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Preface

Dear Colleagues, Participants, and Readers,
We present the 12th Complex Networks Conference proceedings with great pleasure

and enthusiasm. Like its predecessors, this edition proves complex network research’s
ever-growing significance and interdisciplinary nature. As we navigate the intricate web
of connections that define our world, understanding complex systems, their emergent
properties, and the underlying structures that govern them has become increasingly
crucial.

The Complex Networks Conference has established itself as a pivotal platform for
researchers, scholars, and experts from various fields to converge, exchange ideas, and
push the boundaries of knowledge in this captivating domain. Over the past twelve years,
we havewitnessed remarkable progress, breakthroughs, and paradigm shifts highlighting
the dynamic and complex tapestry of networks surrounding us, from biological systems
and social interactions to technological infrastructures and economic networks.

This year’s conference brought together an exceptional cohort of experts, including
our keynote speakers:

• Michael Bronstein, University of Oxford, UK, enlightened us on “Physics-inspired
Graph Neural Networks”

• Kathleen Carley, Carnegie Mellon University, USA, explored “Coupling in High
Dimensional Networks”

• Manlio De Domenico, University of Padua, Italy, introduced “An Emerging Frame-
work for the Functional Analysis of Complex Interconnected Systems”

• Danai Koutra, University of Michigan, USA, shared insights on “Advances in Graph
Neural Networks: Heterophily and Beyond”

• Romualdo Pastor-Satorras, UPC, Spain, discussed “Opinion Depolarization in
Interdependent Topics and the Effects of Heterogeneous Social Interactions”

• Tao Zhou, USTC, China, engaged us in “Recent Debates in Link Prediction”

These renowned experts addressed a spectrumof critical topics and the latestmethod-
ological advances, underscoring the continued expansion of this field into ever more
domains.

We were also fortunate to benefit from the expertise of our tutorial speakers on
November 27, 2023:

• Tiago de Paula Peixoto, CEU Vienna, Austria, guided “Network Inference and
Reconstruction”

• Maria Liakata, QueenMary University of London, UK, led us through “Longitudinal
language processing from user-generated content”

We want to express our deepest gratitude to all the authors, presenters, reviewers,
and attendees who have dedicated their time, expertise, and enthusiasm to make this
event successful. The peer-review process, a cornerstone of scientific quality, ensures
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that the papers in these proceedings have undergone rigorous evaluation, resulting in
high-quality contributions.

We encourage you to explore the rich tapestry of knowledge and ideas as we dive
into these four proceedings volumes. The papers presented here represent not only the
diverse areas of research but also the collaborative and interdisciplinary spirit that defines
the complex networks community.

In closing,we extendour heartfelt thanks to the organizing committees andvolunteers
who have worked tirelessly to make this conference a reality. We hope these proceed-
ings inspire future research, innovation, and collaboration, ultimately helping us better
understand the world’s networks and their profound impacts on science, technology, and
society.

We hope that the pleasure you have reading these papers matches our enthusiasm
for organizing the conference and assembling this collection of articles.

Hocine Cherifi
Luis M. Rocha
Chantal Cherifi

Murat Donduran



Organization and Committees

General Chairs

Hocine Cherifi University of Burgundy, France
Luis M. Rocha Binghamton University, USA

Advisory Board

Jon Crowcroft University of Cambridge, UK
Raissa D’Souza Univ. of California, Davis, USA
Eugene Stanley Boston University, USA
Ben Y. Zhao University of Chicago, USA

Program Chairs

Chantal Cherifi University of Lyon, France
Murat Donduran Yildiz Technical University, Turkey

Lightning Chairs

Konstantin Avrachenkov Inria Université Côte d’Azur, France
Mathieu Desroches Inria Université Côte d’Azur, France
Huijuan Wang TU Delft, Netherlands

Poster Chairs

Christophe Crespelle Université Côte d’Azur, France
Manuel Marques Pita Universidade Lusófona, Portugal
Laura Ricci University of Pisa, Italy



viii Organization and Committees

Special Issues Chair

Sabrina Gaito University of Milan, Italy

Publicity Chairs

Fabian Braesemann University of Oxford, UK
Zachary Neal Michigan State University, USA
Xiangjie Kong Dalian University of Technology, China

Tutorial Chairs

Luca Maria Aiello Nokia-Bell Labs, UK
Leto Peel Maastricht University, Netherlands

Social Media Chair

Brennan Klein Northeastern University, USA

Sponsor Chairs

Roberto Interdonato CIRAD - UMR TETIS, France
Christophe Cruz University of Burgundy, France

Sustainability Chair

Madeleine Aurelle City School International De Ferney-Voltaire,
France

Local Committee Chair

Charlie Joyez Université Côte d’Azur, France



Organization and Committees ix

Publication Chair

Matteo Zignani University of Milan, Italy

Submission Chair

Cheick Ba Queen Mary University of London, UK

Web Chairs

Stephany Rajeh Sorbonne University, France
Alessia Galdeman University of Milan, Italy

Program Committee

Jacobo Aguirre Centro de Astrobiología (CAB), Spain
Luca Maria Aiello ITU Copenhagen, Denmark
Esra Akbas Georgia State University, USA
Sinan G. Aksoy Pacific Northwest National Laboratory, USA
Mehmet Aktas Georgia State University, USA
Tatsuya Akutsu Kyoto University, Japan
Reka Albert Pennsylvania State University, USA
Alberto Aleta University of Zaragoza, Spain
Claudio Altafini Linkoping University, Sweden
Viviana Amati University of Milano-Bicocca, Unknown
Frederic Amblard Université Toulouse 1 Capitole, IRIT, France
Enrico Amico EPFL, Switzerland
Yuri Antonacci University of Palermo, Italy
Alberto Antonioni Carlos III University of Madrid, Spain
Nino Antulov-Fantulin ETH Zurich, Switzerland
Mehrnaz Anvari Fraunhofer SCAI, Germany
David Aparicio Zendesk, Portugal
Nuno Araujo Univ. de Lisboa, Portugal
Panos Argyrakis Aristotle University of Thessaloniki, Greece
Oriol Artime University of Barcelona, Spain
Malbor Asllani Florida State University, USA
Tomaso Aste University College London, UK
Martin Atzmueller Osnabrück University & DFKI, Germany
Konstantin Avrachenkov Inria Sophia-Antipolis, France



x Organization and Committees

Giacomo Baggio University of Padova, Italy
Franco Bagnoli Università di Firenze, Italy
James Bagrow University of Vermont, USA
Yiguang Bai Xidian University, China
Sven Banisch Karlsruhe Institute of Technology, Germany
Annalisa Barla Università degli Studi di Genova, Italy
Nikita Basov The University of Manchester, UK
Anais Baudot CNRS, AMU, France
Gareth J. Baxter University of Aveiro, Portugal
Loredana Bellantuono University of Bari Aldo Moro, Italy
Andras Benczur SZTAKI, Hungary
Rosa M. Benito Universidad Politécnica de Madrid, Spain
Ginestra Bianconi Queen Mary University of London, UK
Ofer Biham The Hebrew University, Israel
Romain Billot IMT Atlantique, France
Livio Bioglio University of Turin, Italy
Hanjo D. Boekhout Leiden University, Netherlands
Anthony Bonato Toronto Metropolitan University, Canada
Anton Borg Blekinge Institute of Technology, Sweden
Cecile Bothorel IMT Atlantique, France
Federico Botta University of Exeter, UK
Romain Bourqui University of Bordeaux, France
Alexandre Bovet University of Zurich, Switzerland
Dan Braha New England Complex Systems Institute, USA
Ulrik Brandes ETH Zürich, Switzerland
Rion Brattig Correia Instituto Gulbenkian de Ciência, Portugal
Chico Camargo University of Exeter, UK
Gian Maria Campedelli Fondazione Bruno Kessler, Italy
M. Abdullah Canbaz University at Albany SUNY, USA
Vincenza Carchiolo DIEEI, Italy
Dino Carpentras ETH Zürich, Switzerland
Giona Casiraghi ETH Zürich, Switzerland
Douglas Castilho Federal Inst. of South of Minas Gerais, Brazil
Costanza Catalano University of Florence, Italy
Lucia Cavallaro Free University of Bozen/Bolzano, Italy
Remy Cazabet University of Lyon, France
Jianrui Chen Shaanxi Normal University, China
Po-An Chen National Yang Ming Chiao Tung Univ., Taiwan
Xihui Chen University of Luxembourg, Luxembourg
Sang Chin Boston University, USA
Daniela Cialfi Institute for Complex Systems, Italy
Giulio Cimini University of Rome Tor Vergata, Italy



Organization and Committees xi

Matteo Cinelli Sapienza University of Rome, Italy
Salvatore Citraro University of Pisa, Italy
Jonathan Clarke Imperial College London, UK
Richard Clegg QMUL, UK
Reuven Cohen Bar-Ilan University, Israel
Jean-Paul Comet Université Côte d’Azur, France
Marco Coraggio Scuola Superiore Meridionale, Italy
Michele Coscia ITU Copenhagen, Denmark
Christophe Crespelle Université Côte d’Azur, France
Regino H. Criado Herrero Universidad Rey Juan Carlos, Spain
Marcelo V. Cunha Instituto Federal da Bahia, Brazil
David Soriano-Paños Instituto Gulbenkian de Ciência, Portugal
Joern Davidsen University of Calgary, Canada
Toby Davies University of Leeds, UK
Caterina De Bacco Max Planck Inst. for Intelligent Systems,

Germany
Pietro De Lellis University of Naples Federico II, Italy
Pasquale De Meo University of Messina, Italy
Domenico De Stefano University of Trieste, Italy
Fabrizio De Vico Fallani Inria-ICM, France
Charo I. del Genio Coventry University, UK
Robin Delabays HES-SO, Switzerland
Yong Deng Univ. of Electronic Science and Tech., China
Mathieu Desroches Inria Centre at Université Côte d’Azur, France
Carl P. Dettmann University of Bristol, UK
Zengru Di Beijing Normal University, China
Riccardo Di Clemente Northeastern University London, UK
Branco Di Fátima University of Beira Interior (UBI), Portugal
Alessandro Di Stefano Teesside University, UK
Ming Dong Central China Normal University, China
Constantine Dovrolis Georgia Tech, USA
Maximilien Dreveton EPFL, Switzerland
Ahlem Drif University of Setif, Algeria
Johan L. Dubbeldam Delft University of Technology, Netherlands
Jordi Duch Universitat Rovira i Virgili, Spain
Cesar Ducruet CNRS, France
Mohammed El Hassouni Mohammed V University in Rabat, Morocco
Frank Emmert-Streib Tampere University, Finland
Gunes Ercal Southern Illinois University Edwardsville, USA
Alejandro Espinosa-Rada ETH Zürich, Switzerland
Alexandre Evsukoff Universidade Federal do Rio de Janeiro, Brazil
Mauro Faccin University of Bologna, Italy



xii Organization and Committees

Max Falkenberg City University, UK
Guilherme Ferraz de Arruda CENTAI Institute, Italy
Andrea Flori Politecnico di Milano, Italy
Manuel Foerster Bielefeld University, Germany
Emma Fraxanet Morales Pompeu Fabra University, Spain
Angelo Furno LICIT-ECO7, France
Sergio Gómez Universitat Rovira i Virgili, Spain
Sabrina Gaito Università degli Studi di Milano, Italy
José Manuel Galán Universidad de Burgos, Spain
Alessandro Galeazzi Ca’ Foscari university of Venice, Italy
Lazaros K. Gallos Rutgers University, USA
Joao Gama INESC TEC—LIAAD, Portugal
Jianxi Gao Rensselaer Polytechnic Institute, USA
David Garcia University of Konstanz, Germany
Floriana Gargiulo CNRS, France
Michael T. Gastner Singapore Institute of Technology, Singapore
Alexander Gates University of Virginia, USA
Alexandra M. Gerbasi Exeter Business School, UK
Fakhteh Ghanbarnejad Potsdam Inst. for Climate Impact Res., Germany
Cheol-Min Ghim Ulsan National Inst. of Science and Tech.,

South Korea
Tommaso Gili IMT School for Advanced Studies Lucca, Italy
Silvia Giordano Univ. of Applied Sciences of Southern

Switzerland, Switzerland
Rosalba Giugno University of Verona, Italy
Kimberly Glass Brigham and Women’s Hospital, USA
David Gleich Purdue University, USA
Antonia Godoy Lorite UCL, UK
Kwang-Il Goh Korea University, South Korea
Carlos Gracia University of Zaragoza, Spain
Oscar M. Granados Universidad Jorge Tadeo Lozano, Colombia
Michel Grossetti CNRS, France
Guillaume Guerard ESILV, France
Jean-Loup Guillaume Université de la Rochelle, France
Furkan Gursoy Bogazici University, Turkey
Philipp Hövel Saarland University, Germany
Meesoon Ha Chosun University, South Korea
Bianca H. Habermann AMU, CNRS, IBDM UMR 7288, France
Chris Hankin Imperial College London, UK
Yukio Hayashi JAIST, Japan
Marina Hennig Johannes Gutenberg University of Mainz,

Germany



Organization and Committees xiii

Takayuki Hiraoka Aalto University, Finland
Marion Hoffman Institute for Advanced Study in Toulouse, France
Bernie Hogan University of Oxford, UK
Seok-Hee Hong University of Sydney, Australia
Yujie Hu University of Florida, USA
Flavio Iannelli UZH, Switzerland
Yuichi Ikeda Kyoto University, Japan
Roberto Interdonato CIRAD, France
Antonio Iovanella Univ. degli Studi Internazionali di Roma, Italy
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Networks with Dependent Node
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Abstract. We present a novel approach for computing a variant of
eigenvector centrality for multilayer networks with inter-layer constraints
on node importance. Specifically, we consider a multilayer network
defined by multiple edge-weighted, potentially directed, graphs over the
same set of nodes with each graph representing one layer of the network
and no inter-layer edges. As in the standard eigenvector centrality con-
struction, the importance of each node in a given layer is based on the
weighted sum of the importance of adjacent nodes in that same layer.
Unlike standard eigenvector centrality, we assume that the adjacency
relationship and the importance of adjacent nodes may be based on dis-
tinct layers. Importantly, this type of centrality constraint is only par-
tially supported by existing frameworks for multilayer eigenvector cen-
trality that use edges between nodes in different layers to capture inter-
layer dependencies. For our model, constrained, layer-specific eigenvector
centrality values are defined by a system of independent eigenvalue prob-
lems and dependent pseudo-eigenvalue problems, whose solution can be
efficiently realized using an interleaved power iteration algorithm. An
R package implementing this method along with example vignettes is
available at https://hrfrost.host.dartmouth.edu/CMLC/.

