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Abstract. The transparent nature of public blockchain systems allows
for unprecedented access to economic community data. Examples of such
communities are the fungible token networks created by the ERC-20
standard on the Ethereum protocol. In this paper we study ERC-20
token networks, where nodes represent users and edges represent fun-
gible token transfers between them. We focus our analysis on the top
100 largest networks, including a total of about 160 million edges and
60 million nodes. After a global analysis of the size and temporal evo-
lution of such networks, we define and study seven features describing
their main topological properties. In an attempt to characterize the net-
works by their topologies, we use the introduced features to cluster the
networks together. To evaluate our results, we manually classify each
network depending on the application domain of the corresponding con-
tract and measure the homogeneity of the obtained clusterings. Overall,
the results appear to indicate a lack of relationship between the scope of
a contract and the topological features of the induced networks.

Keywords: Blockchain · Ethereum · Fungible Token · Network
Analysis

1 Introduction

The advent of blockchain technology has disrupted traditional paradigms across
multiple sectors, including financial systems, intellectual property, decentralized
identity and supply chain management. Indeed, blockchains have the ability to
provide secure, transparent, and decentralized record-keeping, eliminating the
need for trusted intermediaries in transactions. Within this ever-evolving land-
scape, Ethereum – ranking as the second largest blockchain by market capi-
talization – has stood out for its innovations, foremost among them being the
capability to store and execute code, in the form of smart contracts [13]. A
smart contract is a piece of arbitrary code whose execution is validated by con-
sensus, i.e., replicated by all participants of the blockchain network. Smart con-
tracts have enabled the development of a wide range of decentralized applications
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(DApps) running on the blockchain. Nowadays, DApps serve a variety of pur-
poses, including decentralized finance, gaming, and social networking. Moreover,
many DApps utilize the concept of token, namely a transferable asset that can
be either fungible or non-fungible. Fungible tokens are interchangeable and iden-
tical, like traditional currencies. For instance, in the context of gaming, fungible
tokens may represent reputation or player skills, while in the field of finance
they can be used to represent assets or fiat currencies. Conversely, non-fungible
tokens (NFTs) are unique digital assets with distinct properties, each with a
distinct value. NFTs are often used to represent ownership of digital or physical
items (e.g., works of art, collectibles, and more).

To enforce interoperability among fungible tokens on Ethereum, the ERC-
20 standard was introduced. This standard defines rules for smart contracts
implementing such tokens, facilitating token integration and exchange across
various decentralized applications. In addition to this, each ERC-20 token creates
a unique economy within the Ethereum ecosystem, where participants hold and
trade tokens of the same kind. From a more theoretical perspective, we can say
that each economy can be modeled as a token network, i.e., a graph whose nodes
correspond to participants and edges represent token exchanges. Therefore, the
analysis of ERC-20 token networks provides useful insights on the corresponding
token economies. Indeed, it allows us to understand the evolution of transfers
and how users tend to interact within these economies, e.g., whether they form
communities, or if certain users hold more central roles with respect to others.

Motivated by these reasons, in this paper we study the properties of the top
100 ERC-20 token networks by total number of transfers. To gather informa-
tion about transfers, we use data from the first 15 million Ethereum blocks,
covering the time period between July 30th, 2015 and June 21st, 2022. Specifi-
cally, we exploit Ethereum transaction receipts, which include information about
ERC-20 Transfer events. Indeed, such events serve as the main mechanism for
notifying participants of token transfers, recording the sender, recipient, and the
amount of tokens transferred. Our main contribution is articulated as follows.
First, we study the historical evolution of transfer events within the analyzed
data set. Then, we analyze the topological properties of token networks by asso-
ciating each network with a set of seven features describing its connectivity,
degree distribution, transitivity, density, diameter, and average shortest path
length. Subsequently, we use such features to conduct further analysis based on
clustering techniques, aiming at identifying groups of networks sharing similar
topological properties. Finally, we classify token networks based on the applica-
tion domain of the corresponding token. We use this classification to investigate
possible connections between the topology of a network and the semantics of the
corresponding ERC-20 token.

