterns encompass the
shape of time series trajectories, and intricate data behaviors such as loops and
self-intersections [14].

For the sake of clarity, we shall adopt the notation presented in [36] and
restrict our discussion to continuous functions mapping from a compact time
interval J := [a, b] to R

d with finite p-variation, all starting from the origin. This
space is denoted as Cp

0 (J,Rd).
Let T((Rd)) := ⊕∞

k=0(R
d)⊗k represent a tensor algebra space, encompassing

the signatures of Rd-valued paths, offering their comprehensive representation.
Furthermore, let Si = {si(1), si(2), . . . , si(T )} denote a discrete time series. To
bridge the gap between the discrete and continuous cases, the time series needs
to be converted into a continuous path, achieved through methods like the lead-
lag transformation or the time-join transformation [37]. Let L be the continuous
path produced by the lead-lag transformation, which we adopt due to its ability
to directly extract various features including path volatility (which comes from
the second term of the signature), a crucial facet in finance. Consequently, we
define the signature S and the truncated signature at level M , denoted as SM ,
as follows:

Definition 1 (Signature and Truncated Signature). Let L ∈ Cp
0 (J,Rd) be

a path. The signature S of the path L is defined as:

S = (1, L1
J , . . . , Lk

J , . . . ) ∈ T((Rd) , (9)

where Lk
J =

∫
t1 <t2<...tk,t1,...tk∈J

dLt1 ⊗ · · · ⊗ dLtk are called iterated integrals.
The truncated signature of degree M is defined as:

SM = (1, L1
J , . . . , LM

J ) . (10)

The signature structure offers a hierarchical interpretation, with lower-order
components capturing broad path attributes and higher-order terms revealing
intricate characteristics (including higher-order moments, and local geometric
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features). Importantly, the signature remains invariant under reparameteriza-
tion, preserving integral values despite time transformations. It also adheres to
translation invariance and concatenation properties [38]. The truncated signa-
ture preserves the first dM+1−1

d−1 iterated integrals, with M denoting truncation
degree and d representing path dimension. The factorial decay of neglected iter-
ated integrals ensures minimal information loss in truncation of S [39].

Given two stochastic processes, A and B, defined on a probability space
(Ω,P,F), and supposing equation (9) holds almost surely for both A and B, with
expected values of S(A) and S(B) being finite, we have the following theorem
[40]:

Theorem 1 (Expected Signature). Let A and B be two C1
0 (J,Rd)-valued

random variables. If E[S(A)] = E[S(B)], and E[S(A)] has infinite radius of
convergence, then A

d= B, i.e., A and B are equal in distribution.

The signature uniquely defines a path’s trajectory [11], under suitable
assumptions, while the expected signatures uniquely determine the distributions
of paths, paralleling the role of moment generating functions [41]. For a more
comprehensive elaboration, rigorous formulations, and visual examples, consult
[14,37,42].

4 Signature-Based Similarity Matrix

In our research, we introduce a novel approach that replaces the conventional cor-
relation matrix, C, with a similarity matrix derived from the truncated signature
of the logarithmic increments of each time series Si. This novel concept is rooted
in the uniqueness of the signature, which can be likened to the moment gener-
ating function, making it an ideal candidate for quantifying similarity between
time series. The hypothesis here is that if two time series possess highly similar
signatures, they should exhibit substantial similarity in their behaviors.

To construct this similarity matrix, we embark on a multi-step process. First,
we apply the lead-lag transformation to the logarithmic increments of each time
series Si, yielding the path Li. Subsequently, we compute the truncated signa-
ture, denoted as SM , with a truncation degree M set to 3, applied to Li, also
denoted by SM (Li). We then proceed to compute a similarity measure between
each pair of stocks based on their truncated signatures. Three distinct mea-
sures are employed for this purpose: Euclidean Distance (ED), Cosine Similarity
(CS), and Radial Basis Function (RBF) kernel. The choice of these measures
is deliberate: ED is selected for its sensitivity to data magnitude and computa-
tional efficiency, CS for its scale invariance, resistance to outliers, and suitability
for time series trend analysis, and the RBF kernel for its capability to capture
complex non-linear relationships. Moreover, we convert the Euclidean distance
(which is a dissimilarity metric) into a similarity metric using a strictly monotone
decreasing function, specifically f(x) = 1

a+x with a = 1.
Finally, we obtain a similarity matrix P , with entries pij ∈ [0, 1], where a

value of 1 signifies that elements i and j are perfectly alike. Following the creation
of this similarity matrix, we subject it to filtering processes, specifically using
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the threshold method and RMT, as elaborated upon in Sect. 3. This filtering
serves the purpose of retaining only the significant similarities among the time
series, thereby enhancing the robustness and effectiveness of our approach.

Table 1. Modularity results for the correlation matrix and for the signature-based
similarity matrix for the Standard and Poor’s 500.

Data Type Filtering Method Modularity

(Louvain)

Modularity

(Greedy)

# Cluster

(Louvain)

# Cluster

(Greedy)

Correlation Matrix Threshold 0.0207 0.0159 81 11

RMT 0.0987 0.1185 4 11

Signature-based

Similarity Matrix

Threshold ED 0.1796 0.1783 8 9

Threshold CS 0.0020 −0.0134 430 11

Threshold RBF 0.0976 0.0952 112 11

RMT ED 0.1975 0.1994 5 11

RMT CS 0.1177 0.8527 2 11

RMT RBF 0.1326 0.1428 4 11

5 Experimental Evaluation

The principal aim of this study is to showcase a substantial enhancement in the
modularity metric when replacing the traditional correlation matrix with a sim-
ilarity matrix derived from signatures in the context of community detection. A
higher modularity score signifies an improved capability of the algorithm to iden-
tify more cohesive and distinguishable communities in the dataset. Additionally,
our investigation highlights that the identified communities do not rigidly align
with the initially assigned data categories.

To conduct this analysis, we focus our attention to the S&P500 stock
exchange, a market encompassing 500 major publicly traded companies span-
ning diverse sectors and industries in the United States market [43]. Notably,
this index classifies each stock into one of eleven distinct sectors: Communica-
tion Services, Consumer Discretionary, Consumer Staples, Energy, Financials,
Health Care, Industrials, Information Technology, Materials, Real Estate, and
Utilities. Our data collection process covers the period from Saturday 10th July,
2010 to Monday 10th July, 2023. After computing the logarithmic returns and
eliminating stocks with insufficient data, our dataset encompasses 443 stocks for
analysis, each comprising 3720 observations. Consequently, we denote N = 443
as the number of stocks and T = 3720 as the length of each time series.

In this study, we use as baseline models the correlation matrix filter with a
predefined threshold and the RMT-based filter, as detailed in Sect. 3. Within the
threshold method, we determine the optimal threshold value following the proce-
dure in [25]. Subsequently, we retain correlation entries exceeding the threshold
of 0.0437. The eigenvalue distribution under the RMT framework confirms the
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Fig. 1. Communities identified using the Louvain Community Detection Algorithm on
the signature-based Similarity Matrix obtained via the Euclidean Distance and sub-
sequently filtered using RMT. Communication Services ( ), Consumer Discretionary
( ), Consumer Staples ( ), Energy ( ), Financials ( ), Health Care ( ), Industri-
als ( ), Information Technology ( ), Materials ( ), Real Estate ( ), and Utilities
( ).

presence of the market model. Specifically, the largest eigenvalue of the correla-
tion matrix is approximately 174, with the second-largest eigenvalue around 20.
Consequently, we apply the filtering process to the correlation matrix as defined
in equation (6). Notably, the market mode is also observed in the similarity
matrix based on signatures.

Table 1 presents the modularity results for the analyzed models, utilizing both
the Louvain Community Detection Algorithm and the Clauset-Newman-Moore
Greedy Modularity Maximization Algorithm. Utilizing a signature-derived sim-
ilarity matrix consistently yields higher modularity values, indicating supe-
rior performance in identifying more distinct communities than the correlation
matrix approach. The exception is when applying threshold-based filtering to the
cosine similarity matrix. Furthermore, results are more consistent when using
similarity matrices based on the Euclidean distance, whereas outcomes from the
cosine similarity matrix vary significantly in terms of modularity values and
cluster count.

Remarkably, the Louvain algorithm, when applied to the threshold-filtered
matrix, identifies numerous smaller communities, each comprising a single stock.
This phenomenon holds for both the correlation matrix and the signature-based
similarity matrix, except for the Euclidean distance case.

Figure 1 illustrates the community structure generated by the Euclidean
distance-based similarity matrix, filtered using RMT. The algorithm identifies
a total of 5 communities, in contrast to the S&P500 index that classifies these
stocks into 11 distinct categories. All 5 algorithm-identified communities encom-
pass stocks from different sectors according to the S&P500 classification, sug-
gesting concealed correlations among stocks from various sectors, highlighting
intricate inter-sector relationships.

To evaluate the robustness of our proposed methodology, we conducted a sta-
bility analysis. This entailed gradually increasing the number of observations in
the dataset, starting with roughly one-third of the original observations for the
443 stocks. We incrementally added observations until reaching the dimensions
of the original dataset. This analysis aimed to demonstrate that our method’s
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effectiveness remains consistent regardless of the quantity of observations con-
sidered. It is important to note that RMT requires only that the number of
observations (T ) exceeds the number of stocks (N). The results of this stability
analysis are presented in Fig. 2. In this study, we primarily examine the simi-
larity matrix derived from the Euclidean distance via the signature, given its
previously demonstrated superior performance in achieving higher modularity.
We also include the conventional correlation matrix in our analysis, subjecting
both matrices to RMT-based filtration. Interestingly, even within this context,
the modularity consistently exhibits higher values when utilizing the signature-
based similarity matrix for community detection. Notably, the performance of
the greedy algorithm for community detection within the signature-based app-
roach appears to be influenced by the volume of observations.

Fig. 2. Stability analysis for the correlation matrix and the signature-based similarity
matrix for the Standard and Poor’s 500.

6 Conclusion

This study explores contemporary techniques for filtering correlation matrices
in community detection. We introduce a novel approach, substituting the cor-
relation matrix with a signature-derived similarity matrix. We evaluate three
similarity measures: nonlinearly transformed Euclidean distance, cosine similar-
ity, and Radial Basis Function (RBF) similarity. Using the S&P500 dataset,
we empirically assess this method’s performance with the modularity metric.
Results consistently indicate enhanced modularity, with the Euclidean distance-
based similarity matrix performing the best.

Future research will involve in-depth exploration of the structural properties
in community detection using the signature-based similarity matrix. In partic-
ular, we plan to: investigate the reasons behind the higher modularity achieved
by the proposed method with respect to other similarity measures; extend it
by directly computing the signature of the vector of (paths derived from) time
series; explore its integration into portfolio optimization and risk management
strategies; apply it to other contexts involving time series, such as movement
analysis.
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Abstract. Real-world networks often contain community structures,
where nodes form tightly interconnected clusters. Recent research indi-
cates hierarchical organization, where vertices split into groups that fur-
ther subdivide across multiple scales. However, individuals in social net-
works typically belong to multiple communities due to their various affili-
ations, such as family, friends, and colleagues. These overlaps will emerge
in the community structure of online social networks and other complex
networks like in biology, where nodes have diverse functions. In this work,
we propose an algorithm for hierarchical overlapping community detec-
tion in weighted networks. The overlap between clusters is realized via
maximal cliques that are used as base elements for hierarchical agglom-
erative clustering on the graph (GHAC). The closed trail distance and
the size of the maximal clique in overlap are used for the dissimilarity
between clusters in agglomerative steps of the GHAC. The closed trail
distance is designed for weighted networks.

Experiments on synthetic networks and different evaluations of the
results of experiments show that the proposed algorithm is comparable
with other widely used algorithms for overlapping community detection
and is efficient for detecting hierarchy structure in weighted networks.

Keywords: overlapping communities · closed trail distance · weighted
graph · hierarchical structure

1 Introduction

Most real networks are characterized by overlapped and nested communities [25].
Modular and hierarchical community structures are ubiquitous in complex real-
world networks. The observation that large clusters consist of smaller clusters of
higher quality can be evidence of hierarchical structure in the network, which is
characteristic of many complex systems [37]. Hierarchical structure goes beyond
simple clustering and explicitly includes organization at all scales in a network
simultaneously. Conventionally, the hierarchical structure can be represented
by a tree (dendrogram). Clauset et al. [9] show that knowledge of hierarchical
structure can be used to predict missing connections in partially known networks
with high accuracy. Their results suggest that hierarchy is a central organizing
principle of complex networks, capable of offering insight into many network
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1142, pp. 159–171, 2024.
https://doi.org/10.1007/978-3-031-53499-7_13
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phenomena. The algorithms for the detection of the hierarchical structure of
communities were proposed in [9,17,22,34,35,47].

The hierarchical agglomerative methods for community detection use some
distance or similarity between nodes for dissimilarity or similarity calculation
between clusters. The authors in the article [8] use modified structural simi-
larity (cosine similarity) in HAC, the extended Jaccard similarity is used in the
article [4], and the Wasserman-Faust distance [42] was successfully used by Brzo-
zowski et al. in [7]. Dissimilarity used in the proposed algorithm is based on the
closed trail distance (CT−distance) [38] between nodes u, v that corresponds in
the undirected graph to the length of the shortest closed trail containing nodes
u, v. The distance between nodes in the network, designed in this way, takes
into account the structure of the graph and reflects the density of the neighbor-
hood of the nodes [39]. The closed trail distance designed for weighted networks
(wCT−distance) prefers such a closed trail that has the smallest weight. It can
be achieved by a shorter length or a smaller cost of edges in the closed trail.

The presence of overlapping communities in complex networks reflects the
multifaceted nature of interactions among nodes. Overlapping communities indi-
cate that nodes can belong to more than one group simultaneously, capturing the
patterns that often characterize real-world networks. For overlapping community
detection can be used different approaches: local method [18,32], modularity
optimization [33,36], clique based [25,45], statistical inference based methods
[18,28], label propagation [27,43], spectral clustering [46], and other methods.

An important part of the hierarchical community detection method is choos-
ing the appropriate level in the hierarchical structure. We can determine the
number of clusters if we focus on the structure of network communities at differ-
ent mesoscopic scales [26]. On the other hand, we can choose a cut-off level such
that it corresponds to the best value of the chosen evaluation of the detected
overlapped communities. Modified modularities [19,35] are used for the evalua-
tion of overlapped communities without knowledge of ground truth.

The most popular information recovery metrics for overlapping communi-
ties with the knowledge of ground truth are the overlapping Normalized Mutual
Information (ONMI) [17], the average F1-score [44], the Omega index [10]. Eval-
uations of detected overlapped communities are discussed in articles [11,12,41].

The main contributions of this paper are the introduction of a new hierar-
chical overlapping method for weighted networks and the empirical evaluation
of community detection quality for the proposed method on synthetic networks
generated by LFR. The proposed algorithm is suitable for detecting communities
with higher overlaps.

This paper is organized as follows. Section 2 presents related work about
overlapping and hierarchical community detection. In Sect. 3, we propose an
algorithm for overlapping hierarchical community detection in the weighted net-
work. Finally, Sect. 4 contains experiments on synthetic networks (LFR) and
their results.
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2 Related Work

Algorithms for hierarchical community detection can be categorized into divisive,
agglomerative, or optimization-based methods. Divisive algorithms start with
the entire network as a single community and recursively partition it into smaller
sub-communities. Recursive spectral partitioning is applied in an article [22] for
hierarchical community detection. Schaub et al. [34] introduced a definition of
hierarchy based on the concept of stochastic externally equitable partitions and
their relation to probabilistic models, such as the stochastic block model. They
enumerate the challenges involved in detecting hierarchies and, by studying the
spectral properties of hierarchical structure, present an efficient and principled
method for detecting them.

Agglomerative methods usually start with each node or edge as its own
community and then iteratively merge communities based on certain criteria.
As the process continues, communities are combined in a hierarchical manner.
Optimization-based methods formulate the hierarchical community detection
problem as an optimization task and aim to find the best division of the network
into communities according to specific criteria. These categories of methods for
hierarchical community detection are not always distinct, and some algorithms
might incorporate elements from multiple approaches. The Louvain method [5]
performs a greedy optimization in an agglomerative hierarchical manner, by
assigning each vertex to the community of their neighbors yielding the largest
modularity, and creating a smaller weighted super-network whose vertices are the
clusters found previously. Partitions found on this super-network hence consist
of clusters including the ones found earlier, and represent a higher hierarchical
level of clustering. The procedure is repeated until one reaches the level with the
largest modularity.

A lot of methods for overlapping community detection in complex networks
are based on cliques that represent the densest subgraphs. The local clique merg-
ing algorithm (LCMA) presented by Li et al. [23] is one of the represents of this
approach. The other representative is the clique percolation method (CPM) by
Palla et al. [25] used in the tool CFinder [1]. CPM defines a community as a
union of all k-cliques that can be reached by each other through a series of adja-
cent k-cliques (two k-cliques are adjacent if they share exactly k − 1 vertices).
Extension of CPM on weighted networks has been presented by Farkas et al. in
[13]. The Greedy Clique Expansion (GCE) algorithm proposed by Lee et al. [20]
identifies distinct cliques as seeds and expands these seeds by greedily optimiz-
ing a local fitness function. In [15], Gupta et al. reviewed a lot of clique-based
overlapping community detection algorithms.

Some methods for overlapping community detection are based on density
peak clustering (DPClus). DPClus method was introduced in the article [3]
where the algorithm identifies subgraphs that satisfy a density condition and
certain cluster connectivity properties. One of the first modifications of DPClus
is in [21] where the method IPCA looks for subgraph structures that have a
small diameter (or a small average vertex distance) and satisfy a different cluster
connectivity-density property. DPClus was used in an article [24] to obtain the
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number of centers as the pre-defined parameter for nonnegative matrix factor-
ization.

Lancichinetti et al. proposed in [17] the algorithm that finds both overlap-
ping communities and the hierarchical structure. Their method is based on the
local optimization of a fitness function that is calculated from the internal and
external degrees of the nodes of the module. In the same year was published
the article [35] where Shen et al. presented the algorithm (EAGLE) to detect
both the overlapping and hierarchical properties of complex community struc-
tures together. EAGLE deals with the set of maximal cliques and adopts an
agglomerative framework. The similarity between clusters is based on modular-
ity. The authors propose their extension of modularity to evaluate the goodness
of overlapped community decomposition. Algorithms GCE [20] and EAGLE [35]
identify the maximal cliques in the network as the seeds. The results of [2] sug-
gest that link communities are the basic building blocks that reveal overlap and
hierarchical organization in networks as two aspects of the same phenomenon.

Lancichinetti et al. presented in [18] Order Statistics Local Optimization
Method (OSLOM), the first method capable of detecting clusters in networks
accounting for edge directions, edge weights, overlapping communities, hierar-
chies, and community dynamics. It is based on the local optimization of a fitness
function expressing the statistical significance of clusters with respect to random
fluctuations, which is estimated with tools of Extreme and Order Statistics.

The COPRA algorithm proposed by Gregory [14] is an extended Label Prop-
agation Algorithm (LPA) [27] algorithm. It associates every label in the label set
with a belonging coefficient and updates the label set of each node by averaging
the coefficients from all the neighbor nodes. This algorithm detects overlapping
communities and can also handle weighted and bipartite networks. The SLPA
algorithm proposed by Xie et al. [43] is the other algorithm for overlapping com-
munity detection that is an extension of the LPA. It spreads the labels between
nodes according to a speaker-listener pairwise interaction rule.

Zhao et al. [47] proposed a parameter-free algorithm called agglomerative
clustering based on label propagation algorithm (ACLPA) to detect both over-
lapping and hierarchical community structures in complex networks. Authors
combining the advantages of agglomerative clustering and label propagation and
their algorithm can build the hierarchical tree of overlapping communities in
large-scale networks.

3 Proposed Algorithm for Overlapping Hierarchical
Weighted Community Detection

Hierarchical agglomerative clustering on the graph (GHAC) is used to detect
nested communities in a network using novel dissimilarity among clusters based
on closed trail distance in the graph and overlap density. The weight of edges
is incorporated into the calculation of wCT -distance [38] that together with an
overlap of cliques determines dissimilarity between clusters during the GHAC.
Maximal cliques are the base elements of the GHAC. This core idea has been
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presented in our previous work (under the review process) and the main con-
tribution of this paper is the extension of the community detection method to
weighted networks.

3.1 CT−distance in Weighted 2-edge-connected Graph

The definition of the CT−distance [38] (the shortest closed trail containing u
and v) may be extended for the weighted graph G = (V,E,w) where w is a
mapping w : E → R+. The weights of edges are considered like similarity in
the sense that a greater value is better. We need the reciprocal value of w(e) to
express the dissimilarity between vertices such that the weight of the closed trail
will be determined more by weights than by length.

Definition 1. Let G = (V,E,w) be a weighted graph and let the mapping dwCT :
V × V → R+

0 be defined by the equation

dwCT (u, v) = minCT (u,v)⊆G

⎛
⎝ ∑

∀e∈CT (u,v)

1
w(e)

⎞
⎠ .

Then the function dwCT is called the weighted closed trail distance
(wCT−distance).

We introduce dissimilarities between clusters based on the wCT−distance,
and the weight of overlap in a weighted graph. We consider that the weight of
overlap will be represented by the densest part of overlap which is a clique. The
weight of the densest clique in the overlap of two communities can be formalized
by the biggest and the heaviest clique as:

w(Q) = |Q| +

∑
∀e∈Q w(e)∑
∀e∈E w(e)

.

We define dissimilarities based on the Complete Linkage (CL) and the Aver-
age Linkage (AL) approach for GHAC on the weighted graph G = (V,E,w)
as:

dCL
wGHAC(Ci, Cj) =

max(vi∈Ci\Cj),(vj∈Cj\Ci)dwCT (vi, vj)
1 + argmaxQ∈Ci∩Cj

w(Q)
,

and

dAL
wGHAC(Ci, Cj) =

∑
(vi∈Ci\Cj),(vj∈Cj\Ci)

dwCT (vi, vj)

|(Ci ∪ Cj) \ (Cj ∩ Ci)|
(
1 + argmaxQ∈Ci∩Cj

w(Q)
) .

For the current work, we have denoted the use of the GHAC method with
dissimilarity dAL

wGHAC as wAL GHAC (Average linkage hierarchical clustering on
the weighted graph) or for dissimilarity dCL

wGHAC as wCL GHAC.
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3.2 Community Detection Procedure

A brief description of the steps in the proposed community detection method
is given in Algorithm 1. Suurballe’s algorithm [40] is used to calculate
wCT−distances among vertices. These distances represent one component of
dissimilarity utilized in the GHAC. The size of the overlap represents the other
part of dissimilarity as explained in the previous section.

Input : The 2-edge-connected component of a network (i.e. graph without
bridges)

Output: Network cover

Step 1: Calculate wCT−distance matrix among vertices in a input graph.
Step 2: Find maximal cliques (Bron-Kerbosch alg. [6]).
Step 3: Hierarchical agglomerative clustering on the graph:

Step 3.1: Agglomerate communities according to proposed dissimilarity
with maximal cliques as base elements.

Step 3.2: Map merged clusters of base elements to origin graph vertices.
Step 3.3: Filter out small clusters and fill in the network cover.
Step 3.4: Evaluate network cover structural quality by modularity and
external evaluation against ground truth.

Step 3.5: Repeat the algorithm from Step 3.1 until all clusters are merged.
Step 4: Choose the best level for a cut of a dendrogram of agglomerative steps.

Algorithm 1: Proposed community detection method based on the GHAC
and dissimilarity leveraging wCT−distance.

Maximal cliques are used as bases in the GHAC and merged clusters of
maximal cliques are mapped to vertices with a few post-processing steps. The
communities with a size less than 5 are removed from network cover during the
post-processing. Any vertices that do not belong to any community are assigned
to one of the most frequent communities among its neighbors.

The modularity defined in [19] is used to evaluate each level of a cut in the
GHAC. This modularity takes the weight of edges into account. The evaluation
of network cover against ground truth information is measured using ONMI [17]
and NF1 [29,31] scores.

4 Experiments

The experiments are aimed at verifying the ability of the proposed and standard
algorithms to correctly detect communities with large overlaps and with nodes in
multiple communities. The parameters of the LFR [16] benchmark were selected
depending on this requirement.

For the performance evaluation, a collection of synthetic graphs was gen-
erated with combinations of parameters for the LFR benchmark: 500 nodes,
the power law exponent for degree distribution was −2, the power law expo-
nent for community size distribution was −1, average and maximum degree
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(〈k〉, kmax) ∈ {(10, 30), (20, 30), (10, 50), (20, 50), (30, 50)}, minimum and max-
imum community size (cmin, cmax) ∈ {(7, 30), (15, 50)}, a number of nodes in
overlaps on ∈ {0, 50, 100, 200}, a number of memberships of the overlapping
nodes om ∈ {2, 4, 6} and mixing parameter μ ∈ {0.1, 0.2, 0.3}. Five different
graph instances were generated using a unique seed for each combination of
parameters. Two subsets of generated networks are used in experiments and visu-
alized: subset A contains 540 random graphs with mixing parameter μ = 0.1, and
subset B selects 945 networks with “reasonable” overlap, i.e. the non-overlapping
networks and networks with 40% of overlapping nodes and a number of mem-
bership om ≥ 4 were excluded.

The selection of overlapping community detection algorithms for comparison
consists of OSLOM [18], IPCA [21], SLPA [43], and ASLPAW [30]. The SLPA is
the only algorithm that is not able to work with weights in networks. During the
experiment, several input parameter configurations were used for each method
and only the best achieved evaluation score is reported in the figures for methods.
The symbol star ∗ is used when reporting these values. In addition to a selection
of possibly the best evaluation score, the score for the proposed methods is also
reported only for the cut indicated by the highest overlapped modularity value.
In the experiments, we are progressing from unweighted performance evaluation
to performance evaluation on weighted networks.

4.1 Unweighted Synthetic Networks

The version of LFR for unweighted and undirected graphs with overlapping
communities was used to assess the quality when the weight of all edges was
equal to one.

The evaluation of the performance in relation to a number of nodes in over-
lapping communities is visualized in Fig. 1, where the average evaluation score for
various benchmark configurations is reported. Non-overlapping results suggest
a comparable average score for the proposed methods and SLPA and OSLOM.
With the increasing number of overlapping nodes, the average score decreases for
all methods. We can notice that the OSLOM achieved a better ONMI score for a
higher number of overlapping nodes in comparison to the proposed method when
we used modularity for selection (AL GHAC). However, the maximum ONMI
score achieved in the hierarchical process (AL GHAC∗) is higher. It shows a limit
of used modularity in the identification of the best possible cut in the hierarchy.
When the NF1 was used for evaluation the OSLOM outperformed all methods.

In the denser networks, Fig. 2, the proposed methods achieved better ONMI
scores than other methods. Even the cut indicated by modularity achieved a
score comparable to OSLOM. OSLOM finished with the highest values for each
category of network with different densities according to the NF1 evaluation.

The decreasing trend of ONMI with increasing mixing parameter μ can be
seen in Fig. 3. The proposed methods seem to be affected in a comparable way to
methods SLPA and ASLPAW. The increasing mixing parameter has the smallest
impact on the evaluation score of the OSLOM.
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Fig. 1. Evaluations of overlapping node ratio impact to unweighted community detec-
tion performance for a subset A (µ = 0.1).

Fig. 2. Evaluations of network density impact to community detection performance.
The evaluation was performed for subset B.

Fig. 3. Evaluations of mixing parameter µ impact to community detection perfor-
mance. The evaluation was performed for subset B.

4.2 Sensitivity of Community Detection Methods to Edge Weight

The proposed methods are able to work with weighted networks. Therefore fol-
lowing experiments include a weighted version of networks. We are aware of
existing versions of LFR benchmarks for the weighted graph generation. How-
ever, we noticed different behavior in intra-inter edge weight assignment when
we used two different open-source implementations.
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Fig. 4. Community detection sensitivity on the strengthening of intra-community edge
weights for subset B.

For the sake of the simplicity of this experiment, we have decided to create
random weights for already generated networks from the unweighted experiment.
Therefore we are able to see the impact of weight information for the same graph.
The procedure for weight generation consists of random sampling from a normal
distribution (μ̂, σ) and later strengthening of the weight inside of the commu-
nity. The shift of intra-inter edges weight distribution was set to 1σ, 2σ, 3σ. All
weights were normalized into the interval 〈1, 3〉 because of the use of dwCT in
the proposed dissimilarities.

We can notice the increasing ONMI value when the intra-community edge
weights were increased from a random baseline in Fig. 4. The drop in score
between unweighted and randomly weighted edges seems to be an effect of an
applied procedure for weight generation. High sensitivity for generated weights
is observed in the improvement of performance for methods IPCA and ASLPAW
in contrast to OSLOM.

4.3 Weighted Synthetic Network

The following evaluation aims to explore the quality of detected network covers
when the intra-community weights were strengthened by 3σ.

The relation between the number of overlapping nodes and evaluation scores
ONMI and NF1 can be seen in Fig. 5. The comparison between proposed meth-
ods wAL GHAC and wCL GHAC to OSLOM yields in same observation as in
comparison in unweighted experient, Fig. 1. The gap between wAL GHAC and
wAL GHAC∗ is getting wider for a higher number of overlapping nodes. Differ-
ent functions indicating the best cut in the hierarchy may help to achieve the
upper performance bound. We have observed improvement in scores for IPCA
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Fig. 5. Evaluations of overlapping node ratio impact to weighted community detection
performance for a subset A (µ = 0.1).

and ASLPAW, which is consistent with the observation from weight sensitivity
boxplots in Fig. 4.

The relation of other specific network characteristics to community detection
performance has been studied on the LFR benchmark. The study showed similar
dependencies as in the unweighted experiment in the trend of observations gained
by a number of overlapping node relation evaluations, observed in Fig. 5.

5 Conclusion

The hierarchical overlapping community detection methods were proposed for
weighted networks. wAL GHAC and wCL GHAC achieved better scores for some
configurations of the LFR benchmark at detecting overlapping communities than
any of the other algorithms that have been tested. wAL GHAC achieved a better
score in comparison to wCL GHAC. The dissimilarity between communities for
the wAL GHAC method takes into account all distances between nodes from one
community and the other, which better corresponds to the idea of a community
where each node is close to the other. The hierarchy obtained by the proposed
methods was not tested and compared with other methods but the result is
naturally hierarchical and can be further used from a granular point of view on
detected communities.

The proposed algorithms are sensitive to the weights of edges and the
strengthening of intra-edge weights has a positive influence on the quality of
detected communities. Modularity for identification of the specific level of cut
in the hierarchy (as the quality of detected communities) is under discussion
because the better value of ONMI and NF1 can be reached by proposed algo-
rithms in different levels of the hierarchy. A better indication of the best cut
than modularity would be beneficial.
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Abstract. Identifying sub-networks showing similar properties, referred
to as community detection, is a challenging task in network analysis. This
challenge becomes even more formidable in bipartite networks. The focus
of this study is the patients with problems in their Peripheral Nerve Sys-
tem. To this aim, we engaged the assistance of spinal specialty clinics
in the collection of necessary Data. We employ the bipartite network to
represent the relationship between the patients and their symptoms and
disorders. The resulting bipartite network showcases unequally sized sets
of nodes, making community detection more challenging. The principal
purpose of this study is to develop a new, practically relevant method
for finding communities inside such networks. As such, we propose the
Bi-MRComSim algorithm which applies different methods to transform
the bipartite network to a unipartite one that can find meaningful com-
munities between patients that coincide 85% of the time with diagnoses
issued by physicians.

Keywords: Bipartite Network · Community Detection · Graph
Projection · Peripheral Nervous System

1 Introduction

Our world is full of networks, representing various complex systems in different
disciplines. Biological scientists, for example, seek to understand the associations
between all known phenotypes and disease genes from a represented network of
disorders and disease genes, whereas social scientists study the behavioral pat-
terns of different groups of users from online social networks of acquaintanceships
[20]. Many more instances may be found in politics, economics, marketing, com-
puter science, transportation, and other fields [13,18,20,21,27].
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However, how can we determine what constitutes dense communication or
interactions between network components? The answer is a notion known as
community detection. In network science, a community is defined as a set of
nodes that are more likely to link to one another than to nodes from other com-
munities [6]. Community detection is one of the fundamental concerns in social
network analysis with the aim of identifying communities with uniform node and
adherent structures. Although community detection has been widely explored,
however, community detection of substantial networks with a high number of
complexities remains a formidable obstacle [29]. For example, overlapping com-
munity detection is sensitive to the initialization of community centers, which
may easily trap nodes in local optima and result in misclassification [31].

This research focuses on peripheral nerve system problems. We examined how
individuals cope with their diseases and symptoms using data from a recognized
neuroscience institute. In a bipartite network, patients and diseases or symptoms
form two sets of nodes. The bipartite network has varied node sizes, making
community detection more difficult. Three methods were used to project the
resulting bipartite graph and its unique properties onto three unipartite graphs.
The modified ComSim community detection algorithm [33], which we tailored to
our study, received these unipartite graphs. The algorithm’s accuracy was shown
by comparing the found communities to the physician’s suggestions.

2 Related Work

Numerous bipartite networks are seen in network theory. Many biological net-
works are naturally bipartite, such as the protein interaction network from yeast
[17], the diseaseome network from Human Disease Network [5,9], and the scien-
tific collaboration network [26].

As these examples illustrate, in a bipartite graph the vertex set is partitioned
into two disjoint subsets and each edge has two endpoints from two distinct
vertex sets [4,10]. Often, the purpose of studying these types of networks is to
represent the interactions between members, such as economic linkages between
countries, co-authorship, or actor-movie relationships, and to identify important
communities.

In a node-based definition, a community is a set of nodes that connect more to
each other than to other nodes of the network, based on the idea that they share
the same resources or have similar properties. Many methods have been proposed
based on this point of view, such as eigenvectors of matrices [23], modularity
optimization [16], and clustering coefficient [34]. A well-known quality function
that evaluates communities based on this idea is modularity [24].

On the other hand, in an edge-based definition, a community is a group of
edges rather than nodes [1,11]. The classification of edges into groups is based
on the similarity of nodes connected to them. This definition is useful in dealing
with overlapping communities, where each node inherits membership from all its
incident edges and can belong to multiple communities. The choice of definition
depends on the context and application requirements for a particular network.
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Community detection in bipartite networks can be approached in different
ways. One approach is to detect communities across the entire bipartite network.
In another approach, the focus is on the disjoint sets of nodes, and the community
structure within these sets is of importance. For this latter approach, the network
will be projected onto a unipartite network, a procedure known as one-mode
projection. This way, nodes belonging to the same set are linked if they have met
some predefined conditions. Such approaches have been employed successfully
for item recommendation based on customer-product and user-item bipartite
networks [2,3,15,30,35] One of the pioneer studies in this respect is the work
presented by Freeman et al. [14] where during network projection, two nodes
are connected if they have more comparable relations to one or more common
nodes in the bipartite network. The Projection is frequently used to transform
a bipartite network into a unipartite network suitable for further analysis.

Projecting a bipartite network into a unipartite counterpart often results in
information loss. This is primarily due to the elimination of one set of vertices
and the disregard for their connections. To address this limitation and minimize
information loss, various studies of projection networks have advocated the use
of a variety of quantitative functions and algorithms [7,22]. Some strategies
suggest decreasing the amount of information loss by incorporating weights on
the edges of the resulting unipartite network. The most straightforward method
of weighing is to count the number of neighbors that any two nodes in the
projected unipartite network have in common in the original bipartite network
[28]. Additionally, many bipartite modularity functions have been suggested,
assuming that a community is a bipartite sub-graph made of nodes of both sets
[8,19,32].

3 Problem Statement

The individuals who were the subject of this study and suffered from condi-
tions affecting their peripheral nervous system were the primary focus of the
research. Due to the existence of entities between patients and their disorders,
our intention was to use a bipartite network to illustrate the connection that
exists between patients and the disorders that they experience. In order to ful-
fill this objective, we engaged the assistance of a spinal specialist clinic in the
process of collecting the necessary data about patients. As stated previously,
these patient-disorder networks are bipartite, which results in sets of nodes that
are not of equal size in both types A and B. Also, the main objective of this
study was to develop a method that might be used for identifying community
values inside these types of networks. An algorithm was then built to assess the
unique aspects of this dataset. This will allow for the detection of correlations
between patients and the disorders that they suffer from. The method, which
goes by the name Bi-MRComSim, makes use of three different approaches, each
of which is an example of a possible approach for projecting a bipartite network
into a unipartite graph. In addition, after projecting the unipartite networks, we
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sent them through a community detection algorithm in order to determine the
community values derived from each method.

4 Dataset Description

Our dataset comprises information on 311 patients who sought treatment at a
specialized spinal clinic. For each patient, we documented issues pertaining to
their cervical and lumbar regions, as well as general symptoms. As a result, each
patient was associated with a set of potential disorders. We transformed this data
into a bipartite graph, featuring two types of nodes: Type A nodes representing
the patients and Type B nodes representing the disorders they suffered from.
We established connections between each patient and the disorders they were
experiencing. Recognizing that disorders related to different parts of the spine
hold varying levels of importance, we decided to assign distinct weights to these
disorders based on input from the spinal clinic’s specialists. Specifically, disorders
related to cervical regions were assigned a weight with a value of 6, lumbar region
disorders were given a weight of 3, and other general disorders received a weight
of 1. Consequently, we created a weighted bipartite graph in which the number
of Type A nodes far exceeded that of Type B nodes. The resulting bipartite
graph, depicted in Fig. 1, was used as the foundation for our analysis.

Fig. 1. The weighted bipartite graph depicts three groups with three colors: red for
general disorder symptoms, pale blue for cervical, and dark blue for lumbar.

The main network characteristics of the resulting bipartite network have been
reported in Table 1.

Physicians at the spinal clinic had previously clustered the patients into six
distinct communities based on their disorders, symptoms, and explicit diagnoses.
These communities serve as our reference or “ground-truth” communities for
assessing the performance of our proposed community detection algorithm.
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Table 1. Properties of the Resulting Bipartite Network.

Network Overview

Number of Type A nodes 311

Number of Type B Nodes 51

Number of Edges 3996

Avg. Clustering Coefficient 0

Network Diameter 1

Connected Components 1

5 Proposed Method

To detect the communities between patients in the bipartite graph described in
3, we propose the Bi-MRComSim algorithm. The Bi-MRComSim encompasses
three main phases as follows:

– The projection phase: The bipartite graph will be transformed into a unipar-
tite graph of patients

– Weight assignment phase: In this phase, for each edge in the unipartite net-
work, a weight will be created.

– The community detection phase: inspired by the ComSim algorithm, the com-
munities among the patients in the projected unipartite graph will be detected

5.1 The Projection Phase

Let G(A,B,E) be the bipartite graph with |A(G)| = n1 be patients vertex set,
|B(G)| = n2 be the disorders vertex set, and |E(G)| = m be the total number of
links in the bipartite network, Now projection of the bipartite graph G for the
vertex set A with respect to the vertex set B is to construct a unipartite or one
mode network G′(U,E′) where V (G) = A and (aiaj) ∈ E(G′) if N(Ai)∩N(Aj) �=
φ, where N(Ai) is the set of neighbors linked to node Ai from the disorders vertex
set (vertex set B). In other words, if any two patients share at least one common
disorder, there will be a link between them in the resulting unipartite projected
network. The procedure of this projection is shown in Algorithm 1.

5.2 Weight Assignment Phase

After the projection phase, the next step is to assign weights to the edges of the
resulting unipartite network. To this aim, three weight assignment procedures
have been proposed. In the following, we elaborate on these procedures.
Meet
Union Function Let eij be an edge between nodes Ai and Aj in the projected
unipartite network. The weight assigned to this edge will be calculated in the
following
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Data: Bi-adjacency Matrix (B) of the Bipartite Network.
Result: Adjacency Matrix (A) of the Projected Network.
begin

n1 ←− B.NoOfRows()
n2 ←− B.NoOfColumns()
for i ∈ n1 do

for j = i + 1 ∈ n1 do
for k ∈ n2 do

if B[i][k] == 1 and B[j][k] == 1 then
A[i][j] = 1
break
else
A[i][j] = 0

end

end

end

end

end
Algorithm 1: Algorithm for Computing Projected Network

weight =

∑
k∈(N(Ai)∩N(Aj))

Weight(k)
∑

k∈(N(Ai)∪N(Aj))
Weight(k)

(1)

where N(Ai) is the set of nodes from the disorders vertex set (vertex type B)
that have a link with node Ai in the original bipartite graph and Weight(k)
denotes the weight associated with the disorder as what we explained in the
description of the dataset. This procedure is shown in Algorithm 2

Data: Unweighted Projected Unipartite Network, Original Weighted Bipartite
Network

Result: Weighted Unipartite Network with Meet
Union

weights
initialization;
while there are any two nodes in the unweighted projected unipartite network do

Meet = Find
∑

k∈(N(Ai)∩N(Aj))
Weight(k)

Union = Find
∑

k∈(N(Ai)∪N(Aj))
Weight(k)

Link Weight = Meet
Union

Assign link Weight to edge
end

Algorithm 2: Meet
Union function

Meet
Union × Random Walk Similarity Function. As the second strategy for cal-
culating weights, we used the Meet

Union × RandomWalk technique. The random
walk approach examined in this research is based on the Page rank algorithm
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[25]. We use this approach to determine the degree of similarity between every
pair of type A nodes based on the characteristics found on the other side of
the weighted bipartite graph. The random walk procedure can be explained as
follows. First, we create a counter for each type A node in the bipartite graph
and we initialize it to zero. For each type A node we run the following procedure
a large number of times:

– 1: We randomly select one of the type B neighbors of the node and move
to it on the other side of the bipartite network. This random selection is
proportional to the weight considered for that particular connection.

– 2: On the other side of the network, we randomly select one of its neighbors
(type A nodes) and move to it. Moreover, we increment the counter associated
with this type A node for each visit.

– 3: We repeat steps 1 and 2

After a large number of iterations, we focus on the counter of type A nodes. To
normalize the counter values, we can apply the numberofvisits

numbeofiterations . Those nodes
with higher normalized counter values are more similar to the target node. Now,
the weight of edge between nodes Ai and Aj can be computed as:

weight =

∑
k∈(N(Ai)∩N(Aj))

Weight(k)
∑

k∈(N(Ai)∪N(Aj))
Weight(k)

× RandomWalkScore(Ai, Aj) (2)

Threshold Usage Function. In the third strategy, we try to combine the
two weighting procedures proposed in previous sections. Let eij be an edge in
the projected unipartite network connecting nodes Ai and Aj . We compute
a similarity score between Ai and Aj based on the random walk score (i.e.,
RandowWalkScore(Ai, Aj)). If this similarity score is greater than a predefined
threshold, the weight of the edge would be computed based on the Meet

Union weight-
ing strategy. Otherwise, this link will be removed from the unipartite network.
This procedure has been shown in the Algorithm 3.

5.3 The Community Detection Phase

In this phase and inspired by the ComSim algorithm, we find the community
among type A nodes (the patients) in the unipartite projected network. The
community detection is composed of two steps.

In the initial phase, we initiate the identification of core communities. To do
this, we commence by identifying a type A node with the highest degree, which
we refer to as the “target node.” Subsequently, we seek out a neighbor of the
target node with the greatest similarity, where similarity is defined by the weight
associated with the edges connecting the target node to its neighbors. The newly
selected node now becomes the target node, and we repeat this process until we
revisit a previously explored node, indicating the formation of a cycle. At this
point, all the nodes involved in the cycle are designated as the constituents of a
core community. Following this, we proceed to select the next type A node with
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Data: Unweighted Projected Unipartite Network, Original Weighted Bipartite
Network

Result: Weighted Unipartite Network with Threshold Usage
initialization;
Look at the link between every two nodes (Ai, Aj) of the graph
for i, j ∈ All2NodesInGraph do

if RandomWalkScore(Ai, Aj) > threshold then

LinkWeight =

∑
k∈(N(Ai)∩N(Aj))

Weight(k)
∑

k∈(N(Ai)∪N(Aj))
Weight(k)

else
Delete Link

end

end
Algorithm 3: Threshold function

the highest degree and repeat the aforementioned procedure. Once this process
is completed, we will have successfully partitioned the nodes that constitute the
core communities. This procedure is detailed in Algorithm 4.

In the second step, our objective is to assign the remaining nodes from the
first step to the most suitable core communities. To achieve this, we identify,
for each remaining node, those core communities that have at least one con-
nection with it. Subsequently, we allocate the remaining node to the core com-
munity which maximizes the total similarity score between the remaining node
and all the nodes within that core community. This procedure is illustrated in
Algorithm 5

6 Experiments and Results

In this section, we compare Bi-MRComSim to physician diagnosis. The imple-
mentation of Bi-MRComSim uses BiMAT [12], a c©MATLAB library for bipar-
tite network analysis and visualization. The application development and run-
ning PC has 16 GB RAM with c©MATLAB R2022a. The suggested Bi-
MRComSim approach is tested by comparing its findings to the DofD. In order
to test randomness, the algorithm iterations are limited to 1,000,000.

It is essential to note that our model, Bi-MRComSim, may generate small
communities, typically comprising only two members, which may not align
directly with the physician’s reported communities. To address this issue, we
evaluate the similarity between these small communities and the larger, core
communities. This similarity is defined as the sum of link weights connecting
members of a small community to members of a larger community within the
weighted unipartite network projection. Subsequently, we identify the core com-
munity with the highest similarity and incorporate the members of the small
community into it.

To compute accuracy formally, we establish two distinct groups of commu-
nities: the “target communities” designated by physicians and the “predicted
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Data: a bipartite graph β= (type A, type B, Edge, a similarity function
Similarity) and the weighted projected unipartite graph

Result: return a partition P of type A nodes and a set K of remaining nodes
(for the second step)

P:=φ // the partition set
T:= type A // the set of nodes to be considered
χ:= PickMaxDegreeAndRemove(T) // the highest degree type A node
V:=φ // set of nodes currently considered
K:=φ // set of remaining nodes
initialization;
while T �= ∅ do

/* finds a neighbor y of χ maximizing Similarity(χ, y)
if y ∈ V then

C := cycle(V, y, χ) // extract the detected cycle from y to x in V
P.add(C)
K := K ∪ (V − C) // stores nodes not in the cycle C
V := φ
χ := PickMaxDegreeAndRemove(T )

else
if y ∈ V then
V := V ∪ y
x := y
T := T − y
else
/* y is already part of an element of P , visited nodes are stored */
K := K ∪ V
V := φ
χ := PickMaxDegreeAndRemove(T )

end

end
return P and K

Algorithm 4: Community Detection First Step

communities” generated by Bi-MRComSim after excluding the small communi-
ties. Here’s the formal accuracy calculation:

– We compute the intersection between each predicted community and all of
the target communities. The intersection represents the common members
shared between a predicted community and the target communities.

– We identify the highest intersection value obtained for each predicted com-
munity concerning all target communities.

– To determine the accuracy for a specific predicted community, we divide the
highest intersection value by the size of the predicted community.

– To obtain the overall accuracy, we calculate the mean of the accuracies for
all predicted communities.

For instance, if a predicted community contains 50 members, and its highest
intersection with the target communities is 30 members, then the accuracy for
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Data: a bipartite graph β = (type A, type B, Edge); a partition P ; a set K of
remaining nodes (from first step), a similarity function Similarity,
weighted projected unipartite graph

Result: return a partition P′ of type A nodes and unsatisfied nodes R
R:=φ // Remaining nodes
P ′:=P
initialization;
while X ∈ K do

PX := CommonNeighbor(χ, P ) // Find all neighbor communities of x
if PX := φ then

R := R ∪ {X}
else

C := argmaxCx∈PxΣy∈CxSimilarity(x, y)
Add X into the partition C of P ′

end

end
return P ′ and R

Algorithm 5: Community Detection Second phase

Table 2. Results

Methods Results
Meet
Union

0.8590

Random Walk 0.8487

Threshold 0.7331

this predicted community would be 30/50 = 0.6. The total accuracy is then
computed as the average of these individual community accuracies.

This formal accuracy assessment method allows us to quantitatively eval-
uate the agreement between the communities detected by Bi-MRComSim and
those identified by medical professionals, providing a comprehensive and rigorous
evaluation of our model’s performance.

6.1 Results

In this part, we compare the performance of Bi-MRComSim with standard DofD.
For final measurement, the program is executed five times and the average num-
ber of those five replicates was considered as the final number.

Table 2 demonstrates that the Meet
Union approach has the highest accuracy com-

pared to all other methods. This is due to the fact that increasing the connect-
edness between patients’ neighbors has a more robust rationale than the other
two methods. Therefore, the Meet

Union technique more precisely covers the severity
of disorders amongst patients. Therefore, the community function has a superior
output for examining the relationship between the outcome of our algorithm and
the doctor’s diagnosis compared to other functions.
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As seen in Fig. 2a, the analysis of each of the three methodologies reveals a
consistent pattern in achieving community structures. The testing results show
that when Meet

Union is used, Bi-MRComSim is superior to almost 86%. Practically
speaking, the Meet

Union method is the best option since it finds roughly 86% of the
connections between the DofD clusters and the algorithmically derived commu-
nity structures. Furthermore, the value of α = 0.1259 represents the variation
error seen in all methodologies in relation to DofD. Accordingly, both our best
and least accurate models’ errors in identifying community structures are close
to α ∼= 13%.

As seen in Fig. 2b, the Meet
Union method serves as the primary method of enlarg-

ing the number of communities. The findings illustrate a straight correlation
between the number of communities and the number of nodes, which is essential
in the Meet

Union methodology for identifying precise community components.

Fig. 2. (a) is the deviations of three methods (b) is the number of Communities

In this study, we tackled the challenge of detecting community structures
in patients with peripheral nervous system (PNS) disorders using a bipartite
network representation. Our dataset included 311 patients and their associated
symptoms and disorders, resulting in an unequal distribution of nodes in the
bipartite network. To address this, we proposed the Bi-MRComSim algorithm,
which consists of three key phases: projection, weight assignment, and commu-
nity detection. In the projection phase, we transformed the bipartite network
into a unipartite one, focusing on patients. We then assigned weights to the
edges in various ways, such as using the Meet

Union function, random walk similar-
ity, or a threshold-based approach. Finally, we applied a community detection
algorithm, akin to the ComSim algorithm, to find communities among patients.
We evaluated our method by comparing the detected communities to physician
diagnoses and found that the Meet

Union method achieved the highest accuracy, coin-
ciding with diagnoses approximately 86% of the time. Overall, our study offers a
practical approach to detecting community structures in PNS disorder patients,
which can aid in understanding and managing these conditions.
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Abstract. The gradient descent has proven to be an effective optimiza-
tion strategy. The current research proposes a novel clustering methodol-
ogy using this strategy to recover communities in feature-rich networks.
Our adoption of this strategy did not lead to promising results, and thus
to improve them, we propose a special “refinement” mechanism, which
culls out potentially misleading objects during the optimization. We val-
idated and compared our proposed methods with three state-of-the-art
algorithms over four real-world and 160 synthetic data sets. Our results
proved that our proposed method is valid and in the majority of cases
has a significant edge over the competitors.

Keywords: feature-rich networks · community detection · steepest
descent optimization · gradient descent approach

1 Introduction: Background and Modification

Community detection using gradient descent (GD) in various modifications is
becoming popular because it brings forth such advantages as a continuous rep-
resentation of difficult combinatorial problems, reasonable non-linearity formu-
lations, and universality. A recent review of techniques used can be found in [1].
The developments concentrate, first of all, on using GD for training networks
participating in optimization of community detection algorithms, like it is done
in [1,9]. The former involves the modularity function, the latter the spectral app-
roach criterion. The other direction is based on reformulation of the community
detection problem as a relaxed continuous model involving”soft” label assign-
ments functions. A further on elaboration of the model may go either by using
neural network for a specific GD based method of optimization (see, for exam-
ple, [9,11,24]) or without any involvement of neural networks, by formulating a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1142, pp. 185–196, 2024.
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specific relaxation of the problem and a problem-specific method for its solution.
For example, in [5] a quadratic programming relaxation of the node matching
problem is developed, whereas authors of [4] formulate a specific probabilistic
structure with a corresponding criterion. Both use GD for solving corresponding
problems. Authors of [8] introduce elements of a GD framework for modularity
optimization using what they call a vector-label propagation algorithm, in which
a node is associated with a vector of continuous community labels (instead of
one label, as usual).

In contrast, the authors of current research utilize a straightforward data
recovery community detection model such as described in our work [20]. We
apply GD to the least-squares data-recovery criterion without relaxing its com-
binatorial structure, like it was done by Shalileh S. in [19]. Unfortunately, in
real-world computations, the GD algorithms for the least-squares criterion, even
in improved versions such as that by Kingma and Ba [12], may encounter ”bad
sequences”of objects and converge to points which are far from optimal. To
tackle this issue, we introduce a special ”refinement” mechanism, which culls
out potentially misleading objects. Our goal is to show that our refined gradient
descent method indeed leads to improvement in the quality of results.

2 Methodology

2.1 Problem Formulation

Let D = {X,A} represent a feature-rich network over a nodes’ set I with the
cardinality N ; where X ∈ R

N×V and A ∈ R
N×N , represent the features and the

adjacency matrices, respectively. We aim to partition D into K crisp clusters
using the feature and network information simultaneously such that the within
cluster entities are as interconnected as possible and share similar features.

To achieve our objective, we associate each cluster, sk, with the centroid in
the feature space ck, and the centroid in the network space λk, forming the set
of clusters, S = {sk}Kk=1, the set of centroids in feature space, C = {ck}Kk=1,
and the set of centroids in network space, Λ = {λk}Kk=1 respectively. With this
notation we can define a generic clustering objective function as:

J(D,C,Λ) =
N∑

i=1

K∑

k=1

ρf(ck,xi) + ξh(λk,ai). (1)

where f(.) : R
V −→ R and h(.) : R

N −→ R represent a distance functions
of the choice that will be applied to measure the distance between the ”i-th”
data points, in the feature and network spaces, and the corresponding centroids.
In this work, being differentiable is the only limit we have for these distance
functions. And to adjust the trade between the two data sources during the
clustering procedure we define ρ, ξ ∈ [0, 1]. In the remainder of the current study
we fixed them to unity.

Optimizing the objective function in Eqn. (1), even using a straightforward
distance, like Euclidean distance, is computationally expensive and cannot be
solved exactly in a reasonable time. In this work, inspired by the triumph
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of the gradient descent approach and automatic differentiation in supervised
learning tasks, and following the research direction started [19], we proposed a
novel methodology to recover clusters in feature-rich networks using the gradi-
ent descent approach, and automatic differentiation. Since the gradient is the
direction of the steepest descent and is the underlying concept of our proposed
methodology, we name our proposed method the steepest descent clustering
(SDC).

2.2 Proposed Clustering Methods

SDC method consists of three components: (i) cluster assignment criterion, (ii)
cluster update rule(s), and (iii) convergence condition. Before explaining them,
we update our notation by adding subscript t to represent the concept of itera-
tions. Concretely, we denote the set of centroids in the feature space and network
space at iteration t with C(t) = {c(t)k }Kk=1 and Λ(t) = {λ

(t)
k }Kk=1 respectively. Sim-

ilarly, we denote the set of detected clusters at iteration t with S(t) = {s(t)k }Kk=1.
The Eqn. (2) represents the first component of SDC, i.e., the cluster assign-

ment criterion:

argmin
k

f(xi, c
(t)
k ) + h(ai,λ

(t)
k ) < f(xi, c

(t)
j ) + h(ai,λ

(t)
j ), ∀j �= k. (2)

that is, at iteration t the i-th node will be assigned to the cluster k for which the
total sum of the distances, between the i-th data points and the corresponding
centroids, in both spaces, is minimized.

For brevity, we only concentrate on explaining the centroid update rules
in the features space. Similar equations can be obtained for the corresponding
centroids in the network space.

The second component of our proposed method, i.e., the update rule, in its
vanilla form (VSDC), for the feature-space centroids, is explained in Eqn. (3):

c(t+1)
k = c(t)k − α∇

c
(t)
k

f(xi, c
(t)
k ) (3)

where α represents the step size, and ∇
c
(t)
k

is the gradient of the distance func-
tion, f , w.r.t the k-th feature centroid at iteration t evaluated with the feature
data point xi. It ought to be added that our preliminary experiments, aligned
with the results of [23], proved that the on-line update rule is significantly more
efficient than the batch version of the gradient descent algorithm; therefore, we
update the centroids in an on-line manner, that is the each batch consists of
only one data point.

It is well-known that the vanilla update rule is prone to slow convergence,
especially at nearly flat surfaces [13]. To tackle this issue, the Nesterov accel-
erated momentum [18] was proposed. However, the vanilla update rule and the
Nesterov accelerated momentum rule update the components of the centroids
with the constant step size; that leads to dominantly, and not necessarily desir-
ably, influencing the update direction by those components with constantly high
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gradients. The adaptive gradient optimization methods such as [12,25] have been
proposed to address this issue. In the current study, we utilize the adaptive
moment estimation method [12], also called ADAM, and propose the ASDC
update rule to increase the influence of components with less frequent high gra-
dients during the centroid updates.

To describe the ASDC update rule, let us denote the gradient vector in the
feature space at iteration t with g(t)

k = ∇
c
(t)
k

f(xi, c
(t)
k ). And let g(t)

k � g(t)
k be

element-wise product of this gradient vector by itself. Also, let us denote the
first-moment (the mean) and second-moment (the uncentered variance) vectors
in the feature space with m(t) and n(t), respectively. The Eqn. (4) represents the
four steps of the ASDC in the feature and network space, respectively:

m(t+1) = β1m(t) + (1 − β1)g
(t)
k (4a)

n(t+1) = β2n(t) + (1 − β2)(g
(t)
k � g(t)

k ) (4b)

m̂(t+1) = mt+1/(1 − βt
1) (4c)

n̂(t+1) = nt+1/(1 − βt
2) (4d)

c(t+1)
k = c(t)k − αm̂(t+1)/(

√
n̂(t+1) + ε), (4e)

where m(t), n(t), r(t), and q(t) are initialized with zero, and will be calculated
using the exponential moving averages of estimates of the gradient and its square,
and ε = 1 × 10−8. More precisely, the first and the second moments of feature
gradient vector can be formulated as:

m(t+1) = (1 − β1)
t∑

j=0

βt−j
1 g(j)

k , (5)

and

n(t+1) = (1 − β2)
t∑

j=0

βt−j
2 (g(j)

k � g(j)
k ). (6)

where β1, β2 ∈ [0, 1) are the corresponding decay weights. Since the adjacency
matrix is usually sparser than the feature matrix, the behavior of gradients in
these two spaces are different, and we expect noisier behaviors in the network
space. Moreover, we applied this update rule in clustering, thus, we treated the
four decay weights, two corresponding to the features and two corresponding to
the network, as hyperparameters and tuned them separately in Sect. 4.

As an additional caution, to correct bias due to zero initializations of
moments and to prevent taking a large step size at the beginning of the optimiza-
tion, we divide them with (1 − βt

1) and (1 − βt
2), in (4c) and (4d) respectively. It

ought to be mentioned that the superscript t denotes the exponentiation power,
while (t) denotes the iteration number. The network gradient moments can be
calculated similarly and for brevity, we avoid discussing them here.
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Theoretically various convergence conditions can be adopted for the last con-
stituent of SDC, in the current research, we limited our study to simply reaching
the predefined maximum number of iterations as the convergence condition and
postponed the other possibilities to future work.

To summarize, so far, we proposed two update rules, the vanilla and ADAM
update rules, and this led us to propose two SDC clustering methods, for which
we represent them as VSDC and ASDC, respectively. We summarize the SDC
methods in common steps in Algorithm (1).

Algorithm 1: Steepest Descent Clustering (SDC)
Input: D = {X, A}: Feature-rich network; K:clusters’ number; the choice of
update rule.
Hyperparameters: α: step size; T : maximum number of iterations; β1 and β2:
first and second moments decay coefficients.
Result: S = {s

(t)
k }K

k=1 % set of K binary cluster membership vectors;

C = {c(t)k }K
k=1 % set of K centroids in feature space;

Λ = {λ
(t)
k }K

k=1 % set of K centroids in network space.
Initialize: Randomly initialize C, Λ and S.
for t ∈ Range(T ) do

for (xi, ai) ∈ D do

find k using Eqn. (2) and set i-th entry of the s
(t)
k to one;

update the centroids using the corresponding equations, i.e., (3) or (4);
end

end

Our reported experiments in section (5) show that even the tuned SDC algo-
rithms did not obtain promising results. We empirically investigated the possi-
bilities of obtaining such results, and we noticed two issues with SGD methods:
(i) the quality of the seeds to initialize the centroids and (ii) the quality and/or
the order of the data points in the batches. While the former is a well-known
limit of the gradient descent optimization approach, the latter, to the best of
our knowledge, did not receive any attention from research communities. We
tried various seed initialization methods to tackle (i), and unfortunately, none
provided us with decent solutions; thus, we postponed it to our future study and
merely adopted the advice of using various seeds and selecting the best-obtained
result. However, we managed to tackle (ii) by refining the batches as follows.

We assumed that ideally, the so-called appropriate order of data points should
consist of data points for which the magnitude of the gradients changes as
smoothly as possible during the update process; furthermore, those data points
for which their gradients’ magnitude is significantly larger than others should not
be included during the centroids updates. One may consider such data points,
with significantly larger gradients’ magnitudes, as anomalies and exclude them;
however, in our opinion, this is a subject to another research and we did not
exclude such data points from the cluster recovery results. To refine the batches,



190 S. Shalileh and B. Mirkin

we relied on Bootstrapping to derive the empirical distributions of the gradients’
magnitudes, i.e., the average, μ, and the standard deviation, σ. After that, we
introduce a refinement coefficient, τ , and we update the corresponding centroids
if the magnitude of the gradients lies between μ ± τσ. Obviously, the larger the
τ the softer the centroids update refinement condition. We outline our proposed
refined steepest descent clustering (RSDC) in the algorithm (2).

Algorithm 2: Refined Steepest Descent Clustering (RSDC)
Input: D = {X, A}: Feature-rich network; K:clusters’ number.
Hyperparameters: α: step size; T : maximum number of iterations; τ : the
refinement coefficient.
Result: S = {s

(t)
k }K

k=1 % set of K binary cluster membership vectors;

C = {c(t)k }K
k=1 % set of K centroids in feature space;

Λ = {λ
(t)
k }K

k=1 % set of K centroids in network space.
Initialize: Randomly initialize C, Λ and S.
G = []; % an empty list to track the history of gradients’ magnitude
for t ∈ Range(100) do

B = {bi}N
i=1; % random indices with replacement from {1, ..., N}

g = []; % an empty list to track the history of gradients’ magnitude
for bi ∈ B do

find k using Eqn. (2) and set i-th entry of the s
(t)
k to one;

update the centroids using the equation (3) and its equivalent in the
network space;
append ||∇ckf(.)|| + ||∇λkf(.)|| to g

end
compute the mean of g and append it to G

end
compute average μ, and standard deviation σ of G;
for t ∈ Range(T ) do

for (xi,ai) ∈ D do

find k using Eqn. (2) and set i-th entry of the s
(t)
k to one;

if μ − τ ∗ σ ≤ ||∇ckf(ck,xi)|| + ||∇λkh(λk,ai)|| ≤ μ + τ ∗ σ then
update the centroids using the Eqn. (3) and its equivalent in the
network space;

end

end

end

The introduced refinement condition not only has a desirable refinement
impact on the centroids updates but also has a smoothing impact on the centroids
updates, that is, after several updates or even a couple of iterations, those data
points that did not satisfy the refinement condition previously, may satisfy it
later due the previous centroid updates by the smoother data points. Although
the adaptive adjustment of τ seems to be a plausible solution, in the current
research, we empirically study the impact of fixed τ on various synthetic data
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Table 1. Real-world data sets: symbols N, E, and F stand for the number of nodes,
the number of edges, and the number of node features, respectively.

Name Nodes Edges Features Number of Communities Ground Truth Ref

Malaria HVR6 307 6526 6 2 Cys Labels [14]

Lawyers 71 339 18 6 Derived out of office and status features [15]

Parliament 451 11646 108 7 Political parties [2]

COSN 46 552 16 2 Region [7]

and propose a default value for it. Last but not least, in the current study, since
the vanilla update rule has fewer number of hyperparameters, we limited the
refined steepest descent update rule to the vanilla version; nevertheless, applying
this process to the other update rules, like ADAM, could be an intriguing future
work and we postponed it to another paper.

Implementing our proposed methods using JAX, an automatic differentiation
library [3], enables the users to apply any differentiable distance function of their
choice to improve the cluster recovery results. The source code of SDG methods
is publicly available at https://github.com/Sorooshi/RSDC.

3 Experimental Setting

3.1 Algorithms Under Comparison

We selected our competitors, among the previous papers published in well-
established journals (indexed in the top two quarterlies of the Scopus or the
Web of Science), concerning the two following criteria: (a) the well-documented
implementation of the the proposed method should be publicly available, and (b)
the proposed method has a reasonable number of hyperparameters. With these
criteria, we compared the performance of our proposed methods with three state-
of-art algorithms, namely, DMoN [17], a method based on graph convolutional
neural networks , EVA [6], a heuristic method using modularity and purity, and
KEFRIN [22], an extension of K-Means method, from the literature. We have
extensively assessed all methods under consideration in computational experi-
ments.

3.2 Data Sets

We tested the performance of the methods under consideration using both real-
world and synthetic data sets. We describe them in the following subsections.

Real World Data Sets. We use four real-world data sets and summarize them
in Table 1. For more details, readers may refer to [20].

Generating Synthetic Data Sets. We utilized the synthetic data generation
mechanism proposed in [21], which later were used in [16,20,22]. The readers
can refer to any of them for more details. Here, we briefly describe its different
components for generating the networks and the categorical features.

https://github.com/Sorooshi/RSDC
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Network Data Generation. Given the number of nodes N and the number
of clusters K, the clusters’ cardinalities are defined randomly so that no com-
munity has less than a pre-defined number of nodes (in our experiments, we set
this number to 30), and the sum of the cardinalities sums to N . We consider
three settings for N : (a) N = 200 for small-size networks, (b) N = 1000 for
medium-sized networks, and (c) N = 400 for hyperparameter-tuning networks.
We postponed the analysis of large networks to another research.

We populate the clusters with nodes’ indices defined by the cluster cardinal-
ities. Then, we specify two probability values, p and q. Every within-community
link is drawn with the probability p, independently of other links. Similarly,
every between-community link is drawn independently with the probability q.

Categorical Features Generation. To model categorical attributes, first the
number of subcategories for each category is randomly chosen from the set
{2, 3, ..., L} where L = 10 for small-size networks and L = 15 for the medium-size
networks. Next, given the number of clusters, K, and the numbers of entities in
each cluster, Nk for (k = 1, ...,K); the cluster centers are generated randomly
so that no two centers may coincide at more than 50% of features.

Once a center of k -th cluster, ck = (ckv), is specified, Nk entities of this
cluster are generated as follows. Given a pre-specified threshold of intermix, ε
between 0 and 1, for every pair (i, v), i = 1 : Nk; v = 1 : V , a uniformly random
real number r between 0 and 1 is generated. If r > ε, the entry xiv is set to
be equal to ckv; otherwise, xiv is taken randomly from the set of subcategories
specified for feature v. Consequently, all entities of the k -th cluster coincide with
its center, up to rare errors if ε is large enough. The larger the epsilon, the more
diverse, and thus intermixed, would be the generated entities.

3.3 Evaluation Criteria

We used the Adjusted Rand Index [10] (ARI) as our evaluation criterion. The
Eq. 7 explains this criterion:

ARI(S, T ) =

∑
k,l
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nkl

2

) − [
∑

k

(
ak

2

) ∑
l

(
bl
2

)
]/

(
N
2

)

1
2 [

∑
k

(
ak

2

)
+

∑
l

(
bl
2

)
] − [

∑
k

(
ak

2

) ∑
l

(
bl
2

)
]/

(
N
2

)
]

(7)

where ak =
∑L

l=1 nkl = |Sk| and bl =
∑K

k=1 nkl = |Tl|, are the marginal row
and marginal column of the contingency table, for the given clustering results,
S = {S1, S2, ..., SK}, and the ground truth T = {T1, T2, ..., TL}. The closer the
value of ARI to one, the better is the match between the clustering results and
the ground truth; ARI=1.0 shows that S = T , i.e., the perfect clustering recovery
results. If one of the partitions consists of just one part, then ARI=0. Cases at
which ARI is negative may occur and its lower bound is not known.
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4 Scrutinizing the Main Hyperparameters
of the Proposed Methods

We scrutinized the impact of (i) the step size, α, (ii) the first and second moments
decay coefficients, β1 and β2, in the feature space and the network space, and (iii)
the refinement coefficient τ on 60 synthetic feature-rich networks with 400 nodes,
six quantitative features (refer to [16] for more details), and four communities
and various cluster intermixes, within- and between-communities probabilities.
However, due to the limited length, we could not present those computational
results and only summarized their tuned values in Table 2.

Table 2. Best tuned hyperparameter values.

update rule step size (α) β1 β2 τ

VSDC 0.0001 – –

ASDC Feature Space [0.0001 − 0.01] [0.3, 0.6] [0.9, 0.99] –

Network Space [0.6, 0.9]

RSDC Feature Space 0.1 – – [0.3, 0.9]

Network Space

We fixed the step size in VSDC, ASDC, and RSDC to 0.0001, 0.001, and 0.1
respectively. We consider the median of demonstrated ranges for the first and
second moments decaying coefficients as the optimal values in ASDC. Finally,
for the refinement coefficient, τ , in the RSDC method, we made a conservative
choice and fixed it to 0.3 in the rest of our computations.

5 Experimental Results

5.1 Comparison over Real-Word Data Sets

We compared the performance of the proposed methods over four real-world data
sets with three state-of-the-art algorithms and reported the results in Table 3.
Due to our flexible implementation using JAX we used both Euclidean and cosine
distance metrics in SDC methods and reported the best-obtained results. More
precisely, except for RSDC at HVR and COSN data sets, for which we used
cosine distance, the rest of the reported SDC methods’ results were obtained
using Euclidean distance.

RSDC is the overall winner of real-world competitions by winning three out
of four cases. DMoN won the lawyers competition, and KEFRiN jointly with
RSDC won the COSN competition.
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5.2 Comparison over Synthetic Data with Categorical Features

We reported the results of comparison over small-size and medium-size synthetic
feature-rich networks in Table 4 and 5, respectively.

Although RSDC is the winner of synthetic feature-rich networks, and its
performance is remarkably better performances than its counterparts; however,
surprisingly, it loses its efficiency in the last two rows of these two tables. Study-
ing the reason behind such poor performance is an ongoing research.

Table 3. Real-world data sets comparison:average and standard deviation of ARI over
ten random initialization.

data set DMoN EVA KEFRiN VSDC ASDC RSDC

HRV6 0.64 ± 0.00 0.036 ± 0.004 0.69 ± 0.38 0.507 ± 0.182 0.246 ± 0.403 0.848± 0.012

Lawyers 0.60± 0.04 0.159 ± 0.028 0.44 ± 0.14 0.360 ± 0.107 0.323 ± 0.060 0.414 ± 0.053

Parliament 0.48 ± 0.02 0.005 ± 0.001 0.41 ± 0.05 0.398 ± 0.070 0.492 ± 0.076 0.561± 0.038

COSN 0.91 ± 0.00 –0.004 ± 0.000 1.000± 0.000 0.731 ± 0.094 0.694 ± 0.108 1.000± 0.000

Table 4. Small-size synthetic data with categorical features: average and standard
deviation of ARI over ten random initialization.

p, q, ε EVA DMoN KEFRiN VSDC ASDC RSDC

0.9, 0.3, 0.9 0.185 ± 0.046 0.709± 0.101 0.922 ± 0.119 0.836 ± 0.160 0.802 ± 0.094 0.978± 0.057

0.9, 0.3, 0.7 0.211 ± 0.053 0.380 ± 0.107 0.819 ± 0.142 0.885 ± 0.118 0.844 ± 0.125 0.975± 0.053

0.9, 0.6, 0.9 0.266 ± 0.080 0.412 ± 0.109 0.726 ± 0.097 0.232 ± 0.044 0.018 ± 0.042 0.958± 0.014

0.9, 0.6, 0.7 0.321 ± 0.060 0.213 ± 0.051 0.711 ± 0.145 0.192 ± 0.048 0.003 ± 0.002 0.916± 0.038

0.7, 0.3, 0.9 0.126 ± 0.039 0.566 ± 0.105 0.877 ± 0.130 0.461 ± 0.100 0.299 ± 0.160 0.998± 0.004

0.7, 0.3, 0.7 0.126 ± 0.025 0.292 ± 0.077 0.795 ± 0.117 0.464 ± 0.096 0.286 ± 0.107 0.992± 0.012

0.7, 0.6, 0.9 0.015 ± 0.015 0.345 ± 0.064 0.834± 0.132 0.031 ± 0.010 0.002 ± 0.002 0.037 ± 0.011

0.7, 0.6, 0.7 0.008 ± 0.007 0.115 ± 0.058 0.540± 0.107 0.024 ± 0.01 0.003 ± 0.002 0.026 ± 0.007

Table 5. Medium-size synthetic data with categorical features: average and standard
deviation of ARI over ten random initialization.

p, q, ε EVA DMoN KEFRiN VSDC ASDC RSDC

0.9, 0.3, 0.9 0.121 ± 0.031 0.512 ± 0.137 0.724 ± 0.097 0.388 ± 0.210 0.001 ± 0.000 0.922± 0.023

0.9, 0.3, 0.7 0.076 ± 0.038 0.272 ± 0.073 0.742 ± 0.182 0.475 ± 0.112 0.018 ± 0.052 0.925± 0.038

0.9, 0.6, 0.9 0.159 ± 0.046 0.370 ± 0.063 0.652 ± 0.110 0.001 ± 0.001 0.001 ± 0.001 0.718± 0.050

0.9, 0.6, 0.7 0.109 ± 0.046 0.168 ± 0.030 0.733± 0.083 0.002 ± 0.001 0.001 ± 0.000 0.647 ± 0.062

0.7, 0.3, 0.9 0.078 ± 0.036 0.446 ± 0.099 0.641 ± 0.111 0.007 ± 0.014 0.001 ± 0.000 0.916± 0.015

0.7, 0.3, 0.7 0.059 ± 0.010 0.228 ± 0.077 0.797± 0.088 0.002 ± 0.004 0.001 ± 0.000 0.932± 0.016

0.7, 0.6, 0.9 0.002 ± 0.002 0.332 ± 0.051 0.591± 0.094 0.001 ± 0.001 0.001 ± 0.002 0.011 ± 0.006

0.7, 0.6, 0.7 0.002 ± 0.002 0.133 ± 0.016 0.773± 0.070 0.001 ± 0.000 0.001 ± 0.000 0.015 ± 0.015
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6 Conclusion and Future Work

In this work, inspired by the triumph of gradient descent and automatic differen-
tiation approach in supervised learning tasks of machine learning, we proposed
a novel clustering methodology to detect the clusters in feature-rich networks.
Since the gradient is the steepest descent direction in the optimization process
and is the core of our proposed method, we named the base of our proposed
method steepest descent clustering (SDC). The gradient descent update rule in
its vanilla form is prone to slow convergence close to valley floors: and to address
this issue, we utilized the adaptive moment estimation update rule. We distin-
guished between the two versions of SDC concerning the update rules, i.e., the
vanilla update rule (VSDC) and the ADAM-based update rule (ASDC). Our
experiments using VSDC and ASDC did not lead to promising results.

We noticed two issues with their performances: their sensitivity to (i) the
seed initialization and (ii) the quality and/or the order of the data points in
the batches. We could not tackle the former issue, and merely adopted the stan-
dard practice of initialization with different seeds and selecting the best-obtained
results. Unlike the former problem, we tackled the second problem by relying
on Bootstrapping to derive the empirical distribution of gradients’ magnitude
and introducing a refinement condition to update the centroids accordingly. We
named this version of our proposed method refined steepest descent clustering
(RSDC).

We empirically validated and compared the performance of SDC methods
over four real-world data sets and 160 synthetic feature-rich networks with
categorical features. Our experiments proved that the refined steepest descent
method is effective and in the majority of the competitions appeared to be the
winner.

The current research is not without limits, and those limits form our future
work directions. First, the SDC methods are sensitive to seed initialization:
proposing a technique to reduce this sensitivity or initialization of the seeds
more effectively is one of the most important future directions. Extending our
experiments to a broader range of synthetic and real-world feature-rich networks,
is our second future direction. Conducting more experiments using different dis-
tance metrics, like Canberra distance, to improve the cluster recovery results,
can be considered as another future direction. Studying the impact of the num-
ber of iterations on the performance of SDC methods to propose a generic rule
can be considered as another future direction.
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Abstract. The study of complete sub-graphs belongs to the classical
problems of graph theory. Thanks to sociology, the term clique has come
to be used for structures representing a small group of people or other
entities who share common characteristics and know each other. Clique
detection algorithms can be applied in all domains where networks are
used to describe relationships among entities. That is not only in social,
information, or communication networks but also in biology, chemistry,
medicine, etc. In large-scale, e.g., social networks, cliques can have hun-
dreds or more nodes. On the other hand, e.g., in co-authorship networks
representing publishing activities of groups of authors, cliques contain, at
most, low dozens of nodes. Our paper describes experiments on detect-
ing strong cliques in two weighted co-authorship networks. These experi-
ments are motivated by the assumption that not every clique detected by
traditional algorithms truly satisfies the sociological assumption above.
Informally speaking, the approach presented in this paper assumes that
each pair of clique nodes must be closer to each other and other clique
nodes than to non-clique nodes. Using experiments with weighted co-
authorship networks, we show how clique detection results differ from
the traditional approach when both the strength of the edge (weight)
and the structural neighborhood of the clique are considered simultane-
ously in the analysis.

Keywords: clique detection · weighted network · co-authorship
network · strong clique

1 Introduction

One of the tasks of network analysis is to identify cohesive groups of nodes, which
are subsets of nodes with relatively strong or frequent ties [19] that are useful
for exploring the local structure of networks. The primary structures examined
are cliques, plexes, cores, etc.

In the field of clique detection in networks, we find mainly tasks related to so-
called maximal cliques that are not contained in another clique and thus cannot
be extended by any other node. The first task is to find the maximum clique,
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https://doi.org/10.1007/978-3-031-53499-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-53499-7_16&domain=pdf
https://doi.org/10.1007/978-3-031-53499-7_16


198 L. Papik et al.

i.e., the clique with the largest number of nodes in the network; a modification
of this task is to find the maximum weighted clique with the largest sum of edge
weights inside the clique [9]. The second task is listing all maximal cliques [2].
The cliques found may vary in size (from dyads and triads to groups with many
nodes), and some of them may overlap.

Cliques are structures that can be significantly separated from the rest of
the network in some cases. In other cases, they may be the core of larger com-
munities that may be unique. In such cases, the communities have a so-called
core-periphery structure [4], in which the clique forms the so-called core, and
the other nodes are part of the periphery of the community. In biology, we can
find cliques, e.g., in protein complexes formed by interacting proteins in so-called
PPI (protein-protein interactions) networks [14].

The definition of a clique is very strict. However, thanks to communication
technologies, the linking between nodes is simplified, and nodes that can be seen
more as randomness or noise can be part of a clique. For example, a clique
of three authors who have collectively written more than a dozen publications
will be joined over time by four other authors, but each of them will have only
one publication. If we search for all maximal cliques in this case, a clique with
seven nodes will be detected. From the point of view of the analysis, it is more
important to find the core of this structure, i.e., the clique formed by the three
strongly connected authors. The neighborhood of this clique can be studied in
the next step of the analysis.