Keywords: eigenvector centrality · multilayer networks

1 Eigenvector Centrality for Multilayer Networks

Computation of node importance via centrality measures is an important task in
network analysis and a large number of centrality measures have been developed
that prioritize different node and network properties [7]. The most widely used
centrality measures are a function of the network adjacency matrix, A, which,
for an edge-weighted network defined over p nodes is the p × p matrix:

A =

⎡
⎢⎣

a1,1 · · · a1,p

...
. . .

...
ap,1 · · · ap,p

⎤
⎥⎦ (1)

where ai,j captures the weight of the edge between nodes i and j or 0 if no
edge exists between these nodes. Self-edges are represented by elements on the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1143, pp. 3–14, 2024.
https://doi.org/10.1007/978-3-031-53472-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-53472-0_1&domain=pdf
https://hrfrost.host.dartmouth.edu/CMLC/.
https://doi.org/10.1007/978-3-031-53472-0_1
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diagonal. If the network is directed, then ai,j and aj,i capture distinct edges and
A is asymmetric; if the network is undirected, ai,j = aj,i and A is symmetric.

Modeling node importance as the weighted sum of the importance of adjacent
nodes leads a version of centrality called eigenvector centrality, which is solved
by computing the principal eigenvector of the following eigenvalue problem:

Ax = λx (2)

Specifically, the eigenvector centrality for node n is given by element n of the
principal eigenvector x corresponding to the largest eigenvalue [7]. When A is
irreducible (i.e., the network is strongly connected), then the Perron-Frobenius
theorem [8] guarantees that there is a unique largest real eigenvalue whose cor-
responding eigenvector can be chosen to have strictly positive elements. For
directed graphs, left and right versions of eigenvector centrality are possible, i.e.,
the solution to the eigenvalue problem for AT or A. For the methods developed
below, we focus on the right eigenvector centrality, however, the same approach
can be employed to compute left eigenvector centrality by considering AT instead
of A.

In this paper, we are interested in eigenvector centrality and how that mea-
sure of node importance generalizes to multilayer (or multiplex) networks [1,5].
We assume a multilayer network comprised by k layers that each represent a
potentially directed, edge-weighted graph over the same p nodes. The graph for
layer j ∈ {1, ..., k} can be represented by the adjacency matrix Aj :

Aj =

⎡
⎢⎣

aj,1,1 · · · aj,1,p

...
. . .

...
aj,p,1 · · · aj,p,p

⎤
⎥⎦ (3)

where aj,n,m holds the weight of the edge from node n to node m within the
layer j graph. Although the terms network and graph are synonymous in this
context, we will generally use the term network to refer to the entire multilayer
network and the term graph to refer to the network that defines a single layer. In
the context of a multilayer network, node eigenvector centrality can be evaluated
at the level of a specific layer (i.e., a given node has separate centrality values
for each of the k layers) or at the level of the entire multilayer network (i.e.,
a given node has a single centrality value that captures the importance of the
node across all k layers). In the development below, we focus on layer-specific
measures of eigenvector centrality.

If the k layers are independent, then eigenvector centrality can simply be
computed separately for each layer. However, if dependencies exist between the
layers, then a multilayer version of eigenvector centrality must be employed that
can account for the inter-layer constraints. A number of approaches for modeling
and computing multilayer eigenvector centrality have been explored over the
last decade (e.g., [3,4,9–11]). Most of these approaches assume that inter-layer
constraints can be modeled by edges between the nodes in one layer and nodes
in other layers. This type of approach is exemplified by the recent work of Taylor
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et al. [10] that details a flexible model for a ”uniformly and diagonally coupled
multiplex network”. Specifically, Taylor et al. represent inter-layer dependencies
by equally weighted edges connecting the nodes in one layer to the same nodes
in a dependent layer. Taylor et al. represent the structure of these dependencies
using a k × k adjacency matrix Ã:

Ã =

⎡
⎢⎣

ã1,1 · · · ã1,k

...
. . .

...
ãk,k · · · ãk,k

⎤
⎥⎦ (4)

where ãi,j represents the weight of the edges from nodes in layer i to nodes in
layer j. Computation of multilayer eigenvector centralities is then based on the
principal eigenvector of a kp × kp supercentrality matrix C(ω):

C(ω) = Ĉ + ωÂ (5)

where Ĉ = diag[A1, ...,Ak] (i.e., a kp × kp block diagonal matrix that has the
adjacency matrices for each of the k layers along the diagonal), Â = Ã ⊗ I
(i.e., the Kronecker product of Ã and I), and ω is the coupling strength. The
principal eigenvector of C(ω) can then be used to find joint, marginal, and con-
ditional eigenvector centralities. Specifically, the principal eigenvector elements
are divided into k sequential blocks of p elements, with the block corresponding
to layer i representing the joint centrality values for the nodes in layer i. To cal-
culate the marginal centralities for either nodes or layers, the joint centralities
are summed over all layers for a given node or all nodes for a given layer. To
calculate conditional centralities for either nodes or layers, the joint centrality
value for a given node/layer pair is divided by either the marginal centrality for
the layer or the marginal centrality for the node.

2 Eigenvector Centrality for Multilayer Networks
with Inter-layer Constraints on Adjacent Node
Importance

Our model for multilayer eigenvector centrality extends the standard single net-
work version given by (2) to support the scenario where the importance of a
given node in layer i is proportional to the weighted sum of the importance
of adjacent nodes with adjacency and weights based on layer i but adjacent
node importance based on potentially distinct layers. This model is conceptu-
ally and mathematically distinct from approaches like Taylor et al. that add
edges between the same node in different layers to capture inter-layer dependen-
cies. To illustrate, assume we have a multilayer network with just two layers i
and j. If we assume the importance for nodes in layer i has the standard def-
inition, i.e., it is not dependent on another layer, the solution is given by the
typical eigenvalue problem:

Aixi = λixi (6)
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However, if we assume the importance for nodes in layer j is based on the
importance of adjacent nodes in layer i, then solution for layer j is given by the
following linear model (note that both xi and xj are included):

Ajxi = λjxj (7)

Although the linear model (7) is not technically an eigenvalue problem since
it contains distinct xi and xj vectors, we will refer to it as a pseudo-eigenvalue
problem given the structural similarities to (6) and the fact that xi may represent
an eigenvector. As detailed below, we will also use the pseudo-eigenvalue label to
describe more complex scenarios where xi found on both sides of the equation.
For this example, the solution for the entire multilayer network is given by a
system of an independent eigenvalue problem and a dependent pseudo-eigenvalue
problem:

Aixi = λixi

Ajxi = λjxj
(8)

In this case, the solution can be obtained by first solving the eigenvalue problem
for layer i to find xi and then computing xj as xj = 1/λjAjxi with the value
of λj set to ensure xj is unit length.

This simple example can be generalized to a multilayer network with k layers
and arbitrary node importance constraints encoded by a graph whose nodes
represent layers and whose weighted and directed edges represent inter-layer
dependencies. Let this inter-layer dependency graph be represented by the k ×k
adjacency matrix Ã that is similar in structure to the Ã used by Taylor et al.
and defined in (4) but with the added constraint that the rows must sum to 1
(i.e., ∀i∈1,...,k

∑k
j=1 ãi,j = 1). Element ãi,j of Ã represents the strength of the

dependency between adjacent node importance in layer i and node importance
in layer j with the sum of all dependencies for a given layer equal to 1. If Ã = I,
all of the layers are independent. For the 2 layer example represented by (8), Ã
is:

Ã =
[
1 0
1 0

]
(9)

If the length p vector xi represents node importance in layer i, we can define an
adjacent node importance function c(i, Ã) as:

c(i, Ã) =
k∑

j=1

ãi,jxj (10)

In other words, the importance of nodes in layer i is based on a weighted sum
of the importance of adjacent nodes in other layers (note that adjacency is only
based on the topology of layer i). Given the function c(), we can compute a
constrained multilayer version of eigenvector centrality for the network by solv-
ing the following system of k interdependent eigenvalue and pseudo-eigenvalue
problems:
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A1c(1, Ã) = λ1x1

A2c(2, Ã) = λ2x2

...
Akc(k, Ã) = λkxk

(11)

Importantly, the supercentrality approach of Taylor et al. cannot in general solve
systems such as (8), i.e., system (11) cannot be directly mapped to an eigenvalue
problem involving a supercentrality matrix of the form defined by (5).

In the special case where Ã = I, all c(i, Ã) = xi and (11) becomes a system
of k independent eigenvalue problems:

A1x1 = λ1x1

A2x2 = λ2x2

...
Akxk = λkxk

(12)

More generally, the dependency structure for a given layer i falls into one of
three cases:

A ãi,i = 1. In this scenario, the eigenvector centrality for layer i is given by the
principal eigenvector of the independent eigenvalue problem Aixi = λixi.

B ãi,i = 0: In this scenario, the centrality for layer i is a linear function of the
centrality values of other network layers.

C 0 < ãi,i < 1: In this scenario, the centrality for layer i is given by a pseudo-
eigenvalue problem that can be rewritten as Aixi + d = λixi, where d is
captures the part of Aic(i, Ã) not due to xi.

If all layers in the multilayer network fall into case A or B and no cycles exist
in the graph defined by Ã, then the constrained eigenvector centralities can be
computed using a relatively straightforward two-step procedure:

1. Solve the independent eigenvalue problems for all layers in case A using an
algorithm like power iteration [6].

2. Sequentially solve the linear models for all layers in case B with the order of
solution given by the inter-layer constraints.

If any layers fall into case C or cycles exist in the inter-layer dependency graph,
then the solution must be obtained via an iterative algorithm similar to the
interleaved power iteration approach detailed in Sect. 3 as Algorithm 1.

3 Interleaved Power Iteration Algorithm for a System
of Dependent Pseudo-eigenvalue Problems

For an arbitrary inter-layer dependency matrix Ã, the joint solution for sys-
tem (11) can be found via a interleaved version of the power iteration method,
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detailed in Algorithm 1, that is applied across all k linear problems. It should be
noted that this specification of Algorithm 1 does not include features important
for many practical implementations, e.g, checks to ensure the input matrices
Xi are well conditioned, options for the use of stochastic initialization of the
eigenvectors, use of techniques like accelerated stochastic power iteration [12]
to improve computational performance, alternate stopping conditions, etc. The
CMLC (Constrained Multilayer Centrality) R package implementing this algo-
rithm along with example vignettes (that generate the results shown in Sects. 4
and 5) is available at https://hrfrost.host.dartmouth.edu/CMLC/.

Algorithm 1 . Interleaved power iteration for dependent pseudo-eigenvalue
problems

Input:

– Set of k p × p irreducible matrices, {X1,X2, ...,Xk}
– Dependencies between the principal pseudo-eigenvectors of Xi encoded as a k × k

matrix Ã whose rows sum to 1 (see (11)) The pseudo-eigenvalue problem for Xi

is given by Xic(i, Ã) = λixi, where c(i, Ã) =
∑k

j=1 ãi,jxj

– Positive integer maxIter that represents the maximum number of iterations
– Positive real number tol that represents the stopping criteria as the proportional

change in the mean of the k pseudo-eigenvalues between iterations

Output:

– Estimated principal pseudo-eigenvectors of the input Xi: {v̂1, v̂2, ..., v̂k}
– Estimated principal pseudo-eigenvalues of the input Xi: {λ̂1, λ̂2, ..., λ̂k}
– Number of iterations completed

Notation:

– Let vn,m and λn,m represent the principal pseudo-eigenvector and pseudo-
eigenvalue for matrix Xn as computed on the mth iteration of the algorithm

1: ∀j∈1...kvj,0 = {1/
√

p, ..., 1/
√

p} � Initialize principal pseudo-eigenvectors to unit
length vectors with all values equal to 1/

√
p

2: for i ∈ {1, ..., maxIter} do
3: ∀j∈1...kvj,i = Xjc(i, Ã) � Update principal pseudo-eigenvectors based on

dependencies
4: ∀j∈1...kvj,i = vj,i/||vj,i|| � Normalize pseudo-eigenvectors to unit length
5: ∀j∈1...kλj,i = (vj,i)

TXjc(i, Ã) � Update principal pseudo-eigenvalues
6: if i > 1 then
7: Δ = (1/k

∑k
j=1 |λj,i−1 − λj,i|)/(1/k

∑k
j=1 λj,i) � Compute proportional

change in mean pseudo-eigenvalue
8: if Δ < tol then
9: break � If proportion change is less than tol, exit

return {v1,i,v2,i, ...,vk,i}, {λ1,i, λ2,i, ..., λk,i}, i

https://hrfrost.host.dartmouth.edu/CMLC/.
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Fig. 1. Example undirected and unweighted multilayer network.