Related Work. Ethereum token networks have already been studied in the lit-
erature. The authors of [9] analyzed the global ERC-20 token network, i.e. the
union of all ERC-20 token networks, between February 2016 and February 2018.
They found out that the degree distribution follows a power-law and the token
popularity among buyers and sellers also follows a power law model. Similarly,
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the analysis in [11] revealed that many ERC-20 token networks exhibit either
a star or hub-and-spoke topology. Additionally, such networks tend to have low
clustering coefficients and are disassortative. Instead, the authors of [4] found
out that, despite the high number of ERC-20 tokens, only a few are active and
valuable. Moreover, few accounts hold a large number of tokens, while many
accounts only hold a small number of tokens. Lastly, the authors discovered that
some addresses create a large number of tokens to attack the Ethereum network.

If compared to prior works, our analysis is based on a broader time period
and focuses on the top 100 networks with the highest number of token transfers.
Moreover, our contribution is not solely focused on analyzing networks but also
on comparing them with each other by associating each network with a set of
numerical features capturing its topological properties. Lastly, our analysis also
introduces a semantic classification of token contracts obtained by manually
retrieving information from the internet.

2 Background

Blockchain. A blockchain is a shared, immutable, and decentralized ledger orga-
nized in blocks, each containing ledger state updates and managed through a
distributed consensus algorithm. Ethereum [13] has been the first blockchain
project implementing a Turing-complete virtual machine, called Ethereum Vir-
tual Machine (EVM). This means that, besides monetary transactions, the
Ethereum blockchain is also capable of storing and executing pieces of arbi-
trarily complex code, called smart contracts [10]. Smart contracts are written in
a high-level language (e.g., Solidity) and then compiled to bytecode. Their exe-
cution is validated by distributed consensus and replicated by all participants.
Specifically, each call to a function of a smart contract is executed sequentially
in the current block state, and the final state is updated accordingly.

Decentralized Applications and Fungible Tokens. As stated in Sect. 1, smart con-
tracts enable the development of decentralized applications (DApps), which may
serve a wide range of purposes (e.g., finance, gaming, social networking). Many
DApps adopted the concept of fungible token to represent interchangeable assets
that can be transferred between participants. The ERC-20 implementation pro-
posal [12] introduces a standard for fungible tokens. Specifically, it defines a
consistent set of methods for creating and interacting with tokens. Also, it
ensures token interoperability, meaning that all compliant tokens can be eas-
ily integrated into different decentralized applications. For the purposes of this
paper, we remark that, whenever an ERC-20 contract transfers tokens between
two addresses, an event must be raised. In Ethereum, events are a mechanism
adopted to notify a state update or a particular condition being met during
the execution of a smart contract. This facilitates the communication between
contracts and off-chain applications. In Solidity, events are identified by a signa-
ture specifying the type and number of their parameters. The signatures of the
Transfer and Approval events defined by the ERC-20 standard are:
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event Transfer(address, address, uint256)
event Approval(address, address, uint256)

The Transfer event is emitted every time a token transfer occurs between
two addresses. Its signature consists of three parameters: the sender address,
the recipient address, and the amount of tokens transferred. Conversely, the
Approval event is triggered when a user allows another participant to transfer
a certain number of tokens on their behalf. We observe that, according to the
ERC-20 standard definition, after the issuance of an Approval event, a Transfer
event notifying the actual transfer of tokens must necessarily follow. Thus, for
the remainder of this paper, we will only consider Transfer events to study token
transfers among participants.

3 Transfer Event Graph

Transfer events represent redistributions of tokens between two users. By gath-
ering information about the occurrences of such events, it is therefore possible
to analyze the evolution of a token economy. To this aim, in this section we
formalize the concept of Transfer event graph, i.e., the graph where nodes rep-
resent users and edges represent Transfer event occurrences. In the following,
we denote by A the set of all Ethereum addresses, which are used to identify
network participants. An occurrence of a Transfer event can be represented as a
tuple e = (t, from, to, v), where t ∈ N is a numeric timestamp, from ∈ A is the
address of the sender, to ∈ A is the receiver address and v ∈ N is the amount of
tokens transferred. In the following, given a contract C, we denote by T (C) the
set of ERC-20 Transfer events triggered by C. We can then define the Transfer
event graph of C as a simple undirected graph GC = (VC , EC). Here, the set
of vertices VC = {a ∈ A | ∃ (t, from, to, v) ∈ T (C) s.t. a = from ∨ a = to}
contains all addresses induced by the events in T (C), while the set of edges
EC = {(a, b) | ∃ (t, from, to, v) ∈ T (C) s.t. a = from ∧ b = to} includes one edge
between two nodes a and b if and only if there exists at least one token transfer
between them.