The requirement of the occurrence of every possible edge in a clique is strin-
gent, so we can naturally relax this requirement and consider other dense struc-
tures like k-plexes (a maximum subset of n nodes in the network such that each
node is connected to at least n− k others), k-cores (a maximum subset of nodes
such that each one is connected to at least k other nodes in this subset) or k-
cliques (a maximum subset of nodes such that each is no more than a distance k
away from any of the others via the edges of the network). If we restrict ourselves
to paths between nodes that run only within the subset, we call the resulting
objects either k-clans or k-clubs [15].

Our experiments focus on co-authorship networks whose structure reveals
many interesting features of academic communities. Researchers can study many
interesting problems [11,17] like discovering the most important authors, what
the largest communities of co-authors look like, the cohesiveness of communities,
and how publication patterns vary across research areas and over time. These
and similar questions can be answered by analyzing the basic structural proper-
ties of networks [16] (number of papers per author, number of authors per paper,
distances between authors, clustering coefficient, assortativity coefficient, com-
munity structure, etc. [12]). Other areas of interest in analyzing co-authorship
networks are predicting collaborations [3,6] or examining changes in collabora-
tion patterns over time [18].

In the approach presented below, we aim to detect strong cliques in co-
authorship networks that do not contain noise due to the randomness of the
linkage. The detected cliques can be seen as cores of clusters or communities.
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Fig. 1. Maximal vs. strong clique. The six colored nodes form a clique, but the three red
nodes have a stronger connection outside the strong clique formed by the three green
nodes. In the context shown, the red nodes can be seen as hubs providing connections
from the nodes of a strong clique to other parts of the network.

2 Strong Cliques

The question is what options we have for detecting a strong clique, the formal def-
inition we will give later. Assuming that the network is weighted, we can choose
a threshold for weights and keep only edges above this threshold for further
analysis. The main problem with this approach is that the threshold should vary
in different parts of the network; it should be lower for nascent cliques than for
cliques based on long-term cooperation or interaction. Moreover, this approach
cannot be applied to unweighted networks or where a simple and unambiguous
interpretation of weights cannot be found. Therefore, it is essential to examine
both the connection between clique nodes and their neighborhood, as well as the
interconnection strength between nodes when detecting a strong clique. Thus,
on the one hand, we want to label as strong cliques those with weaker inter-
connections but no (or very weak) connections to their neighborhood. On the
other hand, we do not want to consider as strong those cliques that have strong
interconnection but even stronger connections to their neighborhood (Fig. 1).

2.1 Structural Dependency

To calculate the value of the connectivity between pairs of nodes combining
the weight and the analysis of the structure of their neighborhood, we use the
so-called structural dependency [10]. Unless otherwise stated, we will use the
word dependency for this structural dependency hereafter. In determining the
dependency, we assume that the strength of the relationship between two adja-
cent nodes A,B is determined not only by the weight of their edge w(A,B).
On the one hand, we must take into account how many common neighbors and
how strongly they are connected to, and on the other hand, how many and how
strongly each of them is connected separately. We then define the dependency
D(A,B) of node A on node B as follows:
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D(A,B) =
w(A,B) +

∑
Xi∈Γ(A,B) w(A,B,Xi)

∑
Xi∈N(A) w(A,Xi)

(1)

The weight of the relationship between two nodes A, B given by their com-
mon neighbor X is

w(A,B,X) = w(B,A,X) =
w(A,X) · w(B,X)
w(A,X) + w(B,X)

(2)

Γ(A,B) is the set of common neighbors of nodes A,B, and N(A) is the
neighborhood (set of all neighbors) of node A. A dependency defined in this
way is non-symmetric; although the values of the numerators are the same in
both directions of the dependency, the values of the denominators may be differ-
ent. Therefore, the interdependencies between nodes A,B may be substantially
different. It is important to note here that the non-symmetry holds even in
unweighted networks, and in the computation, for each common neighbor Xi,
the w(A,B,Xi) is 0.5. Thus, the value of the dependency between nodes A,B is
most affected by the number of common triangles compared to their other edges
to the neighborhood of the clique. Between two nodes three situations can occur
(see Fig. 2): (2a) they are independent of each other and look like members of
two different communities, (2b) they are one-way dependent and the left node
has a stronger dependency to other nodes and (2c) although the nodes have no
common neighbors, they are mutually dependent because weight between them
is high.

Definition (Strong Clique). Let us have a threshold τ ∈ (0, 1]. A strong
clique is a clique in which each pair of nodes A,B is mutually dependent, and
the following holds:

D(A,B) ≥ τ ∧ D(B,A) ≥ τ (3)

The lower the threshold τ , the more benevolent the assessment of mutual
dependency. Conversely, for τ = 1, mutual dependency occurs only for an iso-
lated pair of nodes. For example, the value τ = 0.5 is quite strict because edges
in the neighborhood of nodes have more influence than edges with common
neighbors in the dependency calculation. Note that each strong clique is either
maximal or contained in one or more overlapping maximal cliques.

2.2 Dependency Threshold Estimation

The threshold τ raises the question of how to set this threshold, as each author-
ship network may differ. Suppose we take an edge from a network connecting
nodes a and b; for this edge, we can compute two dependencies, one as D(a, b)
and the other as D(b, a), because of the asymmetry of the dependency. It is
worth noting that these dependencies are from the original network, as, at this
moment, we do not know the threshold for removing edges.
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Fig. 2. Dependency situations between two nodes that may occur. Nodes are indepen-
dent of each other (2a). One-way dependency, where the node on the right is dependent
on the node on the left, but not vice versa (2b). Mutual dependency is where nodes
are dependent on each other (2c).

Let us refer to the cliques found in the networks as reference cliques. Thus,
individual reference cliques may have authors with low dependency on other
authors within the clique. Let us take all edges from each reference clique in the
network and find the minimum and maximum edge dependency of each clique.
We can average these minimum and maximum values across all reference cliques.

The minimum dependency within a clique means that if we set the depen-
dency threshold to this value or less, we would get the same clique. This is
because each edge within the clique satisfies the strong clique condition (3) so
that no edge would be removed. Similarly, for maximum dependency within a
clique, if we set the dependency threshold above this value, the reference clique
would disappear because all edges would be removed, as no edge from the clique
satisfies the strong clique condition (3). Thus, the dependency threshold should
be on average in this interval, since we know the references and their structure.
The estimated dependency threshold can be set halfway between the average
minimum and maximum as a balanced value, but it should be taken as a sort of
starting point that we can then adjust as needed.

3 Experiments

For the experiments, we used two undirected weighted co-authorship networks
in which the edge weights represent the number of joint publications. The co-
authorship networks are sparse and low-rank and thus contain relatively strongly
formed cliques involving jointly publishing members of more or less formal teams.
The first network GEOM representing collaboration in computational geometry1

has 6158 nodes and 11898 edges. For example, this network has been used for
link prediction [13] or for clustering [7,8]. The network has also been used for
1 https://networkrepository.com/geom.php.

https://networkrepository.com/geom.php
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core detection [1], but this approach differs from ours; we do not evaluate the
importance of individual nodes, but the relationship between two nodes repre-
sented by the dependency. The second one CHI is a co-authorship network for the
International Conference on Human Factors in Computing Systems2 with 20046
nodes and 54111 edges. Authors used the network in experiments for visualizing
collaboration relations as geographic-like maps [5].

Both co-authorship networks were pre-processed to result in six new net-
works for each. In the first network, Net1, we took only the largest connected
component and removed those nodes with a degree of 1. In the second network,
Net2, we first removed edges with a weight of 1 (potential noise) and then took
the largest connected component without nodes with a degree of 1. In the third
and fourth networks, Net1-D3 and Net1-D5, we preserved only those edges from
the Net1 network whose nodes had a mutual dependency of at least τ = 0.3 and
τ = 0.5 (the dependency was computed in the original networks). We did the
same for the Net2 network and obtained the Net2-D3 and Net2-D5 networks.
The threshold for dependency was chosen to be τ = 0.3 because both Net1 and
Net2 networks had an average between their average minimum and maximum
dependencies of around 0.3. Setting τ = 0.5 was chosen to demonstrate the
impact of a higher threshold on the networks. GEOM Net1 and Net2 have an
average minimum dependency 0.07 and an average maximum dependency of 0.6
and 0.55. CHI Net1 and Net2 have an average minimum dependency 0.08 and
0.11 and an average maximum dependency of 0.62 and 0.51.

After pre-processing the networks, the Bron-Kerbosch algorithm [2] was
applied to list all maximal cliques in each network. Next, we analyzed the clique
distribution and the impact of the dependency threshold on each network.

3.1 Results and Discussion

For each of the twelve networks, the distribution of detected cliques by size in
one of the four plots is shown (see Fig. 3). Each plot contains a comparison of
cliques detected (1) without accounting for mutual dependency, (2) with mutual
dependency with a threshold τ = 0.3, and (3) with mutual dependency with
a threshold τ = 0.5. The expected result is that significantly more cliques are
detected in the networks when we do not work with mutual dependency. How-
ever, it can be noticed that if we take mutual dependency into account, much
fewer dyads are detected at the expense of triads. This would suggest that the
triads are often, in fact, dyads complemented by a hub (as explained by the com-
ment in Fig. 1), but we will show later that this does not apply only to triads.
The use of mutual dependency allows us to detect these situations (detection of
hubs is explained in [10]).

Other observations provide a natural interpretation. The stricter we are on
the mutual dependency, the smaller the detected cliques and with a smaller size.
This is mainly because the larger the clique, the higher the chance that one or
more hubs are part of the clique.

2 http://gmap.cs.arizona.edu/datasets.

http://gmap.cs.arizona.edu/datasets
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Fig. 3. Distribution of cliques in the studied networks. The left/right column shows the
distributions of cliques according to their size detected in the pre-processed components
of the GEOM/CHI network.

3.2 Dependency Threshold Effect

Fig. 4 shows that for both Net1 and Net2 from both networks the number of
cliques that have edges with low minimal dependencies (below 0.1) are the most
frequent for each size. This means that cliques have one or more pair of nodes
that don’t share much together. One of the node might be a hub, as we mentioned
before, or have a stronger connection to some other clique. Edges like these can
be removed using the optimal dependency threshold.

Two scenarios can occur when an edge from a clique is removed: first, the
clique disappears; second, and more often, the clique splits into smaller sub-
cliques. Obviously, the more nodes the clique has, the smaller and more tightly
connected sub-groups it must have within it; smaller groups of people may write
together more often because they are more related to each other than to the
group as a whole. This behavior can be seen in Figs. 5 and 6, where we created an
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Fig. 4. Distribution of cliques minimum dependency according to their size

induced subgraph from the clique nodes from the network, where the dependency
threshold is applied. Next, we enumerate all maximal cliques in this subgraph
and sum the sizes of these cliques. Most of the reference cliques for networks
Net1 and Net2 and after applying both dependencies are reduced to dyads only;
this explains why there are so many dyads in Fig. 3. However, the larger the
clique is, the larger the sub-cliques can be found.

On the other hand, the interesting thing to notice are cliques of size 2. Com-
pared to cliques of different sizes, it can be seen in Fig. 7 that for Net1 and
Net2 from both networks, the cliques of size 2 have a lower average maximum
dependency; in other words, the dependency between dyads is low. There may be
many real-world explanations for why this happens. From a topological point of
view, we can look at the possible situations in Fig. 2a, 2b and 2c. If the threshold
of dependency were set to 0.3, we would obtain only a small number of original
dyads. It indicates that the last figure is uncommon in our networks due to the
low average maximum dependency. That means that two authors mostly do not
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Fig. 5. Sub-clique size distribution after applying the dependency thresholds for
GEOM Net1 and Net2.

write together on their own, but may act as a hub (Fig. 2a), connecting differ-
ent parts of the network, or one of them may also be a member of a different
community (Fig. 2b) to which he or she has a stronger dependency than to his
or her co-author.

4 Conclusion and Future Work

Our research provides new insights into detecting strong cliques that can be
considered cores of more complex structures, such as communities or protein
complexes. We have shown that interacting groups of authors in the studied
co-author networks can usually contain at least one pair of authors who are not
closely related topologically. This is due to the combination of weights in the net-
work and the neighborhood of these two individuals. A dependency threshold
is then used to remove such connections from the network. After applying the
dependency threshold, we found that with respect to the dependency threshold,
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Fig. 6. Sub-clique size distribution after applying the dependency thresholds for CHI
Net1 and Net2.

the most frequently related authors are triads and dyads. However, apart from
the number and size of handles for both dependencies of 0.3 and 0.5, the trends
look similar. We acknowledge that our estimated initial dependency threshold
may not be perfect and still requires fine-tuning, as we only performed experi-
ments on two co-authored networks. Distributions of cliques such as visualized
in Figs. 3, 4, or 5 could be helpful when we need to decide how to adjust the
threshold value.

Finding the optimal threshold value for the dependency poses a challenge for
future research, this challenge also opens up additional challenges, such as study-
ing the effect of neighborhood and interdependence thresholds on the properties
of detected strong cliques and finding a way to extend the cores with a periph-
ery for discovering structures such as communities, not only in co-authorship
networks but ideally in any network as each network may be different, and the
required underlying structures may not always consist of cliques.
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Fig. 7. Average maximum dependency based on clique size
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Abstract. Community structure is a critical feature of real networks,
providing insights into nodes’ internal organization. Nowadays, with the
availability of highly detailed temporal networks such as link streams,
studying community structures becomes more complex due to increased
data precision and time sensitivity. Despite numerous algorithms devel-
oped in the past decade for dynamic community discovery, assessing
their performance on link streams remains a challenge. Synthetic bench-
mark graphs are a well-accepted approach for evaluating static commu-
nity detection algorithms. Additionally, there have been some propos-
als for slowly evolving communities in low-resolution temporal networks
like snapshots. Nevertheless, this approach is not yet suitable for link
streams. To bridge this gap, we introduce a novel framework that gener-
ates synthetic modular link streams with predefined communities. Subse-
quently, we evaluate established dynamic community detection methods
to uncover limitations that may not be evident in snapshots with slowly
evolving communities. While no method emerges as a clear winner, we
observe notable differences among them.

Keywords: Temporal networks · Dynamic community detection ·
Network generator

1 Introduction

Community structure is a common feature in real networks. Essentially, a com-
munity represents a network pattern where nodes have strong connections within
the community and weaker connections with nodes outside[1]. Network sci-
ence initially emerged when real-world temporal network data, which captures
the changing structure of networks over time, was scarce. Consequently, early
research on community detection primarily focused on static networks [2]. With
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1142, pp. 209–222, 2024.
https://doi.org/10.1007/978-3-031-53499-7_17
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the increasing availability of low-resolution temporal data, such as network snap-
shots, attention naturally shifted to the dynamic community detection[3]. Nowa-
days, we have access to highly detailed temporal networks like link streams,
making the study of community structures more intricate due to the increased
data granularity and time-sensitive nature.

One approach to quantitatively evaluate community detection algorithms is
to employ synthetic graph generators to assess their performance and accuracy
against a reference ground truth. Recently, several synthetic temporal network
generators have been established to simulate snapshots with “slowly evolving”
communities, i.e., having a meaningful community structure at each discrete time
step. However, link streams fail to meet this criterion. Within a link stream, the
frequency of interactions per node per unit of time is exceedingly low. Conse-
quently, during a specific time instance, we can only discern a minimal number
of connections, and these connections do not reveal clear community structures.
Although we can employ varying or fixed window sizes to segment our net-
work into multiple time slices to achieve low-resolution temporal networks like
snapshots, a new line of research has emerged, aiming to develop algorithms
tailored to the continuous-timed nature of instantaneous edges [4]. Motivated by
this challenge, we intend to address the issue of the absence of a benchmark net-
work for simulating modular link streams. To address this need, we introduce the
“Mosaic benchmark network.” Mosaic is designed to provide a reliable framework
for evaluating and benchmarking dynamic community detection algorithms. It
generates modular temporal networks with continuous-time edges built upon
randomly planted partition networks, creating adjustable ground truths.

The paper’s organization is outlined as follows: It begins by briefly reviewing
the current literature concerning benchmarks used for creating modular net-
works. Moving on to Sect. 3, a mathematical framework for link streams and the
definition of a temporal community adapted for the context are presented. Then,
we explain a comprehensive framework called “Mosaic” for creating link streams
with communities. Finally, Sect. 4 involves the application of some dynamic com-
munity detection algorithms to the benchmark, aiming to uncover their capabil-
ities and limitations.

2 Related Works

Assessing and comparing community detection algorithms presents a significant
challenge. Although real-world datasets can offer valuable insights, it has been
shown that node metadata are not the same as ground truth and that treating
them as such induces severe theoretical and practical problems [5].

To overcome this limitation, researchers have developed benchmarks to gen-
erate synthetic networks for examining algorithm behavior on networks with
diverse predefined properties[6]. Synthetic network Benchmarks enable checking
an algorithm against:
– Definition of communities: since there is no universal definition of community,

a benchmark with its ground truth defines what we want to find and check if
the method recognizes it.



Mosaic Benchmark Networks 211

– Stability : the efficiency of a community detection method can be evaluated by
testing it on numerous network instances that share similar characteristics.

– Scalability : gradually increasing the network size makes it possible to deter-
mine how well the algorithm handles larger and more complex networks.

Numerous network benchmarks have been introduced to establish modular
static networks. Stochastic Block Models (SBM, also random planted partition
graphs) [7] generate networks where edges between nodes in and within commu-
nities depend on a provided probability matrix.

As the need for synthetic temporal networks increased, several methods have
been outlined in the literature to generate benchmark graphs for evolving com-
munities. An evolving community scenario is defined as a structure characterized
by fundamental events for communities such as birth, death, merging, splitting,
expansion, contraction, iterative continuation, and the Ship of Theseus, as illus-
trated and described in [3].

Temporal network benchmarks have been developed with diverse perspectives
and aims, yet they all share a common trait: they generate snapshots that reveal
clear community structures. For instance, Granell et al. [8] propose two cyclic
scenarios (migration and merge-split), and in each snapshot, communities are
defined using SBMs. Bazzi et al. [9] introduce a method for generating multilayer
networks with community structures by incorporating an SBM with additional
interlayer dependency tensors. However, Cazabet et al. [10] argue that utilizing
an SBM independently for generating edges in each snapshot is impractical.
Therefore, they have developed a method that allows for evolving structures
while maintaining the stability of most edges from one time step to the next.

Differing from all preceding approaches, our proposed benchmark introduces
a framework that accomplishes two crucial objectives: 1) It enables the repre-
sentation of novel scenario description generators that do not necessitate the
inclusion of progressively evolving structures, and 2) It facilitates the generation
of continuous-timed instantaneous edges while maintaining a low computational
cost.

3 Mathematical Framework

3.1 Link Stream

Link streams, the category of temporal networks examined in this study, can
be perceived as a collection of vertices denoted by V , which engage with one
another at specific instances, and the duration of these engagements is considered
negligible.

Based on this definition, we can formulate a link stream mathematically as:

Definition 1. Link Stream: A link stream L is defined as a triple (V,E, T ),
where V represents the set of nodes involved in interactions within a defined
time domain, T = [Ts, Te) ⊆ R, and E ⊆ V ×V ×T is the set of temporal edges.
Each temporal edge, l = (u, v, t) ∈ E signifies an instantaneous interaction that
took place between node u ∈ V and node v ∈ V at time t ∈ T [4].
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The illustration in Fig. 1 presents a link stream featuring a set of vertices
V = {v1, v2, v3, v4} where multiple temporal edges are observed. For example,
nodes v1 and v4 establish a connection twice within the given time domain,
T = [0, 10).

Fig. 1. Modular Link stream: A link stream (V, E, T ) is shown, containing 4 nodes
V = {v1, v2, v3, v4} interacting several times with each other within the time domain
T = [0, 10). A mosaic partitioning, C = {c1, c2, c3} is also observed. This partitioning
covers {v1, v2, v3, v4} × [0, 10) without any overlap.

3.2 Mosaic: A Definition for a Community in Link Streams

Defining a community in a link stream is a challenging task due to the fine-
resolution temporal dimension involved. However, any new definition must align
with the intuitive understanding of real-world applications. To give an intuition
of the meaning of communities in this setting to unfamiliar readers, we illustrate
it using a well-known link-stream dataset.

Sociopatterns1 is a renowned database for real-world link streams acquired in
various contexts since 2008 [11]. In these experiments, RFID sensors track real-
time proximity, creating co-presence networks between individuals. For example,
a substantial dataset comes from a primary school study where 230 pupils and
10 teachers wore sensors for two consecutive days. This study recorded 125,000
face-to-face interactions over 32 h, with a temporal resolution of 20 s. Previous
research often viewed its communities as evolving structures influenced by node
and edge additions/deletions, identifying them by segmenting time into different
slices with various window sizes and then applying dynamic community detection
techniques.

In this study, we can observe communities emerging during specific time-
frames from students interacting. For instance, students and teachers interact
during lecture hours within their respective classes. During lunchtime, students
with stronger friendships tend to dine together. An empty community exists at
night, indicating no interactions occur during that period.

1 http://www.sociopatterns.org/.

http://www.sociopatterns.org/
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This perspective can be extended to other contexts like people discussing a
particular topic on social networks, company meetings, or sports players partici-
pating in a match together. Building on this idea, we introduce a new definition
called “Mosaic,” which is a straightforward adaptation of non-overlapping com-
munities from static networks to link streams.

A “Mosaic” community is defined as follows:

Definition 2. A Mosaic, denoted as c, is defined as a pair of (nodes, period):
c = (Vc, Tc). Vc is set of n nodes denoted as {v1, v2, · · · , vn}. Tc ⊂ R is an time
interval, Tc = [Tcs, Tce) where, Tcs and Tce represent the start and end times of a
Mosaic c, respectively. It represents the interval in which nodes V are considered
part of the community c.

According to this definition, each node is assigned to only one community at
any given time, and these communities collectively cover the entire link stream;
refer to Fig. 1 for an example. In cases where nodes do not interact significantly
for a certain duration, they are assigned to an “empty community”, c∗. Therefore,
a Mosaic partitioning can be defined as follows:

Definition 3. Mosaic partitioning: Given a link stream L = (V,E, T ), C is a
partitioning containing k mosaics, {c1, c2, · · · , ck, c∗}, that cover the link stream
fully without any overlap. This requirement can be written as follows:

⋃

c∈C
Vc × Tc = VL × TL

⋂

c∈C
Vc × Tc = ∅

The mosaic c∗ stands for an empty community.

3.3 Mosaic Link Stream Benchmark

Now, we delve into discussing the Mosaic Benchmark. The proposed framework
follows a straightforward five-step process, as depicted in Fig. 2. The whole pro-
cedure is implemented as a user-friendly Python library2.

2 https://pypi.org/project/mosaic-benchmark/.

https://pypi.org/project/mosaic-benchmark/
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Fig. 2. Random Mosaic Link Stream Benchmark: This figure illustrates a five-
step process. Step A involves generating a scenario. Step B focuses on removing mosaics
with a probability of γ to create an empty community named c∗. Steps C and D add
internal and external edges, respectively. Finally, in the last step, each edge in the link
stream can be rewired with a probability of η.

We can condense these five steps into two primary stages:

1. Scenario description: The user describes communities using a scenario, either
ad-hoc or generated from a provided scenario generator (Step A). Addition-
ally, some communities may be emptied to match real-world properties (Step
B).

2. Edge generation: Initially, edges are formed within the communities (Step C),
followed by establishing connections between communities with overlapping
timeframes (Step D). Some edges may be rewired to introduce imperfections
into the community structures (Step E).

3.4 Scenario Description

In the proposed framework, we use Mosaic partitioning to generate modular link
streams according to a scenario. Mosaic partitioning consists of multiple com-
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munities in which nodes interact within and between them. It can be generated
using three proposed scenario generators in our Python library: Experimental,
Snapshots, and Random. A visualization can be found in Fig. 3.

Fig. 3. Mosaic Partitioning Generation This figure illustrates three different
approaches for generating Mosaic Partitioning in the Benchmark. Type A: User-
defined nodes and periods create the desired scenario. Type B: The time domain
is divided into multiple frames or snapshots, and node sets are randomly assigned to
communities within each frame. Type C: Communities’ time interval and node-set
sizes are distributed inhomogeneously, covering the entire link stream.

Experimental: Using an experimental setup, we can intentionally generate
various Mosaic communities with specific node counts and time intervals. This
enables us to evaluate the performance and precision of a community detection
algorithm under straightforward scenarios, gradually increasing complexity to
gain insights into the algorithm’s capabilities and constraints.

Snapshots: This scenario generator simulates low-resolution temporal networks
resembling snapshots. It partitions the time domain into k segments defined by
either fixed or variable window sizes. In the fixed case, each segment has a size
of |T |

k , while in the varying case, the time domain is randomly divided. Then, we
establish static communities for each segment, ensuring they consist of at least
two or more nodes.

Algorithm 1. Snapshot Scenario Generator
1: procedure Snapshot(T, V, k, Mode)
2: Create an empty list C
3: Divide the time domain into k segments with fixed or varying window sizes and

name it S
4: for each s in S do
5: Distribute the nodes V randomly into static communities and name the

collection U
6: for each u in U do
7: Add (u, s) to C
8: return C
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Random: Generating random scenarios leading to mosaics with different node
counts and time intervals is essential for comprehending the capabilities and
constraints of a dynamic community detection algorithm. To accomplish this
objective, we will suggest a simple procedure for constructing random commu-
nities using k iterations in a recursive algorithm. Once we have obtained the
algorithm’s output, we will proceed to remove communities consisting of just
one node or communities that exist for less than a predefined time interval.

Algorithm 2. Random Scenario Generator
1: procedure Random(T, V, k)
2: Create a Mosaic M = (T, V )
3: for i in 0 to k do
4: if M .sub-mosaics is empty then
5: Divide M into 4 sub-mosaics and store them in M .sub-mosaics
6: else
7: Select one sub-mosaics from M .sub-mosaics and divide it into 4 sub-

mosaics
8: Flatten the Mosaic M into C
9: return C

Emptying Mosaics. We consider that Mosaics are assigned to an empty
Mosaic c∗ with a probability of γ. We mean that within this empty Mosaic,
no edges can be active that originate from either inside or outside, affecting the
nodes contained within it.

3.5 Generating Edges

This part focuses on generating edges between nodes within and across different
communities. We will follow two steps: creating a Backbone connectivity network
to establish static connections and using the Poisson Point Process to add a
temporal dimension above it; refer to Algorithm 3.
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Algorithm 3. Edges Generation
1: procedure EdgesGeneration(C, α, λ, β)
2: Create an empty list E
3: for c in C\c∗ do � Generate internal edges
4: pc

in = (|Vc| − 1)α−1

5: List S =BackboneConnectivity(c,c,pc
in)

6: for e in S do
7: Add PoissonProcessEdge(e,Pc,λ

cc) to E

8: for (c, c′) in
(C\c∗

2

)
do � Generate external edges

9: pcc′
ext = β((|Vc| + |V ′

c |) − 1)α−1

10: List S =BackboneConnectivity(c,c′,pcc′
ext)

11: for e in S do
12: Add PoissonProcessEdge(e,Pc ∩ Pc′ ,λcc′

) to E

13: return E

Backbone Connectivity Network. This Benchmark assumes that the con-
nectivity between nodes, whether through internal or external edges, remains
stable throughout the specified period. This is why we refer to it as the back-
bone connectivity network. A backbone connectivity network with a parameter p
is a random graph in which each edge is present with probability p, independent
of others.

We would like to emphasize that for establishing a well-defined internal struc-
ture of a community, it is necessary to utilize an appropriate range of values for
p. This range’s selection should depend on the number of vertices within the
community. To achieve this, we will adopt the model described in [10], which
provides the formula for pc

in as follows:

pc
in = (|Vc| − 1)α−1

Here, α ∈ (0, 1] is a hyperparameter named community density coefficient
shared between communities. When the value of α is increased, the probability
of pc

in also increases, leading to denser clusters. If α is set to 1, each community
in Mosaic becomes a clique.

The external probability between two communities c and c′ denoted as pcc′
ext

is defined as:
pcc′

ext = β(|Vc| + |V ′
c | − 1)α−1

This hyperparameter β ∈ [0, 1] is related to “community identifiability,” which is
shared among all communities. Increasing the value of β results in more external
edges between communities, making it more challenging for algorithms to iden-
tify each community as a separate cluster. In other words, β controls the external
density of backbone connectivity by treating two communities as a single entity.

Poisson Point Process. To simplify the analysis, we assumed that the edges in
a given backbone connectivity network follow a memory-less stochastic process
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for their activation times. For each edge e = (i, j) in the backbone connectivity
network, we generate an independent and identically distributed random Poisson
point process with a rate parameter |T |λ. This rate parameter determines the
average number of this edge active times within the time frame T . Then, we
use the uniform distribution to distribute this number of occurrences in the
selected period. This means the edge time arrivals are uniformly spread over the
interval T [12]. To establish connections within a community, we set T equal
to Tc and λ = λc

in. Conversely, when creating the connections between two
different communities c and c′, T is defined by the overlap between Tc and Tc′ .
Furthermore, to generate external edges between communities c and c′, we utilize
a coefficient λcc′

ext.
Combining these, to create the temporal dimension, we need a symmetric

matrix λ of size k ×k, where k represents the number of communities. The main
diagonal of this matrix will be utilized for generating internal edges, and non-
diagonal elements can be employed for external edges if there is a non-empty
time overlap (Tc ∩ T ′

c �= ∅) between the communities c and c′.
In both the step of generating backbone connectivity networks and adding a

Poisson point process layer, each community is handled independently, which can
be efficiently parallelized. This enables handling large networks in a reasonable
time. Additionally, finding an upper bound for memory and time complexity can
not be provided due to dependence both on time and structure.

Rewiring Noise. A prior study [13] proposed that it is possible to distinguish
a stable core within communities from random, short-lived fluctuations in real
temporal networks. In our Benchmark, edges go through a rewiring process with
a probability of η = [0, 1] to highlight imperfections in community structures.
During this step, for edge (u, v, t) selected for rewiring, we randomly choose two
communities c �= c∗ and c′ �= c∗ with non-empty time intersection. We then
select two nodes u ∈ Vc and v ∈ Vc′ where u �= v, with a timestamp t randomly
chosen within the Tc ∩ Tc′ time frame.

4 Experiments

In this section, we use different community detection algorithms on an instance of
our framework to assess their performance in identifying communities compared
to the ground truth. Among the many dynamic community detection algorithms
available, we have selected four that operate by aggregating the link stream into
snapshots using window sizes. These algorithms are previously implemented in
“tnetwork” Python package [14], as detailed in the existing literature review [3].

The algorithms compared in this paper are the following:

– No-Smoothing: the approach involves applying a static algorithm (in this
case, the Louvain method) to each snapshot. Then, the most similar commu-
nities in consecutive steps are matched based on the Jaccard Coefficient with
a coefficient named θ, set to 0.3 here.
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– Implicit-Global: in this method, the Louvain algorithm is executed at each
snapshot, but instead of initializing it with each node in its own community,
the previous partition is utilized as the seed.

– Label Smoothing: this method first identifies communities in each slice.
Then, attempts are made to match communities across different snapshots,
forming a survival graph. A community detection algorithm is applied to this
survival graph, resulting in dynamic snapshot communities.

– Smoothed-Graph: in this approach, the Louvain method is run at each slice
t on a graph with a smoothed adjacency matrix defined as follows:

At
ij = α · At

ij + (1 − α) · Ct−1
ij ,

where Ct−1
ij = 1 if nodes i and j belong to the same community at step t − 1,

and 0 otherwise.

We considered a link stream L consisting of 100 nodes |V | = 100 interacting
over the time interval T = [0, 100). Then, we created a scenario using a Ran-
dom scenario generator(as detailed in 3.4) with an iteration parameter k = 30.
Additionally, we applied a probability μ = 0.2 to empty Mosaic communities,
resulting in |C| = 61 communities with an average node count of V̄c = 11.7 and
an average time interval of T̄c = 10.2, excluding the empty community c∗.

For the edge generation phase, we fine-tuned the parameters α = 0.9 and
β = 0.1. A high α value signifies strong connections among nodes within
the internal backbone connectivity networks, while a low β value indicates
sparse connections between communities in the external backbone connectivity
networks. This configuration results in clear and distinguishable communities
regarding the backbone structure.

To further emphasize this characteristic, we maintained the same values for
λin = 0.4 and λext = 0.1 for all communities, signifying that, in the Poisson
Point Process, the likelihood of an edge forming within a community is higher
than it is for an external one. It resulted in 28365 edges. Additionally, we exclude
the rewiring process for temporal edges.

Since the chosen dynamic community detection methods are not tailored for
link stream cases and are designed for low-resolution temporal networks, we
convert our sample modular link stream to snapshots with a relatively small
fixed window size 2. Subsequently, we applied community detection algorithms
to the aggregated snapshots and extracted these communities for the purpose of
comparison and visualization.

As depicted in Fig. 4, it is evident that different algorithms can yield vary-
ing interpretations of a benchmark network instance. Assessing the accuracy of
community detection algorithms under such circumstances can pose a significant
challenge. Similarly, when employing aggregation techniques on a link stream,
diverse interpretations may arise. In certain social and political contexts, these
variations can be contentious and potentially lead to misleading conclusions.



220 Y. Asgari et al.

Fig. 4. Experiments: Comparison of partitions obtained using all methods on a sam-
ple Random scenario

To conduct a more rigorous experiment, we introduce a new parameter
denoted as φ = 1 − α = β. A higher φ parameter value results in communi-
ties being less identifiable. We varied the φ value from 0 to 0.5 with the step of
0.1, did the same generation process, and aggregated the link streams to snap-
shots using a window size of 2, then identified communities ten times with the
algorithms.
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Fig. 5. Experiments: Comparison of smoothness measures obtained using all methods
on a sample of a Random scenario.

Smoothness values were determined utilizing the formulas for smoothness
presented in the work by Cazabet et al. [10], namely SM-P, SM-N, and SM-L.
In all these smoothness metrics, a higher value indicates superior performance.
The obtained values were averaged for each φ.

As depicted in Fig. 5, in terms of smoothness, two methods have high scores
for the three aspects: Implicit-Global and Smoothed-Graph. Label-smoothing
has the highest scores in most settings for the SM-L scores, which measure
label smoothness. No Smoothing is the least stable in most cases. These results
support the findings of other benchmarks presented in [10].

5 Discussion and Conclusions

In summary, we introduced the Mosaic benchmark networks as a new frame-
work for generating modular link streams. These temporal networks enable the
evaluation of dynamic community detection algorithms in terms of accuracy and
performance. Additionally, we can provide a quantitative assessment based on
community definition, stability, and scalability by simulating adaptable ground
truth to determine an algorithm’s capabilities and constraints. Furthermore, our
framework acts as a foundational platform for assessing algorithms tailored for
link streams, especially in the later stages of research in this domain.

The time complexity of this framework can benefit from parallelization
because it avoids SBM calculations for each small step, and the future does
not depend on past or present data. Moreover, when simulating link streams
with millions of edges, it is crucial to efficiently organize edge and node storage.
Multi-layered hash functions can enhance memory allocation for storing network
edges instead of a large edge stream. To create directed modular link streams, we
propose using the benchmark network with an asymmetric Poisson rate matrix
(λ), along with two additional parameters, αout and βout for edge generation
phase. However, it is essential to carefully check if created communities match
the definition of communities in real-world directed link streams.

We applied our framework to explore differences among communities iden-
tified by various dynamic community detection algorithms. We emphasize that
the aggregation method using window sizes has its limitations, and there is a
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crucial need for a more comprehensive investigation into effectively handling
continuously timed edges rather than aggregating them.

In conclusion, it is important to explore the characteristics of communities
formed through the provided scenario generators. This framework incorporates
various parameters such as γ for emptying communities, and (α, β, λ) for edge
generation. Furthermore, the parameter η plays a crucial role in evaluating an
algorithm’s robustness. We advocate for further research to enhance the com-
prehension of dynamic community algorithms, achieved through the fine-tuning
of these parameters.
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Abstract. The detection of community structure is probably one of the
central challenges in complex networks whose objective is to identify
internal organizations of people, molecules or processes within a net-
work. The issue is to provide a network partition representative of this
organization so that each community presumably gathers nodes sharing a
common mission, purpose or property. Usually, this identification is based
on the difference in connectivity density between the interior and border
of a community. Indeed, nodes sharing a common purpose or property
are expected to interact closely. Although this rule appears mostly rele-
vant, some fundamental scientific problems like disease module detection
highlight the inability to meaningfully determine the communities by this
connectivity rule. The main reason is that the connectivity density may
not be correlated to a shared property or purpose. Another paradigm is
therefore necessary to properly formalize this problem in order to accu-
rately detect these communities. In this article we propose a new frame-
work to study this novel community formation property. Considering
that colors formally represent shared properties, the problem becomes
to maximize groups of nodes of the same color within communities. We
introduce a new measurement called chromatic entropy assessing the
quality of the community structure regarding the color constraint. Next
we propose a novel algorithm detecting the community structure based
on this new community formation paradigm.

Keywords: Community structure · Detection algorithm · Complex
Network

1 Introduction

Complex networks model component interactions in diverse real-world domains
as in sociology with social or friendships networks, computer science with WEB,
and biology with regulatory, metabolic or neural networks. Nodes of these net-
works are often arranged in closely tight groups called communities. These com-
munities delineate the organizational supports of function, property, purpose or
categories. They thus highlight a network structure providing an organizational
understanding behind the interactions. Formally, the goal is to identify a node
partition of the network based on some grouping rules. A community structure is
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1142, pp. 223–234, 2024.
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a partition of the vertices of a graph defined according these rules. Although there
is no firm answer concerning these rules [1], it is commonly admitted that the
definition of a community relates to a difference in connection density between
its interior and its boundary. The density of connection between nodes inside a
community must be higher than the density of connection across communities.
Such community is called the topological community [2]. Community detection
algorithms capture this difference of connection density for detecting communi-
ties in a network [3,4]. The quality of a community structure is evaluated by
a measure assessing this partitioning. A recognized standard is the modularity
introduced by Newmman [5] which is based on the comparison of the network
with a random one having the same topological characteristics (i. e., same num-
ber of nodes, same node degree). Therefore a good measure must be greater than
a community structure having the same characteristics but obtained by chance
because this reveals an organizational bias showing an intentional design on the
interactions. Finding a community structure maximizing the modularity is NP-
hard [6] and different heuristics have been proposed for detecting the optimal
community structure [3,7–9].

While the concept of community is central in network science, the connection
density rule sometimes fails to identify the meaningful community structure of
a network, thus restricting the applicability of community detection algorithms.
It is notably the case when the community formation is not correlated to a
connection density. Disease module characterizes concretely this scenario. A dis-
ease module groups genes which are mechanistically linked to the same patho-
phenotype. The study of the modularity of human disease would provide a causal
understanding of the pathogenesis strengthening the etiological explanation and
rationally determine clues for drug target discovery.

In [10], the authors carefully demonstrate that disease module are not topo-
logical module/community. By using three representative, methodologically dis-
tinct algorithms on community structure detection based on density connection,
the authors show that the disease genes gathered in a community by connection
density method are drastically under-represented, thus prohibiting the ability
to assign communities to diseases. Furthermore, they also show that this lack
of representativeness is not due to insufficient knowledge about genetic diseases,
but rather to the inability of topological communities to properly represent dis-
ease modules. This conclusion is also confirmed by other works on disease mod-
ules [11–13]. Due to its paramount importance for health, the identification of
disease modules clearly indicates the urgent need to extend this framework for
detecting such community structures.

More generally, such a situation may occur whenever nodes possessing the
same property justifying their membership in the same community are sparsely
connected. If only connectivity prevails the algorithm thus fails to bring together
nodes of the same property as there is no a priori relationships between the
shared properties and connections. The shared common property which is
responsible for the community formation must be understood in a broad sense
including a wide variety of situations such as involvement in the same process or
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function, membership of a social or ethnic group, identical characteristics, shar-
ing a common topic of interest, common purpose or mission etc., more generally
any trait that can be shared by a community and qualifying its members.

It thus seems greatly beneficial to extend the methodological framework
related to network community detection so that the resolution of this prob-
lem addresses a broader context than disease modules. Therefore our objective
is to generalize its principles in order to characterize a framework dedicated to
community detection which relies on a shared common property.

In this context, a property will be assimilated to a “color” leading to assign
the same color to the nodes having the same property. Accordingly, the issue
of chromatic community structure detection is to find communities of connected
nodes that maximize the density of the major color within each while maintaining
the connectedness constraint in each community.

In this article, we study the chromatic community structure detection prob-
lem and propose an algorithm for finding partition of communities based on color
detection. In Sect. 2 we mathematically formalize the problem. We then define
in Sect. 3 the chromaritic entropy which is a measure assessing the significance
of a chromatic community structure. We detail in Sect. 4 an algorithm finding a
chromatic community structure before concluding (Sect. 5). An extended version
of this article including a benchmark of the algorithm can be found in [14].

2 Formalizing the Coloring

In this section we introduce the basic notions related to graph coloring. Let
G = 〈V,E〉 be a graph where V is a set of vertices and E ⊆ V ×V a set of edges,
a community p is a subset of V (i. e., p ⊆ V ) and a community structure P is a
partition of V . A community structure based on color selection criteria is called
a chromatic community structure.

Coloring Profile. Coloring assigns a color to each vertex of a graph which
is described by a coloring profile corresponding to an application from vertex
to color c : V → C where C denotes the set of colors. The set of colors C
will be represented by an integral interval [1, r] where integers define colors. For
example c = {1 �→ 1, 2 �→ 3, 3 �→ 1, 4 �→ 2, 5 �→ 1, 6 �→ 3} assigns color 1 to nodes
1, 3, 5, color 2 to node 4 and color 3 to nodes 2, 6 (see Fig. 1). The restriction
of the coloring to community denoted cp for community p ⊆ V is defined as:
cp = {v �→ c(v) | v ∈ p}.

If the vertices correspond to an integral interval V = [1, n] then the coloring
profile can be described by a vector such that the index stands for a vertex label
and its corresponding value for a color (i. e., c(i) = k ⇐⇒ i �→ k ∈ c). For the
former example (Fig. 1) the vector representation is (1, 3, 1, 2, 1, 3).

Colored Graph. A colored graph is a 3−uple 〈V,E, c〉. The colored graph in
Fig. 1 uses 3 colors C = [1, 3] where: green= 1, red= 2 and yellow= 3. From its
coloring profile:
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c = {1 �→ 1, 2 �→ 3, 3 �→ 1, 4 �→ 2, 5 �→ 1, 6 �→ 3},

the chromatic community structure is:

P = {p1 = {1, 3, 4, 5}, p2 = {2, 6}},
we deduce the following coloring profiles restricted to p1, p2:

cp1 = {1 �→ 1, 2 �→ 3, 4 �→ 2, 5 �→ 1}, cp2 = {2 �→ 3, 6 �→ 3}.

Fig. 1. Community structure of a colored graph.

Chromatic Function. A chromatic function χ : (V → C) → C → N counts
the number of occurrences of each color in a coloring profile. The formal definition
of the chromatic function is based on the counting operator (Count) which is a
function counting the positions/nodes of each element corresponding to values of
a vector or a function. Count(X, y) specifically counts the number of occurrences
of element y in vector/function X:

Count(X, y) =
{
y �→ ∣

∣{i | X(i) = y}∣∣} .

Count(X) =
|X|⋃

i=1

Count(X,X(i)).

The chromatic function is thus defined from a coloring profile c as:

χc =
⋃

k∈C

Count(c, k) (1)

The chromatic function of c of the example in Fig. 1 is:

χc = {1 �→ 3, 2 �→ 1, 3 �→ 2}.
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Dominant Color. A coloring profile with d vertices of the same color, will be
called a d-coloring profile. This notion is also applied to community from their
local coloring profile. A d-colorful community p implies that:

∃k ∈ C : χcp(k) = d. (2)

Notice that these coloring profiles may also have several subsets of vertices with
the same color of cardinality greater or equal to d. The graph in Fig. 1 is a
3−coloring profile for color 1, but also a 2−coloring profile for color 3, and
1−coloring profile for color 2.

Among the d−coloring profiles we specifically focus on the class of profiles
where d is the cardinality of the color occurring the most. These profiles are said
d-dominant by this main color. Hence a coloring profile is d−dominant if and
only if:

∃k ∈ C : χc(k) = d ∧ ∀k′ ∈ C : χc(k′) ≤ d. (3)

In this case, color k ∈ arg max χcp is said dominant. In Fig. 1 the dominant color
is 1 and the coloring profile is thus 3−dominant. By extension, a community is
said d−dominant if the restriction of the coloring profile to this community is
d−dominant. In Fig. 1, p1 is 3−dominant for color 1 and p2 is 2−dominant for
color 3. Notice that several dominant colors may exist in a coloring profile.

3 Chromatic Entropy

Although, the significance of the colorful communities closely depends on the
application fields for interpreting the colors, the issue is to define a generic
measure assessing the significance of a chromatic community structure. Basically
this measure is related to the color dominance in community. Intuitively more a
color dominates more significant a community is.

However, this characteristic is not enough for relevantly qualifying the sig-
nificance of community structure. Indeed, as an extreme illustrative example,
let us consider a community structure where each community is reduced to a
single node. Such structure leads to optimal coloring of the communities since
the single node owns the dominant color in its community because it covers it
totally. However such community structure clearly tells us nothing of value about
community organization since all nodes remain isolated.

A relevant measure should assess the intentionality behind the design of a
community. By considering that the human design driven by intention is opposed
to chance, a significant community should thus lead to gather more nodes of
the dominant color than would be expected by chance. Indeed, the situation
that cannot be delivered by chance necessary underlies a mechanistic organiza-
tion representing a human intention. As a result, we can confidently conclude
that the structure of the chromatic community excluding chance would provide
a meaningful structure supporting intentional organization. Such perspective
raises two major issues: 1) defining a measure characterizing the intention in
community design, 2) formally characterizing the probability to randomly gen-
erate a d-colorful community.
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3.1 Chromatic Entropy Definition

In the analysis of complex systems, entropy is a concept commonly used to
quantify disorder, randomness, chaos, or uncertainty in various domains. By
integrating entropy into the community detection process, the goal is to find a
partition that maximizes the significance of community structure while minimiz-
ing randomness within communities considered a sign of disorder and community
disorganization. This approach would reveal meaningful communities in complex
networks, leading to a better understanding of the underlying community struc-
ture and their organizational law.

In our context, the chromatic entropy H quantifies the intentionalness of
the community design. The chromatic entropy will relate to the coloring of a
community obtained by chance: the more likely a community is to be colored
by chance, greater its entropy. A community structure with a small entropy
thus emphasizes a meaningful community structure. Accordingly, the chromatic
entropy is based on the quantification of the community organization intention-
ally designed, called the intentionalness measure and denoted I : Δ1 → R.
Intuitively, this measure defines how much a community is intentionally orga-
nized. It is semantically equivalent to the measure of information introduced by
Shannon. It is expected that the higher the probability of random community
generation, the lower the Intentionalness measure.

Let Δm = {(p1, · · · , pm) | 0 ≤ pi ≤ 1 ∧ ∑m
i=1 pi ≤ 1} be the sets of (m-ary),

possibly incomplete, probability distributions on m communities. The entropy
H is a continuous function defined as H : Δ∗ → R where Δ∗ =

⋃
m≥1 Δm. Δ∗

is used for mathematical convenience to accommodate any community structure
cardinality and Δ1 ⊆ [0, 1] stands for a subset of the unit interval.

For characterizing the chromatic entropy, we focus on the axiomatic proper-
ties framing the definition of this function (Table 1). Notice that the maximal-
ity is a property specific to our context that does not necessarily apply to the
other notions of entropy as are the other properties [15]. Beside, the Shannon
entropy [16] cannot be straightforwardly used due to the maximality property,
since −p log2 p = 0 with p = 1 and not ∞.

By setting the intentionalness measure as I(p) = log2(1−p) which fulfills the
expected requirements the chromatic entropy can be finally defined as follows
(Definition 4):

H(p) = −p I(p) = −p log2(1 − p) (4)

The extension to a distribution of probabilities Δm follows the usual gener-
alized form of entropy-function (Definition 5):

H(p1, · · · , pm) =
m∑

i=1

H(pi). (5)
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Table 1. Properties of the entropy

Definition Property

Non negative : The entropy cannot be negative since it is a metric H(p) ≥ 0

Expansibility: adding a community with probability zero does not
change the entropy of the structure

H(p, 0) = H(p)

Symmetry: The entropy is insensitive to a permutation on
probability distribution

H(p1, p2) = H(p2, p1)

Sub Additivity: The entropy of a community structure is less than or
equal to the sum of the entropies of the communities composing it

H(p1p2) ≤ H(p1) + H(p2)

Minimality: The community structure is assumed to be totally
meaningful with a minimal entropy when the probability is null

H(0) = 0

Maximality: The entropy is maximal when the probability is 1
because the community is assumed to be fully random

H(1) = ∞

3.2 Probability of Random Coloring

The probability to randomly generate a d-colorful community of n nodes with a
particular color chosen among r colors by chance is defined by the ratio of the
favorable cases to the possible cases. The number of the whole possible colored
communities is rn corresponding to the cardinal of the complete enumeration
of the possible combinations of vertex coloring among r colors. The definition
of the favorable cases necessitates to combinatorically enumerate them which is
harder to characterize than the possible cases. Two issues are addressed:

1. the enumeration of the d-colorful communities of size n considering r colors;
2. the enumeration of the d−dominant colorful communities of size n considering

r colors.

Enumeration of d−colorful communities. Different coloring of d vertices
are obtained using any color. Let Dk be the set of colorful communities hav-
ing d vertices of color k, the count of all communities containing a d−color
profile obviously corresponds to the cardinality of the union of these sets,
namely: |⋃r

k=1 Dk|. Its enumeration formula is based on the Poincaré sieve
(inclusion-exclusion principle). Theorem 1 provides the general enumeration for-
mula deduced from the Poincaré sieve.

Theorem 1. The count of d−colorful communities of size n with r colors is
given by κ function:

κ(r, n, d) =
min(r,�n

d �)∑

k=1

(−1)k−1
(

r
k

)
n!(r − k)n−kd

(n − kd)!(d!)k

The proof and more complete explanations are in [14] ��
Enumeration of the d−dominant colorful communities The domination
implies to include the dominance constraint in comparison to the d−colorful
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communities enumeration, leading to specify the different equivalence classes of
communities complying with the domination conditions 3. Since the conditions of
domination are only based on the number of vertices of the same color regardless
the color, if two chromatic functions of two communities p, q are equal up to a
permutation on colors π : C → C, χcp = π ◦ χcq then these communities share
the same domination property and thus belong to the same equivalence class
related to the color distribution.

We introduce the notion of chromatic signature σ to capture this equivalence
on chromatic functions. A signature of a chromatic function is a vector of color
count corresponding to its ordered image (Definition 6)

σp = Sort ◦ Img χcp (6)

Several chromatic functions may have the same signature. For example the two
chromatic functions: {1 �→ 0, 2 �→ 3, 3 �→ 2} and {1 �→ 3, 2 �→ 0, 3 �→ 2} have
the same chromatic signature which is: (0, 2, 3). The signatures are at he heart
of the combinatorial formula enumerating the d−dominant coloring profiles by
abstracting the chromatic functions. The count of the dominant colorful com-
munities is defined as (Theorem 2):

Theorem 2. The count of all possible d−dominant communities of size n with
r colors is given by γ function:

γ(r, n, d) = n!r!
∑

σ∈Sr,n,d

1
∏

s∈Img◦Count(σ) s!
∏r

i=1 σ(i)!
.

The proof and more complete explanations are in [14]. ��
Finally, the probability of random coloring corresponds to the ratio of the

favorable cases given by κ or γ to the possible cases given by the number of all
possible colorful communities rn. Therefore, these probabilities are respectively:

pκ =
κ(r, n, d)

rn
, pγ =

γ(r, n, d)
rn

(7)

Notice that if the coloring is reduced to 1 color (r = 1) or the community is
imposed to be a singleton (n = d = 1) then pk = pγ = 1 and thus Hκ = Hγ = ∞
which follows the intuition since by considering these restrictions any community
obtained by chance is optimal.

4 Chromatic Community Structure Detection

The chromatic community detection algorithm (chrocode) finds a partition of
a colored graph minimizing the chromatic entropy H. The algorithm is divided
in two phases: first a partition grouping connected nodes of the same color is
built, forming a partition of monochrome communities, and next these commu-
nities are iteratively merged to decrease the chromatic entropy until no merges
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Fig. 2. chrocode algorithm steps.
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function ChroCoDe(G = 〈V, E, c〉 : colored graph, δ : radius, ω : probability law)
P ← partition of G with monochrome communities.
EP ← {(p, p′) | ∃v ∈ p, ∃v′ ∈ p′ : (v, v′) ∈ E, p, p′ ∈ P}; � 〈P, EP 〉 quotient graph
W ← P ;
while W 
= ∅ do � Assemble the communities.

p ← community with Hω maximal;
W ← W \ {p};
N ← neighbors of p at distance δ at most;
h ← Hω(G, P );
SPmin ← set of communities from a path in N minimizing Hω less than h ;
if SPmin is not empty then � Community update

p =
⋃

pi∈SPmin
pi; � Merge the communities of the path.;

P ← (P \ SPmin) ∪ {p};
EP ← update the quotient graph;
W ← P ;

end if
end while
return P ;

end function

Algorithm 1: Chromatic Community Structure Detection Algorithm

can improve the solution. At each step a node p with the maximal entropy is
selected and merged with neighbor q for minimizing at most current the chro-
matic entropy. The node-communities located in the shortest path from p to q
are also merged in order to fulfill the connectedness property within the new
resulting community. Once the assembly of nodes is achieved they will now form
a new community-node corresponding to their union. The quotient graph is
then updated by replacing the merged nodes by this new node-community. The
process ends when no merges decrease the entropy of the current community
structure. The outline of the algorithm is given in Algorithm 1. Figure 2 shows
the evolution steps of the algorithm.

chrocode is freely distributed in two open-source implementations Mathe-
matica [17] and Python [18].

Let 〈G,E, c〉 be a colored graph, the complexity of the first phase is in O(|E|)
since all nodes are visited from neighborhood to neighborhood to merge them
into monochrome communities. Now considering the worst case for monochrome
community reduced to a set of node singletons because the colors of all nodes are
different, and assuming that at each step the new community merges only two
communities, we deduce that the complexity is in O(|V |2(|E| + |V | log(|V |))).

5 Conclusion

We propose a new approach to detecting communities that relies on new crite-
ria to identify them. Instead of a difference in connection density between the
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community interior and its border, defining a community will minimize the chro-
matic entropy which is the entropy measure adapted to the problem of gathering
nodes with the same colors.

This new paradigm provides an alternative approach to connectivity rule. It
takes on its full meaning in challenges where the connection of nodes sharing the
same property remains loose and therefore cannot be captured by an examination
of the connection density as has been demonstrated for disease modules.

The significance of a community is assessed by its entropy. Low entropy means
that the community structure cannot have been the result of chance confirming
the intention behind its structure. We have proposed a chrocode heuristic
solving this problem in polynomial time. The benchmarks detailed in [14] of
this algorithm highlight the closeness of the two probability laws and very good
performance of the algorithm.

A perspective would be to study how the grouping of nodes according to the
major color rule could reveal connectivity patterns between nodes of the same
color. Indeed, sharing the same property, these nodes could develop a particular
connectivity structure characterizing a connection pattern that can be specific.
Such a perspective would allow recognition of a property-dependent community
through an hybrid model, combining the identical property recognition with
connectivity rules for detecting meaningful communities.
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Abstract. In an era of global interconnectedness, transportation net-
works serve as vital conduits for international relations, trade, and cul-
tural exchange. Previous research has extensively examined the world-
wide air transportation network at three distinct levels: global, regional,
and national, with contributions from various researchers shedding light
on different facets of the network. Focusing on densely connected regions
that extend from other dense areas, this study unveils the hierarchi-
cal structure of the global air transport network. Results emphasize the
multi-level nature of the network, from significant regions to country-
based divisions and ultimately to the intricate hub-and-spoke model.
One observes increased hub dominance and negative assortativity val-
ues as one delves deeper into the network’s hierarchy. This investigation
brings a more comprehensive understanding of the global air transport
network and its intricate hierarchical organization.

Keywords: Complex Networks · World Air Transportation Network ·
Hierarchical Component Structure

1 Introduction

In an era of global interconnectedness, transportation networks serve as the
arteries of international relations, trade, and cultural exchange. The intricate
web of airports worldwide facilitates the movement of people and goods across
geographical boundaries. The air transportation network is subject to analysis
at three levels: global, regional, and national. Various influential contributions
have been made across these tiers, each shedding light on different aspects of the
network.

The worldwide air transportation network has garnered substantial attention
from researchers. [1] presents a comprehensive network examination, revealing
power-law distributions in degree and betweenness centrality. This study contra-
dicts the conventional notion that highly connected cities have correspondingly
high betweenness centrality, suggesting geopolitical considerations play a signif-
icant role in network formation. [2] delve into the community structure, show-
casing how communities align with geographical regions. They identify distinct
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1142, pp. 235–247, 2024.
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city roles within communities, shedding light on the complex network dynam-
ics. [3] explore six node types, ranging from specific points like airports and
cities to broader areas such as spatial regions around hubs, sub-national terri-
tories, and countries. Analyzing the networks, they find a common small-world
and disassortative pattern across all node granularity levels. Additionally, they
observe an increase in the clustering coefficient and a decrease in the average
path length as node aggregation transitions from fine to coarse levels. Using the
Louvain community detection method, the authors uncover consistently coherent
community structures of approximately ten communities aligned with distinct
geographical boundaries. [4] investigate the network’s evolution, introducing the
Global Airport Connectivity Index to gauge airport importance. This approach
leads to classifying airports into regional and global hubs, demonstrating evolv-
ing strategies across different regions. [5] underscores the potential of component
decomposition as a powerful tool for modeling and analyzing mesoscale network
structures, extending beyond the world air transportation network. The authors
investigate the unweighted, undirected world air transportation network. They
find seven prominent spatially distinct local components with several smaller
ones. Moreover, a global component covers all the world. A comprehensive
comparative analysis of the component structure unveils the network’s non-
homogeneous topology, accentuating regional variations through local compo-
nents and efficiency in inter-regional travel via the global component.

Regional analyses have been equally significant. [6] dissect the European
airport network into core, periphery, and bridge layers, unraveling the network’s
core nodes’ robustness. [7] study Southeast Asia’s evolution, uncovering changing
hub configurations over time.

Further attention extends to national networks. Italian, Indian, and Chinese
networks have received extensive exploration. [8] reveal fractal structures within
the Italian network. [9] studies India’s network, unveiling hierarchical traffic
corridors. Chinese network studies highlight its unique characteristics, driven
by significant metropolises. US air transportation research showcases evolving
trends toward hub-and-spoke structures.

Recent existing research shows that the mesoscopic dimension of networks is
of prime interest to understand better their structure and dynamics[10–22]. It is
particularly true for transportation networks where global, regional, and national
characteristics are traditionally examined in isolation. Introducing the compo-
nent structure paradigm reveals that airports across different regions interact
due to economic, political, and historical factors. This study aims to delve fur-
ther into these intricate connections within the global air transport network,
focusing on densely connected regions. Through this approach, we seek a more
comprehensive understanding of the air transport network’s hierarchical struc-
ture through its dense areas and their interactions.

This paper proceeds as follows. Section 2 introduces the Data and analy-
sis methodology. We then briefly describe the world transportation network’s
component structure and present the hierarchical structure uncovered from the
components in Sect. 3. We discuss the results in Sect. 4 and conclude the paper
in Sect. 5.
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2 Data and Method

This section presents the dataset under test and the methodology to uncover the
hierarchical component structure of the world air transportation network.

2.1 Data

Flight information from around the globe originates from FlightAware. The
dataset spans six days between May 17, 2018, and May 22, 2018 [23]. Nodes
correspond to an airport, and the links are direct flight connections between
pairs of airports. The network contains 2734 airports interconnected by 16,665
direct flight routes. Table 1reports its global topological characteristics.

Table 1. The topological features of the Worldwide Air Transportation Network. N
is the network size. |E| is the number of edges. μ is the density. d is the diameter.ζ is
the transitivity. λ is the assortativity.

N |E| μ d ζ λ

2734 16665 0.004 12 0,26 -0,05

2.2 Methods

The Hierarchical component structure builds upon the concept of component
structure. It consists in splitting a network into local and global components.
The local components are the densely connected areas ofthe network. One can
use a community or a multi-core-periphery structure analysis to uncover these
dense parts. The remaining links with their nodes attached form the global com-
ponents. This conceptual framework allows us to view a network as two sets of
subnetworks. If we refer to the classical community structure representation the
local components emerge from intra-community links, while the inter-community
links give rise to the global components. Figure 1.A illustrates the three steps of
revealing the component structure, including local and global components. An
uncovered component is an isolated network. Consequently, one can extract its
component structure revealing the first level of hierarchy, and so on. One iter-
ates this process until reaching a stopping rule. Figure 1.B displays a network
hierarchical structure illustrating this process. At level 0, there is the original
graph. At level 1, there are three local components and one global component.
The local component 3 doesn’t include a component structure; it is a leaf. While
local component 1 has three local components and one global component (level
2). Finally, local component 2 contains two local and one global component (level
2). Note that one can have several global components like in Fig. 1.A.
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Fig. 1. A) Process to uncover the local components and the global components. B)
Hierarchical component structure

One of the main advantages of the component structure representation is that
it allows disentangling local interaction from global interactions. Furthermore,
as each component is an isolated network, one can go deeper in its analysis,
exploring it at various levels of granularity with the same tools in an iterative
process. At this stage, one must consider a specific threshold to determine when
to halt this iterative process. As we are interested in the network mesoscopic
representation, the threshold parameter can be any particular measure, such as
modularity, component size, or other relevant criteria.

In this study, the stopping criterion stipulates that a local component corre-
sponds to a particular geographical area or its size should exceed 20 nodes. Until
reaching this threshold condition, the analysis continues in-depth, resulting in
the eventual formation of a hierarchical structure.

3 Experimental Results

3.1 Component Structure

Level 0 of the hierarchy consists of the component structure of the world air
transportation network. It reveals twenty-seven local and nine global compo-
nents. The local components include seven large components and twenty small
components. Figure 2.A displays the large local components. They cover the fol-
lowing regions: North-Central America-Caribbean (657 airports), Europe (493
airports), East-Southeast Asia (416 airports), Africa-Middle East-Southern Asia
(336 airports), Oceania (234 airports), South America (215 airports) and Russia-
Central Asia-Transcaucasia (112 airports). The global components include one
large component and eight small components. The large global components are
distributed across the regions, as shown in Fig. 2.B. To extract the first level
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of hierarchy, we focus on the components corresponding to geographical areas
within the large components.

Fig. 2. A) represents the seven large local components. North-Central America-
Caribbean is Green, Europe is black, East-Southeast Asia is red, Africa-Middle East-
Southern Asia is magenta,Oceania is orange, South America is blue and Russia-Central
Asia-Transcaucasia is pink. B)illustrates the large global components

3.2 First Level of Hierarchy

At level 1 of the hierarchy, one can distinguish two typical behaviors. Figure 3
shows a typical example of these two categories. In the first group, each com-
ponent covers a well-delimited area, as illustrated in Fig. 3 A, showing the com-
ponent structure of East and Southeast Asia. This category includes five local
components (North-Central America-Caribbean, East-Southeast Asia, Africa-
Middle East-Southern Asia, Oceania, and South America). The second group
gathers the two other large local components (Europe and Russia-Central Asia-
Transcaucasia). Figure 3.B illustrates the first level of hierarchy of the European
component. One can notice that the components geographical localization is less
pronounced.

In the first group, at level 1, we observe three classes. The first includes the
North-Central America-Caribbean, East and Southeast Asia, and South America
regions. They contain six components. The second Africa-Middle East-Southern
Asia splits into seven components. Finally, Oceania has ten components. In the
first class, countries with significant areas, such as the United States, China,
and Brazil, are divided into components. Thus, the North-Central America-
Caribbean components exhibit a modularity value of 0.38, revealing six dis-
tinct regions of airport connectivity. Among them, three areas are predominantly
located within the United States, emphasizing the strong connections between
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Alaska and the western parts of the United States due to their geographical prox-
imity. Another cohesive component is formed by Mexico and Texas, driven by
significant travel between Mexico and the United States through Texas. Notably,
connections between Canada and Cuba are observed, possibly attributed to
complex travel dynamics between the United States and Cuba, leading Cuban
travelers to transit through Canada. A distinct Caribbean component emerges,
encompassing some airports from the United States. China splits into East and
Southeast Asia components, with a modularity of 0.38. One covers a significant
part, and the other is in the West. Note that Japan and South Korea form a com-
ponent. The Southeast Asian region is divided into three distinct components.
The first one encompasses countries in the northern part of this region, including
Thailand, Indonesia, Laos, Cambodia, Vietnam, and Myanmar. In addition, this
part is very connected to Mongolia. It’s worth noting that Mongolia’s geographi-
cal proximity to China, coupled with various modes of transportation like trains,
metros, vehicles, and air travel, makes air transport a more favorable option for
connecting to other Asian countries. The second component includes Malaysia
and Indonesia, while the Philippines stands apart as a separate entity due to
its archipelago nature favoring air travel. With a modularity of 0.54, among the
components in South America, two are located all along the east and West of
Brazil. Venezuela-Colombia and Peru-Bolivia form distinct components. Chile
and Argentina are well separated from other countries in this region.

Fig. 3. The component from level 1. A) The components from East and Southeast
Asia. All of them are well delimited. B) The components from the Europe. Only two
are well delimited.

The West and East of Africa are very connected in the second class, with a
modularity of 0.52. The South of Africa (Angola, Namibia, South Africa, etc.)
is also a delimited component. Saudi Arabia, Egypt, Libya, and Sudan also
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form a component. Except for Saudi Arabia and Iran, the major countries of
the Middle East share the same component with the South of India. Indeed,
Indians tend to travel to the United Arab Emirates to work. The other parts
of India, some parts of Afghanistan, and the country of Bangladesh are in the
same component. Iran and Madagascar each form separate components. In the
last class, the modularity is 0.63 in the Oceania component. The components of
this region are either countries or areas in Australia. Indeed, in Australia, four
components are distributed between the West, North, Northeast, and South East
Central. The other geographical components are countries such as New Zealand,
French Polynesia, Vanuatu, Papua New Guinea, Solomon Islands, and an island
group consisting of several countries.

In the second group, at level 1, one can see that in Fig. 3.B, only Turkey
and the Scandinavian countries with some airports in the North of the UK and
Greece are delimited areas in the European component. Indeed, the European
Union is a single airspace, whereas Turkey is not part of the EU. In addition,
the touristic areas in the islands in Portugal are separated from the rest. In
Russia-Central Asia-Transcaucasia, the East of Russia and Kazakhstan are well
separated from the other components.

Fig. 4. The components from the Level 2. A) The components from Southeast Asian.
B) The components from the Scandinavia countries.

The diameter in the first level of the hierarchy ranges between 3 and 6. In
addition, the components corresponding to a country have a smaller diameter.
Nevertheless, 5 or 6 jumps are necessary to reach two airports within their com-
ponents in the North-Central America-Caribbean. Note that the Oceania region
is very heterogeneous when you look at their diameters. The highest is 7, while
the smallest is 2. Significantly, the components within Australia have large diam-
eters. Entirely the components of the North-Central America-Caribbean are the
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least dense. The South American components are the least transitive. Indeed,
the components in Argentina and Colombia have almost no clusters. In the
same way, the components located in the north of the United States and the
West of China exhibit the same characteristics. The European components also
contain numerous triangles. Some components in East and Southeast Asia are
two times more transitive than others. Whereas for the other regions of level
1, the transitivity values of their components are a bit homogenous. Except for
the European components, the components of this level are disassortative (with
assortativity values ≤ -0.5)), more than their parents. Like the assortativity, the
hub dominance increases in the components of this level. Most of the highest
hubs within their component can join more than half of the airports. Notably,
Papua New Guinea and the Solomon Islands are centralized in the highest hubs
(Port Moresby Jacksons Airport and Honiara Airport, respectively), which can
join all the airports of these components. The global components of the various
regions of this level have similar properties as the local components. Neverthe-
less, they are less disassortative and centralized than most local components.
Note that in South America, there are more triangles in the global component
than most of the local components.

3.3 Second Level of Hierarchy

At level 2, two North-Central America-Caribbean, East and Southeast Asia,
and Africa-Middle East-Southern Asia components contain two subcomponents.
Indeed, the Canada-Cuba, characterized by a modularity of 0.45, and Caribbean
components with a modularity of 0.4 possess subcomponents corresponding to
specific regions. The Canada-Cuba component is divided into five distinct sub-
components. Notably, Cuba’s connection is focused on southeastern Canada,
while other subcomponents exhibit more scattered connectivity. The Caribbean
region reveals five components aligned with groups of countries. Countries like
the Bahamas and Venezuela play dominant roles within their respective compo-
nents. Figure 3.A shows that the Northern Southeast Asia components comprise
the countries it encompasses. The modularity is 0.54. Components within this
segment boast comparable sizes, with only Laos and Cambodia sharing a com-
ponent. Additionally, Thailand is divided into two components, and Burma and
Vietnam each form separate components. Moreover, Malaysia and Indonesia
become separated with a modularity of 0.39. Indeed, Malaysia forms a com-
ponent, while Indonesia has three delimited components in the East, Center,
and North-West. Only two comprise subcomponents defining delimited regions
among the Africa-Middle East-Southern Asia components. The Western and
Eastern African component is subdivided into six regions, demonstrating a mod-
ularity of 0.46. The ECOWAS countries, excluding Nigeria, constitute one com-
ponent, while Nigeria stands alone. Cameroon, Tanzania, and Kenya-Somalia-
Djibouti follow the same pattern. Despite their distance, Ethiopia and Congo
share a component, as Ethiopia often serves as a stopover en route to other
parts of the world. With a modularity of 0.6, the Southern African component
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is subdivided into six components, mainly corresponding to individual coun-
tries. Angola, South Africa, Mozambique, Botswana, and Namibia-Zimbabwe
each constitute their component. Safaris have greatly enhanced these connec-
tions. The Peru-Bolivia component is separated into Peru and Bolivia at this
level, with a modularity of 0,42. With a modularity of 0.44, Ecuador splits from
Colombia. Colombia is divided into three components that don’t correspond to
geographical areas. There are four Oceania components which contain subcom-
ponents. Indeed, the West of Australia consists of four components. While the
Northeast of Australia also has five well-delimited components. These compo-
nents are small, the largest of which includes ten nodes. With a modularity
of 0.42, the Vanuatu region comprises three components that cover the North,
Center, and South. The group of islands also splits into four components that
regroup into a group of countries (islands). The most significant component
among them contains seven airports. The Scandinavian component contains five
components corresponding to countries or groups of countries. The modularity
is 0.37. Indeed, Norway, Sweden, Finland, and Denmark become separate com-
ponents as illustrated in Fig. 4.B. Especially the North of the United Kingdom
and some airports in Greece share a component.

The diameter of the components from level 2 shows that to travel in a country,
one needs 3 or 4 jumps at most. Exceptionally, 5 in the Bahamas and a com-
ponent in Australia, or 2 in the components from the South of Africa and the
Islands in Oceania. The components from level 2 located in the North America-
Caribbean, East and Southeast Asia, and Africa-Middle East-Southern Asia tend
to include more triangles. They are more transitive than their parent. Numerous
components from level 2 located in Oceania don’t contain any triangles. The
components of level 2 tend to be more disassortative than their parent.

Moreover, the hub dominance increases for these components. For example,
the following airports, such as Copenhagen Kastrup Airport in Denmark, Don
Mueang Airport in Angola, and Jorge Chávez Airport in Peru, can join all the
airports within their country. Don Mueang Airport can reach all airports in some
parts of Thailand. By synthesizing these topological properties, several leaves of
the hierarchical structure of the global air transport network have a star-based.
They have transitivity close to zero or equal to zero, assortativity close to -1 or
equal to -1, and hub dominance close to 1 or equal to 1. The global components
also have these characteristics. But it’s less prominent.

None of the level 2 components have sons. Indeed, their modularity is less
than 0.3, or their size is less than 20 nodes. However, the hierarchical components
of the world air transportation network have three levels of depth. In addition,
none of the large global components have a hierarchical structure.

4 Discussion

This paper investigates the hierarchical structure of the world air transporta-
tion network through its component structure. We extract iteratively the local
and global components from the components of the world air network corre-
sponding to geographical regions. The component structure of the world air
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transportation network exhibits seven significant regions and one global compo-
nent. These regions correspond to North-Central America-Caribbean, Europe,
East and Southeast Asia, Africa-Middle East-Southern Asia, Oceania, South
America, and Russia-Central Asia-Transcaucasia. Thus, the analysis of airport
networks across various global regions provides valuable insights into the intri-
cate patterns of connectivity and the underlying factors shaping these networks.

Level 1 offers a closer examination of the components identified in Level 0.
This level reveals regional patterns and divisions within the global air trans-
portation network. We identify two groups. In the first group, we observe
well-defined components. It includes North-Central America-Caribbean, East-
Southeast Asia, Africa-Middle East-Southern Asia, Oceania, and South Amer-
ica. These components represented geographically cohesive regions, each with
distinct connectivity characteristics. In North-Central America-Caribbean, the
first level displays the high connectivity of various regions and parts of the United
States. We observe non-obvious interconnections, such as between Canada and
Cuba and some United States hubs with Caribbean airports. The East and
Southeast Asia components regroup countries, even though China and Japan
dominate their components. In addition, only the Philippines, in which islands
favor air travel due to limited land connections, constitutes a single compo-
nent. Mongolia, which borders China, is not connected to the latter. The Africa-
Middle East-Southern Asia region reflects the intricate dynamics between West
and East Africa, the Middle East and India, and the South of Africa. Only Iran
and Madagascar form each one a component. Indeed, airports like Addis Ababa
Bole Airport and Jomo Kenyatta Airport have essential hubs facilitating global
connections. We observe a strong connection between Middle Eastern countries
and South India, possibly due to employment-related travel. Oceania showcases
a unique distribution of components within Australia and various island coun-
tries. Only one component includes several countries (Fiji, Marshall Islands,
Micronesia, Kiribati, etc.). The South American region demonstrates how geo-
graphical characteristics and country relationships determine components. The
clustering of Brazil’s east and west, the distinctness of Chile and Argentina, and
the presence of intermediary components like Venezuela-Colombia and Bolivia-
Peru reveal the complex web of connections within the region. The second group
includes Europe and Russia-Central Asia-Transcaucasia. Europe displays fewer
well-delimited components, reflecting the unique characteristics of the European
Union’s unified airspace. Turkey and some Scandinavian countries form distinct
components.

Level 2 focuses on subcomponents within the Level 1 components. It
reveals finer-grained patterns of connectivity and division. For instance, within
North-Central America-Caribbean, the Canada-Cuba and Caribbean compo-
nents showcase subcomponents corresponding to specific regions. These sub-
components provide insights into the localized connectivity within these areas.
In Southeast Asia, subcomponents highlight regional divisions, such as Laos and
Cambodia, sharing a component, while Thailand is divided into two components.
Africa-Middle East-Southern Asia has fewer subcomponents, but the Western
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and Eastern African components exhibit distinct regions. Subdivision within
the Southern African component reflects the impact of safaris on air travel, with
separate components for individual countries. Oceania exhibits numerous sub-
components, emphasizing its heterogeneity. Scandinavia splits into countries.

Diameter analysis reveals that regional flights are more efficient than inter-
regional flights for the Africa-Middle East-Southern Asia and the South America
regions. For these two areas, the diameter of the global component is equal to
the diameter of the part. The opposite is true for the other subcomponents,
but not all. The components from the North America-Caribbean are less dense.
The densest components from the different regions have a density of around 0.2.
The subcomponents in South America and mainly those in Australia are less
transitive. In addition, finding a stopover in their global components is easier.
Moving to Level 2, our analysis reveals even finer network connectivity details.
Level 2 components in North America-Caribbean, East and Southeast Asia,
and Africa-Middle East-Southern Asia tend to be more transitive, indicating
increased clustering and interconnectedness compared to their parent Level 1
components. Conversely, several Level 2 components in Oceania lack triangles,
suggesting reduced clustering. Hub dominance continues to increase at Level 2,
with certain airports connecting all the airports within their respective countries.
Several leaves of the hierarchical structure of the global air transport network
exhibit star-based topological properties with low transitivity, high disassorta-
tivity, and dominant hubs. Global components exhibit similar properties to local
components, albeit with reduced levels of disassortativity and centralization.

5 Conclusion

The investigation of the world air transport network based on its component
structures, marks a pivotal step in understanding the network’s complexity
and interdependence. This paper highlights how geographical proximity, travel
dynamics, and transportation infrastructure shape the structure of these compo-
nents and how different regions exhibit diverse topological characteristics. This
study uncovers three levels in the hierarchical structure of the world air trans-
portation network. The first level covers large areas that are comparable to
continents. The second level divides these large areas into groups of countries,
except for Oceania and South America. Indeed, in Oceania, the presence of
islands favors air transport. South American countries lack a strong integration
policy. Moreover, the more we zoom in on the world’s air transportation net-
work, the more we see the hub-and-spoke character. Additionally, the negative
assortativity and the hub dominance values increase. In future work, we plan to
perform a comparative analysis with alternative hierarchical structure detection
algorithms [24,25].
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Abstract. The topological structure of the world air transportation network is
the subject of much research. This paper reports a comparative analysis of the
weighted and unweighted air transportation network at the mesoscopic level.
We use the component structure to isolate regional from interregional traffic
and infrastructure. Recently introduced in the network literature, the component
structure splits the network into local and global components. The local com-
ponents are the dense parts of the network. They capture the regional flights.
The global components linking the dense parts capture the inter-regional flights.
Results display fewer local components well delimited and more global compo-
nents covering the world than the unweighted world air transportation network.
Beyond their structural implications, these components offer practical advan-
tages. They can be a foundation for optimizing transportation routes and sched-
ules, leading to cost savings and reduced travel times. Stakeholders in transporta-
tion, including airlines, shipping companies, urban planners, and policymakers,
can leverage this knowledge to make informed decisions and strategic plans that
promote economic growth and environmental sustainability.

Keywords: Complex Networks · World Air Transportation Network ·
Weighted network · Unweighted network

1 Introduction

The air transport system connects all countries in the world. This infrastructure has a
direct impact on society and the global economy. Indeed, millions of people and goods
transit through the air every day. Recently, we have seen how the COVID-19 pandemic
spread rapidly because of air transport. Thus, understanding the air transportation sys-
tem can help policymakers make decisions that can improve or affect this system. Net-
work science provides a simple way to represent and understand numerous networked
structures, such as infrastructure and social networks, and more particularly their meso-
scopic characteristics [1–12]. Thus, several studies are devoted to the air transportation
network, including structure, dynamics, and robustness.
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The literature reports numerous studies of unweighted air transportation networks
[13–16]. They cover national, regional, and worldwide networks and include investiga-
tions at the macroscopic, mesoscopic, and microscopic scales. All these networks share
some common characteristics. They are generally small-world and scale-free. More-
over, some exhibit a community structure [13].

Most of the works in the weighted air transportation network focus on weighted
national air transportation networks. Indeed, [16] study the weighted airport network of
India. In [17], the authors investigate the evolution of the air transportation network of
the United States from 2002 to 2005. The authors in [18] study the Australian airport
network’s structure and dynamic flow. In [15], the authors analyze the characteristics
of the Asian international passenger aviation market in 2014 and 2018. In these stud-
ies, several consistent findings emerge. Firstly, the airports in various networks exhibit
a scale-free structure, with a few highly connected hubs dominating the network. Sec-
ondly, a strong correlation exists between node strength (measuring importance) and
degree (number of connections), indicating that highly connected airports also handle a
significant traffic volume. Thirdly, the rich-club phenomenon highlights substantial traf-
fic flow among interconnected hubs, improving the network’s efficiency. Additionally,
the incorporation of weighted edges underscores the role of low-weighted connections
in forming topological clusters. Finally, the studies emphasize the dynamic nature of
air transportation networks, influenced by factors like the growth of Low-Cost Carriers
and the impact of developing countries on regional air transport networks.