4 Simple Example

To illustrate the constrained multilayer model detailed in Sect. 2 and the per-
formance of the interleaved power iteration algorithm detailed in Sect. 3, we
consider a simple multilayer network comprised by three layers that each define
an undirected and non-weighted network with five nodes. The structure of this
multilayer network is shown in Fig. 1. For this example network, the symmetric
adjacency matrices for the three layers are given by:

A1 =

⎡
⎢⎢⎢⎢⎣

0 1 1 0 0
1 0 1 1 0
1 1 0 0 0
0 1 0 0 1
0 0 0 1 0

⎤
⎥⎥⎥⎥⎦

,A2 =

⎡
⎢⎢⎢⎢⎣

0 1 1 0 0
1 0 0 0 0
1 0 0 1 1
0 0 1 0 1
0 0 1 1 0

⎤
⎥⎥⎥⎥⎦

,A3 =

⎡
⎢⎢⎢⎢⎣

0 1 1 1 0
1 0 0 1 0
1 0 0 0 1
1 1 0 0 1
0 0 1 1 0

⎤
⎥⎥⎥⎥⎦

We consider four different inter-layer dependency scenarios:

1. No dependencies
If no dependencies exist between the layers (i.e., Ã = I), the eigenvector
centralities (rounded to two decimal places) for each layer are:

v1 = {0.50, 0.60, 0.50, 0.34, 0.15}
v2 = {0.34, 0.15, 0.60, 0.50, 0.50}
v3 = {0.53, 0.43, 0.36, 0.53, 0.36}

As expected given the structure of layer 1, node 2 has the largest eigenvector
centrality, followed by nodes 1 and 3 with node 5 having the lowest. Similarly
for layer 2, node 3 has the largest centrality, followed by nodes 4 and 5 with
node 2 having the lowest centrality. For layer 3, nodes 1 and 4 are tied for
the largest centrality with nodes 3 and 5 tied for the lowest.

2. Mixture of layer dependency cases A and B
If layer 1 is independent, layer 2 is dependent on just layer 1 and layer 3 is
dependent on layer 2, the Ã matrix takes the form:

Ã =

⎡
⎣

1 0 0
1 0 0
0 1 0

⎤
⎦
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and the constrained eigenvector centralities are:

v1 = {0.50, 0.60, 0.50, 0.34, 0.15}
v2 = {0.58, 0.26, 0.53, 0.34, 0.44}
v3 = {0.48, 0.39, 0.43, 0.54, 0.37}

Since layer 1 is still independent in this scenario, it has the same centrality
values as the prior case. For layer 2, we see the expected increase in the
centrality of node 1 relative to node 3 given the importance of their adjacent
nodes in layer 1 (i.e., node 1 is adjacent to node 2, which has the largest
centrality value in layer 1; node 3 is adjacent to nodes 4 and 5, which have
the lowest centrality values in layer 1). For layer 3, the centrality for node 3 has
the largest change (an increase) relative to the independent scenario, which
is expected given that it is adjacent to the node with the largest centrality
value in layer 2 (node 1).

3. Mixture of layer dependency cases A, B and C
If layer 1 is independent, layer 2 is dependent on just layer 1 and layer 3 is
equally dependent on both layer 2 and itself, the Ã matrix takes the form:

Ã =

⎡
⎣

1 0 0
1 0 0
0 0.5 0.5

⎤
⎦

and the constrained eigenvector centralities are:

v1 = {0.50, 0.60, 0.50, 0.34, 0.15}
v2 = {0.58, 0.26, 0.53, 0.34, 0.44}
v3 = {0.51, 0.41, 0.39, 0.53, 0.37}

Since layers 1 and 2 have the same dependency structure as the prior sce-
nario, the centrality values are unchanged. As expected, the equally divided
dependency structure for layer 3 yields centrality values that are between
those computed in the first two scenarios.

4. All layers are dependency case B with cycle
If layer 1 is dependent on layer 3, layer 2 dependent on layer 1 and layer 3
dependent on layer 2, a cycle is introduced in the layer dependency graph,
the Ã matrix takes the form:

Ã =

⎡
⎣

0 0 1
1 0 0
0 1 0

⎤
⎦

and the constrained eigenvector centralities are:

v1 = {0.40, 0.68, 0.42, 0.38, 0.25}
v2 = {0.58, 0.21, 0.55, 0.36, 0.43}
v3 = {0.48, 0.40, 0.43, 0.52, 0.39}
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5 Random Graph Example

A more complex example of our constrained multilayer model involves the anal-
ysis of interdependent random graphs. Specifically, we simulated a two layer
network where each layer was generated as an interconnected group of 5 Erdos-
Renyi random graphs with 20 nodes using the igraph R package [2] function call
sample islands(islands.n=5, islands.size=20, islands.pin=0.2, n.inter=1). Con-
strained eigenvector centrality values were then computed using the proposed
algorithm for five different dependency structures:

Ã1 =
[
1 0
0 1

]
, Ã2 =

[
0.9 0.1
0 1

]
, Ã3 =

[
0 1
0 1

]
, Ã4 =

[
1 0

0.1 0.9

]
Ã5 =

[
1 0
1 0

]

Fig. 2. Centrality visualization for a two layer random graph example. Each row cor-
responds to a separate layer generated as a interconnected group of 5 Erdos-Renyi
random graphs that each have 20 nodes. Panels A and D visualize node eigenvector
centrality values when the layers are independent. Panels B and E visualize eigenvector
centrality values when 10 kept independent. Panels C and F visualize node eigenvector
centrality when adjacent node importance is entirely based on the other layer.

These dependency structures, and the associated results in Fig. 2, have the
following interpretations:

1. This represents dependency case A, i.e., the two layers are completely inde-
pendent. Panels A and D in Fig. 2 visualize the eigenvector centrality values
for each layer in this scenario.
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2. This represents a mixture of dependency cases A and C with layer 2 indepen-
dent and layer 1 having adjacent node importance that is a mixture of 10%
layer 2 and 90% layer 1, i.e., close to the independence case. Panels B and
D in Fig. 2 visualize the corresponding eigenvector centrality values. Interest-
ingly, the small dependence of layer 1 on layer 2 results in a significant shift in
eigenvector centrality values but with the distriution of values still dictated
by the layer 1 structure.

3. This represents a mixture of dependency cases A and B with layer 2 inde-
pendent and adjacent node importance for layer 1 completely based on layer
2. Panels C and D reflect the eigenvector centrality values for this case. As
expected, the centrality values for layer 1 are quite distinct from the inde-
pendence case seen in panel A but with the overall pattern still constrained
by the layer 1 topology.

4. Similar to case 2, this is a mixture of dependency cases A and C but with
the roles of layer 1 and 2 reversed. Panels A and E capture the eigenvector
centrality values. In this case, there is a less dramatic shift in the dominant
eigenvector centralities for layer 2 relative to the independence case.

5. Similar to case 3, this is a mixture of dependency cases A and B with lay-
ers 1 and 2 reversed. Similar to case 3, the eigenvector centrality values for
layer 2 are completely distinct from the independence case while still being
constrained by the layer 2 topology.

6 Applications and Future Directions

We believe the inter-layer dependency model outlined in this paper has utility
for a number of real world multilayer network analysis problems where node
adjacency and adjacent node importance are captured by distinct networks,
e.g., transportation networks. One specific example of such a real world problem
involves the characterization of ligand/receptor mediated cell-cell communica-
tion within a tissue. This cell signaling problem was in fact the original motiva-
tion for our method. A simplistic model for this problem uses a fully connected
network whose nodes represent cells and with edge weights based on the inverse
squared Euclidean distance between each cell to capture secreted protein dif-
fusion. In this scenario, we assume that each cell is one of several distinct cell
types, e.g., CD8+ T cell, and that each cell type is capable of presenting a set of
membrane-bound receptor proteins on its surface with the set of receptors asso-
ciated with different cell types potentially overlapping. We additionally assume
that each receptor has a unique cognate secreted ligand protein that can bind
to it and that each ligand is produced as a consequence of one or more receptor
signaling pathways, i.e., binding of a given receptor by its associated ligand will
trigger production of other ligands by the cell.

Given this simple ligand/receptor signaling model and the distribution of
cells within a tissue, a key question is to estimate the steady-state activity of
each receptor signaling pathway. One approach for answering that question cre-
ates a multilayer network with one layer per receptor protein with the activity of
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a specific receptor signaling pathway in a given cell represented by the centrality
of the associated node. Although we can assume that the adjacency matrices
for all receptor layers are identical, a more realistic model would vary the edge
weights (potentially with thresholding) based on the dispersion properties of
each cognate ligand. Simply computing the eigenvector centrality for each layer,
however, does not yield the appropriate answer since the importance of adjacent
cells in a given receptor layer reflects that activity of that receptor, which most
likely does not impact the activity of that same receptor in other cells, i.e., bind-
ing of a given receptor does in general result in secretion of the associated ligand.
Instead, one wants to use the importance of cells in the layers corresponding to
receptors that produce the cognate ligand. This type of inter-layer dependency
structure is exactly what our proposed model supports. We believe that a more
general class of systems biology questions may map to similar interdependent
multilayer networks.

Our future work in this area includes exploring the theoretical properties of
our multilayer network model and interleaved power iteration algorithm (e.g.,
iteration convergence), characterizing the computational performance on a range
of simulated and real networks, performing a comparative evaluation against
other multilayer centrality approaches, and applying our technique to study the
example cell signaling problem using tissue imaging and genomic profiling data.
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Abstract. Social media and online data pose challenges in information
mining, network analysis, opinion mining, and combating misinforma-
tion. However, no previous work has been able to apply knowledge graph
(KG) and contextual focal structure analysis (CFSA) on multisource
data to study situational awareness in public discussion and establish
information propagation such as the Belt and Road Initiative (BRI). This
research uses multisource data, a knowledge graph model, and a CFSA,
which we term KG-CFSA. We extract entities and topics from docu-
ments and correlate them with third-party data sources such as Wikidata
and Diffbot. We establish relationships using a Cartesian product merge
function to develop a graph model. The merge function uses search algo-
rithms and pairwise matching to establish relationships. The model is
divided into three instances: document-entity, document-document, and
topic-topic. For the document-document instance, we used topics and
entities and topic overlaps to establish a relationship while we used co-
occurrence for the topic-topic instance. The study identified 276 focal
sets; the top two focal sets are focal sets 275 and 276. The most impor-
tant focal content comes from an Indonesian Twitter user, who operates
a personal blog on opinion and story covers. The findings highlight the
effectiveness of multisource KG-CFSA in establishing context for a social
network analysis.

Keywords: Multisource knowledge Graph · Contextual Focal
Structure Analysis · Knowledge Graph

1 Introduction

Social media and online data pose challenges in information mining, network
analysis, opinion mining, and combating misinformation. Platforms such as
Twitter and Reddit provide valuable information and have been used in cam-
paigns such as COVID-19, China’s Belt and Road Initiative, and traditional news
platforms. Blogs and video transcripts enable scientists to mine multiple entities
from the corpus, identify groups and individuals within communication channels,
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and leverage user entities to maximize influence. Topic modeling extracts themes
from documents, whereas knowledge graphs allow modeling relationships based
on facts. Discovering groups and communities from multisource data requires
identifying a focal set and leveraging knowledge graphs and contextual focal
structures in social network analyses.

Social media platforms and blogs are ideal for identifying groups and indi-
viduals within communication channels, such as people, places, or organizations.
User entities within different groups can leverage each other to maximize their
influence [4]. Topic modeling is a widely used method in data and platform
analysis to understand the overall theme of the collected data. It provides an
unsupervised deterministic approach for understanding large text corpora and
identifying key themes. Knowledge graph models use topic modeling to estab-
lish relationships [2] and contextualize focal structures [17] within online social
network discussions. Knowledge graph embedding integrates knowledge graphs
into traditional machine learning tasks such as classification, clustering, and
prediction, allowing them to fit into tasks that would be difficult on graph-
structured data. Research has shown the importance of knowledge embedding in
news recommendations, with algorithms based on item-base similarity, knowl-
edge graph similarity, and actuality [10,17]. Existing knowledge embeddings such
as KKGvec2go [14], Wembedder [13], and Pytorch-Biggraph [11] have been eval-
uated, and pyRDF2Vec [16] has been trained to recommend related news tags
for news articles. However, there is limited usage of knowledge embedding in
the combination of long and short texts, multiple source social media data, and
studying public discussions such as the Belt and Road Initiative. Social network
analysis requires mining data from different platforms to extract insights, espe-
cially for understanding Belt and Road Initiative conversations. Without focal
structures, important information may be buried online.

The study by [5] used the contextual focal structure (CFS) framework to
reveal individual interest using Twitter data. This allowed them to measure
influence and identify communities using modularity measures and average clus-
tering coefficient values. This study involved community extraction, user-to-user
network discovery, and hashtag discovery to create a multiplex network for con-
textual focal structure analysis (CFSA) detection. Our study explores the imple-
mentation and adoption of knowledge graphs, knowledge embedding, and CFSA,
and considers factors such as the entity being discussed, the dominant theme,
and their relation across topic documents.

This study contextualizes entities as focal communication structures using
knowledge embedding and contextual focal structures. This study also explores
the application of knowledge graph-contextual focal structure analysis on hetero-
geneous data from multiple social media platforms, including blogs. Knowledge
graph embedding is crucial for identifying focal structures and classifying enti-
ties, but existing research has not considered long-text data such as blogs. This
study models knowledge graphs from blogs, Twitter, and Reddit using topic
modeling and entity extraction. The Indo-Pacific Belt and Road Initiative is an
example of the data collection used in this study. We further leverage CFSA



Contextualized Focal Structures in Multisource Social Networks 17

on a multiplex knowledge graph data which consists of a topic-topic model,
document-entity model, and document-document model to arrive at other inter-
esting findings. The rest of this article is organized as follows. In Sect. 2, we
review the existing literature. In Sect. 3, we highlight the combined framework
and methodology (KG-CFSA) used in this study. In Sect. 4, we discuss the results
of the combined framework and an example use case on the Belt and Road Ini-
tiative discussion from a multisource data and multiplex network point of view.
In Sect. 5, we highlight the future work we plan to undertake as well as how
other researchers can strengthen our current efforts by leveraging our results
and framework.