4 Experimental Results

In this section we present the experimental results of our analysis of token net-
works. First, we study the evolution of Transfer events over time. Then, we
compare the topological properties of Transfer event networks and examine pos-
sible connections between such properties and the semantics of the corresponding
smart contracts. For our experiments, we downloaded the first 15 million blocks
of the Ethereum blockchain along with the corresponding transaction receipts,
which include all necessary information about triggered events. The time period
covered by our data set ranges from July 30th, 2015 03:26:13 PM UTC, to June
21st, 2022 02:28:10 AM UTC. The code for the experiments and data anal-
ysis has been written in C++, Java and Python and is publicly available at
https://github.com/mloporchio/EthTokenAnalysis. In particular, the Transfer
event graph analysis was conducted using igraph [6] and WebGraph [1].

https://github.com/mloporchio/EthTokenAnalysis
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4.1 Global Analysis

By analyzing the transaction receipts in our data set, we were able to collect
Ne = 961 603 795 occurrences of the Transfer event, raised by Nc = 386 615
different smart contracts. The plots of Fig. 1 provide further insight into the
occurrences of Transfer events. In particular, Fig. 1a illustrates the frequency of
ERC-20 Transfer events within the analyzed blocks. It appears that a significant
number of blocks (i.e., above 106) do not contain any occurrence of such events.
Also, we can notice that blocks with a large quantity of transfers are less frequent.
Instead, Fig. 1b illustrates the total number of Transfer events on a monthly
basis starting from 2015 (i.e., the year of the Ethereum blockchain inception)
until June 2022. Using a logarithmic scale on the y-axis, the plot highlights how
the number of such events experienced a rapid growth in 2016 and 2017, before
stabilizing at around 107 transfers per month starting from 2018.

(a) (b)

Fig. 1. Frequency distribution of ERC-20 transfers (left) and monthly number of raised
Transfer events (right).

4.2 Graph Construction

To gain insight on the trading volume of each token economy, we first ranked
the ERC-20 contracts based on the number of raised Transfer events. Table 1
displays the first ten positions of our ranking. As the reader may notice, these
contracts alone include approximately 357 million occurrences, thus covering
about 37% of the total number of events Ne despite being less than the 0.012%
of the number of contracts Nc. Moreover, we can also observe that eight tokens
out of ten are related to the field of decentralized finance, as they are associated
with stablecoins or wrapped tokens. The only exceptions are represented by the
tokens of ChainLink [3], i.e., a decentralized oracle network, and Livepeer, a
framework for decentralized video streaming applications.

We selected the top 100 contracts from our ranking and constructed, for each
of them, the corresponding Transfer event graph, as discussed in Sect. 3. We then
computed the number of nodes and edges of each graph and noticed that, on
average, Transfer event graphs have about 759 004 nodes and 1 701 879 edges. We
remark that the number of nodes coincides with the number of participants in the
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Table 1. Top 10 ERC-20 token contracts by triggered Transfer events.

Contract address Token name N. of Transfers Percentage

dac17f958d2ee523a2206206994597c13d831ec7 Tether USD (USDT) 149 408 698 15.537

c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2 Wrapped Ether (WETH) 104 183 120 10.834

a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48 USD Coin (USDC) 42 601 224 4.430