In a previous study, we analyzed the world air transportation network through a new
mesoscopic structure called the component structure[19]. A network contains two types
of components. The dense parts of the network form the local components. The inter-
actions between the local components are called the global components. Therefore, one
must extract the dense areas to build the component structure. The community structure
or the core-periphery algorithms are good candidates to do so. Indeed, the communities
constitute cohesive groups of nodes sparsely connected [20–22]. The core-periphery
[23–25] structure contains two groups of nodes (core and periphery). The core nodes
are tightly connected. The periphery nodes are almost not connected. The links between
the core and periphery nodes are relatively dense. Networks can exhibit a multi-core-
periphery structure [26]. One can extract the dense parts using any algorithm to uncover
the communities or the various cores to form the local components. In the previous
study, we analyzed the unweighted world transportation network. Results show that the
local components capture the regional destinations, while the global components rep-
resent the inter-regional flights. Our investigations use no information on the dynamic
in the infrastructure. This simplification can lead to centrality anomalies [11,26] and
hide critical information about the flow of flights and passengers in the infrastructure.
Indeed, the traffic in the various routes can be pretty different, and failing to integrate
these differences can lead to misleading conclusions.

In this paper, we perform an extensive comparative analysis of the route
(unweighted) and traffic (weighted) networks at the mesoscopic level to better under-
stand their differences and consistencies. The network of 2734 nodes and 16665 links
originates from FlightAware [27]. It collects the flights between May 17, 2018, and
May 22, 2018 [28]. Nodes represent airports, and links are direct flights between air-
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ports. The link weight is the number of flights between two airports. Table 1 reports
basic properties (unweighted and weighted). As the component structure has shown
promise in disentangling regional with inter-regional routes[19], we adopt this represen-
tation. We rely on community detection algorithms to extract the component structure.
It allows us to explore the traffic on the different regional and inter-regional infrastruc-
tures. Furthermore, we compare the weighted and unweighted topological properties at
the macroscopic level.

The rest of the paper is organized as follows. Section 2 examines the network meso-
scopic structure. Starting with the community structure, we perform an extensive com-
parative evaluation of the various weighted and unweighted local and global compo-
nents. Section 3 explores the topological properties of the local and global components.
Finally, we conclude in Sect. 4.

Table 1. Basic topological properties of the world air transportation network. N is the network
size. |E| is the number of edges. d is the diameter. L is the average shortest path length. μ is the
density. ζ and ζw are, respectively, the unweighted and weighted average clustering coefficients.
λ and λw are respectively the unweighted and weighted assortativity, also called the degree-
degree correlation coefficient. η is the hub dominance.

N |E| d L μ ζ ζw λ λw η

network 2734 16665 12 3,86 0,004 0,046 0,007 −0,046 0,048 0.09

2 Mesoscopic Structure Analysis

Our main goal is to explore the regional and interregional differences and similari-
ties of the world air transportation network. So, the first step is to split it into various
regions. Rather than relying on the classical IATA subdivision based on geographic
considerations, we consider the different mesoscopic representations of the weighted
and unweighted world transportation networks. We extract the dense part of the net-
works using a community detection algorithm. Consequently, first, we investigate the
weighted and unweighted community structures. We also explore their variations linked
to the community detection algorithm. Then, we turn to the component structure to per-
form an extensive comparative analysis.

2.1 Community Structure

Influence of the Community Detection Algorithm. To evaluate the influence of
the community detection algorithm, we also perform the community detection of the
weighted network using the Combo algorithm. The number of communities extracted
from the networks by the algorithms is quite different. Louvain uncovers 17 commu-
nities with sizes ranging from 725 to two airports. In contrast, Combo identifies only
seven. The largest community includes 703 airports, and the smallest consists of 70
airports. Table 2 reports the quality metrics of the two community structures. Their
modularity is identical (0.47). Its value indicates that the communities are dense, with a
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medium proportion of inter-community links. The community structure of Louvain con-
tains few connections between the communities with large weights. In contrast, Combo
reveals more inter-community links with smaller weights. In both cases, the mixing
parameter values demonstrate that the communities are well-separated.

Table 2. Quality metrics of the community structures uncovered by Louvain and Combo com-
munity detection algorithms: Modularity, Mixing parameter, NMI

Modularity Mixing parameter NMI

Louvain 0,47 0,043 0,87

Combo 0,47 0,046

Although Louvain uncovers more communities than Combo, their community
structures have numerous similitudes. Indeed, Combo merges some communities of
Louvain. A high value of the NMI (0.87) confirms their similarity. Five communi-
ties are very similar. They cover the same geographical areas. In Fig. 1, these areas
correspond to the communities with the same color. They are in North and Cen-
tral America-Caribbean, Europe-Russia-Central Asia-Central Asia, East and Southeast
Asia-Oceania, Africa-Middle East-Southern Asia, and South America. Table 3 reports
their Jaccard Index. Its value for all similar communities is higher than 0.85. For North
and Central America-Caribbean and Europe-Russia-Central Asia-Central Asia, it is
higher than 0.9, indicating a high similarity between the communities uncovered by
the algorithms. The thirteen other communities extracted by Louvain, mainly located
in Canada and Alaska, are merged by Combo. To sum up, although the community
structures uncovered by Louvain and Combo differ, the large communities have much
in common. We adopt the Louvain communities to build the component structure used
in further investigations.

Table 3. The Jaccard Index of the five similar communities uncovered by Louvain and Combo.

Community Jaccard Index

North and Central America-Caribbean 0,94

Europe-Russia-Central Asia-Central Asia 0,98

East and Southeast Asia-Oceania 0,85

Africa-Middle East-Southern Asia 0,88

South America 0,85

2.2 Component Structure Analysis

We distinguish two types of components. Large components include more than 100 air-
ports, while small components’ size is below this threshold. In this section, we describe
their features in the weighted network. Furthermore, we compare them with their analog
uncovered in the unweighted network [19].
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Fig. 1. A) Illustrates the communities identified through the Louvain community detection algo-
rithm, encompassing eighteen communities. B) Showcases the communities revealed by the
Combo community detection algorithm, comprising seven communities. Each color corresponds
to a specific community in both cases, and similar communities are represented by matching
colors.

Local Components. The local components correspond to the 17 communities uncov-
ered by Louvain in the weighted network. There are five large and twelve small local
components.

The large local components cover 1) North and Central America-Caribbean (725
airports), 2) Europe-Russia-Central Asia-Central Asia (683 airports), 3) East-Southeast
Asia-Oceania (630 airports), 4) Africa-Middle East-Southern Asia (313 airports), and
5) South America (201 airports). Altogether, they regroup more than 93% of the world’s
airports. Like in the unweighted local components, the large weighted local components
do not reflect strict geographical divisions. They correspond more to political, cultural,
historical, and economic divides. For example, all the airports in Morocco, Tunisia,
Benin, and Cameroon belong to the European component. It is because of the solid
economic and historical ties these countries share with Europe.

One can distinguish two typical behaviors when comparing the large local compo-
nents of the weighted and unweighted network illustrated in Fig. 2. In the first case,
the components are very similar. In the second case, separated components in the
unweighted network merge into a single component.

One can distinguish two typical behaviors when comparing the large local compo-
nents of the weighted and unweighted network illustrated in Fig. 2. In the first case,
the components are very similar. In the second case, separated components in the
unweighted network merge into a single component.

There are three similar components (North and Central America-Caribbean, Africa-
Middle East-Southern Asia, and South America). We quantify their similarity using the
Jaccard index. The higher the similarity, the closer the Jaccard index is to 1.
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Fig. 2. A) depicts the airports within the large components of the weighted network. B) shows
the airports within the large components of the unweighted network. Each color corresponds
to a distinct component. The North and Central America-Caribbean component is represented by
black (1). The Africa-Middle East-India component is denoted by green (4). The South American
component is highlighted in red (5). The magenta represents the Europe-Russia-Central Asia-
Central Asia component (4). In the unweighted network, it split into magenta (4) in Europe and
gray (7) in Russia. The East and Southeast Asia-Oceania component in orange (5) and, in the
unweighted network, divides into orange (5) in East and Southeast Asia and blue (6) in Oceania.

The weighted component encompassing North and Central America-Caribbean
boasts 10% more airports compared to its unweighted counterpart. Notably, their Jac-
card index is relatively high at 0.81, highlighting significant commonality regarding
shared airports. However, it’s essential to recognize that 39 airports in the unweighted
component do not appear in the weighted one. These omissions primarily affect air-
ports in the French Antilles and Venezuela. Strikingly, even John F. Kennedy Airport is
absent from the weighted component.

Conversely, the weighted component introduces a set of new airports totaling 107.
These additions are predominantly located in Canada, Alaska, Peru, and Chile. Notably,
London Heathrow Airport, a pivotal air hub in the United Kingdom, appears in the
weighted component. This inclusion is justified by the airport’s extensive connections
to the United States, with numerous flights from North America arriving at Heathrow.
The most unexpected inclusions in this weighted component are the Marshall Airport
in the Marshall Islands and the Osmany Airport in Bangladesh. The Marshall Airport
collaborates with United Airlines, a major U.S. carrier, strengthening its connectivity
with the United States. On the other hand, Osmany Airport facilitates flights to and from
London Heathrow.

The Jaccard index between the unweighted (336 airports) and weighted (313 air-
ports) Africa-Middle East-Southern Asia component is high, registering at 0.87. 35
airports in the unweighted component are absent in the weighted one, primarily in
the Middle East and West Africa. Conversely, eleven new airports have emerged in
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the weighted component, with 6 located in Kenya, 2 in West Africa, and 3 in Europe.
Unexpectedly, Germany’s largest airport, Frankfurt am Main, is part of this component,
owing to its substantial air traffic connections with Saudi Arabia and India. Poland’s
Rzeszów-Jasionka Airport and Greece’s Araxos Airport also feature in this component
due to their robust traffic ties with Frankfurt am Main.

The Jaccard Index between the unweighted (215 airports) and weighted (201 air-
ports) South America components is 0.78. Thirty-two airports from Chile and Peru van-
ished in the weighted component, shifting to the weighted North and Central America-
Caribbean region. Meanwhile, the weighted South America component now includes
Venezuela, Colombia, and Cuba airports.

Two merged components are formed: “Europe-Russia-Central Asia”, combining the
unweighted European and Russia-Central Asia-Transcaucasia components, and “East
and Southeast Asia-Oceania”, comprising the unweighted East and Southeast Asia and
Oceania components. This allows us to compare them with their weighted counterparts.

The Jaccard Index for the European-Russia component is 0.87. Nine airports from
the unweighted version vanish, while 87 new ones emerge in the weighted component,
mainly in Norway, West and North Africa, Iran, the United Arab Emirates, and the
French Antilles. Beyond geography, these countries share political, historical, and eco-
nomic ties. Moscow and St Petersburg airports connect Russia with Europe and other
world regions. North Africa, West Africa, and the French Antilles have strong political
and historical links with Europe, resulting in substantial traffic between these regions.

The unweighted and weighted East and Southeast Asia-Oceania components exhibit
a high similarity with a Jaccard index of 0.97. These regions, connected by major
airports, have significant traffic. In the weighted component, twenty-three airports in
French Polynesia disappeared, while three airports in Russia and India emerged. Vladi-
vostok and Yuzhno-Sakhalinsk airports facilitate exchanges with China, Japan, and
South Korea. Trichy airport in India has heavy traffic with Malaysia, Singapore, and
Sri Lanka.

Figure 3.A displays small local components in both the weighted (A) and
unweighted (B) networks for comparison. These components are either within a sin-
gle country or span a few countries or subregions. In the weighted network, these small
components range from 30 to 2 airports. Five similar components exist in both the
weighted and unweighted networks. Additionally, some small components appear or
disappear in the weighted network compared to the unweighted one. Notably, Alaska
and Greenland have isolated areas with limited connections and flights, making air
transport crucial. French Polynesia and French Antilles-Ontario-Quebec regions have
two small components each, connecting airports globally despite sparse connections.
These areas heavily rely on air travel due to their island nature and community ties.
Thirteen small unweighted components integrate into the weighted large components,
with four in North America, five in Europe, and four in Africa.
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Fig. 3. Small local components are derived from the weighted (A) and unweighted (B) world air
transportation networks. The magenta components are consistent in both networks. Components
colored in beige are exclusive to the unweighted network, while green components are exclusive
to the weighted network. The red component (20) is divided into two (11 and 12) in the weighted
network. Note that geographical areas outside the figure do not include small components.

Globally, small local components represent 6.6% of airports. They are in North
and Central America-Caribbean (3 in Alaska, 2 in Canada, and 1 in the Caribbean),
Europe (1 in Greenland and 1 in Israel), East and Southeast Asia-Oceania (1 in French
Polynesia and 1 in Australia), and Africa-Middle East-Southern Asia (1 in the United
Arab Emirates). Five of these components have fewer than five airports.

Global Components. Figure 4 shows the global components extracted from the
weighted world air transportation network. There are one large and 11 small global
components. The small global components include 36 airports in North and Central
America-Caribbean and East and Southeast Asia-Oceania. Their size ranges from 4 air-
ports to 2 airports. Canada contains most of them (11). Only two components are shared
with the unweighted world air transportation network. In the following, we neglect these
small components. The global component encompasses 557 airports (20.44% of world
airports) and spans worldwide.

The Jaccard Index between the weighted and unweighted large global components
is low at 0.63. The weighted large global component has 14 more airports than the
unweighted one, but they differ significantly. Specifically, 100 airports disappear in
the weighted component, while 144 new ones join. This shift occurs because Ocea-
nia and Russia merge with neighboring regions in the weighted network, reducing
inter-component connections. New airports come into play due to unique features in
North and Central America-Caribbean, Europe-Russia-Central Asia, and Africa-Middle
East-India components. Highly connected airports like London Heathrow and John F.
Kennedy, not originally in their geographical components, enhance local component
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links, drawing new airports into the global component. Such airport transfers pro-
foundly alter the connected component.

3 Global Topological Properties of the Components

3.1 Clustering Coefficient

One can define C(k) and Cw(k) as the average clustering coefficient of nodes with
degree k for, respectively, unweighted and weighted networks. The relation Cw > C
indicates that the interconnected triplets tend to be formed by links with high weights.
The opposite Cw < C shows that lower-weight edges produce interconnected triplets.

Let’s delve into the large local components. The average unweighted clustering
coefficient inversely relates to node degree. Lower-degree nodes exhibit higher clus-
tering coefficients, while hubs are less cohesive. When fitting C(k) with the law k−γ ,
we find γ ≈ 0.3 for Africa-Middle East-Southern Asia and South America components,
and around γ ≈ 0.2 for others.

In contrast, the average weighted clustering coefficient remains constant regardless
of degree. Furthermore, the weighted average clustering coefficients are consistently
lower than their unweighted counterparts. This indicates that interconnected triplets in
large local components tend to form through low-weight edges.

Fig. 4. A) The airports in the large global component. B) The 11 small global components are
circled. The size range are between 2 and 3 airports.

In general, the large global component behaves similarly to local components. In the
unweighted network, the fitted power law function has a γ ≈ 0.58 coefficient. Conse-
quently, the global component has fewer interconnected triplets than the local ones. This
is because the global component includes long-distance traffic airports, many of which
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are hubs in their country with limited rerouting capacity in a hub-and-spoke configura-
tion. Like in large local components, the unweighted average clustering coefficient for
a node with degree k is higher than the weighted average clustering coefficient. This
indicates that connected triplets primarily involve nodes with low-weight edges.

3.2 Strength Distribution

We perform a goodness of fit evaluation of the strength distributions of the large local
components with the Kolmogorov Smirnov test (KS). Results reported in Table 4 reveal
that the log-normal distribution better fits the large local components. Moreover, they
are heavy-tailed, like the degree distribution of the unweighted large local components
of the world air transportation network. One can expect this result. Indeed, the higher
the node degree, the higher its weight.

The relationship between strength and degree in each large local component is obvi-
ous, described by the equation s(k) = kβ . Despite β varying slightly between 2.1 and
2.3 for all large local components, this pattern aligns with findings from [16], where
β ≈ 1.43 was reported.

Table 4. The Kolmogorov-Smirnov goodness-of-fit values (KS-test) are computed for the degree
distribution, considering distributions such as Power-law, Truncated power law, Log-Normal, and
Stretched exponential. The smallest value, indicated in bold, signifies the best fit

Power law Truncated Power law Log-Normal Stretched Exponential

North and Central America-Caribbean 0.31 0.136 0.044 0.06

Europe-Russia-Central Asia 0.31 0.27 0.041 0.06

East and Southeast Asia 0.32 0.15 0.032 0.05

Africa-Middle East-Southern Asia 0.32 0.15 0.045 0.065

South America 0.33 0.15 0.043 0.18

Three categories of large local components based on the strength-degree curve
exponent (β) can be distinguished. The Europe-Russia-Central Asia component, the
first category, features multiple hubs with nearly equal traffic. Traffic increases grad-
ually with degree. The North-Central America-Caribbean and East-Southeast Asia-
Oceania components fall into the second category. These components also host numer-
ous hubs, but traffic is highly concentrated in a few of them. The last category includes
the Africa-Middle East-Southern Asia and South America components. These have
fewer hubs and less traffic compared to the other types. The strength increases rapidly
with degree, with only a few hubs accumulating the most traffic.

The strength distribution of the Large Global Component also follows a log-normal
law with a heavy-tailed pattern akin to the large local components. Similar distribu-
tion parameters are observed in the East-Southeast Asia-Oceania component. Higher
node degrees correlate with more traffic accumulation, with airports having at least 100
flights, which differs from the large local components. The β exponent aligns with that
of North and Central America-Caribbean and the East-Southeast Asia-Oceania compo-
nents.
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4 Discussion and Conclusion

This paper investigates the relationship between the weighted and unweighted world-
wide air transport network and its impact on its component structure.

In summary, the weighted network has fewer components than the unweighted one.
Large local components in both cases cover distinct geographic areas, with some varia-
tion. The weighted network has five large local components, while the unweighted net-
work has seven. Three components are similar (North and Central America-Caribbean,
Africa-Middle East-South Asia, South America), while the other two (Europe-Russia-
Central Asia, East-South-East Asia-Oceania) combine neighboring components from
the unweighted network due to substantial traffic and economic integration. Major
airports also integrate regions with shared flight traffic, like John F. Kennedy Air-
port in Europe-Russia-Central Asia, London Heathrow in North and Central America-
Caribbean, and Frankfurt airports in Africa-Middle East-South Asia.

Although the weighted network has more global components, both networks have
a single large global component, each comprising about 20% of the world’s airports.
However, their content differs significantly. Merging local components leads to the dis-
appearance of many connecting airports in the global component, while new airports
emerge when an airport is not in its natural geographic area. For example, most airports
linked to John F. Kennedy outside the Europe-Russia-Central Asia component integrate
the global component.

The analysis of average weighted clustering coefficients in large local components
shows they remain constant regardless of node degree, consistently lower than their
unweighted counterparts. Less-trafficked airports form triplets within these compo-
nents. Conversely, unweighted clustering coefficients decrease as node degree rises,
indicating higher-degree nodes have lower clustering coefficients, highlighting issues
with Hub and Spoke configurations for rerouting. Africa-Middle East-Southern Asia
and South America components have fewer interconnected hubs, resulting in a less
pronounced hub-and-spoke setup. The global component displays a similar pattern but
with a stronger hub-and-spoke effect due to more hubs and fewer triplets, intensifying
rerouting inefficiencies.

Strength distributions follow a Log-Normal pattern with heavy tails. Hubs manage
substantial traffic in Europe-Russia-Central Asia, North-Central America-Caribbean,
and East-Southeast Asia-Oceania. In contrast, fewer hubs in Africa-Middle East-
Southern Asia and South America handle significant flight volumes. The global com-
ponent exhibit similar Log-Normal strength distributions, with hubs managing most
traffic.

This analysis demonstrates how representing the world air transportation network
through its component structure is crucial for uncovering regional and inter-regional
similarities and differences. Traditional network metrics are designed for homoge-
neously dense networks, making it vital to separate local and global analysis due to
local density variations. This approach paves the way for various research opportuni-
ties.
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Abstract. Given a defined set of communities, modularity is computed
by comparing each existing edge with its probability of occurrence in
a random graph null model. The heuristic has historically garnered a
wealth of attention, and many community detection algorithms have
been designed around maximizing modularity. Despite this, there are
potential issues with the Chung-Lu null graph model that underpins the
heuristic. In this manuscript, we explore the output communities given
by modularity maximization when this null model is subject to change.
We construct two null models using iterated double edge swapping and
maximum likelihood estimation, and we use these models as the basis for
new modularity-like heuristics we call desmod, and mlemod . We compare
the clusters output by standard modularity maximization with those
output by our methods on a test suite of LFR benchmark graphs and
find that changing the null model consistently increases the normalized
mutual information scores when the mixing parameter is high.

Keywords: clustering · modularity · random graphs

1 Introduction

Community detection, also synonymously referred to as ‘graph clustering’, is one
of the most well-studied problems in the field of network science [7,13,15,19,21].
Generally, the goal of community detection algorithms is to partition a graph into
disjoint or overlapping [31] vertex partitions. While the exact optimization metric
for this partitioning varies, one generally attempts to group vertices with similar
attributes into the same community membership. In the absence of metadata,
labels, or other non-topological attributes, basic network topology is used as the
defining metric for ‘similarity’. In this case, the measure of network modularity
is a natural optimization metric.

Modularity can be loosely defined as to how well a given network topology is
divided into a given set of communities relative to a random network [26]. It is
an important heuristic for community detection, and it has played a significant
role in the literature [6,10,15,18]. For a given set of communities, modularity
is defined as the difference between the number of observed and number of
expected intra-community edges in a network. If the modularity is high, the
former is larger than the latter, and the given communities are considered ‘more

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1142, pp. 261–272, 2024.
https://doi.org/10.1007/978-3-031-53499-7_21
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clustered than expected’. For a given graph G = (V,E), and defined labels for
each node {ci}i∈V , modularity is explicitly computed as in Eq. 1.

Q =
1

2m

∑

u,v∈V

[
Auv − dudv

2m

]
δ(cu, cv) (1)

Here A is the adjacency matrix for the graph G, m is the number of edges in
the network, du, dv are the degrees of a nodes u, v ∈ V , and δ(·, ·) is the Kronecker
delta function. Despite how notable modularity maximization is in literature, it
has some known problems such as the ‘resolution limit’ [14,22] in which the
method cannot discern communities under a certain size for a given network
density. A far less discussed issue with the modularity heuristic is its dependence
on the Chung-Lu graph model [8,30], which assumes a random wiring of edges
for a given degree distribution in expectation with self-loops and multi-edges.
In essence, computing modularity is simply evaluating the null hypothesis on
a given community assignment and network topology with one on a random
null model graph provided by Chung-Lu. The contribution of the model comes
from the term dudv

2m in Eq. 1. There are a significant number of ways to define a
null model within a discussion on network topology. An excellent recent review
article by Fosdick et al. [16] discusses the many considerations. Changing the
implicit null model in modularity maximization has also been shown to produce
substantial difference in the obtained communities in the case of geometrically
constrained graphs [20].

In our prior work [2,3,17] and other related work [4,11,12,27], the general
issues with the usage of Chung-Lu probabilities were studied for random graph
generation. These problems include the theoretical reality that Chung-Lu gener-
ation cannot actually produce a vast majority of possible degree distributions [3],
and the considerable error that results when using Chung-Lu probabilities for
simple graph generation [4]. Similar issues arise when using Chung-Lu probabil-
ities as an implicit null model in methods such as modularity maximization1.
Fosdick et al. [16] was the first work we know of in the literature that gave such
considerations more than a cursory glance.

Hence, the primary focus of this work is to experimentally examine the impact
of using proper null graph probabilities in place of the Chung-Lu model for the
specific problem of community detection via modularity maximization. We addi-
tionally utilize methods from our prior work [2,3], which were in part motivated
by the Fosdick et al. review, to derive vertex pairwise attachment probabilities.
These attachment probabilities are then used in place of Chung-Lu probabilities
within the computation of modularity for a maximization algorithm.

Modularity maximization [6,10,18,26] methods generally take two forms –
single or multi-level methods. Single level methods make choices on vertex–
community membership for each individual vertex, while multi-level methods
1 One of the major issues is that a majority of graphs studied in community detection

fall squarely in the simple graph space. We note this applies to LFR and similar
benchmark graphs and a large proportion of the real-world graphs with defined
communities; e.g., those listed in the SNAP repository.
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assign vertices to communities and then iteratively coarsen communities into
single vertices to improve computation time. We will specifically consider the
former category of algorithms in this paper, although we will also discuss how
our methods can be extended to multi-level algorithms such as the popular
Louvain algorithm [1].

Generally, the outputs of community detection algorithms on networks are
evaluated in two primary ways [7,21]. If some ground truth community defini-
tions exists for the network, the output of the algorithm is compared to this
ground truth via computing a metric such as normalized mutual information
(NMI). Absent an explicit ground truth, evaluation can be done by compar-
ing some computed metric derived solely from the community assignments and
network structure. In the latter case, modularity is one such popular measure.
However, in the context of this paper, we are unable to directly use modularity
scores, since our experimental differences are in the way we compute modularity.
Hence, our experimental evaluations focus on comparisons to network ground
truth with the NMI metric. To generate a suitably large number and variety on
test instances, we utilize the common Lancichinetti-Fortunato-Radicchi (LFR)
benchmark generator [23]. We will discuss our experimental setup in more detail
later in this manuscript.

In summary, our contributions are as follows:

1. We are the first work to extensively study the usage of a more appropriate
null graph model within the context of modularity maximization.

2. We detail our approach to computing attachment probabilities and their effec-
tive utilization within a modularity maximization framework.

3. We observe that this change in attachment probabilities can improve com-
puted NMI scores by up to fifty percent on average for some data sets.

4. We discuss how this work might be applied in future efforts, such as with
multi-level community detection algorithms.

2 Methods

Ultimately, including custom probabilities into the computation of modularity is
trivial once one determines these probabilities. All one needs to do is replace the
Chung-Lu term ‘dudv

2m ’ with a general term for the connection probability ‘puv’
between nodes u and v as in Eq. 2. Algorithmically, however, there are some
unique considerations which have to be made when using custom null models
for modularity maximization.

Q =
1

2m

∑

u,v∈V

[Auv − puv] δ(cu, cv) (2)

When the modularity maximization algorithm does not affect the underly-
ing structure of the network, one can use a straightforward modularity maxi-
mization algorithm such as Clauset-Newman-Moore’s algorithm [9]. As such, we
implemented this algorithm to utilize any arbitrary puv and validated it against
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NetworkX’s implementation2 with Chung-Lu probabilities. However, for multi-
level methods such as the well-established Louvain maximization algorithm [1],
null model discovery would need to be performed at every step. We will discuss
future work intended to address this current drawback. Below, we will describe
two methods for determining the puv attachment probabilities of the underlying
null model of an arbitrary graph.

Algorithm 1. Computing double edge swap probabilities.
1: procedure DESSample(G = (V, E), k)
2: P ← 1

k
get adjacency(G)

3: E′ ← permute(E)
4: for i ∈ [0, · · · , k − 1] do
5: for j ∈ [0, · · · , |E| − 1] do
6: if valid swap(G, Ej , E

′
j) then

7: G ← perform swap(G, Ej , E
′
j)

8: P ← P + 1
k
get adjacency(G)

Our first method, termed desmod, uses double edge swaps to randomly alter
the graph topology while keeping the degree sequence the same. Double edge
swaps take two edges and ‘swap’ the endpoints of each edge, permuting the
edge-list of the graph while keeping the degree distribution consistent. The main
idea behind the desmod method is to randomly sample a large number of realized
instances of graphs with a fixed degree distribution to discern average degree–
degree pairwise connection probabilities. We utilize a sampling method modified
from our prior work [17,28], which is based on established techniques [16], [?].
This method, as outlined in the Algorithm 1, involves first permuting the edge-
list and matching each edge in the permuted list with an edge in the original
list. These will be our potential double edge swap partners. Of course, some of
these swaps will not be feasible (i.e., results in a multi-edge or self loop), so we
check each potential swap for viability using the primitive valid swap(). For
more details on this method and how valid swaps are chosen, we refer the reader
to Fosdick et al. [16] and our prior work Garbus et al. [17].

Our second method, termed mlemod, is based on our recent prior work [2],
which shows that degree distributions can be better approximated by Chung-Lu
like methods with connection probabilities determined by maximum likelihood
estimation. For detailed explanations of how the probabilities are computed,
please see the referenced manuscript. The overarching idea behind the algo-
rithm is that a degree sequence can be seen as a probability distribution, and
the degrees of nodes with common weights will be distributed as Poisson distri-
butions. To match this probability distribution, and hence the degree sequence
we want, we can use maximum likelihood estimation to express this distribution
as a sum of Poisson distributions from which nodal weights can be discerned

2 Implemented via the greedy modularity communities(·) function.
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Algorithm 2. Computing maximum likelihood probabilities.
1: procedure MLEprobs(G = (V, E))
2: D ← degrees(G)
3: w ← mle weights(D)
4: D ← sort(D)
5: w ← sort(w)
6: P ← zeros(|V |, |V |)
7: m ← 1

2
sum(w)

8: for u ∈ V do
9: for v ∈ V do

10: Puv ← wuwv∑
x∈V wx

for a Chung-Lu-like graph model. The mlemod method has some unique issues
to be considered when compared with desmod. With desmod, each probability
is assigned explicitly to an edge, meaning that the probabilities output can be
directly applied to perform modularity maximization using Eq. 2. In mlemod we
only obtain a list of weights, from which probabilities can be derived once they
are assigned to explicit nodes. This means that mlemod requires us to assign
each node the ‘most probable’ label.

For a given graph G = (V,E), with |V | = n, and weights returned from
a process such as MLE w = {w1, · · · , wn}, the labeling problem amounts to
finding a bijection φ : V → w such that the probability of observing the given
edge set P (E|φ(V )) is maximized. If we call the sum of weights

∑
z∈V φ(z) = S

we get Eq. 5.

P (E|φ(V )) =

[
∏

uv∈E

P (euv|φ(u), φ(v))

] ⎡

⎣
∏

xy �∈E

(1 − P (exy|φ(x), φ(y)))

⎤

⎦ (3)

=

[
∏

uv∈E

φ(u)φ(v)
S

] ⎡

⎣
∏

xy �∈E

(
1 − φ(x)φ(y)

S

)⎤

⎦ (4)

∝
[

∏

uv∈E

φ(u)φ(v)

] ⎡

⎣
∏

xy �∈E

(S − φ(x)φ(y))

⎤

⎦ (5)

Broadly speaking, the above equation states the following. The optimal way
to match weights with nodes is to maximize the product of weights across existing
edges, while minimizing the product of weights among non-existent edges. In
general, this is a difficult optimization problem. However, we can heuristically
come up with an easy approximate solution by only considering the leftmost
term, which corresponds to maximizing the likelihood of existing edges.

OBJ = max
φ

[
∏

uv∈E

φ(u)φ(v)

]
= max

φ

[
∏

u∈V

φ(u)du

]
(6)
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In this case, we have the objective outlined in Eq. 6. Fortunately, this is a
very easy to maximize objective, as it only requires sorting the degrees of our
graph in descending order and matching them with the associated weights, also
sorted in descending order. This process can be observed in Algorithm 2.

3 Results

Our experiments were run on the server Bella at RPI. Bella has 2× AMD Epyc
7742 processors with 64 cores at 2.25 GHz and 2 TB DDR4 at 2666 MHz, and
it is running Ubuntu 20.04.6 with Python version 3.8.10 and NetworkX version
3.1.

We ran four sets of tests with various topological differences. For these exper-
iments, all graphs were generated using the LFR benchmark graph(·) function
available in Python’s NetworkX library. A range of parameters were input, and
instances in which the generator failed regarding combinations of those parame-
ters were skipped. The definitions for the various adjusted input parameters are
given in Table 1. We compare community outputs using NMI values as well as
the number of communities generated in comparison to the ground truth. We
performed two primary experiments, which we will define below.

Table 1. Variable Definitions for Experimental LFR Generation.

Variable Definition

N Number of nodes in the network

〈k〉 Average degree of nodes in the network

kmax Maximum degree of nodes in the network

kmin Minimum degree of nodes in the network

smin Minimum community size in the network

τ1 Power-law exponent of node degree distribution

τ2 Power-law exponent of community size distribution

μ Average proportion of edges that are external to communities

3.1 General Experimental Set of Networks

We tested the results for a general set of graphs with a lower bound on com-
munity size. For these tests, we generated LFR’s with the following param-
eters: N ∈ {4000, 8000, 16000}, τ1 ∈ {2, 2.5}, τ2 ∈ {1.1, 1.25, 1.5}, μ ∈
{0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5}, smin = 6, kmin = 5, and kmax ∈
{ N
20 , 6N

100 , 7N
100 , 8N

100 , 9N
100 , N

10}. The NMI comparison between modularity maximiza-
tion via the probabilities of Chung-Lu (chung), desmod (samp), and mlemod
(mle) can be observed in Fig. 1. We also show the number of communities
obtained by each of these three methods plus the ground truths for this dataset
in Fig. 2. We show this due to possible ‘NMI hacking’ which can occur for ran-
domly chosen communities as described in work by Vinh et al. [29] where higher
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Fig. 1. NMI for general test set: NMI results for standard modularity maximiza-
tion, desmod, and mlemod varying the μ parameter on LFR graphs with minimum
degree 5, and minimum community size 6. We can see a sharp improvement in cluster
quality near the μ = 0.4 bound, implying that desmod and mlemod may perform better
than standard modularity maximization in these test instances.

Fig. 2. Community numbers for general tests: The number of communities out-
put by various methods in comparison to the ground truth communities. Each point
is a specific graph, and the marker denotes the method used to obtain that graphs
clustering. We can see that in most cases the number of communities is near, or below
the expected number.

numbers of communities may sometimes yield higher NMI values without nec-
essarily being better at matching the ground truth communities.

As Fig. 1 demonstrates, our proposed null model choices both improve upon
the NMI computed on outputs using baseline Chung-Lu probabilities, on average.
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Fig. 3. NMI for τ2 = 1.1: NMI results for a narrow band of LFR graphs with τ2 = 1.1.
Note that both mlemod and desmod have varying behavior in their NMI-difference plots
in comparison to Fig. 1. Regardless, we can still see that both mlemod and desmod
outperform standard modularity maximization for every test instance, on average.

This difference is most notable at μ values approaching μ = 0.5, the point at
which communities become difficult to discern for all methods. This is expected,
as μ = 0.5 implies that the each node on average has as many edges external to
their ground truth community as they have internal edges. We also note that our
outputs closely match the ground truth in terms of the number of communities,
as shown in Fig. 2. Generally, our proposed null models either closely match
the ground truth, or it results in fewer communities output. This is possibly a
consequence of the resolution limit, where multi-level methods, described later,
would be able to improve upon these results in future work.

3.2 Fixed Community Size Distribution Experimental Set

Additionally, we explored the quality of clusters for LFR graphs with a fixed τ2
parameter. This can be seen in Fig. 3. We generated LFR’s with the following
parameters: N ∈ {1000, 2000, 4000, 8000}, μ ∈ {0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5},
τ1 ∈ {2, 2.5}, τ2 ∈ {1.1}3, 〈k〉 ∈ {20, 25, 30, 35}, and kmax ∈ {100, 150, 200, 250,
300}. The goal for these experiments was to observe how the methods perform as
the distribution of clusters remains close to linear, which we noticed made com-
munity detection much more ‘difficult’ for our modularity maximization meth-
3 We chose τ2 = 1.1, as NetworkX failed to generate graphs using τ2 = 1.0.
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ods. This makes these graphs topologically unique among the generated LFR
graphs, since their largest and smallest communities vary far less drastically.

We give the results of this experimental set in Fig. 3, again as a comparison
between output NMI values. As shown in Fig. 3, we once more observe that
desmod (samp) and mlemod (mle) result in consistently higher NMI scores than
standard Chung-Lu (chung) probabilities. However, in these tests, we find that
the output NMI takes a different form to the general case. Here, the difference
in NMI can be seen to peak at μ = 0.35, and only for desmod. This implies that
sampling may perform better under certain topological features. Meanwhile,
mlemod under-performs in comparison to desmod for many μ values, implying
that it too may suffer as a consequence of certain topological properties.

4 Discussion

The results in this manuscript indicate that the choice of null model has a signif-
icant impact on the observed cluster quality for many graphs. We find that the
results for Chung-Lu, sampled (desmod), and MLE probabilities (mlemod) are
consistently better for general LFR graphs with broadly-varying parameters and
size. On average, across a wide range of tests, sampled and MLE probabilities
achieve better NMI results than those of standard modularity maximization. In
the particular cases of larger LFR graphs and LFR graphs with smaller τ2 values,
both methods consistently out-perform Chung-Lu based modularity maximiza-
tion. The differences are particularly notable near the μ = 0.4 boundary.

The observed results suggest that mlemod and desmod outperform standard
modularity maximization in general, particularly when the connectivity between
communities is relatively high. This implies these null models are more robust to
network density than the Chung-Lu random graph model. The primary question
the reader might have is: Why?

The explanation can actually be summarized quite succinctly. In our prior
work [17], we have observed that Chung-Lu probabilities can over-estimate real
attachment probabilities4 between pairs of average degree nodes and pairs of
high degree nodes within graphs with skewed degree distributions; low degree
probabilities are otherwise similar. As a consequence, the baseline modularity
maximization biases against assortativity, while most real networks and bench-
mark networks actually exhibit a considerable amount of assortative degree mix-
ing within communities [5,24,25]. The use of appropriate null model probabili-
ties ‘re-biases’ towards assortative mixing within communities when performing
modularity maximization.

We finally note one specific concern that may arise to the reader, in that our
modularity maximization method used for experimentation is relatively naive
compared to more modern modularity maximization algorithms. In the following
subsection, we provide a theoretical justification for how one may extend a multi-
level Louvain-type algorithm for use with our proposed null models.
4 Here, ‘real attachment probabilities’ are those determined for an appropriate simple

graph null model under an appropriate sampling methodology.
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4.1 Extension to Explicit Multi-level Methods

One issue that arises when using bespoke null models defined by methods such as
maximum likelihood estimation or sampling is that it excludes simple implemen-
tations of explicit multi-level schemes or approaches that otherwise modify the
underlying network structure before maximizing modularity. E.g., in standard
Louvain methods for modularity maximization, small communities are found
on the original graph according to a greedy approach such as the one that we
use in this paper. These communities are then coarsened into a single vertex in
a weighted graph or multigraph, where modularity maximization is again per-
formed. This allows for information from multiple scales to be considered, and
it leads to generally better results. Louvain and many other more modern algo-
rithms using this, and related approaches appear throughout the literature [7,19].

Regardless, multi-level schemes may be implemented using custom graph-
specific null models if we allow for extra computational overhead. Consider
maximizing modularity the same way it is currently done in this paper. Then, a
coarsened multi-graph may still be obtained, as in Louvain. Because we are not
using Chung-Lu probabilities in this case, we do not have straightforward access
to a null model for the coarsened graph. However, we can consider the proba-
bility of connection between the communities given by our initial clustering. In
this case, the probability of connection between two clustered ‘supernodes’ can
be thought of as the sum of connection probabilities between their comprising
nodes. This can be seen in Eq. 7, where Ci is a community of nodes given by the
first round of modularity maximization.

We check that this is consistent with the behavior we expect from the Chung-
Lu random graph model. This is shown in Eq. 8, where we show that using
Chung-Lu probabilities in accordance to the prior Eq. 7 yields the associated
Chung-Lu probabilities of the coarsened graph.

pCiCj
=

∑

u∈Ci

∑

v∈Cj

puv (7)

=
1

2m

∑

u∈Ci

∑

v∈Cj

dudv =
|Cj |
2m

∑

u∈Ci

du〈dCj
〉 =

dCi
dCJ

2m
(8)

While this suggests the proposed method may be consistent with that of
Chung-Lu, experimental validation should be performed to ensure that this pro-
vides meaningful communities. This is a primary topic of investigation for our
ongoing and future work.

5 Conclusion

In this manuscript, we investigated the effects of null model choice on modularity
maximization. We did this through a series of experiments using the LFR bench-
mark with varying parameters. We developed two different methods for altering
modularity maximization for custom graph null models. One method, which we
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call desmod, uses double edge swaps on the input graph to generate probabilities.
The other method, which we call mlemod, uses a maximum likelihood method
along-side a greedy labeling to determine attachment probabilities. By replacing
standard modularity maximization with desmod and mlemod, we found that the
normalized mutual information of output communities relative to the ground
truth was better in many cases. In particular, both mlemod and desmod yield
better results than Chung-Lu methods when inter-community connections are
dense. We additionally suggest that this technique may be extended to the case
of multi-level schemes such as Louvain, and we provide some theoretical justifi-
cation for how that may be done. Despite this, such studies are left for future
work and remain an open problem. This work represents a ‘first foray’ into the
practical use of null model choice for community detection on general graphs,
and it is the authors’ hope that this spurs an interest in the topic for the broader
community.
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Abstract. This study explores the mesoscopic intricacies governing the inter-
play of regional and interregional traffic flows within the world air transportation
network. We adopt a network decomposition method, the component structure,
to partition the network into local and global components, aligning with geo-
graphical and cultural boundaries. We explore the centrality and the core of these
unweighted and weighted networks. The analysis of centrality highlights distinc-
tions between airports with high traffic and those with high degrees. This contrast
is particularly pronounced in the global air network and its largest component.
Additionally, core analysis reveals similarities between the s-core and the k-core
for local and global components, despite the latter encompassing more airports. In
the world air network, North and Central America-Caribbean airports dominate
the s-core, while European airports take precedence in the k-core. Interestingly,
airports distant from their component’s core can also rank among the top high-
strength airports. This comparative analysis underscores the component struc-
ture representation’s vital role in uncovering regional and interregional dynamics
within the world air transportation network, providing valuable insights into its
mesoscopic structure and implications for global air travel.

Moreover, we explore the strength and the s-core of these networks. Results
display fewer local components well delimited and more global components cov-
ering the world than the unweighted world air transportation network. Centrality
analysis reveals the difference between the top airports with high traffic and the
top airports with high degrees. This difference is more pronounced in the global
air network and the largest global component. Core analysis shows similitude
between the s-core and the k-core for the local and global components, even
though the latter includes more airports. For the world air network, the North
and Central America-Caribbean airports dominate the s-core, whereas the Euro-
pean airports dominate the k-core. Transport network and its intricate hierarchical
organization.
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1 Introduction

The intricate and ever-evolving web of global air transportation networks is pivotal
in connecting distant regions, fostering economic growth, and shaping our intercon-
nected world. As the backbone of international travel and trade, this intricate network
comprises a vast array of airports, routes, and connections that collectively serve as
conduits for the movement of people and goods. To comprehend this colossal system’s
underlying structure and dynamics, it is imperative to delve beyond the macroscopic
view and explore the mesoscopic intricacies that govern the interplay of regional and
interregional traffic flows.

Understanding the mesoscopic structure of complex networks has been a subject of
significant research interest [1–9]. Several studies have offered valuable insights into the
organization and dynamics of such networks, including transportation systems [10,11].

[12] study air transportation networks, finding communities aligned with geogra-
phy. They defined seven city roles based on link patterns: Provincial hubs, Connector
hubs, Kinless hubs, Ultraperipherical nodes, Peripherical nodes, Nonhub connectors,
and Nonhub kinless. This work highlights geopolitical influences on network formation
and city roles.

[13] divide the global air transportation network into seven regions (Africa, Asia,
Europe, Latin America, Middle East, North America, Southwest Pacific) using OAG
data. They find small-world networks with a two-regime power-law degree distribu-
tion. Their targeted attack experiments reveal that networks with larger cores are more
resilient than those with smaller cores.

To examine the relationships within the unweighted global air transportation net-
work and its regional constituents, we employ a network decomposition method known
as the “component structure,” as outlined in [14]. This decomposition technique parti-
tions the network into two fundamental elements: local components and global com-
ponents. Local components represent densely connected regions within the original
network, while the interconnections between these local components, along with their
respective nodes, constitute the global components. This approach allows us to delin-
eate the world’s air transportation system into distinct regional components that align
with geographical and cultural boundaries.

In contrast, the weighted air transportation network is not much studied. Indeed, in
[15], the Australian airport network exhibits strength-degree correlation, with Sydney
as a major hub, and weighted clustering lower than unweighted, indicating topological
clustering. In [16], Asian passenger aviation in 2014 and 2018 highlights Low-Cost Car-
riers’ growth and centrality measures ranking Changi, Incheon, Narita, and Hong Kong
airports highly. In [17], the weighted world air transportation network demonstrates
heavy-tailed degree and strength distributions, a strength-degree linear relationship, a
rich-club phenomenon, and assortative degree-degree correlation.

The articles considering the mesoscopic structure do not consider the weighted
aspect. Vice versa, papers that examined the weighted aerial networks did not consider
their mesoscopic structure. This paper conducts a comprehensive comparative exami-
nation of the route-based (unweighted) and traffic-based (weighted) networks, delving
into mesoscopic and microscopic levels to gain deeper insights into the distinctions
between the structure and traffic of the global air transportation network. We investi-
gate and compare the k-core and s-core structures at the mesoscopic level. Lastly, we
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assess and differentiate between node degree and strength properties at the microscopic
level.

The world air transport network comprises 2,734 nodes and 16,665 links, sourced
from FlightAware [18], encompassing flights between May 17, 2018, and May 22, 2018
[19]. In this representation, nodes correspond to airports, while links denote direct
flights connecting these airports. The volume of flights between each pair of airports
determines the link weights.

The remainder of this paper is structured as follows: Sect. 2 delves into the findings
of the core structure analysis, while Sect. 3 provides the outcomes of the comparative
analysis concerning the strength centrality of the components and the global air trans-
portation network. Lastly, our conclusions are summarized in Sect. 4.

2 Core Structure Analysis

This section reports the Max s-core analysis of the large weighted components and
a comparative investigation with their corresponding Max k-core. Additionally, it
presents a similar analysis of the world transportation network.

The graph’s k-core [20] is the subgraph obtained by recursively removing all the
vertices of degree smaller than k until the degree of all remaining vertices is larger than
or equal to k. By extension, the s-core of a weighted graph is a sub-network in which a
node has at least a strength s. One can extract the maximum s-core by removing nodes
iteratively from the network. Indeed, the smin(si)-core, where each node has at least a
strength 1, is the whole network. One forms the next level by removing all the nodes
with the minimum strength smin(si+1). The remaining nodes form smin(si+1)-core, and
so on until one reaches the core number Max sn-core for which it is impossible to obtain
the smin(sn+1)-core.

2.1 Local Components

Figure 1 reports the maximum s-core values of two weighted largest local components.
It also shows the airports it includes.

The North and Central America-Caribbean component’s Max s-core has 26 airports
handling 22% of total traffic. On average, there are 1,238 flights between these airports.
Three of them are outside the US: Montreal/P E Trudeau Airport in Canada, Cancun
Airport in Mexico, and London Heathrow Airport in the UK, which has significant
traffic in the US. Only Cancun Airport belongs to both the k-core and s-core. Four Max
s-core airports (Raleigh-Durham, Pittsburgh, Windsor Locks, Cancun) serve within the
s-core but aren’t top 26 in traffic. While the Max s-core has fewer airports than the
Max k-core (Fig. 1A), they share 22 airports (84.6% of Max s-core), indicating closely
related traffic and destinations. However, airports like London Heathrow in the UK,
Portland, Windsor Locks in the US, Montreal/Pierre Elliott Trudeau have more traffic
than other Max s-core airports. Removed airports are mainly in the eastern US.

The Europe-Russia-Central Asia Max s-core comprises 27 airports, with 19.6%
of the component’s flights. On average, there are 632 flights between these airports,
spanning multiple European countries. Pulvoko Airport is the sole Russian sub-region
representative, while Ben Gurion Airport has the lowest traffic at 10,747 flights. John
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Fig. 1. The core of the weighted large local components consists of two key values: S, which
represents the maximum s-core value, and K, which means the maximum k-core value. Blue
points denote airports that belong to both the maximum s-core and the maximum k-core, red
points indicate airports exclusively in the maximum s-core, and yellow points signify airports
exclusive to the maximum k-core. For the North and Central America-Caribbean component, the
maximum s-core encompasses 26 airports, while the Europe-Russia-Central Asia component has
a maximum s-core comprising 27 airports.
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F Kennedy in the USA handles the most flights within the s-core, serving as a vital
Europe-US connection. Compared to the Max k-core, the Max s-core contains three
times fewer airports, excluding all North African airports (Fig. 1B). In addition, several
airports from France, Spain, Germany, and the UK. All Max s-core airports are part of
the Max k-core, but countries like Germany, the UK, France, Italy, and Spain dominate
the latter. Airports like Charles de Gaulle in France, Munich in Germany, Amsterdam
in the Netherlands, and Zurich Airport in Switzerland are absent from the Max s-core,
with traffic oriented more towards inter-regional destinations.

There are 18 airports in the East and Southeast Asia-Oceania Max s-core, serving
different countries, mainly capitals and megacities. These airports handle 14% of the
component’s traffic, averaging 592 flights. Kansai Airport in Japan has the lowest traf-
fic at 7,687 flights. Five airports (Brisbane Airport in Australia, Auckland Airport in
New Zealand, Tan Son Nhat Airport in Vietnam, Ngurah Rai Airport in Indonesia, and
Kansai Airport in Japan) in the Max s-core are absent from the top 18 strength airports.
The Max s-core contains half as many airports as the k-core, distributed across various
countries, with China dominating the Max k-core. Nine airports are common to both
the s-core and the k-core, while several Chinese airports are absent from the s-core,
replaced by nine airports from different countries, including Oceania.

The Max s-core of the Africa-Middle East-Southern Asia component includes nine
airports, handling 20.1% of the traffic with an average of 659 flights between them.
These airports are in three countries (5 in India, 2 in Saudi Arabia, and 1 in Germany),
reflecting substantial traffic between Saudi Arabia and India due to the Indian workforce
in Saudi Arabia. Rajiv Gandhi International Airport has the lowest traffic in the Max
s-core at 4,609 flights. These airports form a complete graph and concentrate much
of the component’s traffic. All but Rajiv Gandhi Airport are among the top 9 strength
airports. The Max k-core is twice as large and includes the Max s-core airports. Only
Rajiv Gandhi Airport is part of the s-core, with nine airports from India and the Gulf
countries absent. Nevertheless, India dominates both the Max s-core and the Max k-
core.

Ten airports are in the Max s-core of the South America component. They are
responsible for 24% of the component’s traffic, with an average of 319 flights between
them. These airports are all situated in Brazil, primarily along the country’s east coast.
Rio Galeão - Tom Jobim Airport has the lowest traffic, with 1,914 flights. Only two air-
ports, Santa Genoveva Airport in Goiania and Deputado L E Magalhães Airport, do not
appear among the top 10 strength airports. Importantly, all Max s-core airports are also
part of the Max k-core, which is nearly twice the size. Brazil significantly influences
both the Max s-core and the Max k-core.

In summary, two typical behaviors are observed for Max s-cores. In the first sce-
nario, Max s-core airports are primarily located within a single country, such as the
United States, India, and Brazil, which dominate their respective components’ Max
s-cores. Max s-core airports are more evenly distributed across the component in
the second scenario. This pattern is seen in the East and Southeast Asia-Oceania
and Europe-Russia-Central Asia components. Across all components, the Max s-
cores handle approximately 20% of the traffic, except for East and Southeast Asia-
Oceania, which accounts for 14%. The Max s-core consistently contains significantly
fewer airports than the Max k-core, typically one-half to one-third. Moreover, most
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Max s-core airports are also part of the Max k-core, indicating that airports with high
traffic between them tend to have numerous connections. Indeed, the Max s-core gener-
ally includes only the most critical hubs, with exceptions in the Europe-Russia-Central
Asia region, where some major hubs exhibit more inter-regional traffic.

2.2 Global Component

The Max s-core of the large global component presents 22 airports, spanning North
America, Europe, and East and Southeast Asia. This s-core handles 22.19% of inter-
regional flights, with Suvarnabhumi Airport in Thailand having the lowest traffic at
13,196 flights among these airports. Figure 2A illustrates the Max s-core of the large
global component. Note that 72% of its airports also belonging to the k-core. A com-
parison between the s-core and the k-core reveals two trends. Firstly, in the Europe and
East and Southeast Asia regions, we find nearly identical airports in both the s-core and
k-core of the global component. Secondly, there are differences in the North America
and East and Southeast Asia regions. In the former, four airports (General E L Logan
Airport, Dallas Fort Worth Airport, Seattle Tacoma Airport, and Lester B. Pearson) are
in the Max s-core but not in the Max k-core, while in the latter, all the airports in the
k-core are absent from the s-core.

2.3 World Air Transportation Network

The Max s-core of the world air transportation network comprises 33 airports. North
America accounts for 27 airports, with Europe and Japan contributing five and one air-
ports, respectively. Minneapolis-St Paul Airport has the lowest traffic at 24,088 flights
among these airports. Compared to the Max k-core, the Max s-core in the global air
network contains fewer airports and a significant lack of overlap, as depicted in Fig. 2B.
The Max k-core is notably more concentrated in Europe. These findings underscore the
high traffic orientation of North American airports in the weighted world air transporta-
tion network, while European airports dominate the unweighted world air transportation
network due to their extensive network of destinations. The component structure anal-
ysis reveals other significant airports worldwide, mitigating this disparity.

3 Local Topological Properties

Centrality analysis investigate the most influential nodes in a network. There are mul-
tiple definitions of centrality that exploit either local or global characteristics of the
networks [21–25]. Here, we perform a comparative analysis of the Strength (Number
of flights in an airport) and Degree (Number of routes in an airport) centralities of the
various components. This analysis is in line with recent works considering the commu-
nity structure to define new centrality measures [26–29].

3.1 Top Five Nodes Analysis

Local Components. This section analyzes the top five airports in descending order of
the number of flights with airports in their local component (internal strength centrality).
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Fig. 2. A) There are 33 airports included in the maximum s-core of the weighted world air trans-
portation network. B) The maximum s-core of the weighted large global component comprises 22
airports. In both cases, S represents the maximum s-core value, and K represents the maximum
k-core value. Blue points indicate airports belonging to both the maximum s-core and maximum
k-core, red points exclusively in the maximum s-core, and yellow points exclusively in the maxi-
mum k-core.
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In the weighted North and Central America-Caribbean component, the top five air-
ports remain in the United States, as in the unweighted network. Hartsfield-Jackson
Atlanta Airport, Chicago O’Hare Airport, and Dallas/Fort Worth Airport are among the
top five most connected airports. Los Angeles Airport ranks second in terms of flights,
although it doesn’t feature in the top airports for the number of routes. All these airports
boast over 100 connections and handle more than 100,000 flights within this compo-
nent. The fifth significant airport, Ronald Reagan Washington Airport, falls short of
these numbers. Collectively, these airports manage nearly 15% of regional flights. It’s
worth mentioning that London Heathrow ranks ninth, operating around 74,000 flights.
Denver and Houston airports, ranking among the top five for connections, place eleventh
and sixteenth in terms of flights.

In the Europe-Russia-Central Asia component, the top five airports by traffic man-
age nearly 11% of the region’s traffic. Only Amsterdam Schiphol Airport and Barcelona
Airport are among the top five hubs by route. Ireland’s Dublin Airport leads with over
4,700 flights. Charles de Gaulle Airport in France is the largest hub, ranking third in
traffic. Surprisingly, John F. Kennedy Airport in the USA is fourth with 40 links, having
more European flights than many local airports. Munich Airport and London Stansted
Airport, both top hubs by routes, rank sixth and sixty-fifth by flights. Note that Frank-
furt Airport, belongs to the Africa-Middle East-Southern Asia component. Russia’s pri-
mary airport, Pulkovo Airport, is fourteenth. Dubai Airport, part of this component, is
twenty-fifth, despite being the Middle East’s largest airport.

In East and Southeast Asia-Oceania, China boasts three busiest airports, with Bei-
jing Capital, Shanghai Pudong, and Guangzhou Baiyun ranking first, third, and fourth,
respectively. Singapore Changi Airport takes second place, while Hong Kong Airport
ranks fifth with fewer than 30,000 flights. China dominates both traffic and destinations
in this region. Among the top five destinations, Chengdu Shuangliu Airport and Tai-
wan Taoyuan Airport stand at eleventh and ninth place, respectively. Sydney K Smith
Airport, the major Oceania airport, secures the eighth spot in the rankings.

Indian airports dominate the Africa-Middle East-Southern Asia region. The top
three busiest airports are in India, but not among the top five most connected. Saudi
Arabia and Germany have two of the top five connected airports. Indira Gandhi Airport
handles the most traffic with 20,000+ flights, followed by Chhatrapati Shivaji Airport.
Kempegowda Airport ranks third, while King Abdulaziz is fourth. Frankfurt am Main
Airport is fifth, with 30 internal connections and 11,000+ flights. Dubai Airport is the
most connected in a different region, and Addis Ababa Bole Airport ranks nineteenth
in flights.

Brazil dominates in the South America region with four of the top five airports, each
with fewer than 8000 flights. Guarulhos G A F Montoro Airport stands out for both
traffic and destinations. Tancredo Neves Airport in Belo Horizonte is first, El Dorado
Airport in Colombia is third, Rio G-T Jobim Airport in Rio de Janeiro is fourth but less
connected, and Presidente J Kubitschek Airport is fifth in Brazil’s capital.

Global Component. We explore the top five airports participating in the inter-regional
traffic in each large local component. These airports also belong to the large global
component.
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In North and Central America-Caribbean, four of the top five interregional traffic
airports are in the USA, while one is in Canada. Chicago O’Hare is the exception among
the top five busiest airports. John F. Kennedy and Newark Liberty, both in New York,
lead the ranking, with JFK having double the traffic of others. These top three are also
among the top 10 globally.

In Europe-Russia-Central Asia, Frankfurt, and Charles de Gaulle dominate inter-
regional flights and destinations. Only Munich Airport is not among the top five most
connected airports. These airports are all in the global top 10 and exclude Russian air-
ports. European airports lead interregional flights.

In East and Southeast Asia-Oceania, none of the top five busiest interregional air-
ports are in Oceania. Narita Airport in Japan is the busiest, followed by Beijing Airport.
Both are in the global top 10.

In Africa-Middle East-Southern Asia, Middle Eastern airports dominate interre-
gional traffic, with Dubai Airport leading. Hamad Airport in Qatar ranks third, and the
second-largest UAE airport ranks fourth. Cairo Airport in Egypt is fifth. These airports
are among the most connected interregional airports but not in the global top 10.

In South America, Guarulhos Airport in Brazil is the busiest, followed by El Dorado
in Colombia. Ministro Pistarini in Argentina ranks third, and Rio G-T Jobim in Brazil
is fourth. None of these airports are in the global top 20, but they are highly connected
regarding routes.

World Transportation Network. The 25 busiest airports in the world air transporta-
tion network show that the North and Central America-Caribbean region controls a big
part of the world’s traffic. Indeed, 19 are in this area. Five are in the Europe-Russia-
Central Asia-Central Asia region, and one is in the East and Southeast Asia-Oceania.
Comparing the airports’ strengths with their degree, one detects that European airports
usually deserve more destinations worldwide, while North American airports have more
flights.

In North and Central America-Caribbean, 19 airports rank in the world’s top 25 for
traffic, indicating regional dominance in global air transportation. However, in terms of
routes, the European region holds sway. Six of the top 25 airports are inter-regional,
while all are in the top 25 for regional traffic. This shows a focus on regional traffic
within this region, mirroring the route dominance. London Heathrow Airport is third
globally, primarily due to interregional traffic, while Charles de Gaulle, Frankfurt am
Main, Amsterdam Schiphol, and Munich airports rank 6th, 7th, 12th, and 21st world-
wide. They are all in the top 25 for regional and inter-regional traffic, with a stronger
regional influence. Notably, London Heathrow is in the American-Caribbean compo-
nent, with much denser traffic than airports in that region. A similar observation applies
to Frankfurt am Main Airport, part of the Africa-Middle East-Southern Asia compo-
nent. Beijing Airport is the sole East and Southeast Asia representative in the top 25
airports, ranking 18th globally for flight numbers. It holds the top position regionally
and globally in terms of connectivity. Despite its extensive routes, Dubai Airport is
the world’s 45th busiest, leading in the Africa-Middle East-Southern Asia region but
ranking 25th regionally and 19th inter-regionally. The most influential airport in South
America, Guarulhos-Governador André F M Airport in São Paulo, Brazil, ranks 75th
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globally in traffic, first regionally, and 24th inter-regionally. No airport in this region is
among the top 25 most connected.

To summarize, North America leads the world air transportation network traffic.
The component structure shows that most of this traffic is regional. Indeed, the large
global component, which captures the inter-regional flights, exhibits numerous airports
from different world areas essential to interregional traffic. In addition, the large local
components display the influential regional airports hidden in the world air network.

3.2 RBO Analysis

The Ranked-Biased Overlap (RBO) [30] assesses the similarity of ranking lists, allow-
ing for different weightings and evaluation depths. Its value ranges from 0 to 1, with
higher values indicating greater similarity. We use RBO to compare the strength and
degree centrality of large component airports [14], equalizing rank importance. Figure 3
displays RBO trends for top-ranked airports in large components and the global air
transportation network, ranging from the top 5 to the top 45 with 5-unit steps.

Fig. 3. The RBO of the large components (A) and the world air transportation network (B). The
top 50 hubs of the unweighted (degree) and weighted (strength) are compared by step of 5 in the
enlarged area.
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Two curve categories emerge. In the first, RBO steadily rises with more airports,
seen in Europe-Russia-Central Asia, Africa-Middle East-Southern Asia, East-Southeast
Asia-Oceania, and South America components. These regions lack concentration on
major hubs; their top 5 airports for degree and strength differ. In the second cate-
gory, RBO initially decreases, then rises. This applies to North and Central America-
Caribbean, East-Southeast Asia-Oceania, and the global component. The top 5 airports’
degree and strength rankings are similar here. Differences emerge from the top 10 to
15, lowering RBO. Beyond that, rankings converge, increasing RBO. Analyzing the
Top 45 airports, East-Southeast Asia-Oceania exhibits the closest alignment between
traffic (strength) and hub size (degree). In contrast, Europe-Russia-Central Asia shows
the most disparate ranking, with traffic concentrated in hubs, while airports with few
connections handle significant traffic.

In the global air transportation network, RBO between top strength and degree air-
ports steadily rises, revealing pronounced differences. The top 5 degree-focused airports
cluster in Europe, whereas the top 5 strength-focused airports are in the United States.
This contrast underscores distinct regional priorities: the USA emphasizes regional traf-
fic, while Europe prioritizes serving numerous international destinations.

4 Discussion and Conclusion

In summary, this study provides a comprehensive analysis of the mesoscopic structure
of the world air transportation network, shedding light on the diverse dynamics within
and between regions. It underscores the critical roles played by specific hubs and high-
lights the varying regional and interregional characteristics

Two distinct categories emerge in the analysis of local components’ Max s-cores.
The first category encompasses regions like Europe-Russia-Central Asia and East and
Southeast Asia, where the Max s-core spans multiple countries. In the second pattern,
which is found in regions with high traffic, only a few countries dominate. The Max
s-core within local components comprises fewer airports than the Max k-core, indi-
cating that a select few airports handle a substantial volume of flights and routes. In
the global component, the Max s-core spans North and Central America-Caribbean,
Europe-Russia-Central Asia, and East and Southeast Asia-Oceania regions, hubs for
inter-regional flights. Unlike local components, the global Max s-core and Max k-core
sizes are similar, emphasizing concentrated inter-regional traffic hubs. The global net-
work’s Max s-core predominantly lies in the USA. In contrast, Max k-core airports are
in Europe. Thus, considering the global air network rather than the component structure
can lead to a blurred understanding of the most essential airports.

The centrality analysis of the world air transportation network components reveals
several key findings. The top five airports with the highest strength are typically situ-
ated in leading countries of their respective regions, although Europe-Russia-Central
Asia shows a more balanced distribution. Interestingly, airports located far from their
component’s core can also rank among the top high-strength airports. High-degree air-
ports, responsible for facilitating numerous flights, are prominent in North and Central
America-Caribbean and East and Southeast Asia components. However, this pattern is
less evident in other local components. Inter-regional airports with high strength are
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spread across various countries, except for the USA, which dominates inter-regional
traffic in North and Central America-Caribbean. These airports differ from the lead-
ing regional airports, indicating specialization in regional or inter-regional connectivity.
Europe plays a significant role in inter-regional traffic.

This comparative analysis illustrates the essential contribution of the component
structure representation for uncovering the regional and inter-regional similarities and
differences of the world air transportation network.
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Abstract. We present two new seeding strategies for the Influence Max-
imization Problem for Viral Marketing, based on graph connectivity and
spectral graph theory. Specifically, the first approach CVSP uses the cut
vertices and the separation pairs as the starting seeds. The second app-
roach ER uses the vertex ranking based on the effective resistance values
of the incident edges. CVSP and ER are efficient, and can be imple-
mented in linear and near linear time, respectively.

Experiments using the Independent Cascade diffusion model with
real-world data sets show that our new seeding strategies perform sig-
nificantly better than the existing methods, such as centrality measures,
k-core and the state-of-the-art IMM, in particular for the scale-free net-
works with globally sparse, locally dense clusters with small diameters, in
the final influence spread. Moreover, visual analysis enables more refined
comparison between the methods, demonstrating that our methods have
more globally wide influence spread pattern than other methods with
locally dense influence spread pattern.

Keywords: Influence Maximization · Viral Marketing · Network
Visualization

1 Introduction

In today’s fast developing technology and increasing information availability,
network models are growing increasingly complex. Coupled with the substantial
growth of social media in recent years, businesses have realized the potential of
analyzing these social networks, particularly with the notion of Viral Marketing.

Through Viral Marketing, a business’ marketing message is transmitted by
word-of-mouth exchanges in an exponentially growing manner [10]. The Viral
Marketing Strategy can be extremely effective because it is crucially based on
trust within individuals’ social network [28]. In this way, influence and product
adoption can spread from a few key seed influencers to a large portion of users
in the network. Analyzing the spread of influence of Viral Marketing may also
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have applications in other areas, such as epidemiology, since Viral Marketing is
considered analogous to the transmission of infectious disease in an epidemic.

Unfortunately, choosing these initial seed users such that influence is max-
imized, known as the Influence Maximization Problem (IMP), is shown to be
NP-hard [11]. It is difficult to efficiently choose the optimal seed set, especially
with a limited budget [5]. Nevertheless, a number of heuristics and algorithms
are presented in the literature, see Sect. 2.3 for details.

In this paper, we introduce two new seeding strategies for the IMP problem.
The first strategy CVSP is based on the connectivity of the graph, i.e., the
decomposition from one-connected graphs into biconnected components, and
then from biconnected graphs into triconnected components [6,7]. Specifically,
we use cut vertices as well as separation pairs as the starting seeds. The second
strategy ER is based on the spectral graph theory. Specifically, we use a vertex
ranking defined by the effective resistance values [24,25].

Extensive comparison experiments using real-world data sets demonstrate
that our new seeding strategies outperform the existing methods [3,8,14,17,20],
such as various centrality measures, k-core index as well as the state-of-the-art
IMM [26], in particular for the scale-free networks with globally sparse, locally
dense clusters with short diameter.

Specifically, we experiment using the most widely used diffusion model, Inde-
pendent Cascade (IC), and compare the final influence spread rate with existing
seeding strategies. For scale-free graphs with small diameters, ER and CVSP out-
perform, with the final influence spread rate of 71.9% and 67.6% respectively,
compared to IMM with 50.5%. For biological networks with long diameter, IMM
performs the best with the final influence spread of 52.1%, followed by ER and
CVSP with 35.1% and 29.5%, respectively.

Since cut vertices and separation pairs can be computed in linear time [6,7],
and the effective resistance values can be computed in near linear time [24], our
new seeding strategies CVSP and ER are not only effective, but also efficient,
matching the near linear time complexity of IMM [26]. Furthermore, visual anal-
ysis allows more sophisticated comparison between the methods, showing that
our methods have more global influence spread pattern than other methods with
local influence spread pattern.

2 Related Work

2.1 Influence Maximization Problem

The Influence Maximization Problem (IMP) [13] involves finding a set of seed
vertices in a network such that the eventual spread of influence under a stochastic
diffusion model is maximized. The problem is shown as NP-hard [11] and has
specific applications in Viral Marketing [4,19,22].

Roughly speaking, the spread of influence in a network under a diffusion
model is modelled as follows: (i) A set of k seed vertices are chosen and activated;
(ii) A diffusion model, which imitates the spread of influence, repeatedly runs
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through a new set of activated vertices at each diffusion step, until the spread
converges (i.e., no new vertices are activated). Let I(S) denote the number of
activated vertices when the diffusion process finishes using the initial set of
activated vertices, the seed set S. Let G = (V,E, ω) be a graph with a vertex
set V and the edge set E, where ω(u, v) represents the weight of an edge (u, v).
Let M be a stochastic diffusion model with a positive integer k, representing the
budget. Formally, the Influence Maximization Problem asks to find a seed set
S∗ such that S∗ ⊆ V ∧ |S| = k maximizes E[I(S)].

2.2 Diffusion Models

The most widespread influence propagation diffusion models are the Independent
Cascade model and the Linear Threshold model, which are used as a general
framework for IMP [12].

The Independent Cascade (IC) model generalizes the Susceptible-Infected-
Recovered (SIR) model, one of the most ubiquitous diffusion models [23]. In
these models, all vertices are initially susceptible (able to be infected) except for
the infected vertices (the initial seed vertices), which only have a single chance
to infect (influence) their neighbors.

At each time step k, an infected vertex u will independently infect each of
its susceptible neighbors v with probability β in the SIR model, and βu,v in the
IC model. At step k + 1, every infected vertex from the previous step enters
the recovered state. This diffusion process ends once there are no more infected
vertices and thus no more possible activation. The spreading influence of the ini-
tial seed set is defined as the number of resulting recovered vertices [20]. The IC
model is often used to simulate influence propagation and it models, for example,
how independent recommendations and reviews may induce a purchase [15].

In contrast, the Linear Threshold (LT) model describes a process in which
all vertices that were active in the last time step remain active, and thus each
vertex’s tendency to become active increases monotonically [13]. This is in line
with the notion that an individual’s perceived value of a product increases as
more people in their network adopt the product.

2.3 Seeding Strategies for the IMP

Kempe et al. [13] introduce the two diffusion models IC and LT, and then show
that under these two models, the IMP problem is NP-Hard. They propose a
greedy algorithm with a guarantee that the final influence spread is within(
1 − 1

e − ε
)
, where ε is a tunable parameter. However, the greedy algorithm

has poor scalability. Leskovec et al. [16] present the CELF algorithm, using the
submodularity properties of the influence spread function for both IC and LT
models to terminate the greedy algorithm early, with a 700 times speed up with
the same performance guarantee.

Since then, a plethora of methods have been developed to solve the IMP,
either heuristics or with performance guarantees for the sake of runtime. For
example, IMM by Tang et al. [26] is one of the most well-known algorithms
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considered as the state-of-the-art, based on the Reverse Influence Sampling (RIS)
framework by Borgs et al. [2], which runs in near linear time, i.e., O((k + l)(n +
m) log n/ε2), where l and ε are tunable parameters, n = |V |, m = |E|, k = |S|.
IMM can return a

(
1 − 1

e − ε
)

approximation with at least 1 − 1
nl probability.

Since the IMP is NP-hard, many heuristic algorithms are presented, where
the typical method is to rank all vertices according to a certain measure and
select the k highest ranking vertices as the initial seed set. With the goal of
identifying the most important and connected vertices, natural measures to uti-
lize are centrality measures and k-core index from social network analysis [27].

The Degree centrality of a vertex, defined as the number of adjacent vertices,
is a simple but intuitive index used to identify a vertex’s influence. Despite
its simplicity and low computation cost, Liu et al. [17] report that when the
spreading rate is small, Degree centrality outperforms Eigenvector centrality and
the k-core index. However, Chen et al. [3] argue that Degree centrality has low
accuracy and propose the Semi-Local Centrality (SLC) measure, which considers
both the nearest and the next nearest neighbors of a vertex.

The Closeness centrality of a vertex is defined based on the sum of the short-
est paths from the vertex to all the other vertices, to reflect how efficiently
a vertex exchanges information with others [20]. Closeness centrality has been
shown to outperform Degree and Betweenness centrality in terms of spreading
influence [3]. However, computing the Closeness centrality requires significantly
more time (i.e., O(n3) time [9]) than other measures, such as Degree centrality
and k-core, its practical application can be limited.

The Betweenness centrality of a vertex is defined based on the number of the
shortest paths that pass through the vertex, representing its potential power in
controlling the information flow in a network. In contrast to Chen et al. [3], Lu et
al. find that Betweenness centrality outperforms Closeness centrality in terms of
the ratio of final recovered (infected) vertices [20]. Unfortunately, the high com-
putational complexity of Betweenness centrality (i.e., O(n3) for general graphs;
for sparse graphs, O(nm) time for unweighted graphs and O(nm + n2 log n) for
weighted graphs [9]) means that for large networks, its scalability is infeasible.

The k-core of a graph G is the maximal subgraph where all vertices have
degree at least k. Specifically, the k-core decomposition assigns an integer (core-
ness) ks to each vertex, representing its location in the network based on its
k-shell layer, where a vertex with larger coreness indicates that it is located
in a more central, core position. The efficiency (i.e., linear time [1]) of k-core
decomposition allows it to be applied to large-scale networks. Moreover, Kitsak
et al.[14] find that the most efficient spreaders in the SIR model are those in
the core of the network as identified by the k-core analysis, rather than vertices
that are highly connected. However, Liu, et al. [18] find that due to the low
granularity of k-core decomposition, higher k-core vertices often link locally to
other vertices within the shell and, as such, are not good spreaders.
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3 New Seeding Strategies

3.1 CVSP: Connectivity-Based Seeding Strategy

Our first strategy, CVSP (Cut Vertex Separation Pair), is based on the connectiv-
ity of the graph, specifically the decomposition from one-connected graphs into
biconnected components, and then from biconnected graphs into triconnected
components.

A cut vertex of a connected graph G is a vertex whose removal from G
increases the components in G, i.e., disconnected [6]. Similarly, a separation pair
of a biconnected graph G is a pair of vertices whose removal from G increases the
components in G, i.e., disconnected [7]. Note that the cut vertices and separation
pairs can be computed in linear time [6,7].

Cut vertices and separation pairs are structurally important in terms of graph
connectivity and topology, since the removal of such vertices disconnect the
remaining graph, meaning that they disable communication and increase the
vulnerability. In particular, cut vertices have been shown to be important actors
in social network analysis, such as brokers, often with high betweenness central-
ity [27], indicating their potential use as seed vertices for the IMP problem.

To compare the performance of CVSP to other seeding strategies, such as
various centrality measures, with resource restrictions, such as the budget which
are conventionally modelled by the number of starting seed vertices k, we need
to compute a vertex ranking by sorting the cut vertices and the separation pairs
based on their degree. Specifically, CVSP can be described as follows:

1. Compute cut vertices of a one-connected graph G and sort them in the
decreasing order of their degree to form the set CV . Ties are broken ran-
domly to avoid introducing bias.

2. For each biconnected component Bi of G, compute the separation pairs to
form the set SP . Sort the vertices in SP based on their degree, as in Step 1.

3. Compute the ordered connectivity set C by attaching SP at the end of CV .
Select the top k vertices from C as the starting seed set.

3.2 ER: Spectral Seeding Strategy

Our second strategy, ER (Effective Resistance), is based on the spectral graph
theory, which is concerned with the eigenvalues and eigenvectors of matrices
associated with graphs. The spectrum of a graph is the list of eigenvalues of its
Laplacian matrix L, which is defined using the Degree matrix D and Adjacency
matrix A as L = D − A. The spectrum of a graph is closely related to a number
of structural properties of graphs, such as the connectivity.

For example, a spectral sparsifier is a subgraph whose Laplacian quadratic
form is approximately the same as the original on all real vector inputs. Spielman
and Teng [25] proved that every n-vertex graph has a spectral approximation
with O(n log n) edges. Specifically, spectral sparsification is a stochastic sampling
method, where edges are sampled based on the effective resistance values, which
is related to the commute distances in the graph.
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Modelling a graph as an electrical network, the effective resistance of an
edge is defined as the voltage drop across the edge and its value is equivalent
to the probability of the edge to be included in a random spanning tree of the
graph [24]. Note that the effective resistance values of edges in a graph can be
computed in near linear time [24].

Since effective resistance values are closely related to the commute distance
(i.e., the expected length of a random walk between two vertices), as well as
structural roles (positions) of actors based on how they are embedded in a social
network [27], these indicate potential use as seed vertices for the IMP problem.
Specifically, ER can be described as follows:

1. Compute the effective resistance value ER(v) of each vertex v as the sum of
the effective resistance value ER(e) of each incident edge e of v: i.e. ER(v) =∑

e∈I(v) ER(e), where I(v) is the set of incident edges of v.
2. Compute a vertex ranking R in a decreasing order of ER(v). Select the top

k vertices from the vertex ranking R as the initial seed set.

4 Comparison Experiments

4.1 Experiment Design, Implementation and Data Sets

We compare our two new seeding strategies CVSP and ER against the following
popular seeding strategies, described in Sect. 2.3: BC (Betweenness Centrality),
CC (Closeness Centrality), DC (Degree Centrality), KC (k-core) and IMM.

We implement CVSP and ER, and diffusion simulations in Python. For the
IC model, we use an implementation from [3], and initialize βu,v values to 0.5.
We use NetworkX to compute centrality measures and k-core, and OGDF to
compute the cut vertices, separation pairs and graph layouts. For IMM, we use
implementation from [26] with the recommended setting of the tunable param-
eter ε = 0.5.

We experiment with two types of real-world datasets: (1) scale-free networks:
globally sparse, locally dense clusters with the Power law degree distribution and
short diameters; (2) biological networks (RNA sequence graphs): globally sparse
(i.e. path or almost tree structure), locally dense clusters with long diameters,
called the GION graphs [21]. For the details of the data sets, see Table 1.

For each graph, we run the Independent Cascade (IC) diffusion model
with each seeding strategy five times and take the average, due to the non-
deterministic nature of the model. We set the budget (i.e., the number of starting
seed vertices) as k = |CV | + |SP |.

4.2 Final Influence Spreading Rate Comparison

Table 1 and Fig. 1 show the final influence spreading rate (i.e., percentage of the
activated vertices over the total number of vertices after IC converges). Clearly,
ER performs the best on the scale-free graphs, followed by BC and CVSP, and
DC performs on par with CVSP. Interestingly, IMM performs the worst for



New Seeding Strategies for the IMP 295

Table 1. The average final influence spread rate (i.e., percentage of the activated
vertices over the total number of vertices in the graph), where the number of starting
seed vertices k = |CV | + |SP |, den means the density, and dia means the diameter of
a graph. ER performs the best for scale-free graphs, followed by BC and CVSP; IMM
performs the best for GION graphs, followed by ER and CVSP.