2 Literature Review

This section reviews existing literature on knowledge graph construction and
contextual focal structures. In [17] and [8] the authors proposed a topic model
knowledge graph for measuring entity similarity and topic coherence. They
extracted topic models from the text and used them to list related papers. The
work done by [1] focused on extracting knowledge graphs from Wikidata. They
employed cosine similarity between entity vectors and sentence vectors, coupled
with Latent Dirichlet Allocation (LDA) on Wikipedia articles, to select the top
topics for potential permutations. This approach improved the property selection
for graph models by 85%.

Another approach suggested by [7] is to use main topics from learning
resources to extract knowledge by merging information and updating it using a
subject-category look-up on Wikipedia. The algorithm consists of three layers:
text extraction, keyword extraction, and category extraction. It uses Wikipedia,
TextRank, and Genism to extract keywords and categories, similar to [1], but
with a different platform focus. Knowledge graphs have gained popularity in
representing data from social media. Knowledge graph embedding enables the
application of linear and nonlinear machine learning [9]. The TransET model was
used to model entities and relations in a low-dimensional space. It achieved state-
of-the-art accuracy in link prediction and triple classification [18]. Knowledge
embedding has also been applied to studying Twitter data, classifying tweets,
and identifying user groups that utilize negative narrative framing [2]. Dimen-
sionality reduction was implemented to study the YouTube commenters to iden-
tify suspicious behavior across different channels [15]. Contextual focal structure
analysis is a method that uses multiplex network data to identify coordinated
activities in a network. The authors in [12] used a semi-supervised novel con-
textualized approach to node representation for effective representation across
a multiplex network. This approach yielded embedding that achieved state-of-
the-art performance in classification and clustering tasks. The authors described
a multiplex network as a graph structure in which entities are connected via
multiple relationships, where each relationship represents a distinct layer. This
approach maximizes mutual information shared between local nodes, allowing
for classification and clustering tasks.
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Community detection has become an important step in social network anal-
ysis [3], as seen in [6]. The authors suggested that influential nodes have links to
trending contexts using contextual focal structure analysis in complex networks.
The study by [4] identified influential users in a user hashtag propagated network
using a multiplex network. This suggests that contextual focal structure analysis
in complex networks requires multiple methods, influential nodes to have links
to trending context, and partisanship to exist between coordinating groups. In
addition, the works of [5] measured the influence of contextual focal sets and
applied network structural measures on data sets from social movements such
as Black Lives Matter and COVID-19 discourse. The results are evaluated using
the ranking correlation coefficient in real-world scenarios.

3 Method of the Study

This section is divided into three subsections. Section 3.1 describes the dataset
used and how it was collected. Section 3.2 describes the approach used in mod-
eling the knowledge graph for the multisource data, and Sect. 3.3 describes the
CFSA and the KG-CFSA model, which is a combination of the generated KG
and the existing CFSA model by [4].

3.1 Data Collection

The data sources used in this study are shown in Table 1. The data were
extracted using the following query phrases: ‘antek’, ‘aseng asing’, ‘Tiongkok’,
‘Tionghoa’, ‘Indonesia’, ‘Cina’, ‘OBOR’, ‘BRI’, ‘kebijakan’, ‘luar’, ‘negeri’,
‘proyek’, ‘pekerja’, ‘Cina’, ‘China’, ‘Tionghoa’, ‘Tiongkok’, ‘Pembangkit Listrik
Tenaga Batubara’, ‘Cina China’, ‘Perusahaan Listrik Negara’, ‘BRI OBOR’,
‘Proyek 35000 Megawatt’, ‘Maritime Silk Road’, ‘Jakarta Indonesia’, ‘Global
Maritime Fulcrum’, ‘Jokowi’, ‘Tiongkok Tionghoa’, ‘Menguasai’, ‘Tiongkok
Tionghoa’, ‘ekonomi’, ‘Pekerja Cina pulang’, ‘Chinese workers go home’..

We selected 10,000 documents for each platform because each platform pro-
vides three different secondary data: Topics for each document, entities, and high
probability words generated from the extracted topics. This provides a denser
relationship between the documents and the platforms used in this study.

3.2 Multisource Knowledge Graph Model

Our approach involved extracting entities from each document. We then queried
third-party knowledge databases such as Wikidata and Diffbot to enhance the
extracted entities with more information. This also helped validate some pop-
ular entities. Once the entities were extracted and enhanced, we proceeded to
extract the topics and other important themes from each document. Although we
limited the number of topics to 10 for this study, each topic can contain numer-
ous amounts of topic words. We then modeled topics and entities in a pairwise
relationship using a Cartesian product to establish the relationship between the
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Table 1. Data collection statistics for Belt and Road Initiative data across multiple
platforms.

Platform Quantity Year range

Blog 10,000 2019–2022

Reddit 10,000 2019–2022

Twitter 10,000 2019–2022

YouTube 10,000 2019–2022

entities, topics, and documents. We call the algorithm for the Cartesian prod-
uct that was specifically modeled for this study a merger function because it
uses both search algorithms and pairwise matching to establish relationships.
Each network layer in the multiplex network is composed of D-D and T-T where
document-document is computed based on entities mentioned, similarity, and
topic overlap. T-T is computed based on their overlap across entities and docu-
ments. The following points further explain how we establish these relationships:

We model document-entity-document (D-E-D) relationships where a docu-
ment can have a mentioned entity in an undirected graph. We also modeled the
extracted topics that were established from LDA and crossed with Wikidata in a
document-topic-document relationship (D-T-D) where the document can belong
to different topics or themes. We model topic-entity-topic relationships in which
a document belongs to a similar entity and has an undirected graph structure.

We then use a binary search algorithm integrated into our Cartesian product-
based merge function to develop a multiplex network instance. The multiplex
network was categorized into two instances. One instance uses the topic word
extracted, the topic number they belong to, and the documents from which these
items were extracted, with the entities extracted as the edges forming a triple of
(document, entity, document), (topic, entity, topics), and (word, entity, word)
respectively. The second instance uses the topic number to which the document,
entity, and word belong as the basis for establishing the relationship for the
network construction.

Equations 1-8 and Algorithm 1 below show the step-by-step implementation
of the graph model and merge function used in this study to build the knowledge
graph relationship between entities and documents. Note: T represents topics,
E represents entities, D represents documents, M represents multisource data,
G represents the graph, and W represents topic words.

E = {E1, E2, E3, ..., En} (1)

T = {T1, T2, T3, ..., Tn} (2)

D = {T (E,W )1, T (E,W )2, T (E,W )3, ..., T (E,W )n} (3)

M = {D1,D2,D3, ...,Dn} (4)

Di ∗ Dj = {(di, dj)|di ∈ Di and dj ∈ Dj} (5)
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therefore, represented as

Di ∗ Dj

Di ∗ ...Dn = {(Di ∗ Dj)∀ i, j ∈ {0, 1, ..n}}
= {(di ∗ dj)|di ∈ Di and dj ∈ Dj ∀ i, j ∈ {0, 1, ..n}}

(6)

Graph G or KG for a multisource can be represented as

G =
n∏

i=1

Di (7)

3.3 KG-CSFA

The KG-CFSA model used in this study was designed to use the existing CFSA
model developed by [4] and the knowledge graph construction model for a multi-
source dataset, which we recently modeled for establishing relationships between
data from multiple social media platforms. KG-CFSA is designed for document-
to-document relationships, topic-to-topic relationships, and document-to-entity
relationships, which can help contextualize the different layers of the multiplex
network model. The model outcome is expected to represent influential entities,
which are linked to other important extracted entities that are connected to
topics and share the same contexts that exist in each document. Figure 1 Shows
the overall CFSA model modified after [4] to accommodate data from multiple
sources.

For an unweighted, undirected graph G with N nodes, the adjacency matrix
is typically a symmetric N∗N matrix A, where aij is 1 if there is an edge between
nodes i and j in G and 0 otherwise. The adjacency matrix for a layer graph Gα is
a symmetric matrix Aα$, where aij is 1 only if an edge exists between node (i, α)
and j, α in G. Similar to this, the adjacency matrix for Gβ is an n-by-m matrix
ρ = Piα, where piα is 1 only if there is an edge connecting node i to layer alpha
in the participation graph forming the participation matrix. The coupling graph
Gf has an N ∗ N adjacency matrix L = {cij}, where cij is 1 only if there is an
edge between the node-layer pair iand j in the coupling graph, which represents
the same node in different layers. It is possible to stack rows and columns of L
such that node-layer pairs of the same layer are adjacent and ordered with zero
diagonal blocks. Using this arrangement, cij = 1, with i, k = 1..., N represents
an edge between a node-layer pair in layer 1 (document-to-document) and node
layer pair in layer 2 (document-to-entity) layer if i < ni < j < n2. This process
was also extended to layer 3 (topic-to-topic). The supra-adjacency matrix, which
is a synthetic representation of the entire multiplex M , is the adjacency matrix
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Algorithm 1: Graph Model with a Merge Function for entity mapping
Data: size ← Integer
CartesianProducts ← Array
Entities ← {E1, E2, ..En}
Result: GraphDataModel ← CartesianPairs, Entities
Function CartesianPairs(size, CartesianProduct ← Array) is

results ← Array
foreach product ∈ CartesianProduct do

currentCollection ← {}
for i ∈ range(size) do

currentCollection[i][0] ← product[i][1]
end
results.append(currentCollection)

end
return results;

end
Function CartesianProduct(array) is

results ← Array ⊂ Array
for i ∈ [0. . size(array)] do

innerData ← Array
foreach item ∈ results do

for element ∈ array[i] do
entry = item + [element]
innerData.append(entry)

end

end
results ← innerData

end
return results

end
Function GraphDataModel(CartesianPairs, Entities ← {}) is

documents ← {entity ← [] ∈ {}}
for entity, values ∈ documents do

entityCartesianPairs ← entity ∈ ⊆ of CartesianPairs
edges ← entityCartesianPairs
documents[entity].extend(edges)

end
return documents

end

of the supra-graph GM. The coupling matrix and intra-layer adjacency matrices
can be used to derive it as shown in the equation below.

A = Aα
⊕

α

L (8)

The interlayer adjacency matrix can also be defined as follows A =
⊕

Aα.
The goal of the CFSA model is to maximize network modularity values and
user-level centrality values. It uses a spectral modularity method to calculate
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the impact of entities on various layers. Additionally, the model uses vector
parameters to transmit data between the entities and network levels. Equation
(9) defines the objective function used to maximize the centrality values in the
network.

max
n∑

i=1

m∑

j=1

(δDD
i

⊕
βDT

ij �
TT
j ) (9)

Here, n is the number of nodes in the users in layer DD; m is the number of
nodes in layer TT. deltaDD

i is the sphere of influence for user i in DD. �
TT
j is

the number of j entities in TT connected by an edge to entity i in DD.
The network level of the model assesses the influence of user sets throughout

the entire A network. This measurement aims to understand how users impact
the A network when they become part of it. To gauge the influence of users
identified at the user level, a spectral modularity method is applied. Additionally,
a vector parameter C is used to transfer user information between the user and
network levels. The contextual focal structure is gathered using the equation
below;

C�jx = δjx(μQ
jx) (10)

where δjx(μQ
jx) is the nondominated solution that maximizes the network’s spec-

tral modularity values used to transfer the results back to the user level. C�jx

elects the sets that gather all the criteria from both levels at each iteration x.
The reader can refer to [4] for more information.

4 Discussion

This section discusses the results of the KG-CFSA model and its outcome using
the China’s Belt and Road Initiative as a case study. This section is divided
into three subsections. Section 4.1 discusses the results obtained from the CFSA
model for the document-entity-documents and topic-entity-topic inputs.

4.1 Contextual Focal Structure Analysis

The case study implemented in this research focuses on the China’s Belt and
Road Initiative. The documents identified were groups whose platforms propa-
gated information about the China’s Belt and Road Initiative on a multisource
platform. The CFSA model identified 276 CFS sets in a multiplex network
(Document-Topic layer), and the sets are different in sizes, topics, and entities.

The results from the topic modeling are presented in Table 2. There are more
topics in the NS276 set. The tweet from this set will be the focal point of the
subsequent discussion.
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Fig. 1. The CFSA model takes an initial set of document-document multisource net-
work and topic-topic (co-occurrence) multisource network. Then, we generate the
matrix.

Table 2. Result of the topic modelling on the Knowledge graph

CFS Set No of Document No of Topics No of Community

NS229 49 1 (Topic 9) 4

NS230 34 1 (Topic 0) 3

MOD254 37 1 (Topic 9) 4

MOD253 61 1 (Topic 9) 5

NS276 73 3(Topic 9, Topic 5, Topic 0) 3

The plot in Fig. 2 shows the focal point around two influential tweets. The
tweets reflect the discussion on the Maritime and Digital Silk Road which was
the subject of discussion as shown in Table 3. The keywords in the topics under
consideration (0, 5, and 9) are displayed in Table 3.

The words in Topic 0 refer to activities of countries such as China (com-
monly referred to as “Tiongkok” in Indonesian and Malay), the USA (referred
to as “AS” or an abbreviation of “Amerika Serikat”), and Japan (referred to as
“japang”). The second topic with fewer descriptive words is related to Topic 0.
It talks about China’s influence over the maritime Silk Road. Topic 9 describes
the external influence and contributions of Europe, the USA, NATO, WHO, and
other international organizations and sovereign nations on the situation in the
Indo-Pacific region.