6b175474e89094c44da98b954eedeac495271d0f Dai Stablecoin (DAI) 14 387 573 1.496

514910771af9ca656af840dff83e8264ecf986ca ChainLink Token (LINK) 11 388 177 1.184

174bfa6600bf90c885c7c01c7031389ed1461ab9 More Gold Coin (MGC) 8 947 669 0.930

95ad61b0a150d79219dcf64e1e6cc01f0b64c4ce SHIBA INU (SHIB) 7 781 424 0.809

990f341946a3fdb507ae7e52d17851b87168017c Strong (STRONG) 6 964 935 0.724

58b6a8a3302369daec383334672404ee733ab239 Livepeer Token (LPT) 6 025 932 0.627

03cb0021808442ad5efb61197966aef72a1def96 coToken (coToken) 5 370 855 0.559

Total 357 059 607 37.130

corresponding token economy. For a more detailed insight, Fig. 2a summarizes the
cumulative frequency of the number of nodes among all graphs. From the plot, it
is possible to notice that the majority of all graphs has between 104 and 106 nodes.
Specifically, we can notice that 80 graphs out of 100 have less than 1 million nodes.
Similarly, Fig. 2b illustrates the cumulative distribution function for the number
of edges, highlighting that approximately 80% of all graphs have less than 1 mil-
lion edges. Speaking of graph sizes, we observe that the graph with the lowest
number of nodes, amounting to 691, corresponds to the “Bancor Network” token,
which is related to the field of decentralized finance. Instead, the graph with the
highest number of nodes, namely 23 176 194, is that of “Tether USD” token, the
stablecoin holding the first position in Table 1. To give a sense of our data set, we
note that, if all 100 graphs were combined into a single graph describing all par-
ticipants and Transfer events of the corresponding 100 economies, the resulting
graph would comprise 59 120 625 unique nodes and 160 259 567 unique edges.

(a) (b)

Fig. 2. Cumulative distributions for number of nodes (left) and edges (right) of the
considered Transfer event graphs.

4.3 Graph Analysis

We then analyzed the constructed Transfer event graphs. To this aim, we asso-
ciated each graph with seven numerical features capturing their topological
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properties. To deal with disconnected graphs, we have chosen to always compute
such measures on the largest connected component for consistency. As such, all
features we describe from now on always refer to the subgraph induced by the
nodes and edges of the largest component. In particular, given a Transfer event
graph G with largest connected component GLCC , we computed the following
features. (1) Coverage, namely the percentage of nodes of G included in GLCC .
(2) Alpha, which represents the exponent of the power law distribution best fit-
ting the degree distribution of GLCC . (3) Fitting error, which corresponds to
the error obtained during the fitting process to obtain the previously described
alpha. (4) Relative diameter, which represents the ratio between the diameter of
GLCC and the natural logarithm of the number of nodes. (5) Relative average
shortest path length, which is computed as the average shortest path length of
GLCC divided by the natural logarithm of the number of nodes. (6) Transitiv-
ity coincides with the global clustering coefficient of GLCC , namely the ratio
between the number of triangles and connected triples in the graph. (7) Den-
sity, as the ratio between the actual number of edges and the maximum possible
number of edges in GLCC . To fit a power law curve on the degree distribution
of each graph, we used the procedure detailed in [5]. In accordance with such
method, we use the Kolmogorov-Smirnov statistic to quantify the fitting error as
the distance between the two distributions. Moreover, we remark that the aver-
age shortest path lengths have been computed using the HyperBall algorithm,
which provides an approximate but reasonably accurate result [2]. Indeed, due
to the sizes of the analyzed graphs, obtaining the exact value for the lengths
turned out to be too computationally expensive.

Figure 3 summarizes the distributions of the features among all graphs. In
particular, the histogram of Fig. 3a illustrates the coverage distribution and pro-
vides information about the connected components of the examined graphs. We
can observe that, for 98% of the graphs, the largest connected component covers
a percentage of nodes ranging from 90% to 100%. This means that, in most
cases, as the token economy evolves, token transfers tend to create a single,
large community of users, with only a few nodes remaining isolated. There are,
however, two graphs where the coverage percentage falls between 10% and 20%.
A further analysis revealed that these two outliers correspond to the “Etheal
Promo” and “INS Promo” tokens, whose largest connected components cover
around 18% and 14% of all nodes, respectively. Both tokens were launched on
the market through airdropping, a marketing strategy where tokens are sent to
existing users’ wallets, typically as a free giveaway.