Dataset BC CC DC KC CVSP ER IMM |V | |E| den dia k

soc h 58.8 53.2 54.8 51.2 53 60 33.8 2000 16097 8.05 10 326

yeastppi 83.8 74.4 81.6 73.8 83.6 85.6 59.4 2224 7049 3.17 11 674

oflights 81.2 65.4 75.6 68.2 76.4 81.4 44.2 2905 15645 5.39 14 709

facebook 49.2 47 45.6 9.8 46.8 49.2 52.6 4039 88234 21.8 8 109

p2p-Gnutella05 80.4 72.8 77.6 73.2 78.4 83.2 62.4 8842 31837 3.60 9 2636

Avg. Scale-free 70.68 62.56 67.04 55.24 67.64 71.88 50.48

gion2 31 17.4 26.4 20.6 32.6 39.4 53.2 1159 6424 5.54 58 183

gion5 37.4 23.2 23.8 20.2 38.4 46.8 57.8 1748 13957 7.98 63 270

gion6 29.8 18.4 26.8 17.4 30.8 34 51.6 1785 20459 11.5 41 198

gion7 13.8 8.4 13.8 10.2 20.2 21.2 46.2 3010 41757 13.9 77 161

gion8 28.6 12.4 23.4 16.8 25.4 34 51.8 4924 52502 10.7 121 491

Avg. GION 28.12 15.96 22.84 17.04 29.48 35.08 52.12

Fig. 1. Average final influence spread rate (i.e., percentage of activated vertices): ER
performs the best for scale-free graphs; IMM performs the best for GION graphs.

scale-free graphs. On the other hand, IMM performs the best on the GION
graphs, followed by ER and CVSP. Overall, experiments demonstrate excellent
performance by ER and CVSP, in particular for scale-free graphs. Note that the
time complexity of CVSP and ER is much faster than BC.

Figure 2 shows how fast the diffusion is carried out for different seeding strate-
gies, and where the rate of diffusion peaks, by showing the number of newly acti-
vated vertices at each diffusion step. In terms of the influence rate, we observe
that most of the diffusion occurs in the first few steps across all seeding strate-
gies. The highest influence rate occurs at the second (or the third) diffusion
step, and then drops quickly in particular for scale-free networks. Therefore,
what determines which method will activate the most vertices after convergence
is which method activates the most vertices in the first few diffusion steps. As
such, the role of the starting seed vertices is critical.

Figure 3 shows the final influence rate after convergence, where the number
of starting seed vertices k is varied. Clearly, the relative performances of seeding



296 S.-H. Hong et al.

Fig. 2. Dynamics of diffusion: the number of newly activated vertices at each diffusion
step. For all strategies, most of the diffusion occurs in the second step.

Fig. 3. Final influence rate after convergence, where the number of starting seed ver-
tices k is varied. In general, the relative performances of seeding strategies do not
change, based on the size of k.

strategies do not change, based on the size of k. We observe that varying the
number of starting seed vertices k has minimal effect on the results observed in
Table 1. Roughly speaking, when a particular seeding strategy is strong relative
to the rest, it remains strong for all k values, and when two seeding strategies
are comparable, they remain comparable for all k.

4.3 Visual Analysis and Comparison

Visual analysis enables more refined comparison between the methods other than
the efficiency and effectiveness. For example, in terms of efficiency, CVSP, DC
and KC all run in linear time. For scale-free graphs, Table 1 shows that both
CVSP and DC perform on par in terms of effectiveness (i.e., influence spreading
rate). However, visual comparison in Fig. 4 reveals that the seed vertices by
CVSP have a more global influence compared to the seed vertices by DC or KC
with relatively local influence.
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Fig. 4. Visual analysis and comparison of the influence spread by CVSP (left), DC
(middle) and KC (right) on the facebook network. Note that the final diffusion step in
the last row is 5 (CVSP), 10 (DC) and 19 (KC), respectively. Red (resp., Blue) means
newly (resp., previously) activated vertices/edges, and Grey means not yet activated.
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Specifically, we can observe that in the first two steps, CVSP produces more
widely spread influenced vertices (in red), compared to more concentrated, sus-
tained local influence spread by DC and KC, suggesting that their seed vertices
are highly locally linked, leading to redundancy. Moreover, the final influence
(in blue recovered vertices) of CVSP, DC and KC are achieved in 5, 10 and
19 diffusion steps respectively (in the last row), implying that the initial seed
vertices by CVSP are more effective influencers than the seeds by DC and KC.

4.4 Summary and Recommendation

In summary, extensive comparison experiments demonstrate that our new seed-
ing strategies CVSP and ER are not only efficient with linear and near-linear
time complexity, but also effective in terms of the influence spreading rate, as
shown in Table 1. Overall, ER and CVSP outperform IMM for scale-free graphs
with globally sparse, locally dense clusters with ultra small diameters. On the
other hand, IMM performs the best for GION graphs, followed by ER and CVSP.

We also conducted experiments with the LT diffusion model, and obtained
similar results. Based on our extensive empirical experiments, we conclude with
the following recommendation and guidelines:

– For scale-free graphs with globally sparse, locally dense clusters and short
diameters, we recommend ER for both effectiveness and efficiency.

– For graphs with globally sparse, locally dense clusters and long diameters, we
recommend IMM for both effectiveness and efficiency.

– When efficiency is the most important consideration, we recommend CVSP
over DC or KC, for global influence spread pattern, based on visual analysis
and comparison.
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3. Chen, D., Lü, L., Shang, M.S., Zhang, Y.C., Zhou, T.: Identifying influential nodes
in complex networks. Phys. A 391(4), 1777–1787 (2012)

4. Domingos, P., Richardson, M.: Mining the network value of customers. In: SIGKDD
2001, pp. 57–66 (2001)

5. Gui-sheng, Y., Ji-jie, W., Hong-bin, D., Jia, L.: Intelligent viral marketing algo-
rithm over online social network. In: ICNDC 2011, pp. 319–323 (2011)

6. Hopcroft, J., Tarjan, R.: Algorithm 447: efficient algorithms for graph manipula-
tion. Commun. ACM 16(6), 372–378 (1973)

7. Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM
J. Comput. 2(3), 135–158 (1973)

8. Iyer, S., Killingback, T., Sundaram, B., Wang, Z.: Attack robustness and centrality
of complex networks. PLoS ONE 8(4), e59,613 (2013)



New Seeding Strategies for the IMP 299
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Abstract. We examine how homophily widely observed in networks affects epi-
demic processes on networks, which are often used to model the spread of infor-
mation and diseases in social networks and of malware and viruses in information
systems. We propose a new framework for modeling the effects of homophily
with the help of multi-type branching processes. Using this framework we derive
conditions that tell us how homophily influences the likelihood of suffering an
epidemic. Finally, we present numerical studies to verify our findings.

Keywords: epidemic processes · homophily · multi-type branching processes

1 Introduction

Studies revealed that both engineered and natural networks exhibit several interest-
ing properties, such as the small world phenomenon, high transitivity (or clustering),
degree correlations to name a few [1,6–8]. These properties influence how diseases,
information or viruses spread over networks, which is often modeled using epidemic
processes on graphs or networks. For this reason, researchers examined how they affect
the dynamics of epidemic processes on networks, e.g., [3,4].

Another property that has been observed widely in social networks is homophily [5].
It refers to the observation that people tend to be friends with others who share common
beliefs or have similar background, and is shown to have significant impact on our
decisions. We are interested in investigating how homophily influences the spread of
infectious diseases in a population. For example, a close circle of friends may share
similar beliefs, including their opinions about vaccines and the risks from an infectious
disease. As a result, when one member of the circle is antivaccine or does not believe in
(the effectiveness of) vaccines, other members may be less likely to get vaccinated (than
the general public) and be more likely to contract the disease when exposed. We note
that, although we study the effects of homophily in the context of a disease epidemic,
our framework and results apply to other applications, including information or virus
propagation in information networks and systems.

Many studies demonstrated homophily due to different relationships in social net-
works [5]. However, our understanding of its impact on epidemic processes is still lim-
ited. We consider a population consisting of two types of individuals, e.g., vaccinated
vs. unvaccinated. First, we propose a new framework for estimating the probability of
experiencing an epidemic (PoEP) in a large population, starting with a single infected
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individual at the beginning. Second, making use of this framework, we carry out an
analysis and derive a set of conditions that tell us how homophily changes the PoEPs
(see Theorem 1). Finally, we conduct numerical studies to validate our findings.

The rest of the paper is organized as follows: We introduce the basic setup in Sect. 2.
Section 3 first describes the model and approach, including multi-type branching pro-
cesses, and then presents the main results. Numerical results are provided in Sect. 4. We
conclude in Sect. 5.

2 Basic Setup

Consider a population consisting of N individuals, where N is large, and let V :=
{1, . . . , N} be the set of individuals in the population. We model the existence of a
relation between two distinct individuals i and j in V using a bidirectional link between
them, which is denoted by (i, j). Thus, we represent the relations among the individuals
using an undirected graph G = (V, E), where E ⊂ V × V is the set of undirected links
indicating the existing relations. We call G the relation graph (RG).

We assume that each individual is assumed to be one of two types, either type 1 or 2,
and let T = {1, 2} be the set of types. In the earlier example, type 1 (resp. type 2) may
correspond to vaccinated individuals (resp. unvaccinated individuals). Let p ∈ (0, 1)
denote the fraction of type 1 individuals in the population. For each i ∈ T , define λi to
be the probability with which a type i individual will contract the disease when exposed
to an infected neighbor.

Suppose that the degree distribution in the population is given by v = (vk : k ∈ D),
where D := {1, . . . , dmax} and vk, k ∈ D, is the fraction of population with degree
k. Define davg to be the mean degree given by davg =

∑
k∈D k · vk. We denote the

degree distribution of a (randomly chosen) neighbor by w = (wk : k ∈ D), where
wk = k · vk/davg. Here, we assume that the degree distribution does not depend on
the type of individuals as we are interested in isolating the effects of homophily on
epidemic processes.

In the absence of homophily, the probability that a neighbor of an individual is of
type 1 would be p. In order to study the effects of homophily on epidemic processes, we
introduce different probabilities based on the individual’s type: for a type i individual
(i ∈ T ), each of its neighbors is a type 1 individual with probability qi, independently
of each other. When q1 = q2 = p, it indicates no bias introduced due to homophily. For
each i ∈ T , let θi

1 := qiλ1, θi
2 := (1 − qi)λ2, and θi

0 := 1 − θi
1 − θi

2. Obviously, when
q1 = q2 = p, we have θ1� = θ2� , � ∈ {0, 1, 2}.

Clearly, when q1 is fixed, q2 cannot be an independent variable since the total num-
ber of outgoing edges is fixed to be N · davg and that of type 1 individuals (resp. type
2 individuals) is N · p · davg (resp. N(1 − p)davg). In order to compute q2 as a func-
tion of q1, we can solve the following equation using the total numbers of outgoing and
incoming edges of type 1 individuals in the population:

total # of outgoing edges = N · p · davg

= N · p · davg · q1 + N(1 − p)davg · q2 = total # of incoming edges

By solving for q2, we obtain q2 = p(1−q1)
1−p = α · (1 − q1) with α = p

1−p .
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2.1 Probability of Epidemics

Suppose that the patient zero infected with a disease at the beginning is a type i individ-
ual. We denote by μi the probability that the disease will affect only a negligible fraction
of the population and not lead to a widespread epidemic, starting with the infected type
i individual. Similarly, let ξi be the probability that a type i individual, when infected
by a neighbor, will not cause a cascade of infections via other neighbors. We use μ and
ξ to denote (μ1, μ2) and (ξ1, ξ2), respectively.

Fig. 1. Example scenario used to illustrate μ and ξ.

We illustrate these probabilities using the example shown in Fig. 1. Here, individual
0 (shown as a solid blue circle) is the patient zero who contracts the disease first and
has 4 neighbors. Neighbors 1, 2, and 4 (shown as solid red circles) become infected by
individual 0. But, neighbor 2 does not lead to widespread transmissions of the disease
via other neighbors, whereas neighbors 1 and 4 cause cascades of infections through
their neighbors (the sets of individuals infected through neighbors 1 and 4 are indicated
by yellow areas). In this example, 1 − μi0 , where i0 is the type of individual 0, is
the probability that individual 0, following the contraction of disease, will cause an
epidemic through its 4 neighbors, and the probability that an infected neighbor, say
individual 1, will lead to an epidemic after getting infected by individual 0 is given by
1 − ξi1 with i1 being its type.

Under suitable independence assumptions, the probability μi can be computed by
conditioning on the degree of the patient zero as follows:

μi(ξ, q1) =
dmax∑

d=1

vd

(
1 − (qiλ1(1 − ξ1) + (1 − qi)λ2(1 − ξ2))

︸ ︷︷ ︸
=φi(ξ,q1)

)d
, (1)

where φi(ξ, q1) is the probability that a randomly selected neighbor of the infected
individual under consideration will trigger cascading infections. Equation (1) implicitly
assumes that the clustering coefficient of the network is small so that we could treat the
events of different neighbors causing cascading infections as independent events. For a
study on the impact of clustering on epidemic processes, we refer the reader to [4].
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3 Model and Main Results

3.1 Multi-type Branching Processes

It is clear from (1) that the probability μi is shaped by ξ. For this reason, we first focus
on computing ξ. Although we assume only two types of individuals in T , for the pur-
pose of computing ξ using multi-type branching processes (MTBPs) explained below,
we find it convenient to introduce two additional types: a type 3 individual (resp. a type
4 individual) is a type 1 individual (resp. a type 2 individual) who was infected by its
neighbor. Hence, ξ1 (resp. ξ2) can be viewed as the probability that a single type 3
(resp. type 4) individual will not cause cascading infections through its other neighbors
excluding the one that infected it. For each i ∈ T + := {3, 4}, let qi = qi−2, λi = λi−2,
θi

� = θi−2
� , � ∈ {0, 1, 2}.

In order to estimate ξ, we will make use of MTBPs: an MTBP starts with a single
node of either type 3 or 4 at the beginning (generation 0), where a type i node (i ∈ T +)
represents an infected type i individual described above. Starting with the single node
in generation 0, each node in generation n, n ∈ Z+ := {0, 1, 2, . . .}, produces a set
of nodes of types 3 and 4 in generation n + 1, which are called its children, according
to some specified distribution (discussed below). These children in generation n + 1
represent the neighbors that are infected by the node in generation n.

Let Pn, n ∈ Z+, be the total number of nodes in generation n (with P0 = 1). For
each pair (n, l), n ∈ Z+ and l ∈ {1, . . . , Pn}, let C(n,l) = (C(n,l)

3 , C
(n,l)
4 ) be a random

vector, where C
(n,l)
i , i ∈ T +, is the number of type i children produced by the l-th

node in generation n. Clearly, for n ∈ Z+, we have Pn+1 =
∑Pn

l=1

(∑4
i=3 C

(n,l)
i

)
.

The number and types of children produced by each node in an MTBP may depend on
the node’s type, but are assumed to be independent of those of other nodes. In other
words, conditional on the types of Pn nodes in generation n, C(n,l), l = 1, . . . , Pn,
are conditionally independent (and also independent of those of other generations). The
probability of extinction (PoE) of the MTBP is defined to be the probability that there
is some n′ ∈ Z+ such that Pn′ = 0 (with the convention Pn = 0 for all n > n′), i.e.,
the disease propagation stops after a finite number of hops. It is clear that the PoE may
depend on the type of the single node in generation 0.

We approximate the probability ξi, i ∈ T , using the PoE of an MTBP, starting
with a single node of type i + 2 at the beginning. This is a reasonable assumption in
a large population, in which a widespread epidemic that affects a non-negligible frac-
tion of population must propagate over many hops via community transmissions, and
successful prevention of an epidemic requires stopping the spread of a disease before
community transmissions take hold.

Recall that an infected individual can have two different types of children, types
3 and 4. For fixed q1 (hence fixed q2 as well), the children distribution of a type i
individual (i ∈ T +) can be computed by conditioning on the degree of the individual:
for fixed o = (o3, o4) ∈ Z2

+, the probability that an infected type i individual (i ∈ T +)
will produce o3 type 3 children and o4 type 4 children is equal to

Ci(o, q1) =
dmax−1∑

d=o3+o4

(

wd+1
d!

o3!o4!(d−o3−o4)!
(θi

1)
o3(θi

2)
o4(θi

0)
d−o3−o4

)

. (2)
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As expected, when q1 = q2 = p , C1 and C2 are identical.
For each i ∈ T +, with a little abuse of notation, let E [Ci] = (E [Ci,j ] : j ∈ T +)

be a 1 × 2 row vector, whose j-th element is the expected number of type j children
from an infected type i individual. DefineM = [Mi,j : i, j ∈ T +] to be a 2× 2matrix,
whose i-th row is E [Ci], i.e., Mi,j = E [Ci,j ]. Let ρ(M) denote the spectral radius of
M. It is well known [2] that ξ = 1 := (1, 1) if either (i) ρ(M) < 1 or (ii) ρ(M) = 1
and there is at least one type in T + for which the probability that it produces exactly
one child is not equal to one. Similarly, if ρ(M) > 1, then ξ < 1 and there is strictly
positive probability that the spread of infection continues forever in the MTBP (in an
infinite population), suggesting that there could be a widespread epidemic in a finite but
large population.

3.2 Generating Functions

Unfortunately, there is no closed-form expression for ξ. However, it can be computed as
a fixed point of generating functions described in this subsection. For each type i ∈ T +,
the corresponding generating function fi : [0, 1]2 → [0, 1]2 is given by1

fi(s, q1) =
∑

o∈Z2
+

Ci(o, q1)so3
1 so4

2 , s ∈ [0, 1]2, q1 ∈ (0, 1), (3)

where Ci is the children distribution of a type i individual in (2). Substituting (2) in (3)
and interchanging the order of summations, we obtain

fi(s, q1)

=
∑

o∈Z2
+

[
dmax−1∑

d=o3+o4

(

wd+1
d!

o3!o4!(d−o3−o4)!
(θi

1)
o3(θi

2)
o4(θi

0)
d−o3−o4

)

so3
1 so4

2

]

=
∑

d∈Z+

wd+1

⎛

⎝
∑

{o∈Z2
+|o3+o4≤d}

d!
o3!o4!(d−o3−o4)!

(s1θi
1)

o3(s2θi
2)

o4(θi
0)

d−o3−o4

⎞

⎠

=
∑

d∈Z+

wd+1

(
s1θ

i
1 + s2θ

i
2 + θi

0︸ ︷︷ ︸
=ψi(s,q1)

)d
, (4)

where the last equality follows from the well-known equality

∑

{
n∈Zm

+ | ∑m
k=1 nk=Ñ

}

Ñ !
n1!n2! · · · nm!

m∏

k=1

(xk)nk =

(
m∑

k=1

xk

)Ñ

.

Fix q1 ∈ (0, 1). When ρ(M) < 1, a unique fixed point of f(s, q1) :=
(
f3(s, q1),

f4(s, q1)
)
is 1 and ξ1 = ξ2 = 1. On the other hand, if ρ(M) > 1, there are two fixed

points of f(s, q1) in [0, 1]2 – one fixed point is 1 and ξ is the other fixed point in [0, 1)2.

1 For our discussion, we limit the domain and co-domain of the generating functions to [0, 1]2.
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In other words, ξ = f(ξ, q1) < 1. When ρ(M) > 1 for fixed q1 ∈ (0, 1), we denote the
fixed point ξ < 1 by ξ(q1) to make the dependence on q1 explicit.

We are interested in understanding how the fixed point ξ(q1) changes as q1 varies,
especially around p. In other words, we wish to examine how homophily observed in
many social networks affects the likelihood of suffering an epidemic, starting with a ran-
dom infection of an individual. One may suspect that when type 1 individuals are more
likely to be neighbors with each other than with type 2 individuals, it would be more
difficult to infect their neighbors and consequently μ1(ξ(q1), q1) would increase with
q1. However, this intuition is not always correct and the following theorem suggests that
the answer to the question is far more complicated and the effects of homophily depend
on many other factors. Define μ(ξ(q1), q1) := p ·μ1(ξ(q1), q1)+ (1− p)μ2(ξ(q1), q1).

Theorem 1. Fix p ∈ (0, 1), and suppose ξ(p) = (ξ1(p), ξ2(p)) ∈ (0, 1)2. Let

A :=
dmax−1∑

d=1

(
wd+1d

(
1 − (1 − ξ)(λ2 − p(λ2 − λ1))

)d−1)
,

where ξ := ξ1(p) = ξ2(p), and define

K := A(λ2−λ1)
1−A(pλ1+(1−p)λ2)

, (5a)

Γ1 := 1 − Kp and Γ2 := 1 + K(1 − p). (5b)

i. If Γ1 > 0 (resp. Γ1 < 0), then there exists ε1 > 0 such that, for all p − ε1 < q1 ≤
q̃1 < p + ε1, μ1(ξ(q1), q1) ≤ μ1(ξ(q̃1), q̃1) (resp. μ1(ξ(q1), q1) ≥ μ1(ξ(q̃1), q̃1));
ii. If Γ2 > 0 (resp. Γ2 < 0), then there exists ε2 > 0 such that, for all p − ε2 < q1 ≤
q̃1 < p + ε2, μ2(ξ(q1), q1) ≥ μ2(ξ(q̃1), q̃1) (resp. μ2(ξ(q1), q1) ≤ μ2(ξ(q̃1), q̃1)); and
iii. If K > 0 (resp. K < 0), then there exists ε > 0 such that, for all p − ε < q1 ≤ q̃1 <
p + ε, μ(ξ(q1), q1) ≥ μ(ξ(q̃1), q̃1) (resp. μ(ξ(q1), q1) ≤ μ(ξ(q̃1), q̃1)).

Remark 1. Before we proceed, we remark on some observations and a relation between
Γ1 and Γ2. First, the theorem tells us that whether or not type i individuals benefit
from homophily in that they become less likely to cause an epidemic depends on the
sign of Γi defined in (5b). Moreover, loosely speaking, Γ1 and Γ2 tend to move in the
opposite directions. This is consistent with earlier intuition that μ1 and μ2 should move
in opposite directions with increasing homophily. However, our findings in the theorem
tell us that this intuition is only partially correct.

Second, suppose Γ2 < 0. From the definitions of Γ1 and Γ2 in (5b), this implies
K < −(1 − p)−1 < 0 and Γ1 > 0. Similarly, when Γ1 < 0, we have K > p−1 > 0
and Γ2 > 0. Therefore, it is not possible for both Γ1 and Γ2 to be negative. This in turn
means that it is impossible for μ1 to decrease and μ2 to increase simultaneously due to
homophily (locally around p), which is expected.

4 Numerical Studies

Our main analytical result in Theorem 1 tells us how weak homophily affects the like-
lihood of experiencing an epidemic, starting with a single infected individual, when
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q1 ≈ p. However, it does not tell us how the likelihood would change in the presence
of strong homophily. In this section, we study how the parameter q1, which determines
the level of homophily present in the network, affects the PoEP with the help of numer-
ical studies. As we will see shortly, it turns out that its effect is not straightforward and
depends on other parameters and, ultimately, the current PoEP of each type.

For our study, we consider a scale-free network in which the node degrees follow
a power law with parameter 1.5: let v := (vd : d ∈ {dmin, . . . , dmax}) be the degree
distribution, where vd ∝ d−1.5, d = dmin, . . . , dmax. The minimum degree dmin and
the maximum degree dmax are set to 2 and 25, respectively. Given the parameters, the
mean degree is 6.28.

Fig. 2. Small to moderate PoEP case. (i) Plots of PoEPs (top row), (ii) contours of PoEPs (middle
row), and (iii) plots of Γ1, Γ2, and K (bottom row).

• Small to moderate PoEP regime – In the first case, we consider a scenario in which the
PoEP is small to moderate when p = q1 = q2. For this scenario, we choose λ1 = 0.05
and λ2 = 0.15. Figure 2 shows (i) μ̄1 := 1 − μ1, μ̄2 := 1 − μ2, and the overall PoEP
given by μ̄ := p · μ̄1 + (1 − p)μ̄2 (top row), (ii) the contour plots of the PoEPs shown
in the first row (second row), and (iii) Γ1, Γ2 and K defined in (5) as a function of p
(bottom row).
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There are several observations that we can make from the plots. First, it is clear
from the plots that, in the absence of homophily, i.e., q1 = p, we have μ̄1 = μ̄2. This
is expected because the right-hand side of (1) is the same for both μ1 and μ2 when
p = q1 = q2. Also, the PoEP μ̄ decreases with the fraction of vaccinated individuals in
the population, namely p, as they are less vulnerable to infection (from λ1 < λ2).

Second, when p is small (p < 0.28), weak homophily with q1 ≈ p tends to reduce
μ̄1 for type 1 individuals. This can be seen in the contour plot for μ̄1 and the plot
of Γ1, which is positive when p < 0.28.2 However, for larger p > 0.28, it has the
opposite effect on μ̄1 as Γ1 dips below zero. On the other hand, for all p ∈ (0, 1), μ̄2

increases with q1. Similarly, weighted average μ̄ tends to increase with q1 around p for
all p ∈ (0, 1), and this can be verified by the plot of K, which is strictly positive for
all p ∈ (0, 1). This trend continues for q1 outside a local neighborhood around p. The
observation suggests that, at least in some cases, homophily may have adverse effects

Fig. 3. Moderate PoEP case. (i) Plots of PoEPs (top row), (ii) contours of PoEPs (middle row),
and (iii) plots of Γ1, Γ2, and K (bottom row).

2 Recall that each line in the contour plots represents a set of pairs (p, q1) where the value of
PoEP is the same. When the slope of the contour line at the dotted red line (45◦ line) is positive
(resp. negative), it indicates that the PoEP increases (resp. decreases) with homophily. Also, if
homophily does not affect PoEP, the contour lines would be flat.
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and facilitate the spread of an epidemic, thereby increasing the likelihood of suffering an
epidemic. Also, it tells us that, in order to accurately predict and avoid underestimating
the likelihood of suffering an epidemic from an infectious disease, it is important to
consider homophily in the network.
• Higher PoEP regime – In the second case, we examine a scenario in which the PoEP
is much larger in the absence of homophily. To this end, we increase the infection
probabilities to λ1 = 0.15 and λ2 = 0.3. Figure 3 shows (i) μ̄1, μ̄2 and μ̄, (ii) their
contour plots, and (iii) Γ1, Γ2 and K. It is clear from the plot that μ̄1 decreases with q1
over for a wide range of p, while μ̄2 still increases with q1. This is confirmed by the plots
of Γi, i = 1, 2. In addition, μ̄ also increases with q1 in the neighborhood around p as
verified by the plot of K. However, this increase in PoEP with q1 is not as pronounced
as in the first case (shown in Fig. 2).

5 Conclusion

We studied the influence of homophily observed in many social networks. With the
help of MTBPs, we proposed a new framework for modeling the effects of homophily
and approximating the probability of experiencing an epidemic starting with a single
infected individual. Our analytical results tell us how weak homophily changes the
likelihood of suffering an epidemic. Finally, we validated our analytical findings using
numerical studies.

A Proof of Theorem 1

From (1), we have, for each i = 1, 2,

∂μi(ξ(q1), q1)
∂q1

=
∑dmax

d=1 vd d
(
1 − φi(ξ(q1), q1)

)d−1
(

− ∂φi(ξ(q1),q1)
∂q1

)
. (6)

It is clear from (6) that the sign of ∂μi(ξ(q1),q1)
∂q1

, i = 1, 2, depends on that of
∂φi(ξ(q1),q1)

∂q1
. Specifically, their signs are the opposite. For this reason, we focus on

computing the partial derivatives ∂φi(ξ(q1),q1)
∂q1

, i = 1, 2. First, from the definition of φi,
we have

∂φ1(ξ(q1), q1)
∂q1

= λ1(1 − ξ1) − λ2(1 − ξ2) − q1λ1
∂ξ1(q1)

∂q1
− (1 − q1)λ2

∂ξ2(q1)
∂q1

.(7)

In order to evaluate the partial derivatives ∂ξi/∂q1, i = 1, 2, we make use of the implicit
function theorem (IFT) [9]: define hi(s, q1) := fi+2(s, q1) − si, i = 1, 2. Recall that
ξ(p) ∈ (0, 1)2 satisfies hi(ξ(p), p) = 0, i = 1, 2. Thus, the IFT tells us the following:
(i) if the Jacobian matrix M =

[
∂hi(ξ, p)/∂ξj : i, j = 1, 2

]
is invertible, we can find

an open interval (p − ε, p + ε) such that ξ(q1) is continuously differentiable over the
interval, and (ii) the following equality holds:

[
∂ξ1(q1)

∂q1
∂ξ2(q1)

∂q1

]

= −
[

∂h1(ξ,q1)
∂ξ1

∂h1(ξ,q1)
∂ξ2

∂h2(ξ,q1)
∂ξ1

∂h2(ξ,q1)
∂ξ2

]−1 [
∂h1(ξ,q1)

∂q1
∂h2(ξ,q1)

∂q1

]

(8)
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We now proceed to compute each partial derivative inM.

∂h1(ξ, q1)
∂ξ1

= A1θ
1
1 − 1 = A1q1λ1 − 1

∂h1(ξ, q1)
∂ξ2

= A1θ
1
2 = A1(1 − q1)λ2

∂h2(ξ, q1)
∂ξ1

= A2θ
2
1 = A2

p

1 − p
(1 − q1)λ1

∂h2(ξ, q1)
∂ξ2

= A2θ
2
2 − 1 = A2

1 − 2p + pq1
1 − p

λ2 − 1

where

Ai =
dmax−1∑

d=1

wd+1d
(
1 − (1 − ξ1)θi

1 − (1 − ξ2)θi
2

)d−1
> 0, i = 1, 2.

Note that when q1 = p, we have ξ1 = ξ2 = ξ and θ1k = θ2k, k = 1, 2. Evaluating
these partial derivatives at q1 = p, we obtain

M =
[
Apλ1 − 1 A(1 − p)λ2

Apλ1 A(1 − p)λ2 − 1

]

,

where we use A to denote A1 = A2 =
∑dmax−1

d=1

(
wd+1d

(
1 − (1 − ξ)(λ2 − p(λ2 −

λ1))
)d−1)

> 0. The inverse of matrixM is given by

M−1 = 1

det(M)

[
A(1 − p)λ2 − 1 −A(1 − p)λ2

−Apλ1 Apλ1 − 1

]

, (9)

where det(M) = 1−A(pλ1+(1− p)λ2) ≤ 1−Aλ1 < 0. Following similar steps and
evaluating at q1 = p,

∂h1(ξ, q1)
∂q1

∣
∣
∣
q1=p

= A
∂

∂q1

(
ξ1q1λ1 + ξ2(1 − q1)λ2 + 1 − q1λ1 − (1 − q1)λ2

)∣∣
∣
q1=p

= A(λ2 − λ1)(1 − ξ) (10)

and

∂h2(ξ, q1)
∂q1

∣
∣
∣
q1=p

= A
∂

∂q1

(
ξ1

p

1 − p
(1 − q1)λ1 + ξ2

1 − 2p + pq1
1 − p

λ2

+ 1 − p

1 − p
(1 − q1)λ1 − 1 − 2p + pq1

1 − p
λ2

)∣∣
∣
q1=p

= − Ap

1 − p
(λ2 − λ1)(1 − ξ). (11)
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Substituting (9), (10) and (11) in (8),

[
∂ξ1(q1)

∂q1

∣
∣
q1=p

∂ξ2(q1)
∂q1

∣
∣
q1=p

]

= −A(λ2 − λ1)(1 − ξ)
det(M)

[
A(1 − p)λ2 − 1 −A(1 − p)λ2

−Apλ1 Apλ1 − 1

] [
1

− p
1−p

]

= B

[
A(1 − p)λ2 − 1 + Apλ2

−Apλ1 − Apλ1
p

1−p + p
1−p

]

= B

[
Aλ2 − 1

−Ap(1−p)λ1−Ap2λ1+p
1−p

]

= B

[
Aλ2 − 1

−p(Aλ1−1)
1−p

]

where B = −A(λ2 − λ1)(1 − ξ)/det(M).
Substituting these expressions in (7) and evaluating at q1 = p,

∂φ1(ξ(q1), q1)
∂q1

∣
∣
∣
q1=p

= λ1(1 − ξ) − λ2(1 − ξ) − pλ1B(Aλ2 − 1) − (1 − p)λ2B
(−p(Aλ1 − 1)

1 − p

)

= λ1(1 − ξ) − λ2(1 − ξ) − pλ1B(Aλ2 − 1) + pλ2B(Aλ1 − 1)
= −(λ2 − λ1)(1 − ξ + pB). (12)

From the definitions of B and the determinant of M,

1 − ξ + pB = (1 − ξ)
(
1 − Ap(λ2 − λ1)

1 − A(pλ1 + (1 − p)λ2)

)
= (1 − ξ)Γ1,

where Γ1 is defined in (5b). Since λ2 > λ1 and ξ ∈ (0, 1), when Γ1 > 0, (12) is strictly
negative and ∂φ1(ξ(q1),q1)

∂q1

∣
∣
q1=p

< 0. Similarly, if Γ1 < 0, then (12) is strictly positive

and we have ∂φ1(ξ(q1),q1)
∂q1

∣
∣
q1=p

> 0.
Following similar steps,

∂φ2(ξ(q1), q1)
∂q1

∣
∣
∣
q1=p

= −λ1(1 − ξ)
p

1 − p
+ λ2(1 − ξ)

p

1 − p
− pλ1

∂ξ1
∂q1

− (1 − p)λ2
∂ξ2
∂q1

= −pλ1(1 − ξ)
1 − p

+
pλ2(1 − ξ)

1 − p
− pλ1B(Aλ2 − 1) + pλ2B(Aλ1 − 1)

= p(λ2 − λ1)
(1 − ξ

1 − p
− B

)
= p(λ2 − λ1)(1 − ξ)

( 1
1 − p

+
A(λ2 − λ1)
det(M)

)

=
p(λ2 − λ1)(1 − ξ)

1 − p

(
1 +

A(1 − p)(λ2 − λ1)
1 − A(pλ1 + (1 − p)λ2)

)

=
p(λ2 − λ1)(1 − ξ)

1 − p
Γ2, (13)

where Γ2 is defined in (5b). When Γ2 > 0, (13) is strictly positive and
∂φ2(ξ(q1),q1)

∂q1

∣
∣
q1=p

> 0. On the other hand, if Γ2 < 0, (13) is strictly negative and
∂φ2(ξ(q1),q1)

∂q1

∣
∣
q1=p

< 0.



Effects of Homophily 311

Finally, from the definition of μ(ξ(q1), q1),

∂μ(ξ(q1), q1)
∂q1

= p∂μ1(ξ(q1),q1)
∂q1

+ (1 − p)∂μ2(ξ(q1),q1)
∂q1

.

Substituting the expression in (6),

∂μ(ξ(q1), q1)
∂q1

=p

dmax∑

d=1

vd d
(
1 − φ1(ξ(q1), q1)

)d−1
(

− ∂φ1(ξ(q1), q1)
∂q1

)

+ (1 − p)
dmax∑

d=1

vd d
(
1 − φ2(ξ(q1), q1)

)d−1
(

− ∂φ2(ξ(q1), q1)
∂q1

)
.

Evaluating at q1 = p and substituting the expressions in (12) and (13),

∂μ(ξ(q1), q1)
∂q1

∣
∣
∣
q1=p

= −pΣ
∂φ1(ξ(q1), q1)

∂q1

∣
∣
∣
q1=p

− (1 − p)Σ
∂φ2(ξ(q1), q1)

∂q1

∣
∣
∣
q1=p

= −Σ
(
p
(

− (λ2 − λ1)(1 − ξ)Γ1

)
+ (1 − p)

p(λ2 − λ1)(1 − ξ)
1 − p

Γ2

)

= −Σ(λ2 − λ1)(1 − ξ)(Γ2 − Γ1) = −Σ(λ2 − λ1)(1 − ξ)K,

where Σ :=
∑dmax

d=1 vd d
(
1− φ1(ξ(p), p)

)d−1 =
∑dmax

d=1 vd d
(
1− φ2(ξ(p), p)

)d−1 =
∑dmax

d=1 vd d
(
1 − (1 − ξ)(pλ1 + (1 − p)λ2)

)d−1
> 0.
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1. Boguñá, M., Pastor-Satorras, R., Vespignani, A.: Epidemic spreading in complex networks
with degree correlations. Lect. Not. Phys. 625, 127–147 (2003)

2. Harris, T.E.: The Theory of Branching Processes. Springer-Verlag, Heidelberg (1963)
3. La, R.J.: Cascading failures in interdependent systems: impact of degree variability and depen-

dence. IEEE Trans. Network Sci. Eng. 5(2), 127–140 (2018)
4. La, R.J.: Influence of clustering on cascading failures in interdependent systems. IEEE Trans.

Network Sci. Eng. 6(3), 351–363 (2019)
5. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily. Ann. Rev. Sociol.

27, 415–444 (2001)
6. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167256

(2003)
7. Newman, M.E.J.: Networks. Oxford University Press, Oxford (2010)
8. Pastor-Satorras, R., Castellano, C., Van Mieghem, P., Vespignani, A.: Epidemic processes in

complex networks. Rev. Mod. Phys. 87, 925–979 (2015)
9. Rudin, W.: Principlies of Mathematical Analysis. McGraw-Hill, New York (1976)



Human Papillomavirus Co-circulation
on a Partially Vaccinated Partnership Network

Mélanie Bonneault1,2,3(B) , Maxime Flauder1,2,
Elisabeth Delarocque-Astagneau2 , Anne C. M. Thiébaut3 ,

and Lulla Opatowski1,2

1 Epidemiology and Modelling of Antibiotic Evasion Unit, Institut Pasteur, 75015 Paris, France
melanie.bonneault@gmail.com

2 Université Paris-Saclay, UVSQ, Inserm, CESP, 78180 Montigny-Le-Bretonneux, France
3 Université Paris-Saclay, UVSQ, Inserm, CESP, 94807 Villejuif, France

Abstract. Human papillomaviruses (HPV) are among themost common sexually
transmitted infections and a necessary cause of cervical cancer. In the context of
vaccination against a sub-group of genotypes, better understanding the respective
role of biological interactions between HPV genotypes and social interactions
between humans is essential to anticipate what the vaccine impact could be at the
population level. Here, we present a novel stochastic agent-based model formal-
izing the co-circulation on a human partnership network of multiple interacting
genotypes, some of them being preventable by the vaccine (vaccine types) and
others not. The model explicitly formalizes heterogeneity in sexual behaviors and
allows exploration of distinct genotypic interaction mechanisms during intra-host
co-infections. Using model simulations, we investigate infection dynamics after
vaccine introduction in the population depending on assumptions about vaccine
coverage and interactions between vaccine and non-vaccine genotypes.

Keywords: agent-based model · sexually transmitted infection · genotype
interactions

1 Introduction

Mathematical models are useful tools to understand the dynamics of infectious disease
spread in human populations and to predict the impact of control strategies such as
screening or immunization programs. Classically, individuals are grouped indiscrimi-
nately in compartments according to their infectious status (e.g., susceptible, infected,
recovered). In the context of sexually transmitted infections, the assumption of homoge-
neous sexual behaviors underlying compartmental models is unrealistic, as informed by
surveys showing high heterogeneity across individuals [1]. Agent-basedmodels (ABMs)
appear to be the most suitable approach to reproduce individual behaviors and evaluate
their effects at the population scale [2]. Modelling co-circulation of several pathogens is
possible in compartmental models [3] but is easier in ABMs, as it prevents from making
strong assumptions about parameters such as duration of infection.
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We present here a new ABM combining heterogeneous mixing through a human
contact network and between-genotypes interactions. We applied it to the simulation of
between-humans transmissions of genital infections with human papillomavirus (HPV)
in the French context [4]. HPV infections are among the most common sexually trans-
mitted infections, especially in younger people, and are causal agents for cervical cancer
[5, 6]. Two vaccines, protecting against a fraction of HPV genotypes only, were intro-
duced in France in 2007. As a consequence, anticipating vaccination impact on HPV
infection dynamics at the population level is crucial but it requires integrating assump-
tions about how circulating genotypes interact for host infection. Empirical evidence
suggests that within-host infection by two genotypes may affect each genotype’s viral
load, cell-infection ability or infection duration [7, 8]. These interactions could influence
vaccination impact, as observed with pneumococcal vaccination [9].

2 Related Works

The only few models of HPV transmission which have formalized potential interactions
between genotypes assumed homogeneous sexual contacts [7, 10–12]. Because sexual
behaviors affect the risk of infection, it is likely that their diversity has a marked impact
on co-circulation ofHPVgenotypes at the population level [13]. Therefore, faithful repli-
cation of sexual behaviors is essential to correctly interpret observed HPV prevalence
and provide more accurate projections of the ecological consequences of vaccination.
Yet, the ABMs so far developed to study HPV vaccine and/or screening effectiveness
have not considered between-genotypes interactions [14–18].

3 Methods

We developed in C++ (version 4.9.0) a multi-agent system to formalize HPV genotype
transmission processes in the population. The program includes two components: (1)
at the agent level, to define individual characteristics and related processes; (2) at the
population level, to define parameters of the agent’s environment and to initiate processes
for all agents at each time step.

3.1 Overview of the Model

Purpose. The ABM simulates a realistic population of individuals in heterosexual part-
nership and co-circulation of distinct HPV genotypes in interaction. A vaccination cam-
paign is also simulated, assuming that vaccinated individuals are protected against a
portion of genotypes (called “vaccine types”, VT) whereas their infectious risk to the
rest of the circulating types (called “non-vaccine types”, NVT) is not altered. The main
goal is to understand how vaccination affects global infection dynamics in the presence
of between-genotypes interactions on a heterogeneous partnership network.

State Variables and Scales. The agents are human individuals characterized by a set
of variables listed in Table 1 and described below. Each agent is explicitly modeled and
characterized by his/her sex, age, sexual activity (number of partners he/she will have



314 M. Bonneault et al.

during the year), partnership status (virgin, with a partner, or single), vaccination status,
and infection status for each genotype g (susceptible to infection with g, infected with
g, naturally immune to g, or vaccinated if g is a VT).

Table 1. Individual variables characterizing each agent

Variable Type Update time

ID Code number At entrance

Sex Boolean At entrance

Age Number weeks At each time step

Vaccination status Boolean At entrance

Variables related to partnership process

Sexual activity class Integer At 15, 17, 19 and 24 years

No partner during the current year Boolean On the first day of each year

Partnership status String At the beginning/end of partnership

Partner ID Pointer At the beginning/end of partnership

End date of partnership or inactivity Simulation week number At the beginning/end of partnership

Counter of partners during the current year Integer At each new partnership; reset of each year

Counter of partners over the simulation Integer At the onset of new partnership

Variables related to the infection process – for each genotype g

Infection status String At the beginning/end of infection/immunity

End date for infection Simulation week number At the onset of infection

Natural immunity status String At the end of infection

End date for natural immunity Simulation week number At the end of infection

Counter of infections over the simulation Integer At the onset of infection

Environmental Variables. Agents share a number of environmental variables charac-
terizing the population as presented in Table 2 and detailed in the following sections. In
most countries, HPV vaccination was first recommended for females before the age of
15 years, with no males vaccination [19]. We thus assumed here that only females were
vaccinated, and that vaccination occurred before their entrance in the model. Agents are
not explicitly distributed in space.

Initialization. Model initialization is achieved in successive steps. First, all environ-
mental variables are initialized, as detailed in Table 2. Then all agents are created, with
their partnership and infection statuses and counters initialized. At initialization, sex and
age of each agent are randomly drawn to ensure homogeneous distribution of individuals
across sex and age. Sexual activity and age at first partnership are drawn from proba-
bilistic distributions (if the agent is older than his/her age at first partnership, he/she can
directly look for a partner). Infection status with respect to VT and NVT is randomly
drawn according to the probabilities of infection and co-infection defined for initializa-
tion (Table 2). Those initial probabilities are set to arbitrary non-null values without any
impact on prevalence equilibrium.
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Process Overview and Scheduling. The model proceeds in several processes which
are sequentially updated on a weekly or yearly basis, depending on the processes, as
detailed below. Figure 1 summarizes the execution of the three major weekly processes:
demographic, partnership and infection processes.

Table 2. Environmental variables characterizing the population and their values

Description Default value Rationale

Population size (N) 800,000 individuals For computational purposes

Population age range (in years) From 15 to 30 Fixed

Variables related to partnership process

Age at first partnership (in years) Normal distribution with mean 17.5 in
females (sd1 = 3.8), 16.8 in male (sd1 =
4.0)

Mean, calibrated on [1]

Sexual activity class According to sex and age 2 From [1] and calibrated

Sexual inactivity (no partner) during
the year

According to sex and age 2 From [1] and fixed

Duration of partnership According to sexual activity and age 2 Mean, from [1] and calibrated

Duration without partner According to sexual activity 2 Mean, calibrated

Frequency of sexual intercourse
within a partnership

2 per week Fixed [1]

Duration of partner search before
mixing between sexual activity groups

According to sexual activity 2 Calibrated

Maximum proportion of individuals
changing from one extreme class to
another at ages 17, 19 and 24 years

95% for females and 45% for males Calibrated

Variables related to infection process

Number of genotypes 2 vaccine types (VT)
12 non-vaccine types (NVT)

According to genotypes
reported in [20]

Transmission probability for VT and
NVT genotypes

βV = 0.16 per sexual act (VT)
βNV = 0.125 per sexual act (NVT)

Calibrated

Duration of infection (in weeks) Exponential distribution with mean 52 From [21]

Duration of immunity (in weeks) Exponential distribution with mean 12 Calibrated

Strength of between-genotypes
interaction (γ )

1 To be varied

Initial probability of infection 0.2 for NVT and 0.08 for VT Fixed

Initial probability of co-infection
among those initially infected

0.4 for any first genotype g Fixed

Date of vaccine introduction After 70 years of simulation To ensure prevalence equilibrium

Vaccine coverage 60% of females by age cohort To be varied

1Standard deviation; 2 Detailed in appendix Table 3

Demographic Process. Agents age one week with every time step.On the day they turn
30 years, agents leave the model.When an agent exits the population, he/she is directly
replaced by a new 15-year-old individual with an equal probability of being male or
female, to ensure the population remains stable over time. At inclusion the agent’s states
and counters are initialized. Sexual activity and date of first partnership are drawn from
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probabilistic distributions (see Table 2). In addition, if a vaccination campaign is in
progress at a female’s entry date, she will be vaccinated or not according to vaccine
coverage, protecting her against VT with 100% efficacy for at least 15 years.

Partnership Process. Every week, the list of agents available for a new relationship is
updated; each agent from this list then searches for a new partner according to his/her
sexual activity and age. If the agent has been waiting on the list for a predefined period
of time without finding a partner with similar sexual activity, he/she is allowed to search
any others. If a partner is found, partnership duration is drawn according to the agent’s
sexual activity and age (Table 3 in appendix). When a partnership is set, the two partners
involved are assumed to be in contacts at an arbitrary frequencyof two sexual intercourses
per week over the partnership duration. When the partnership end date is reached, the
partnership is split. For each of the two agents involved, inactivity duration is drawn
according to his/her sexual activity, defining the date for the agent to become available
again for a new partnership. Simultaneous partnership is not allowed.

Infection Process and Disease Natural History. At each time step, the model first pro-
ceeds with infection transmission. For each genotype g, all partnerships characterized
by one partner infected with g and one partner susceptible to g (i.e. is not already
infected with g nor naturally immunized to g) are evaluated: transmission of g from the
infected to the susceptible partner occurs with a transmission probability parameter βV
or βNV depending on whether genotype g is VT or NVT, respectively. If an infection
occurs, infection duration is drawn from an exponential distribution (Table 2). Second,
the model proceeds with infection status update for all infected agents. For any genotype
g, all agents infected with g who reach their recovery date change their infection status:
they become immune to g and cannot transmit g anymore. Acquired natural immunity is
assumed to confer total protection against g for a limited duration which is drawn from
an exponential distribution (Table 2). All immunized agents reaching the end date of
their immunized status become fully susceptible to g again.

Other Annually Scheduled Processes. Processes are executed the first week of each
year in the following order. First, counters of cumulative numbers of partners over the
current year are set to 0 for all agents. Second, a portion of agents aged 17, 19 and
24 years and not engaged in partnerships > 1 year are randomly selected to change
sexual activity to conform to changing sexual behavior with age. Changing from one
extreme behavior to the other is limited to a proportion of individuals per sex (Table 2) to
favor milder transitions. Numbers are drawn to match the targeted distribution of sexual
activity classes by age category. Moreover, in all sexual activity classes, a fraction of
agents who will have no partner over the coming year is randomly selected (Table 2).

3.2 Design Concept

Within-Agent Ecological Genotypic Interaction. When two genotypes simultane-
ously infect an agent, interaction between genotypes may occur. Interactions are defined
unidirectionally as the VT presence affect the duration of NVT infection. Thus, we
assume that, if an agent already infected with a vaccine genotype gV is subsequently
infected with a non-vaccine genotype gNV, the average duration of infection with gNV
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Fig. 1. Schematic representation of the ordered weekly processes that could occur for each agent
under conditions. In green the demographic process, in pink the partnership process and in orange
the infection process.

is modified by a multiplicative factor γ , called the strength of interaction. Both com-
petitive, whereby γ < 1, i.e., the presence of VT reduces duration of infection with
NVT, and synergistic interaction, whereby γ > 1, i.e., the presence of VT enhances the
duration of infection with NVT, are allowed. Since the infection period coincides with
the possible transmission period, this also has impact on the length of time the infected
agent can transmit gNV.

Stochasticity. Themodel is stochastic both through the definition of randomparameters
and through random processes. Sexual activity, age at first partnership, age difference
between partners, and all durations (of partnership, of inactivity between two partner-
ships, of infection, of immunization after vaccine introduction) are randomly drawn
from probability distributions (Table 2). Finding a partner, changing sexual activity and
getting infected are defined as random processes.
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Observations. A large variety of data can be collected from model simulations. Here,
we simply aggregated agent data to obtain numbers of infected female by age group.

4 Results

4.1 Data

Partnerships. We used data from a French population-based cross-sectional survey [1]
to define parameters characterizing the partnership process and calibrated themodel with
the least-squares distance minimization method to reproduce realistic contact patterns.
We notably used distributions of age at first partnership, age difference between partners,
and number of partners, duration of partnership, and duration without partner by age
categories (18–19, 20–24 and 25–29 years).

Infections. Because the proportions of infected individuals (prevalence) were not avail-
able by age and genotype in the pre-vaccine era for the French general population, we
used distributions reported from an epidemiological study carried out in theUnited States
[20], a country in which HPV epidemiology has been suggested to be similar to that in
France [6]. From [20] we extracted VT prevalence (gathering 2 genotypes: HPV 16 and
18) and NVT (gathering 12 genotypes: HPV 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 66 and
68) in the pre-vaccine era for females by age group (14–19, 20–24 and 25–29 years).
We calibrated transmission probability parameters βV and βNV and the mean duration
of immunity for all genotypes assuming no genotypic interaction (strength γ = 1). For
each other interaction scenario, βNV was calibrated again so that all scenarios fit the
same observed pre-vaccine NVT prevalence.

4.2 Input and Simulations

Themodel was initialized with 800,000 interconnected agents.We experimented 7 inter-
action scenarios (γ = 0.5, 0.7, 0.9, 1, 1.1, 1.3, 1.5)with 10 simulations each. The explored
genotypic interaction values and the corresponding transmission probability parameters
were given as input to the model. First simulations were run for 70 years to reach preva-
lence equilibrium in the pre-vaccination period. Then vaccination was introduced at time
t = 0, assuming 60% vaccine coverage. The model was simulated for 40 years follow-
ing vaccine introduction. Simulations of independent iterations of each scenario over
110 years were run in parallel and took about 2 h on the computational and storage ser-
vices (TARS cluster) provided by the IT Department at Institut Pasteur, Paris. Statistical
analyses and graphics were computed using R (version 3.5.2). Sensitivity analyses were
also carried out to evaluate the impact of our model assumptions on observed results.

4.3 Output

Figure 2 displays the VT and NVT prevalence dynamics before and after vaccine
introduction for 10 simulations in seven distinct scenarios of genotypic interaction
strength.
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Vaccine Impact on VT Prevalence. Before vaccine introduction, the model was able
to reproduce realistic VT prevalence patterns, with 10.7% infected females on average.
Prevalence was slightly higher in 20–24-year-olds than in other age groups and lowest
in 15–19-year-olds. After vaccine introduction, an expected decrease of VT prevalence
was observed, which stabilized to a new equilibrium (3.2%) once the age cohort had
had a chance to be immunized (after 5 years among 15–19-year-olds up to 15 years
among 25–29-year-olds). All calibrated interaction scenarios yielded undistinguishable
patterns of VT prevalence and stochasticity was weak, as demonstrated by the limited
variability across the 10 simulations displayed for VT prevalence in Fig. 2.

Vaccine Impact on NVT Prevalence. The model also satisfactorily reproduced NVT
prevalence before vaccine introduction, reaching 26.5% infected females on average.
The same pattern of NVT prevalence was seen across age groups as with VT. Minor
differences were visible across calibrated interaction scenarios. Stochasticity was more
pronounced for NVT than for VT, particularly in the 20–24 age group, but standard
deviations remained limited to <4% in all scenarios.

After vaccine introduction, NVT prevalence trends strongly depended on the inter-
action scenario (Fig. 2). Without of genotypic interaction (γ = 1), NVT prevalence
remained constant over time. In contrast, under competitive interaction (γ < 1), NVT
prevalence increased while, conversely, under synergistic interaction (γ > 1), NVT
prevalence decreased over time until reaching a new equilibrium. The magnitude of
prevalence variations depended on the strength of interaction: the more it deviated from
1, the more NVT prevalence deviated from pre-vaccine equilibrium. The increase or
decrease magnitude also appeared to be proportional to NVT prevalence before vaccine
introduction. Moreover, variations in NVT prevalence appeared to be most pronounced
in 20–24-year-old females who also had the highest prevalence before vaccine intro-
duction. Times to reach the new prevalence equilibrium was the same for NVT and
VT.

Sensitivity Analyses. With respect to the partnership process, the first 10 combinations
of parameter values that best minimized the calibration criteria resulted in VT and NVT
prevalence curves changing at the same time and with comparable magnitude [22]. For
the infection process, changing one parameter value at a time, whether average duration
of infection, average duration of immunity, or VT and NVT transmission probabilities,
affectedVTandNVTprevalence equilibriumquantitatively but not the overall qualitative
dynamics following vaccine introduction [22].



320 M. Bonneault et al.

Fig. 2. Proportions of infected with NVT (upper plain line curves) or VT (lower dashed curves)
over time according to γ interaction scenarios (colors, 10 simulations for each) in (A) All females;
(B) Females aged 15 to 19 years; (C) Females aged 20 to 24 years; (D) Females aged 25 to 29 years.
The vaccine is offered from t = 0 to all females <15 years of age with 60% of coverage.

5 Discussion

In this paper, we introduce a new ABM simulating the co-circulation of VT and NVT
in a heterogeneous human network. The main originality of this ABM is to consider
genotype interactions. The agent-based approach makes it possible to define precisely
natural history of HPV infection as well as co-infections in individuals and to assess
vaccine impact on the overall dynamics of HPV infection at the population level. The
presented illustration is an example of how the model can be used to simulate VT and
NVT prevalence according to genotypic interaction scenarios and prevention measures
such as vaccination. Successively calibrated interaction scenarios help investigate how
synergistic interactions could contribute to the decrease in overall HPVprevalence aimed
by vaccine introduction. Conversely, we show that competitive interactions may lead to
substantial increase in NVT prevalence: because VT prevalence decreases following
vaccine introduction, so does the prevalence of VT and NVT coinfections, resulting in
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longer duration of infection with NVT and more opportunities for NVT transmission.
This ecological replacement can potentially minimize the decrease in or even increase
overall HPVprevalence, hence limiting vaccine benefit at the population level. TheABM
also enabled us to assess the length of follow-up and statistical power needed to detect
prevalence variations in epidemiological studies [23].

Although vaccine coverage is much lower in France (around 30%), we presented
here a scenario with 60% vaccine coverage to highlight the potential for genotype
replacement. With lower coverage, variations in NVT prevalence were still visible under
non-neutral interactions, but with reduced magnitude [4, 23]. We also chose a fixed
population of 800,000 individuals, a size typical of a big metropolitan area, to obtain
stable results and avoid additional complexity of modelling spatial constraints on contact
mixing. Moreover, simulating the real French population size (–9,200,000 individuals
18–30 years of age) would require extremely long calculation times and would only
slightly reduce the already limited variability of our results.

Despite a detailed agent-based approach, some simplifications and assumptionswere
made to compensate for the lack of data and gaps in knowledge. First, we could not
calibrate the model to sexual behaviors reported by males and females simultaneously
because distributions of numbers of partners did not match. In the CSF survey, males
reported larger numbers of partners than females [1]. Reporting bias differential by
sex [24] may explain part of our calibration difficulties. To overcome those difficulties,
we calibrated the partnership parameters on females’ data, while trying to make them
consistent with males’ data in terms of cumulative number of partners. Reassuringly, the
cumulative distribution of the number of sexual partners obtained was close to a power
law, which is characteristic of a network of sexual contacts [4]. Moreover, because
our interest was to simulate realistic heterogeneous contact patterns that can reproduce
the typical bell-shaped curve of HPV prevalence according to age, the model was run
for decades in a preliminary step assuming unrealistically stable behaviors only to reach
prevalence equilibriumbefore vaccine introduction. Second, to keep ourmodel relatively
simple, only two transmission probability parameters were considered for VT and NVT,
thus mimicking average dynamics among those two groups. In reality, large differences
in prevalence are reported not only between VT and NVT groups, but also within each
group [20]. It could therefore be relevant in future work to simulate VT and NVT
more finely by calibrating parameters by genotype. This would allow to study each
genotype’s circulation and interactions. Finally, simulation results presented here were
restricted to the assumption that genotypic interaction affected the infection duration
of a second acquired virus. Alternative assumptions including symmetrical VT-NVT
interactions have been explored using our ABM tomeasure their population-level impact
on prevalence and compare their credibility [4].

In conclusion, our model formalizing both sexual behavior heterogeneity and co-
circulation of distinct genotypes allows us to evaluate pathogen transmission dynamics
in realistic sexual networks. In the context of HPV, our simulation results show that
between-genotypes interactions can significantly impact vaccination effectiveness at
reducing HPV prevalence. This model can be used to further investigate the impact
of most recent HPV vaccines targeting a larger number of genotypes, as well as the



322 M. Bonneault et al.

extension of vaccination to males. It could easily be adapted to study other research
questions related to sexually transmitted pathogens and their interactions.

Appendix

Table 3. Complementary values of variables related to the partnership process according to sexual
activity class and possibly age and sex

Sex Age (years) Number of partners per year

1 2–3 ≥4 0a

Sexual activity class (% by sex and age category)

Female 15–17 85.00
(calibrated)b

12.00
(calibrated)

3.00
(calibrated)

3.63
(fixed)

18–19 68.99 24.72 6.29 3.63

20–24 75.84 21.56 2.60 7.24

25–29 85.75 11.07 3.18 5.59

Male 15–17 75.00
(calibrated)

19.00
(calibrated)

6.00
(calibrated)

14.38
(fixed)

18–19 60.42 27.59 11.99 14.38

20–24 61.85 28.15 10.00 10.89

25–29 76.30 17.23 6.47 6.69

Duration of partnership

Any 15–19 4 categories (<1, 1–4,
5–9 and > 10 years)
distributed as in [1]c

Gamma distribution
with calibrated mean
14 weeks (fixed
variance 8)

Gamma distribution
with calibrated mean
4 weeks
(fixed variance 5)d

Not
relevant

20–24 4 categories distributed
as in [1]c

25–29 4 categories distributed
as in [1]c

Duration of inactivity between two partnerships

Any All Uniform distribution
[1:104] weeks

Gamma distribution
with calibrated mean
14 weeks (fixed
variance 8)

Gamma distribution
with calibrated mean
4 weeks
(fixed variance 5)d

At least 52 weeks

Duration of partner search before mixing between sexual activity classes

Any All 10 weeks
(calibrated)

5 weeks
(calibrated)

30 weeks
(calibrated)

Not
relevant

a Individuals without a partner are randomly selected each year from the population; b When not
specified fixed or calibrated, values are extracted from [1]; c One category of partnership duration
is drawn from amultinomial distributionwhose parameters are the proportions reported in [1], then
a precise value is drawn from a uniform distribution within the duration category; d The duration
of partnership and between two partnerships are identical in most sexually active individuals and
drawn only once a year



Human Papillomavirus Co-Circulation on a Partially 323

References

1. Bajos, N., Bozon, M.: Sexualité, genre et santé : les apports de l’enquête Contexte de la
sexualité en France. La Découverte (2008)

2. Auchincloss, A.H., DiezRoux,A.V.: A new tool for epidemiology: the usefulness of dynamic-
agent models in understanding place effects on health. Am. J. Epidemiol. 168, 1–8 (2008)

3. Sanz, J., Xia, C.-Y., Meloni, S., Moreno, Y.: Dynamics of interacting diseases. Phys. Rev. X
4, 041005 (2014)

4. Bonneault, M., et al.: Contact patterns and HPV-genotype interactions yield heterogeneous
HPV-vaccine impacts depending on sexual behaviors: an individual-based model. Epidemics
39, 100584 (2022)

5. Walboomers, J.M., et al.: Human papillomavirus is a necessary cause of invasive cervical
cancer worldwide. J. Pathol. 189, 12–19 (1999)

6. de Sanjosé, S., et al.: Worldwide prevalence and genotype distribution of cervical human
papillomavirus DNA in women with normal cytology: a meta-analysis. Lancet Infect. Dis. 7,
453–459 (2007)

7. Murall, C.L., McCann, K.S., Bauch, C.T.: Revising ecological assumptions about human
papillomavirus interactions and type replacement. J. Theor. Biol. 350, 98–109 (2014)

8. McLaughlin-Drubin, M.E., Meyers, C.: Evidence for the coexistence of two genital HPV
types within the same host cell in vitro. Virology 321, 173–180 (2004)

9. Choi, Y.H., et al.: 7-valent pneumococcal conjugate vaccination in England and wales: is it
still beneficial despite high levels of serotype replacement? PLoS ONE 6, e26190 (2011)

10. Elbasha, E.H., Dasbach, E.J., Insinga, R.P.: A multi-type HPV transmission model. Bull.
Math. Biol. 70, 2126–2176 (2008)

11. Pons-Salort, M., et al.: Exploring individual HPV coinfections is essential to predict HPV-
vaccination impact on genotype distribution: amodel-based approach.Vaccine 31, 1238–1245
(2013)

12. Man, I., Vänskä, S., Lehtinen, M., Bogaards, J.A.: Human papillomavirus genotype replace-
ment: still too early to tell? J. Infect. Dis. 224, 481–491 (2021)

13. Shiboski, S., Padian, N.S.: Population- and individual-based approaches to the design and
analysis of epidemiologic studies of sexually transmitted disease transmission. J. Infect. Dis.
174, S188–S200 (1996)

14. Olsen, J., Jepsen, M.R.: Human papillomavirus transmission and cost-effectiveness of in-
troducing quadrivalent HPV vaccination in Denmark. Int. J. Technol. Assess. Health Care 26,
183–191 (2010)

15. Van de Velde, N., et al.: Population-level impact of the bivalent, quadrivalent, and nonavalent
human papillomavirus vaccines: amodel-based analysis. J. Natl. Cancer Inst. 104, 1712–1723
(2012)

16. Matthijsse, S.M., et al.: The role of acquired immunity in the spread of human papillomavirus
(HPV): explorations with a microsimulation model. PLoS ONE 10, e0116618 (2015)

17. Burger, E.A., Campos, N.G., Sy, S., Regan, C., Kim, J.J.: Health and economic benefits of
single-dose HPV vaccination in a Gavi-eligible country. Vaccine 36, 4823–4829 (2018)

18. Johnson, H.C., et al.: Effect of HPV vaccination and cervical cancer screening in England by
ethnicity: a model-ling study. Lancet Public Health. 3, e44–e51 (2018)

19. ECDC: Guidance onHPV vaccination in EU countries: focus on boys, people living with HIV
and 9-valent HPVvaccine introduction. https://www.ecdc.europa.eu/en/publications-data/gui
dance-hpv-vaccination-eu-focus-boys-people-living-hiv-9vHPV-vaccine. Accessed 02 July
2020

20. Markowitz, L.E., et al.: Reduction in human papillomavirus (HPV) prevalence among young
women followingHPV vaccine introduction in the United States, national health and nutrition
examination surveys, 2003–2010. J. Infect. Dis. 208, 385–393 (2013)

https://www.ecdc.europa.eu/en/publications-data/guidance-hpv-vaccination-eu-focus-boys-people-living-hiv-9vHPV-vaccine


324 M. Bonneault et al.

21. Trottier, H., et al.: Human papillomavirus infections with multiple types and risk of cervical
neoplasia. Cancer Epidemiol. Biomark. Prev. Publ. Am. Assoc. Cancer Res. Cosponsored
Am. Soc. Prev. Oncol. 15, 1274–1280 (2006)

22. Bonneault, M.: Modélisation dynamique des infections et co-infections génitales à papillo-
mavirus humain (HPV) et de l’impact à long terme de la vaccination anti-HPV, Université
Paris-Saclay, https://theses.hal.science/tel-03231970 (2021)

23. Bonneault, M., et al.: Ability of epidemiological studies to monitor HPV post-vaccination
dynamics: a simulation study. Epidemiol. Infect. 151, e31 (2023)

24. Mitchell, K.R., et al.: Why do men report more opposite-sex sexual partners than women?
analysis of the gender discrepancy in a British national probability survey. J. Sex Res. 56, 1–8
(2019)

https://theses.hal.science/tel-03231970


Towards the Building of a Surveillance Network
for PPR-Like Diseases in Nigeria: Identifying
Potential Sentinel Node in a Partially-Known

Network

Asma Mesdour1,2(B), Sandra Ijioma5, Muhammad-Bashir Bolajoko5,
Elena Arsevska1,2, Mamadou Ciss3, Mathieu Andraud4, Andrea Apolloni1,2,

and Eric Cardinale1

1 CIRAD, UMR ASTRE, INRAE, 34398 Montpellier, France
asma.mesdour@cirad.fr

2 UMR ASTRE, CIRAD, Université de Montpellier, Montpellier, France
3 ISRA, LNERV BP 2057 Dakar-Hann, Senegal

4 ANSES, Ploufragan-Plouzané-Niort Laboratory, EPISABE Unit, Ploufragan, France
5 National Veterinary Research Institute, Vom, Nigeria

Abstract. Peste des Petits Ruminants (PPR) is a highly contagious disease affect-
ing sheep and goats and spreading through livestock movements. The FAO and
WOAH have set the goal to eradicate it by 2030, with one of the key steps being
the improvement of surveillance networks. In our study, we utilize an SI model to
simulate the spread of PPR across three Nigerian States due to animal movements.
Our objective is to identify areas that could serve as potential sentinel nodes, which
are nodes that may become infected promptly at the onset of epidemics.We recon-
structed the mobility network using (the partial) movement data collected through
market surveys. Due to the limitations of the study, we implement plausible net-
work modifications and generated eight distinct network configurations. For each
of these configurations, we assessed the extent of the epidemics, the presence
of recurrent patterns and characterize sentinel nodes. Our findings indicate that
minor network modifications do not impact the final sizes of epidemics. How-
ever, removing a central market or introducing a significant number of new links
can lead to noticeable shifts in epidemic propagation trajectories. Regardless of
the specific configurations considered, we identified three clusters of epidemic
origins, each exhibiting distinct behaviors. Nevertheless, geographical proximity
among these origins does not necessarily imply similar transmission patterns. Fur-
thermore, our study highlights that, in most configurations, attributes such as the
in-H index, eigenvector and in-degree centralities emerge as the most influential
factors in defining vulnerable nodes. Therefore, we recommend prioritizing data
collection efforts in central markets due to their wealth of information resources
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1 Introduction

The emergence of pathogens in livestock poses one of the gravest threats to global animal
health,welfare, food security, and biodiversity. Some of these destructive diseases impact
national and international trade and persist as endemic in various regions [1]. Among
these threats, Peste des Petits Ruminants (PPR), an airborne disease affecting mostly
domestic small ruminants (goats and sheep), stands out as one of the most devastating
livestock diseases. Originally documented in Cote d’Ivoire in 1942, PPR is now present
in most of the African and Asian countries and recently has appeared at the gates of
Europe [2]. The disease’s geographic extension can be attributed to the rapid animal
movements [3]. The high case-fatality rate (around 30%) induces annual economic losses
estimated at USD 2.1 billion, threatening the livelihoods, food security, and employment
opportunities of approximately 300million families (FAO, 2023). These facts, alongwith
the existence of an effective vaccine, have driven the FAO and WOAH to target PPR for
eradication plan by 2030. One of the steps of the eradication program aims at improving
surveillance systems on the circulation of the virus [4].

PPR diffusion can be described as a propagation over a complex network where
nodes represent locations and links represent animal exchanges between two of them.
From a complex network point of view, defining an effective surveillance system can be
translated to finding a set of nodes, called sentinel nodes, able to provide accurate and
timely insights into epidemic dynamics [4], i.e., nodes that will be affected often and
before the peak of the epidemic. For a node, the probability of getting infected depends
on several factors, among them the epidemiological characteristics of the pathogen,
the structure of the network (i.e., the position of the node in it), and where the epidemic
originates (seed). However, identifying sentinel nodes can be proven difficult in practice:
centrality measures can greatly fluctuate over time and depend on details of the system;
they can also be difficult to link to interpretable characteristics [5]. In practice, the impact
of surveillance and control strategies depends strongly on the quality of the data used [5].
Detailed animal movement could be used to inform highly detailed models and identify
recurrent patternsmore easily [6]. Limited resolution data canmake it difficult to identify
sentinel nodes correctly [7]. Regrettably, in countries particularly susceptible to PPR,
data collection remains infrequent and limited to specific regions over limited time. In
Nigeria, livestock identification system, is not implemented. Therefore, information on
animal mobility can only be collected through ad-hoc activities, like market surveys.
However, these activities are time and resource consuming, restricted to specific areas
and in a specific time of the year, and the number of respondents is generally relatively
small. Because of these limitations, information collected is fragmented and provides a
partial representation of the mobility network.

In this work we use incomplete movement data from market surveys in 3 Nigerian
States to identify a set of possible sentinel nodes. Uncertainty analysis was therefore
performed through simulations of modifications of the network topology, to analyze how
the incompleteness of the data impact epidemic’s extension. Moreover, we studied the
role that seed nodes (area where first cases occurred) could have on the propagation and
identified possible clusters of seed nodes that could have similar transmission patterns.
Finally, we identify the structural characteristics of sentinel nodes.
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2 Material and Methods

2.1 Data and Epidemic Simulation

Nigeria is a federal country with three administrative divisions: State, Local Government
Area (LGA), District/Ward. In this study we use domestic small ruminants (goats and
sheep) mobility data collected through survey conducted in 10 markets in 3 States in the
central and northeastern part of Nigeria: 6 in Plateau, 2 in Bauchi State and 2 in Kano
State.

In each market around 100 livestock owners/ traders were questioned about: ori-
gin/destination of themovements (State, LGA, District and village name), heads number
by species, and reason for the movement. To avoid problems related to the misspelling
of villages, data were aggregated at district level (nodes of the network). A link between
two districts was considered if at least a single animal was moved between the two. The
result consists of an oriented network with 144 nodes and 268 links forming a single
weakly connected component and 2 strong ones. From now on we indicate the network
reconstructed from the data as “observed network” and will be used as reference (con-
figuration A) in the next steps. In this work we used the following centrality measures
to characterize each node: In/out Degree [8] Betweenness, Closeness [8], H index [9],
Neighborhood [10] and Eigenvector centrality [11].

We simulated the propagation of epidemic through livestock movements, using an
SI stochastic model. At the beginning of the epidemic all the nodes are susceptible (S)
except one (the seed from now on) in the infected state (I), chosen among all nodes with
non-null outdegree. Indicating with ρ the probability that an infected district could infect
a susceptible one through animal movements, and with Ii the number of the infected
neighbors of node i [12], the probability of a susceptible node i to become infected (I)
follows a binomial distribution, with the probability Pi defined as follows:

Pi = 1 − (1 − ρ)Ii.

In our case each time step corresponds to one week, corresponding to the mode of
the record frequency for all the districts in the dataset.

Following the work by [4], we define sentinel nodes as nodes that are frequently
and timely infected during epidemics, i.e., the nodes that are most often infected, and
before the peak of incidence is reached. Three factors could affect the propagation of the
pathogen and the characteristics of the sentinel nodes: the transmission probability; the
structure of the network itself; and the origin of the epidemic itself (seed). To evaluate
the impact of transmission probabilities on the epidemic process, we considered five
different values of ρ varying from 0.01 to 0.75 (0.01, 0.1, 0.3, 0.5, 0.75). For each value
of ρ, we examined various network configurations (as described in the following section)
and initiated the epidemic by selecting a seed node from those with an outdegree non-
null. 100 epidemics simulations were performed on the observed graph and then on each
modified network, simulations were stopped when no new infected node was recorded
for 10 consecutive time steps.

In our analysis we inferred the role of missing links and nodes in the propagation
of disease and the identification of sentinel nodes. Our assumption is that information
is missing, and the observed network (configuration A) is just a subset of the “entire”
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network. To account for the missing information of the network structures (partially
observed) and fill the gap in our knowledge, we run several scenarios with modified
networks. This will help to assess the impact of modifications of network structure
on the epidemic spreading in comparison to results from the observed one. Moreover,
this will help identifying movements having an impact on the propagation whose exis-
tence/absence should be confirmed by field activities. Nevertheless, exploring all scenar-
ios could be a tantamount effort and, in this work, we focus on some scenarios that could
be compatible to constraints in data collection and in-field situations.We considered two
categories of modifications to assess kinds of error/missing information:

i) Modificationsdue toStructuralMisinformation:Respondents couldprovidepartial
information based on their experience. Furthermore, not all the traders present in the
market were surveyed. We mimic the modification of trade relationships through
random permutations of links or completion of observed data.

1. Random Partial Reorganization: Randomly reorder 5% (10 links; configuration
B1) and 40% (58 links; configuration B2) of network links while maintaining the
same node degrees;

2. Random Link Insertion: Randomly add 5% (configuration C1) and then 40%
(configuration C2) of network links

ii) Modifications due to Survey Limitation: due to resources limitedness not all mar-
kets could be sampled, thus reducing information about nodes and links present in
the network.

3. Central Market Removal: Remove the most connected market located in Plateau
State (configuration D1), and then remove the least connected market (configuration
D2);

4. Peripheral Market Removal: Remove one of the surveyed markets located in
Kano (configuration E1), and another surveyed market located in Bauchi State
(configuration E2)

3 Seeds’ Cluster Detection

Following a procedure similar to the one introduced in [6], we aimed to identify sub-
sets of seeds (seed clusters), for which epidemics have similar behaviors in terms of
size and identity of infected nodes. For each network configuration and each seed, we
reconstructed the “probabilistic transmission pathway” through the following steps:

1. given a node j infected at time t, we identified all its potential infectors, i.e., node’s j
neighbors which were previously infected;

2. an oriented link was drawn going from each potential infector to infected node j;
3. Steps 1 and 2 were repeated over all simulations and using different transmission

probabilities. The weight to each link in the transmission pathway is associated with
the frequency a link appeared in all the simulations.

The result for each seed was an oriented weighted network called probabilistic ori-
ented pathway. Probabilistic transmission pathways for different seeds were compared
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using the weighted Jaccard index [13] to gauge the similarity between them and used as
distance measure. The optimal number of clusters was first identified using the elbow
method and then k-means classification was applied. The clusters detected in the refer-
ence configuration (configuration A) and the modified ones, were then compared using
the Rand index [14] to assess to which extent modifications could alter propagation
patterns. In a second step, the number of nodes that were reached by seeds in each clus-
ter were compared using analysis of variance, followed by a post-hoc Tuckey test, to
identify statistically distinct groups. This method allowed for identification of clusters
of seed which, once infected, could give origin to large or small epidemics.

4 Node’s Vulnerability and Definition of Sentinel Nodes

In this work we defined sentinel nodes based on their vulnerability and the time at which
they are infected. A univocal definition of node’s vulnerability doesn’t exist. We defined
vulnerability as the probability of a node getting infected early in the epidemics. For
each configuration and transmission probability we used simulation results to identify
vulnerable nodes:

1. For each node we estimated the number of times its infection occurred before the
epidemic peak (frequency);

2. We estimated the average frequency and the standard deviation;
3. Classical threshold (average frequency +2 standard deviations) was used to classify

nodes [16];
4. Nodes with frequency higher than threshold were classified as Vulnerable Otherwise

were classified as Infected (i.e., after the epidemic peak); Not infected (remaining
susceptible throughout the simulation process).

We then used random forest algorithm [17] to classify the centrality measures char-
acterizing sentinel nodes. Moreover, we investigated whether the characteristics of the
vulnerable nodes would change or not depending on the origin of the epidemics by
repeating this step for each configuration.

5 Results

The Impact of Structural Variations on Final Size
In the observed network there are 63 districts with a positive out-degree. The same
number is found in configurations B1, and B2. However, this number rises to 66 and 76
(configurations C1 and C2, respectively) diminishes to 60, 62, 57, and 58 (configurations
D1, D2, E1, and E2 respectively. A large portion of the seeds (ranging from 39% to
43%) is concentrated in Plateau State, with a further portion (between 22% and 32%) in
Bauchi State, and a comparatively smaller proportion (between 5% and 11%) in Kano
State (Table 1).
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Table 1. Number of nodes (districts) in all configurations taken as seed per States: A: observed
network, B1: modified network with random reallocation of 5% of links, B2: modified network
with random reallocation of 40% of links,C1: modified network with addition of 5% of links, C2:
modified network with addition of 40% of links, D1: modified network with deletion of the most
connected central market, D2: modified network with the deletion of the less connected central
market, E1: modified network with deletion a peripheral market of Kano, E2: modified network
with random deletion of a peripheral market in Bauchi.

State A B1 B2 C1 C2 D1 D2 E1 E2

Plateau’s seed 26 (41%) 26 (41%) 25 (40%) 26 (39%) 26 (34%) 24 (40%) 24 (39%) 24 (42%) 25 (43%)

Bauchi’s seed 18 (29%) 18 (29%) 18 (29%) 18 (27%) 18 (24%) 17 (28%) 18 (29%) 18 (32%) 13 (22%)

Kano seed’s 6 (10%) 6 (10%) 6 (10%) 7 (11%) 7 (9%) 6 (10%) 6 (10%) 3 (5%) 6 (10%)

Others 13 (20%) 13 (20%) 14 (21%) 15 (23%) 25 (33%) 13 (22%) 14 (22%) 9 (21%) 14 (25%)

Total 63 63 63 66 76 60 62 57 58

Figure 1 gives an overview of the simulation results obtained for all configurations,
focusing on the distribution of final sizes and the duration of epidemics - measured
as the time taken to reach the maximum number of new infections. Independently of
the configuration chosen, as expected, the final size and the duration of the epidemic
are influenced by the transmission probability, its increase causes larger epidemics in
a shorter amount of time. For all configurations the same behavior is observed for the
lowest value of the transmission probability. However, when the transmission probability
increases structural variations affect epidemic size. The addition of a large number of
links C2 leads to a considerable expansion in the final size of the epidemic.

Fig. 1. Results of PPR simulations on the animal mobility network: A: Average final size in
simulated epidemics under different configurations and for each transmission probability (ρ). B:
Time at which the peak is reached.

Furthermore, the choice of excluding central (D1) or peripherical markets (E1, E2)
provides widely different estimates of the final size of the epidemics (Fig. 1 A) already
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for low values of the transmission probability (ρ= 0.1) but it becomes evident for larger
values. Nevertheless, the time of the epidemics (Fig. 1 B) is not affected by structural
changes.