A careful examination of Fig. 2 shows the presence of keywords that made the
tweets and users the focal point. Both users are concerned with Indonesia as a focus
for the digital Silk Road in the Indo-Pacific region. This indicates there are diverse



24 A. Akinnubi et al.

groups talking about the Silk Road; one group used the term for the maritime Silk
Road, while another group of users used it to discuss a digital Silk Road.

Fig. 2. KG-CFSA results for the top two focal sets (276 on the left and 275 on the right).
Context and entity mapping highlighting important tweets by the most important
document nodes.

Table 3. Topics and keywords extracted from the Knowledge graph.

Words and Entities

Topic 0 Tiongkok, Yang, Jokowi, Dengan, Tionghoa, Anda, Saya, Dalam,
Karena, Untuk, Setelah, AS, telah, Kita, Kami, Kalau, Lalu,
Tidak’, Maka, Bahkan, Jadi, Selain, itu, Mereka,
Salah, Seputar Tiongkok, Jepang, Hal, Begitu, Mungkin

Topic 5 kedepannya gua, Presiden Xi Jinping, Jalur Sutra Maritim,
Asia, Karena, Dalam, Bela, Proksi Dan Bonek,
Di Indonesia

Topic 9 NATO, Washington, Xi Jinping, Xi, West, Biden, CCP,
Donald Trump, Putin, WHO, CIA, Taliban, Trump, Indo-Pacific,
Obama, Huawei, UN, coronavirus, Chinese Communist Party, PLA,
European Union, ASEAN, AI, FBI, Pompeo, Democrats,
Coronavirus, CNN, EU
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5 Conclusion and Future Research

Social network analysis has become vital for understanding the dynamics of
online communication, and our analysis continues to grow in complexity. It is
important to understand the important role played by each entity and its rela-
tionship with other entities that form the focal set. This relationship is formu-
lated by considering the entities as a focal set and contextualizing the focal
set across multisource social networks. This study has leveraged developing a
multisource knowledge graph model where data is a combination of different
social media platforms such as Twitter and Reddit and also from personal blog-
ging and news platforms. The knowledge graph model helps in achieving a more
informative contextualization of information spread. We then applied to it the
CFSA framework developed by [4] to further explore how information can be
contextualized when such a multisource knowledge graph model is developed.
This work then uses the combination of the CFSA and KG model (KG-CFSA)
to contextualize the Belt and Road Initiative using data collected between 2019
and 2022. We arrived at the following findings:

We identified 276 focal structures and focused on the most dominant focal
structure. The dominant focal structure that spread the information and spanned
across three dominant topics belonged to an Indonesian Twitter user who oper-
ates a personal blog at https://voxjax.wordpress.com/. The three topics, i.e.,
Topic 0, Topic 9, and Topic 5, discuss “[a] roadmap [for] maritime silk road” a
term synonymous with the Belt and Road Initiative.

Finally, our findings show the strength of leveraging a multisource knowledge
graph model in helping to identify the stance and context of online users by
arriving at a context faster. This is visible from our obtained results, which
would have otherwise been challenging to unravel without multisource multiplex
network data.

In the future, we believe our study can establish more on stance detection,
bias, and areas such as online epidemiological modeling to uncover insights in
these areas. In the future, this work can attempt to see how the KG-CFSA model
can help provide situational awareness in uprisings and social campaigns.

Acknowledgement. This research is funded in part by the U.S. National Sci-
ence Foundation (OIA-1946391, OIA-1920920, IIS-1636933, ACI-1429160, and IIS-
1110868), U.S. Office of the Under Secretary of Defense for Research and
Engineering (FA9550-22-1-0332), U.S. Office of Naval Research (N00014-10-1-
0091, N00014-14-1-0489, N00014-15-P-1187, N00014-16-1-2016, N00014-16-1-2412,
N00014-17-1-2675, N00014-17-1-2605, N68335-19-C-0359, N00014-19-1-2336, N68335-
20-C-0540, N00014-21-1-2121, N00014-21-1-2765, N00014-22-1-2318), U.S. Air Force
Research Laboratory, U.S. Army Research Office (W911NF-20-1-0262, W911NF-
16-1-0189, W911NF-23-1-0011), U.S. Defense Advanced Research Projects Agency
(W31P4Q-17-C-0059), Arkansas Research Alliance, the Jerry L. Maulden/Entergy
Endowment at the University of Arkansas at Little Rock, and the Australian Depart-
ment of Defense Strategic Policy Grants Program (SPGP) (award number: 2020-
106-094). Any opinions, findings, conclusions, or recommendations expressed in this

https://voxjax.wordpress.com/.


26 A. Akinnubi et al.

material are those of the authors and do not necessarily reflect the views of the fund-
ing organizations. The researchers gratefully acknowledge the support.

References

1. Abels, P.B., Ahmadi, Z., Burkhardt, S., Schiller, B., Gurevych, I.,
Kramer, S.: Focusing Knowledge-based Graph Argument Mining via
Topic Modeling. ArXiv (2021). https://www.semanticscholar.org/paper/
Focusing-Knowledge-based-Graph-Argument-Mining-via-Abels-Ahmadi/
bd429d49ac29aa8ba9c2267905657ac7aaacfe39

2. Abu-Salih, B., et al.: Relational learning analysis of social politics using knowledge
graph embedding. Data Min. Knowl. Discov. 35(4), 1497–1536 (2021). https://doi.
org/10.1007/s10618-021-00760-w, https://link.springer.com/10.1007/s10618-021-
00760-w

3. Al-khateeb, S., Agarwal, N.: Modeling flash mobs in cybernetic space: evaluat-
ing threats of emerging socio-technical behaviors to human security. In: 2014
IEEE Joint Intelligence and Security Informatics Conference, pp. 328–328 (2014).
https://doi.org/10.1109/JISIC.2014.73

4. Alassad, M., Agarwal, N.: Contextualizing focal structure analysis in social net-
works. Soc. Netw. Anal. Min. 12(1), 103 (2022). https://doi.org/10.1007/s13278-
022-00938-0, https://doi.org/10.1007/s13278-022-00938-0

5. Alassad, M., Agarwal, N.: A systematic approach for contextualizing focal structure
analysis in social networks. In: Thomson, R., Dancy, C., Pyke, A. (eds.) Social,
Cultural, and Behavioral Modeling. SBP-BRiMS 2022. LNCS, vol. 13558. Springer,
Cham (2022). https://doi.org/10.1007/978-3-031-17114-7 5

6. Alassad, M., Hussain, M.N., Agarwal, N.: Comprehensive decomposition optimiza-
tion method for locating key sets of commenters spreading conspiracy theory in
complex social networks. Cent. Eur. J. Oper. Res. 30(1), 367–394 (2022). https://
doi.org/10.1007/s10100-021-00738-5

7. Badawy, A., Fisteus, J.A., Mahmoud, T.M., Abd El-Hafeez, T.: Topic extraction
and interactive knowledge graphs for learning resources. Sustainability 14(1), 226
(2022). https://doi.org/10.3390/su14010226. Place: ST ALBAN-ANLAGE 66, CH-
4052 BASEL, SWITZERLAND Publisher: MDPI Type: Article

8. Brambilla, M., Altinel, B.: Improving topic modeling for textual content with
knowledge graph embeddings. In: Improving Topic Modeling for Textual Content
with Knowledge Graph Embeddings (2019). URL https://www.semanticscholar.
org/paper/Improving-Topic-Modeling-for-Textual-Content-with-Brambilla-
Altinel/ab3e352affeceabc35bab1b9628d5a2f6443acf2

9. Costabello, L., Pai, S., Van, C.L., McGrath, R., McCarthy, N., Tabacof, P.:
AmpliGraph: a Library for Representation Learning on Knowledge Graphs (2019).
https://doi.org/10.5281/zenodo.2595043

10. Engleitner, N., Kreiner, W., Schwarz, N., Kopetzky, T., Ehrlinger, L.: Knowl-
edge graph embeddings for news article tag recommendation. In: Knowledge
Graph Embeddings for News Article Tag Recommendation (2021). https://www.
semanticscholar.org/paper/Knowledge-Graph-Embeddings-for-News-Article-
Tag-Engleitner-Kreiner/5bde615b31c46338f8d3e0a404c3728238b5a322

11. Lerer, A., et al.: PyTorch-BigGraph: A Large-scale Graph Embedding System. In:
Proceedings of the 2nd SysML Conference. Palo Alto, CA, USA (2019)

https://www.semanticscholar.org/paper/Focusing-Knowledge-based-Graph-Argument-Mining-via-Abels-Ahmadi/bd429d49ac29aa8ba9c2267905657ac7aaacfe39
https://www.semanticscholar.org/paper/Focusing-Knowledge-based-Graph-Argument-Mining-via-Abels-Ahmadi/bd429d49ac29aa8ba9c2267905657ac7aaacfe39
https://www.semanticscholar.org/paper/Focusing-Knowledge-based-Graph-Argument-Mining-via-Abels-Ahmadi/bd429d49ac29aa8ba9c2267905657ac7aaacfe39
https://doi.org/10.1007/s10618-021-00760-w
https://doi.org/10.1007/s10618-021-00760-w
https://springerlink.bibliotecabuap.elogim.com/10.1007/s10618-021-00760-w
https://springerlink.bibliotecabuap.elogim.com/10.1007/s10618-021-00760-w
https://doi.org/10.1109/JISIC.2014.73
https://doi.org/10.1007/s13278-022-00938-0
https://doi.org/10.1007/s13278-022-00938-0
https://doi.org/10.1007/s13278-022-00938-0
https://doi.org/10.1007/978-3-031-17114-7_5
https://doi.org/10.1007/s10100-021-00738-5
https://doi.org/10.1007/s10100-021-00738-5
https://doi.org/10.3390/su14010226
https://www.semanticscholar.org/paper/Improving-Topic-Modeling-for-Textual-Content-with-Brambilla-Altinel/ab3e352affeceabc35bab1b9628d5a2f6443acf2
https://www.semanticscholar.org/paper/Improving-Topic-Modeling-for-Textual-Content-with-Brambilla-Altinel/ab3e352affeceabc35bab1b9628d5a2f6443acf2
https://www.semanticscholar.org/paper/Improving-Topic-Modeling-for-Textual-Content-with-Brambilla-Altinel/ab3e352affeceabc35bab1b9628d5a2f6443acf2
https://doi.org/10.5281/zenodo.2595043
https://www.semanticscholar.org/paper/Knowledge-Graph-Embeddings-for-News-Article-Tag-Engleitner-Kreiner/5bde615b31c46338f8d3e0a404c3728238b5a322
https://www.semanticscholar.org/paper/Knowledge-Graph-Embeddings-for-News-Article-Tag-Engleitner-Kreiner/5bde615b31c46338f8d3e0a404c3728238b5a322
https://www.semanticscholar.org/paper/Knowledge-Graph-Embeddings-for-News-Article-Tag-Engleitner-Kreiner/5bde615b31c46338f8d3e0a404c3728238b5a322


Contextualized Focal Structures in Multisource Social Networks 27

12. Mitra, A., Vijayan, P., Sanasam, R., Goswami, D., Parthasarathy, S., Ravin-
dran, B.: Semi-supervised deep learning for multiplex networks. In: Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining,
pp. 1234–1244 (2021). https://doi.org/10.1145/3447548.3467443. URL https://
dl.acm.org/doi/10.1145/3447548.3467443. Conference Name: KDD ’21: The 27th
ACM SIGKDD Conference on Knowledge Discovery and Data Mining ISBN:
9781450383325 Place: Virtual Event Singapore Publisher: ACM

13. Nielsen, F.r.: Wembedder: Wikidata entity embedding web service (2017). https://
doi.org/10.48550/arXiv.1710.04099, http://arxiv.org/abs/1710.04099

14. Portisch, J., Hladik, M., Paulheim, H.: KGvec2go - knowledge graph embeddings
as a service. In: Proceedings of the Twelfth Language Resources and Evaluation
Conference, pp. 5641–5647. European Language Resources Association, Marseille,
France (2020). https://aclanthology.org/2020.lrec-1.692

15. Shajari, S., Agarwal, N., Alassad, M.: Commenter Behavior Characterization on
YouTube Channels (2023). https://doi.org/10.48550/ARXIV.2304.07681

16. Steenwinckel, B., Vandewiele, G., Agozzino, T., Ongenae, F.: pyRDF2Vec: a
python implementation and extension of RDF2Vec. In: Pesquita, C., et al. The
Semantic Web. ESWC 2023. LNCS, vol. 13870. Springer, Cham (2023). https://
doi.org/10.1007/978-3-031-33455-9 28

17. Sun, H., Ren, R., Cai, H., Xu, B., Liu, Y., Li, T.: Topic model based knowledge
graph for entity similarity measuring. In: 2018 IEEE 15th International Conference
on e-Business Engineering (ICEBE), pp. 94–101 (2018). https://doi.org/10.1109/
ICEBE.2018.00024

18. Wang, P., Zhou, J., Liu, Y., Zhou, X.: TransET: knowledge graph embed-
ding with entity types. Electronics 10(12), 1407 (2021). https://doi.org/10.3390/
electronics10121407, https://www.mdpi.com/2079-9292/10/12/1407

https://doi.org/10.1145/3447548.3467443
https://dl.acm.org/doi/10.1145/3447548.3467443
https://dl.acm.org/doi/10.1145/3447548.3467443
https://doi.org/10.48550/arXiv.1710.04099
https://doi.org/10.48550/arXiv.1710.04099
http://arxiv.org/abs/1710.04099
https://aclanthology.org/2020.lrec-1.692
https://doi.org/10.48550/ARXIV.2304.07681
https://doi.org/10.1007/978-3-031-33455-9_28
https://doi.org/10.1007/978-3-031-33455-9_28
https://doi.org/10.1109/ICEBE.2018.00024
https://doi.org/10.1109/ICEBE.2018.00024
https://doi.org/10.3390/electronics10121407
https://doi.org/10.3390/electronics10121407
https://www.mdpi.com/2079-9292/10/12/1407


How Information Spreads Through
Multi-layer Networks: A Case Study

of Rural Uganda

Jennifer M. Larson1(B) and Janet I. Lewis2

1 Vanderbilt University, Nashville, TN, USA
jennifer.larson@vanderbilt.edu

2 George Washington University, Washington, D.C., USA

Abstract. The social networks that interconnect groups of people are
often “multi-layered”– comprised of a variety of relationships and inter-
action types. Although researchers increasingly acknowledge the presence
of multiple layers and even measure them separately, little is known about
whether and how different layers function differently. We conducted a
field experiment in twelve villages in rural Uganda that measured real
multi-layer social networks and then tracked how each layer was used
to discuss new information about refugees. A majority of respondents
discussed refugees with someone to whom they were connected in the
social network. The connections came from all four layers, though the
layer indicating regular homestead visits was used most frequently. Peo-
ple did not discuss refugees with every one of their network neighbors;
homophily in views, homophily in level of interest, and the alter’s inter-
est in the topic best distinguish links that were used from those that
were not.