Our analysis of node degrees is summarized by Figs. 3b and 3c, which illus-
trate the distributions of the fitted power law exponents and fitting errors,
respectively. More than half of the tokens have a power law exponent between 2.5
and 3.75, while the majority of graphs have a fitting error below 0.05. Indeed, we
observed that the mean fitting error over all graphs is 0.02. Interestingly enough,
the graph with maximum fitting error (i.e., approximately 0.15) corresponds to
the “More Gold Coin” token. As discussed in [7], the associated contract address
is known for its spamming campaign, which took place in July 2019. During this
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massive campaign, small quantities of tokens were airdropped to many users
causing a sudden congestion on the entire Ethereum network.

For what concerns the relative diameter, we observe a mean value of approx-
imately 1.55. Indeed, Fig. 3d shows that, for more than 70% of all graphs, this
feature is below 2. So the diameter is within a low linear factor of the logarithm
of number of nodes, a classical behaviour in small world networks. Similarly, for
the relative average path length, Fig. 3e shows how the values for this feature
are concentrated between 0.2 and 0.3 for most graphs, with a mean of 0.28.

The histograms of Figs. 3f and 3g describe the transitivity and density distri-
butions, respectively, using a logarithmic scale on the y-axis. As the reader may
notice, in both cases the distributions are positively skewed, with a mean value
of about 3.55 × 10−4 for transitivity and 2.07 × 10−4 for density. This suggests
that interactions among participants tend to be sparse. Moreover, it leads us to
believe that token networks have a weak community structure and participants
are not likely to form well-connected groups, in contrast with the small world
behavior observed when looking at the diameter.

(a) (b) (c)

(d) (e) (f) (g)

Fig. 3. Distributions of the selected features.

4.4 Clustering

After examining the features of each graph individually, we conducted another
analysis employing clustering techniques. The goal of this analysis is to identify
groups of contracts with similar topological properties. For our initial experi-
ment, we attempted to identify which subset of the features described in Sect. 4.3
yields the best clustering. To achieve this aim, we employed the K-means algo-
rithm, testing all possible feature subsets while varying the number of clusters
k from a minimum of 2 to a maximum of 20. For each subset, we then selected
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the value of k maximizing the silhouette coefficient. We note that, with 7 dif-
ferent features, the number of valid subsets is equal to 127. Each subset then
generates 19 possibilities, resulting in a total of 2 413 combinations. Figures 4a,
4b and 4c illustrate, respectively, the top three clusterings obtained with this
approach, namely those with the highest silhouette scores. As the reader may
notice, all three configurations comprise k = 2 clusters. The first configuration,
with a silhouette of 0.945, was obtained using only the coverage feature. The
second configuration, which returned a score of 0.834, was obtained using only
the density feature. Finally, the third configuration was obtained by combin-
ing both features together, yielding a silhouette of 0.785. We observe that, in
all three cases, the obtained clusterings are highly imbalanced. Indeed, we can
always find a small cluster, containing no more than 20 elements, and a large
cluster, with more than 80 elements.

To attempt a different clustering approach, we also conducted further analysis
based on dimensionality reduction. In particular, we used principal component
analysis to reduce the number of features and then executed the K-means algo-
rithm on this reduced data set. Before applying the dimensionality reduction,
however, we used the explained variance ratio method to determine the optimal
number of components. More precisely, we set a threshold of 0.8 (to keep 80%
of the total variance of the original data) and selected the minimum number of
principal components such that the explained variance ratio is above the thresh-
old. In this regard, the plot of Fig. 4d illustrates the total explained variance
ratio as the number of components varies. As the reader may notice, it appears
that the optimal number of features is equal to 4. We then applied the K-means
algorithm again to the reduced data set, trying values of k ranging from 2 to 20.
As before, among the 19 configurations tested, we chose the one that maximized
the silhouette score. As shown in Fig. 4e, the maximum silhouette value (slightly
above 0.7) is achieved, once again, for k = 2 clusters. The corresponding cluster-
ing for this configuration is described by the plot of Fig. 4f: it can be observed
that this partitioning is highly unbalanced, with 97 contracts assigned to the
first cluster and only 3 elements to the second one.