Fig. 2. Observed network where nodes are colored depending on the cluster seed they belong to
corresponds to seed cluster; B: Number of seeds in each seed cluster by State. On the x-axis the
number of seeds. Each line corresponds to the distribution in clusters (color) of seeds located in
the States.

Seeds Clusters are Geographically Scattered:
In our analysis, each cluster consists of seeds that share a relatively similar path of
invasion andwhose epidemics have comparable final sizes: if epidemicswere to originate
from nodes belonging to the cluster, they would likely impact the same set of nodes.

For each configuration, the k-means method identifies three clusters (Fig. 2) (see
more details in supplementary material). In all configurations, clusters are composed of
seeds that are geographically scattered; each cluster is formed by seeds from different
States (Fig. 2).

A comparison between cluster distributions in the observed graph and modified
graphs could highlight the degree of sensibility of these clusters against network mod-
ifications. For small variations of link distribution, B1 configuration, the similarity is
high Rand index = 0.81) and decreases when a large fraction of links is rewired con-
figuration B2, (Rand index= 0.69). The similarity is lower when contrasted with graph
configurations C1, D2, and E2 (0.56). Adding 40% of links (configuration C2) and the
removal of a peripheral market (configuration E1) result in notable changes in identified
clusters (0.30, 0.37 respectively). In cases where the Zawan market, the most connected,
is eliminated (configuration D1), the resulting Rand index is merely 0.11.
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Analysis of the epidemics sizes reveals a significant influence of the “cluster” factor
in all configurations, (p-values < 0.0001) indicating that there are significant statisti-
cal differences among clusters with regards to their epidemic potential: depending on
the cluster the seed belong too epidemics could have different extents. To assess the
significant differences between cluster’s epidemic potentials, we used the Tukey test,
comparing clusters distributions in each configuration. Results of the test were statisti-
cally significant for all configurations, indicating that some clusters tend to infect more
nodes than others (see more details in supplementary material). In the following we
indicate with “propagator cluster”, the cluster whose epidemics originating in one of it
seeds reaches the largest number of nodes.

In the observed network, there are only 13 seeds forming the “propagator cluster”.
Most seeds in the propagator cluster belong to Plateau State, followed by Bauchi, while
only a small number are in Kano or other States. In configurations C1 and C2, the
number of seeds in the propagator cluster increases to 25 and 22, respectively. Con-
versely, in configurations D1 and E1, the size of the propagator clusters significantly
decreases, reaching just 3 seeds in both cases. Some configurations share common seeds
within their propagator clusters. Figure 3 illustrates sets of shared seeds among different
configuration sets. For example, configuration A tends to share more common seeds

Fig. 3. Visualization of Common Seed Sets of the propagator cluster among Different Configu-
ration Combinations using UpSet Diagram. The length of each horizontal bar (set) indicates the
number of seeds present in a specific configuration. Vertical Bars (Intersections): represent shared
seed sets that occur across different configurations. The height of each vertical bar indicates the
number of seeds shared among the configurations. The intersections of the horizontal and vertical
bars highlight the seeds that are common between the configurations involved.
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with configurations B1, B2, C1, and E2, while having fewer in common with other
configurations.

Sentinel Nodes are Those with Highest in-H index and/or In-degree and/or Eigen-
vector:
We used the random forest technique to classify the centrality measures characteriz-
ing sentinel nodes. Table 2 presents the GINI index, highlighting the most important
centrality measures across all configurations within each seed cluster identified before.
Notably, the most pivotal characteristics distinguishing vulnerable nodes within the
observed network were in-H index (100%), eigenvector (80%), and in-degree (60%) for
Cluster 1. While these attributes remained consistent across other clusters within the
same graph, as well as across various configurations, the differentiating factor laid in
the prioritization of these attributes. A unique instance was observed in Cluster 3 of
Configuration E2, where betweenness is the most prominent characteristic.

Table 2. Characteristics of vulnerable nodes by cluster seed and configuration. Each column
represents a configuration, and each row centrality measures per cluster. The most important GINI
measures are shown below

Gini Index (%) per Cluster and per Configuration

Seed’s
Cluster

Centrality measure A B1 B2 C1 C2 D1 D2 E1 E2

1 In-H index 100 100 70 60 100 >10 75 >100 22

Eigenvector 80 90 68 50 60 >10 58 20 40

In-degree 60 99 100 100 98 100 100 100 100

Out-closness >10 >10 >10 >10 >10 78 >10 45 >10

2 In-H index 100 38 35 60 60 40 38 50 40

Eigenvector 100 40 40 40 40 80 40 80 60

In-degree 90 100 100 100 100 100 100 100 100

3 In-H index 50 85 15 >10 20 >10 >10 35 >10

Eigenvector 35 100 40 50 15 25 55 50 20

In-degree 100 80 100 100 100 100 100 100 60

In-Neighborhood >10 15 40 55 >10 60 40 20 >10

Out-closness >10 >10 >10 50 30 30 20 >10 >10

Betweenness > 10 >10 >10 >10 >10 >10 >10 >10 100

6 Discussion

In Nigeria, the absence of a livestock identification system and automatic data central-
ization system hinders our possibility of depicting a reliable network of commercial
livestock mobility [18]. This data would be essential to pinpoint sentinel nodes, which
proves valuable in designing surveillance and control programs. This study was primar-
ily focused on discerning nodes prone to be used as sentinel across three Nigerian States,
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based on their intrinsic characteristics under a variety of scenarios. Despite the limita-
tions of the observed network, which represents only a small part of all movements, this
study has enabled us to investigate the effect of missing information over the propagation
of diseases.

Employing elementary link operations such as link rewiring and addition, and tar-
geted node deletion, we generated eight distinct configurations (B1 to E2). The impact
of structural modifications on the dissemination of epidemics clearly becomes apparent
when 40% of links are added. However, the elimination of peripheral market in Kano
State, Wudil market, influence the diffusion dynamics. This finding resonates with the
insights offered by Wright [19], whose research highlighted the pivotal role of periph-
eral nodes in the intricate dynamics of directed networks. The impact becomes even
more significant when eliminating the most highly connected central markets (Zawan
market). This results in a considerable reduction in the final size of the epidemic, caus-
ing a disproportionate disruption of epidemic diffusion patterns. Moreover, Zawan was
one of the surveyed markets and data collected provided comprehensive insights into
the network’s structure and dynamics and aid in more accurate epidemic assessments.
Because of this the choice of markets to be sampled should be made correctly to avoid
losing vital information for surveillance and control.

Seeds Clustering:
Epidemic trajectories have been clustered based on their origins. Three clusters have
been identified for each configuration whose members are consistent (high Rand Index).
This indicates that these seed groups share similar transmission pathways despite net-
work modification. Like the study of Bajardi [6], our seed clustering results reveal that
geographical proximity between two nodes does not necessarily imply that they will
lead to similar invasion paths.

However, removing the most central market significantly alters seed clustering, lead-
ing to behavioral changes of certain nodes. Notably, the suppression of peripheral nodes
in Beauchi State triggers a substantial shift in the transmission paths of specific seeds.
Some nodes alter their behavior and emerge as more influential propagators. This phe-
nomenon highlights the intricate relationship between network topology and disease
spread: the effect of localized changes could ripple through the system, resulting in
pronounced shifts in transmission patterns. Additionally, independently of the configu-
ration considered, these propagator seeds are mostly located in the Plateau State. This
result can be explained by the position and the economic activity of Plateau State, the
gateway for animal movements towards the densely populated area on the coast [20].
A more detailed analysis, considering several socio-economic factors, should be done
to better describe the role of Plateau in comparison with other Nigerian States. Few
propagator seedswere detected in Kano. However, this result should be interpreted cau-
tiously, as it might be attributed to non-homogeneous sampling, (only 2 markets were
sampled in both Bauchi and Kano, while 6 in Plateau). The presence of few propagator
seeds in Kano may suggest the tendency of movements to be more important with North
Africa. It is worth noticing that is the entry point in Nigeria of the “via trans-africaine
2” an international road connecting Algeria to Nigeria. The lack of this data may have
underestimated Kano’s role in the propagation of disease.
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Identifying Sentinel Nodes:
The study successfully pinpointed around ten vulnerable nodes, taking into considera-
tion transmission probabilities and different seed clusters, dispersed in 6 different States:
Alaba (Lagos State), Dengi (Plateau sate), Josjarawa (Plateau State), Lafia (Nasarawa
State), Obolloafor (Enugu State), Okoamako (Delta State), Pali (Bauchi State), Shen-
dam (Plateau State), Wase (Plateau State), Zawan (Plateau State). Moreover, 3 out of
6 of these States are in the south of the country (Lagos: southwestern, Delta: south,
Enugu: southeast). In Nigeria, livestock production and trade have a seasonal character,
with animals moving towards greener areas where resources are available, sold when
resources are exploited to cover for household needs, or during the seeding and harvest-
ing period. In general, this calendar depends on the rainy season, whose length decreases
from south to north. This may suggest that there are more movements of small ruminants
from north to south, looking for water and feed for small ruminants, particularly during
the dry season [21]. The remaining three States are situated in the central and northern
region. The central region is the least populated and least developed area of Nigeria [20].
Due to the unfavorable soil and climate conditions, it is believed that these regions serve
as transit areas for small ruminants that move from the north to the more economically
prosperous and vegetation-rich southern regions. Despite being one of the most densely
populated State in the country, thus with a high demand of read meet, Kano does not
seem to exhibit vulnerability to the disease, as none of its districts have been identified as
susceptible. To better highlight the role played by Kano, we must add the international
movements that tend to enter or leave through the north of the country.

Vulnerable nodes primarily stand out due to their high in-degree, in-H index, and/or
eigenvector values. Notably, in-degree played a pivotal role in constructing our SImodel,
thus justifying its relevance as a significant feature. Analyses conducted by Herrera [4]
and Colman [22] have already affirmed the ability of eigenvector centrality to identify
sentinel nodes. By pinpointing nodes with high eigenvector centrality, we are precisely
targeting these influential hubs within the network. The in-H index [9] plays a pivotal
role in identifying sentinel nodes. Lü [9] suggested that the H-index can be a good com-
promise to quantify, in many cases, the influence of the nodes better than the degree.
A node with a high in-H index could indicate that it is surrounded by neighbors repre-
senting diverse potential sources of infection, thereby increasing the likelihood of rapid
infection. The identified characteristics remain generally consistent across all configura-
tions, except in scenarios involving the removal of the peripheral market of Bauchi State,
where betweenness emerges as the predominant feature. This suggests that when this
peripheral node is present, the number of introduction sources is high; however, upon
its elimination, the number of introduction pathways significantly decreases, making
the most central nodes more likely to be affected. Furthermore, since this result is only
observed within cluster 3, it also implies that the origin of the epidemic can play a crucial
role in node vulnerability.

While the implementation of prevention and control strategies targeting nodes with a
high indegree and/or in-H index and/or eigenvector may prove effective, the complexity
of calculating these measures - particularly due to the scarcity of data and temporal con-
siderations - means that we should not rely solely on these identified criteria. Optimal
choices for sentinel nodes depend on several factors, including the network’s structural
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layout (e.g., nodal positioning) [22], the flowdynamicswithin the network, disease trans-
missibility (with less transmissible diseases posing tracking challenges), and temporal
variations within the network (nodes maintaining stable contact sets are better suited for
epidemic detection) [23].

In this work we considered only 2 extreme cases of network modifications: when a
low (5%) and a high (40%) proportion of links were added/rewired/eliminated. It would
be interesting to conduct a more systematical analysis, considering more levels of mod-
ification, to determine the critical threshold at which structural changes become critical
and thereby impact the progression of disease. Furthermore, a more sophisticatedmodel,
capable of better capturing animal movements dynamics, volume and temporal aspects,
supported by a larger volume of data, could be pursued in the future to ascertain whether
these same characteristics will continue to justify node vulnerability. Furthermore, addi-
tional analysis is required to validate the model, comparing disease simulation outcomes
on the data-based network and the reconstructed network, and cross-referencing these
with biological information such as PCR data.
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Abstract. In the pursuit of accurate infectious disease forecasting,
micro-level contact modeling in contact networks emerges as a pivotal
element. This research delves into the intricacies of nuanced micro-level
modeling, presenting adaptable models tailored for specific locations,
derived from a refined travel demand model. In our experiments, we
observed that varied encounter patterns among individuals directly influ-
ence infection dynamics. Additionally, we observe distinct trends in the
spreading dynamics between temporal dynamic networks and their static
counterparts for certain encounter models. The study underscores the
need for a deeper appreciation of micro-level encounter patterns in epi-
demiological modeling. Such understanding is pivotal in shaping effective
interventions and public health strategies during pandemic scenarios.

Keywords: contact networks · micro-level encounter modeling ·
mobility data · pandemic research · temporal networks

1 Introduction

Mobility is fundamental to epidemic research, as it leads to the formation of
complex contact networks through people’s spatial encounters at various loca-
tions. Such contact networks offer insights into epidemic dynamics and therefore
mitigation strategies, and public health policies [1–3,5].

The significance of contact networks became particularly evident during the
global COVID-19 pandemic, where researchers focused intensely on leveraging
these networks to both characterize and forecast the spread of the virus [4,15,20].
The essence of interactions was elegantly encapsulated within these networks,
providing a macroscopic view of transmission dynamics. It is noteworthy that
these networks predominantly operated at a macro scale, often dealing with
high-level representations, such as compartments or similar abstractions.

However, mobility data on a microscopic level are hard to obtain especially
because of technical difficulties and privacy reasons. Recognizing the need for
agile responses, we put forth a range of resource-efficient, adaptable, and param-
eterizable methods designed for modeling individual encounters within distinct
locations as temporal dynamic networks.
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We explore techniques for micro-level contact modeling with agent-based
simulation based on traffic demand models and conceptualize the underlying
techniques. A micro-level contact denotes the actual physical encounter between
individuals. In this context, we deploy temporal dynamic networks, grounded by
various encounter models and distinct types of locations derived from a travel
demand model. Precisely capturing low-level encounters forms a valuable part
that seamlessly integrates into comprehensive models, augmenting the precision
of epidemic forecasting and characterization. Beyond the global context, this
research also opens up promising avenues for individual infection risk approxima-
tion. The incorporation of location-induced variations in infection risk into dig-
ital contact tracing strategies holds substantial potential, advancing the way we
approach contact tracing and containment efforts. In the future, travel demand
models may serve as a foundational resource for rapidly generating temporal
dynamic networks, enabling their versatile application in pandemic response and
related endeavors.

The subsequent sections of this paper unfold as follows: Sect. 2 sheds light
on methodologies employed in micro-level encounter modeling. Following this,
the methodology section initially explores temporal dynamic networks, then pro-
ceeds to introduce general distinct approaches to modeling micro-level contacts.
The results section compares the outcomes of the three techniques we have
employed. Finally, the conclusion section encapsulates the overarching findings
and implications that emerge from our study.

2 Background

Two large pandemic simulation models OpenABM [9] and Covasim [11] use the
concept of multi-layer networks to generate contact networks for different daily
life scenarios (school, work, household, ...). Both models were used to investigate
COVID-19 dynamics and test different intervention strategies. The multi-layer
network approach makes use of census data to build a synthetic population on
an urban scale. Contacts are generated by different models representing differ-
ent types of interactions and environments in daily life. Covasim generates fully
connected networks within households, small world networks on the community
and work level, and disconnected clique networks representing classes. Similarly,
OpenABM employs fully connected networks at the household level, random net-
works for communities, and small-world networks for occupations. Both models
understand the necessity for different micro-level approaches in different loca-
tions. However, they choose different and quite simplistic approaches in the same
scenarios, proving the need for further research on that topic.

A study conducted by [12] harnessed mobility data to construct micro-level
person encounters. This approach considers temporal intersections of individu-
als at locations, as well as the type of location. The authors differentiate three
location types with each being associated with three basic transmission proba-
bilities. A final edge transmission weight is computed by combining the location-
dependant transmission risk and a score derived from the intersection time of two
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individuals. However, for any given location, the edge weights are solely depen-
dent on intersection times, overlooking the spatial attributes of the location and
individual movement patterns.

Müller et al. [16] used mobile phone data for agent-based epidemiological sim-
ulations including factors like masks and air exchange rates. To model micro-level
contact encounters, the approach divides locations into subspaces of predeter-
mined capacity, giving rise to a contact network characterized by cliques. While
this leads to a sophisticated model for location-based person-to-person encoun-
ters, it requires access to mobile phone data and does not fully account for the
diverse encounter patterns that different location types exhibit.

The dynamics of disease spreading in various indoor environments has
also been explored by several studies using sophisticated simulation techniques
[7,13,17,22]. Notably, these investigations have aimed to provide insights into
transmission patterns and infection potentials in specific settings where a high
amount of information is available. However, the effectiveness of such approaches
relies on available and accurate information, e.g. layout, structure, and architec-
ture of the location under investigation, which limits its applicability to settings
with varying spatial configurations.

Up until now, the landscape of micro-level contact modeling has been char-
acterized by two predominant trends: network generators that mainly rely on
time spent at locations as well as the associated capacities and complex phys-
ical simulations necessitating substantial data and computational resources for
agent-based modeling. While the former overlooks important interaction dynam-
ics, the latter is resource and data-intensive and may not be feasible in many
scenarios.

In the following section, we outline approaches for capturing location-specific
encounter patterns based on traffic-demand models without the need for physical
simulations.

3 Methodology

In this section, we detail the methodologies foundational to our exploration
of micro-level encounter modeling using temporal-dynamic networks. We begin
by illuminating the essence of temporal-dynamic networks. Subsequently, we
introduce three distinct approaches for micro-level contact modeling.

3.1 Temporal-Dynamic Contact Networks

Temporal-dynamic networks serve as a sophisticated framework that reveals the
ever-changing nature of interactions among individuals [10]. In contrast to static
networks, which offer a snapshot of connections, temporal-dynamic networks
capture the intricate evolution of relationships over time. This real-time depic-
tion introduces a higher level of realism, as interactions are not treated as fixed
entities but rather as dynamic occurrences. Temporal-dynamic networks prove
invaluable in epidemiological studies, as they grant insights into the spread of
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diseases over time [14]. By incorporating time-varying edges, these networks por-
tray the varying transmission potentials at different stages of an epidemic. This
precision empowers researchers and policymakers to devise strategies for disease
containment and control more effectively.

Temporal-dynamic networks present interactions as evolving sequences, not
mere snapshots [19]. While dynamic networks are gaining traction in pandemic
research, many studies still rely on static networks due to their computational
simplicity. Although static networks can suffice when disease dynamics align with
network changes, they can introduce biases. Such biases arise when aggregating
variable dynamic contacts, leading to misrepresentations in potential infection
paths. It is debated that static networks might intensify infection dynamics. Con-
trary some cases are known where temporal correlations accelerate the dynamics
of stochastic processes in dynamic networks compared to their static equivalent.
In [18], SIR simulations were performed on an empirical temporal network of sex-
ual interactions, to investigate the spreading of sexually transmitted infections.
Their findings suggest that especially in the early pandemic stage, temporal cor-
relations in the network accelerate infection dynamics leading to higher outbreak
sizes, compared to different variations of static network representations. For a
deeper understanding, our study examines both dynamic networks and their
static counterparts.

In this study, we generate temporal-dynamic micro-level contact networks
from mobility data, typically presented as a collection of trajectories that depict
the movement of nodes between various locations. Within the realm of contact
networks, our focus is on trajectories that conclude at a specific location. We
also consider the time elapsed until the subsequent trajectory relocates our node
to another location. Based on this, we construct the vector

V (t) = (v1(t), v2(t), . . . , vi(t), . . . , vNV
(t))T ,

representing all nodes, where vi(t) = 1 if node i is present at our location at
time t, and vi(t) = 0 otherwise. Here, NV denotes the total number of nodes.

In the most general description of a micro-level contact model

θ : V (t) → A(t),

one takes V (t), which is modulated by mobility data, and uses the contact
network model θ to generate the edges of the dynamic network. A(t) represents
the time-dependent adjacency matrix, where ai,j(t) is set to 1 if nodes i and j
are connected at time t. The equivalent static network consists only of a single
adjacency matrix, where ai,j holds the time fraction nodes i, j where in contact
during the day.

In the following, possible realizations of the model θ are introduced. These
are based on previous work on micro-level contact networks discussed in Sect. 2,
and adapted to data resulting from travel demand models.
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3.2 Mobility Data

To generate mobility data, we employ the TAPAS (Travel and Activity Patterns
Simulation) travel demand model [6]. TAPAS offers a comprehensive framework
for simulating future transportation demand scenarios. It takes into account var-
ious factors such as demographic changes, income structures, and transportation
infrastructure.

The foundation for TAPAS is empirical spatial and structural data, details
related to how individuals allocate their time, and specifics regarding trans-
portation mode preferences. This data is drawn from the “Mobility in Germany”
(MiD)1 survey, which collected detailed information from over 316,000 individu-
als across 156,000 households. This data encompasses activity types, durations,
socio-demographic attributes, and household transportation resources. The syn-
thesized data produced by TAPAS results in 24h of data. At each location,
individuals are identified along with their arrival and departure times. For our
experimental purposes, we selected four specific locations. Two of these loca-
tions, A and B, are associated with leisure activities, while location C represents
a workplace and location D stands for a school.

To conduct a comprehensive SIR simulation across several days, we address
the challenge posed by the availability of accurate mobility data for just one day.
Our approach involves stacking the temporal contact network data from this sin-
gle day to simulate a continuous span of 20 days. While this method doesn’t fully
capture the stronger fluctuations and long-term spreading potentials that may
emerge among communities and individuals over time, it serves our primary
purpose effectively. Our main interest lies in uncovering general topological dif-
ferences exposed by SIR simulations across various modeling approaches. By
extending the available data in this manner, we can gain valuable insights into
the impact of micro-level encounter modeling on the broader epidemic dynamics.

3.3 Micro-Level Contact Modeling

Baseline Approach θbaseline: Our baseline approach builds upon the work of
Klise et al. [12]. In essence, this method leverages mobility data and individual-
specific time allocations at specific locations to compute intersecting time frames
between individuals, subsequently constructing contact networks.

In this approach, individuals present at the same location are linked by edges
in a contact network, with edge weights determined by the shared duration of
their presence. Transforming this concept into a temporal dynamic network, we
establish edges connecting pairs of individuals who coincide at a given point
in time within the same location (see 3.1). Under this premise, our approach
assumes an equal likelihood of infection for any pair of individuals who share
the same duration of stay at a location. In other words θbaseline constructs a fully
connected network between all nodes active at time t. This simplified framework

1 https://bmdv.bund.de/EN/Services/Statistics/Mobility-in-Germany/mobility-in-
germany.html.

https://bmdv.bund.de/EN/Services/Statistics/Mobility-in-Germany/mobility-in-germany.html
https://bmdv.bund.de/EN/Services/Statistics/Mobility-in-Germany/mobility-in-germany.html
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forms the foundation of our exploration, serving as a reference point against
which we compare our more intricate modeling techniques.

Random Graph-Based Approach θrandom: In our random graph-based app-
roach, similar to [9], every possible edge, meaning that node i, j are present
at the location at time t, is selected with probability prandom. Additionally, a
contact duration is drawn from an exponential distribution with mean β. Con-
tacts, therefore, have a minimum duration of one time step and, in the case of
non-consecutive contacts, a mean duration of 1+β time steps. This distribution
accounts for the variable nature of interaction durations, resulting in a dynamic
and realistic representation of human encounters. A possible application would
be in locations where interactions are mainly random and short, like in super-
markets, where the case of two individuals being in close proximity for the entire
shopping trip is rather unlikely, however frequent but short contacts are to be
expected.

Clique-Based Approach θclique: This approach capitalizes on the concept
of forming cliques to model micro-level encounters, advancing the clique-based
strategy of [16]. By grouping individuals into these compact clusters, we cre-
ate an efficient representation of contact networks within specific environments.
This approach is particularly useful for capturing interactions in places with
constrained capacity, like offices or classrooms. First, individuals are assigned
to spaces within the location, with fixed size NPeoplePerSpace. Nodes enter the
location and their respective space according to V (t), forming tightly bounded
cliques. For contacts between different spaces at every time step, a node changes
its space with probability pclique for a duration that is drawn from a normal
distribution N (μ, σ). Afterwards, the node goes back to its default space.

By modeling and tracing movements within these spaces over time, we iden-
tify instances of shared occupancy. These instances lead to the formation of
cliques, where individuals have pronounced edges connecting them within the
clique, reflecting intensive interactions like in shared offices or classrooms. In
contrast, connections outside the clique are rare, mirroring more sporadic or
distant interactions. The underlying idea of this approach is to encapsulate the
nuanced interplay between spatial arrangements and interpersonal encounters.
This modeling technique ensures a more comprehensive understanding of how
individuals’ interactions are influenced by their physical proximity within specific
locations.

3.4 Unveiling Topological Properties with SIR Model

To assess the topological differences introduced by our various micro-level
contact network modeling approaches, we employ the Susceptible-Infectious-
Recovered (SIR) model [8]. The SIR model is a well-established compartmental
model used to analyze the spread of infectious diseases within a population. It
divides individuals into three compartments: susceptible (S), infectious (I), and
recovered (R). The SIR model tracks the transitions of individuals between these
compartments based on their interactions and the disease’s transmission dynam-
ics. For our evaluation, we utilize a temporal dynamic SIR model implemented
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using the Tacoma framework2. Tacoma provides a versatile platform for study-
ing epidemic spreading and other dynamical processes on networks utilizing the
Gillepsie algorithm [21]. We let the epidemic spreading simulations run for a
simulated period of 20 artificial days. During this time, we monitor the progres-
sion of the infection within the population and observe how different modeling
approaches influence the spread of the disease. This SIR-based evaluation allows
us to gain insights into the impact of micro-level encounter modeling on the
topological properties of contact networks and the resulting epidemic dynamics.
By analyzing the simulated disease propagation under different scenarios, we
can draw conclusions about the importance of accurately representing individ-
ual interactions for understanding and managing the spread of infections.

In our research, it is crucial to recognize that the distinctive nature of our
various approaches inherently results in networks from the same location having
varied edge counts but identical node counts. The baseline approach, as described
in Sect. 3.3, exhibits a markedly higher mean degree. To ensure a valid and
unbiased comparison using a SIR model, we assume that the interaction strength
is constant across all networks, i.e.

∑

t,i,j∈Ebaseline

wi,j(t) =
∑

t,i,j∈Erandom

wi,j(t) =
∑

t,i,j∈Eclique

wi,j(t) = 1

where E is the respective set of edges generated by the contact network
model. This is achieved by normalizing the adjacency matrix wi,j(t) = ai,j(t)

NE

with the total number of edges NE during the day creating weighted edges. The
experimentation involved adjusting the transmission probability parameter to
show sufficient infection dynamics across all networks. SIR runs were performed
with this transmission probability and with respect to the edge weights. This
methodology guarantees a meaningful assessment of the impact of different net-
work topologies on the dynamics of disease propagation, even when the networks
exhibit varying edge counts by definition.

4 Results

In this section, we present our results on micro-level contact network modeling
using mobility data. We first describe the mobility data utilized and then discuss
our experimental results. For all experiments, we selected NPeoplePerSpace =
15, pclique = 0.01, μ = 10, σ = 5. These parameter choices were informed by
preliminary experiments and explored in Sect. 4.2.

4.1 SIR-Based Evaluation

The outcomes of the SIR simulation conducted over a span of 20 days are pre-
sented in Fig. 1. The vertical axis on the graph represents the number of indi-
viduals infected per day. Evidently, the baseline approach exhibited the highest
2 https://github.com/benmaier/tacoma.

https://github.com/benmaier/tacoma
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infection count, followed sequentially by the random and clique approaches. This
consistent trend was observed across all examined locations. Importantly, the dis-
tinctions among the approaches go beyond just the highest infection count, also
encompassing differences in the rate of spread. For both, locations A and B, it
becomes evident that the peak of the clique approach occurred around days 7–8,
whereas the baseline approach reached its highest point at approximately day
5. The work/school locations C and D show similar trends but the difference in
infections and speed between the approaches is less emphasized.

Fig. 1. Comparison of infection dynamics in SIR simulation across multiple locations
and contact modeling approaches. Number of infected nodes on the y-axis, number of
days on the x-axis. NPeoplePerSpace = 15, pclique = 0.01, μ = 10, σ = 5.

Essentially, we find variations in the extent and speed of infection dynamics
across the selected locations, which can be tied to the nature of each location.
For instance, individuals tend to spend less time at locations A and B, which
are associated with leisure activities, compared to those representing a school
or a workplace. Crucially, the distinct contact models shaping encounter pat-
terns play a significant role in influencing the spreading dynamics within the
constructed contact networks.
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The difference between dynamic and their respective static networks depends
on the chosen model. For our baseline, as well as the random approach, we see
that both networks behave similarly in terms of infection dynamics. The clique
approach instead shows a significant acceleration of the infection dynamic in
dynamic networks, resulting in a higher and earlier infection peak as well as a
higher outbreak size. This further supports the findings from [18]. Their sexual
encounter network is described as a network with many cycles and compact
weekly connected cliques, resulting from spatial constraints. This network could
be modeled with our clique approach.

The actual efficacy and adaptability of these models necessitate further val-
idation, either through empirical data or simulation studies. Nevertheless, these
models serve as starting point and aim to lay the groundwork for fast and adapt-
able generation of micro-level contact models.

4.2 Effect of Hyperparameter Settings

Figure 2 demonstrates the effects of various hyperparameters associated with
the clique-based approach on the SIR results for location B. Except for the
parameter under investigation, we maintain consistency with the experiments
detailed in Sect. 4.1. Figure 2a reveals the influence of the mean parameter μ.
Elevated μ values correlate with a rise in total infections and a decelerated infec-
tion spread. The same trend surfaces when observing the number of individuals
per space, NPeoplePerSpace. Infections peak around 50 for NPeoplePerSpace = 5
and approximately 170 for NPeoplePerSpace = 50. Likewise, Fig. 2b shows that
alterations in the probability of space change pclique lead to varying infection out-
comes. As expected, larger probability values result in higher infection counts,
while minimal space changes yield minimal infections. The absence of space
changes restricts inter-clique infections, resulting in substantially lower infec-
tion dynamics. Conversely, fluctuations in the σ parameter exhibit minimal
impact on infection dynamics, as Fig. 2d shows. Since this parameter influences
the time individuals spend in other spaces without directly affecting encounter
numbers, it appears to play a less pronounced role in driving infection dynam-
ics. Upon inspecting the network resulting from θrandom, the hyperparameters
showcased minimal perturbation on the outcomes. Our experiments revealed neg-
ligible effects for β and only minor variations observed in the infection dynamics
for prandom. When exploring values for prandom spanning from 0.001 to 0.5,
a notable reduction in infection rate was evident at 0.001, while the remain-
ing values demonstrated relatively comparable results. Notably, prandom = 0.02
exhibited the highest infection rate, closely followed by 0.3. Neither the contact
duration nor the number of edges (under the normalizing factor) appeared to
exert a significant impact on the network’s topology.

In essence, the results indicate that constrained spaces and diminished inter-
actions among occupants lead to reduced infection propagation. This observation
is independent of the sheer edge count since the transmission probability between
nodes is normalized as explained above. The deviation in outcomes stems from
the unique topological traits of the temporal contact network, reflecting varying
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encounter dynamics. Our research accentuates the pivotal role of assumptions
surrounding encounter patterns and consequent transmission dynamics in dic-
tating infection trajectories. Utilizing contact networks constructed from com-
prehensive data sources, like mobility data, reveals the importance of real-world
contact patterns in epidemiological modeling.

Fig. 2. Parameter exploration for temporal contact network resulting from θclique

While our study has provided insights into the behavior and characteristics
of temporal contact networks, limitations need to be acknowledged. Our cur-
rent method of stacking these networks doesn’t capture long-term dynamics of
infection spread. While our choice of an SIR-based evaluation provides a foun-
dation, the process of normalizing temporal networks introduces complexities,
as the “overall infection potential” is differently interpreted. Distinct character-
istics between temporal and static networks are subject to future investigations
and underpin the relevance of temporal dynamic network modeling. While our
approach offers promising avenues for future research, its broader applicability
needs cautious consideration and further refinement.

5 Conclusion

In this study, we explored micro-level contact network modeling and its impli-
cations for understanding disease spread. The goal was to showcase how the
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choice of micro-level contact models within specific locations influences infection
dynamics. Our findings highlight the significance of tailored contact models for
different locations and the crucial role of encounter patterns in shaping infection
dynamics. Employing travel demand models in understanding infection dynamics
paves the way for flexible and modifiable contact models. This research under-
scores the complexity of real-world contact patterns in epidemiological modeling,
emphasizing the need for nuanced approaches to inform public health strate-
gies. The orchestration of multi-tiered contact networks necessitates authentic
portrayals of human mobility on both macro and micro scales, enriching our
competence in offering precise infection risk assessments to individuals.

Future research directions include refining transmission probability modeling
by considering contact distance through human mobility models that emulate
actual human movement patterns. Furthermore, analyzing long-term data span-
ning more than 24 h can reveal longer-term effects and pave the way for the
generation of even more accurate temporal contact networks. Additionally, we
aim to develop a versatile, parameterizable model applicable to various location
types to enhance its adaptability and usefulness in epidemiological investigations.
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Abstract. People who inject drugs (PWID) are part of HIV/AIDS risk networks,
where individuals can engage in sexual and injection risk behavior. Low socioe-
conomic status and lack of access to medical care often complicate successful
engagement in HIV care for PWID. This study investigates how locus of con-
trol and self-blame regarding HIV/AIDS risk affects health-seeking behavior in
PWID participants and their community members. We apply causal inference
methodology to PWIDHIV risk networks ascertained from the Social Factors and
HIV Risk Study (SFHR) conducted between 1991 and 1993 in Bushwick, Brook-
lyn, New York. We found estimated protective disseminated effects of attitudes
toward HIV/AIDS on health-seeking behaviors of others in the PWID community.
A positive attitude toward controlling HIV/AIDS can improve the health-seeking
behavior of other members in the community with a pessimistic attitude toward
HIV/AIDS control. Interventions to improve attitudes toward HIV/AIDS risk
can boost health-seeking behavior among both PWID receiving the intervention
themselves and other unexposed PWID in the community.

Keywords: Causal Inference · Health Attitudes · HIV/AIDS · Injection Drug
Use · Risk Network

1 Introduction

HIV/AIDS remains a significant concern among people who inject drugs (PWID) in the
United States [1]. Sexual and injection behaviors can increase the risk of HIV trans-
mission [2]. Compounding the issue, PWID with low socioeconomic backgrounds often
struggle with accessing adequate medical care, hindering successful engagement with
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the HIV care [3]. PWID are often part of HIV risk networks, where partnerships are
defined by sexual or injection risk behaviors. PWID are face both an increased risk of
HIV infection also unique barriers that can limit their engagement with HIV care [3].

One class of network-targeted interventions attempts to leverage dissemination in a
social network for behavioral change [4–6]. Among a network, dissemination (spillover,
interference) can occur when members of a social group modify their behavior based
on the traits, beliefs, attitudes, or norms among their social contacts, specifically when
one individual’s health attitude affects another individual’s health outcome. This dis-
semination of attitudes may be possible through peer influence, for example, due to the
verbalization of attitudes or behavior modeling [4, 7]. Although potential HIV trans-
mission networks have dependence structures associated with sexual and injection risk
behaviors, this dependence structure is related to but not synonymous with dissemina-
tion in networks. Our work focuses on dissemination through HIV risk networks. In
earlier work, dissemination was conceptualized as the framework to analyze the depen-
dent events of infectious diseases with four different effects of interest in a two-stage
randomized design, where investigators randomly assign a treatment allocation strat-
egy (i.e., vaccination coverage in a community) to each community then assign actual
treatment (i.e., vaccine) to participants in each community given the assigned treatment
allocation strategy [8, 9]. In recent work, the methods to estimate the four parameters
using data from observational studies have been developed [10, 11].

Interventions can be strengthened by assessing dissemination to inform more effec-
tive and sustainable solutions forHIV/AIDSprevention amongPWID [12, 13].However,
prior to the introduction of a network-based intervention to change attitudes, an initial
step is to evaluate the relationship between the attitudes of PWIDand their health-seeking
behaviors. Although some earlier studies assessed attitudes toward HIV/AIDS risk [14,
15], there are limited studies about the PWID attitudes toward HIV/AIDS risk on their
own health-seeking behavior. Evaluating the effects of attitudes toward HIV/AIDS risk
on PWID’s health-seeking behavior can provide substantially new insights for devel-
oping more effective and sustainable interventions. This study quantifies the relative
magnitudes of PWID’s attitudes toward HIV/AIDS risk on their own health-seeking
behaviors and on other individuals in their risk network.

2 Methods

The SFHR study was conducted in Bushwick, NewYork 1991 to 1993 [6, 16]. Data were
collected from street recruited PWID in the Bushwick neighborhood, a low-income area
of approximately 100,000 residents with high rates of poverty, injection drug use, and
HIV/STI prevalence. The original study enrolled a total of 767 participants and included
3,162 dyadic relationships.Dyadic relationshipswere defined as one individual reporting
that he/she had sex or injected drugs with another individual in the previous 30 days,
and each participant named up to 10 contacts [16].

Of the 3,162 dyadic links in the original SFHR study, 2,498 links recorded were
between enrolled and non-enrolled individuals [16]. We excluded these non-enrolled
individuals from the analysis, including the 2,498 edges between enrolled and non-
enrolled individuals. Eighty-two enrolled participants were missing either outcome,
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exposure, and/or covariate information, so we excluded these individuals from the anal-
ysis. After this exclusion, we had 283 participants with no observed relationships to
other participants in the network. These isolated participants were also removed from
the analysis. The SFHR PWID network for this analysis included 402 participants (i.e.,
vertices or nodes) with 403 risk connections (i.e., edges).

We evaluated communities in the SFHR PWID network using a modularity-based
community detection approach. A community is defined as a group of participants that
is densely connected with only sparser connections to other participants outside of the
group [17]. In the SFHR PWID network, these communities included PWID who were
more highly connected within the same community but had sparser connections to the
PWID in other communities. For the modularity-based method, modularity takes large
values when there are more connections among some individuals than expected if con-
nections were randomly assigned, suggesting the presence of a nontrivial community
structure in a network [17, 18]. As a result, there are more edges among the participants
in a community than between communities in the SFHR network.

We consider two separate exposures to assess attitudes toward HIV/AIDS risk: (1)
HIV/AIDS locus of control (i.e., internal vs. external) and (2) blame attributes (self-
blame vs. blame others). The locus of control is defined as the degree to which an indi-
vidual believes they have control over what will happen or has happened to themselves
and can be classified into two different types: internal and external [19]. Individuals
with an internal locus of control (ILOC) attribute the events they experience to factors
within their control, while those with an external locus of control (ELOC) attribute
events to factors beyond their influence [20, 21]. HIV/AIDS locus of control is defined
as an individual belief about how much control one has over its own HIV/AIDS risk.
The blame attribute toward HIV/AIDS is defined as an individual blaming themselves
(i.e., self-blame) or blaming others or society (i.e., blame others) for their perceived
HIV/AIDS risk.

Participants were asked ten questions about their health beliefs to determine their
HIV/AIDS locus of control and blame attribute (Table 1). Questions 4, 5, and 9 capture
information about PWID’s individual blame, and the remaining questions are about
PWID’s HIV/AIDS locus of control. The reverse scale was used for negatively phrased
items. The responses were originally recorded on a Likert scale (strongly agree, agree,
somewhat agree, disagree, strongly disagree, don’t know, refused, and not applicable).
To create a binary variable to represent locus of control, for each response out of seven,
we assigned the value of 1 if a participant reported ILOC, while the value of –1 was
assigned if a participant reportedELOC. If the responsewas neutral (i.e., don’t know),we
assigned a value of 0. Adding all values assigned to the responses for health belief related
questions, we obtained an individual health belief scores ranging from −7 to 7. Then, if
one’s locus of control scorewas greater thanor equal to three, the participantwas assigned
as having an ILOC; otherwise, the participant was assigned ELOC. Because traits that
consist of both negative and positive aspects can be negatively biased, we selected a
positive threshold [22]. A similar procedure was taken to create a binary variable to
represent a participant’s blame attribute. We obtained blame scores that ranged from
−3 to 3 for individual participants. The distribution of blame scores is shown in the
right panel of Fig. 1. If a participant’s blame score was equal to three, the attribute was
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assigned as “self-blame”; otherwise, the attribute was “blame others.” We verified the
internal consistency of the individual responses for the locus of control and blame items
with Cronbach’s alpha on their original Likert scale.

Table 1. Questions about health beliefs in the Social Factors and HIV Risk (SFHR) Study from
Bushwick, New York, 1991–1993.* Item required a reversed scale in calculating the score for
health beliefs.** Item required a reversed scale in calculating the score for blame attitudes.

SFHR Questions about Health Beliefs

Q1. It is my own behavior which determines whether I get AIDS or not
* Q2. No matter what I do, if I’m going to get AIDS, I will get AIDS

Q3. I’m in control of whether or not I get AIDS
**Q4. My family has a lot to do with whether I get AIDS. (Blame)

Q5. If I get AIDS, I’m to blame. (Blame)
* Q6. Getting AIDS is largely a matter of bad luck
* Q7. No matter what I do, I’m likely to get AIDS

Q8. If I take the right actions, I can avoid getting AIDS
**Q9. If I get AIDS it is because of the society we live in. (Blame)
* Q10. No matter what I do, I’m unlikely to get AIDS

The outcome was defined as the receipt of the SFHR HIV test result. The HIV test
was conducted as a part of the SFHR study, and the participants could receive the result
after their interview. Therefore, there was a temporal ordering between the exposures
and the outcome. Receipt of HIV test results for each participant was recorded as a
binary variable (i.e., 1 if “Yes” and 0 otherwise).

Participants’ demographics and characteristics were summarized with descriptive
statistics (Table 2). We also created a binary variable indicating participants’ knowledge
of their HIV/AIDS status before the SFHR study. We assumed that a participant knows
their HIV/AIDS status if they were ever told they had HIV/AIDS or if they were tested
at least once before SFHR and obtained the last test result; otherwise, we assumed
the participant did not know their HIV/AIDS status before SFHR. In the final model
of the analysis to adjust for confounding, the following variables were included as
covariates: medical payment method (some insurance, paid by self, or other), pre-SFHR
knowledge of HIV/AIDS status (Yes vs. No), sex (Male vs. Female), race (White vs.
Non-White), age (40–65 vs. 19–39), and the interactions of sex and age, and race and
medical payment method to allow the model to be more flexible. For the 96 communities
of PWID, we computed the observed distributions of the proportion of PWID reporting
ILOC/self-blame in a community (i.e., observed coverage).
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2.1 Causal Inference Framework under the Presence of Dissemination

Causal inference in this setting requires several identifying assumptions. Two assump-
tions are related to the structure of dissemination: partial interference and stratified inter-
ference. The partial interference assumption means that individual’s locus of control can
affect the receipt of HIV testing results of other individuals in the same community but
does not affect others outside of that community [9, 10, 23, 24]. The stratified interfer-
ence assumption means that an individual’s potential outcome depends only on his/her
own locus of control and also the proportion of those community members reporting
ILOC [9, 10]. We also make the following three assumptions: i) conditioning on a vec-
tor of pre-exposure covariates (e.g., medical payment method, pre-SFHR knowledge
of HIV/AIDS status, sex, race, age, and the interactions of sex and age, and race and
medical payment method), the vector of locus of control exposures for a community
is independent of community-level potential outcomes (i.e., community-level exchange-
ability), ii) for each pre-exposure covariate, there is a positive probability of each level
of the community-level exposure (i.e., community-level positivity), and iii) the exposure
is well defined, which means an individual either has ILOC or ELOC and if there are
other versions of locus of control, we assume that they are irrelevant to the causal effects
of interest. We assume there is no misclassification of attitudes towards HIV/AIDS; that
is, every participant correctly reports his/her attitudes in the study, and this exposure
accurately captures the underlying attitudes. We also assume the model for the exposure
weights is correctly specified (e.g., correct functional forms of covariates), and there is
no homophily (plausible in the SFHR study because it is unlikely that PWID formed
risk connections based on whether they would receive their HIV test results); that is,
individuals in the network are not forming HIV risk connections based on some unob-
served variables also associated with their health-seeking behaviors [25], and missing
outcomes, exposures, or covariates are missing completely at random (MCAR) [26].

We are interested in four different causal effects in the presence of dissemination [9,
10]. In the following, Yij,Aij,Xij represent the observed outcome of receipt of SFHR
HIV testing result, attitude status, and covariate vector of the jth individual in community
i, respectively. Also, Ai and Xi are vectors of exposures (i.e., locus of control/blame
attributes) and covariate matrices for members within community i, , respectively. In
our setting, the coverage (i.e., allocation strategy) αorα′ is defined as the probability of
PWID reporting ILOC/self-blame in a community (α, α′ where α < α′). The average
potential outcomeY (a;α) of the jth individual in community i (averaged over all possible
Bernoulli allocations for the community, then averaged within and across communities)
depends on the exposure of that individual and the coverage of exposure of others in
community i.

The following notations represent four different causal effects of interest [9]. The
population-level estimands and estimators discussed herein pertain specifically to the
study population (i.e., PWID in Bushwick, New York) rather than the broader and hypo-
thetical underlying target population. The direct effect, which compares population-level
average potential outcomes under the exposure ELOC/blame others to ILOC/self-blame
under a coverage level α of ILOC, is defined asDE(α) = Y (a = 0;α) − Y (a = 1;α).
The indirect (or disseminated) effect, which compares population-level average potential
outcomes with ELOC/blame others under different coverage levels of ILOC is defined
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as IE
(
α, α

′) = Y (a = 0;α) − Y
(
a = 0;α

′)
. The total (or composite) effect, which

is the sum of direct and indirect effects and can be interpreted as the maximal impact

of exposure to attitudes at population-level, is defined as TE
(
α, α

′) = Y (a = 0;α) −
Y

(
a = 1;α

′)
. The overall effect, which is interpreted as a comparison between com-

munities with different coverage levels of ILOC is:OE
(
α, α

′) = Y (α) − Y
(
α

′)
. Then,

population-level inverse probability weighted (IPW) estimator of the direct effect is rep-

resented by: DE
∧

(α) = Y
∧ipw

(a = 0;α) − Y
∧ipw

(a = 1;α), where Y
∧ipw

is the average of
community-level average estimated potential outcomes .The remaining population-level
IPW estimators of the indirect, total, and overall causal effects are defined analogously.
When quantifying these parameters in an observational study, community-level propen-
sity scores are estimated using the information of individual-level covariates in a mixed
effects logit model with a random effect for correlation in each community. The inverse
of the estimated propensity score is used as an exposure weight in the estimator of
interest (i.e., a contrast of estimated average community-level potential outcomes) [10].
We used robust variance estimators accounting for weights estimation to construct 95%
Wald-type confidence interval (CIs) for the effects [27].

We used SAS 9.4 for data preparation and R version 3.4.4 for the visualization
and analysis. For the estimation in the presence of interference, we used “inferference”
package in R (https://cran.r-project.org/package=inferference) [23], which implements
the IPW estimation method for observational studies with dissemination [10, 27].

3 Results

Among the 402 participants, the mean age was 35 years and about 70%were male. Most
participants had less than a 12th-grade education (64%), were unemployed (91%), and
had some insurance for medical expenses (65%). Based on the history of HIV testing,
the receipt of the last test result, and knowledge of their HIV/AIDS status, 47% knew
their own HIV/AIDS status before the SFHR study (Table 2). In addition, 41% were
HIV infected, 5% had developed AIDS, and 75% were positive for Hepatitis B (HB)
(Table 2). Of 402 participants, 19% picked up their SFHR HIV testing results.

There were 85 connected components, and one of them formed a giant component,
including 199 participants and 275 risk connections (Fig. 1). Using a modularity-based
community detection approach, we found 12 communities in the giant component and
defined a total of 96 communities in the observed network. Among all 403 risk con-
nections, only 56 were between communities (14%), and 347 were within communities
(86%). The average number of participants in a community was 4.2 participants (ranging
from2 to 35 participants). The distribution of coverage ofHIV/AIDS self-blame attribute
had wider variation than that of ILOC. To ensure enough communities at each coverage
level and a range of coverage levels representing moderate to high coverage, we focused
our analysis on coverages of 50%, 70% and 99%. The relations between attitudes and
the outcome in the SFHR PWID network are visualized in Fig. 1. Reporting ILOC was
associated with 87% higher odds of receipt of HIV test results (95% CI: 0.85, 4.11).

https://cran.r-project.org/package=inferference
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Results for both unadjusted and adjusted estimates are displayed in Table 3. The
IPW estimates of the population-level causal effects of ELOC on receipt of SFHR HIV
test results are displayed in Table 3. Adjusted estimates, i.e., those that controlled for
baseline covariates, were comparable to unadjusted estimates but had slightly narrower
confidence intervals. For the direct effect estimates, community with 50% and 70%
coverages had estimates of similar magnitude for locus of control on the receipt of HIV
testing result. In other words, in a community with 50% coverage of ILOC, we would
expect 13 more participants to receive their HIV test result per 100 individuals under
ILOC exposure compared to ELOC.

Fig. 1. The Social Factors and HIV Risk Study (SFHR) PWID network for the analysis with 402
nodes and 403 links. The term “Received” indicates the act of a participant picking up the SFHR
HIV test result, while “Not received” denotes the absence of such an action.

Interestingly, in community with the highest coverage of 99%, the estimated direct
effect was the smallest among the three coverage groups: DE

∧

(99) = −0.10 (95% CI:
-0.26, 0.05). A significant indirect effect was estimated comparing 50% and 70% ILOC
coverage communities: IE

∧

(50, 70) = −0.03 (95% CI: -0.06, -0.01). That is, we would
expect 3more individuals with ELOC to receive their HIV test result in a 70% ILOC cov-
erage community compared to a community with only 50% ILOC coverage. The largest
total effect estimate was for the comparison 50% and 70% ILOC coverage communities,
and 50% and 99% ILOC coverage communities: TE

∧

(50, 70) = TE
∧

(50, 99) = −0.17
(95% CIs: −0.27, −0.08 for 50% versus 70%; −0.28, -0.07 for 50% versus 99%). In
other words, we expect 17 more participants to receive their HIV test result per 100
individuals if they reported ILOC in 70% ILOC coverage communities compared to
individuals who reported ELOC in a 50% ILOC coverage community. Finally, the over-
all effect estimates indicate that the likelihood of receipt of HIV testing results increases
as community coverage increases. For example, we expect that 11 more individuals will
receive their HIV test results if a community has 99% ILOC coverage compared to a
community with only 50% coverage (95% CI: 0.03, 0.18). None of the estimates for
the causal effect of blame on probability of receiving HIV test results were statistically
significant. However, Cronbach’s alpha for the blame attribute was quite low (0.77 for
belief, and 0.47 for blame) indicating a possible lack of internal consistency for this
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Table 2. Participants’ characteristics in the Social Factors and HIV Risk (SFHR) Study from
Bushwick, New York, 1991–1993 (n = 402).

Characteristicsa Number of Participants (%)

Age, Mean (SD) 35 (6.9)

Young Adult (19–39 years old) 290 (72)

Middle Aged (40–65 years old) 112 (27)

Sex

Male 287 (71)

Female 115 (29)

Race/ethnicity

White 153 (38)

Otherb 249 (62)

Highest education

Less than high school graduation 258 (64)

High school or more 143 (36)

Work status

No job 364 (91)

Some work 37 (9)

Where currently live

In your own apartment or house 116 (29)

Someone else’s apartment or house 192 (48)

Homeless/other 94 (23)

Medical expense payment methodc

Pay myself
83 (21)

Some insurance 262 (65)

Other 57 (14)

Ever told that you have AIDS/HIV 27 (7)

Ever tested for the HIV 234 (58)

Number of HIV tests ever taken, Mean (SD) 1.9 (1.2)

Pick up your HIV test results last timed 164 (70)

HIV/AIDS status known before SFHR studye 188 (47)

HIV positive 162 (41)

HB core antibody positive 244 (75)

AIDS 20 (5)

aThere were missing observations in highest education and work status. In the HIV positive, HB
core antibody positive, and AIDS variables, there were 6, 77, and 7 missing data, respectively.
bOther category included Black/African American (n = 105), Latino/Hispanic (n = 141), Native
American (n = 2), and Other (n = 1).
cSome insurance included Medicaid, Medicare/Social security, employment health plan, and
Community organization. Pay myself includes family member, friends, no one, pay myself.
dThe percentage in the right column in this question was calculated based on 234 people who
answered YES to the previous Ever-tested question.
eThis pre-SFHR knowledge of HIV/AIDS status variable is created based on the information from
ever told, ever tested, number of HIV test ever taken, and pick-up the last HIV test results.
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measure. Similarly, the distribution of coverage for this attribute had more variation
than that observed for ILOC/ELOC. Some participants were excluded from the analysis
due to the missing information in outcome, exposure, and/or covariate information.

The community detection results could be sensitive to the removal of nodes from the
network; therefore, a sensitivity analysis was performed by first conducting community
detection, then removing participants with missing information and eliminating isolated
participants. As a result of the sensitivity analysis, the number of communities and
participants in the SFHR network changed (94 communities with 425 participants). The

Table 3. Unadjusted and adjusted estimated risk differences (RDs) with corresponding 95% con-
fidence intervals (95% CIs) of causal effects of locus of control (external vs. internal) and blame
(others vs. self) on likelihood of receiving SFHR HIV test results among 402. Coverage is defined
as the probability of internal locus of control in a community. Baseline covariates are included in
a community-level propensity score.

Effect Coverage Unadjusted Adjusted

(α%, α′%) RD 95% CI RD 95% CI

Locus of control (external vs. internal)

Direct (50, 50) −0.15 (−0.23, −0.06) −0.13 (−0.23, −0.03)

Direct (70, 70) −0.14 (−0.25, −0.04) −0.14 (−0.25, −0.02)

Direct (99, 99) −0.10 (−0.26, 0.06) −0.10 (−0.26, 0.05)

Indirect (50, 70) −0.04 (−0.07, −0.01) −0.03 (−0.06, −0.01)

Indirect (50, 99) −0.07 (−0.16, 0.02) −0.07 (−0.15, 0.00)

Indirect (70, 99) −0.03 (−0.10, 0.04) −0.04 (−0.09, 0.01)

Total (50, 70) −0.18 (−0.27, −0.10) −0.17 (−0.27, −0.08)

Total (50, 99) −0.17 (−0.28, −0.07) −0.17 (−0.28, −0.07)

Total (70, 99) −0.13 (−0.25, −0.01) −0.14 (−0.26, −0.02)

Overall (50, 70) −0.07 (−0.10, −0.04) −0.06 (−0.09, −0.04)

Overall (50, 99) −0.10 (−0.18, −0.01) −0.11 (−0.18, −0.03)

Overall (70, 99) −0.03 (−0.10, 0.04) −0.04 (−0.10, 0.01)

Blame (others vs. self)

Direct (50, 50) −0.04 (−0.16, 0.08) −0.06 (−0.17, 0.04)

Direct (70, 70) −0.04 (−0.16, 0.09) −0.04 (−0.15, 0.07)

Direct (99, 99) −0.08 (−0.25, 0.10) −0.07 (−0.23, 0.10)

Indirect (50, 70) −0.00 (−0.05, 0.04) −0.01 (−0.05, 0.03)

Indirect (50, 99) 0.03 (−0.08, 0.14) 0.02 (−0.07, 0.12)

Indirect (70, 99) 0.04 (−0.04, 0.11) 0.03 (−0.03, 0.10)

Total (50, 70) −0.04 (−0.16, 0.09) −0.05 (−0.16, 0.06)

Total (50, 99) −0.04 (−0.20, 0.12) −0.04 (−0.19, 0.10)

Total (70, 99) −0.04 (−0.20, 0.12) −0.04 (−0.18, 0.11)

Overall (50, 70) −0.01 (−0.05, 0.04) −0.00 (−0.04, 0.03)

Overall (50, 99) −0.02 (−0.14, 0.09) −0.01 (−0.12, 0.09)

Overall (70, 99) −0.02 (−0.10, 0.06) −0.01 (−0.08, 0.07)
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results for the estimated causal effects of interest were comparable to the main analysis
(results not shown).

4 Discussion

We assessed the impact of attitudes among PWID toward HIV/AIDS risk on their own
and their neighbors’ health-seeking behaviors. PWID with the internal locus of control
weremore likely receive their HIV testing result, regardless of the internal locus status of
other individuals in their community. Individuals who feel they have more control over
their health outcomes may feel it is worthwhile to engage in behaviors to improve their
health. PWID with the external locus of control in a community with a high coverage of
internal were more likely to receive their HIV testing results compared to a low coverage
community. Individuals who have friends, partners, or communities with certain health
behaviors may engage in these health behaviors not due not only to their own internal
motivation but also via reinforcement from their contacts. An intervention that could
modify the HIV/AIDS locus of control has the potential to encourage PWID themselves
as well as their contacts to preferable health-seeking behavior. Moreover, an intervention
aimed at raising coverage from 50% to 70% could yield a comparable impact to an
intervention aimed at increasing coverage from 50% to 99%. Such a finding might
offer a considerable advantage in terms of resource allocation and effort required to
achieve a similar magnitude of outcome. Though attitudes were not a public health
intervention in the SFHRstudy, in terms of social psychology, attitudes could bemodified
and eventually affect people’s behavior [28–31]. Furthermore, even small changes in
health-seekingbehavior, couldhave a larger impact over longperiods of time, particularly
with infectious diseases in networks [6, 16].

There are several limitations to our study. The validity and reliability of the exposure
variables as measures of individual attitudes toward HIV/AIDS risk could be further
studied. The internal consistency for blame questions suggests less reliability and the
coverage of blame attribute had more variability. Future research could address the
refinement of both the blame attribute measurement and their coverage thresholds. The
development of carefully constructed standardized questionnaires to assess PWID’s atti-
tudes toward HIV/AIDS risk could improve this study. Theremay bemissing individuals
and connections rendering the observed network likely different from the full underly-
ing network, and future work could be developed to improve ascertainment of edges
[35] and address missingness and sampling bias in network-based studies [36]. Another
limitation is that this study dataset is dated and the health-seeking behavior of PWID
could have changed since the SFHR study was conducted in the early 1990s. However,
this work provides insights into attitudes during an emerging HIV epidemic.

There are several future directions for research. First, in this study, the disseminated
effect of attitudes was defined as one directional. That is, one individual’s exposure
affects other’s outcome. However, there could be different mechanisms that explain the
disseminated effect and future studies could be conducted to better assess this with
multiple follow-up visits. A more realistic treatment allocation strategy that allow for
correlation of exposure assignment in observational studies could be employed instead
of the Bernoulli individual group assignment strategy assumption [32, 33]. Lastly, the
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variation in community size could also be considered by using improved estimators such
as cluster- and individual-weighted estimators [34]. By understanding attitudes among
PWID toward HIV/ADIS on their health-seeking behavior, future interventions could
be more effective and sustainable to prevent HIV transmission and improve the HIV
continuum of care among PWID.
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Abstract. Understanding how cooperation spreads across social groups
is fundamental in predicting how people will interact with each other in
relation to the use and exploitation of the resources they are provided
with. When social interactions can be mapped to a network, questions
arise about the impact of the connection structure which can benefit
from the literature developed for a dynamical systems. One model that
is widely used as a model to understand the dynamics of cooperation is
the replicator equation. While research has been proposed to adapt that
equation to a structured graph, we offer a straightforward approach by
benefiting from the networked SI diffusion model and replicator equa-
tion to create a replicator equation on a network with state-dependent
diffusive constant. This approach can be applied to any network struc-
ture and features separation of the game and the information diffusion
mechanism. The equilibria towards which the system evolves are here
characterised and discussed.

Keywords: Networks · Cooperation · Replicator · Diffusion Model

1 Introduction

Promoting cooperation in populations of selfish individuals is an extensive field
of research. Numerous studies have used well-mixed or fully connected networks
as a model [15]. At the beginning of the 21st century, it was recognised that
some systems are well suited to be modelled as networks, which prompted the
investigation of the evolution of cooperation in structured networks [8].

A completely connected network, where individuals represented by the ver-
tices of the graph and the edges specify who interacts with whom, can also
represent a well-mixed population in which everyone can interact with everyone
else [5]. However, this does not exploit the flexibility of using a network to cap-
ture the variety of social connections [13] influencing the game. Because of that,
other kinds of simple networks were proposed in this context, including trees,
star networks [16], bipartite and line graphs [3].

A lattice network was proposed in [18,22] as the model, which was appropri-
ate to capture emerging behaviour in the classical prisoner dilemma [10], as also
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mentioned in [4]. The more frequent use of lattice networks followed from using
a uniform, yet not fully mixed, environment in which most of the models origi-
nating in statistical physics can be used to describe the emergence and evolution
of cooperation [12]. Despite their dissimilarity to real social networks, they offer
a beneficial starting point to investigate how structure affects the development
of cooperation [12]. Beyond regular graphs [4], more complex network structures
have been considered, including the random geometric network [5] and the scale-
free network [17]. Although more rare, some games dynamics and control studies
have considered generic network structures [16].

Replicator dynamics is widely used in the evolution of the strategy and the
literature offers a number of enhancement and variation to the original formu-
lation. It works on the assumption that the strategies adopted by players who
are successful in the game are adopted by players who are less successful. The
probability of switching strategy is a function of the difference in player’s payoff
average between each strategy in the game. The strategy of players with greater
fitness or reward is replicated by those with lower achievement in the game as
the game is played repeatedly [20].

Related to structure, the dynamics of the conventional replicator assumes
that the players are engaged in a game and the adoption of global strategies.
Each player engages with a representative sample of the population, and if a
strategy produces a payoff that is higher than the average, the strategy will
be chosen and spread[6]. Understanding that the game could be played on a
structured population with a general network, the individual best strategy may
be different from player to player, as each engage in games with a different set of
neighbours. This, motivates us to consider a multiplier, function of the perceived
payoff from choosing a strategy, to model its dynamics in a general network.

Recently, there has been an increasing interest in the research community in
studying replicator equation on graph. One of the graph structures is the regular
graph [11] which has been considered also in multiplex graphs [14]. Another
approach is to modify the regular graph into a modular regular graph [2]. Beyond
that, the replicator equation has been used in conjunction with different types
of network, including random regular networks, Erdos-Rényi networks, Watts-
Strogatz small world networks, and Barabási-Albert scale-free networks[19].

Application to even more general graphs has been attempted in [7][21]. This
offers some benefit to understanding the impact of network structure on evolu-
tionary dynamics. However, It is quite popular to assume the strategy change
happens simultaneously, with consequent overlooking of dynamic aspects of the
game and information diffusion. Understanding this potential for contribution,
we develop a model to capture evolutionary dynamics that can be implemented
in any population structure with some additional features.

The model mimic the shape of the usual susceptible-infected (SI) diffusion
model on a network. Relating it to the structure of the replicator equation, the
SI model’s infection rate is defined based on the payoff matrix of the replicator
model and the payoffs the players acquire from it. This combination of the repli-
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cator equation and the susceptible-infected (SI) model hints at mechanisms of
information diffusion in the evolution of the strategy on a general network.

There are some novel benefits of the combination. First, it becomes possible
to separate the game and information diffusion process using this new model. The
effect of the game and the diffusion process toward cooperation can be better
understood separately. As this can also be extended into multilayer network
games, it opens up the development of a novel model that uses other diffusion
processes or opinion dynamics and other game types.

2 The Model

The network is modelled as a graph G = (V,E). The node vi is in the set of
nodes V . It can be written as

vi ∈ V. (1)

E is a set of ordered pair of nodes, also known as edges, that is ε ⊆ υ × υ.

Every node will have specific interactions with other nodes based on the con-
nection structure, as captured by the adjacency matrix A = [aij ]. It is necessary
to add the new variable of the neighbour set Hi, which indicates the neighbour
of i.

We consider a Public Goods game with continuous strategy set x := [0, 1]
mapping the extent by which each node is contributing (hence cooperating) to
the public good. With xi indicating the amount by which a node cooperates,
1 − xi will be the proportion of defection. This approach is often referred to as
individual-based mean field [9], where the state variable can be intended as a
continuous variable or as the probability that the node is in one of the binary
states 0 (defection) or 1 (cooperation). In each round of the game, interactions
will incur some payoff for each player or agent, which is the function of xi(t) and
xj(t) as written in Equation

πi(t) = f(xi(t), xj(t)) where vj ∈ Hi. (2)

After receiving the payoff, each player will update their strategy. This change
is modelled in the concept of strategy update dynamics, which depend on strat-
egy and payoff in the neighbourhood. It is written as follows;

ẋ(t) = l({xj(t), xi(t), πi(t), πj(t) : i, j ∈ Hi}), (3)

where the initial condition is xi(0) and the control is ui(t) for each agent
i ∈ V .

3 Replicator Equation Model Development

3.1 Related Model

Before the game dynamics is introduced, let us introduce the dynamics of a well-
known epidemic model, known as Susceptible-Infected (SI) model. In fact, we
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shall note how the diffusion of cooperation within the network can be modelled
as a pandemic, and in particular by means of the SI model. For a constant
size of the population, only the fraction of infected can be considered, with the
susceptible being the complement to 1 to it. The differential model in scalar and
vector form is [1]

ẋi(t) = β(1 − xi(t))
n∑

j=1

aijxj(t), (4)

ẋ(t) = β(In − diag(x(t))) · Ax(t). (5)

The ak
ij has a value 0 or 1, which 1 means that there is an edge between vi

and vj in the layer k. This is the networked version of the basic SI model in a
well-mixed population, which is expressed as

ẋ = β · (1 − x) · x. (6)

It comes from the idea that the cooperation condition is transformed from its
fraction of defection multiplied by its interaction with the neighbour’s fraction
of cooperation, summed up.

Understanding the nature of replicator equation and network SI model, there
is an opportunity to combine these two functions to model replicator equation
in a general network. The connection between two models is as follows:

– Differential equations can represent the replicator and SI epidemic models
with continuous time dynamics,

– The population is divided into many segments or groups in both models, often
called compartments in the SI model,

– In both models, the rates of change depend on how people in the population
interact with each other,

– Both models have equilibrium points that represent stable or steady-state
conditions.

– Both models can be examined using related mathematical methods, such as
stability analysis, to determine how the system behaves around equilibrium
points.

Considering the similarity and connection between two models, the following
section will explain the combination process of the two models.

3.2 Combining the SI Model and Replicator Equation

The payoff matrix that will be used for cooperation and defection is
[
P Q
R S

]
. (7)

The basic equation of replicator is [5]

ẋ = x · (fc − f̄) (8)
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where,
f̄ = x · fc + (1 − x) · fd . (9)

The equation introduces new variables fc, fd, and f̄ which mean the average
payoff of the cooperator, the defector, and the population, respectively. Based
on Eqs. 9 and 8, the modified replicator equation will be:

ẋ = x · (fc − x · fc − (1 − x) · fd), (10)

or,
ẋ = x · (1 − x) · (fc − fd). (11)

The equivalence between an SI model in Eq. 6 and the replicator Eq. 11 becomes
evident when considering

β := fc − fd. (12)

Understanding the similarity between the networked SI model in Eq. 6 and
the replicator equation for the evolutionary game in Eq. 11, the networked evolu-
tionary game can be modelled as a cooperation contagion process. Rather than
representing infectious, the variables x represent cooperation and 1−x represent
defection. The β value is probability of contagion of cooperation, which represent
how superior cooperation compared to defection, and influenced by the amount
of cooperator (namely, x)

3.3 The Network Structure of Information Diffusion

Using the concept from [1], (1−x) ·x can be a diffusion process in the SI model.
Therefore, it means that 1 − x is a percentage of defection in the nodes. It may
change by the proportion of cooperation x with its neighbour, multiplied by the
contagion factor β. The new equation will be

ẋ(t) = β(In − diag(x̄(t)))Ax̄(t) = (fc − fd)(In − diag(x̄(t)))Ax̄(t). (13)

where x̄(t) is the average value of x according to its neighbour at time t or

x̄(t) = diag−1(A1)Ax(t). (14)

Because the information dissemination process will include not only the
neighbour but also self-reinforcing belief loops A will be given by the adjacency
matrix added with the identity matrix or A = A∗ + I.

3.4 Network Structure on Game

As has been introduced in Eq. 12, we assume that the rate at which coopera-
tion spreads depends on the expected payoff difference between cooperation and
defection. In particular, in well-mixed population, a player will expect a payoff
from cooperating equal to fc = x ·P +(1−x) ·Q, which x considers the fraction
of population expected to cooperate and 1 − x expected to defect. Likewise, the
expected reward from defection will be fd = x · R + (1 − x) · S.
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Introducing the role of network structure on β, will modify the equation to
become:

βi = fc − fd =
∑

j

[xj · P + (1 − xj) · Q] − [xj · R + (1 − xj) · S]. (15)

This can be simplified to become

βi =
∑

j

[xj · (P − R) + (1 − xj) · (Q − S)]. (16)

Equation 16 shows the possible role of the network structure in the game. The
variable β represents the cooperator payoff minus the defector payoff. Equation
xj(P − R) means that the player i has the value β which is the result of payoff
of cooperation (P) minus payoff of defection (R), multiplied by xj . The variable
xj is the fraction of cooperation of the neighbour of i. The same applies for
(1 − xj)(Q − S) but for the defecting neighbour. When the neighbour is related
to the network structure, Eq. 16 can be modified into

βi =
∑

j

aij [xj · (P − R) + (1 − xj) · (Q − S)]. (17)

In the matrix form it will become,

β = [A(x · (P − R) + A(1 − x) · (Q − S))] . (18)

Then the complete equation from 18 and 13 will be

ẋ(t) = x̄−x+[Ax · (P − R) + A(1 − x) · (Q − S)]�(In−diag(x̄)) ·Ax̄(t), (19)

where � is the hadamard product between two vectors or two matrices.

4 Results

We can then offer some results about the system’s equilibrium through numerical
simulations. After experimenting with other kinds of networks which produce
consistent results, We present a result from the Erdos-Renyi network with ten
nodes. The initial value of x are equally spread between 0 and 0.9 A key difference
with the classical SI dynamics is in the value of β = fc − fd, which in this
case is between -1 and 1. This is because in the SI model, β is a probability
of transformation 1 − x into x. Therefore, it should not be greater than 1 for
positive value of ẋ (Increasing x) and should not be less than 1 for negative
value of ẋ (decreasing x). In other words −1 ≤ β ≤ 1. Therefore, |Q − S| ≤ 1
and |P − R| ≤ 1.

The simulation is set as an anticoordination game. For the anticoordination
game, Q and R in the payoff matrix should be the highest value. Therefore,
0 ≤ max{Q,R} − min{P, S} ≤ 2
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Looking at Eq. 19, the payoff matrix component that affects ẋ is not P ,Q,R,
or S individually, but P −R and Q−S. It is consistent that if the value of P and
R is changed but the value of P − R remains the same, the equilibrium point
will not change. The same applies for Q − S. The equilibrium point will remain
the same even if the pay-off matrix is changed, as long as P − R and Q − S are
the same.

Thus, we suggest that the equilibrium point is related to the ratio between
the difference of P ,R and the difference of Q,S. Or in other words,

x(T ) ∝ |Q − S

P − R
|. (20)

The simulation also shows that the higher |Q−S
P−R | will make the equilibrium

of x higher. The result of the simulation using some value of |Q−S
P−R | is shown in

Fig. 1.

Fig. 1. Value of x using dynamical equation Eq. 19 where value of |Q−S
P−R

| equal to (a)
0.1,(b) 1, and (c) 10.

5 Conclusion

The replicator dynamics, originally implemented in a well-mixed population, is
one of the most widely used methods as is or developed with some enhancement
and variation. We propose a new approach to model the replicator equation
in a general graph. Although some of the previous findings merge the game
and strategy diffusion process, we try to separate those. Taking advantage of
the replicator equation and SI model, the mechanism of the game and strategy
diffusion process can be better understood.

This modelling approach opens up possibilities for future development. With
the separate mechanism of game and information diffusion, it can be extended
into a two-layer network. The diffusion process can also be exchanged with
another spreading mechanism in the network, such as the opinion dynamic and
another more complex model and mechanism.
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Abstract. The Electronic messaging is a widely used network application, and
the user’s authentication is a necessary aspect. Commonly employed approaches
include PKI and S/MIME encryption protocols for email, but have many secu-
rity threats, such as EFAIL and attack MITM attack. The innovative property of
blockchainminimizes these threats andprovides decentralized sensitive operations
along with high security. It terminates the need of trusted intermediaries. Smart
contracts are implementation of second generation of blockchain technology. The
objective of our work is to provide a secure peer to peer messaging solution. In this
paper, we explain how blockchain would ensure secure communications, and also,
we have designed a model for messaging system that ensures good performance
and data security which verifies the user identities and their public keys, and also
validate the user certificate. The proposed messaging system is decentralized in
nature and allows secure messages exchange.

Keywords: Decentralized Approach · Blockchain · Peer to Peer ·
Communication

1 Introduction

Centralized mixing services are mainly dependent on a trusted or semi-trusted third
party to mix the transaction values of multiple users and produce the output to the
corresponding addresses so it become difficult for the attackers to link the input and
output addresses of the transaction. In centralized systems, all requests pass through a
central authority, which decides whether to accept or reject the request. This approach
eases access control administration because a single entity canmanage all configurations.
Even though they have higher efficiency, they might suffer from risk of a single point
failure like most other centralized systems. Another drawback is that it requires central
authority compulsory permission for any execution. Also, it has lower transparency in
the network. So, an alternative approach to the centralized mixing, i.e., decentralized
mixing, are needed to be explored more, as it would benefits all users with terminating
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the problem of single point failure of centralized mixing. Also, decentralized mixing
doesn’t need any mixing fees.

Peer to peer (P2P) systems eliminates many problems of traditional client-server
approaches, however these features introduced newer issues such as establishment the
trust relationship in P2P networks.

Blockchain consist of a distributed database network responsible for recording all
transactions that occurs in a network. Blockchain was originally introduced for Bitcoin
(a peer-to-peer digital payment system), later on a wide range of decentralized appli-
cations were created. Blockchain technology serves as a potential solution to various
problems [13]. It helps in achieving data integrity, tamper-resistance based on cryptog-
raphy. The blockchain is decentralized, and do not need centralized authority to approve
transactions. All participants must reach a consensus for secure transactions validation,
and earlier records cannot be altered. It is very costly to alter the previous record [6]
(Fig. 1).

Fig. 1. A simple blockchain illustration

Thefirst generation of blockchain technologywere termed asCryptocurrencies. They
are the digital currencies being derived from peer-to-peer network and cryptographic
techniques. One of the earliest and popular examples of cryptocurrency was Bitcoin, an
electronic payment system that permits two different parties to digitally transfer money
amongst users without the need of any intermediate network [3].

The second generation consists of other blockchains networks such as Ethereum that
permits complex distributed applications creation more than just the cryptocurrencies.
Smart contracts, been discussed in the following section, is the main component of this
generation [15]. Ethereum platform is the very popular for smart contracts creation.
Ethereum is a public blockchain with a built-in Turing-complete language to allow
writing any smart contract and decentralised application.

A smart contract is a computer protocol created with purpose of digitally facilitating
and enforcing any negotiation of a contract in any unreliable environment Comparing
with traditional contracts, smart contracts are independent of the third-party requirement,
so have low transaction costs. Smart contract code means “code that is stored, verified
and executed on a blockchain” [10]. The smart contract body has account balance, a
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private storage and executable code. Smart contracts run on peer-to-peer network with
an algorithmic code.

There are two types of smart contracts, deterministic and non-deterministic smart
contracts [16]. A deterministic smart contract is independent of any information from
an external party (from outside the blockchain). Non-deterministic smart contracts are
dependent on information from any external entity. For example, a contract that works
on current information such as weather change, which is not available on the blockchain.

There are different blockchain platforms that can be utilised to develop smart con-
tracts. These include bitcoin - a publicly available blockchain platform for processing
cryptocurrency transactions but have very less compute capability [2]. Other include
NXT- an open source blockchain platform based on proof-of-stake consensus protocol
public blockchain platform that uses smart contracts as templates [1] and Ethereum -
a decentralized open source blockchain which support advanced and customized smart
contracts [7]. Ethereum’s is the most commonly used blockchain because its language
supports Turing-completeness feature which execute exactly as programmed, and can
be accessed anytime, anywhere in the world.

2 Literature Review

Existing literature consists of substantial amount of research based on centralized
access control. However, research on decentralized access control in a collaborative
environment is scarce.

An overview of various scripting languages been used in blockchain networks was
proposed by Seijas et al. [14] in 2017 that introduced Bitcoin, Ethereum and Nxt appli-
cation in implementation of smart contract. They also emphasize some potential security
problems of smart contracts such as re-entrancy, runtime exceptions, incomplete precon-
ditions handling, unpredictable state, immutable bugs, non-randomness and elaborate
question on scripting language to be Turing complete. They also proposed technical
solutions to verify or enhance scripting languages.

Popular implementation of smart contract in improving consumer protection was
given by Fairfield [5]. They proposed various applications for smart contract in the
blockchain network such as in online contracting. Till now, the companies can only
show the price term online, the consumers can either accept or decline the amount.
Using smart contracts there is possibility to bargain about the terms.

Werbach et al. [17] in 2017 explained potential role of startups in smart contract
development thatmight replace contract lawpresent used nowadays. The authors debated
the question on whether smart contracts can be used in laterally with the law. In the end,
they concluded that new opportunities will arise in commercial fields but will not alter
any existing contract law.

One of the first decentralized mixing services was CoinJoin [8] which was proposed
by Maxwell in 2013, which enabled users to mix their own coins in a self-organized
way and not depending on any third party. At the beginning of mixing approach, a set of
negotiation process were conducted amongst the set of paying authority, which provides
confirmation to recipient whom they wish to make the payment. After that a transaction
that ensures all the input/output pairs of sender and receiver were generated and were
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checked by users to ensure their payment destination was properly encapsulated. If the
transaction managed to pass the verification process by all the payers, they would further
sign the transaction jointly and finally published it via blockchain. Comparing with other
centralized methods, CoinJoin minimised the deduction risk of transaction linkage due
to outer/inner attackers and eliminates the coin theft problem. However, there were still
some problems present in the CoinJoin. At the time of negotiation, the users that are
involved in the coin mixing might be able to know the information of other clients.

One of the earliest approaches for secure transactions between users was
BitDNS[11], it success inspired many more numerous approaches. Namecoin is the first
system to be build on decentralized naming system using blockchain, Satoshi believed
that BitDNS should use its independent blockchain and event offered the first proposal
for merged mining as a way to secure blockchain. Namecoin was also amongst the first
solution to zooko’s triangle producing a naming system that is simultaneously secure,
decentralized, and human-meaningful. Namecoin suffers from 51% attacks [4], because
of its insufficient computing power. Blockstack uses the existing internet transport layer
(TCP or UDP) and underlying communication protocols and focuses on removing points
of centralization that exist at the application layer. The underlying blockchain of Bitcoin
limits the performance of Blockstack. [18].

Certcoin [9] removes central authorities and uses the blockchain Name coin as a
distributed ledger of domains and their associated public keys. Every certcoin user stores
the entries blockchain, and this causes two problems, the latency for the controller and
the security problems of mergedmining used by Namecoin. Emercoin [12]: Blockchain-
based PKI that doesn’t remove central authorities but uses Blockchains to store hashes
of issued and revoked certificates. Emercoin has the side benefit of optimizing network
access by performing key and signature verification on local copies of the blockchain.
However, all of these systems faced the same barrier. This consensus involves significant
energy, delay, and computation overhead because of high resource demand for solving
the Proof of work.