Keywords: Multi-Layer Networks · Discussion Networks · Link
Function · Uganda · Refugees

1 Introduction

Real social networks tend to be comprised of a rich variety of relationships and
interaction types, and hence are “multi-layered” [5,6,10,12,15]. Scholars study-
ing networks empirically often collect data on multiple layers, such as friends,
kin, discussion partners, sources of assistance, and so on [2–4,11,16,18,20]. These
networks are of interest because they likely do something—spread information,
apply peer pressure, share resources—that matters to outcomes across the social
sciences [7,23,26].

Understanding how exactly links function is an important step in the process
of understanding when and why networks matter [19], especially since certain
links may function differently than others. For instance, some links may be based
on deep trust, facilitating the spread of sensitive information from person to
person, while others may be shallower, only allowing non-sensitive information
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to pass through [1,14,17]. When links are not interchangeable in their function,
researchers need to account for this in their measurement strategy, and aggregat-
ing links across layers could be misleading [8,9,15,21,22]. An important question
is then: which links do what and when?

This question is expansive, and a complete answer surely depends on the
context in question. A productive way forward would be to amass a collection
of studies of link functions in multi-layer networks across contexts. This arti-
cle contributes one. It focuses on a case which allows deep exploration of the
function of different links in the context of rural Ugandan villagers learning new
information about refugees.

Specifically, we conducted a field experiment in twelve villages in northwest-
ern Uganda in which we elicited four layers of social networks for all households:
who shares meals with whom, who visits whose homesteads, who consults whom
in the presence of rumors, and who would turn to whom to borrow money. The
study also presented information about the experiences of refugees to a randomly
selected half of households. Two weeks later, participants were surveyed again
and asked to name the people with whom they had conversed about refugees in
the interim. By matching these names with the social network, we can determine
whether people used any of the four layers to discuss refugees.

Consistent with previous studies that measure multi-layer networks, we find
that the overlap between layers is imperfect and each contributes distinct sets of
links and structural features [13,21,22,24,25]. We find that a majority of respon-
dents did turn to social network neighbors (as opposed to others in the village
or beyond) to discuss the new information; in one village, 70% of respondents
who talked to anyone did so with a network neighbor. Across villages, discussion
partners were connected to the respondent most often in the visit layer (65%),
followed by the meal layer (53%), then borrow (44%) and rumor (39%).

Our data also allow us to compare people linked to the respondent in the
social network who were named as discussion partners (1212 total links) with
people linked to the respondent who were not (6593 total links) to try to under-
stand why respondents made use of the links they did. We consider whether
alter characteristics such as personal experience as a refugee, social relationships
with refugees, occupation, views on the topic, and interest in the topic matter.
Of these, only the alter’s level of interest in refugees significantly differentiates
the two groups: alters who see refugees as a very pressing issue are more likely
to be named as discussion partners. We also consider whether homophily with
respect to religion, language, personal refugee status, views on the topic, and
level of interest in the topic matter. Of these, both views on refugees and inter-
est in the topic do: alters who agree on the level of threat refugees pose and the
importance of the topic are more likely to be selected by the respondent as a
discussion partner.

2 Village Networks

We used four name-generator questions in a baseline survey to measure social
networks in each of the twelve villages. Table 1 describes the resulting social



30 J. M. Larson and J. I. Lewis

network, here represented as the union of the four layers, for each village. Nodes
are households, links are directed, and the count of links indicates the number
of times one household lists someone in another in response to at least one
of the four name generator questions. The table also reports features of these
networks, including the mean total degree, the maximum in-degree, the number
of nodes who have in-degree or out-degree equal to zero, mean transitivity, and
the proportion of households in the largest component.

Table 1. Aggregated social network by village

Village Nodes Links Degree Max In 0 Out 0 In Trans Lg Comp

1 132 799 12.11 33 5 12 0.30 0.99

2 114 505 8.86 34 3 16 0.21 1.00

3 148 962 13.00 27 5 13 0.29 0.99

4 125 938 15.01 34 5 18 0.29 0.99

5 163 1030 12.64 31 6 14 0.25 0.98

6 126 692 10.98 28 2 11 0.35 0.99

7 121 456 7.54 23 7 19 0.18 0.99

8 130 437 6.72 17 9 21 0.20 0.98

9 112 803 14.34 33 9 23 0.38 0.96

10 104 364 7.00 12 8 15 0.30 0.99

11 180 492 5.47 23 29 53 0.13 0.96

12 149 327 4.39 24 27 51 0.15 0.89

Table 2 separates the networks into the four layers and reports the same
structural features. The values are reported as averages across the villages by
layer. On average, a village has 134 household nodes in the network. Each layer
contributes differently to the overall village network. The visit layer has the
most links on average, though the rumor layer has the highest in-degree– more
people point to the same person to vet rumors than to visit in their home. The
meal layer has the highest transitivity; households who have members who share
meals with the same household are more likely to share meals with one another
as well. The borrow layer has the largest number of nodes with out-degree and
in-degree equal to zero; many households have no one they would borrow money
from, and many households would not be asked.

Table 2. Characteristics of each of the four layers averaged over the 12 villages

Layer Nodes Links Degree Max In 0 Out 0 In Trans Lg Comp

Meal 134 298 4.56 11 31 43 0.20 0.87

Visit 134 344 5.23 14 24 38 0.18 0.92

Rumor 134 220 3.31 15 39 57 0.13 0.81

Borrow 134 204 3.10 14 46 64 0.16 0.74
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For illustration, we pick one of the villages and visualize the four layers.
Figure 1 shows each of the layers for village 7, holding the node placement fixed.
Nodes are sized proportional to degree.

Fig. 1. The four layers of the multi-layer household network for Village 7. From top
left to bottom right: shared meals, visit homestead, discuss rumors, borrow money.

3 Use of Village Social Networks to Discuss Refugees

In the second survey two weeks after the baseline, respondents were asked to
think back over the past two weeks and name anyone with whom they had a
conversation about refugees. Not everyone had done so, though a majority had.
Table 3 shows the number of respondents who named any names and also reports
this as a proportion of the village’s households. It also shows the proportion of
respondents for whom at least one name offered was a neighbor in at least one
layer of their village’s social network. We do see variation across villages, ranging
from village 11 with 36% for whom this is the case to village 8 with 70%.
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We next zoom in on the people who said they did have a conversation about
refugees with anyone in the past two weeks. These respondents were invited
to name up to five of their discussion partners. The average number of names
offered across villages ranges from 2.79 (in village 11) to 4.02 (in village 2).

Table 3. Who discussed refugees, were they network neighbors?

Village # Names> 0 Prop> 0 Any In NW

1 58 0.44 0.64

2 63 0.55 0.63

3 78 0.53 0.67

4 66 0.53 0.56

5 116 0.71 0.62

6 69 0.55 0.64

7 83 0.69 0.66

8 82 0.63 0.70

9 58 0.52 0.64

10 49 0.47 0.59

11 108 0.60 0.36

12 86 0.58 0.40

Table 4 shows the total number of the names respondents offered that also
appear as their neighbors in at least one layer of the social network on average
across respondents within each village. The four subsequent columns break these
totals apart into the number of names that appear as a link in each of the four
layers of the social network, reported as an average number of names. For village
1, on average 1.07 people listed are also network neighbors; these people are
distributed across the four layers as .43 names in the meal layer, .62 in the visit
layer, .38 in the rumor layer, and .47 in the borrow layer. The four layers do not
sum to the total number of people because they are not mutually exclusive; a
link between a respondent and an alter can appear in more than one layer, so a
name can appear in more than one layer for a respondent.

4 When Are Links Most Likely to Be Used?

Next we investigate why the links in the network that were used to discuss
refugees were in fact used. That is, for each respondent, we know the set of
network neighbors across all layers, and we know that some, but not all, of them
were selected as discussion partners about refugees. Was the selection random
with respect to link, or do we observe differences between used and unused links?

We investigate two sets of attributes of the links. One set centers around
attributes of the alter. We might think that alters who have relevant experience,
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Table 4. Breakdown of discussion partners by layers of network

Village Total in NW #inMeal #inVisit #inRumor #inBorrow

1 1.07 0.43 0.62 0.38 0.47

2 1.35 0.81 0.83 0.43 0.67

3 1.18 0.56 0.58 0.41 0.38

4 1.11 0.56 0.70 0.38 0.53

5 1.20 0.53 0.66 0.54 0.43

6 1.13 0.68 0.74 0.25 0.49

7 1.23 0.67 0.89 0.52 0.52

8 1.22 0.74 0.84 0.62 0.51

9 1.14 0.41 0.71 0.28 0.47

10 0.90 0.43 0.63 0.31 0.39

11 0.47 0.24 0.25 0.27 0.19

12 0.63 0.24 0.38 0.36 0.23

Pooled 0.53 0.65 0.39 0.44

for instance by having been a refugee once themselves (this is true for about a
third of our respondents) or who themselves know refugees personally, would be
prioritized. Or we might think that alters who have a connection to the land,
one of the key resources in question when refugee issues come up, in their occu-
pation as farmers, would be prioritized. Or maybe an alter’s views on refugees1

or the extent to which she finds refugees to be a pressing issue are important to
respondents when selecting discussion partners.2 Out of all of these alter charac-
teristics, the only one that distinguishes the alters selected from those that are
not is the alter’s interest in refugees: links to alters who find the issue of refugees
to be more pressing are more likely to be used to discuss refugees.

Likewise, we consider homophily as a possible distinguishing factor between
links in the social network used to discuss refugees and those that were not.
We consider both religious and language homophily to see if common values or
assured ability to communicate are relevant. We also consider shared refugee
status, which would be relevant if respondents who were once refugees sought
out their network neighbors who also shared this experience (or respondents
who have never been a refugee might seek out like neighbors as well). Shared
views about refugees, and a shared interest in the topic, could also facilitate
conversations. In fact shared interest in refugees distinguishes links used from

1 Our survey asks respondents to react to the statement “Refugees threaten the way
of life in my community” with a five point scale from strongly agree to strongly
disagree. Larger values indicate stronger disagreement, and hence warmer attitudes
towards refugees.

2 Our survey asks respondents how important they find the issue of refugees to be on
a five point scale. Smaller values indicate greater importance.
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those that were not in the network, and shared views does as well, though at a
lower level of statistical significance.3

Table 5. Comparing the links in the multilayer social network that were used to discuss
refugees to those that were not.

Network link used Network link not used p-value

Link Count 1212 6593

Alter was refugee 0.33 0.32 0.55

Alter knows refugee 0.73 0.72 0.37

Alter farmer 0.82 0.81 0.54

Alter’s views 3.61 3.54 0.21

Alter’s interest 1.36 1.48 0.00

Relig homoph 0.76 0.74 0.11

Language homoph 0.85 0.84 0.46

Refugee status homoph 0.62 0.64 0.41

Refugee views homoph 0.36 0.33 0.08

Interest homoph 0.56 0.52 0.01

Overall, these comparisons paint a picture of villagers using their social net-
work as one source of discussion partners. They do not necessarily discuss the
topic with everyone, nor do they necessarily select among their network neighbors
at random. Alters in the network who see refugees as a pressing issue are more
likely to be discussion partners. Respondents also seem to seek out their alters
with whom they agree on the level of importance of the topic and whose views
align (whether they are positive or negative). Other attributes of the alter and
bases for homophily do not distinguish the used from the unused links (Table 5).

5 Conclusion

Villagers in rural Uganda have social networks with four quite different lay-
ers when measured in terms of shared meals, regular homestead visits, gossip
partners, and borrowing sources. When these villagers are presented with new
information, in this case about the experiences of refugees, they do turn to some
of these network neighbors to discuss it. Not everyone they turn to is a network
neighbor in one of these layers, and not every network neighbor is selected as a
discussion partner. The visits layer is the most popular choice– alters selected
as discussion partners are more frequently linked to the respondent in the visit
layer across the twelve villages, though this layer is also the most dense.