Considering the difficulty encountered in separating contracts according to
the associated features, we introduced a new classification based on contract
semantics. Specifically, we manually assigned to each contract a categorical label
describing its main application domain. The ultimate goal of this analysis was
to study the composition of the obtained clusters, in order to determine whether
similar graphs correspond to contracts with similar purposes. In this regard, we
identified nine token categories: (1) defi comprises all tokens related to decentral-
ized finance (e.g., stablecoins, wrapped tokens, tokens issued by exchanges and
automated market makers, etc.); (2) games includes all token related to games;
(3) blockchain denotes all tokens related to independent blockchain projects;
(4) layer-2 contains tokens related to layer-2 solutions aimed at improving the
scalability of Ethereum; (5) content includes reward tokens related to content
creation platforms; (6) storage represents all tokens related to decentralized stor-
age solutions; (7) mining indicates tokens associated with cryptocurrency mining
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services; (8) multimedia comprises all tokens related to multimedia content (e.g.,
music, video streaming services, etc.); (9) other comprises all tokens whose appli-
cation domain is not included into any of the previous categories. Table 2 illus-
trates the number of contracts for each application domain. We can notice that
the most numerous category is that of tokens related to decentralized finance,
comprising 54 contracts out of 100. Furthermore, 15 contracts did not fall into
any of the application domains and were therefore labeled as “other”.

Table 2. Contract classification based on their application domain.

Category Count

defi 54

other 15

games 9

blockchain 5

layer-2 4

content 4

storage 4

mining 3

multimedia 2

Total 100

We then used this labeling to measure clustering homogeneity. Homogeneity
quantifies, on a scale from 0 to 1, how much each cluster predominantly contains
elements belonging to a certain category of contracts [8]. We assigned a score
to each clustering by comparing the labels returned by the K-means algorithm
with our manually-assigned categories. To better understand how the clustering
reflects such categories, we have focused on clustering results with k = 8, i.e.,
one cluster per category excluding the heterogeneous “other” category. In this
regard, Fig. 4g reports the clustering result with k = 8, colored by category,
yielding the maximum silhouette among all possible combinations of features.
Moreover, to also illustrate the best possible division of the categories among
clusters, we show in Fig. 4h the result with maximum homogeneity. Finally, in
Fig. 4i we report the coloring for k = 8 considering the principal component
analysis clustering. In all cases we can see how the semantic categories are spread
among different clusters. Indeed, in Fig. 4g, despite the high silhouette score
indicating a good level of cohesion among the elements within each cluster, the
homogeneity of the clusters is rather low. Conversely, the configuration of Fig. 4h
exhibits a higher homogeneity, but a lower silhouette score. This suggests that,
while the graphs have similar topological properties, their similarity does not
reflect on the application domain of the respective contracts. In other words, the
topology of Transfer event graphs is not a good indicator of the semantics of the
corresponding contracts.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. Clustering analysis results (est apl in figure (h) represents the relative average
shortest path feature).

5 Conclusions and Future Work

In this paper we have analyzed the top 100 ERC-20 token networks by number
of transfers. The study of the topological properties has revealed that – despite
their diameter being of the order of the logarithm of the number of nodes – all
networks exhibit a low clustering coefficient. This leads us to believe that such
graphs are not small-world networks. Moreover, by analyzing the structure of the
largest connected components and their degree distributions, we identified three
networks that are associated with promotional tokens. Such tokens were launched
through airdropping campaigns and one of them is regarded as an attempt at
spamming the Ethereum network by the user community. To identify groups
of networks with similar topological characteristics, we conducted a clustering
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analysis and compared the results with manually-assigned labels describing the
application domains of the contracts. Results suggest that a token network topol-
ogy does not effectively reflect the semantics of the associated contract, meaning
that contracts with similar applications can induce different network structures,
and vice versa. Concerning future work, we plan to further explore the relation
between contract semantics and network topology by considering additional fea-
tures and different clustering methods. It could also be possible to enrich the
graph with edge weights (e.g., transfer timestamp or amount). The data set
might also be expanded by considering more contracts, including non-fungible
ones.
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