3 Methodology

The primary goal of our approach is to secure communications between entities of the
network. The proposed model is to use the blockchain to validate the user’s identity and
to ensure trust between users for exchanging messages with a high level of security.
Each user must communicate only with the user’s identity validated by the smart con-
tract, and consider every other interaction as malicious. Each user who is interested in
communication needs to register their identity and public key in blockchain (Fig. 2).

To achieve such a system, we use Ethereum public blockchain that implements smart
contracts. Ethereum provides a decentralized platform that can be used to deploy decen-
tralized value transfer applications or Dapps. These Dapps are famously called smart
contracts that run exactly as specified in their code without any third-party interference
or censor-ship. This is possible as these smart contracts run on top of a blockchain [15].

A unique address of 20 bytes is assigned to each contract. A deployed contract into
the blockchain cannot be changed. For running a contract, a transaction is sent to contract
address of the user. The transaction is then executed by every node (called miners) in
the network to reach an output consensus. The contract’s state is updated accordingly.
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Fig. 2. System Architecture of proposed model

3.1 Data Validation using Smart Contracts

A smart contract is a computer application that would be entered into the smart contract
blockchain which assists the data owner throughout verifying the auditing outcome as
well as immediately transferring digital assets depending upon that. A smart contract
seems to be a series of digital agreements that are immediately carried out by computer
networks. As illustrated in Fig. 3, smart contracts implemented on a blockchain comprise
a payment & storing technology as well as a total state structure. Smart contracts allow
a complicated series of triggered electronic obligations to be successfully fulfilled based
on the contract users’ wants. The asset condition gets refreshed when a payment update
is received, and the smart contract gets activated to analyze the state machine. When
several of the trigger requirements are fulfilled, the smart contract conducts the trade as
per the predefined data and informs the clients.

P2P networking allows nodes can exchange system resources like computing power
or memory size. Such shared resources are given via the connectivity is provided freely
through other peer nodes without the need to go through a middleman. As a result, when
contrasted to the user approach, the P2P approach would be more decentralized and also
has superior flexibility and scalability. Furthermore, information is dispersed between
nodes without first passing through a centralized link, considerably reducing the risk of
monitoring and the loss of a user’s private details.
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3.2 Proof-of-Work (PoW)

The PoW operation is performed by looking for a value that seems to have a hash
beginning with several zero bits is hashed. It is done by inserting a nonce (doing work)
towards the original value till the generated hash contains the specific quantity of zero
bits. Once this nonce was determined as well as the proof of work is met, the block
cannot be modified without repeating all works for that block and all subsequent blocks.

Excluding the initial block formed by the network (genesis block), every block
includes a hash that comprises the preceding block’s hash plus the nonce associated with
producing the appropriate zero bits, as shown in Fig. 4. The genesis block is the exception
since it has no preceding block to reference: its hash seems to be all zeros. Finally,
the bitcoin payments can be verified and preserved without the need for a centralized
authority according to PoW.

Fig. 3. PoW Function

3.3 Cluster-Authority Selection (CAS)

In the beginning, every node is generally placed and has varying energies. To identify a
cluster authority, every node is given a threshold level. Every node receives k0 as follows
from the method.

k0 =
√ ∈ f

∈ m
(1)

Here, ∈ f = Free breaks, which depend on the range between both the sensor node and
the sink, and ∈ m = Multiple paths, which depend on the range between both the sensor
node and the sink.

The k0 is employed to estimate Ga.

Ga = 1

0.765
∗

√
2

Mπ
∗k0 (2)

Here, (1/0.765) = range of the base station, M = amount of nodes, and Ga = estimation
of actual threshold level.
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Every node determines if it is a cluster authority by calculating the threshold level.
The below equation was used to calculate the actual threshold level for every node.

Ts = Ga

1 − Ga ∗
(
dmod

(
1
Ga

))
[
Ei

Eav
+

(
dmod

1

Ga

)(
1 − Ei

Eav

)]

Here, d = network’s current round, Ei = sensor’s energy, and Eav = average value of
overall network energy.

Every node’s threshold value is matched with that of other nodes. It will become
the node that has the greatest threshold level that’ll be chosen as the cluster authority.
Algorithm 1 depicts the procedure of the CAS technique.

Algorithm 1: CAS procedure 

Function CA Selection () 
i=nearest CA peer () & bigger weight 
if
CA ≠ i then
CA=i  
Connect to (i) 
else if 
do nothing() 
Forward(CAINV) 
end if 

3.4 Blockchain Registration

At first, the initial sender begins the communication with public and private key and
then derives the hash identity. He keeps the private key safe and tends to register its hash
identity with the public key into the blockchain. The public key registers its identity after
being verified and validate by the network.

1. Each public key in the blockchain have an associated timestamp with it
2. The sender signs transactions with the corresponding private key and transfers to the

blockchain
3. The miner checks that the ID of sender is unique and has never previously been

registered in the network
4. If verified correctly, the sender’s certificate is then stored on the blockchain, with the

information such as Id, Public key, the validity of the public key and timestamp
5. Similar registration process is followed by all active nodes in blockchain.

3.5 Smart Contract-Based Verification

When another user B wants to send a message to initial first user, he only presents the
public key ID already present on the blockchain along with the ID of first user with a
time-stamp T to the blockchain. Each message must include the time.
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Fig. 4. Identity generation in blockchain smart contract

1. User B sends the transaction; the smart contract accepts the request from the user B
in the network.

2. The smart contract checks if the request exists on the blockchain. The Smart contract
reads and parses the two users A and B recordings.
a. It performs a Lookup for the output return true.
b. Once the public keys are verified, the Smart contract verifies the validity of the

timestamp and the signature of the transaction.
c. Finally, the smart contract validates the request and return true.
3. User B is then permitted to sends a transaction to user A address
4. Next, user A checks the transaction with the private key and then sends it to B

address
5. After receipt of the transaction by second user B, verification will be performed

again, and mutual authentication will be established between the two entities.

3.6 Send/Receive Message

Once mutual authentication is established, A uses B’s public key and A’s private key to
generate a shared secret. The shared secret can be generating using the Elliptic-curve-
Die-Hellman (ECDH) to encrypt Message. Using ECDH we can generate a shared key
in the network [12] which can be used in message encryption using a symmetric key
algorithm

4 Advantages and Limitations

We have used the blockchain as a distributed identity along with their associated public.
It has eliminated the need of central authorities (CA). Blockchain has been used to
store public keys, digital signature, and information about the peers in the network. The
proposed system is trust worthy, transparent and traceable
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Once established, the smart contract code works accurately as programmed. This
serve as one of the main advantages of the blockchain platform, the code cannot be fal-
sified and will interact as promised, and it would never suffer a downtime. Our proposed
system ensures confidentiality, message integrity, authenticity and reliability.

In blockchain, the smart contract is executed sequentially that affect the performance
of blockchain negatively. With the increasing number of smart contracts, the blockchain
will not be able to scale. In practice, it is impossible to modify an existing contract in
the blockchain after it has been registered in it. The design phase of these contracts will,
therefore, require special attention to avoid any future disappointment.

5 Conclusion and Future Scope

We have proposed a simple step by step method for establishing secures communication
in blockchain network with the help of security properties of blockchain. It demonstrates
how we can use the blockchain network to provide a solution to problems of centralized
PKI. This decentralized architecture offers fault tolerance, redundancy, and transparency
in the network. Further, we intend to implement an upgraded architecture with smart
contracts to validate, store and revoke the certificate on a public blockchain. That cer-
tificate would store user address and its public key, smart contract issuer address, and
also store all data in any off-chain network.

Research on smart contracts has already produced substantial findings, but the dis-
course is still at an early stage, as indicated by the exponential growth in the number
of publications. Blockchain technology and smart contracts are highly innovative envi-
ronments that are developing rapidly outside of scientific research. This becomes clear
not least from the social network analysis. Neither of the two largest nodes are peer
reviewed publications. This suggests that researchers should not hesitate to engage in
active projects and grey literature outside of academic research to monitor current devel-
opments. While the peer review provides the desired security and seal of approval for
this analysis, the process also involves a considerable time lag. For this reason, future
research should always bear in mind the blockchain/smart contract ecosystem and the
grey literature on the topic.
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Abstract. The Conference of Parties (COP) aims to address the global
warming problem through agreements for reducing emissions. However,
the current strategies fall short due to minimal efforts for emission reduc-
tions driven by short-term economic considerations. To better under-
stand under which circumstances countries may have more virtuous
behavior, we propose a static game model. In this model, the players
are represented by governments, and their actions correspond to emis-
sions levels. The utilities are a trade-off between economic benefits and
damage caused by climate change. A key feature of the game is that it
is parameterized by a state, which is precisely the state of the climate
dynamics. We conduct the Nash equilibrium analysis. In the numerical
analysis, we assess the impact of the damage function on the behavior
of the governments.

Keywords: Game theory · Climate change models · Complex
systems · Static game · Potential game

1 Introduction

Global warming is a major environmental concern. The Conference of Parties
(COP) was created to provide solutions to it. Nevertheless, one can see that
efforts to emit fewer CO2 are not very significant. On the contrary, the total of
carbon emissions keeps on increasing whereas the effects of climate change have
been made more apparent over the last decades. The objective of this paper is
to provide some insights into the complex decision-making process of networked
countries that optimize their utility functions by taking into account the dynam-
ics of the global atmospheric temperature and CO2 concentration. Doing so we
provide elements that explain why the CO2 emissions do not drastically reduce
and exhibit some modelling conditions under which CO2 reductions indeed occur.

The state of the art on this subject contains both geophysical-type and
economic-type studies mainly based on empirical or ad-hoc strategies [15,16].
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Typical formal economic analyses do not integrate the geophysical aspect of the
problem (see [1,3] where the temperature dynamics are ignored). A neat game
formulation that includes examining coalition formation, financial transfers, and
cost-sharing was presented in [17]. This work provides insights into the complex-
ity of environmental cooperation, coalition stability, and the design of efficient
and stable agreements. Still, [17] only provides a game-theoretic analysis with-
out considering the temperature but only CO2 concentration dynamics. We also
note that most of the existing game-theoretic studies are based on the work of
Finus and his co-authors ([5–7]).

While the literature on climate change is quite rich, to our knowledge, no
formal game-theoretic work has been conducted where both geophysical aspects
and strategic aspects are considered and modeled mathematically. Models which
couple economic aspects and climate science are referred to as integrated assess-
ment models (IAMs). Among the most famous IAMs one can find the DICE
model introduced by the Nobel Prize winner W. Nordhaus and his collaborators
[14]. For convenience, they usually use simple climate model which matches the
elaborate and complex geophysical models used by the IPCC (Intergovernmental
Panel on Climate Change) [9].

In this study, we make the following key contributions to the field of envi-
ronmental game theory:

• We propose a novel static game that is potential and where the utility function
is a function of the geophysical state and the players’ actions.

• We provide the expression of the unique pure Nash equilibrium, in some
sufficient conditions, for the quadratic case functions.

• We assess numerically, the effects of the economic damage function due to
climate change modeling on the behavior of the countries in terms of CO2

emissions.

The rest of the paper is organized as follows. Section 2 is dedicated to the
presentation of a simple but well-established climate model and its ingredients.
The problem analyzed in this work is formulated and the subsequent game-
theoretical analysis is provided in Sect. 3, where we study the existence and the
uniqueness of the Nash equilibrium in a specific case. Numerical simulations
illustrate our results in Sect. 4 and provide several insights or societal interest.
We conclude the paper and give some perspectives in Sect. 5.

2 Simple Climate Model (SCM)

Let us first present the different pieces of a simple climate model that are coupled
with the game introduced further in the paper. In our game, we are using the
climate structure of IAMs involving three key ingredients: the carbon cycle (CC),
the radiative forcing (RF), and the temperature dynamics (TD).
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2.1 Carbon Cycle Model

In the sequel, we are using the CC model employed in [10] referred to as Joos
model. This model was designed to fit the impulse response functions to a set of
Earth System model simulations done by the CMIP5 model of IPCC. Denoting
by C the vector of CO2 concentrations in some boxes, where a box represents,
in most of the carbon models, the proportion of carbon decaying with respect to
the half-life of carbon in these virtual boxes. We get the following linear model:

C(t + 1) = ACC(t) + bCE(t),
CAT(t) = d�

CC(t). (1)

where

AC =

⎡
⎢⎢⎣

1 0 0 0
0 0.9975 0 0
0 0 0.9730 0
0 0 0 0.7927

⎤
⎥⎥⎦ , bC =

⎡
⎢⎢⎣

0.2173
0.2240
0.2824
0.2763

⎤
⎥⎥⎦ , and dC =

⎡
⎢⎢⎣

1
1
1
1

⎤
⎥⎥⎦ .

2.2 Radiative Forcing

The RF represents the impact of greenhouse gas (GHG) accumulation on
the global radiation balance. The climate equation calculates the average sur-
face temperature of the earth and the average deep-sea temperature at each time
step. The relationship between the accumulation of GHGs and the increase in
RF is derived from empirical measurements. A mathematical representation is
given as:

F (t) = F2×CO2 log2

(
CAT(t)
CAT,ref

)
+ FnonCO2(t), ∀t ∈ R

+, (2)

where CAT,ref is the CO2 concentration in 1750 that is considered as a reference
since it is the pre-industrial time equilibrium, F2×CO2 is a parameter fitted from
data and FnonCO2(t) is the radiative forcing caused by other GHGs. In some
models, such as FUND and PAGE, FnonCO2(t) is modeled by the dynamics of
methane and nitrous oxide while for DICE it represents exogenous forcing. In
this work we use the exogenous forcings proposed by [11], given by:

FnonCO2(t) = f0 + min
{

f1 − f0,
f1 − f0

tf
(t − 1)

}
, ∀t ∈ R

+, (3)

where f0 and f1 are respectively the forcing of GHGs other than CO2 in 2010
and in 2100 and tf is the time step.

2.3 Temperature Dynamic Model

The final part of an SCM is the Temperature Dynamics model. This allows us to
describe the evolution of the global atmospheric temperature based on a specific
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radiative forcing. The literature on the modeling of TD is very rich and we focus
on the model proposed in [8] referred to as Geoffroy model:

{
θ(t + 1) = Aθθ(t) + bθF (t + 1),
θAT(t) = d�

θ θ(t). (4)

where

Aθ =
[
1 − (λ + μ)/c μ/c

μ/c0 1 − μ/c0

]
, bθ =

[
1/c
0

]
, and dθ =

[
1
0

]
. (5)

We highlight that the dynamics depend on some constants: c as the effective
heat capacity of the upper/mixed ocean layer, c0 as the effective heat capacity
of the oceans, λ and μ are chosen with all these constants such that they best
fit the multi-model mean of the CMIP5 set which is the model used by IPCC
[4]. In the sequel, we use the following values: c = 7.3, c0 = 106, λ = 1.13, and
μ = 0.73. Denoting the state of the system by x = (θ, C), the atmospheric CO2

concentration and the atmospheric temperature can be described as follows:

CAT(t + 1) = CAT(x(t), a(t)) = ψC(x(t)) + b̃C

N∑
n=1

an(t), (6a)

θAT(t+1) = θAT(x(t), a(t)) = ψθ(x(t))+ b̃θ ln

(
ψC(x(t)) + b̃C

N∑
n=1

an(t)

)
, (6b)

where b̃C = d�
CbC , b̃θ = d�

θ bθF2×CO2/ ln 2 are positive parameters and ψC , ψθ

are functions of the state defined as ψC(x(t)) = d�
CACC(t) and

ψθ(x(t)) = d�
θ Aθθ(t) + d�

θ FnonCO2(t) − d�
θ bθF2×CO2 log2 CAT,ref .

3 Game-Theoretic Analysis

3.1 Carbon Emission Game Model

This paper considers a static climate game Γ over a set of players N = {1, . . . , N}
that represent non-identical countries. The goal of each player is to maximize
their utility which is a trade-off between their benefits as functions of their
emissions and a weighted global damage as a function of the global atmospheric
temperature. The player’s action is the CO2 emissions that they are planning to
emit over the time step between two decisions (COP meetings). We note that
emin
n and emax

n are respectively the minimum and the maximum emissions that
player n can emit. The action set is A =

∏
n∈N An where An = [emin

n , emax
n ] ⊂ R

is the set of actions for the player n ∈ N . We shall also use a−n to denote
the vector of the actions of all the players except player n. The corresponding
set of actions is A−n. We denote by x ∈ R

6 the state of the system, by an ∈
An the action of player n, and by a ∈ A the vector of all actions. Note that
the atmospheric temperature is a function of the state and of the action i.e.,
θAT(x, a).
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Definition 1. The utility function for the nth player is chosen to be a difference
between an individual benefit function Bn and a (weighted) global cost/damage
function D:

un(x, a) =
2∑

i=0

βi,nai
n − wn

2∑
i=0

γiθ
i
AT(x, a) := Bn(an) − wnD (θAT(x, a)) , (7)

where wn is a positive weight that measures the economic impact of climate
change on player n. In the sequel we denote by (un)n∈N , the family of utility
functions which defines the strategic form of the static game under study.

3.2 Existence and Uniqueness of a Pure Nash Equilibrium

A key solution concept for the interactive situation which involves several play-
ers, each aiming to maximize its own utility function, is given by the Nash
equilibrium. A Nash equilibrium can be interpreted as a possible forecast for
such a situation where decisions are interdependent as they are for the global
carbon emission problem. An important property for a game is precisely to know
whether it possesses a pure Nash equilibrium. It turns out that, by construction,
the game under study has always a pure Nash equilibrium. This is because it
belongs to the class of weighted potential games as defined by Monderer and
Shapley [12].

A game Γ = (N ,A,U) is a weighted potential game if and only if there
exists a potential function φ : A �→ R and (δn)n∈N a vector of positive weights,
such that, for all n ∈ N , an, ãn ∈ An; an �= ãn and a−n ∈ A−n one has
un(an, a−n) − un(ãn, a−n) = δn [φ(an, a−n) − φ(ãn, a−n)].

It can be checked that the following function φ is a potential for the consid-
ered game with weights (wn)n∈N :

φ (x, a) =
N∑

n=1

1
wn

2∑
i=0

βi,nai
n −

2∑
i=0

γiθ
i
AT(x, a). (8)

The previous results yield the existence of at least one pure Nash equilibrium for
the quadratic case. Next, we will provide a necessary condition for uniqueness.
Actually, we consider a concave benefit function and a convex damage func-
tion, since the connection between GDP and emissions is frequently represented
through a concave function. Also, a quadratic damage convex function is mostly
used in the economic literature focusing on the consequences of climate change.

Proposition 1. Supposing that γ2 > 0 and for all n ∈ N , if

γ2b̃
2
θ b̃Cwn

emax
n

exp
(

γ1 + 2γ2ψθ(x)
2γ2b̃θ

− 1
)

− β1,n

2emax
n

< β2,n < 0. (9)

Then the pure Nash equilibrium is unique and it corresponds to all players emit-
ting to the maximum, i.e., an = emax

n , ∀n ∈ N .
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Proof. If min
an∈An

B′
n(an)/wn > max

an∈An

∂ [D (θAT (x, a))] /∂an, then one has a

unique pure Nash equilibrium. Indeed, in this case, the utility functions will
be strictly increasing and then the maximum is attained when all players emit
the maximum of possible emissions. Straightforward computation shows that:

min
an∈An

B′
n(an) = min

an∈An

[β1,n + 2β2,nan]
if β2,n<0

= β1,n + 2β2,nemax
n . (10)

On the other hand:

∂ [D (θAT (x, a))]
∂an

=
b̃θ b̃C

[
γ1 + 2γ2

[
ψθ(x) + b̃θ ln

(
ψC(x) + b̃C

∑N
n=1 an

)]]

ψC(x) + b̃C

∑N
n=1 an

.

(11)
In this part of the proof, we will use the parameters a, b, c, d, k ∈ R that are
constants, and independent of the problem formulated before. They are used to
ease the presentation of the variation of the function. To find the maximum of
(11), we consider the case where γ2 > 0. Let us find the maximum of the function
f : R → R for a, b, c, k ∈ R

∗
+, d ∈ R, given for all z ∈ R by:

f(z) =
k(d + c ln (a + bz))

a + bz
.

When differentiating f with respect to z ∈ R, we find the unique root of f ′

given by z0 =
(
e(1−d/c) − a

)
/b. Then simply computing f ′ ((e−d/c − a)/b

)
=

kbc/e(4−2d/c) > 0, and f ′ ((e(2−d/c) − a)/b
)

= −kbc/e(4−2d/c) < 0 provides that
f ′ is strictly decreasing. We can conclude that the function f is strictly concave
and reaches its maximum at z0, given by f(z0) = kc exp (d/c − 1). Now by using
f with a = ψC(x)+ b̃C

∑N
m=1,m �=n am, b = b̃C , c = 2γ2b̃θ, d = γ1 +2γ2ψθ(x) and

k = b̃θ b̃C , we conclude that the maximum of D′ is given by:

max
an∈An

∂ [D (θAT (x, a))]
∂an

= 2γ2b̃
2
θ b̃C exp

(
γ1 + 2γ2ψθ(x)

2γ2b̃θ

− 1
)

.

After minimizing the benefit variations and maximizing the damage variations
we get that min

an∈An

B′
n(an)/wn > max

an∈An

∂ [D (θAT (x, a))] /∂an is equivalent to:

β1,n + 2β2,nemax
n

wn
> 2γ2b̃

2
θ b̃C exp

(
γ1 + 2γ2ψθ(x)

2γ2b̃θ

− 1
)

,

which is equivalent to (9). �

Proposition 1 basically states that looking at the short term, all the countries
will emit as much as possible as long as the damage function does not have a suf-
ficiently large impact. This can be changed either by considering less optimistic
damage functions or looking at the long-term behavior when the atmospheric
temperature is higher which will lead to larger damages.
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3.3 Expression of the Nash Equilibrium

In this section, the goal is to express the Nash equilibrium actions for the player.
The motivation for this is twofold; it makes interpretations much easier (e.g., the
impact of radiative forcing or the damage severity level on the behavior of the
countries) and it renders the problem of computing the equilibrium very simple
to solve. To express the NE, let us assume from now on that φ is strictly concave.
The pure NE is denoted by a∗ = (a∗

1, . . . , a
∗
N ) where either there exists n ∈ N

such that a∗
n ∈ {emin

n , emax
n }, or a∗ is an interior NE. In the later case, the players

will tend to reduce their emissions.
We recall that the potential function is defined by (8) with the atmospheric

temperature θAT given by:

θAT (x, a) = ψθ(x) + b̃θ ln

(
ψC(x) + b̃C

N∑
n=1

an

)
. (12)

Proposition 2. If φ is strictly concave and differentiable, the Nash is the vector
a∗ = (a∗

1, . . . , a
∗
N ) that satisfies, for all n ∈ N , the following N equations

1
wn

B′
n(an) − ∂ [D (θAT (x, a))]

∂an
= λn − λn. (KKT)

with λn, λn ≥ 0 with λ∗
n(a∗

n − emin
n ) = 0 and λ

∗
n(a∗

n − emax
n ) = 0 being the KKT

multipliers with associated constraints.

Proof. The proof is straightforward: φ is continuous over A, then there exists
a NE, a∗. Moreover, if φ is strictly concave, then the NE is unique. Since the
constraints are linear we can apply the KKT conditions. �

In the proposition below, we provide sufficient conditions to express the NE.
To do so, we will need the following lemma on the zeros of the equation rs2 +
ps + q = k ln (rs + v).

Lemma 1. For k, p, q ∈ R, r, v ∈ R
∗
+, and for all s ∈ R such that rs + v > 0,

the following equation in s:

rs2 + ps + q = k ln (rs + v),

• has at most one solution if rk + (2v − p)2/8 < 0,
• has at most two solutions if rk + (2v − p)2/8 = 0,
• has at most three solutions if rk + (2v − p)2/8 > 0.

When φ is strictly concave, we can apply the KKT conditions to find the unique
pure NE. Let us assume that φ is continuous on A, so there exists a pure NE,
denoted by a∗. Applying the Proposition 2, we have for every n ∈ N , a∗ verifies
(KKT). This leads to the sufficient condition of the unique interior NE given in
the following proposition.
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Proposition 3. Assuming that φ is strictly concave with β2,n �= 0,∀n ∈ N , and
denoting Λn := (wn

(
λn − λn

) − β1,n)/2β2,n. If

b̃2θ b̃
2
Cγ2

N∑
n=1

wn

β2,n
+

(
ψC(x) + b̃C

∑N
n=1 Λn

)2

8
< 0, (13)

then the unique pure NE of the game Γ is given by a∗ = (a∗
1, . . . , a

∗
N ), where for

all n ∈ N ,

a∗
n = Λn +

wnb̃θ b̃C

[
γ1 + 2γ2ψθ(x) + 2γ2b̃θ ln

(
ψC(x) + b̃C S̃

)]

2β2,n

(
ψC(x) + b̃C S̃

) , (14)

where S̃ is the unique solution of the equation rs2 + ps + q = k ln (rs + v), with
r = b̃C , p = ψC(x) − b̃C

∑N
n=1 Λn, k = b̃2θ b̃Cγ2

∑N
n=1 β2,n/wn, v = ψC(x), and

q = −ψC(x)
∑N

n=1 Λn − ∑N
n=1 wnb̃θ b̃C (γ1 + 2γ2ψθ) /2β2,n.

Proof. Using Proposition 2, for all n ∈ N one has

1
wn

(β1,n + 2β2,na∗
n) − [γ1 + 2γ2θAT(x, a∗)]

∂θAT

∂an
(x, a∗) = λn − λn.

Dividing by β2,n �= 0 and using the notation Λn introduced in the statement, we
get that ∀n ∈ N ,

a∗
n = Λn +

wnb̃θ b̃C

[
γ1 + 2γ2ψθ(x) + 2γ2b̃θ ln

(
ψC(x) + b̃C

∑N
n=1 a∗

n

)]

2β2,n

(
ψC(x) + b̃C

∑N
n=1 a∗

n

) . (15)

Let us introduce the notation s :=
∑N

n=1 a∗
n. Summing (15) over n ∈ N yields:

s =
N∑

n=1

Λn +
N∑

n=1

wn

2β2,n

b̃θ b̃C

[
γ1 + 2γ2ψθ(x) + 2γ2b̃θ ln

(
ψC(x) + b̃Cs

)]

ψC(x) + b̃Cs
,

which can be re-written as rs2 + ps + q = k ln (rs + v) with r, p, q, v, and k
given in the statement above. By using the results of the lemma 1, we conclude
that if (13) is verified then there exists at most one solution S̃ of the equation
rs2 + ps+ q = k ln (rs + v) in

[∑N
n=1 emin

n ,
∑N

n=1 emax
n

]
. Thus, the NE is unique.

4 Numerical Analysis

We will illustrate the previous theoretical results and the behavior of the pro-
posed model. We have implemented a code that allows us to play with the
parameters, whether they are from the SCM or the benefit and damage func-
tions. We set N = 6 with the parameters specified in Table 1, where AOC refers
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Table 1. Specific values for each player in 2020.

Player China USA EU India Russia AOC

emax
n (GtCO2/y) 11 7 4 3 2 5

GDPmax
n (109$) 14630 19290 13890 2500 1420 11640

wn 1.1847 1.1941 1.1248 0.9074 1.2866 1.1847

to all other countries. For the presented graphs, we will use the CC from [10]
and the TD from [8], as they are often considered the closest to the IPCC results
[4,13].

We illustrate the case where the benefit function is quadratic in an, and the
damages are quadratic and re-scaled, i.e.,

un(x, a) = GDPmax
n

(
2

an

emax
n

−
(

an

emax
n

)2

− wn [D (θAT(x, a))]α
)

, (16)

where α represents the power of the damages and measures the severity level of
climate change on the economics. The static game is played repetitively every
five years until 2100 while updating emax

n and GDPmax
n at each iteration of the

game. For more information, refer to [2].

Fig. 1. The increase of the forecast temperature due to the CO2emissions at NE in
different scenarios.

It is interesting to note that higher α induces higher damages and conse-
quently lower CO2 emissions and smaller increases in the temperature. For large
α (e.g., α = 5), China, the USA, the EU, and AOC reduce their emissions until
they completely stop emitting (see 2). In (Fig. 1), the temperatures in 2100 range
from around +3.2◦C for low damages, resembling a Business-as-Usual (BAU)
scenario, to +1.6◦C for high damages. These temperature levels are in line with
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the projections of the IPCC [13] and correspond to the emission trajectories of
the countries. In order to prevent the over-warming of the planet by 2100 we
need to revise the modeling of the economic damages and change the strategies
accordingly.

Table 2. Time at which the countries stop emitting versus α (which measures the
economic damage due to climate change). The symbol / means no stopping.

Player α = 1 α = 2 α = 3 α = 4 α = 5 α = 6 α = 7 α = 8 α = 9 α = 10

China / / 2065 2020 2020 2020 2020 2020 2020 2020

USA / / 2075 2020 2020 2020 2020 2020 2020 2020

EU / / / 2045 2020 2020 2020 2020 2020 2020

India / / / / / / / 2095 2085 2080

Russia / / / / / / / / / /

AOC / / 2080 2025 2020 2020 2020 2020 2020 2020

Table 2 shows that if the damages are not significant, i.e. α is small, the
CO2emissions of the players will not stop before 2100. Low damage hampers
the cooperation recommended by the IPCC. When α is large enough, the NE
strategies of the players are to stop emitting as soon as possible. Except for
Russia which continues to emit no matter how big is the damage, and for India
which stops emitting only when α ≥ 8. This can be explained by the fact that the
benefits of India and Russia are still very big compared with the corresponding
loss. The product wnGDPmax

n has to be increased for these countries in order to
stop their emissions.

5 Conclusion

In this paper, we have introduced and analyzed a static game that provides some
insights into the strategic behavior of governments in terms of carbon emissions
with respect to climate change. Each government is assumed to implement a
trade-off between a benefit due to emitting and damage due to climate change.
The Nash equilibrium of the game being a suitable solution concept, we have
studied the existence and uniqueness of the equilibrium and also addressed the
problem of expression of the actions at equilibrium. The numerical analysis pro-
vides several insights into the carbon emission problem. For instance, it is seen
that to reach the Paris Agreement on climate (namely, maintain the temperature
excess below 2◦C), the damage to climate change has to be significant enough.
This constitutes a sufficient condition under which governments will sponta-
neously reduce their emissions. Depending on the severity level of the damage
(which is measured by the exponent α), governments are incited to stop emit-
ting CO2 and it is shown to be possible to (roughly) forecast a time at which
a country stops emitting. The obtained times are typically higher than values
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claimed publicly (e.g., 2050). To conclude this paper, we would like to mention
several extensions of the present work. First, the present problem formulation
might be enriched by considering the planning aspect for which countries con-
sider long-term utilities instead of short-term ones. Second, the emergence of
cooperation might be studied by considering other solution concepts such as
the social optimum or Nash bargaining solution. Thirdly, the damage functions
might be more individualized while maintaining the potential structure of the
game. At last, the present work can be seen as the first necessary step to be
taken to study formally repeated interactions between the players, e.g., through
a repeated or stochastic game model. In such a framework, it might be assumed
that the action and state of a country are not perfectly observed by the others,
which defines a non-trivial observation graph to be taken into account in the
equilibrium analysis.
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Delmotte, V., et al. (Eds.), Climate Change 2021: The Physical Science Basis.
Contribution of Working Group I to the Sixth Assessment Report of the Intergov-
ernmental Panel on Climate Change (2021)

10. Joos, F., et al.: Carbon dioxide and climate impulse response functions for the
computation of greenhouse gas metrics: a multi-model analysis. Atmos. Chem.
Phys. 13, 2793–2825 (2013)

11. Kellett, C.M., et al.: Feedback, dynamics, and optimal control in climate economics.
Annu. Rev. Control 47, 7–20 (2019)

12. Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14, 124–143
(1996)

https://doi.org/10.5281/zenodo.8283364
https://doi.org/10.5281/zenodo.8283364


394 B. Mroué et al.
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Abstract. The modelling of stochastic linear systems in large complex
networks is intractable computationally and may be impossible due to
data-collection costs or privacy concerns. Graphon theory provides an
approach to overcome these issues by providing potentially simple limit
objects for infinite sequences of graphs, permitting one to approximate
arbitrarily large networks by infinite dimensional operators. Graphon
system theory is extended here to stochastic systems by the use of Q-
noise, a generalization of Wiener processes in finite dimensional spaces
to processes in function spaces. The theory is developed for low rank
systems as a special case.

Keywords: Random graphs · Graphons · Low rank approximations

1 Introduction

Large graphs are common objects in modern society. From the Internet of Things
to electrical generation and distribution to social networks, complex networks are
the focus of intense research. Moreover, dynamic systems on networks constitute
the models for many phenomena which have a significant impact on society,
for instance epidemics [6], unemployment rates [5], and consensus formation
[7]. However, for sufficiently large networks such problems are intractable when
tackled with standard analysis methods.

One approach to modelling large networks is to approximate a convergent
graph sequence by a function called a graphon [22]. Informally, a graphon is
the limiting function of an adjacency matrix mapped to the unit square. Using
graphons for modelling large graphs replaces very large complex networks with
a single function, which may be useful in the modelling and design of complex
systems.

Much of the previous work with dynamic graphon systems has been focused
on deterministic control systems ([12,13]), and stochastic mean field games
on graphons have been investigated in ([3,4,15,24]). A centrality measure for
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graphon mean field games is provided in [11]. Gao and Caines [14] showed that
deterministic harmonic oscillators can be optimally controlled by a low rank
approximation of the network, and that the error between the graphon limit and
the finite network can be made arbitrarily small. Dunyak and Caines [9] showed
that Gaussian noise on the unit interval ([10,16,21]), termed Q-noise, is the
appropriate limit for system noise on sequences of systems subject to Brownian
disturbances, as would arise, for instance, in stochastic versions of the determin-
istic graphon systems above. Independently, a numerical approach for systems
of this type was explored in [23]. In this article it is numerically illustrated that
the behavior of stochastic systems on large networks can be adequately modelled
by their graphon limits. In particular, when the limit graphon is low rank, the
limit model can be efficiently computed with a complexity depending only on
the rank.

1.1 Motivation: Networked Systems and Graphons

Define a graph GN
A = (VN , EN

A ) with N < ∞ vertices, with associated adjacency
matrix AN . Let xN : [0, T ]N → R be a vector of states where the ith value is
associated with the state of the ith vertex of the graph. For clarity of notation,
systems where each node has a single state are considered. The theory can be
extended to systems where each node has multiple states as well. Let the (i, j)th
entry of the matrices AN be the impact of the state at node i on node j, respec-
tively. For each node, define a Brownian motion WN

i disturbance with positive
covariance matrix QN . Let aN be a constant describing the impact of the state
of a node on itself.

Finally define a networked system on a graph with the following equation for
each node,

d[xi
t]

N
i=1 =

⎛
⎝ 1

N

N∑
j=1

AN
ij xj

t + aNxi
t

⎞
⎠ dt + dWN

i (t) =: dxN
t . (1)

As the graph becomes larger, the networked system adjacency matrix AN

approaches its associated graphon [22], which is a bounded measurable func-
tion mapping [0, 1] × [0, 1] → [0, 1], denoted A. The graphon limit system is
denoted as

dxt = (A + aI)xtdt + dwt, (2)

where xt is a square-integrable function on the unit interval, A is a graphon, a is
a real constant, I is the identity operator, and wt is a Q-noise, a generalization of
Gaussian noise from finite-dimensional vectors to the unit interval which will be
explained in detail in Sect. 2.2. An example of this network convergence is shown
with the two finite networks in Fig. 1 converging to the graphon limit in Fig. 2. In
particular, this shows a uniform attachment graph [22] converging to its graphon.
If the adjacency matrix of a graph sequence converges to a continuous graphon
W (α, β) in an ordered manner, the normalized degree of a node associated
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Fig. 1. Graphs with 50 and 500 nodes,
respectively, where the “pixel picture” of the
associated adjacency matrices converge to
the graphon in Fig. 2 when mapped to the
unit square. Lower indexed nodes are more
likely to be connected than higher indexed
nodes.

Fig. 2. The graph sequence converges to the
uniform attachment graphon W = (α, β) =
1 − max(α, β), α, β ∈ [0, 1].

with parameter α approaches the integral of W (α, β) over β. In this sense, the
fraction of vertices in a large graph that are neighbors with a specific node with
parameter α is given by the graphon, as shown in Fig. 3. The absolute value of
the eigenvalues are shown in Fig. 4. As there is a single eigenvalue with a much
larger magnitude than the others, this implies that there is one eigenvector of
the adjacency matrix that dominates all other eigenvectors.

Fig. 3. The normalized degree of the 500
node adjacency matrix in Fig. 1 plotted
against the integral of W (α, β) = 1 −
max(α, β) over β ∈ [0, 1].

Fig. 4. The distribution of the absolute
value of eigenvalues in the 500 node adja-
cency matrix. The largest eigenvalue has a
magnitude of 202.7 (with index 0), the sec-
ond (with index 1) has a magnitude of 26.0,
and the rest of the eigenvalue magnitudes lie
below 20, clustering at zero.

Another classic example is the Erdős-Renyi graph (also known as a Poisson
graph [19]), where each node in the graph is connected to other nodes with
probability p, as in Fig. 5. The resulting graph is a dense network with a structure
that is complex for any finite network size, but is very simple in the limit (Fig. 6).
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Fig. 5. Graphs with 50 and 500 nodes,
respectively, of an Erdős-Renyi graph with
connection probability p = 0.5. As the num-
ber of nodes increases, the adjacency matrix
converges analytically to the constant 6.

Fig. 6. The graph sequence in Fig. 5
converges to the constant graphon
W (α, β) = 0.5, α, β ∈ [0, 1].

W-random graphs [22], an extension of Erdős-Renyi graphs, determine the
connection probability between two nodes by assigning a latent parameter α ∈
[0, 1] to W : [0, 1]×[0, 1] → [0, 1]. As the number of nodes in the graphs increases,
the adjacency matrix can be mapped to the kernel W . This approach uses the
geometric intuition behind graphs defined on latent spaces (e.g. [20]), in this
case the nodes are uniformly distributed on the space [0, 1].

Stochastic block matrices [18] can be considered a special case of W-random
graphs, where the relevant kernel is a piece-wise constant function on the unit
square.

2 Preliminaries

2.1 Notation

– The set of vectors of real numbers of dimension m is denoted Rm.
– Graphons (i.e. bounded symmetric [0, 1]2 functions used as the kernels of

linear integral operators) are denoted in italicized bold capital letters, such
as A.

– L2[0, 1] denotes the Hilbert space of real square-integrable functions on the
unit interval which is equipped with the standard inner product.

– The L2[0, 1] identity operator is denoted I, such that Iu = u for all u ∈
L2[0, 1]. In finite dimensions, the Rn identity operator is denoted I.

– Operators of the font A have the structure A = A+aI, where A is a graphon
and a is a real scalar.

– A linear integral operator with the kernel Q : [0, 1]2 → R acting on a function
f ∈ L2[0, 1] is defined by

(Qf)(x) =
∫ 1

0

Q(x, y)f(y)dy, ∀ x ∈ [0, 1]. (3)

When unambiguous, the argument x of (Qf)(x) is dropped.
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– Denote Q to be the set of bounded symmetric non-negative functions. A
symmetric function Q : [0, 1]2 → R is non-negative if the following inequality
is satisfied for every function f ∈ L2[0, 1],

0 ≤
∫ 1

0

∫ 1

0

Q(x, y)f∗(x)f(y)dxdy := 〈Qf ,f〉 < ∞. (4)

– A partition of the unit interval of N increments is denoted PN =
{P1, · · · , PN}, where P1 = [0, 1

N ] and Pi = ( i−1
N , i

N ]. An L2[0, 1] function
which is piece-wise constant on each section Pk of the unit interval is denoted
v[N ], and a self-adjoint L2[0, 1] operator M which is piece-wise constant on
the Cartesian product PN ×PN is denoted M [N ] (or M[N ], if it is of the form
M

[N ] = M [N ]+mI). This formulation is necessary for mapping N dimensional
graph systems to the unit interval, as in Sect. 2.4.

2.2 Q-Noise

Q-noise processes, first applied to graphon systems independently in [9,23], are
L2[0, 1] valued random processes that satisfy the following axioms.

1. Let w(α, t, ω) : [0, 1] × [0, T ] × Ω → R for all t ∈ [0, T ], α ∈ [0, 1], ω ∈ Ω be a
random variable where, for each t ∈ [0, T ], w(t, α, ω) is square-integrable in
α. For notation, ω is suppressed when the meaning is clear.

2. For all α ∈ [0, 1], w(α, t)−w(α, s) is a Brownian motion increment in time for
all t, s ∈ [0, T ], with w(α, t)−w(α, s) ∼ N (0, |t−s|Q(α, α)) where w(α, 0) = 0
for all α ∈ [0, 1].

3. Let wt−t′(α) = w(α, t)−w(α, t′). Then E[wt−t′(α)ws−s′(β)] = |[t, t′]∩[s, s′]|·
Q(α, β).

4. w(α, t, ω) −w(β, s, ω) is piece-wise continuous almost everywhere in t, s and
α, β.

Q-noise processes have a natural construction in separable Hilbert spaces.
Let {W1,W2, · · · } be a sequence of independent Brownian motions. Let Q ∈ Q
have a diagonalizing orthonormal basis {φk}∞

k=1 with eigenvalues {λk}∞
k=1. Then

g(α, t, ω) =
∞∑

k=1

√
λkφk(α)Wk(t, ω) (5)

is a Q-noise process lying within the span of the processes {W1,W2, · · · }. By
Mercer’s theorem (see, e.g. [17]), Q has the eigenvalue and basis representation:

Q(x, y)(t) =
∞∑

r=1

√
λkφk(x)φk(y) = E[g(α, t, ω)g(β, t, ω)]. (6)

The common name for such a process is Q-Wiener process ([10,16]). A formula-
tion like this is necessary, as when the covariance operator Q is unbounded, the
random variable wt may have a singular probability measure.
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2.3 Linear Dynamical Systems

Definition 1 (Q-noise Dynamical Systems). Let x : [0, 1] × [0, T ] → R be
an L2[0, 1]×[0, T ] function with a given initial condition x(·, 0) = x0. Let A ∈ M
be a bounded linear operator from L2[0, 1] to L2[0, 1] such that AQA

∗ ∈ Q. This
defines a Q-noise denoted wt.

Given x0 ∈ L2[0, 1], a linear dynamical system with Q-noise is an infinite
dimensional differential system satisfying the following equation,

dxt(α) = (Axt)(α)dt + dw(α, t), (7)

where, for a partition of [0, t], (0, t2, · · · , tN−2, t),

∫ t

0

dw(α, s) = lim
N→∞

N∑
k=1

(w(α, tk+1) − w(α, tk)), (8)

in the mean-squared convergence sense.

2.4 Finite Network Systems

Consider a networked system of the form,

dxt = (
1
N

(ANxt) + aNxt)dt + dWN
t , (9)

where AN is an N × N adjacency matrix and WN
t is a collection of N Wiener

processes with covariance matrix QN . The finite dimensional system is mapped
to piecewise constant functions on the unit square (see [13]). Define the uniform
partition on the unit interval as PN = {P1, · · · , PN}, where P1 = [0, 1

N ] and
Pi = ( i−1

N , i
N ]. Then, the following step function graphon for N nodes can be

defined for all x, y ∈ [0, 1]:

A[N ](x, y) =
N∑

i=1

N∑
j=1

AN
ij1Pi

(x)1Pj
(y). (10)

Define the covariance of the disturbance as a piece-wise constant function
Q[N ] analogous to the finite dimensional covariance matrix in a similar manner.
By mapping the Wiener processes WN

t to the corresponding elements of the unit
interval w[N ]

t the corresponding system in L2[0, 1] can be expressed as

dx
[N ]
t =(A[N ] + aN I)xN

t dt + dw
[N ]
t . (11)

This system, defined on piece-wise constant functions on the unit interval, is iden-
tical to the system on the network. Further, as the network size grows infinitely
large and if A[N ] converges to A in the L2 operator norm, the network system
solution converges to the solution of the graphon system in the L2[0, 1] norm,

dxt =(A + aI)xtdt + dw∞
t . (12)

The proof is presented in [9].
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3 Numerical Examples

For the following numerical simulations, the unit interval [0, 1] is partitioned into
N segments. In each example, N = 300, and the state of the simulated systems
follow the form

dx
[N ]
t = (A + aI)x[N ]

t dt + dw
[N ]
t , (13)

x
[N ]
0 (α) = sin(2πα), (14)

as in Eq. (11). This discretized system is used as an approximate solution to the
infinite dimensional system. A terminal time of T = 1 and Euler’s method with
a time increment of Δt = 0.001 are used.

3.1 Low Rank Graphon Systems

Approximation of Large Random Graph System with Finite Rank
Limit. One of the primary areas of interest in graphon theory is to approxi-
mate systems on large graphs with their corresponding graphon systems. One
approach to creating these random graphs is to use the W-random graph method.
This method takes a set of vertices V , where each vertex has a type αi ∈ [0, 1],
a kernel M : [0, 1]2 → [0, 1] and, for each pair vi and vj , creates an edge eij with
probability M(αi, αj) independently. To demonstrate that a low rank graphon
system is computationally simpler than a finite graph system, consider the basis
function f and kernel M ,

f(α) = α2 − 1, α ∈ [0, 1], (15)
M(α, β) = f(α)f(β), α ∈ [0, 1], β ∈ [0, 1], (16)

where the features αi are each mapped uniformly to the unit interval, with
a spacing of 1

300 units. The finite graph system is approximated by finding a
300 node graph using the W-random graph method with kernel M , and has
adjacency matrix AN . This is mapped to the piecewise constant graphon A[N ].
The adjacency matrix used for this demonstration is shown in Fig. 7, which has
the graphon limit Fig. 8.

The Q-noise covariance Q is set to be Q = 2M . Then, the two sys-
tems under consideration are the piecewise constant graphon system defined
by {A[N ] = A[N ] + I,Q} and the limit graphon system {A = M + I,Q}, the
initial condition is set to be x

[N ]
0 (α) = x0(α) := sin(2πα), α ∈ [0, 1], and their

trajectories are shown in Fig. 9. While the adjacency matrix AN has some struc-
ture, it is nearly full rank despite being generated from a low rank function.
Thus, characterizing the finite graph system state xN

t defined by the parameters
{A[N ],Q} requires a state space of 300 states, one state for each node. Further,
adding nodes to the graph increases the computational complexity of the sys-
tem quadratically, as each additional node increases the number of connections
in the graph. The limit graphon system xt defined by the parameters {A,Q},
is effectively rank two, despite existing in L2[0, 1]. The system has two modes,
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Fig. 7. The adjacency matrix found using
the W -graph generation method with kernel
M (α, β) = f (α)f (β). Notably, the adjacency
matrix is rank 299.

Fig. 8. The graph limit of AN , which con-
verges to the graphon A(α, β) = (α2 −
1)(β2 −1). This is a single dimensional linear
operator, mapping any function x ∈ L2[0, 1]
to the space spanned by f (α) = (α2−1), α ∈
[0, 1].

given by the single eigenfunction of A and Q (assumed to have identical invari-
ant subspaces) and the orthogonal complement of the initial condition with the
eigenfunction denoted x̆0. Recalling that 〈f , φ〉φ is the orthogonal projection of
f onto a normalized function φ, the state trajectory can be described with the
following system of differential equations,

xt = xφ
t · φ + x̆t, xφ

t ∈ R, x̆t ∈ L2[0, 1] (17)

φ(α) =
α2 − 1√∫ 1

0
(β2 − 1)2dβ

, (18)

dxφ
t = (〈Aφ, φ〉 + a)xφ

t dt + d〈wt, φ〉, (19)

xφ
0 : = 〈x0, φ〉 = 〈sin(2πα), φ〉, (20)

dx̆t(α) = ax̆t(α)dt, (21)
x̆0(α) = sin(2πα) − 〈φ,x0〉φ(α). (22)

Notably, as the covariance operator Q of wt shares an eigenfunction with the
driving operator A, the Q-noise wt is one dimensional, and only impacts the state
along the φ dimension. Hence, the orthogonal component x̆t(α) is deterministic
and, for each α ∈ [0, 1], evolves independently of all other indices. The system
evolution is shown in Fig. 10. The root mean squared error over the time interval
[0, 1], shown in Fig. 13, indicates that the rank one graphon closely approximates
the finite graph system.

3.2 Stochastic Block Matrices

Stochastic block matrices are special cases of W-random graphs, as the kernel
used is a piece-wise constant function. As a result, every system defined on a
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Fig. 9. Top Left: the state trajectory evolved using 7 as the driving operator. Top Right: Graphon
approximation of the system. Bottom Left: The error between the original system and the graphon
limit system. Bottom Right: The root of the squared error of the system state over time.

stochastic block matrix is finite rank, with eigenfunctions corresponding to the
eigenvectors of the kernel matrix.

For example, suppose that there is a system on a graph where each node is
contained in one of two sets, S1 and S2, and that there are 150 nodes of each
set. A node in set S1 connects to a node of set S1 with probability 0.8, and to a
node of set S2 with probability 0.2. Nodes of set S2 connect to other S2 nodes
with probability 0.5. The adjacency matrix of such a network is shown in Fig. 14,
and the corresponding limit graphon kernel is shown in Fig. 15. The system on
the associated finite graph is shown in Fig. 16, and the graphon limit system is
shown in Fig. 17. The two trajectories are very similar, indicating that the rank
two graphon system is a good approximation.

4 Future Directions

The primary future directions for this research are in the applications of low
rank graphon theory and Q-noise theory to various systems. For instance, an
SIR epidemic model of a population on a very large graph can be modelled
as a system on a graphon [8], and the use of low rank graphons gives insight
into the evolution of such systems. A similar approach has been used to model
opinion dynamics on piece-wise constant graphons (i.e. graphons associated to
stochastic block matrices), a special case of low rank graphons [1]. Currently, the
introduction of Q-noise into the deterministic estimation and control framework
of [12,13], and in particular to the low rank analysis of [14], is under development.
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Fig. 10. The low rank approximation of

the adjacency matrix system shown in Fig. 9.

It is additively composed of two components,

shown in Figs. 11 and 12.

Fig. 11. The state component of the initial

condition projected onto the eigenfunction of

A . In this case, the normalized eigenfunction

is φ(α), shown above.

Fig. 12. The component of the initial condi-
tion orthogonal to φ(α). Because the covari-
ance operator of the noise is rank one and
shares the same eigenfunction as A , there is
no noise in the orthogonal component.

Fig. 13. The root mean squared error as the
system evolves over time. The error at T = 1
is less than 0.05, indicating that the 300 node
system is well approximated by the low-rank
system.

One limitation of the graphon approach proposed is that each node in the
graph is mapped to a single segment or point on the unit interval, meaning
that each node can only be indexed by a single parameter. Embedded graph
limit theory [2] gives an appropriate graph limit for graphs where each node has
multiple parameters, or is otherwise distributed over a geometric space such as
R2 or R3. The incorporation of Q-noise into such graph limit systems may be
shown to be straightforward.
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Fig. 14. The adjacency matrix of a 300
node stochastic block matrix. Similarly to the
previous W-random graph, it is full rank.

Fig. 15. The stochastic block matrix kernel
A expressed as a piece-wise constant function
on the unit square.

Fig. 16. The state trajectory associated

with the randomized matrix AN (Fig. 14).

Fig. 17. The state trajectory of the graphon
limit system, evaluated as two orthogonal
components.
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Abstract. Uniform sampling from the set G(d) of graphs with a given
degree-sequence d = (d1, . . . , dn) ∈ N

n is a classical problem in the
study of random graphs. We consider an analogue for temporal graphs
in which the edges are labeled with integer timestamps. The input to this
generation problem is a tuple D = (d, T ) ∈ N

n × N>0 and the task is to
output a uniform random sample from the set G(D) of temporal graphs
with degree-sequence d and timestamps in the interval [1, T ]. By allowing
repeated edges with distinct timestamps, G(D) can be non-empty even if
G(d) is, and as a consequence, existing algorithms are difficult to apply.

We describe an algorithm for this generation problem which runs in
expected linear time O(M) if Δ2+ε = O(M) for some constant ε > 0
and T − Δ = Ω(T ) where M =

∑
i di and Δ = maxi di. Our algorithm

applies the switching method of McKay and Wormald [16] to temporal
graphs: we first generate a random temporal multigraph and then remove
self-loops and duplicated edges with switching operations which rewire
the edges in a degree-preserving manner.

1 Introduction

A common problem in network science is the sampling of a graph matching a
given degree-sequence. Formally, given a sequence of integers d = (d1, . . . , dn),
we say that a graph G = (V,E) with nodes V = {v1, . . . , vn} matches d if the
number of incident edges at node vi equals di for each 1 ≤ i ≤ n. We then define
G(d) as the set of all simple graphs (e.g. without loops or multi-edges) matching
d and ask for a uniform random sample G ∈ G(d). Such a sample is useful as
it allows us to construct null models for testing the influence of the degrees on
other graph properties of interest [4,11]. In addition, this sampling problem is
tightly related to the task of estimating |G(d)| [16,17].

Temporal graphs are capable of modeling not only the topology but also the
time structure of networks (see [14] or [6] for an overview). Possibly the most
common type of temporal graph augments each edge of a classical graph with
an integer timestamp. Here, we work by the following definition.

Definition 1 (Temporal Graph). A temporal (multi-)graph G = (V,E)
consists of a set of nodes V = {v1, . . . , vn} and a (multi-)set of edges E =
{e1, . . . , em} where each edge is a tuple ({u, v}, t) ∈ {{u, v} : u, v ∈ V } × N>0.

Long version with proof details available at https://arxiv.org/abs/2304.09654.
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In terms of semantics, the presence of an edge ({u, v}, t) indicates that the nodes
u and v are connected at time t. For the purpose of modeling networks, it
additionally makes sense to restrict ourselves to simple temporal graphs which
exclude certain types of edges. To this end, we call a temporal graph G = (V,E)
simple if the edge set E contains no loops and no edges between the same nodes
with the same timestamp, i.e. iff u �= v for all ({u, v}, t) ∈ E and E is a set.

Given its prominence in classical graph theory, it is reasonable to assume that
parameterizing temporal graphs by the degrees can yield a similarly useful model.
For instance, the distribution of active times of nodes and edges in real-world
temporal graphs has been observed to follow a power-law [2,13,14], which can
be reproduced by sampling a uniform random temporal graph with power-law
degrees. Still, to the best of our knowledge, the problem of generating such graphs
has not been considered so far. In this paper, we study algorithmic techniques
of sampling such graphs uniformly at random, and in particular, focus on the
task of providing an exact uniform sample.

1.1 Related Work

A simple way to obtain a uniform random sample G ∈ G(d) is to use the con-
figuration model of Bender and Canfield [3] or Bollobás [5] to sample random
multigraphs with sequence d until a simple graph is found. Unfortunately, this
simple rejection scheme is not efficient as its run time is exponential in the largest
degree Δ = maxi di [18]. More efficient algorithms have been obtained via the
switching method of McKay and Wormald [16]. The approach is to again start
from a random multigraph but instead of rejecting non-simple graphs, loops and
multi-edges are removed with switchings which rewire the edges while preserving
the degrees. In addition to an algorithm with expected runtime O(m) for gen-
erating graphs with m edges and bounded degrees Δ4 = O(m) [1,16], efficient
algorithms have been given for d-regular graphs in expected time O(nd + d4) if
d = o(

√
n) [1,9], and graphs with power-law degrees in expected time O(n) if the

exponent satisfies γ > (21 +
√

61)/10 [1,10]. Alternatively, there exist efficient
solutions to various relaxations of the problem. For instance, we may allow the
graph to match the sequence d only in expectation [7], or use a Markov chain
to approximate the uniform distribution [8,15]. See also [12] for a survey.

1.2 Our Contribution

We give results on sampling temporal graphs with given degrees and lifetime.
Formally, given a tuple D = (d, T ), we say that a temporal graph G with nodes
V = {v1, . . . , vn} matches D if the sum of the numbers of incident edges at node
vi over all T timestamps equals di for each 1 ≤ i ≤ n. If at least one simple graph
matches D, we call D realizable. The temporal graph generation problem now
asks to output a sample G ∈ G(D) uniformly at random from the set G(D) of
matching simple temporal graphs. Note that by allowing repeated connections,
a given tuple D = (d, T ) can be realizable as a simple temporal graph even if d
is not realizable as a classical simple graph. More severely, consider the sequence
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dt, 1 ≤ t ≤ T of degree-sequences induced by the individual timestamps, then
there exist sequences which satisfy

∑
t dt = d but are not realizable as a sequence

of simple graphs due to loops or multi-edges which cannot be rewired with
switchings which preserve dt, 1 ≤ t ≤ T . In other words, even distributing
the degrees among timestamps is not trivial. Existing algorithms are therefore
difficult to apply to sampling temporal graphs. Instead, switchings are required
which operate on the temporal graph as a whole and re-assign timestamps where
necessary, and this is the key feature of the algorithm which we describe here.
This algorithm, called T-Gen, generates simple temporal graphs with bounded
degrees. Our main result is as follows (proof given in the long version).

Theorem 1. Given a realizable tuple D = (d, T ) which satisfies Δ2+ε = O(M)
for a constant ε > 0 and T − Δ = Ω(T ), T-Gen outputs a uniform random
sample G ∈ G(D) in expected time O(M).

1.3 Overview of Techniques

The general idea is to apply the switching method of [16] to temporal graphs. To
this end, we define a temporal configuration model (see Sect. 2) which samples a
random temporal multigraph with the property that the probability of a given
graph only depends on the contained loops and temporal multi-edges. This allows
us to preserve uniformity when applying switchings and ensures the uniformity
of the final output. Still, a challenge remains in that the sequences dt, 1 ≤
t ≤ T implied by the random temporal multigraph may not be realizable. This
necessitates switchings which rewire edges across different time slices of the graph
and re-assign timestamps (see Definition 2 for an example). As a consequence,
the number of timestamps we can assign to an edge without creating a temporal
multi-edge affects the distribution of the graphs, and to preserve uniformity,
it becomes necessary to account for the available timestamps. To discuss this
matter, we briefly describe the technique used in [16] to correct the distribution.

Generally speaking, when analyzing a switching operation θ we fix subsets
S,S ′ ⊆ M(d) of the set M(d) of multigraphs matching the sequence d. Con-
sidering the edges rewired by θ then associates each graph G ∈ S with a subset
F(G) ⊆ S ′ of graphs in S ′ which can be produced by a type θ switching on G,
and each graph G′ ∈ S ′ with a subset B(G′) ⊆ S of graphs on which a type θ
switching can produce G′. If we now start from a uniform random graph G ∈ S,
and perform a uniform random θ switching on G, the probability of reaching a
given graph G′ ∈ S ′ is

∑

G∈B(G′)

1
|S||F(G)|

which depends on G and G′. To correct this, rejection steps are used which restart
the algorithm with a certain probability. Before performing the switching, we f-
reject (forward reject) with probability 1− |F(G)|/f(S) where f(S) is an upper
bound on |F(G)| over all graphs G ∈ S, and after performing the switching,
we b-reject (backward reject) with probability 1 − b(S ′)/|B(G′)| where b(S ′) is
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a lower bound on |B(G′)| over all graphs G′ ∈ S ′. The probability of producing
G′ is now

∑

G∈B(G′)

1
|S||F(G)|

|F(G)|
f(S)

b(S ′)
|B(G′)| =

|B(G′)|
|S|f(S)

b(S ′)
|B(G′)| =

b(S ′)
|S|f(S)

,

implying that G′ has the uniform distribution if G does. Still, this method of
correcting the distribution is efficient only if |F(G)| and |B(G′)| do not deviate
too much from f(S) and b(S ′). To avoid a high probability of restarting where
this does not hold, Gao and Wormald [9] first used additional switchings which
equalize the probabilities by mapping high probability graphs to low probability
graphs. This is done via a Markov chain which either chooses a main switching to
remove a non-simple edge or an additional switching to equalize the probabilities.

T-Gen similarly uses additional switchings but without the use of a Markov
chain. Instead, we always perform a main switching first and then an additional
switching which targets specific edges involved in the main switching. Concretely,
the issue is that the typical number of available timestamps for an edge is Ω(T ),
whereas the lower bound is T − (Δ − 1) due to graphs in which the edge has
multiplicity Δ. Still, the conditions imposed in Theorem 1 imply that the highest
multiplicity of any edge in any graph visited by the algorithm is bound by a con-
stant μ with high probability. Now, after performing a main kind of switching,
we partition the set S ′ which contains the obtained graph into subsets S ′

m<μ

and S ′\S ′
m<μ by the multiplicities m of specific edges involved in the switching.

We then equalize the probabilities of producing the graphs in S ′
m<μ via switch-

ings which involve the specific edges with the standard rejection step (which
is efficient by μ = O(1)). To equalize the probabilities between the graphs in
S ′

m<μ and S ′ \ S ′
m<μ, we define auxiliary switching operations which map the

graphs in S ′
m<μ to graphs in S ′ \ S ′

m<μ and an identity switching which maps
any graph in S ′

m<μ to itself, and specify a probability distribution over these
two kinds of switchings which ensures that all graphs in S ′ are produced with
the same probability via switchings which involve the specific edges.

2 Temporal Configuration Model

The temporal configuration model samples a random temporal multigraph
matching a given tuple D = (d, T ) ∈ N

n × N>0. It can be implemented as
follows. First, for each node index i ∈ {1, . . . , n}, put di marbles labeled i
into an urn. Then, starting from the empty graph G = (V, ∅) on the node set
V = {v1, . . . , vn}, add edges by iteratively performing the following steps until
the urn is empty:

1. Draw two marbles from the urn uniformly at random (without replacement),
and let i, j denote the labels of those marbles.

2. Draw a timestamp t uniformly at random from the set of timestamps [1, T ].
3. Add the temporal edge ({vi, vj}, t) to the graph G.
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In the following, we analyze the output distribution of this random model. To
this end, we first give some definitions to characterize the edges in a temporal
multigraph. Given two nodes vi, vj ∈ V and a timestamp t ∈ [1, T ], we define
wi,j,t as the number of edges between vi and vj with timestamp t in the graph,
and call wi,j,t the temporal multiplicity of the edge ({vi, vj}, t). Then, if wi,j,t ≥ 2,
we say that the edge is contained in a temporal multi-edge, and in the special
cases wi,j,t = 2 and wi,j,t = 3, refer to the multi-edge as a double-edge and triple-
edge, respectively. In addition, we define mi,j =

∑
t wi,j,t as the total number

of edges between vi and vj over all timestamps and call mi,j the multiplicity of
{vi, vj}. Finally, we call an edge ({vi}, t) which connects a node vi to itself a
loop at vi, and in the cases where wi,t = 1 and wi,t = 2, refer to the edge as a
temporal single-loop and temporal double-loop, respectively.

Now, for a given temporal multigraph G, let W(G) denote the n × n × T
tensor such that the entries Wi,j,t(G) where i �= j contain wi,j,t if wi,j,t ≥ 2
and 0 if otherwise, and the entries Wi,i,t(G) contain wi,t. In addition, let M(D)
denote the set of temporal multigraphs matching a given tuple D, and for a given
tensor W, let S(W) denote the subset of temporal multigraphs G ∈ M(D) such
that W(G) = W. Then, the following holds (proof in the long version).

Theorem 2. Let G be a temporal multigraph output by the temporal configu-
ration model on an input tuple D. Then, G is uniformly distributed in the set
S(W(G)) ⊆ M(D).

3 Algorithm T-Gen

T-Gen takes a realizable tuple D as input and outputs a uniform random sam-
ple G ∈ G(D) from the set of matching simple temporal graphs. The algorithm
starts by sampling a temporal multigraph G ∈ M(D) via the temporal config-
uration model (see Sect. 2). It then checks if G satisfies initial conditions on the
numbers and multiplicities of non-simple edges (see Subsect. 3.1). In particular,
G is not allowed to contain temporal triple-edges, or temporal double-loops (or
higher multiplicities). If G satisfies these conditions, then the algorithm pro-
ceeds to removing all temporal single-loops and temporal double-edges during
two stages. Stage 1 (Subsect. 3.2) removes all temporal single-loops. For this pur-
pose three kinds of switching operations are used. The main kind of switching
removes a temporal single-loop at a specified node and with a specified times-
tamp. After performing this kind of switching we always perform one of two
auxiliary switchings. The purpose of these switchings is to equalize the prob-
abilities between graphs which contain edges of high multiplicity and graphs
which do not. Stage 2 (Subsect. 3.3) removes all temporal double-edges. Doing
this efficiently requires five kinds of switchings, two of which remove temporal
double-edges and three of which are auxiliary switchings. Once all non-simple
edges have been removed, the resulting graph is output.
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Fig. 1. The TL switching removes a temporal single-loop with timestamp t1 at a node
v1. Red and green shades indicate non-simple and simple edges.

3.1 Initial Conditions

The initial conditions for the random multigraph G are as follows. Define

BL =
M2

M
, BD =

M2
2

M2 T
, where M =

∑
i di, M2 =

∑
i di(di − 1),

let L =
∑

i,t Wi,i,t(G) and D =
∑

i�=j,t Wi,j,t(G) denote the sums of the multi-
plicities of loops and temporal multi-edges of G, respectively, and choose three
constants

λ ≥ 1 + 1/ε, κ ≥ 1 + 1/ε, μ ≥ 3 + 2/ε

where ε > 0 is a constant such that Δ2+ε = O(M) (set λ = κ = μ = Δ if no such
constant exists). Then, G satisfies the initial conditions if L ≤ BL, D/2 ≤ BD,
there are no loops of temporal multiplicity w ≥ 2 or temporal multi-edges of
temporal multiplicity w ≥ 3, and no node is incident with more than λ temporal
single-loops or κ temporal double-edges.

If the graph G does not satisfy the conditions, then T-Gen restarts. Other-
wise, the algorithm enters Stage 1 to remove the temporal single-loops in G.

3.2 Stage 1: Removal of Temporal Single-Loops

Stage 1 removes all temporal single-loops in the graph. Doing this efficiently
requires three kinds of switchings which we denote as TL, Am,n and I. The
switching of the main kind written as TL removes a temporal single-loop at a
specified node and with a specified timestamp. After performing this kind of
switching, an Am,n auxiliary switching is performed with a certain probability.
This switching adds up to two edges with multiplicities max{m,n} ≥ μ to the
graph to equalize the probability of producing graphs with or without these
kinds of edges. In addition, we define the identity switching I which maps each
graph to itself. Formal definitions of the TL and Am,n switchings are as follows.

Definition 2 (TL switching at v1, t1). For a graph G such that ({v1}, t1) is a
temporal single-loop, let ({v2, v4}, t2), ({v3, v5}, t3) be edges and t4, t5, t6 ∈ [1, T ]
timestamps such that
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– none of the edges ({v2, v4}, t2), ({v3, v5}, t3) is a loop or in a temporal double-
edge,

– the nodes v2, v3, v4, v5 are distinct from v1, and v4 is distinct from v5, and
– none of the edges ({v1, v2}, t4), ({v1, v3}, t5), ({v4, v5}, t6) exist.

Then, a TL switching replaces the edges ({v1}, t1), ({v2, v4}, t2), ({v3, v5}, t3)
with ({v1, v2}, t4), ({v1, v3}, t5), ({v4, v5}, t6) (see Fig. 1).

Definition 3 (Am,n switching at v1, v2, v3, v4, v5). For a graph G such that
{v2, v4}, {v3, v5} are non-edges, let ({v2, v2i+4}, ti), ({v4, v2i+5}, tm+i), 1 ≤ i ≤
m be incident edges at v2, v4, ({v3, v2m+2i+4}, t2m+i), ({v5, v2m+2i+5}, t2m+n+i),
1 ≤ i ≤ n incident edges at v3, v5, and t2m+2n+1, . . . , t4m+4n ∈ [1, T ] timestamps
such that

– none of the edges is a loop or in a temporal double-edge,
– the nodes v1, . . . , v2m+2n+5 are all distinct, and
– none of the edges ({v2, v4}, t2m+2n+i), ({v2i+4, v2i+5}, t3m+2n+i), 1 ≤ i ≤ m

and ({v3, v5}, t4m+2n+i), ({v2m+2i+4, v2m+2i+5}, t4m+3n+i), 1 ≤ i ≤ n exist.

Then, an Am,n switching replaces the edges ({v2, v2i+4}, ti), ({v4, v2i+5}, tm+i),
1 ≤ i ≤ m, ({v3, v2m+2i+4}, t2m+i), ({v3, v2m+2i+5}, t2m+n+i), 1 ≤ i ≤ n with
({v2, v4}, t2m+2n+i), ({v2i+4, v2i+5}, t3m+2n+i), 1 ≤ i ≤ m, ({v3, v5}, t4m+2n+i),
({v2m+2i+4, v2m+2i+5}, t4m+3n+i), 1 ≤ i ≤ n.

In other words, the TL switching chooses two edges and then rewires the specified
loop and the two edges such that exactly the specified loop is removed and no
other non-simple edges are created or removed. Likewise, the Am,n switching
chooses m incident edges at two nodes v2, v4 each and n incident edges at two
nodes v3, v5 each and then rewires the edges such that exactly m simple edges
between the nodes v2, v4 and exactly n simple edges between the nodes v3, v5
are created and no non-simple edges are created or removed.

After each TL switching, we perform an Am,n auxiliary switching or the
identity switching. To decide which switching to perform, we define a probability
distribution over the switchings which ensures uniformity. In total, the set of
Am,n auxiliary switchings is ΘA =

⋃
0≤m,n<Δ,μ≤max{m,n}{Am,n}. A switching is

then sampled from the distribution (ΘA ∪ {I}, PA) where

PA(Am,n) = PA(I)
fAm,n

(W′)
bAm,n

(W′)
, PA(I) = 1 −

∑

θ∈ΘA

PA(θ)

for quantities fAm,n
(W′) and bAm,n

(W′) given further below.
On a high level, Stage 1 runs in a loop until a rejection occurs or all temporal

single-loops have been removed from G. To this end, let π denote a permutation
of the entries in W(G) such that Wi,i,t = 1. Then, Stage 1 iterates through the
temporal single-loops in the order given by π and performs the following steps
for each temporal single-loop.
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1. Let G denote the current graph, W = W(G) and ({v1}, t1) the loop.
2. Pick a uniform random TL switching S which removes ({v1}, t1) from G.
3. Restart (f-reject) with probability 1 − fTL(G)

fTL(W)
.

4. Rewire the edges according to S, let G′ denote the result and W′ = W(G′).
5. Let ({v2, v4}, t2), ({v3, v5}, t3) denote the edges removed by S.
6. Restart if m2,4 ≥ μ or m3,5 ≥ μ.
7. Restart (b-reject) with probability 1 − bTL(W

′;2)
bTL(G′,v1v2v3v4v5;2)

.
8. Choose a switching type θ ∼ (ΘA ∪ {I}, PA).
9. If θ = Am,n for some Am,n ∈ ΘA:

(a) Restart if m2,4 ≥ 1 or m3,5 ≥ 1.
(b) Pick a uniform random Am,n switching S′ on G′.

(c) Restart (f-reject) with probability 1 − fAm,n (G′)
fAm,n

(W′)
.

(d) Rewire the edges according to S′ and let G′′ denote the result.

(e) Restart (b-reject) with probability 1 − bAm,n
(W′)

bAm,n (G′′,v1v2v3v4v5)
.

(f) Set G′ ← G′′.
10. Restart (b-reject) with probability 1 − bTL(W

′;0)bTL(W
′;1)

bTL(G′,v1;0)bTL(G′,v1v2v3;1)
.

11. Set G ← G′.

To fully specify Stage 1, it remains to define the quantities for the f- and b-
rejection steps. For the f-rejection in step 3, define fTL(G) as the number of TL
switchings which can be performed on G. The corresponding upper bound is

fTL(W) = M2 T 3.

For the b-rejections in steps 7 and 10, define bTL(G′, v1v2v3v4v5; 2) as the num-
ber of timestamps t2, t3 ∈ [1, T ] such that the edges ({v2, v4}, t2), ({v3, v5}, t3)
do not exist in G′, bTL(G′, v1v2v3; 1) as the number of simple temporal edges
({v4, v5}, t6) such that v4, v5 are distinct from v1, v2, v3, and bTL(G′, v1; 0) as
the number of distinct simple temporal edges ({v1, v2}, t4), ({v1, v3}, t5) incident
at v1. The lower bounds on these quantities are

bTL(W
′; 2) = (T − (μ − 1))2, bTL(W

′; 1) = M − 2BL − 4BD − 4Δ,

bTL(W
′; 0) = k1(k1 − 1)

where ki = di −
∑

t(2W
′
i,i,t +

∑
1≤j≤n:j �=i W

′
i,j,t) denotes the number of simple

edges at vi. For the f-rejection in step 9c, define fAm,n
(G′) as the number of Am,n

switchings which can be performed on the graph G′. The upper bound is

fAm,n
(W′) = (ΔT )2(m+n).

For the b-rejection in step 9e, define bAm,n
(G′′, v1v2v3v4v5) as the number of Am,n

switchings which can produce the graph G′′. The corresponding lower bound is

bAm,n
(W′) =

(
(M − 2BL − 4BD − 4(m + n + 3)Δ)(T − (Δ − 1))2

)m+n
.

Stage 1 ends if all temporal single-loops have been removed. The algorithm then
moves on to Stage 2 to remove the remaining temporal double-edges.
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Fig. 2. The TD1 switching removes a temporal double-edge with timestamp t1 between
two nodes v1, v2 while leaving a single-edge between the nodes.

3.3 Stage 2: Removal of Temporal Double-Edges

Stage 2 uses five kinds of switchings: TD1, TD0, Bm,n, Cm,n,o,p and I. The two
main switchings TD1 and TD0 remove a temporal double-edge between two spec-
ified nodes with a specified timestamp. However, the TD1 switching removes one
occurrence of the edge while the TD0 switching removes both occurrences. This is
done to equalize the probability between graphs in which the edge is a non-edge,
or single edge. After performing a TD1 switching, a Bm,n auxiliary switching
may be performed, and after performing a TD0 switching, a Cm,n,o,p switching
may be performed. These switchings add edges with multiplicity max{m,n} ≥ μ
or max{m,n, o, p} ≥ μ to the graph to equalize the probabilities between graphs
with or without these edges. The TD1 switching is defined as follows.

Definition 4 (TD1 switching at ({v1, v2}, t1)). For a graph G such
that ({v1, v2}, t1) is contained in a temporal double-edge, let ({v3, v5}, t2),
({v4, v6}, t3) be edges and t4, t5, t6 ∈ [1, T ] timestamps such that

– none of the edges ({v3, v5}, t2), ({v4, v6}, t3) is in a temporal double-edge,
– v3, v4, v5, v6 are distinct from v1 and v2, and v5 is distinct from v6, and
– none of the edges ({v1, v3}, t4), ({v2, v4}, t5), ({v5, v6}, t6) exist.

Then, a TD1 switching replaces the edges ({v1, v2}, t1), ({v3, v5}, t2),
({v4, v6}, t3) with ({v1, v3}, t4), ({v2, v4}, t5), ({v5, v6}, t6) (see Fig. 2).

The TD0 switching can be defined analogously by using four edges instead of two
to remove both edges contained in the temporal double-edge. To choose a TD1

or TD0 switching when removing a temporal double-edge, specify the probability
distribution ({TD1,TD0}, P ) where

p(TD1) = p(TD0)
pC(I)
pB(I)

fTD1
(W)bTD0

(W′)

fTD0
(W)bTD1

(W′)
, p(TD0) = 1 − p(TD1)

for quantities defined further below.
Continuing with the auxiliary switchings, we now define the Bm,n switching.

The Cm,n,o,p switching can be defined analogously by extending the edges created
from the two edges removed by the TD1 switching to the four edges removed by
the TD0 switching.
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Definition 5 (Bm,n switching at v1, v2, v3, v4, v5, v6) For a graph G such that
{v3, v5}, {v4, v6} are non-edges, let ({v3, v2i+5}, ti), ({v5, v2i+6}, tm+i), 1 ≤ i ≤
m be incident edges at v3, v5, ({v4, v2m+2i+5}, t2m+i), ({v6, v2m+2i+6}, t2m+n+i),
1 ≤ i ≤ n incident edges at v4, v6, and t2m+2n+1, . . . , t4m+4n ∈ [1, T ] timestamps
such that

– none of the edges is in a temporal double-edge,
– the nodes v1, . . . , v2m+2n+6 are all distinct, and
– none of the edges ({v3, v5}, t2m+2n+i), ({v2i+5, v2i+6}, t3m+2n+i), 1 ≤ i ≤ m

and ({v4, v6}, t4m+2n+i), ({v2m+2i+5, v2m+2i+6}, t4m+3n+i), 1 ≤ i ≤ n exist.

Then, a Bm,n switching replaces the edges ({v3, v2i+5}, ti), ({v5, v2i+6}, tm+i),
1 ≤ i ≤ m, ({v4, v2m+2i+5}, t2m+i), ({v6, v2m+2i+6}, t2m+n+i), 1 ≤ i ≤ n with
({v3, v5}, t2m+2n+i), ({v2i+5, v2i+6}, t3m+2n+i), 1 ≤ i ≤ m, ({v4, v6}, t4m+2n+i),
({v2m+2i+5, v2m+2i+6}, t4m+3n+i), 1 ≤ i ≤ n.

The sets of Bm,n and Cm,n,o,p switchings are ΘB =
⋃

0≤m,n<Δ,μ≤max{m,n}{Bm,n}
and ΘC =

⋃
0≤m,n,o,p<Δ,μ≤max{m,n,o,p}{Cm,n,o,p}. The associated type distribu-

tions are (ΘB ∪ {I}, PB) and (ΘC ∪ {I}, PC) where

PB(Bm,n) = PB(I)
fBm,n

(W′)
bBm,n

(W′)
, PB(I) = 1 −

∑

θ∈ΘB

PB(θ),

PC(Cm,n,o,p) = PC(I)
fCm,n,o,p

(W′)
bCm,n,o,p

(W′)
, PC(I) = 1 −

∑

θ∈ΘC

PC(θ)

for quantities defined further below.
The main loop of Stage 2 is as follows. Let π denote a permutation of the

entries in W(G) such that Wi,j,t = 2 and i �= j. Then, Stage 2 iterates through
the temporal double-edges in the order of π and performs the following steps.

1. Let G be the graph, W = W(G) and ({v1, v2}, t1) the temporal double-edge.
2. Choose a switching type θ ∼ ({TD0,TD1}, P ).
3. Pick a uniform random θ switching S which removes ({v1, v2}, t1) from G.
4. Restart (f-reject) with probability 1 − fθ(G)

fθ(W)
.

5. Rewire the edges according to S, let G′ denote the result and W′ = W(G′).
6. If θ = TD1:

(a) Let ({v3, v5}, t2), ({v4, v6}, t3) denote the edges removed by S.
(b) Restart if m3,5 ≥ μ or m4,6 ≥ μ.

(c) Restart (b-reject) with probability 1 − bTD0
(W′;2)

bTD0 (G
′,v1...v6;2)

.
(d) Choose a switching type θB ∼ (ΘB ∪ {I}, PB).
(e) If θ = Bm,n for some Bm,n ∈ ΘB:

i. Restart if m3,5 ≥ 1 or m4,6 ≥ 1.
ii. Pick a uniform random Bm,n switching S′ on G′.

iii. Restart (f-reject) with probability 1 − fBm,n (G′)
fBm,n

(W′)
.
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iv. Rewire the edges according to S′ and let G′′ denote the result.

v. Restart (b-reject) with probability 1 − bBm,n
(W′)

bBm,n (G′′,v1...v6)
.

vi. Set G′ ← G′′.
(f) Restart (b-reject) with probability 1 − bTD1

(W′;0)bTD1
(W′;1)

bTD1 (G
′,v1v2;0)bTD1 (G

′,v1v2v3v4;1)
.