The choice of discussion partner from among the network neighbors appears
to be orthogonal to the occupation, refugee experience, and attitudes towards
3 The p-value reports the result of a two-tailed t-test comparing links used with links

not used in terms of the link attribute in question.
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refugees of the alter. It also appears orthogonal to shared language, religion, or
personal refugee status. Instead, what distinguishes the network links used to
discuss refugees is the level of importance that the person ascribes to the topic.
Links to alters who find the issue more pressing are more likely to be used,
and links to alters who agree with the respondent about the level of importance
are also more likely to be used. Shared views about refugees—agreement on the
extent to which refugees do or do not threaten the village’s way of life—also
predicts link use to discus refugees, though with less precision.

Overall, these findings paint a picture that in the context of new informa-
tion about a topic salient to rural villagers in Uganda, social networks play an
important role in discussing it. Shared views on the topic and its importance
can pave the way for discussion, as can having alters who find the topic espe-
cially important. Some layers are used more than others, though all were used
in all villages. That no one layer dominates the others suggests that these con-
versations were not particularly sensitive or rigidly tailored to a certain kind of
relationship. The information that would spread as a result is unlikely to exhibit
tie-specific diffusion, which indicates that aggregating the layers to understand
the consequences of conversations such as these may not mask results to a great
extent [21,22].

Of course these results come from a single instance of network use—discussing
new information about refugees—in a single context—rural Uganda. The more
cases of networks in action that can be studied in more contexts, the better our
understanding of the true role of multi-layer networks will be.
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Abstract. The information diffusion on social media shows no signs of
stopping, and for many marketers, having influencers spread information
has become a common advertising method. However, the use of social
media has diversified, and the intentions behind following other users
can vary greatly. Correspondingly, there are several patterns of commu-
nication on social media, and based on the density and symmetry of
these communications, it is believed that one can infer the intentions of
the users who follow others. In this study, we consider retweets, replies,
and mentions, three types of communication in the context of follower
relationships on Twitter, as a multi-layer graph. We propose multi-layer
motifs by categorizing the edges, and we associate motif patterns with fol-
lower intentions to infer users’ follow intents. Through experiments using
real data, we confirm that our proposed multi-layer motifs can extract
link patterns leading to follow intentions that would not be detectable
using traditional single-layer motifs.

1 Introduction

In recent years, the process from product awareness to purchase has undergone
significant changes due to the advancement of the Internet. While in the past, the
common purchase journey involved becoming acquainted with a product through
television commercials and advertisements before making a purchase, recently,
social media has become the predominant catalyst for purchasing. Within social
media, the emergence of users known as influencers has led to a substantial trans-
formation in the way companies promote their products. Identifying these influ-
encers, who hold considerable significance, from various social media platforms
holds paramount importance for the analysis of corporate marketing strategies
and information dissemination.

The number of users utilizing social networking services (SNS) has been
steadily increasing year by year. Due to the diverse range of purposes for which
SNS is used, it is believed that the intentions behind users following other users

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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have also become more varied. The following intentions include “gathering infor-
mation,” “spreading information,” “wanting to become friends,” “bookmarking
useful information,” “connecting with acquaintances,” “wanting approval,” and
“discussing.”

Indeed, with different intentions, the roles played also differ. In other words,
within the context of information dissemination, there are edges in the follower
network through which information flows more readily, as well as those through
which it doesn’t flow as effectively. Therefore, categorizing someone as an influ-
encer solely based on a high number of followers would be a misconception. It’s
important to recognize that the definition of an influencer goes beyond just fol-
lower count due to the diversity of motivations and the varying effectiveness of
information flow within follower networks. Hence, as a web marketer, it can be
said that in order to identify influencers who genuinely help spread the desired
information, it’s essential to discern the individual follower intentions and cre-
ate a categorized graph based on them. By doing so, you can effectively extract
influencers who align with your content and objectives, going beyond superficial
follower metrics. This approach acknowledges the nuanced nature of influencer
identification and helps ensure that the chosen influencers are more likely to
authentically amplify the intended message.

Therefore, in this study, we focus on Twitter as the subject and aim to
classify follower edges by examining the density and symmetry of diverse com-
munications occurring within the follower network. By doing so, we attempt to
understand and categorize the various types of interactions taking place on the
platform based on the relationships between users in the follower network. This
approach allows us to gain insights into the nature of communication patterns
and potentially identify influencers who align with specific communication styles
or objectives.

In the field of network science, there exists a technique called motif counting,
which involves classifying edges or subgraphs and understanding network char-
acteristics. Motif counting focuses on counting specific-shaped small subgraphs,
referred to as motifs, within a network. This concept originated from Milo et al.’s
research [6] and has been studied extensively in various fields over the years [1,8].
Research has actively expanded the concept of motifs, and one such extension
involves the analysis of motif roles based on structural equivalence in directed
3-node motifs. This extension defines the roles of individual nodes within motifs
and has been utilized to derive analytical results [5,7].

In this study, we propose an edge classification methodology within the con-
text of a multi-layered graph that considers relationships between nodes through
multiple communication edges such as mentions and replies. This approach dif-
fers from conventional motifs that target graphs without layers or graphs that
don’t distinguish between layers. Here, we recognize layers as representations of
various communication edges and their relationships between nodes. This multi-
layered graph framework allows us to capture the complexity of interactions
more comprehensively, offering a novel approach to edge classification.
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2 Related Work

We will overview some related work in terms of classification of follow intention,
analysis of Twitter communication, and motif analysis.

2.1 Follow Intention Classification

Tanaka et al. attempted to classify the intention that Twitter users follow oth-
ers such as seeking information, engaging in personal communication, or stay-
ing updated on content by celebrities or influencers [11]. To this end, the work
introduces a classification scheme that categorizes Twitter follow links based
on users’ motivations. The scheme consists of three primary dimensions: user-
orientation, content-orientation, and relationship type (mutuality). As a result,
the study found that user-orientation and content-orientation are correlated,
suggesting that users who follow others for personal engagement also tend to
follow for content-related reasons. Content-oriented follows are prevalent, even
among users who primarily use Twitter for personal communication. A notable
proportion of follow links lacked a clear and identifiable intention.

Takemura et al. proposed an approach to classify Twitter follow links [10].
The classification is based on three axes: user-orientation, content-orientation,
and mutuality. The combination of these axes is designed to comprehensively
categorize the diverse intentions of Twitter followers. To enhance understanding
and classification of follow links, the research developed classifiers using various
features related to followers, followees, and their interactions. Additionally, the
paper discusses a method for categorizing Twitter lists into information lists and
community lists, considering the types of accounts included in those lists. The
experiments revealed that no single feature is a dominant discriminator for follow
link classification, and the accuracy of classifying follow links for information-
seeking users was higher compared to communication-oriented users.

These studies focus on communication history and its reciprocity, but they
differ from our study in that they use list information. Another difference is
that these studies do not comprehensively utilize the communication methods
of “retweets,” “replies,” and “mentions.” Furthermore, when training a support
vector machine, there is a problem in that a large amount of manual training
data is required.

2.2 Twitter Communication Analysis

Kato et al. centers its attention on three fundamental functions within the Twit-
ter platform: favoriting tweets, following other users, and mentioning users in
tweets [4]. These functions are essential for interaction and engagement on the
platform. The research employs network analysis techniques to investigate the
relationships and structures formed by these Twitter functions. It explores how
these functions connect users and shape the Twitter community. The study
examines the patterns of favoriting tweets and identifies users who tend to
receive more favorites. It explores how favoriting behavior can reflect popularity
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and engagement with content. The research delves into the patterns of follow-
ing other users on Twitter. It examines factors that influence users’ decisions
to follow others, such as common interests or mutual connections. Mentioning
other users in tweets is analyzed to understand how these interactions form con-
nections and relationships on Twitter. It explores the dynamics of conversations
and mentions within the platform. The insights gained from this network analy-
sis have implications for understanding user engagement, content popularity, and
network structures on Twitter. They can inform strategies for content creators,
marketers, and platform developers. Like our study, it targets multiple commu-
nication histories on Twitter, but differs from our study in that it focuses on the
characteristics of the entire graph and analyzes three types of communication
separately.

2.3 Motif Analysis

Research is being conducted to use motifs to infer the roles and meanings that
can be understood from the structure [5,7,9]. Przulj constructed a vector of
73 kinds of orbits (motif-based roles) obtained from 2- to 5-node graphlets and
attempted to quantify the similarity among graphs or nodes [9]. McDonnell et al.
proposed a transformation matrix from motif-frequency vector to role-frequency
vector to efficiently compute the number of roles for each node or the whole
graph [5]. Onishi et al. have proposed a method for estimating the role of each
node based on its appearance position in a directed three-node motif, targeting
intercompany transaction networks [7]. As a result, the authors claim that they
were able to partition nodes into economically meaningful groups. This study is
similar to our study in that it estimates the meaning that can be seen from local
structures called motifs. This research differs from ours in that it does not use
the concept of “communication,” which is what this research calls the symmetry
of transactions between companies.

3 Proposed Method

In this study, we propose a method to count the number of communication
times per unit time for each kind of communication on the follow network, and
to classify the following edges based on the symmetry.

3.1 Symmetry of Communication Density

We consider the follow relation graph G = (V, E) consisting of a set of nodes
representing users V = {u1, . . . , uN} and a set of directed edges representing
follow relationships (FF) between users E = {e1 = (u, v), . . . , eM} ⊂ V × V.
Here, we define R = {{u, v}; (u, v) ∈ E ∨ (v, u) ∈ E} as the set of node pairs
that have a following relationship regardless of whether they are unidirectional
or bidirectional.
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Fig. 1. Toy example

In Twitter, there are Retweet (RT), Reply (RE), and Mention (MT) as com-
munication through the follow edge. For these three types of communication,
we measure the number of communications per unit time, that is, the com-
munication density, and quantify the symmetry. For two nodes, u and v, in a
certain follow relationship, the communication density from u to v is denoted
as d(u → v), and from v to u as d(v → u). The symmetry of communication
density between the two nodes is defined using the harmonic mean as follows:

f(u, v) =
2

d(u→v)+d(v→u)
d(u→v) + d(u→v)+d(v→u)

d(v→u)

.

When the ratio of communication density is imbalanced, the value of the har-
monic mean tends to approach 0, while it approaches 0.5 when balanced. For
instance, if d(u → v) = 50 and d(v → u) = 50, then f(u, v) = 0.500, if
d(u → v) = 1 and d(v → u) = 99, then f(u, v) = 0.019 and if d(u → v) = 15
and d(v → u) = 0, then f(u, v) = 0.000 (See Fig. 1). This value is multiplied by
2 and added by 1 then rounded to achieve values of 1 or 2:

g(u, v) =
{

0 if d(u → v) + d(v → u) = 0
�2f(u, v) + 1� otherwise

Consequently, g(u, v) = 0 indicates no communication, g(u, v) = 1 represents
unidirectional communication, and g(u, v) = 2 signifies bidirectional communi-
cation (See Fig. 2).

3.2 Multi-layer Motif

The three types of communication are each classified into three categories based
on symmetry. For the categorization of follow relationships into either “unidi-
rectional” or “bidirectional,” follow relationships are classified into 54 categories
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Fig. 2. Encoding symmetry of communication density

as a result of 2 · 33 possible combinations. In reality, there are 81 patterns since
it’s possible to retweet or reply without a follow relationship. However, since the
focus of this study is on classifying follow intentions, “no follow relationship” is
excluded in this case. Figure 3 depicts all the patterns of directed 2-node multi-
layer motifs based on the symmetry of communication density defined in this
study. Each pattern is represented in ternary notation, taking values of 0, 1,
or 2:

g(u, v) = [gFF(u, v), gRT(u, v), gRE(u, v), gMT(u, v)](3).

Every user pair {u, v} ∈ R in the follow relationships is categorized into one of
the 54 patterns. Based on this categorization, the frequencies of the 54 patterns
are counted within each network or community:

h(R) = [|{r;g(r) = k}|]27≤k≤80.

This classification allows for the categorization of follow intentions and the char-
acterization of the target network.

3.3 Follow Intention Classification

The patterns of multi-layer motifs essentially depict ways of communication.
From these communication patterns, an attempt is made to classify the follow
intentions, which is the main objective of this study. In order to classify follow
intentions, we consider what purposes or meanings the utilized forms of com-
munication entail. Then, for a subset of the defined 54 motif patterns in the
previous section, we associate follow intentions. In this study, four follow inten-
tions are defined: “Acquaintance,” “Information gathering,” “Interest in user,”
and “Discussion.”
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Fig. 3. Multi-layer motifs based on symmetry of communication density

The three types of communication-retweets, replies, and mentions-reflect the
ways users are trying to establish relationships with others. Each of their pur-
poses and meanings are as follows:

Retweets: Users retweet to disseminate specific information or opinions, aiming
to expand their influence, or to collect tweets on their timeline as a form of
note-taking.

Replies: Users engage in replies to exchange opinions and participate in discus-
sions on particular topics, aiming to deepen connections through conversa-
tions and share opinions and information.

Mentions: Mentions prioritize interactions and connections, aiming for one-on-
one dialogues with individual users. They are often used for commenting,
questioning, or sharing opinions on specific tweets or topics.

From these purposes, we consider how they align with the follow intentions of
“Acquaintance,” “Information gathering,” “Interest in user,” and “Discussion.”

In the case of a follow relationship between “Acquaintances,” it’s common for
the relationship to be bidirectional, and conversations often occur using replies
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Table 1. Correspondence between follow intentions and multi-layer motifs

follow intention FF RT RE MT motifs

Acquaintances 2 Any 2 2 62, 71, 80

Information gathering 1 1 0 1 or 2 37, 38

Interest in users 1 1 1 or 2 1 or 2 40, 41, 43, 44

Discussion Any 1 1 1 40, 67

Fig. 4. Existing single-layer motif

and mentions. For follow relationships with the intention of “Information gath-
ering,” it’s often a unidirectional follow relationship, and users post tweets using
retweets and mentions to keep information on their timelines. In the case of
following due to “Interest in users” such as celebrities, the follow relationship is
typically unidirectional. Users unilaterally retweet tweets from the user of inter-
est and engage in communication using replies and mentions. Some celebrities
might also respond as part of fan service. For follow relationships with the pur-
pose of “Discussion,” users reply to or mention other users’ tweets to engage in
discussions on specific topics. However, bidirectional follow relationships are not
always common. Therefore, we associate the multi-layer motifs as Table 1.