7. Else if θ = TD0:
(a) Let ({v3, v7}, t2), ({v4, v8}, t3), ({v5, v9}, t4), ({v6, v10}, t5) denote the

edges removed by S.
(b) Restart if m3,7 ≥ μ, m4,8 ≥ μ, m5,9 ≥ μ or m6,10 ≥ μ.

(c) Restart (b-reject) with probability 1 − bTD0
(W′;2)

bTD0 (G
′,v1...v10;2)

.
(d) Choose a switching type θC ∼ (ΘC ∪ {I}, PC).
(e) If θ = Cm,n,o,p for some Cm,n,o,p ∈ ΘC:

i. Restart if m3,7 ≥ 1, m4,8 ≥ 1, m5,9 ≥ 1 or m6,10 ≥ 1.
ii. Pick a uniform random Cm,n,o,p switching S′ on G′.

iii. Restart (f-reject) with probability 1 − fCm,n,o,p (G
′)

fCm,n,o,p
(W′)

.

iv. Rewire the edges according to S′ and let G′′ denote the result.

v. Restart (b-reject) with probability 1 − bCm,n,o,p
(W′)

bCm,n,o,p (G
′′,v1...v10)

.
vi. Set G′ ← G′′.

(f) Restart (b-reject) with probability 1 − bTD0
(W′;0)bTD0

(W′;1)
bTD0 (G

′,v1v2;0)bTD0 (G
′,v1...v6;1)

.
8. Set G ← G′.

It remains to define the quantities for the f- and b-rejection steps. For the f-
rejection in step 4, define fTD1(G) and fTD0(G) as the number of TD1 and TD0

switchings which can be performed on G, respectively. The upper bounds are

fTD1
(W) = M2 T 3, fTD0

(W) = M4 T 6.

For the b-rejections in steps 6c and 7c, define bTD1(G
′, v1 . . . v6; 2) as the number

of timestamps t2, t3 ∈ [1, T ] such that ({v3, v5}, t2), ({v4, v6}, t3) do not exist
in G′ and bTD0(G

′, v1 . . . v10; 2) as the number of timestamps t2, t3, t4, t5 ∈ [1, T ]
such that ({v3, v7}, t2), ({v4, v8}, t3), ({v5, v9}, t4), ({v6, v10}, t5) do not exist in
G′. The lower bounds are

bTD1
(W′; 2) = (T − (μ − 1))2, bTD0

(W′; 2) = (T − (μ − 1))4.

For the b-rejections in steps 6f and 7f , define bTD1(G
′, v1 . . . v4; 1) as the number

of simple edges ({v5, v6}, t6) in G′ such that v5, v6 are distinct from v1, v2, v3, v4
and bTD0(G

′, v1 . . . v6; 1) as the number of distinct simple edges ({v7, v8}, t10),
({v9, v10}, t11) in G′ such that v7, . . . , v10 are distinct from v1, . . . , v6. Then,
define bTD1(G

′, v1v2; 0) as the number of simple edges ({v1, v3}, t4), ({v2, v4}, t5)
incident at v1 and v2 in G′ and bTD0(G

′, v1v2; 0) as the number of distinct simple
edges ({v1, v3}, t4), ({v2, v4}, t5), ({v1, v5}, t6), ({v2, v6}, t7) incident at v1 and
v2 in G′. The lower bounds are

bTD1
(W′; 1) = M − 4BD − 4Δ, bTD0

(W′; 1) = (M − 4BD − 4Δ)2,
bTD1

(W′; 0) = k1k2, bTD0
(W′; 0) = k1(k1 − 1)k2(k2 − 1).
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For the f-rejections in steps 6eiii and 7eiii, define fBm,n
(G′), fCm,n,o,p

(G′) as the
number of Bm,n, Cm,n,o,p switchings which can be performed on G′, respectively.
In addition, define

fBm,n
(W′) = (ΔT )2(m+n), fCm,n,o,p

(W′) = (ΔT )2(m+n+o+p).

For the b-rejections in steps 6ev and 7ev, define the quantities bBm,n
(G′′, v1 . . . v6)

and bCm,n,o,p
(G′′, v1 . . . v10) as the number of Bm,n and Cm,n,o,p switchings which

can produce the graph G′′, respectively. The corresponding lower bounds are

bBm,n
(W′) =

(
(M − 4BD − 4(m + n + 3)Δ)(T − (Δ − 1))2

)m+n
,

bCm,n,o,p
(W′) =

(
(M − 4BD − 4(m + n + o + p + 5)Δ)(T − (Δ − 1))2

)m+n+o+p
.

Once Stage 2 ends, the final graph is simple and can be output.
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Iva Gunjača(B), Natalie Samhan, and Jan Treur

Department of Computer Science, Social AI Group, Vrije Universiteit Amsterdam, Amsterdam,
The Netherlands

gunjaca.iva@gmail.com, j.treur@vu.nl

Abstract. In this paper, an integrative fifth-order biological and mental net-
work model is introduced, to demonstrate epigenetics effects in Post-Traumatic
Stress Disorder (PTSD), using an adaptive network modeling approach based on
temporal-casual networks. The networkmodel assesses DNAmethylation dysreg-
ulation, on glucocorticoid receptors, and side effects of glucocorticoid receptor
hyperreactivity to glucocorticoids in fear processing of individuals with post-
traumatic stress disorder. Furthermore, a form of therapy is explored on differently
methylated genes. Genes NR3C1 and FKBP5, and their expression were chosen
for the demonstration, furthermore, administering MDMA was chosen as a form
of therapy. Several simulations were run to analyze and illustrate behavior of the
networkmodel. Behaviors for both genes and their expressionwere tested together
and individually.

Keywords: Epigenetics · post-traumatic stress disorder · DNA methylation ·
temporal-casual network · fifth-order adaptive network model

1 Introduction

Traumatic events are something most people will experience during their lifetime. After
such an event occurs, it is normal to experience a wide range of emotions, however
for some individuals these emotions persist [8]. According to the National Institute of
Public Health, a Post-Traumatic Stress Disorder (PTSD) is characterized as having ‘at
least one re-experiencing symptom, at least one avoidance symptom, at least two arousal
and reactivity symptoms and at least two cognition and mood symptoms for the duration
of at least one month’ [8]. About every 7 out of 100 people in the general population
will develop PTSD at some point in their lifetime [4], while some people recover within
6 months, symptoms may persist for several years without proper treatment [8].

A flashback is categorized as a re-experiencing symptom, reliving the traumatic
event, this can include physical symptoms, such as a racing heart or profound sweating.
Flashback can be triggered by anything that might remind an individual of the traumatic
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event [8]. Individuals of any age, sex, or ethnographic background can develop PTSD.
There are several factors that seem to determine if an individual will develop post-
traumatic stress disorder after a traumatic event. Some of which are already present
before or while a traumatic event is happening, while others only are introduced after a
traumatic event has occurred [8].

Recently there has been generated a mounting amount of evidence that epigenetics
play a critical role in the development of PTSD. From all epigenetic changes, DNA
methylation has been researched the most in individuals with PTSD [4]. DNA methy-
lation is a transfer of a methyl group onto the C5 position of the cytosine to form
5-methylcytosine. This epigenetic mechanism regulates gene expression. For the sake
of simplicity, the relationship betweenDNAmethylation and gene expression is assumed
as follows: the higher the methylation level (of the regulatory regions of the gene), the
lower the expression of said gene is [5].

In this paper, a fifth-order adaptive integrative biological and mental network model
was created as a representation of epigenetic DNAmethylation changes and its effects on
gene NR3C1 expression, and consequences of said expression. PTSD patients are often
categorized as having low cortisol levels, which is a direct symptom of increased activity
of glucocorticoid receptors. Cortisol is an important hormone in the human body that
regulates a variety of systems [21], this model focuses on the effect of cortisol on fear
processing. In the paper, a scenario of PTSDdevelopment under prolonged chronic stress
is introduced, followed with administration of 3,4-Methylenedioxy methamphetamine
(MDMA) as a form of therapy. A description of the modeling approach and the software
for simulating the model can be found in [10].

2 Background Information on DNA Methylation and Its Effects
on Individuals with Post-traumatic Stress Disorder

With strongly increasing interest and developments in epigenetics in recent years, new
evidence has emerged that epigenetic factors have a critical role in post-traumatic stress
disorder [4]. DNA methylation dysregulation has been observed on two biological pro-
cesses: the immune system and the stress response [4]. In the current paper, the two
most researched genes, NR3C1 and FKBP5 [16], and their expression in individuals
with PTSDwere chosen to analyze and demonstrate epigenetic changes and their effects.
NR3C1 and FKBP5 both have a role in stress response regulation, namely on the gluco-
corticoid receptors reactivity to glucocorticoids [4, 16]. Glucocorticoid receptor dereg-
ulation has been observed in individuals with PTSD. Hyperreactivity of glucocorticoid
receptors is considered a main cause of lower cortisol levels that have been observed in
individuals with PTSD [17].

For the NR3C1 gene, which encodes glucocorticoid receptors, decreased methyla-
tion levels have been observed in individuals with PTSD compared with individuals
without PTSD. However, increased methylation on NR3C1 promoter regions has also
been observed in individuals with PTSD [4]. For the model, a decrease in methylation
on NR3C1 was addressed, as more research can be found on decreased methylation than
on increased.
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FKBP5 encodes for the FKBP51 protein, a co-chaperone of the glucocorticoid recep-
tor (GR) that regulates GR sensitivity by creating an intracellular ultra-short negative
feedback loop [4]. Increased methylation and under-expression of FKBP5 has been
observed in individuals with PTSD [18]. However, there have been findings that FKBP5
can serve as a measure of biological cortisol activity [9]. Low cortisol levels, from
demethylated NR3C1 gene, could be the main cause of under-expression of FKBP5
[19]. This theory has been taken as point of departure for the developed adaptive network
model.

As cortisol has been observed to induce demethylation [19], to explain occurrence of
deregulation ofmethylation levels onNR3C1, cortisol induced demethylation is assumed
in the model. DNA repair system methylates the genes as cortisol demethylates. This
system was chosen as it has been observed in Escherichia coli that when a methylating
agent is introduced, DNA repair activities occur and access the damage [7]. These activ-
ities have been inherited by humans from bacteria through evolution [7]. Cortisol has
been observed to strengthen brain connections in fear processing regions [20]. Because
of lowered cortisol levels, there is a possibility that individuals are unable to process the
traumatic memory properly and post-traumatic stress disorder develops. Furthermore, it
has been observed that cortisol promotes the cognitive control of highly intensive nega-
tive emotions [20].MDMAhas been observed as amethylator in cardiac gene expression
[27] and in individuals with PTSD on gene NR3C1 [28]. Because of that, it was chosen
as a therapy.

3 Methods

A network modeling approach based on temporal-casual networks as described in [10]
is used to model DNAmethylation and its effects in individuals with PTSD. The general
approach to creating these types of network models is as follows. Firstly, based on
findings in literature a conceptual model is drawn, a conceptual model can be seen in
Fig. 1. Secondly, role matrixes representing models’ characteristics are filled out, these
role matrixes specify the following network characteristics:

Connectivity. Each incoming connection of a state Y, from a state X has a connection
weight value ωX,Y representing the strength of the connection.

Aggregation. For each state a combination function cY (..) is chosen to combine the
causal impacts state Y receives from other states

Timing. For each state Y a speed factor ηY is used to represent how fast state Y is
changing upon causal impact.

Based on the above network characteristics, the difference equation used to compute
at time t the impact at later time t + �t on state Y for all its incoming connections is:

Y (t + �t) = Y (t) + ηY
[
cY

(
ωX1,Y X1(t), . . . ,ωXk ,Y Xk(t)

) − Y (t)
]
�t (1)

Here, the Xi are the states from which state Y gets incoming connections. Adaptive-
ness of the network model is achieved by making some of these network characteristics
adaptive. Instead of a number in the role matrix, a reference to another state (a so-called
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self-model state) is written that represents that characteristic. This is called first-order
adaptation. If a state for first-order adaptation uses an adaptive network characteristic
itself too, a state that represents that characteristicwouldbe characterized as second-order
and so on. More about this approach can be found in [10]. The software environment
[24] used to simulate the model is described in [10] as well. The software contains a
library of around 70 different combination functions that can be used to define each
state’s behavior upon incoming causal impact.

4 The Introduced Integrative Adaptive Network Model

The network model introduced here is an integrative fifth-order adaptive network model,
integrating a biological network model and a mental network model. Exact names and
descriptions of each state can be found in Tables 2, 3 and 4. For a picture of the model,
see Fig. 1. For the network model four combination functions were used to describe its
behavior, see Table 1.

Table 1. Combination Functions used in the adaptive network model

Function Notation Formula Parameters

Alogistic
advanced
logistic sum

alogisticσ,τ(V1,..,Vk ) [ 1
1+e−σ(V1+···+Vk−τ)

−
1

1+eστ )](1 + e−στ)

steepnessσ

threshold τ

Hebbian
Learning

hebbμ(V1, . . . ,Vk ) V1V2(1 − V 3) + μV3 persistence factorμ

Stepmod stepmodδ,τ(V1, . . . ,Vk ) time t
0 ifmod (t,ρ) < δ else 1

repeated time duration ρ

tipping point δ

Steponce steponceα,β(V1,...,Vk ) time t
1 ifα ≤ t ≤ β else 0

start timeα

end time β

The advanced logistic sum is used for most of the states in the model. It was chosen
as it has an appropriate range between 0 and 1: it is assumed that activation values of
states cannot go above one or below zero, furthermore with the function’s parameter
being a threshold of the state, it was a good match to express glucocorticoid receptors
sensitivity and FKBP5 expressivity in one. Finally, two models that are adapted for
this situation were already using advanced logistic sum for most of the states. Hebbian
learning was used in adaptive mental network models more often, for more details on
its use in developing flashbacks, see [23]. Step-mod activates a state repeatedly. It was
chosen as a function for a trigger state, as triggers occur frequently. Step-once has been
chosen as a combinational function for state sst1, which represents sensor of a traumatic
event, furthermore it is also used for therapy state. It was chosen as the state of this
function occurs only once for a fixed amount of time. All these functions are a part of
the software environment that can be found at [24].
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Pathway for Cortisol Production. When pathogens encounter the immune system or
an injury occurs, state X7 (see Table 2) is activated. It represents the infection or injury of
the body; in this model it is a constant as it is assumed that the immune system is always
in contact with pathogens and this state is used to activate the whole biological network
model. Infection (state X7) affects state X5 which represents the immune system, when
the immune system is active it causes inflammation (state X6) [1]. This inflammation
causes stress to the body (state X9) [2], and body stress triggers the HPA axis [29],
represented by three states X1 or the hypothalamus, X2 or the pituitary gland and X3
or the adrenal cortex. The hypothalamus (state X1) secretes corticotrophin-releasing
hormone which acts as a signal to the pituitary gland (state X2). In response the pituitary
gland produces adrenocorticotrophin hormone which in turn signals the adrenal cortex
(state X3) to start the production of cortisol (state X4) [29]. Cortisol in return suppresses
the immune system [30]. Furthermore, the hypothalamus and pituitary gland contain
glucocorticoid receptors (state X8). When cortisol levels in the body are too high, the
glucocorticoid receptors are triggered and suppress the activity of the hypothalamus and
pituitary gland [3].

Pathway for Gene Expression. Higher-order states (levels one to five) of the biolog-
ical model represent the expression of genes NR3C1 (on the left in Fig. 1) and FKBP5
(on the right in Fig. 1). NR3C1 encodes the glucocorticoid receptor and FKBP5 encodes
the steroid receptor chaperone FK506 binding protein 51. FKBP51 is a co-chaperone
of the glucocorticoid receptor that regulates glucocorticoid receptor sensitivity [4]. To
represent the expression of NR3C1 gene, weight from cortisol (state X4) to glucocor-
ticoid receptor (state X8) is used, as more NR3C1 gene is expressed the reaction of
the glucocorticoid receptor to cortisol is higher. Furthermore, to represent expression
of FKBP5, the threshold of the glucocorticoid receptor is used, as the more FKBP5 is
expressed the lower the sensitivity of the glucocorticoid receptor becomes [4]. Cortisol
induced transcription [6], is represented via positive connection from cortisol to states
X58 and X59. To represent the effects of epigenetics on gene expression, and the process
of transcription and translation, the generic structure from [31] was used as a template
and applied to the specific genes considered here.

Pathway for Methylation and Demethylation. State X57 and state X59 represent the
methylation level on their prospective genes. As methylation downregulates the gene
expression [5], these states produce a negative effect on states X58 and X60, respectively.
Glucocorticoid induced demethylation is described as negative connection on states X57
and X59, and as demethylation occurs DNA methylation repair system is activated [7].
This relationship is simplified in the model, and it is represented as a positive connection
from cortisol to the DNA repair system. The DNA repair system evens out the damage
done by cortisol, and this is represented as a positive connection from the DNA repair
system to states X57 and X59.

Mental Network Model for Flashbacks and Fear Processing. For the mental model
of fear processing and development of flashbacks, the model [23] was adopted. A few
changes were made to the model to tailor it to this particular model. In the original
mental model, some form of psychotherapy is referenced as therapywhere the individual
learns to control the emotional response to the traumatic event, in our case alternatively
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MDMA is used as therapy to methylate the gene that is demethylated, and in return
increase cortisol levels. As cortisol is important in strengthening the connections in the
brain for fear processing, and those connections are weakened in individuals with PTSD.
Because of this, no therapy states ssth and srsth from [23] were included. Furthermore,
for the sake of simplicity in contrast to [23] the combination function used for adaptive
weightsWpsb,csb and Wfsb,csb was the advanced logistic sum function, and their speeds
of adaptation were kept static. For detailed description of the mental model, see [23].

Interaction Between Biological and Mental Network Model. Firstly, the sensory
states of the trauma sste1, sste2, sste3 cause chronic stress (state X11) to occur, activat-
ing chronic stress, which directly increases the body stress. Furthermore, srstr, sensory
representation state for trigger causes a small increase in body stress. Secondly, to repre-
sent how cortisol strengthens these connections a positive weight is drawn from cortisol
(state X4) to these connections. Heightened inflammation levels have been observed
in individuals with PTSD [26]. One of points where inflammation levels have been
shown to increase is amygdala [26]. This inflammation of amygdala has been specu-
lated to contribute to reduced emotion regulation and fear processing [26]. To describe

Table 2. Base level states and their explanation

Nr Name Explanation
X1 Hypothalamus Activity of hypothalamus

X2 Pituitary Activity of pituitary gland

X3 Adrenal cortex Activity of adrenal cortex

X4 Glucocorticoids The level of glucocorticoids in the body 

X5 Immune System Activity of the immune system

X6 Inflammation The level of inflammation in the body

X7 Infection Presence of pathogens or injury 

X8 GR Reactivity of the glucocorticoid receptors

X9 Body Stress Level of body stress

X10 DNA repair system Activity of the DNA repair system

X11 Chronic stress Presence of chronic stress

X12 sste1 Sensor state for traumatic event phase 1: observation te1 (traumatic event)

X13 sste2 Sensor state for traumatic event phase 2: observation of action te2 (traumatic event)

X14 sste3 Sensor state for traumatic event phase 3: observation of effect te3 (traumatic event)

X15 sstr Sensor state for trigger tr for the traumatic event sequence te

X16 srste1 Sensory representation state for traumatic event phase 1: observation te1

X17 srste2 Sensory representation state for traumatic event phase 2: action te2

X18 srste3 Sensory representation state for traumatic event phase 3: effect te3

X19 srstr Sensory representation state for trigger tr for traumatic event sequence

X20 aste Awareness state for traumatic event te

X21 psb Preparation for emotional response b

X22 fsb Feeling state for emotional response b / Amygdala

X23 csb Control state for emotional response b

X24 bsb,te Belief that emotional response b is from traumatic event te

X25 esb Bodily expressed emotional response b

X26 esb,te Expressing that emotional response b is from traumatic event te
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this observation a positive connection is drawn from inflammation state (state X6) to
feeling state fsb.

Table 3. First-order adaptation level states and their explanation

Nr nameName Explanation
X27 conCRH Context state for enabling CHR production

X28 WHypothalamus, Pituitary First-order self-model state for the weights of the base level connections 

from hypothalamus to pituitary, on a causal pathway from context state

conCHR

X29 conACTH Context state for enabling ACTH production

X30 WPituitary, Adrenal cortex First-order self-model state for the weight of the base level connections 

from pituitary to adrenal cortex, on a causal pathway from context state

conACTH

X31 conreactivity of GR on glucocorticoids Context state for reactivity for glucocorticoid receptors on glucocorticoids

X32 Wglucocorticoids,GR First-order self-model state for the weights of the base level connections 

from glucocorticoids to glucocorticoid receptors; on a causal pathway 

from context state conreactivity of glucocorticoids on GR

X33 conFK506 binding protein 51 Context state for FK506 binding protein 51 production

X34 TGR First-order self-model state for the threshold of the combination function 

of GR; on a causal pathway with a connection from context state conFK506 

binding protein 51

X35 Wsrste1,srste2 First-order self-model state for weight of the connection from srste1 to 

srste2 for imprinting the traumatic sequence

X36 Wsrste2,srste3 First-order self-model state for weight of the connection from srste2 to 

srste3 for imprinting the traumatic sequence

X37 Wsrstr,srste1 First-order self-model state for weight of the connection from srstr to srste1

for sensory preconditioning to link trigger tr to the traumatic event

X38 Wpsb,csb First-order self-model state for the weight of the connection psb to csb for

strength of regulation

X39 Wfsb,csb First-order self-model state for the weight of the connection fsb to csb for 

strength of regulation

5 Simulation Results

To demonstrate and test the network model’s behavior some of the simulations run in
MATLABare discussed. InScenario 1 a post-traumatic stress disorder is developedunder
prolonged exposure to a stressful event. Scenario 4 then follows with administration of
MDMA as a form of therapy to properly methylate the demethylated gene. Scenarios
2 and 3 were run to determine if the model behaves differently when only one gene
influences models’ behavior and if there is an interaction, inside of the model, between
expression of FKBP5 and NR3C1. Difference in FKBP5 expression was expected.

Scenario 1: Development of Post-Traumatic Stress Disorder. From the beginning
of the simulation the infection (state X7) is a constant that affects the model’s process.
The trigger for a fear response occurs from 100 to 200 and after that regularly recurs in
intervals from 300 to 400, from 500 to 600, et cetera. A traumatic event is introduced
from 1000 to 1500, which starts the development of post-traumatic stress disorder in the
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Table 4. Second- to fifth-order adaptation level states and their explanation (levels indicated in
different shades like in Fig. 1)

Nr nameName Explanation
X40 WconCHR,WHypothalamus, Pituitary Self-model state for the weight of the first self-modelling level con-

nection from context state conCHR (context for W-states) to WHypothala-

mus, Pituitary for connection from hypothalamus to pituitary gland

X41 WconACTH,WPituitary, Adrenal cortex Self-model state for the weight of the first self-modelling level con-

nection from context state conACTH to WPituitary, Adrenal cortex for connec-

tion from pituitary gland to adrenal cortex

X42 conNR3C1enzymes Context state for enabling enzyme production for gene NR3C1

X43 Wconreactivity of GR on glucocorticoids,Wglucocorticoids,GR Self-model state for the weight of the first self-modelling level con-

nection from context state conreactivity of GR on glucocorticoids to Wglucocorti-

coids,GR for connection from glucocorticoids to glucocorticoid recep-

tors; on a causal pathway with a connection from conNR3C1enzymes

X44 conFKBP5enzymes Context state for enabling enzyme production for gene FKBP5

X45 WconFK506 binding protein 51,T Self-model state for the threshold of the first self-modelling level 

connection from context state conFK506 binding protein 51 (context for T-

states) to TGR for sensitivity of glucocorticoid receptors; on a causal 

pathway with a connection from conFKBP5enzymes

X46 HWsrste1,srste2 Control state for adaptation speed for weight of connection from srste1 

to srste2

X47 HWsrste2,srste3 Control state for adaptation speed for weight of connection from srste2

to srste3

X48 HWsrstr,srste1 Control state for adaptation speed for weight of connection from srstr

to srste1

X49 conNR3C1mRNA Context state for enabling mRNA production for gene NR3C1

X50 WconNR3C1enzymes,Wconreactivity of GR on glucocorticoids,Wglucocorti-

coids,GR

Self-model state for the weight of the second-order self-modelling 

level connection from context state conNR3C1enzymes to Wconreactivity of GR 

on glucocorticoids, Wglucocorticoids,GR for connection from glucocorticoids to 

glucocorticoid receptors; on a causal pathway with a connection from 

conNR3C1mRNA

X51 conFKBP5mRNA Context state for enabling mRNA production for gene FKBP5

X52 WconFKBP5enzymes,WconFK506 binding protein 51,T Self-model state for the threshold of the second-order self-modelling 

level connection from context state conFKBP5enzymes to WconFK506 binding 

protein 51, T for sensitivity of glucocorticoid receptors; on a causal path-

way with a connection from conFKBP5mRNA

X53 conNR3C1DNA Context state for gene NR3C1

X54 WconNR3C1mRNA, WconNR3C1enzymes, Wconreactivity of GR on glu-

cocorticoids, Wglucocorticoids,GR

Self-model state for the weight of the third-order self-modelling level 

connection from context state conNR3C1mRNA to W for WconNR3C1en-

zymes, Wconreactivity of GR on glucocorticoids, Wglucocorticoids,GR for connection 

from glucocorticoids to glucocorticoid receptors; on a causal pathway 

with a connection from conNR3C1DNA

X55 conFKBP5DNA Context state for gene FKBP5

X56 WconFKBP5mRNA,WconFKBP5enzymes,WconFK506 binding protein 

51,T
Self-model state for the threshold of the third-order self-modelling 

level connection from context state conFKBP5mRNA to WconFKBP5enzymes,

WconFK506 binding protein 51, T for sensitivity of glucocorticoid receptors; 

on a causal pathway with a connection from conFKBP5DNA

X57

X58

conNR3C1Methylation

WconNR3C1DNA,WconNR3C1mRNA,WconNR3C1enzymes,Wconrea

ctivity of GR on glucocorticoids,Wglucocorticoids,GR

Context state suppressing NR3C1/ Representation of methylation 

level on NR3C1

Self-model state for the weight of the fourth self-modelling level con-

nection from context state conNR3C1DNA to WconNR3C1mRNA,

WconNR3C1enzymes, Wconreactivity of GR on glucocorticoids, Wglucocorticoids,GR for 

connection from glucocorticoids to glucocorticoid receptors; on a 

causal pathway with a connection from conNR3C1Methylation

X59 conFKBP5Methylation Context state for suppressing FKBP5/Representation of methylation 

levels on FKBP5

X60

X61

WconFKBP5DNA,WconFKBP5mRNA,WconFKBP5enzymes,WconFK

506 binding protein 51,T

MDMA

Self-model state for the threshold of the fourth-order self-modelling 

level connection from context state conFKBP5DNA for TGR for sensitiv-

ity of glucocorticoid receptors; on a pathway with a connection from 

conFKBP5Methylation

Presence of MDMA in the body

mental and biological network model. For demonstration of this simulation, the MDMA
state has been 0 for the duration of whole simulation. This simulation can then serve as
a baseline to compare the effects of administering MDMA.
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Fig. 1. 3D picture of the adaptive network model. For explanations of the states of the different
levels, see Tables 2, 3 to 4.

Scenario 2:Development of Post-Traumatic StressDisorder (onlyNR3C1). For this
scenario, an identical process is applied as in simulation one, with one major difference,
the effects of FKPB5 have been turned off, by making the glucocorticoid receptor state
have a fixed excitability threshold value instead of an adaptive one.

Scenario 3: Development of Post-Traumatic Stress Disorder (only FKPB5). For
this scenario, an identical process is applied as in simulation one, with one other major
difference, the effects of NR3C1 have been turned off, by making the weight character-
istic from cortisol to the glucocorticoid receptor a fixed number instead of an adaptive
characteristic.

Scenario 4: SymptomReduction by Administration of MDMA. Here, in addition to
the development of PTSD, therapy in the form of MDMA administration occurs from
2500 to 2700.
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5.1 Scenario 1: Development of Post-Traumatic Stress Disorder

While chronic stress is in effect, we can observe an increase in cortisol (purple line in
Fig. 2) and its production system. Because of the high levels of cortisol, GR has an
increase in activity (dark blue line in Fig. 2). While the immune system (green line in
Fig. 2) and its product, inflammation (blue line in Fig. 2), is decreasing. This behavior
accurately represents a person under the influence of a traumatic event.

Glucocorticoids demethylate both genes, and the DNA repair system has sufficient
level of activation to be able to repair the damage done by cortisol. However, if dam-
age done by glucocorticoids becomes too high for the DNA repair system to fix, on
gene NR3C1 the damage becomes permanent. Because of permanent demethylation
on NR3C1, the gene is overexpressed, GRs react more aggressively to cortisol which
ultimately leads to lower cortisol levels being observed in individuals with PTSD. As
cortisol is now lower than usual, the natural balance of methylation and demethylation
on gene FKBP5 is disrupted, and FKBP5 is silenced. This leads to high sensitivity of
GRs, and even higher reactivity. This behavior can be observed in Figs. 6, 7 and 9 in the
appendix [32].

Regarding the mental network model, after development of PTSD, all the states have
a higher reactivity as every time a trigger occurs a mental video of a traumatic event
is played which creates a bigger reaction, than in a healthy person would occur. The
weights are higher than in a healthy person, however that is also expected as reactions
are also higher. This behavior can be observed in Figs. 5, 10 and 11 in the appendix [32].

Fig. 2. Simulation results for Scenario 1 (biological network – base level)
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5.2 Scenario 2: Development of Post-Traumatic Stress Disorder (only NR3C1)

When FKPB5 no longer effects the pathways in the network model, methylation at
NR3C1 returns to normal after chronic stress has passed, in turn the whole biological
side of the model continues acts as in a healthy person after chronic stress has passed.
After chronic stress has passed, values of themental networkmodel act as after symptom
reduction from administration of MDMA. This behavior can be seen in Figs. 21 and 22
in the Appendix [32].

5.3 Scenario 3: Development of Post-Traumatic Stress Disorder (only FKPB5)

When NR3C1 no longer affects the model, values of the model act more dynamic and
FKPB5 values don’t drop as much as in scenario one, during chronic stress. Methylation
on gene FKPB5 returns to homeostatic state after chronic stress has passed, and the
biological network model returns to normal after chronic stress has passed. The mental
network model acts as after symptom reduction from administration of MDMA. This
behavior can be seen in Figs. 23 and 24 in the Appendix [32].

5.4 Scenario 4: Symptom Reduction by Administration of MDMA

WhenMDMA is administered, methylation and the rest of the biological network model
goes back to its previous values. Control state is increased, and the individual has better
control of their emotions, however still not at the level of a healthy person. You can
observe this behavior in Figs. 12 to 20 in the Appendix [32].

6 Discussion

The presented results give an insight into the development of post-traumatic stress disor-
der and the underlying epigenetic processes that contribute to its manifestation. Chronic
stress has already been associated with alternations to cortisol levels and its regula-
tory system [11]. The observed increase in cortisol during a traumatic event, and in
turn heightened activity of glucocorticoid receptors, DNA repair system and reduced
inflammation, are a typical reaction to a potential treat [12–14]. This study introduces a
computational analysis perspective on how cortisol indirectly impacts gene expression
through demethylation, and the DNA repair system through DNA methylation. How-
ever, in the case of NR3C1, the damage caused by cortisol surpasses the repair capacity,
leading to permanent demethylation. This behavior correlates with previous findings,
that in individuals that are exposed to chronic stress, there are higher levels of DNA
damage than in healthy individuals [15]. This overexpression of NR3C1 intensifies the
GR’s reaction to cortisol, contributing to overall lowered cortisol levels in individuals
with PTSD. Due to disrupted cortisol levels FKBP5 is silenced, which in return ampli-
fies the sensitivity and reactivity of the glucocorticoid receptor even more. All this was
simulated by the introduced adaptive network model.

The observation that removal of FKBP5 from the model results in restoration of
methylation levels on gene NR3C1 after exposure to a traumatic event, underscores the
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potential therapeutic target of FKBP5 in managing the epigenetic alternations associ-
ated with PTSD development. Potential therapeutic effects of administering MDMA for
individuals with PTSD were explored as well in this study. The behavior of the network
model follows the patterns as expected from the real world. While methylation does
increase when individuals are subjected to MDMA therapy, the symptoms of individu-
als with PTSD are reported to decrease, but not disappear altogether [28]. As PTSD is
more complex than just one differently methylated gene.

While exposure therapy is considered the golden standard for dealing with PTSD,
dropout rates from the therapy are high, and it is not always successful [28]. There is an
increasing need for some kind of pharmaceutical therapy that can be used in parallel with
psychotherapy. This paper is describing the effects which MDMA has on the activity of
glucocorticoid receptors, and how changes in glucocorticoid receptors behavior affect
the individuals fear processing. MDMA seems to domore than just fix one demethylated
gene for improvement of PTSD symptoms [28], however, as this model is focused solely
on the reactivity of glucocorticoid receptors, other effects were left out. In the future
other biological systems can be explored and its effects on the mental network model
within the overall network model can be expanded upon. Not all is known on DNA
methylation and the biological background of fear processing, both are fields that we
have just recently started to properly explore as technology improves. While every part
of the model can be referenced to a scientific paper, some of the claims are just theories
for now, but with a solid background in the literature. Overall, the approach fits very
well in the general perspective on the role of epigenetics in mental disorders described
in the recently contributed [33].

In individuals with PTSD methylation changes tend to occur at different genes, and
they don’t always concern low cortisol. Age at the time of trauma, sex and genetic
background seem to determine what kind of physical problems show as symptoms. This
information shows that there are different pathways which can lead to the development
of PTSD. In this model we were following an individual with lowered levels of cortisol
and GR hyperactivity.

In conclusion, the presented results provide an insight in the development of PTSD,
and interactions between cortisol, gene expression and emotion regulation. Additionally,
the potential of MDMA as a therapy for PTSD is explored, offering hope for restoration
of proper emotion regulation.
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Abstract. This study introduces a new metric called “DynamicScore”
to evaluate the dynamics of graphs. It can be applied to both vertices
and edges. Unlike traditional metrics, DynamicScore not only measures
changes in the number of vertices or edges between consecutive time
steps, but also takes into account the composition of these sets. To
illustrate the possible contributions of this metric, we calculate it for
increasing networks of preferential attachment (Barabási-Albert model)
and Edge-Markovian graphs. The results improve our understanding of
the dynamics inherent in these generated evolving graphs.

Introduction

Dynamic graphs refer to graphs subject to changes along time. Apart from the
term ‘dynamic graphs,’ which can be found in [7], the terminology is varied.
The most common terms mentioned in the scientific literature include ‘evolv-
ing graphs’ [6], ‘dynamic networks’ [10], ‘temporal networks’ [8], ‘time-varying
graphs’ [4], and ‘temporal graphs’ [9]. A Dynamic graph can be defined as a
sequence of snapshot graphs ordered by a timestamp. Many problems arising in
a wide variety of systems have been formulated using dynamic graphs. Among
them, as mentioned in [2], the analysis and understanding of complex networks
require the design of network growth models and graph evolution mechanisms.
The generation process always starts from an initial seed graph G0 (the initial
element of the sequence of snapshot graphs). Then, at each step, a new graph
is generated by applying rules to previously generated graphs. A comprehensive
description of this process is given in [3]. This new graph is then appended to
the sequence, and the process continues until a specified condition is met or
results in an infinite number of graphs. The snapshot graph produced at step t
is both the current last element of the sequence produced by the generator and
a resource element for the generator itself as illustrated on Fig. 1.

Numerous challenges in graph theory have been revisited in the context of
dynamic graphs. By introducing the temporal dimension, novel metrics have
emerged, and classical properties have been redefined. These include time-
respecting paths, reachability, temporal connectivity, and persistent patterns,
among others. Nevertheless, it is noteworthy that, to the best of our knowl-
edge, limited research has been dedicated to exploring the intricate relationship
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1142, pp. 435–444, 2024.
https://doi.org/10.1007/978-3-031-53499-7_35
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Fig. 1. Synthetic description of Dynamic Graphs Generators

between the generative process and the inherent dynamics of the graph itself.
Some prior works presuppose a limited number of changes between two consec-
utive snapshot graphs. Others characterize the dynamics using terms like ‘slow
dynamics’, ‘not frequent changes’, ‘similar consecutive snapshot graphs’ to cite
a few. In both scenarios, there exists a clear need for a metric capable of quanti-
fying the dynamism of the graph between two consecutive snapshot graphs. This
metric should not only capture changes in the cardinality of vertex and edge sets
but also alterations in their composition.

In this work, the DynamicScore metric, coping with both aspects, is pre-
sented1. The metric is implemented for the set of vertices, V-DynamicScore,
and for the set of edges, E-DynamicScore. Our main contribution is a novel
analysis of two state-of-the-art dynamic graphs generative processes based on
this metric: the preferential attachment growing model by Barabási and Albert
[1] and the Edge-Markovian Graph model [5]. In the next Section the metric
is formally defined and some singular values corresponding to peculiar graph
evolutions are presented and discussed. Section 2 is dedicated to the analysis of
DynamicScore on graphs generated using the Preferential Attachment growing
model. It is shown that the dynamics of the graph decreases as the number of
steps increases. Section 3 starts with a description of the Edge-Markovian Graphs
Generator (EMGG) and outlines some properties of the generated graphs. Then
the analysis of the dynamics of Edge-Markovian graphs is conducted and some
results about edge dynamics with respect to the parameters of the model are
presented. We conclude this work by introducing two open questions about rela-
tionships between Markovian-based dynamic graph evolution and the Dynamic-
Score.

1 DynamicScore

The DynamicScore, which is derived from the Jaccard distance, encompasses
several properties that shed light on the nature of a dynamic graph. It effec-
tively captures the degree of dynamics exhibited by the graph, whether it is
applied to the vertices or the edges. Notably, DynamicScore emphasizes changes
in composition, both at a local level over time between two consecutive steps,
and at a global level spanning the entire graph. It is formally defined as follow:

1 In [3], this metric was referred to as ‘nervousness,’ a translation of a French term
that could be misleading in English.
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Definition 1. V-DynamicScore:
Given a dynamic graph G, such that at time t Gt = (Vt, Et). We call V-
DynamicScore at time t and denoted by Dv

t , the ratio:

Dv
t =

|Vt+1�Vt|
|Vt+1 ∪ Vt|

where |A| denotes the number of edges present in set A. The � operator for all
set A and B, referred to as A�B, is defined as A ∪ B − A ∩ B.

Similarly, for a given dynamic graph the definition of its edges DynamicScore is
defined as follow:

Definition 2. E-DynamicScore:
Given a dynamic graph G, such that at time t Gt = (Vt, Et). We call E-
DynamicScore at time t and denoted by De

t , the ratio:

De
t =

|Et+1�Et|
|Et+1 ∪ Et|

The DynamicScore serves as a similarity metric, enabling comparisons between
two consecutive snapshot graphs. A score of 0 indicates that the two graphs are
identical, while a score of 1 signifies that they do not share any common vertices.
In general, a value close to 0 suggests minimal changes in the graph between two
consecutive steps, whereas a value close to 1 implies significant modifications
have occurred. It should be noted that graph order and DynamicScore measure
two different quantities. For instance, between two consecutive time steps, t and
t + 1, the value of Vertex-DynamicScore can be equal to 1 while the order of
the graph remains the same. This occurs when all the vertices have changed
between t and t + 1. In the next two sections the analysis will mainly focus on
the dynamics of Vertex and E-DynamicScore of the Barabási model as defined
in [1] and the EMGG model.

2 Analysis of the Dynamics of the Preferential
Attachment Growing Model

2.1 Introduction to the Model

In [1], the generative process is clearly described. For the first part of our analysis,
we only focus on the evolution of the number of vertices and on the number of
edges. Using our notations the generation of the graph starts with a seed graph
G0 = (V0, E0) such that |V0| = n0 and 0 ≤ |E0| = m0 ≤ 1

2n0(n0 − 1). Note
that in the original research article, no information is given about the initial
number of edges. At every time step t + 1 a new vertex is added and this new
vertex is linked to m(≤ n0) vertices already in Vt. Thus |Vt+1| = |Vt| + 1 and
|Et+1| = |Et| + m.



438 B. Vincent et al.

2.2 DynamicScore

From this it is possible to compute both Vertex and E-DynamicScore. As the
number of node inserted in the graph at each step is one, Dv

t = 1
n0+t+1 . Moreover,

the number of new connections being m and no connection being removed leads
to De

t = m
m0+tm . Thus, both the Vertex and the E-DynamicScore are decreasing

and tends toward 0 as t tends to infinity.

3 Generator of Edge-Markovian Graphs

This section presents the Edge-Markovian Graphs Generator (EMGG), its for-
mal definition and some of its fundamental properties. In the first part, we
present the model and its characteristics. Moving on to the second part, we
delve into the general results and explore the relationships between EMGG and
the DynamicScore metric. These results unveil a significant connection between
the graph’s density and the value of DynamicScore, shedding light on their inter-
play and implications. By examining this relationship, we gain valuable insights
into the dynamics of the graph and the quantitative assessment provided by
DynamicScore.

3.1 The Model

The Edge-Markovian Graphs Generator (EMGG) is a stochastic process that
produces an infinite sequence of static graphs. We denote Gt the graph produced
at step t. Gt = (Vt, Et) where Vt (resp. Et) represents the set of vertices (resp.
edges) at step t.

The EMGG is parameterized by two probabilities, denoted as p and q, along
with an initial condition or seed graph, denoted as G0. The set of vertices of the
graph does not change during the evolution process, so, for all t > 0, Vt = V0 = n.
Given two vertices u and v, if at step t the edge (u, v) ∈ Et, the edge is said
present and absent otherwise. The EMGG operates as follows: at each step, all
possible edges (present or absent) are examined2. The generator determines for
each edge if it will remain in the same state (present/absent) in the next snapshot
graph or if it will change. The decision is based on two probability parameters:
0 ≤ p ≤ 1 and 0 ≤ q ≤ 1. The role of p is to define the probability that an edge
present at a given step remains present during the next step, while the role of q
is to define the probability that an edge absent at a given step remains absent
during the next step. This is summarized in the following diagram:

There are several special cases worth noting. When both p and q are set to 0,
the generated graphs exhibit a blinking behavior, where edges alternate between
present and absent at each step. On the other hand, when both p and q are set
to 1, the generated graphs remain static throughout the sequence, with Gt being
equal to the initial graph G0 for all time steps. In the case where q = 1 − p, the
generating process becomes “time-homogeneous”, meaning that the generation
of the new graph at each step does not depend on the previous step (Fig. 2).
2 there are n(n− 1)/2 such edges.
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Fig. 2. Description of the states.

Definition 3. An EMGG is parameterized through 4 parameters n ∈ N
∗, p and

q ∈ [0, 1] and an initial configuration G0. Instances produced by such a generator
are such that:

– for all step t, |Vt| = n;
– for pair of vertices e = (u, v) ∈ V 2

t :
• if e ∈ Et, then e ∈ Et+1 (remain present) with probability p and becomes

absent with probability 1 − p;
• if e /∈ Et, then e ∈ Et+1 (becomes present) with probability 1 − q and

remain absent of Et+1 with probability q.

The maximum number of edges that may be contained at a given step t is
(
n
2

)
.

The set of edges is evolving through time and computing E-DynamicScore gives
an information about its dynamics. In the following sub sections we establish a
solid foundation for understanding its dynamics and its relationship with prob-
abilities p and q.

Note: in the following, the number of edges in a generated graph at step t will
be referred to as mt and the graph density will be referred to as m̂t. Given an
undirected graph G = (V,E), such that |V | = n and |E| = m, graph density is
m̂ = 2m

n(n−1)

3.2 Known Properties of EMGG

In order to ease the understanding of the dynamics of EMGG instances, some
results about EMGG are presented.

First note that the state of each edge is independent of the state of the other
edges of the graph, thus, studying the probability of presence/absence of each
edge independently from the others is correct. As presented in [5] the transition
matrix P for a single edge satisfies:

P =
(

p 1 − p
1 − q q

)
(1)

The analysis of Markovian processes and more especially the study of two-states
markovian processes has shown that for each single edge, the distribution of
presence, in the context of EMGG, converges toward a stationary distribution
π as long as |p + q − 1| �= 1. The situation |p + q − 1| = 1 is discussed after the
proof of the theorem. As a stationary distribution of a Markov chain, π satisfies
π = πP . The value of vector π is stated in the following theorem:
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Theorem 1. Stationary distribution:
For p, q probabilities such that |p + q − 1| �= 1, the stationary distribution π is:

(
1 − p

2 − p − q

1 − q

2 − p − q

)

Proof: It is sufficient to notice that π =
(

1−p
2−p−q

1−q
2−p−q

)
is a distribution and

that π = πP . �	
Thus, the presence of an edge has a Bernoulli distribution of parameter π∗ =

1−p
2−p−q as a stationary distribution. As every edge is independent one from the
other, the number of edges has a binomial distribution of parameter

(
n
2

)
and π∗.

The situation for which |p + q − 1| = 1 as two subcases, either p = q = 1 or
p = q = 0. On the one hand if p = q = 1, then graphs produced by EMGG
remains unchanged forever. This means Gt = G0 for all t. On the other hand
if p = q = 0, then produced graphs are 2-periodic and more precisely, Et+1 is
the complementary of Et for all t. Thus, in both cases the density of a produced
graph does not converge to a stationary distribution.

3.3 EMGG and E-DynamicScore

This subsection presents several key results concerning the Edge-Markovian
Graphs Generator (EMGG) and the E-DynamicScore of the graphs it gener-
ates. Results stated here are specific cases of the analysis made in the previous
section. Every result mentioned in this section will be connected to ones stated
above. Firstly, we provide the computation of the density of these graphs, a
fundamental quantity in the context of EMGG. The expectation of this quan-
tity is then stated, offering insights into its average behavior. Moving forward,
we examine the average DynamicScore across all possible density values. By
analyzing this metric, we gain a comprehensive understanding of the dynam-
ics of the EMGG and its relationship with the density parameter. Specifically,
we explore the DynamicScore at the fixed point density, uncovering the cru-
cial role played by the probabilities p and q, and elucidating the characteristics
that can be derived from this special value. Notably, we establish a meaningful
connection between this particular value of the DynamicScore and the values
obtained through experimental observations. Through these results, we deepen
our understanding of the EMGG and its association with E-DynamicScore, pro-
viding valuable insights into the dynamics and quantitative assessment of this
stochastic graph generation process.

Density Evolution of Edge-Markovian Graphs
In order to better understand the relationships between EMGG dynamics and
the E-DynamicScore metric, we first show that the number of edges is on average
close to a quantity depending only on p and q. To that end, we prove the following
lemma on the evolution of the density:
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Lemma 1. Evolution of the Density
Let consider EMGG parameterized by (n, p, q). Let (G0, . . . , Gt) be a sequence of
graphs produced by EMGG. Then, the expected normalized density for the graph
Gt+1 satisfies the following equation:

m̂t+1 
 fp,q(m̂t) = m̂tp + (1 − q)(1 − m̂t) = (p + q − 1)m̂t (2)

Proof: As the process is a Markov chain, m̂t+1 depends only on m̂t. Second, it is
worth mentioning that every edge is independent from the others. The expected
number of edges that remain present is pm̂t while the expected number of edges
changing their state from absent to present is (1 − q)(1 − m̂t). The expected
number of edges present at step t + 1 is thus the sum of these two quantities. �	

This lemma provides a valuable interpretation of the density expectation,
which allows us to further investigate the existence of a fixed density. By ana-
lyzing the expectation, we can identify a specific value that represents a fixed
point within the computation process. In the context of the function fp,q, a fixed
point refers to a value m∗ for which f(m∗) = m∗ holds true. The computation
of this fixed point value is carried out according to the procedure outlined in the
subsequent lemma.

Lemma 2. Expected Number of Edges:
Let G be a graph produced by EMG(n, p, q) Let m̂t be the density of graph at
step t. Then, as long as |p + q − 1| < 1 an expectation value for m̂t, referred to
as m∗, satisfies fp,q(m∗) = m∗:

m∗ =
1 − q

2 − p − q
(3)

Proof: This result comes from finding a fixed point to the function fp,q �	
This fixed point value matches with the probability of presence of an active

edge in the stationary regime. It is not surprising as it gives, in both case, the
average and expected value of the graph density. These findings enable us to gain
deeper insights into the dynamics of the system and the properties associated
with the EMGG, paving the way for a more comprehensive understanding of its
behavior.

3.4 Relationship with the DynamicScore

This section explores the relationship between the Edge-Markovian Graphs Gen-
erator (EMGG) and the DynamicScore, focusing on the computation of an expec-
tation value regardless of the graph’s density. The following theorem provides
a precise value of this expectation, elucidating the crucial role played by the
parameters p and q in this context:
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Theorem 2. Average General DynamicScore
Let G be a graph produced by EMG(n, p, q) Let m̂t be the density of graph at
step t. Then, in average:

DE
t = 1 − pm̂t

1 + q(m̂t − 1)
(4)

Proof: The proof consists in finding the average number of edges in Et�Et+1

and in Et ∪ Et+1. For the first one, it consists in computing, on average, the
number of edges which state is changing. Assuming the density of edges at t is
m̂t, then the density of edges that change from present to absent is on average
(1 − p)m̂t and the density of newly present edges is on average (1 − q)(1 − m̂t).
Therefore, the size of Et�Et+1 is on average:

|Et�Et+1| = (1 − p)m̂t + (1 − q)(1 − m̂t)

For computing the union size, it is sufficient to notice that it contains all the
present edges at step t plus appearing edges (1 − q)(1 − m̂t). Thus, the size of
the union is in average:

|Et ∪ Et+1| = m̂t + (1 − q)(1 − m̂t)

It is therefore possible to estimate the average DynamicScore:

DE
t =

(1 − p)m̂t + (1 − q)(1 − m̂t)
m̂t + (1 − q)(1 − m̂t)

= 1 − pm̂t

1 + q(m̂t − 1)

�	
This result must be evaluated for densities close to m∗. Indeed, the distri-

bution of the edges follows a binomial law of parameters
(
n
2

)
and π∗. Therefore

most values of |Et| taken by generated graphs are close to the expected value
of the binomial law:

(
n
2

)
π∗. This implies density of these graphs are close to

π∗ = m∗. Combining this theorem with the fixed point density of generated
graphs provides DynamicScore at the fixed point density:

Theorem 3. E − DynamicScore inAverage aroundm∗ :
For all p, q such that |p + q − 1| < 1

DE
t (m∗) = 2

1 − p

2 − p

Moreover, DE
t (m∗) may take all the values from 0 to 1.

Proof: It results from the combination of both Theorem 2 and Lemma 2. �	
Notably, the average DynamicScore is independent of the value of q, and it

exhibits a decreasing trend as p increases. The range of possible values for the
DynamicScore ranges from 0 to 1, indicating its ability to capture the extent of
changes in the graph. To illustrate these findings, several figures are presented.
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Fig. 3. Average dynamic score as a function of the parameters p and q. On the left,
the parameter p is set and the parameter q ranges from 0.05 to 0.95. One may notice
that for a fixed value of parameter p, the average dynamicScore does not depend on q.
On the right, the parameter q is set and the parameter p ranges from 0.05 to 0.95. As
observed with the picture on the left, the average dynamicScore does not depend on q
so all the marks are mingled.

These figures have been obtained through simulations, considering various values
of p and q, both ranging from 0 to 1, while excluding the endpoints. These
visual representations offer a good understanding of the relationship between
EMGG instances, their DynamicScore on average, and the parameters p and
q. By examining these figures, we obtain experimental confirmation and deeper
understanding of the behavior and characteristics of the EMGG, corroborating
the insights provided by the above-stated theorem, particularly in relation to the
DynamicScore. The impact of the parameter q on the average DynamicScore
is found to be negligible, whereas parameter p appears to be more influential
in determining its value. Notably, it is observed that the DynamicScore can
encompass the entire range from 0 to 1 as p varies from 1 to 0 (Fig. 3).

4 Conclusion and Open Problems

In this work, a new metric called DynamicScore has been presented. This metric,
proposed for both edges and vertices, quantifies the evolution of the dynamics
of dynamic graphs. It has been demonstrated that the Preferential Attachment
growing model generates graphs with dynamics that tends toward zero. This
implies that after numerous iterations, the dynamic graph undergoes minimal
changes, resulting in a stability of the properties within the generated graphs.
However, the dynamics of real complex networks is not solely reliant on the cre-
ation of vertices and edges but also on the removal of vertices and edges. This
leads us to the following open question: (i) given a specific dynamic graphs gen-
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erator, is there a relationship between DynamicScore values and the preservation
of properties in dynamic graphs?

The second studied generator was the Edge-Markovian Graphs Generator.
The mechanics of this generator is based on two probabilistic parameters, p and
q, driving the states of edges that can be present or absent. After an in-depth
analysis of the average density of the generated graphs, using DynamicScore, it
has been shown that the dynamics of such graphs is only driven by probability
parameter p. The analysis relies on the Markovian nature of the generator, which
prompts two additional open questions: (ii) if the evolution/generative process
exhibits Markovian characteristics in the evolution of edges, does the value of
E-DynamicScore remain nearly constant? and (iii) conversely, if the value of
DynamicScore remains constant, does this indicate that the evolution process is
Markovian?
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Abstract. In this paper, we introduce spatiotemporal graph k-means
(STGkM), a novel, unsupervised method to cluster vertices within
a dynamic network. Drawing inspiration from traditional k-means,
STGkM finds both short-term dynamic clusters and a “long-lived” parti-
tioning of vertices within a network whose topology is evolving over time.
We provide an exposition of the algorithm, illuminate its operation on
synthetic data, and apply it to detect political parties from a dynamic
network of voting data in the United States House of Representatives.
One of the main advantages of STGkM is that it has only one required
parameter, namely k; we therefore include an analysis of the range of
this parameter and guidance on selecting its optimal value. We also give
certain theoretical guarantees about the correctness of our algorithm.

Keywords: Vertex clustering · Dynamic networks · Graph clustering ·
Community detection · k-means

1 Introduction

Dynamic graphs are becoming increasingly prevalent mathematical structures
as we collect more detailed data on the world around us. Though graphs have
traditionally been studied as static objects, the dynamic setting better captures
systems that evolve over time. Also called “time-varying” or spatiotemporal
graphs, they extend static graphs by permitting edges to change over time, and
they inherently reflect many systems, e.g., road networks, online communities,
and epidemic spread. Since they are much less understood than their static
counterparts, they pose an exciting and rich area of study.

Much of the literature on dynamic graphs focuses on extending well-known
concepts from the static case like connectivity [15], optimal routing [6], induced
dynamical systems [8], and more. Our work fits into this foundational litera-
ture by extending the notion of vertex clustering for the purpose of community
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detection. Graph clustering is a fundamental tool for network analysis, with
applications across the social and natural sciences, and we seek to bring this
tool to the dynamic setting. In dynamic graph clustering, we find a partition of
graph vertices that takes into account both spatial similarity—so that there are
many edges within a cluster and relatively few between clusters—and temporal
similarity, so clusters stay consistent over time. These partitions help us detect
latent community structures.

In this paper, we propose a method we call spatiotemporal graph k-means
(STGkM) that is able to track the multi-scale relationships between graph ver-
tices. STGkM applies a two-phase clustering approach, wherein the first phase
outputs an assignment for each vertex at every time step and the second phase
produces a single, long-term partition of vertices based on historical cluster mem-
bership. STGkM identifies communities of interest and automatically tracks their
evolution over time. To validate our method, we provide certain theoretical guar-
antees and showcase the utility of STGkM on synthetic and real-world datasets.

2 Related Work

In static graphs, vertex clustering has a broad literature with interdisciplinary
interest and there has been a push to extend these results to the dynamic setting.
Most approaches to dynamic community detection find clusters independently
at each time step and then use aggregation to successively infer relationships
between partitions [11]. These methods are often unable to achieve temporal
smoothness and inevitably do not capture the dynamics of the network [12].
Another subset of methods first constructs a single coupling graph that sum-
marizes the temporal properties of the dynamic network and then runs a classic
community detection method on this graph [22]. As with aggregation, the use of
coupling graphs results in a loss of temporal information.

Evolutionary clustering addresses this shortcoming through a unified frame-
work, where clusters are iteratively formed based on current network structure
and previous partitions. A cost function regulates the tradeoff between cluster
quality at each snapshot and cluster consistency [4]. This framework has been
successfully adopted and refined [5,19]. Other lines of research extend static com-
munity detection using online algorithms [23], machine learning [24], or systems-
based approximation algorithms [9]. These papers leverage diverse methods to
contend with the sometimes staggering size of dynamic networks.

Our method, STGkM, develops a unified framework akin to, but distinct
from, evolutionary clustering [4]. STGkM, achieves temporal smoothness by
restricting the search space of new cluster centers based on temporal reacha-
bility from previous centers. In addition, our method goes further than existing
techniques to also extract long-lived communities of vertices based on historical
dynamic cluster membership. STGkM is the graph analogue to our previously
developed point-based method [10]. We first introduced a notion of STGkM in
an extended abstract with some preliminary evidence of its effectiveness, but we
have since refined our approach and this paper provides our complete results [7].
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Finally, we note that there are numerous methods to group vertices within a
dynamic network, each with its own motivation, challenges, and rich literature.
Our method of vertex partitioning prioritizes long-term stable connections and
our main theoretical result highlights the relationship to the distinct concept
of connected components. However, there are many other interesting notions of
connectivity [3] with variants in stochastic settings [1] along with other related
problems, like motif detection [13], centrality measurement [2,14,18,25], and
even novel frameworks for capturing properties of dynamic networks [17].

3 Spatiotemporal Graph k-means (STGkM)

Our goal is to partition a vertex set given a dynamic graph. In STGkM, we
construct a partition by finding central nodes to represent each cluster and then
assigning each remaining vertex based on its closest central node.1 Just as with k-
means, we define the problem of finding good clusters as a minimization problem;
our novel objective has a unified formulation over space and time that predicts
a partition for each vertex at every time step. After pre-processing, STGkM
consists of two phases: in a single pass of Phase 1, the algorithm outputs vertex
membership and dynamic cluster center journeys; in Phase 2, we extract the
long-lived communities from the graph.

Setup
As input data, we need: a (finite) vertex set V , a (finite) time set T ⊂ N, a
dynamic graph G = (V,Et)t∈T where Et ∈ V × V , and an optional non-negative
cost function ωt : V × V → R for all t ∈ T. Our parameters are k ∈ N, the
number of clusters, and—optionally—λ ∈ N, the maximum cluster center drift,
and γ ∈ Z≥0, the drift time window.

Pre-processing
For all pairs of vertices across time, we compute and store the s-journey δ,
see [15] for details. The value of δt(u, v) is the length of the shortest journey (i.e.
dynamic path) starting at vertex u at time t and ending at vertex v. If no such
journey exists, it assigns +∞. Thought not a true metric (it is missing symmetry
and coincidence), this function has the same purpose as a distance in classical
k-means.2 We also define the related true metric δ̃t(u, v) � δt(u, v) + δt(v, u)
with the additional convention that δ̃t(u, u) = 0.

Phase 1
Given a fixed value of k, the first phase of STGkM selects a set of k vertices to
serve as cluster centers and assigns each vertex to a cluster at every time step.
1 Our approach is perhaps more analogous to k-medoids, but in a network context,

the distinction between k-means and k-medoids is not obvious.
2 If no weight functions are provided or if the weight functions only output natural

numbers, then δ will assign only natural numbers.
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Vertices have the flexibility to switch cluster membership at every time step, but
cluster centers are constrained by drift parameters λ and γ.

Natural Objective. The natural extension of k-means would be to optimize
the objective function in Expression 1:

min
c∈C,W∈W

∑

t∈T

∑

u∈V

∑

j∈[k]

W t
u,j · δ̃t(u, ctj) (1)

where we minimize over cluster centers C and assignment tensors W. Formally,
C is the set of all sequences of length |T| where each element is an ordered subset
of V with k elements; W � {0, 1}|T|×|V |×k such that

∑
j∈[k] W

t
u,j ≥ 1. Note that

we allow vertices to belong to multiple clusters simultaneously, and each vertex
is assigned to at least one cluster at every time step.

Objective with Regularization. Optimizing Expression 1 is NP-hard3, so
we instead iteratively optimize a modified objective function that restricts the
search space. We begin by choosing initial cluster centers c0 to be the nodes that
are most closely connected to all others at t0. When there are ties, we sample
randomly. OlgAt each time t henceforth, we assume that we have chosen optimal
cluster centers cs for all s < t, and we minimize Expression 2.

min
c,W

∑

u∈V

∑

j∈[k]

W t
u,j · δt(u, ctj)

such that δt−q(ct−1
j , ctj) ≤ λ, where 1 ≤ q ≤ γ and 1 ≤ j ≤ k

(2)

The constraint in Expression 2 imposes that the center of a given cluster can
only switch from vertex u to vertex v if the distance between them is no more
than λ for the previous γ time steps. This regularization serves two purposes:
first, it associates dynamic clusters between time steps; second, it restricts the
search space for cluster centers4. As we decrease λ or increase γ, we decrease the
number of potential centers at time t and enforce stricter cluster consistency;
see Fig. 1 for an example.

In practice, we update the center of a cluster only if the objective is improved.
When we encounter the case where selecting new cluster centers is infeasible, we
update clusters individually instead of jointly. Our algorithm terminates until
either the clusters stabilize or we reach a maximum number of iterations.

3 To see why, observe that k-medoids is NP-hard [20].
4 In the worst case, e.g. when the graph is complete at every time step, optimizing

this objective is still NP-hard, but in practice, it makes STGkM tractable.
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Fig. 1. At time t, ct0 is chosen based on ct−1
0 . The drift time window γ determines for

how many previous time steps centers must be within maximum drift λ of one another.
The objective in Expression 2 is evaluated for all potential cluster centers; the center
that minimizes the objective is chosen.

Phase 2
By building on Phase 1, Phase 2 of STGkM aims to identify the long-lived
partitions of graph vertices. The output is an assignment of communities con-
taining vertices with the most similar spatiotemporal characteristics. Intuitively,
we expect vertices with similar partitioning histories to belong to the same per-
sisting community in the long run.

Recall that the Hamming distance is defined by counting the number of
entries where two matrices disagree: H(u, v) � |{(t, k) : W t

u,k �= W t
v,k}|. Using

this distance, we define similarity sim(u, v) as

sim(u, v) � 1 − H(u, v)
|T| (3)

This definition gives us a powerful way to compare all pairs of vertices. Since
sim(·, ·) is compatible with traditional clustering techniques, we input it to
agglomerative clustering. We then output the resulting partition to get a clus-
tering of the vertices based on long-lived communities as desired.

4 Results

4.1 Algorithmic Analysis

The main feasibility issue with STGkM arises from finding new cluster centers
at every time step. Evaluating all possible subsets of size k of |V | is NP-hard.
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The objective in Expression 2 does not obviate this possibility in the worst case,
even though in practice, the added regularization results in a sufficiently fast
algorithm. There are other strategies we could deploy to minimize our objective
(e.g. greedy algorithms, subsampling, further constraints on cluster center drift)
that may be theoretically efficient, but we did not explore these possibilities
in detail, since our chosen strategy works in practice. Also, we do not provide
formal guarantees on approximation quality for Expression 2.

4.2 Connected Components

Although the clusters that STGkM generates are distinct from connected compo-
nents, we can find connected components under certain conditions, as presented
in Theorem 1. Though our method may not be most efficient way to find con-
nected components (and there are other notions of connected components), our
theoretical result provides evidence that STGkM can find interesting partitions.

Definition 1 (Dynamic Connected Component). Vertices u, v are
(dynamically) connected if there exists a finite journey from u to v and from
v to u over all time steps. A set of vertices U (where U ⊆ V ) is a (dynamic)
connected component if all vertices in this set are connected and there is no
vertex in V \ U that is connected to a vertex in U .

Lemma 1. For two vertices u, v in distinct connected components, there exists
some time step t0 such that δ̃t0(u, v) = ∞.

Proof. By definition, if u, v are not connected, then there must be some time
step t0 at which there is no finite journey from u to v or v to u. 
�
Definition 2 (Self-Connected). A dynamic network is self-connected if each
vertex is connected to itself.

Lemma 2. In a self-connected dynamic network, connectivity is an equivalence
relation and the connected components are the respective equivalence classes.

Proof. By construction, connectivity is symmetric. By self-connection, connec-
tivity is reflexive. Connectivity is also transitive: if vertex u is connected to v
and v is connected to w, then there exists a journey from u to w via v for all
time steps. By construction, each connected component only contains vertices
that are connected and no other vertices, so it is an equivalence class. 
�

We now make use of two further concepts: a non-stranding dynamic graph is
one where for every time step, every vertex has at least one edge, and holding,
where each vertex has a self-loop at every time step [15]. We introduce Lemma 3,
which is related to (but distinct from) Proposition 3.5 in [15].

Lemma 3. For two vertices u, v in distinct connected components in a non-
stranding, holding dynamic network, there exists some time step t0 such that
δ̃t(u, v) = ∞ ∀ t > t0.
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Proof. We proceed by induction. For our base case, by Lemma 1, there exists
t0 such that δ̃t0(u, v) = ∞. Therefore, either δt0(u, v) = ∞ or δt0(v, u) = ∞, so
(without loss of generality) we assume δt0(u, v) = ∞.

For our inductive step, we will show that if for some t that δt(u, v) = ∞,
then δt+1(u, v) = ∞. By holding δt(u, u) = 1 and so δt(u, v) ≤ 1 + δt+1(u, v),
which immediately implies that δt+1(u, v) = ∞. By induction, for all t > t0,
δt(u, v) = ∞ and so δ̃t(u, v) = ∞ as desired. 
�
Theorem 1. Given a holding, non-stranding dynamic graph with k connected
components, the partition of vertices induced by the optimal solution to Expres-
sion 1 is exactly the connected components given sufficient time.

Proof. For every pair of vertices u, v that are not connected, there exists some
time step such that δ̃t(u, v) = ∞ for all t > tu,v by Lemma 3. For a pair of vertices
u, v, denote tu,v to be the minimum such time step if they are disconnected or 0
otherwise. Let t∗ = max{tu,v}. This notion is well-defined because every vertex
is in a connected component at least with itself by Lemma 2.

For all t such that t ≥ t∗, note that δ̃t(u, v) = ∞ if and only if u, v are in
different connected components. If two entries in ct are in the same connected
component, then there must be one vertex v that is not connected to any cluster
center in ct by the pigeonhole principle and thus δ̃t(v, ctj) = ∞ for all j. At least
one entry in W t

v,• must be 1 by construction and thus

∑

j∈[k]

W t
v,j · δ̃t(u, ctj) = ∞

Conversely, we can select vertices cj with j ∈ [k] such that each is in a distinct
connected component. Now, construct W t such that W t

u,j is 1 when u and cj are
connected and is 0 otherwise. With this construction, the sum below is finite:

∑

u∈V

∑

j∈[k]

W t
u,j · δ̃t(u, ctj)

and this constructed W t is optimal. For two connected vertices u, v, W t
u,• = W t

v,•
so sim(u, v) ≥ 1 − ε where ε = t∗×k

|T| . For two disconnected vertices x,w, there
exists at least one index j such that W t

x,j �= W t
w,j so sim(x,w) < ε + k−1

k . With
sufficiently large |T|, we will correctly separate these clusters. 
�
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Fig. 2. STGkM on a synthetic dataset, consisting of three ground-truth clusters.

4.3 Experimental Insights

Choosing k. Perhaps the greatest challenge in using a k-means-based approach
for clustering is determining the optimal number of clusters k. With regard to
classical k-means, one of the most common methods for choosing k is the Elbow
Method [16], wherein the sum of square error of each cluster is calculated, and
the value of k which results in the most extreme difference (the elbow) is chosen.
We employ an approach similar to the Elbow Method for STGkM.

We calculate the value of Expression 2 for every value of k being considered,
and seek the value of k for which the objective is minimized. It is important
to note, that as opposed to the Elbow Method, which finds the most extreme
difference in objective values, we seek the minimal value. The reason for this is
that we allow for vertices to belong to multiple clusters simultaneously. Unlike
classical k-means where increasing k results in points getting progressively closer
to their centers, in STGkM, increasing k is likely to cause vertices to be assigned
to progressively more clusters simultaneously. Consider the case of n vertices in
a clique: cluster centers will be assigned only to their own cluster, whereas every
other vertex will be assigned to all clusters. The value of Expression 2 is thus
(n − k)k. Restricting to small k, the objective value is minimized when k = 1
and increases as k increases. In a clique, we would expect k = 1.

Synthetic Data. We begin by applying STGkM to a synthetic dataset, con-
sisting of three clusters with 10 fully connected nodes in each cluster, tracked
over 20 time steps. The result is a dynamic graph with 30 nodes and 300 edges
at each time t. At every time step we randomly choose up to 30 edges to remove
within clusters and up to 30 edges to add between clusters. We run STGkM
with λ = 1, γ = 1. Following the method for choosing k described previously,
we set k = 3. The selection process for choosing k is shown in Fig. 2a, and a
snapshot of the evolution of detected clusters is shown in Fig. 2b. As expected,
three communities persist throughout the duration of the simulation.
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Fig. 3. STGkM on the Roll Call dataset.

Detecting Political Parties. To demonstrate the utility of STGkM on a
larger, real-world dataset, we turn to politics. Communities naturally arise is
politics, particularly in recent years where we have witnessed polarization with
political figures consistently voting along party lines. Taking inspiration from
[21], we form a dynamic graph based on 100 roll call votes from the House
of Representatives between June 21, 2023 and July 27, 2023. Each vote is a
time step, each representative is a node, and nodes are connected if they vote
the same way on a bill. Possible votes are “Yea”, “Nay”, and “Present”. If a
representative does not cast a vote, they have no connecting edges for that vote.
The ground truth communities are representative’s affiliated political parties.
By running STGkM on the roll call graph, we can identify the communities of
representatives that vote similarly and observe how those communities evolve
over time.

We choose our maximum center drift to be λ = 1 and our time connec-
tivity to be γ = 5. Intuitively, we expect k = 2, but our k selection process
recommends k = 3, as seen in Fig. 3a. We find that when we run STGkM with
k = 2, we correctly separate Democrats and Republicans in our long term clus-
ters, but interestingly enough, when we run STGkM with k = 3, we additionally
find a sub-community of three Democrats. Upon further investigation, we find
that these three Democrats, Rep. Joaquin Castro, Rep. Emanuel Cleaver, and
Rep. Michael Kelly, very often vote “Present” together, as opposed to the major-
ity Democratic party vote. The evolution of our dynamic clusters is visualized in
Fig. 3b. We observe two large persistent clusters in red and blue. We also see how
in some votes, such as #20 where most representatives vote identically, almost
all nodes are assigned to one cluster. The third, green cluster often contains the
three outlying Democrats, as well as other “Present” voters over various votes.
Figures 4a and 4b visualize the similarity scores, as defined in Eq. 3, between
the cluster assignment histories for each pair of representatives. The rows and
columns of the similarity matrix are ordered according to the long-term commu-
nities discovered by STGkM. In Fig. 4a, these clusters correspond to Republicans
followed by Democrats, while in Fig. 4b, the three outlying Democrats are moved
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Fig. 4. Similarity matrices of the short term clustering similarity between nodes in
the Roll Call dataset. Rows and columns of the matrices are organized by detected
long-term community membership.

to the final three rows and columns of the matrix. We observe a distinct color dif-
ference between these three rows and the remainder of the matrix, demonstrating
that the similarity between the outlying Democrats and remaining Democrats
is much lower.

5 Conclusion

We introduce spatiotemporal graph k-means (STGkM) for community detection
by vertex clustering on dynamic graphs. This approach is unified over space and
time and gives us the ability to analyze both the short- and long-term partitions
of graph vertices, monitor the multi-scale relationships between communities,
and has just three explainable parameters, only one of which is required. We
provide a principled approach to estimating the required parameter: the number
of clusters k. We also state some theoretical guarantees that explain clustering
behavior under certain conditions. Finally, we carry out experiments on both a
synthetic and real world dataset to empirically validate STGkM.

In our future work, we seek to improve the efficiency of STGkM, both in
practice and in theory. As STGkM is applied to larger datasets, further approxi-
mation strategies will be necessary to ensure feasibility. We would like to provide
guidance on the quality and convergence of our approximation strategies. The
theoretical guarantees in this paper are only correct under narrow conditions, so
we would like to provide more contexts in which clustering is assured to work
correctly. We will also explore online extensions of STGkM, where we explore
dynamic graphs in real-time. Finally, we seek a characterization of the expected
properties of STGkM in a stochastic setting with the presence of noise.
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Abstract. We derive a differential-integral equation akin to the Hegsel-
mann -Krause model of opinion dynamics [R. Hegselmann and U. Krause,
JASSS, vol. 5, 2002], and propose a particle method for solving the equa-
tion. Numerical experiments show second-order weak convergence of the
method. We also show that our differential-integral equation can equiva-
lently be stated as a system of differential equations. An integration-by-
parts argument that would typically yield an energy dissipation inequal-
ity in physical problems yields a concentration inequality here, showing
that a natural measure of concentration increases monotonically.

Keywords: opinion dynamics · Hegselmann-Krause model · bounded
confidence model · particle method

1 Introduction

People’s opinions and beliefs are influenced in complex ways by families, friends,
colleagues, media, as well as politicians and other mega-influencers [1,5,6,11,13].
In recent decades, attempts have been made to understand aspects of this process
using mathematical modeling and computational simulation; for surveys on the
subject of opinion dynamics, see for instance [2,3,25,28,30,31].

Many models of opinion dynamics are based on the assumption that we are
influenced more easily by people whom we almost agree with to begin with
than by those whose views starkly differ from ours. A similar but more general
phenomenon is known as biased assimilation among psychologists—our tendency
to filter and interpret information in such a way that it supports our preconceived
notions [22]. Models of opinion dynamics based on this assumption are known as
bounded confidence models [3,12,26]. A popular example is due to Hegselmann
and Krause [18,19], building on earlier work by Krause [20,21]. It has been
studied extensively in the literature (see for instance [23,24], and [7]), and will
be our starting point here. The Weissbuch-Deffuant model [34] is very close to
that of Hegselmann and Krause; while Hegselmann and Krause assume that
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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each opinion holder responds to all nearby opinions simultaneously, Weissbuch
and Deffuant assume random encounters between pairs of opinion holders with
similar views. For other bounded confidence models, see [4,15,32].

The original Hegselmann-Krause model is discrete in both time and opinion
space. Similar models that are continuous in time [29], opinion space [33], or
opinion space and time [16] have been proposed as well. We are particularly
interested in fully continuous models, since we plan, in future work, to explore
the response of candidates to a dynamic electorate. In a previous paper, we have
already discussed the response of candidates to a static electorate [8]. We want to
describe candidate dynamics in opinion space by ordinary differential equations,
and find that easiest to do in clean and natural ways if the opinion dynamics of
the electorate are described fully continuously. We note that “continuous” does
not mean the same to all authors in this field. For instance, in Lorenz’s earlier
papers [23,24], the dynamics are discrete in both opinion space and time. The
word “continuous” appears in the titles of both papers, but it indicates merely
that the opinions can take arbitrary real values. To us, by contrast, a “fully
continuous” model is one in which a continuum of agents changes opinions in
continuous time. We note that fully continuous models in our sense were studied
by Lorenz in [25]. In this paper, we derive a fully continuous version of the
Hegselmann-Krause model.

We start with a time-continuous, space-discrete model. In contrast with many
of the existing time-continuous models [29], we don’t interpret particles as agents,
but as agent clusters of different sizes. Our time-continuous model has a nat-
ural space-time-continuous analogue, a differential-integral equation. The time-
continuous model that we start out with can then be interpreted as a numerical
method for the differential-integral equation, a particle method to be precise.
We note that particle methods are a natural choice for the numerical simula-
tion of bounded confidence models because biased assimilation tends to result
in the formation of clusters of like-minded individuals—groups of friends con-
firming and equalizing each others’ opinions on Facebook or over dinner, for
instance—causing accuracy issues for numerical methods based on fixed grids.

We also observe that the differential-integral equation can be translated into
a system of partial differential equations without any integrals, somewhat remi-
niscent of the Poisson-Nernst-Planck model of electro-diffusion: The density (of
individuals in opinion space, or of charged particles in physical space) moves in
a velocity field that itself is determined by the density via Poisson-like differ-
ential equations. In our model, we show that an integration-by-parts argument
that would lead to an energy dissipation inequality in physical systems leads to
a mass concentration inequality here.

2 A Time-Continuous Model

2.1 Opinion Space and Opinion Holder Distributions

We assume that any individual’s opinions can be characterized by a single real
number x. In politics, one could think of this as the “left-right axis”, with values
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of x on the left side of the axis corresponding to “left” views, and values on the
right side to “right” ones. This is a gross simplification that captures some aspect
of the truth, since political views on different issues are correlated: If you tell us
your thoughts about immigration policy and about allowing organized prayer in
schools, we cannot be sure how you feel about a single-payer healthcare system,
but we do have a guess.

We refer to the x-axis as “the opinion axis” or “opinion space”. A space-
continuous model typically uses a time-dependent density of opinion holders,

f(x, t), x ∈ R, t ≥ 0. (1)

The time t could still tick discretely in such a model, but we are primarily
interested in space-time-continuous models in which t flows continuously. We
always assume f(x, t) ≥ 0, and normalize so that

∫ ∞

−∞
f(x, t) dx = 1 for all t. (2)

More generally and abstractly, the opinion holder distribution f could be a time-
dependent Borel probability measure on R; however, the only measures without
densities that we’ll talk about in this paper are weighted sums of Dirac measures.

2.2 Particle Representation of Opinion Distributions

Let X1,X2, . . . , Xn ∈ R, and assume for now that the Xi are the only opinions
represented in the electorate. If wi is the fraction of individuals who hold opinion
Xi, then the “density” of opinions altogether is the distribution

n∑
i=1

wiδ(x − Xi), (3)

where δ denotes the Dirac delta distribution. The condition that this be a prob-
ability measure becomes

∑n
i=1 wi = 1.

Any Borel probability measure μ on the real line can be approximated arbi-
trarily well, in the distributional sense, by a weighted sum of delta functions in
the form (3). In fact, let m ≥ 1 be an integer, Δx > 0 a real number, and define,
for all integers i with −m + 1 ≤ i ≤ m − 1,

wi =
μ([(i − 1/2)Δx, (i + 1/2)Δx))

m−1∑
k=−m+1

μ([(k − 1/2)Δx, (k + 1/2)Δx))

. (4)

Then
m−1∑

i=−m+1

wiδ (x − iΔx) , (5)

converges weakly to μ if m → ∞ and Δx → 0 in such a way that mΔx → ∞.
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Any weighted sum of delta functions in the form (3) can in turn be approxi-
mated arbitrarily well by a smooth density. For instance, the smooth probability
density

n∑
i=1

wi
e−(x−Xi)

2/(2σ2)

√
2πσ2

(6)

converges to (3), in the distributional sense, as σ → 0.

2.3 The Dynamics of Conformist Opinion Holders

We assume that the opinion holders in the i-th cluster, that is, opinion holders
with opinion Xi, consider a weighted average of opinions (including their own),
in the form ∑n

j=1 η(|Xi − Xj |)wjXj∑n
j=1 η(|Xi − Xj |)wj

where
η : [0,∞) → [0, 1]

is a decreasing function with limz→∞ η(z) = 0, called the interaction function.
The further Xi is removed from Xj , the less will the j-th cluster affect the
opinion of the i-th cluster. We then assume that Xi drifts towards the weighted
average:

dXi

dt
= α

(∑n
j=1 η(|Xi − Xj |)wjXj∑n

j=1 η(|Xi − Xj |)wj
− Xi

)
(7)

where α > 0 is a parameter determining how eager the opinion holders are to
fall in line with those who already hold opinions similar to theirs. We will take
α = 1. This is just a matter of choosing time units. Using this, and simplifying
a bit, (7) becomes

dXi

dt
=

n∑
j=1

η(|Xi − Xj |)wj∑n
�=1 η(|Xi − X�|)w�

(Xj − Xi). (8)

The model is most closely analogous to that of Hegselmann and Krause if the
interaction function η is taken to be the indicator function of an interval [0, ε]
with ε > 0. However, we use

η(z) = e−z/ν

where ν > 0 is a parameter determining how broad-minded the opinion holders
are. Larger ν means greater broad-mindedness.

Setting wj = 1 in (8), our equation simplifies to [3, Eq. (6)]. A time-discrete
version of the model of [3] is also given in [12, eqs. (3) and (4)]. A time-discrete
model including weights can be found for instance in [7, Eq. (2)]. If η is taken to
be an indicator function, our model becomes a time-continuous version of that
in [7].
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2.4 Examples

We first assume that the initial opinion distribution has the density

f0(x) =
1
2

(
e−2(x+1)2√

π/2
+

e−2(x−1)2√
π/2

)
.

The graph of this function is shown in Fig. 1.

Fig. 1. An opinion distribution with two distinct “camps”, a “left” one and a “right”
one.

We approximate this distribution by a weighted sum of 400 Dirac delta func-
tions, as described by equations (4) and (5) with m = 200 and Δx = 3/m. We
compute the time evolution as described by Eq. (8), using η(z) = e−2z, using
the midpoint method with Δt = 0.04. At each time t > 0, this results in a
weighted sum of Dirac delta functions approximating the opinion distribution.
We approximate this sum by a smooth probability density as defined in (6) with
σ = 0.1. The upper panel of Fig. 2 shows the resulting densities at times t = 0
(blue), 5 (black), and 10 (red). The lower panel shows the same time evolution
as a surface plot. The two initial clusters tighten, but they also move towards
each other, and eventually they merge into one cluster at the center.

For the initial opinion distribution

f0(x) =
1
3

(
e−5(x+1)2√

π/5
+

e−5x2

√
π/5

+
e−5(x−1)2√

π/5

)

we obtain the time evolution shown in Fig. 3. A feature of some interest is that
the three clusters start out with equal amplitude, but by time 10, the middle
cluster has a lower amplitude than the outlying ones. A closer inspection of the
computed density shows that this effect is mostly attributable to less tightening
in the central cluster, not to migration of individuals out of the central cluster:
The percentage of individuals between x = −0.5 and x = 0.5 is nearly exactly the
same at time 10 as at time 0. At approximately time 30, the three clusters merge
into one. This calculation was carried out with a bit less resolution: m = 100 (so
200 Dirac delta functions), again Δx = 3/m, and Δt = 0.1, and σ = 0.1.
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Fig. 2. If the initial opinion distribution is that shown in Fig. 1, the initial clusters
tighten at first, but also move towards one another, and eventually merge. The upper
panel shows f at times 0 (blue), 5 (black), and 10 (red). The lower panel shows the
time evolution as a 3D surface plot.

Fig. 3. Tightening and eventual collapse of three initial clusters.

2.5 Concentration of the Opinion Holder Density

We saw in our numerical results that multiple clusters in our model always
appear to be transient, eventually collapsing into a single cluster. It is easy to
prove that this must always happen [9, Proposition 1].

Proposition 1. Assume that the Xi, 1 ≤ i ≤ n, obey Eq. (8). Then
min1≤i≤n Xi is increasing, max1≤i≤n Xi is decreasing, and

lim
t→∞

(
max
1≤i≤n

Xi − min
1≤i≤n

Xi

)
= 0.
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For much less straightfoward results about convergence to consensus in
higher-dimensional spaces, see [27, Section 2].

3 A Space-Time-Continuous Model

3.1 Differential-Integral Formulation

Let now f = f(x, t) be a continuous opinion holder density. The analogues of

n∑
j=1

η (|Xi − Xj |) wjXj and
n∑

j=1

η (|Xi − Xj |) wj

are ∫ ∞

−∞
η(|z|)f(x − z, t)(x − z) dz and

∫ ∞

−∞
η(|z|)f(x − z, t) dz.

We will derive a continuous evolution equation using arguments similar to
those often used to derive conservation equations such as convection or diffusion
equations. Consider an interval [a, b]. At a, opinion holders are moving right with
velocity ∫ ∞

−∞ η(|z|)f(a − z, t)(a − z) dz∫ ∞
−∞ η(|z|)f(a − z, t) dz

− a.

At b, they are moving right with velocity
∫ ∞

−∞ η(|z|)f(b − z, t)(b − z) dz∫ ∞
−∞ η(|z|)f(b − z, t) dz

− b

Now think about a short time interval of duration Δt. The fraction of opinion
holders entering [a, b] through a in the time interval [t, t + Δt] is about

f(a, t)

(∫ ∞
−∞ η(|z|)f(a − z, t)(a − z) dz∫ ∞

−∞ η(|z|)f(a − z, t) dz
− a

)
Δt.

The fraction exiting through b is similarly

f(b, t)

(∫ ∞
−∞ η(|z|)f(b − z, t)(b − z) dz∫ ∞

−∞ η(|z|)f(b − z, t) dz
− b

)
Δt.

It follows that

d

dt

∫ b

a
f(x, t) dx =

∫ b

a
ft(x, t) dx = −f(b, t)

(∫ ∞
−∞ η(|z|)f(b − z, t)(b − z) dz∫ ∞

−∞ η(|z|)f(b − z, t) dz
− b

)
+

f(a, t)

(∫ ∞
−∞ η(|z|)f(a − z, t)(a − z) dz∫ ∞

−∞ η(|z|)f(a − z, t) dz
− a

)
.
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Since this holds for any choice of [a, b], we conclude:

ft(x, t) =

(∫ ∞
−∞ η(|z|)zf(x − z, t)dz∫ ∞
−∞ η(|z|)f(x − z, t) dz

f(x, t)

)

x

. (9)

The particle model presented in Sect. 2 can be viewed as a discretization of Eq.
(9), with initial condition f(x, 0) = f0(x) and zero boundary conditions at ±∞.

Equation (9) is closely related to others that have appeared in the literature,
for instance Eq. [12, eqs. (7) and (8)]. According to our convection equation (9),
the velocity at opinion space location x at time t equals

−
∫ ∞

−∞ η(|z|)zf(x − z, t)dz∫ ∞
−∞ η(|z|)f(x − z, t)dz

=

∫ ∞
−∞ η(|y − x|)(y − x)f(y, t)dy∫ ∞

−∞ η(|y − x|)f(y, t)dy
(10)

while the velocity in [12, Eq. (8)], in the same notation, is
∫ ∞

−∞
η(|y − x|)(y − x)f(y, t)dy. (11)

In (10), a weighted average of the differences y − x is taken, while (11) will be
larger if x is surrounded by many nearby agents, smaller if it isn’t. Which is more
accurate depends on how one believes opinion dynamics to work—we assume
that all agents are equally eager to conform, even those surrounded by only few
other agents, whereas [12, Eq. (8)] implicitly assumes that those surrounded by
many agents are more eager to conform than those surrounded by few agents.

3.2 Differential Formulation

In our numerical experiments, we always use η(z) = e−z/ν with ν > 0. This
assumption was not crucial until now, but will be here; we could not do the
following computation with a general η. There are two integrals in Eq. (9),

g(x, t) =
∫ ∞

−∞
e−|z|/νf(x − z, t) dz, h(x, t) =

∫ ∞

−∞
ze−|z|/νf(x − z, t) dz. (12)

The strategy is to write Eq. (9) as

ft(x, t) =
(

h(x, t)
g(x, t)

f(x, t)
)

x

and then add supplementary differential equations for g and h. We note for later
reference that ∫ ∞

−∞
g(x, t) dx = 2ν for all t. (13)

In fact, g(·, t) = η ∗ f(·, t) and η
2ν is a probability density. We refer to g as the

locally averaged opinion holder density. For later reference, we also note that
∫ ∞

−∞
h(x, t) dx = 0 for all t. (14)
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It is not difficult to derive the following differential equations now [9]:

ft =
(

h

g
f

)
x

, (15)

−gxx +
g

ν2
=

2
ν

f, (16)

−hxx +
h

ν2
= −2gx. (17)

3.3 Concentration of the Locally Averaged Opinion Holder Density

We define
H(x, t) =

∫ x

−∞
h(s, t) ds.

Note Hx = h and H(−∞, t) = 0. Integrating Eq. (17), we obtain

−Hxx +
H

ν2
= −2 g + C

with C independent of x. Assuming that Hxx = hx and g vanish at x = −∞,
and using Eq. (14), we conclude C = 0, so

− Hxx +
H

ν2
= −2 g. (18)

Multiply both sides of (15) by H, integrate with respect to x, and then integrate
by parts on the right-hand side:

∫ ∞

−∞
H(x, t)ft(x, t) dx = −

∫ ∞

−∞

h2(x, t)
g(x, t)

f(x, t) dx. (19)

On the left-hand side of this equation, now use Eq. (16):
∫ ∞

−∞
H(x, t)ft(x, t)dx =

ν

2

∫ ∞

−∞
H(x, t)

(
−gxx +

g

ν2

)
t

dx

Integrate by parts twice:

ν

2

∫ ∞

−∞
H(x, t)

(
−gxx +

g

ν2

)
t

dx =
ν

2

∫ ∞

−∞

(
−Hxx +

1
ν2

H

)
gt dx.

Now use Eq. (18):

ν

2

∫ ∞

−∞

(
−Hxx +

1
ν2

H

)
gt dx = −ν

2

∫ ∞

−∞
2 ggt dx = −ν

2
d

dt
‖g‖L2 .

Using this in Eq. (19), we find:

d

dt
‖g‖2L2 =

2
ν

∫ ∞

−∞

h2(x, t)
g(x, t)

f(x, t) dx. (20)
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Positivity of f implies positivity of g, and therefore

d

dt
‖g‖2L2 > 0. (21)

Recall from Eq. (13) that the L1-norm of g is equal to 2ν for all time. The
square of the L2-norm is a measure of concentration of g. This is reflected by the
fact that if X is a random number with probability density g

2ν , then ‖g‖2L2 =
2νE(g(X)), and therefore E(g(X)) rises as t increases. When X is drawn with
density g, the expected value of g(X) gets larger with time. This means that g
becomes increasingly concentrated.

4 Numerical Convergence Tests

As an example, we test convergence for the initial condition

f0(x) =
1
3

(
e−5(x+1)2√

π/5
+

e−5x2

√
π/5

+
e−5(x−1)2√

π/5

)
.

We track the Xj up to time t = 1. We use a time step Δt and assume that 1/Δt
is an integer. We initialize the Xj at

Xj(0) = −3 + jΔx, j = 1, 2, . . . ,
6

Δx
− 1,

assuming that 6/Δx is an integer. We compute approximations for f(x, t), x =
jΔx, j integer, Eq. (6), where σ = 0.1. We denote these approximations by
fΔx,Δt(x, t), and will test whether they converge to some limit as Δx and Δt
are simultaneously reduced. We cannot test convergence to an exact solution,
since we have no analytic expression for an exact solution.

Fixing σ independently of Δx amounts to testing for a form of weak con-
vergence. The computed distribution is a sum of δ-functions, but we test for
convergence of the convolution with a Gaussian.

We define

EΔx,Δt = max
{∣∣∣fΔx

2 , Δt
2

(x, 1) − fΔx,Δt(x, 1)
∣∣∣ :

x

Δx
integer, − 3 < x < 3

}
.

If there is second-order convergence as Δx and Δt simultaneously tend to zero,
one should expect

EΔx,Δt

EΔx/2,Δt/2
≈ 4

for small Δx and Δt. Table 1 confirms that this is indeed the case.
More extensive convergence tests, confirming weak second order convergence,

are presented in [9].
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Table 1. Numerical test confirming second order convergence of the approximation
obtained by convolving the computed sum of delta functions with a Gaussian, as both
Δx and Δt are refined; see text for details.

Δx 0.06 0.03 0.015

Δt 0.1 0.05 0.025

EΔx,Δt/EΔx/2,Δt/2 4.01 3.98 4.00

5 Summary and Discussion

We began with a time-continuous version of Hegselmann-Krause dynamics, very
similar to equations that have been proposed in the literature previously, but
with weighted particles, which we think of as representing clusters of agents, not
individuals. The weights have a numerical advantage—instead of needing many
agents in a part of opinion space populated by many opinion holders, we can use
fewer but heavier particles.

The time-continuous model suggests a fully continuous macroscopic model,
which we formulated first as a single integral-differential equation, then—for the
special case of an exponential interaction function—as a system of differential
equations. The time-continuous model (discretized using the midpoint method)
can be viewed as a particle method for the fully continuous model.

In our numerical computations, all opinion holders eventually arrive at con-
sensus. This could be counter-acted by adding diffusion (spontaneous random
small changes in opinions) in the model, as some authors have proposed (see for
instance [4,16]). We have refrained from doing that here because it would raise,
in our context, the question how to incorporate diffusion in the particle method.
One possibility would be a method similar to Chorin’s random walk method for
viscous fluid dynamics [14,17].

In future work, we plan to use the method presented in this paper to explore
the interaction of candidate dynamics with voter opinion dynamics. We have
taken a first step in that direction in [8].

Another avenue for further exploration could come from considering the inter-
action function to be additionally dependent on agents’ properties that are unre-
lated to their opinion, such as connections in a social network or geographic loca-
tion [10]. The former is closely related to targeted advertising research. Addition-
ally, one could introduce dependence of the interaction function on other forms
of opinion average (such as geometric average) as suggested by Hegselmann and
Krause in [19].
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Abstract. The research on biological network evolution and graph
growth models, such as the Duplication-Mutation with Random Muta-
tion (DMR) model, enable us to characterize the protein interaction net-
work’s evolutionary dynamics founded on duplication and divergence
via mutation in a principled way. The existing approaches to recon-
struct historical ancestral graphs for DMR model mainly focus on greedy
approaches and results in suboptimal solutions. In this study, we come
up with ILP-DMR, a novel Integer Linear Programming (ILP)-based
formulation, to reconstruct historical PPI graphs by likelihood maxi-
mization over DMR model. We assess the effectiveness of our approach
in reconstructing the history of synthetic as well as optimal history of
the proteins from the families of bZIP transcription factors. In compari-
son to the existing techniques, solutions returned by our ILP-DMR have
a higher likelihood and are more robust to model mismatch and noise
in the data. Solutions extracted by ILP-DMR have a higher likelihood
than the existing methods, and our solutions better agree with the bio-
logical findings of different studies. Our datasets and code are available
at https://github.com/seferlab/dmrhistory.

Keywords: DMR · Duplication-Mutation with Random Mutation ·
Ancestral History Reconstruction · PPI

1 Introduction

Graph growth models, a type of generative models, express and model the graph
evolution over time, and they have been utilized to explain graph attributes in
distinct domains. Some examples are Forest Fire Model [10] for social graphs and
Preferential Attachment Model [2] mainly to model WWW. Those growth mod-
els model the evolutionary dynamics assumptions by graph operations. Dupli-
cation and mutation is the key evolutionary procedure governing the growth
of biological networks [22]. In this case, a graph vertex is duplicated involving
its incident edges which is followed by the deletion of a number of the incident
edges, and these two operations as a whole model a single evolutionary time step.
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H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1142, pp. 470–483, 2024.
https://doi.org/10.1007/978-3-031-53499-7_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-53499-7_38&domain=pdf
https://github.com/seferlab/dmrhistory
https://doi.org/10.1007/978-3-031-53499-7_38


Optimal Reconstruction of Graph Evolution Dynamics 471

A number of biological studies have validated these models [20]. In this study, we
focus on Duplication-Mutation with Random Mutation (DMR) model, that out-
performs the remaining models in fitting PPI graphs in terms of various aspects,
such as the -hop reachability (i.e., the number of distinct nodes that can be
reached from a given node via a path of edges), the graphlet distribution, as well
as the betweenness, closeness, and degree distributions [3,12,14].

One can reconstruct the historical networks in a generative model-based prin-
cipled way by using a graph growth model, similar to inferring the evolutionary
history of sequences via reconstruction algorithms. Under the assumption of
a generative model, history graph reconstruction focuses on finding the graph
sequence with the highest likelihood yielding the present network. Such ancestral
reconstruction requires the vertex order inference in which order vertices in the
graph duplicate and the graph lose interactions between vertices at every indi-
vidual step throughout evolution. A number of methods have been developed
for historical graph reconstruction, especially for DMC model instead of DMR
model. For instance, [14] has come up with a greedy ReverseDMC algorithm
that focuses on reconstructing the network history with the highest likelihood
over DMC model. This ReverseDMC method greedily maximizes the likelihood
of every individual step of evolution and selects an anchor vertex which is dupli-
cated at every step. Such ReverseDMC algorithm focuses solely on the current
graph’s topology to reconstruct ancestral historical graphs. A number of its
variants have been introduced, which integrate extra biological knowledge about
the proteins into the inference. For example, [7] integrates vertex contents over
ancestral graphs as the additional knowledge into ancestral inference. Similarly,
such extra knowledge could be duplication history of proteins [6,11]. There are
additional ancestral graph inference algorithms that are based on minimum-
parsimony principle [15]. A number of other techniques infer histories over Pref-
erential Attachment Model [19,23]. Recently, [17] has proposed an integer linear
programming-based solution to optimally infer ancestral PPI network histories
using DMC model. Almost all of these approaches extract solely a single evolu-
tionary history via optimization criteria such as likelihood. Almost none of them
except [17] can infer optimal evolutionary histories due to their formulations.

In this study, we come up with ILP-DMR, an Integer Linear Program-
ming (ILP) solution, to optimally reconstruct historical PPI networks for DMR
model by maximizing the likelihood, and by taking into account only the exist-
ing graph’s knowledge. We define indicator variables to model duplicated and
anchor vertices at every evolutionary step. We integrate DMR model’s condi-
tions as linear constraints for every successive pair of graphs as part of evo-
lution to the optimization. We evaluate our proposed ILP-based method in
synthetic and real datasets. In synthetic data, our method outperforms greedy
ReverseDMR, showing the non-optimality of the greedy heuristic. Moreover, we
compare ILP-DMR with ReverseDMR via different metrics such as similarity of
correct graph with the inferred one (as evaluated by similarity via graph kernel),
vertex arrival order (evaluated by Kendall’s Tau metric). In terms of all those
metrics, ILP-based reconstructions from ILP-DMR are better than the ones from
ReverseDMR.
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We have also assessed the performance over PPI of bZIP transcription fac-
tors families by using the same evaluation metrics. The solution obtained via
ILP-DMR has a higher likelihood than the greedy method. In terms of biolog-
ical evaluations, reconstructions by ILP-DMR agree more remarkably with the
biological knowledge from protein sequence similarity and gene orthologs.

2 Problem Formulation

Let Gt be a graph at time t and I be an evolutionary model which defines a list
of operations generating Gg+1 from Gg. Then, we are interested in finding the
most plausible evolutionary graph sequence GS = G1, . . . , Gt−1:

G∗
S = argmax

GS

(P (Gt|Gt−1) . . . P (G2|G1)P (G1)) (1)

where P (Gt|Gt−1) probabilities are dependent upon the present-day graph Gt

and the model l. Next, we discuss the way of likelihood computation for DMR.
According to DMR model, G2 is a graph with 2 vertices that has an edge

between them. qdel and qmod are its parameters, and graph evolution dynamics
at any step from Gg to Gg+1 is as follows:

1. DMR randomly chooses an anchor vertex u in Gg and duplicates it to generate
new vertex v. Duplicated v is exactly a copy of u: It has an edge with all u’s
neighbours, and does not have an edge to the remaining vertices.

2. DMR randomly removes the edges between u and v with probability qdel.
3. For each neighbour x’s edges, DMR randomly modifies the either connecting

edges (u, x) or (v, x) with qmod probability; If the edge is selected for modifi-
cation, DMR eliminates either (u, x) or (v, x) with identical probability.

Gg represents a graph having g vertices since DMR adds a single vertex at
every evolutionary step. Let euv ∈ {0, 1} define the existence of edge between
anchor vertex u and duplicated vertex v. According to DMR model’s second
step above, (1− qmod) is the probability of u and v having a common neighbour,
qmod/2 is the probability that a vertex x is a neighbour of u and not of v, or it is
a neighbour of v and not of u. Let N(u) be the list of u’s neighbours, N(u)∩N(v)
be the list of shared neighbours of u and v, and N(u)�N(v) be the list of vertices
which are neighbours of either u or v but not of both. Subsequently, provided
with anchor u and duplicated v, log-likelihood log P (Gg|Gg−1, l) is defined as:

log P (Gg|Gg−1, l) = euv log(1 − qdel) + (1 − euv) log(qdel)+
∑

N(u)∩N(v)

log(1 − qmod) +
∑

N(u)�N(v)

log(qmod) (2)

where constant terms are ignored. Immediately after u and v are determined,
one can reconstruct Gg−1 via eliminating duplicated vertex v and attaching back
the edges between anchor vertex u and each vertex in N(u) − (N(u) ∩ N(v)).
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In this case, these edges are attached back since they already existed before
DMR’s second step has been applied. One should keep in mind that u and v are
not distinguishable in Gg: While reconstructing back Gg−1, either u or v can
be eliminated and corresponding edge additions follow mutatis mutandis. From
now on, the vertex pair u, v in Gg will be referred to as duplicated vertices and
u in Gg−1 as the anchor vertex.

3 ILP-DMR: Integer Linear Programming-Based
Solution

3.1 Our ILP

Given the present-day network Gt, we should infer the succeeding knowledge to
reconstruct the whole series of graphs GS :

1. Anchor vertices in all previous networks G2, . . . , Gt−1

2. Duplicated vertices in all networks G3, . . . , Gt

3. Edges of all networks G3, . . . , Gt−1

We reconstruct the evolutionary history of a graph by formulating the solu-
tion as an ILP. We define ig as i’th node in graph g and will eliminate the
subscript in variable namings once the corresponding graph is apparent, to pre-
vent confusion. For every graph G2, . . . , Gt, we will model the existence of an
edge by binary edge indicators eijg, and binary vertex indicators xig, yig, zig, aig.
Subscripts i and j denote the vertices and g denote the graph Gg having vertices
1, . . . , g. When ith vertex of Gg is a duplicated/anchor vertex, xig/aig will be
assigned 1 respectively. Indicator variable yig will be used to recognize dupli-
cated vertices shared neighbour. Similarly, indicator variable zig will be used
to recognize a neighbour of either of the duplicated vertices but not of both.
Among edge indicators, eijg, ∀i, j are predetermined for graphs G2, Gt and are
not known in the remaining graphs. However, none of the vertex indicators are
known for graphs. In our case, we can express the log-likelihood in Eq. 1 as:

ILP =
t∑

g=1

⎛

⎝
g∑

i=1

g∑

j=1

eijgxigxjg log(1 − qdel) + (1 − eijg)xigxjg log(qdel)

⎞

⎠

+
g∑

k=1

ykg log(1 − qmod) +
g∑

k=1

zkg log qmod (3)

Therefore, maximizing ILP term subject to all constraints ((4)–(25)) defined
below is our goal where constraints are defined over the present-day graph and
DMR model.
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3.2 Anchors, Duplicated Nodes and Neighbours

Every graph in the problem, apart from the initial one G2, owns 2 duplicated
vertices:

g∑

i=1

xig = 2, ∀g ∈ 3, . . . , t (4)

Every graph in the problem, apart from the last one Gt, owns a single anchor
vertex:

g∑

i=1

aig = 1, ∀g ∈ 2, . . . , t − 1 (5)

The term eijgxig becomes 1 only when i is a duplicated vertex and an edge
exists from vertex j to i.

If vertex k is a shared neighbour, absolutely 2 edges must exist to the dupli-
cated vertices in the graph. As 2 duplicated vertices exist for each graph, the
summation term

∑g
i=1 eikgxig may only get three values {0, 1, 2} for kth vertex.

When this expression is either 0 or 1, ykg = 0 is set by constraint (6). When it
is 2, ykg = 1 is set by constraints (6) and (7).

2ykg ≤
g∑

i=1

eikgxig,∀k,∀g ∈ 3, . . . , t (6)

ykg ≥
g∑

i=1

eikgxig − 1,∀k,∀g ∈ 3, . . . , t (7)

Only a single edge towards the duplicated vertices shall exist in the graph,
to spot a neighbour of only one of the duplicated vertices which corresponds
to setting zkg = 1. In this case, one of the duplicated vertices, which can also
satisfy this criterion when an edge exists between the duplicated vertices, must
not be chosen. Those constraints could be posed by defining an extra binary
vertex variable wkg:

wkg + 2ykg =
g∑

i=1

eikgxig, ∀k,∀g ∈ {3, . . . , t} (8)

zkg ≥ wkg − xkg, ∀k,∀g ∈ {3, . . . , t} (9)

zkg ≤ wkg, ∀k,∀g ∈ {3, . . . , t} (10)

zkg ≤ 1 − xkg, ∀k,∀g ∈ {3, . . . , t} (11)

As mentioned above, the term
∑g

i=1 eikgxig can only get three values {0, 1, 2}
for kth vertex:

– When
∑g

i=1 eikgxig = 2, ykg = 1 is ensured by constraints (6) and (7), and
wkg = 0 is set by constraint (8) resulting in zkg = 0 via constraint (10).
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– When
∑g

i=1 eikgxig = 1, constraints (6) and (7) guarantee ykg = 0 so wkg = 1.
In such setting, constraint (11) guarantees zkg = 0 when xkg = 1. Similarly,
constraint (9) guarantees zkg = 1 when xkg = 0.

– When
∑g

i=1 eikgxig = 0, constraints (6)–(8) ensure wkg = 0 and con-
straint (10) ensures zkg = 0.

We also define a different binary vertex variable nkg to stress a duplicated
vertex’s neighbour, where it can be a shared neighbour as well as neighbour of
only one of the duplicated vertices:

nkg = ykg + zkg, ∀k,∀g ∈ {3, . . . , t} (12)

3.3 Phantom Edges

As part of reconstructing history, we should determine how Gg’s vertices corre-
spond to Gg−1’s vertices at an earlier graph for setting the values of the unknown
edges. We are especially interested in associating Gg’s duplicated vertices with
Gg−1’s anchor vertex. We define indicators P

ig−1
jg

for pairs of vertices (ig−1, jg)
to properly associate duplicated vertices with anchors, where the subscripts note
the graphs to which the vertices belong to. We name the edges corresponding
to these indicators as phantom edges, as such edges do not originally exist in
the graph but instead are artificially constructed for our history reconstruction
purposes. They can be viewed as directed edges from a graph at a previous time
step to a current graph.

For each vertex jg over a graph, only a single incoming phantom edge exists
from any vertices in the previous network (ig−1) to jg except over G2:

g−1∑

ig−1=1

P
ig−1
jg

= 1, ∀jg,∀g ∈ {3, . . . , t} (13)

The number of outgoing phantom edges for every vertex ig−1 in the previous
graph is between 1 and 2, except the last graph Gt. In this case, 2 phantom
edges exist for anchor vertices and only a single vertex exists for the remaining
vertices:

g∑

ig=1

P
ig−1
jg

≥ 1, ∀ig−1,∀g ∈ {3, . . . , t} (14)

g∑

ig=1

P
ig−1
jg

≤ 2, ∀ig−1,∀g ∈ {3, . . . , t} (15)

3.4 Edge Reconstruction

We formulate the final constraints for all ancestral graph edges defined by DMR
model and edges of the present-day graph. We map the edges from Gg to Gg−1

by using phantom edges. In this case, we map all edges in the present-day graph
backwards until the initial graph G2 by ensuring the subsequent conditions:
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1. We will not map an edge between duplicated vertices to any edge in previous
step’s graph as duplicated vertices are derived from just one anchor node.

2. We will map an edge (xg, ng) between a duplicated vertex xg and its neighbour
ng in graph Gg to an edge (ag−1, ng−1) between the anchor ag−1 and its
neighbour ng−1 in Gg−1.

3. We will map any remaining edge back to a unique edge in previous step graph,
so no remaining edges in previous step’s graph should exist.

We define three sets of variables to define constraints from these conditions.
Firstly, we define a binary indicator S1

ijg for vertices ig and jg in Gg as follows:

S1
ijg =

g∑

k=1

ak(g−1)P
kg−1
ig

P
kg−1
jg

S1
ijg = 1 only when 2 phantom edges exist from an anchor vertex kg−1 in

Gg−1 to the vertices ig and jg in Gg. For every edge (i, j), every term in the
summation is multiplication of ak(g−1), P

kg−1
ig

, and P
kg−1
jg

. Such term’s value

becomes 1 only when the components ak(g−1) = P
kg−1
ig

= P
kg−1
jg

= 1 which maps
vertices i, j to the anchor vertex in the previous step graph.

S2a
ijg is the second binary indicator over 2 vertices ig and jg in Gg, which is

defined as:

S2a
ijg =

g−1∑

l,k=1

al(g−1)(1 − ak(g−1))P
kg−1
jg

P
lg−1
ig

elk(g−1)

S2a
ijg = 1 only when 2 phantom edges connect an anchor vertex al(g−1) and

its neighbour (1 − ak(g−1)) respectively to ig and jg in Gg, and an edge elk(g−1)

exists in Gg−1. Similar to S2a
ijg, we propose a different binary indicator S2b

ijg for 2
nodes ig and jg in Gg. In this case, S2b

ijg = 1 only when 2 phantom edges connect
an anchor vertex al(g−1) and its neighbour (1 − ak(g−1)) respectively to jg and
ig in Gg.

S2b
ijg =

g−1∑

l,k=1

al(g−1)(1 − ak(g−1))P
kg−1
ig

P
lg−1
jg

elk(g−1)

We map from vertices i and j to an anchor vertex and its neighbour over the
previous step graph by using each summation term in S2a

ijg and S2b
ijg.

Lastly, binary indicator Tijg for two vertices ig and jg in Gg is defined as:

Tijg =
g−1∑

l,k=1

P
lg−1
ig

P
kg−1
jg

elk(g−1)

Tijg = 1 only when 2 phantom edges exist from (any) vertices kg−1 and lg−1

in Gg−1 to ig and jg in Gg respectively, and an edge elk(g−1) also exists. Each
summation term is a multiplication of phantom vertices incoming at i and j in
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Gg, and the edge elk(g−1) in previous step’s graph Gg−1. Each term maps from
edge (i, j) ∈ Gg to edge (l, k) ∈ Gg−1, when it is 1.

We define the conditions for constraints for each vertex pair (ig, jg) in graph
Gg, which depend on vertex indicators for duplicated vertices (xig) and neigh-
bour vertices (nig):

– If xigxjg = 1 meaning that both ig and jg are duplicated vertices, S1
ijg = 1

to enforce duplicated vertices to be connected to an anchor vertex in the
previous step’s graph. The remaining indicators S2a

ijg = S2b
ijg = Tijg = 0 to

enforce that none of the edges in Gg−1 can be mapped to an edge, if any,
between vertices ig and jg.

– If xignig = 1 or xjgnig = 1 meaning that one of the vertices ig and jg is a
duplicated vertex and the second one is a neighbour, S1

ijg = 0 so the anchor
vertex in the previous step’s graph cannot be connected to that vertex pair via
any phantom edges. Next assignments are S2b

ijg = xjgnig and S2a
ijg = xignjg

which enforces anchor vertex and its neighbour in the previous step’s graph
to be connected to nodes ig and jg via phantom edges. If jg is a neighbour to
the other duplicated vertex and not to ig, an edge may not exist between ig
and jg. That constraint is set as required, as both duplicated vertices map to
the anchor. Tijg = 1 enforces a just single edge existence between (lg−1, kg−1)
and Tijg ≥ eijg as an edge between ig and jg might or might not exist. There
is a mutual exclusion between this and previous cases as we never assign both
nig = 1 and xig = 1 for the same vertex.

– If xigxjg = xignig = xjgnig = 0, then S1
ijg = S2b

ijg = S2a
ijg = 0 as an edge

between ig and jg should not map to any edge connecting to an anchor in
the previous step’s graph. Additionally, Tijg = eijg to enforce the existence
of a single edge (lg−1, kg−1) if eijg = 1. On the other hand, if eijg = 0, none
of the edges in the previous graph can be mapped to (ig, jg).

The following constraints incorporate the three conditions discussed above:

S1
ijg = xigxjg, ∀ig,∀jg,∀g ∈ {3, . . . , t} (16)

S2a
ijg = xignjg, ∀ig,∀jg,∀g ∈ {3, . . . , t} (17)

S2b
ijg = xjgnig, ∀ig,∀jg,∀g ∈ {3, . . . , t} (18)

Additional binary variable Pijg = 0 if S2a
ijg = 0 and S2b

ijg = 0. Otherwise,
Pijg = 1. Additionally, Qijg = xigxjg:

Pijg ≥ S2a
ijg, ∀ig,∀jg,∀g ∈ {3, . . . , t} (19)

Pijg ≥ S2b
ijg, ∀ig,∀jg,∀g ∈ {3, . . . , t} (20)

Pijg ≥ S2a
ijg + S2b

ijg, ∀ig,∀jg,∀g ∈ {3, . . . , t} (21)

We set Tijg and eijg by using Pijg and Qijg:

Tijg ≥ Pijg, ∀ig,∀jg,∀g ∈ {3, . . . , t} (22)
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Tijg ≤ 1 + Pijg − Qijg, ∀ig,∀jg,∀g ∈ {3, . . . , t} (23)

eijg(1 − Qijg) ≤ Tijg(1 − Qijg), ∀ig,∀jg,∀g ∈ {3, . . . , t} (24)

eijg(1 − Pijg) ≤ Tijg(1 − Pijg), ∀ig,∀jg,∀g ∈ {3, . . . , t} (25)

– If Qijg = xigxjg = 1, constraints (23)–(24) enforce Tijg = Pijg = 0 since
S2a
ijg = 0 and S2b

ijg = 0. If Pijg = 0 and Qijg = 1, constraint (24) becomes void
and constraint (25) enforces eijg ≥ Tijg.

– If Qijg = xigxjg = 0 and Pijg = 1, then either S2a
ijg = 1 or S2b

ijg = 1 which is
only possible when xignig = 1 or xjgnig = 1 so the constraint (22) enforces
Tijg = 1. If Pijg = 1, Qijg = 0, then constraint (25) becomes void and
constraint (24) enforces eijg ≤ Tijg.

– If Qijg = xigxjg = 0 and Pijg = 0, then constraints (22)–(23) cannot enforce
any value on Tijg. If Pijg = 0, Qijg = 0, then (24)–(25) enforce eijg = Tijg.

Lastly, eijg = ejig,∀ig, jg,∀g ∈ {2, . . . , t} enforce the edges to be undirected.

4 Results

4.1 Synthetic Data

Our method ILP-DMR is evaluated with respect to the greedy method
ReverseDMR [14] over simulations with known evolutionary histories. We simu-
late DMR graph evolution by starting on a graph with two vertices with an edge
between them. In each case, we provide a present-day graph to ILP-DMR and
ReverseDMR as input. We limit the maximum running time of ILP-DMR to a
single day for every inference. We use Gurobi [5] to implement ILP-DMR.

We have evaluated the history reconstruction performance in terms of 3 met-
rics. The first metric is the reconstructed entire history’s likelihood. Secondly,
evaluating the vertex arrival order as part of evolution is another metric. Ver-
tex arrival order for an estimated history is calculated via reversing the set of
vertices removed at each step. Then, the relation between the true evolution’s
arrival order and that reversed list of nodes is estimated by Kendall’s Tau [8].
There are a number of Kendall’s Tau versions and we account for ties in our
evaluation case. Let Q be set of discordant pairs, P be the set of concordant
pairs, U be the set of ties only in AR, and T be the set of ties only in AT .
Then, the score is given as τ = |P |−|Q|√

(|P |+|Q|+|T |)∗|(P |+|Q|+|U |) . We do not add a

tie to either U or T if it exists for the identical pair in both AR and AT . More
formally, the considered observation pairs (xi, yi), (xj , yj) satisfy the following:
1- xi, xj ∈ AT , yi, yj ∈ AR, and 2- i < j. Concordant pair (xi, yi), (xj , yj) is
defined as a pair where both items ranks are in agreement, such as both xi < xj

and yi < yj ; or both xi > xj and yi > yj . Discordant pair (xi, yi), (xj , yj) is
defined as a pair where xi > xj and yi < yj or xi < xj and yi > yj . Otherwise,
a pair is considered a tie if xi = xj or yi = yj . A higher value means better
performance for both Kendall’s Tau and likelihood metrics.
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Thirdly, we compare the graphs evolved at each reconstruction step with
the corresponding correct graphs by graph kernel [21]. For a present graph at
time t Gt, we are provided with the reconstructed snapshots of the graph ĜS =
Ĝ3, . . . , Ĝt−1 as well as true graphs at previous time steps GS = G3, . . . , Gt−1.
Then, kernel similarity is calculated as

∑t−1
i=3 k(Gi, Ĝi)/(t − 2) where k defines

a graph kernel. That kernel similarity-based score is a measure of the whole
reconstruction’s mean similarity. In our case, the Weisfeiler-Lehman kernel is
used which depends on subgraph isomorphism inside the input networks [18]. A
higher value means better performance for kernel similarity.

Reconstruction with True Model Parameters. We have generated 1500
synthetic graphs where extant network’s vertex count varies from 6 to 10. For
each graph, we choose DMR parameters qdel and qmod randomly in [0.1, 0.9]
ranges, by rounding them to a single decimal. Then, we use the identical DMR
parameters while reconstructing the history for ILP-DMR and ReverseDMR.

Figure 1 shows that there were no simulations where solutions from ILP have
a lower likelihood than that of ReverseDMR. Since these are small networks,
both ReverseDMR and ILP were able to find optimal solutions in 76% of the
cases, while in 24% of the cases ILP found solutions with higher likelihood. The
fact that ILP could find solutions with higher likelihood shows that ReverseDMR
is not guaranteed to find optimal solutions. Histories reconstructed from ILP had
better correlation with the true histories, with respect to node arrival order, in
93% of the cases. The kernel similarity values of the reconstructed networks were
not lower than those from ReverseDMR in 79% of the cases.

Fig. 1. Reconstruction with true model parameters. Proportion of simulations where
reconstructed histories from ILP scored better (ILP > G), equal (ILP=G) and worse
(ILP < G) than the reconstructions from ReverseDMR, the Greedy approach [14],
for three metrics: 1- Log-likelihood (LKL), 2- Kendall’s Tau (KTau), and 3- Kernel
Similarity (Sim).
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Overall, reconstructed histories from ILP have higher likelihood and obtain
node arrival orders, duplication events and inferred networks that are closer to
the true evolutionary history compared to those from ReverseDMR.

4.2 Real Networks

We have evaluated the performance of ILP-DMR and ReverseDMR over real
dataset by reconstructing bZIP transcription factors PPI network histories.
We executed each of these algorithms over qdel and qmod values in ranges
[0.1, 0.3, 0.7, 0.9] and [0.4, 0.7] respectively. Then, we choose the solution with
the highest log-likelihood to analyze in depth. We limit the maximum execution
time of ILP-DMR to a single day for each execution. We initialize ILP solver
by using ReverseDMR’s feasible solution. Among the solutions generated by the
solver, we examine 2 solutions (ILP-DMR1 and ILP-DMR2) for every extant
graph.

In real network setting, we could not evaluate the performance by the 3
metrics utilized in the previous synthetic network section, as we do not know
the correct histories. In this case, we focus on evaluating the results from a
biological perspective in 2 ways. First of all, we follow the process mentioned
in [14] to compare the history inferences vertex arrival times. We estimate protein
arrival times approximately via existing ortholog knowledge, where we assume
that early-arriving proteins tend to have more ortholog proteins. So, we sort
the set of proteins in the present-day network by decreasing number of ortholog
proteins they have, which is then assumed to be the ’correct’ vertex arrival
order (AT). The number of ortholog proteins for every protein is determined by
querying OrthoDB [9]. In OrthoDB, we count the gene frequency at the highest
level at which ortholog knowledge is available for the whole set of proteins in the
graphs. Reconstructed histories from both ReverseDMR and ILP-DMR capture
the eliminated vertex at each time step, which defines the inferred vertex arrival
order (AR) for each of these methods. Then, we compare two ranked lists AR
and AT via Kendall’s Tau [8] which finds the correlation between them.

We also evaluate the similarities between sequences of estimated anchors and
duplicated vertices. In DMR models each evolutionary step, anchor gene (a) is
copied to a new gene (d), so the similarity between a and d is expected to be
greater than the similarity between anchor gene and other genes at each step.

Provided with the present-day graph Gt, this graph’s inference history ĜS =
Ĝ3, . . . , Ĝt−1, Gt, as well as selected anchor vertices and duplicated vertices in
each graph, ρ(Ĝi) score is computed for each graph in Ĝi ∈ ĜS by sequence
similarity between the selected anchor and duplicated vertex protein pairs. The
ultimate inference metric is called Anchor Duplicate Similarity Score (ADSS),
and it is calculated as

∑
Ĝi∈ĜS

ρ(Ĝi)/(t−2) which is normalized via total graph
count in ĜS . Here, we do not consider Ĝ2 as only a single gene exists as part
of the initial duplication from Ĝ1 to Ĝ2. So, no remaining genes exist to be
compared. When provided with 2 inference of the identical present-day graph,
the better anchor and duplicated vertices are chosen, the higher ADSS becomes.
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bZIP Transcription Factors. Protein family basic-region leucine zip-
per (bZIP) consists of transcription factors, and it is crucial for a number of tasks
such as circadian clock, stress response, etc. [1,16]. These proteins coiled leucine
zipper domains are quite important for mediating the interactions among those
proteins. Therefore, only sequence content of these proteins may predict those
interactions quality more precisely [4]. [16] inferred present-day interaction graphs
between a list of bZIP proteins across different species, by using this sequence sim-
ilarity concept in [4]. In our case, we focus on Homo sapiens graph and obtained
the graph by merging the same protein’s subunits into a single vertex.

In terms of inferring the ancestry of this bZIP graph, we focus on 3 metrics
for performance evaluation as seen in Table 1: Vertex Arrival Time, Accuracy by
Kendall’s Tau, ADSS, and likelihood of ReverseDMR and ILP-DMR solutions.
In terms of all these criteria, ReverseDMR performs worse than the 2 solutions
from ILP-DMR (ILP-DMR1 and ILP-DMR2). In this case, ILP2 performs better
in terms of ADSS, whereas ILP-DMR1 performs better in terms of Kendall’s
Tau. ReverseDMR’s and these 2 ILP-DMR solutions order of protein arrivals
are shown in Table 2. The leftmost column shows the true order estimated from
ortholog knowledge which is used in Kendall’s Tau calculation.

Table 1. For DMR parameters qdel = 0.3, qmod = 0.4 over reconstructing the ancestry
of bZIP graph, ADSS, vertex arrival accuracy, and likelihood are shown.

Algorithm Log-likelihood Kendall’s Tau ADSS

ReverseDMR −21 −0.23 −1901.55

ILP-DMR1 −19.6 0.18 −1797.11

ILP-DMR2 −19.6 −0.03 −1749.31

Table 2. The left column shows bZIP network’s anchor proteins in number of orthologs
decreasing order, whereas the rightmost columns show the appearance order at each
step over ReverseDMR and 2 ILP-DMR solutions inferences.

Gene Orthologs Time Reverse ILP-DMR1 ILP-DMR2

step DMR

JUN 820 2 FOS, ATF6, FOS,

ATF2 546 CREB ATF2 ATF2

ATF6 453 3 ATF6 FOS XBP1

ATF4 432 4 BATF ATF3 ATF3

FOS 339 5 ATF4 CREB JUN

OASIS 285 6 ATF2 JUN CREB

CREB 268 7 E4BP4 CEBP CEBP

CEBP 259 8 JUN BATF BATF

E4BP4 255 9 ATF3 PAR PAR

PAR 244 10 CEBP ATF4 ATF4

ATF3 229 11 PAR E4BP4 E4BP4

BATF 227 12 XBP1 OASIS OASIS

XBP1 203 13 OASIS XBP1 ATF6
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Extra proof for our inference’s correctness is provided by analyzing bZIP
transcription factor sequences phylogenetically as in [1]. Such analysis has iden-
tified a remarkably preserved core graph including ATF3, FOS, and JUN pro-
teins. Those 3 proteins arrive earlier in both ILP-DMR1 and ILP-DMR2 (before
the 7th step), whereas ATF3 and JUN appear in the solution after the 7th
step when reconstructed via ReverseDMR as in Table 2. The main distinction
between ILP-DMR1 and ILP-DMR2 solutions is the different arrival order for
XBP1 and ATF6. Even though there exists an interaction between ATF6 and
XBP1 in unfolded protein response pathway [13], to our best knowledge, there
is no preference for earlier appearance of ATF6 over XBP1 as well as XBP1 over
ATF6.

5 Conclusions

In this paper, we come up with ILP-DMR, an ILP-based solution, to recon-
struct PPI network’s evolution under DMR model by maximizing the likelihood.
Since ILPs are generally NP-hard, reconstruction histories may not be optimally
identified in polynomial time for very large networks. Nevertheless, we can use
general-purpose ILP solver heuristics to infer a number of nearly optimal solu-
tions in a predetermined amount of time. We evaluated the performance of our
ILP-DMR solutions by comparing them with the baseline ReverseDMR’s solu-
tions, which was previously the best-performing method for the reconstruction.
Over synthetic datasets, our ILP method outperforms ReverseDMR in terms of
all 3 metrics; likelihood, vertex arrival order, and inferred ancestral graphs sim-
ilarity to the correct graphs. Over real bZIP protein network, the likelihoods of
ILP-DMR solutions were higher and ILP-DMR solutions agreed stronger with
sequence similarity and ortholog knowledge. ILP-based graph history reconstruc-
tion can be seen as an important contribution for additional developments in
graph reconstruction. For example, one can extend the parts of the proposed
ILP-DMR to other graph growth models such as Forest Fire and Preferential
Attachment model. We can generalize our ILP-based solution to integrate sev-
eral input networks rather than one, and it can consider extra knowledge such
as historical gene duplications.
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Abstract. We propose a method for identifying multiple influential
spreaders in complex networks. This method is based on a farthest-
first traversal of the network. The spreaders selected by this method
satisfy the two criteria of being dispersed as well as influential in their
neighborhood. To examine the influence of the spreaders identified by
our method, we perform numerical simulations of SIR-based epidemic
spread dynamics. For a range of parameter values, we observe that the
epidemic size obtained using the spreaders generated by our method as
the initial spreaders is at least as large as the epidemic size obtained
using hubs as initial spreaders.

Keywords: Influential spreaders · Diffusion on networks ·
Farthest-first traversal

1 Introduction

Understanding the dynamics of spread processes in social and biological systems
is a challenging problem. Significant insight, however, into these processes has
emerged due to the advances in network science over the past two decades [1,4,
7,24]. Modeling the spread as a process on complex networks has allowed us to
discern the different aspects of the influence of the complex network properties
on the dynamics of spread [18].

In many situations, such as the explosive spread of rumors and false informa-
tion [22], rapid diffusion of contagion in a population [26], targeted immuniza-
tion [19], network resilience [8], robustness and failure of power grid and trans-
portation networks [9], identifying opinion leaders for rapid behavior change [23],
identifying the node(s) central to the process in the network representation
becomes essential. A node is considered central or influential if it can affect many
other nodes in the network. Identifying such nodes, however, is non-trivial since
it depends on the heterogeneity of the network structure. In addition, the defi-
nition of an influential node also depends on the problem under study. Various
ranking methods based on the network’s standard structural measures such as
degree, closeness, betweenness, have been extensively studied [5,17]. In addition
to the classical centrality that are based on topological properties, centralities
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with high influence at the meso level such as through communities have also
been explored [11,29]. However, a general universal framework for identifying
the most influential node does not apply to all problems [6,16].

Apart from studies aimed at analyzing the impact of a single influential
spreader, recent research has also focussed on the influence maximization prob-
lem [14]. In this case, the objective is to identify a set of nodes that result in
maximum expected influence spread. If the spread process starts at multiple
locations, then selecting nodes based on ranking alone does not result in an
optimal spread. Kitsak et al. [15] highlighted the role of position of influential
node by identifying them based on k-shell decomposition. In addition, they also
underscored the importance of separation between high-degree nodes when con-
sidering multiple influential spreaders. Subsequently, the effect of the separation
between initial spreaders on spread efficiency was analyzed on regular and small
world lattices [13]. Graph burning [3] has been used as a model for the spread of
influence in social networks. Since the graph burning problem is NP-hard, any
set of influential spreaders obtained using this model can only be approximate.
Here, we would like to point out that a farthest-first traversal based approxima-
tion for the burning sequence of a network has been proposed in [10].

Selecting a set of nodes that are influential as well as scattered is not straight-
forward. Ranking schemes such as graph coloring based method [28], VoteR-
ank [27], heuristic clustering algorithm based [2], selecting influential spread-
ers with low overlapping influences [30], partition and community-based meth-
ods [12,25] aim to identify initial spreaders that satisfy the two criteria; viz.,
of multiple spreaders being dispersed as well as influential in their neighbor-
hood. These methods observe a more extensive spread compared to the classical
network centrality-based methods.

In this paper, we propose a simple distance-based method to identify a set
of influential spreaders in the network. In the method, first, a set of nodes is
selected through a farthest-first (FF) traversal. The selected nodes are used
to partition the network into non-overlapping clusters. For each cluster, the
node with the maximum number of links within the cluster is assumed to be
the most influential. These nodes are used to initiate a spread process on the
network. In this paper, we report our observations on the epidemic size (using the
SIR epidemic model) through the influential spreaders selected by our proposed
method. We also compare our observations with those obtained from initial
spreaders chosen based on the degree centrality ranks and the FF nodes as
initial spreaders for different data sets.

The rest of the paper is laid out as follows: In Sect. 2, we discuss the
details of our proposed method. In Sect. 3 we present the results of the spread
obtained through numerical experiments of SIR model on different network based
datasets. Conclusions are presented at the end.
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2 Method

The greedy method for the FF traversal was introduced by Rosenkrantz et al.
[20] as a solution for the traveling salesman problem. The FF traversal is a
sequential process of node selection in a graph. It starts with an arbitrarily
chosen seed node. At each step, the next node is determined as the one farthest
from all the previously selected nodes. Selection of a certain number of FF nodes
in this manner is the pre-processing stage of our method. It must be noted that
the set of FF nodes selected is dependent on the seed node used for the FF
traversal. Partitioning the network using the selected FF nodes is the next stage
of our proposed method. The final stage of our method is to identify a node
from each part of this partition as a candidate for the set of influential spreaders.
While the selected FF nodes ensure separation between them, these nodes are
not necessarily influential. However, FF nodes can be used to perform a search
for the nodes with a high local influence. The local search radius is, however,
arbitrary. In this paper, we partition the network into clusters with the FF nodes
at the center of each cluster. Each node belongs to the partition of the FF node
to which it is closest. If the shortest path of a node is equidistant to multiple
FF nodes, then it randomly selects a nearest cluster.

The node with the largest intra-partition degree in each cluster is selected as
the most influential spreader in that cluster. This guarantees that the node is able
to influence a large number of nodes within its cluster. It should be noted that
while separation between FF nodes is ensured, it does not necessarily apply to
the set of influential spreaders. Separation is more likely if influential spreaders
are selected from the set of nearest neighbors of the FF nodes. However, in
our numerical experiments we have observed the influential spreaders to have
reasonable separation.

Fig. 1. (a) A toy network. In (b) we show a realization of the selection of FF nodes
(shaded grey) and in (c) the partition created by the FF nodes. The different parts of
the partition are demarcated by dashed lines. In (d) the hub in the sub-graph induced
by the vertices of a part is selected as the influential node (shaded black) for that part.
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In Fig. 1, we demonstrate the proposed method through a toy network
(Fig. 1(a)). In Fig. 1(b), three FF nodes, (6, 12 and 17) are shown, starting
with the node labeled 6 as the seed node. Subsequently, as shown in Fig. 1(c),
the network is partitioned into clusters. Since a node randomly chooses a cluster
if it is equidistant from multiple FF nodes, the cluster radii are different. Node
labeled 4 is equidistant from FF nodes 6 and 12 and in the instance presented
here, chooses to join the cluster represented by node 12. In Fig. 1(d), the node
with the largest intra-degree in a cluster is selected as the influential node in that
cluster. As stated earlier, the set of nodes obtained by combining the influential
nodes from each cluster forms the most influential spreaders in our proposed
method (nodes 0, 14, and 16 here). It should be noted that even though nodes
1 and 4 have a higher degree they do not have a strong intra-partition influence
and therefore are not present in the list of influential spreaders.

3 Results

We explore the spread efficiency of the influential spreaders obtained by the
proposed method on different network data sets. We have primarily focussed on
the data sets that differ in diameter. Four data sets, of which three are spatial,
namely, minnesota, euroroads, and US powergrid, and one non-spatial, GRQC
collaboration network, have been considered here. In Table 1, we list their details.
These include the total number of nodes (N), total number of edges (E), density
(ρ), average clustering coefficient (C), assortativity coefficient (AC), diameter
(D), radius (R) and average path length (〈l〉).

To study the influence of the initial spreaders, we use the susceptible-infected-
recovered (SIR) model of epidemic spread. Relevant to the SIR model, we use β,
which denotes the probability that an infected node will infect its neighbor, and
γ, which represents an infected node’s recovery probability. We consider small
values of β and γ that allow comparison of the influence of spreaders obtained
by different methods. For diffusion processes modeled as the epidemic spread,
the size of the epidemic is defined as the value of the recovered in the long time
limit R(t → ∞). The epidemic spread is initiated from an initial set of influential
spreaders. For the results presented here, 1% of the nodes are initially assumed
to be infected. To highlight the role of distance and influence, we compare the
influence size from the proposed method to that obtained from FF nodes and
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Fig. 2. Comparison of the average fraction of recovered (〈R(t)/N〉) for SIR simulation
on (a) US powergrid, (b) minnesota, (c) euroroads, and (d) GRQC data sets. The solid
line shows the spread from FF traversal-based influential spreaders selection, the dashed
line from influential spreaders selected based on degree centrality, and the dashed-
dotted line from the FF nodes. In the right panel of each figure, the distribution of
the degree of the initial spreaders selected based on (top) FF traversal-based influential
spreader (middle) degree rank and (bottom) FF nodes is shown. The number of samples
taken is 100, and values of β and γ are 0.1 and 0.05 respectively.

Table 1. Details of network datasets used in the numerical experiments and their
structural properties. The datasets were obtained from [21].

Data set N E ρ C AC D R 〈l〉
minnesota 2640 3302 0.00094 0.015 −0.18 99 52 35.34

euroroads 1039 1305 0.0024 0.0189 0.0900 62 31 18.3

US powergrid 4941 6594 0.0005 0.0801 0.0034 46 23 18.98

GRQC 4158 13428 0.0015 0.5568 0.63 17 9 6.04

nodes selected based on their degree centrality rank for the same parameter
values.

In Fig. 2, we show the evolution of the fraction of recovered averaged over
100 samples for the four data sets. Except for the GRQC data set, influential
spreaders selected through our proposed method are observed to result in a larger
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epidemic size. The size of the spread initiated from FF nodes, on the other hand,
is always the smallest. Separation alone is, therefore, not sufficient for a larger
influence. In Fig. 2 we have also shown the distribution of the degree of initial
spreaders selected by the three methods for each data set. The degrees of FF
nodes are always smaller compared to the other two methods. On the other hand,
initial spreaders selected through the proposed method have a broader range of
degrees, whose average, except for the minnesota data set, is smaller than those
of high-degree nodes.

Figure 3, in which we mark the set of initial spreaders selected by the different
methods for a single sample, provides further insight into our observations. The
set of FF nodes (marked in black) are located in the distant parts of the network.
This also explains the low degrees of these nodes since their location is mostly on
the periphery of networks. Influential spreaders selected through the proposed
method (marked in red) are scattered throughout the network. Therefore, both
FF and FF traversal-based influential nodes provide wider coverage on the net-
work, reaching out to the sparsely connected regions. Coverage of degree-ranked
initial spreaders (marked in green), on the other hand, is less. In the minnesota
data set, the variation in degrees of different nodes is not large. Nevertheless,
a larger epidemic size for initial spreaders selected from the proposed method
highlights the importance of separation between initial influential spreaders.

Fig. 3. Node selection in a single sample for (a) US powergrid, (b) minnesota, (c)
euroroads, and (d) GRQC data set. FF nodes are marked in black, FF traversal-based
initial spreaders in red, and degree-ranked nodes in green.
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4 Conclusions

This paper proposes an FF traversal-based method to identify influential spread-
ers in a complex network. Our proposed method has three steps. In the first step,
a list of nodes separated on the network is generated using the FF traversal. In
the second step, the network is partitioned into clusters with the FF nodes as the
nearby nodes’ attractors. In the final step, the node with the largest intra-degree
in a cluster is added to the list of influential spreaders. By selecting an influential
node per cluster, we have studied the epidemic size on different network data
sets. Our numerical experiments show that the influence of nodes selected by
the proposed method can be larger than that of nodes selected through degree
centrality in the case of spatial networks. The separation between influential
spreaders will have a larger effect if the diameter is large. In contrast, it may be
insignificant if the dynamics are governed by hub nodes, as in scale-free networks.
The proposed method allows the selection of influential spreaders in distant parts
of the network. It should help expand the coverage in large spatial networks.

References

1. Aral, S., Walker, D.: Identifying influential and susceptible members of social net-
works. Science 337(6092), 337–341 (2012)

2. Bao, Z.K., Liu, J.G., Zhang, H.F.: Identifying multiple influential spreaders by a
heuristic clustering algorithm. Phys. Lett. A 381(11), 976–983 (2017)

3. Bonato, A., Janssen, J., Roshanbin, E.: Burning a graph as a model of social
contagion. In: Bonato, A., Graham, F.C., Pra�lat, P. (eds.) WAW 2014. LNCS,
vol. 8882, pp. 13–22. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
13123-8 2

4. Centola, D.: The spread of behavior in an online social network experiment. Science
329(5996), 1194–1197 (2010)

5. Da Silva, R.A.P., Viana, M.P., da Fontoura Costa, L.: Predicting epidemic outbreak
from individual features of the spreaders. J. Stat. Mech. Theory Exp. 2012(07),
P07005 (2012)
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Abstract. We contrast three distinct mathematical approaches to the
hard problem of consciousness: quantum consciousness, integrated infor-
mation theory, and the very large scale dynamical systems simulation
of a network of networks. We highlight their features and their associ-
ated hypotheses, and we discuss how they are aligned or in conflict. We
suggest some challenges for the future theories, in considering how they
might apply to the human brain as it develops both cognitive and con-
scious sophistication, from infancy to adulthood; and how an evolution-
ary perspective challenges the distinct approaches to aver performance
advantages and physiological surrogates for consciousness.
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1 Introduction

The hard problem of consciousness [1,2] asks why there is something internal to
our subjective experience, some set of phenomenological sensations, something
that it is like to be a human brain experiencing the world. Such repeatable
and consistent sensations range from large scale emotions and feelings (anxiety,
happiness, love, embarrassment) down to smaller scale, more specific, qualia
(headache pain, the sight of the blueness of blue, the brassy sound of a trumpet,
the feel of stroking cat’s fur, the crunch from biting into an apple, ...). These are
internal mental states with very distinctive subjective characters. How do such
sensations come about within the physical brain and what is their possible role?

In this paper we consider three alternative mathematical approaches to the
hard problem and related matters. We do so in order to crystallize and contrast
the pros and cons of each paradigm. We wish to avoid a dialogue of the deaf.
We hope that a direct inter-comparison will stimulate interests and research
within all three theories. Comparison, cross fertilization and competition are
huge drivers within science and the present stage of the mathematics of con-
sciousness demands a sharpening of its aims and objectives.

We should stress that other approaches are available, so we have focused here
upon the three that are arguably most dominant at the present time.
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1.1 Quantum Consciousness (QC)

There are many scientists and writers who hold that conscious phenomena, such
as the existence, causes, and role, of internal phenomenological sensations (emo-
tions, feelings, and qualia) relate to some type of quantum effects taking place
somewhere within the physical brain, usually associated with the cognitive pro-
cessing of information to produce consequent inferences and actions. Penrose
proposed a type of wave function collapse, called objective reduction, from which
consciousness phenomena are born [3].

Quantum consciousness (QC) usually starts out from a negative: that classi-
cal mathematics (dynamical systems, and other concepts) alone cannot explain
consciousness, positing instead that quantum-mechanical phenomena, such as
entanglement and superposition, might play an important part in the brain’s
function and could explain critical aspects of consciousness. Up until a few years
ago perhaps the best evidence for this assertion was indeed the failure of those
classical mathematical methods to define and substantiate a model that might
expose the “how, what, why” of conscious phenomena. This is no longer the
case. In Sects. 1.2 and 1.3, below, we will discuss two now obvious, and avail-
able, alternative candidates: integrated information theory (IIT), and the reverse
engineering of very large scale (VLS) dynamical system simulations (DSS). The
former required a novel concept to be applied to information processing systems;
whilst the latter could not be prosecuted until large simulations on (multi-core)
super-computing platforms became available, or else until a suitable simplifica-
tion of the VLS systems could been defined.

So the time is ripe to reconsider the logic and evidence behind the promul-
gation of QC.

The quantum mind remains a hypothetical speculation, as Penrose and others
admit. Until it can support a prediction that is testable by experimentation,
the hypotheses is not based on any empirical evidence. Indeed, quite recently
Jedlicka [4] says of quantum biology (a superset of the quantum mind-brain),
“The recent rise of quantum biology as an emerging field at the border between
quantum physics and the life sciences suggests that quantum events could play
a non-trivial role also in neuronal cells. Direct experimental evidence for this is
still missing....”. In [5] there is a useful summary of the contemporary evidence
both for and against there being a functional role for quantum effects in a range
of biological (and physiological) systems. The authors find no clear evidence one
way or the other and they couch their conclusions in weak conditional terms,
suggesting further experimentation is required.

However, just as any evidence to support the presence of quantum effects
within the brain remains elusive, it is also hard to obtain positive evidence that
rules them out. The major theoretical argument against the QC hypothesis is the
assertion that any quantum states in the brain would lose coherency before they
reached a scale where they could be useful [6,7]. Typical brain reactions are on
the order of milliseconds, trillions of times longer than sub-picosecond quantum
timescales. Over many years though, there have been successive attempts to be
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more explicit about where and how quantum effects might be present within the
brain [8].

In [9], the authors consider the future of quantum biology as a whole and
address QC explicitly. Given the objections above, on the basis of time-scale
and space-scale discrepancy between quantum effects and neuronal dynamics,
they conclude that any “potential theory of quantum effects in biological neural
networks would thus have to show how the macroscopic dynamics of biological
neural nets can emerge from coherent dynamics on a much smaller scale.”

With the present lack of any positive evidence for QC, despite many years
of searching, and the existence of some coherent theoretical arguments to its
contrary, why then does the quantum consciousness hypothesis persist? Perhaps
the largest force driving its adoption is subjective: it comes from the desires and
aspirations of quantum scientists themselves, to have their own physics become
relevant to one of the most elusive frontiers in science. This goes far beyond
Chalmers’ “minimisation of mysteries” jibe: it would act as a magnet and an
employment-creation opportunity for quantum physicists.

Of course, the recent rise in quantum technologies (including quantum com-
puting, quantum sensing and quantum communication) within novel synthetic
applications, lavishly funded via many national programmes, performs a simi-
lar, though much more rational, purpose. Moreover, within those non-brain fields
there is a focus on fabricating novel effects in the lab and beyond, rather than
on unpicking and understanding a particular existing natural complex system,
such as the human brain.

More recent ideas about consciousness introduce modifications of the
quantum-mechanical Schrödinger equation and discuss wave function collapse.
For example Chalmers and McQueen [10] and others [11] consider the evolu-
tion of quantum states within the universe when consciousness is also taken into
account. They investigate whether conscious phenomena (within some paradigm)
might collapse wave functions, inducing hard certainties. Such a role is normally
reserved for acts of observation in quantum mechanics, though that is an ambigu-
ous term. Hence they postulate that conscious phenomena (whether physical or
dualist) could impact upon the real external world. Of course, this is the exact
reverse of investigating whether or how quantum collapse might beget QC.

1.2 Integrated Information Theory (IIT)

Integrated information theory (IIT) [12] provides a framework capable of explain-
ing why some physical systems (such as human brains) are conscious, why they
feel the particular way they do in particular states, and whether other physi-
cal systems might be conscious. IIT does not build conscious-like phenomena
out of physical systems and processes (as does dynamical systems modelling
and simulation, discussed in Sect. 1.3 below), instead it moves from the abstract
phenomenology towards mechanism by attempting to identify the properties of
conscious experience within general information processing systems.

Here a system refers to a set of elements each of which might be in two or
more discrete internal states. The state of the system is thus summarised by the
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states of all of its elements. Subsets of the elements define “mechanisms”, and
when the corresponding elements change state they do so in a way that may be
conditional on one another’s state, since they inter-dependent and are able to
interact. There is a thus a transition matrix that can stipulate the probability
that state of the system might switch to another state. IIT applies to whole
systems that are capable of carrying out such internal dynamical state changes:
it is an integrated view. In a real sense systems should be irreducible, since if they
could be reduced (partitioned) into independent subsets then there would be no
point in assembling those subsets into the whole and we might deal with each
separately. This is akin to the notion of irreducibility (strong connectedness) for
non-negative directed adjacency or dependency matrices (stipulating all pairwise
influences between elements). Thus any properties of such an irreducible system
are integrated and will depend upon all of its elements.

The details of IIT focus mainly on how a performance quantity called the
“integrated information”, denoted by Φ, is defined and calculated for different
systems. Φ is a real valued measure of the subsets of elements within a system
that have (physical) cause-effect power upon one another. Only an irreducible
(strongly connected) system full of feedback cycles can have a non-trivial Φ, as
it produces output causes (consequences) from the incoming sensory effects. The
conscious part of the human brain thus has a very high Φ, and is therefore highly
conscious. Systems with a low Φ have a very small amount of consciousness.

In fact it is rather surprising how much effort is focused on the calculation
of Φ, as a surrogate for the system’s internal agility and sophistication. This is
apparent in the successively increasing formalism presented after a decade or so
within IIT 3.0 in 2014 [13].

The mathematical essentials of IIT are well set out in [14], including its
possible application within a quantum setting, introduced earlier in [15].

Of course, given any specific system, it would be nice to be able to calculate
Φ, yet knowing its exact value is of no use to the system’s owner (except possibly
for bragging). The owner continues to operate the system just as it is configured.
Analogously we might all accept that there is a performance measure of human
intelligence, called IQ, but knowing its actual value does not affect an individual’s
own decision making or ability to operate as now. Of course a high value of Φ
(like a high vale of IQ) might confer some advantages to the system owner, such
as having a comfortable life, or increased fecundity. It is easy to imagine how
such advantages would cause some evolutionary selection to shift a population
of owners to relatively higher and higher distributions of such measures. Thus
the importance of higher Φ lies in its associated evolutionary advantages, not in
its objective transparency or accessible calculation.

It is very interesting to ask how much improvement in Φ might be achieved
if evolution re-architected the human brain; or even if individual (plastic) brains
develop an abundance of connections when subject to specific training (specific
experiences). Conversely, within a single operational lifetime, the brain’s con-
sciousness development is not necessarily a one way street.
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Equally, it is important to understand how Φ might increase as an infant
brain develops through puberty, when both the cognitive sophistication and the
conscious inner life develop along with the evolving neural connectivity and
neurological structures, due to neurotransmitters and life experience.

Thus, the most important and appealing part of IIT is that it supplies a
performance measure, Φ, as a system level attribute, that aims to be correlated
with the level of internal conscious phenomena, and which might be increased.
The ability to calculate Φ for any given class of systems is thus rather irrelevant
to their owners – it is the internal consequences, that are measured by Φ, that will
count. Any calculation of Φ is only relevant to demonstrating its well defined-ness
and constructive nature, and possibly useful in future testing the IIT.

Like the quantum mind, IIT has its critics. The claims of IIT as a theory of
consciousness are not yet scientifically established or testable [16], and IIT cannot
be applied at the scale of a whole brain system. There is also no demonstration
that systems which exhibit integration, in the sense of IIT, are in fact conscious
at all. Obviously, a relatively high Φ-level might be a necessary condition for
consciousness phenomena yet it may not be sufficient [17]. An explanatory gap
remains.

1.3 Very Large Scale (VLS) Dynamical System Simulations (DSS)

Recent years have seen the possibility of VLS DSS containing 10B individual
neurons, as a dynamic model for the human cortex. This approach is based on
empirical observations of the cortex structure; it is an open system, subject to
ongoing sensory inputs; it is experimental; and it is predictive. It makes predic-
tions about why the cortex architecture should be so uniform (so to maximise the
total dynamical degrees of freedom while constraining energy and volume) [18];
it explains how the whole system response is governed by (competing) internal
dynamical modes [19] which result in a preconditioning of the immediate cogni-
tive processing, providing a fast thinking advantage [20,21]; and it suggests that
consciousness and cognition are entwined, with each catalysing and constraining
the other, and the brain has evolved so as to exploit that advantage. Yet, as we
shall see, there remains an explanatory gap [20].

In such VLS DSS neurons are arranged within a directed network architec-
ture based on that of the human cortex. In fact, it is a network-of-networks. The
inner networks, called modules (or communities) in network theory, each rep-
resent a single neural column containing 10,000 or so individual neurons which
are internally very densely connected. The outer network connects up the neu-
ral columns with occasional connections between pairs of neurons from near-
neighbouring columns. The columns are arranged in grid across the (flattened
out) cerebral cortex. The individual neurons, just as in vivo, are both excitable
(they spike when they stimulated by receiving an incoming spike) and refractory
(following a spike they require a recovery time for the intra- and extra-cellular
ions to re-equilibriate and they will not fire immediately if re-stimulated). Each
directed neuron-to-neuron transmission takes some time, based on the tortuous
nature of the individual axonal-synaptic-dendritic connection.
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Recent work in such VLS DSS shows that under many distinct externally
stimulated conditions the internal response defaults to react within one of a
number of (hierarchically related) dynamical modes [19]. The modes exist across
the cortex and across time and cannot be represented by snapshots, and are
also mutually exclusive at any particular level in the hierarchy. Such VLS sim-
ulations require a supercomputer [22], and the reverse engineering of the inter-
nal responses to stimulation, and the identification of the hierarchically defined
modes, is highly non-trivial [19].

The DSS approach recognises that the cognitive processing system in open,
as it is constantly subject to sensory stimulation: it is not about dynami-
cal emergence (symmetry breaking within disordered complex systems). The
observed dynamical modes arise in response to various stimulations, and they
are extremely good candidates for hierarchical emotions, feelings, and qualia.
The hypothesis that internal phenomenological sensations correspond to the
brain’s own experiences of dynamical modes kicking-in directly addresses the
hard problem: how humans have such internal sensations and exposing their
role in enabling a fast thinking [21] evolutionary advantage by preconditioning
immediate cognition and reducing the immediate decisions set.

Yet there remains an explanatory gap. While has been shown that any non-
linear system of this type, including the human cortex, must have such internal
competing dynamical modes, it has not be proven that these are in correspon-
dence with internal phenomenological sensations. The set of internal modes is
arranged hierarchically, and at any particular level they are mutually exclusive.

VLS DSS represents some of the largest numbers of simulations using massive
cortex-like complex systems that have ever been made [23,24]. This endeavour
requires significant resources. IBM has been particularly active and has carried
out TrueNorth simulations in 2019 [25], realizing the vision of the 2008 DARPA
Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE) pro-
gram. The simulations and analytics in [19] were carried out on the SpiNNaker
1 million-core platform [22,26,27].

The tribulations of two large science projects aiming to fully simulate human
brains, within the US and EU, have been well documented [31]; and were caused
by a variety of issues. These programmes have become focused on goals of brain
mapping and building data processing facilities and new tools with which to
study the brain. Many efforts have benefited from the computing facilities devel-
oped. The progress in [19], discussed above, exploited the massively parallel
SpiNNaker supercomputer [22,26,27] that took over 10 years in construction,
from 2006, and required £15M, funded by the UKRI/EPSRC and the EU Human
Brain Project [30].

In [31] these big science projects were summarised, “...instead of answering
the question of consciousness, developing these methods has, if anything, only
opened up more questions about the brain-and shown just how complex it is.”

In more recent work the modules (the neural columns) have been replaced
by multi-dimensional clocks [32] (with multiple phases winding forwards, which
isolated), coupled via individual edge-based phase-resetting mechanisms, with
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appropriate time-delays. The results are the same as those for the full VLS
DSS – internal, hierarchically-arranged, dynamical modes responding to external
stimulation. Yet these Kuramoto-type simulations only require 1M or so multi
dimensional clocks, with say 10M degrees of freedom in total. Whereas the full
VLS DSS simulations require 10B degrees of freedom. As a result the reduced
system may run on a laptop (dual core), as opposed to a supercomputer [20,32].

Over many years various toy circuits built with neurons have been investi-
gated. But this is a red herring. The full scale simulations with realistic architec-
tures and dynamics had to wait for suitable computing platforms. As a result it is
clear that the possibility of VLS simulations producing a dynamical systems and
network science ennabled response to the hard problem was discounted prema-
turely. Once investigators could peer inside such systems and reverse engineer
them (in a way that is impossible for human brains, given the resolution of
even the most powerful scanners), the internal dynamics became apparent. The
Entwinement Hypothesis [20] is thus a logical outgrowth of VLS DSS.

Much of the earlier philosophical work often argued that cognition and con-
sciousness are separate, or that cognition begets consciousness as a consequence
or by-product of processing (see the multiple drafts hypothesis [33], for exam-
ple). However, it is now suggested that one should accept the corollary (from
the insights) gained via DSS, that internal conscious phenomena are crucial to
certain efficiencies within cognition. Cognition and consciousness would be thus
mutually dependent, and entwined [20].

2 Comparisons

DSS considers an open dynamical system containing up to 10B neurons embed-
ded within a directed network-of-networks that is irreducible (strongly con-
nected) and is subject to a continuous stream of sensory inputs, yet it responds is
consistent ways. It moves from causes to effects - from stimuli to decisions, infer-
ences, and instantiating appropriate internal modes. The structures employed
rest on what is observed in terms of neuronal dynamics, cortex architecture,
and transmission time lags. DSS enables the analysis and reverse engineering
of the integrated system behaviour, including the discovery of internal latent
modes, which are hypothesised to be physical causes of sensations and qualia.
DSS shows how these in turn can influence and constrain immediate cognition.
These conclusions are thus based on the observed brain structure and behaviour,
and on a multitude of DSS experiments.

On the other hand IIT moves in the opposite direction, It starts out from a
generalised irreducible (strongly connected) and agile system, and measures the
integrated (whole-system) performance via Φ. In fact Φ really seeks to measure
a whole range of possible dynamical phenomenon, including all possible internal
response modes to incoming stimuli. Thus, within its generality, IIT subsumes
the internal responsive structures that are exhibited by particular systems, yet
it does not explicitly demonstrate the existences dynamical modes within the
integrated response. IIT does not rely on the specific network-of-networks archi-
tecture, only properties of it; and consequently IIT is not able make testable
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predictions (such as having a fairly uniform size of neural columns [18,19] in
maximising the total number of dynamical degrees of freedom). The power of
having a measure lies not in its derivation (and well-definedness) but in intro-
ducing a systems-level concept beyond energy, entropy, and complexity measures
(such as modularity).

Both IIT and DSS are described by similar vocabulary and they exhibit
the same obvious role for evolutionary cognitive and consciousness development.
Assuming that high-Φ induces some advantages to an organism, such as the
preconditioning and hence fast-thinking advantage [21] implied by DSS, then
the brain can have evolved in structural form and dynamics so as to increases
this.

IIT and VLS DSS are really the same thing but coming from different direc-
tions. DSS constructs a bottom-up narrative of what occurs within [19] for
a very specific class of cortex-like systems, making specific and testable pre-
dictions based on observed structure and experimentation. IIT provides a much
more general setting, a top-down view, and it asserts that a high level of a suit-
ably defined performance measure can imply the existences of conscious internal
phenomena.

QC is a rather special case of a theoretical approach offering a (presently)
theoretical solution. It comes with no practical justification nor evidence for
its establishment and relevance, and yet it supplies some sophisticated benefits
- elements that deal with uncertainty and also seek to explain why conscious
phenomena are elusive and beyond physical measurement (observation).

The evolutionary question is important for QC, and quantum biology in gen-
eral. Has biology evolved so as to exploit quantum effects within warm and wet
environments, on the increasing spatial scales of molecules, cells, organs and
organisms? If not why not? Does cellular and systems biology take place at
the wrong scales for quantum effects to be relevant? The advantages of quan-
tum effects within cognitive and conscious performance might be very great, if
ever achievable. Objections have encouraged proponents to become more specific
about where and how quantum effects might ever arise within the human brain
[8], and yet still persist.

QC says nothing about relative levels of consciousness (compared to IIT) and
nothing at all about the brain’s evolved architecture or the plethora and role of
inner sensations (compared with VLS DSS); beyond seeking sub-cellular struc-
tures that might support any quantum effects. Instead it provides a theoretical
raison d’etre for conscious experiences.

Of course DSS is classical, and far simpler and more straightforward than QC.
It is also testable and produces observable consequences, including support for
the Entwinement hypothesis [20]. Moreover, any DSS progress at all required the
development of supercomputing facilities that could simulate such VLS dynamics
[22,26,27]. Hence such a classical approach (as set out in [19]) was held up until
about five years ago. Perhaps its efficacy was simply discounted too early by
commentators; since (human) “nature abhors a vacuum”.
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VLS DSS implies that QC is unnecessary. QC implies that whatever DSS
demonstrates is irrelevant.

Very usefully, in theory IIT applies to both classical and quantum approaches
[14,15]. Yet any implementation requires some detailed descriptions of the system
architecture and dependencies of the systems’ elements and mechanisms.

It would be fascinating if IIT could ever calculate Φ for the same systems set
out and deployed within DSS, for both the VLS DSS and the simpler Kuramoto-
style, network of multidimensional clocks systems. This would be a very good
next step.

Furthermore, any physiological surrogate for Φ, possibly tied to some evolu-
tionary advantages, would be extremely useful. We can argue that DSS shows
us some facets of the dynamics and architecture (the total dynamical degrees of
freedom, for example) that would confer fast-thinking advantages. We can also
observe many physiological surrogates for individual inner feelings (blushing,
trembling, non-poker faces, heart rate, cortisol, and so on). Could we identify
some more generalised observables that might be a surrogates for the full mea-
sure, Φ?

In summary, we suggest that the best next steps for IIT should be (i) to
ground it further to the specific system observed within the cortex, from where
DSS starts out; (ii) and identify appropriate physiological markers that are
aligned with Φ. For VLS DSS the immediate experimental challenge is to identify
evidence for the existence of specific internal dynamical modes corresponding to
certain internal sensations. Such a step requires high resolution neuroimaging,
over time as well as across the cortex (not highly localised), relating cognitive
and consciousness entwinement more closely to the recent the progress on neural
correlates of consciousness [34]. The reverse engineering of massive ensembles of
VLS simulations creates its own “big data” problem. The methodology deployed
in [19,32] should be improved and made more transparent.
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