4 Experimental Evaluation

4.1 Dataset

In this study, we use the Higgs Twitter Dataset1 [3]. This dataset focuses on mes-
sages related to the discovery of the Higgs boson posted on Twitter between July
1 https://snap.stanford.edu/data/higgs-twitter.html.

https://snap.stanford.edu/data/higgs-twitter.html
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Fig. 5. Appearance frequency of the existing motifs (triad)

Fig. 6. Appearance frequency of the multi-layer motifs (diad)

1st and 7th, 2012. It includes messages posted by users during that time period,
as well as interactions between users, such as retweets, replies, and mentions. The
dataset’s size is as follows:456,626 users; 14,855,842 follow relationships; 328,132
retweet relationships; 32,523 reply relationships; 150,818 mention relationships;

4.2 Results

Figure 5 illustrates the frequency distribution of existing motif patterns for each
graph of follow-relationships, retweet, reply, and mention. Observing the motif
distributions for the four graphs, we notice that the motifs 4, 1, 2 and 7 are
consistently high. According to the Fig. 4, motif 4 represents a structure in which
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Fig. 7. Cumulative (daily) layer motif frequency distribution

general users unilaterally send follows, retweets, replies, and mentions to some
hub users (such as experts). Motif 1 also represents a structure in which a general
user unilaterally sends follows, retweets, replies, and mentions to multiple users
(such as experts). Motif 2 represents a structure in which information flows like
retweets or replies are chained, and information is spread. Motif 7 represents a
structure in which two-way communication between acquaintances and one-way
communication with hub users are mixed. On the contrary, cycles such as motifs
from number 9 onwards are characteristically less frequent. Structures like Motif
13, where three nodes are mutually connected, do appear to some extent in the
follow relationship graph. However, the existing motif analysis does not provide
insight into the extent of communication occurring over these structures and
whether it is unidirectional or bidirectional. As such, with existing motifs, since
each layer is considered separately, it is not possible to conduct a detailed analysis
regarding follow intentions from communication over each follow relationship.

Figure 6 displays the frequency distribution of proposed motif patterns for
the higgs multi-layer graph. It consists of six subfigures corresponding to the six
blocks in Fig. 3. Upon observing the figure, it becomes evident that 1st, 2nd,
and 5th motifs within each block are notably frequent. The first multi-layer
motifs including 27, 36, 45, 54, 63, and 72 are the “just following” relationship
or “occasional unilateral retweet” relationship that is often observed on Twitter
as a whole. The second and fifth multi-layer motifs including 28, 31, 37, 40, 55,
58, and all that, exhibit structures involving one-way mentions. In constructing
the Higgs dataset graph, when a mention tweet is retweeted, it is also treated
as a mention link. The frequent occurrence of these motifs is thought to be
due to general users collecting information and bookmarking information by
retweeting discussions (MTs) between experts. From the results of multi-layer
motif frequency, it can be inferred that in this multilayer graph, there are many
follow intentions focused on ‘discussion’ as indicated by the frequent use of RE
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and MT, and ‘information gathering,’ as indicated by the frequent use of RT
without RE.

Next, we examined how the frequency of motifs changes over time. Figure 7
depicts the motif occurrences, with the horizontal axis representing the motif
count and the vertical axis denoting motif number, arranged by daily intervals
from July 1st to 7th. For instance, the leftmost subfigure represents the frequency
of multilayer motifs of communications on July 1st, while the second subfigure
illustrates the frequency of such motifs over the two days, July 1st and 2nd. That
is to say, the rightmost subfigure shows that over the seven days and aligns with
Fig. 6.

Upon observing Fig. 7, it becomes evident that there is not a large varia-
tion day by day, and the counts linearly increase across all days. Additionally,
1st, 2nd, and 5th motifs, as mentioned in the previous experiment, continue to
appear frequently compared to other motifs. This trend remains consistent even
when considering not only daily but also hourly and half-day intervals. From
these results, it can be concluded that the Higgs multi-layer graph exhibits a
time-invariant characteristic, independent of the time intervals used to measure
communication density. Specifically, it is characterized by the frequent occur-
rence of communication-based on the intentions of ‘discussion’ and ‘information
gathering.’ This fact is consistent with the claim in [2].

5 Conclusion

In influencer marketing, the market size is expanding year by year due to the
ability to create empathetic and persuasive PR from the consumer’s perspective.
Therefore, accurately extracting influencers is a crucial research topic. While
it’s possible to disseminate information by following other users, the ease of
dissemination varies depending on the intention. To achieve higher accuracy in
influencer extraction, we classify follow intentions. Hence, we proposed a method
to classify follow intentions using layer motif patterns based on communication
density in Twitter data.

Evaluation experiments using the Higgs Twitter dataset revealed that exist-
ing single-layer motifs involve a lot of information diffusion, convergence, and
lateral flow in each communication. However, a detailed analysis of a single fol-
low edge was not possible. On the other hand, with the multi-layer motif we
proposed, we were able to classify follow intentions by focusing on a single fol-
low edge and its communication density. Furthermore, the Higgs dataset exhib-
ited time-invariant characteristics, as the same follow intentions were extracted
regardless of the time window used to measure “communication density” (e.g.,
one week, one day, one hour).

Although we currently define four intentions, we plan to explore the possibil-
ity of expanding them or investigating alternative methods of definition. While
the data in this study showed a prevalence of intentions related to “Discussion”
and “Information Gathering,” it is important to validate these findings with
other datasets.
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Abstract. Finding dense subgraphs of a large network is a fundamental
problem in graph mining that has been studied extensively both for its
theoretical richness and its many practical applications over the last five
decades. However, most existing studies have focused on graphs with
a single type of connection. In applications such as biological, social,
and transportation networks, interactions between objects span multi-
ple aspects, yielding multiplex graphs. Existing dense subgraph mining
methods in multiplex graphs consider the same importance for different
types of connections, while in real-world applications, one relation type
can be noisy, insignificant, or irrelevant. Moreover, they are limited to
the edge-density measure, unable to change the emphasis on larger/s-
maller degrees depending on the application. To this end, we define a
new family of dense subgraph objectives, parametrized by two variables
p and β, that can (1) consider different importance weights for each rela-
tion type, and (2) change the emphasis on the larger/smaller degrees,
depending on the application. Due to the NP-hardness of this problem,
we first extend the FirmCore, k-core counterpart in multiplex graphs,
to layer-weighted multiplex graphs, and based on it, we propose two
polynomial-time approximation algorithms for the generalized densest
subgraph problem, when p ≥ 1 and the general case. Our experimental
results show the importance of considering different weights for different
relation types and the effectiveness and efficiency of our algorithms.

Keywords: Multiplex Networks · Dense Subgraphs · FirmCore ·
p-mean

1 Introduction

Multiplex (ML) networks [24] have become popular in various applications
involving complex networks such as social, transportation, and biological net-
works. These networks involve interactions between objects that span different
aspects. For instance, interactions between individuals can be categorized as
social, family, or professional, and professional interactions can vary depending
on the topic. ML networks allow nodes to have interactions in multiple relation
types and represent the graph of each relation type as a layer in the network.

Detecting Dense structures in a graph has become a key graph mining primi-
tive with a wide range of applications [13,15,19]. The common method for identi-
fying dense subgraphs is to formulate an objective function (called density) that
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1143, pp. 49–61, 2024.
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captures the density of each node set within a graph and then solve it via combi-
natorial optimization methods [14,18,20]. While the problem of finding the dens-
est subgraph in simple graphs is a well-studied problem in the literature and its
recent advancements bring the problem close to being fully resolved [25], extract-
ing dense subgraphs from ML networks recently attracts attention [6,16,22].
Due to the complex interactions between nodes in ML networks, the definition
of edge density is challenging. To this end, several studies [16,22,23] introduced
new density objective functions to capture complex dense subgraphs; however,
in practice, it can be challenging to evaluate tradeoffs between density measures
and decide which density is more useful. Accordingly, there is a lack of a unified
framework that can generalize all the existing density measures to formalize the
tradeoff between them.

One of the main advantages of ML networks is their ability to provide com-
plementary information by different relation types [22]. That is, some dense
subgraphs can be missed if we only look at one relation type or the aggregated
network [22]. However, taking advantage of this complementary information is
challenging as in real-world applications, different relation types have different
importance (e.g., some layers might be noisy/insignificant [2,3,16,22], or have
different roles in the applications [4,5,7]). Existing dense subgraph models treat
relation types equally, which means noisy/insignificant layers (or less important
layers) are considered as important as other layers, causing suboptimal perfor-
mance and missing some dense subgraphs (we support this claim in Sect. 4).

To overcome the above challenges, we introduce a new family of density objec-
tives in ML networks, p-mean multiplex densest subgraph (p-mean MDS), that:
1 is able to handle different weights for layers, addressing different importance
of relation types; 2 given a parameter p, inspired by Veldt et al. [28], it uses p-
mean of node degrees in different layers. This design gives us the flexibility to
emphasize smaller/larger degrees and allows us to uncover a hierarchy of dense
subgraphs in the same ML graph; 3 unifies the existing definition of density in
ML networks, which allows evaluating the tradeoffs between them. The multiplex
p-mean density objective uses parameter β to model the trade-off between high
density and the cumulative importance of layers exhibiting the high density, and
uses parameter p to define p-mean of node degrees within a subgraph as a mea-
sure of high density (we formally define it in Sect. 3). Inspired by FirmCore strc-
ture [22], we further extend the concept of k-core to weighted layer ML networks
and define weighted (k.λ)-FirmCore ((k.λ)-GFirmCore) as a maximal subgraph
in which every node is connected to at least k other nodes within that subgraph, in
a set of layers with cumulative importance of at least λ. We discuss that given λ,
weighted FirmCore has linear time decomposition in terms of the graph size, and
can provide two tight approximation algorithms for the two cases of the p-mean
MDS problem when i p ≥ 1 and ii the general case.

2 Related Work and Background

Given the wide variety of applications for dense subgraph discovery [13,15,19],
several variants of the densest subgraph problem with different objective
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functions have been designed [9,14,20,28]. Recently, Veldt et al. [28] unifies
most existing density objective functions and suggests using p-mean of node
degrees within the subgraph as its density. In this case, when p = 1, p = −∞,
and p = 2 we have the traditional densest subgraph problem, maximal k-core,
and F-density [14], respectively. Despite the usefulness of the family of p-mean
density objectives, they are limited to simple graphs and their extension to ML
networks is not straightforward.

In ML networks, Jethava and Beerenwinkel [23] formulate the densest com-
mon subgraph problem and develop a linear-programming formulation. Azimi-
Tafreshi et al. [1] propose a new definition of core, k-core, over ML graphs.
Galimberti et al. [16] propose algorithms to find all possible k-cores, and gener-
alized the formulation of Jethava and Beerenwinkel [23] by defining the density
of a subgraph in ML networks as a real-valued function ρ : 2V → R

+:

ρ(S) = max
L̂⊆L

min
�∈L̂

|E�[S]|
|S| |L̂|β , (1)

where E�[S] is the number of internal edges of S in layer �, and β ≥ 0 is a
real number. They further propose a core-based 1

2|L|β -approximation algorithm.
However, their algorithm takes exponential time in the number of layers, ren-
dering it impractical for large networks (see Sect. 4). Recently, Hashemi et al.
[22] introduce FirmCore, a new family of dense subgraphs in ML network, as a
maximal subgraph in which every node is connected to at least k other nodes
within that subgraph, in each of at least λ individual layers.

Although the densest FirmCore approximates function ρ(.), which its opti-
mization is NP-hard [17], with provable guarantee, it is limited to unweighted
layer ML networks, missing some dense structures. Moreover, its approxi-
mation guarantee is limited to the objective function defined by Galimberti
et al. [16], and its performance in our p-mean MDS is unexplored. For addi-
tional related work on the densest subgraph problem, we refer to the recent
survey by Lanciano et al. [25].

3 p-Mean Multiplex Densest Subgraph

We let G = (V,E,L,w) denote an ML graph, where V is the set of nodes, L is
the set of layers, E ⊆ V × V × L is the set of edges, and w(.) : L → R

≥0 is a
function that assigns a weight to each layer. The set of neighbors of node v ∈ V
in layer � ∈ L is denoted N�(v) and the degree of v in layer � is deg�(v) = |N�(v)|.
For a set of nodes H ⊆ V , G�[H] = (H,E�[H]) shows the subgraph of G induced
by H in layer �, and degH

� (v) is the degree of v in this subgraph. We sometimes
use G�[V ] and E�[V ] as G� and E�, respectively.

As discussed in [16], the density in ML networks should be modeled as a
trade-off between the high density and the number of layers exhibiting the high
density. Here, we use this intuition and first use p-mean density to measure the
density of the subgraph in each layer, i.e.,
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Ω�(S) =

(
1

|S|
∑
u∈S

deg�(u)p

)1/p

, (2)

and then multiply it by the importance of the layer exhibiting this density:

Ξ�(S) = Ω�(S)w(�). (3)

Based on this definition of density we define the p-mean MDS problem as
follows:

Problem 1 (p-mean Multiplex Densest Subgraph). Given an ML graph G =
(V,E,L,w), real numbers β ≥ 0 and p ∈ R ∪ {+∞,−∞}, and a real-valued
function ρ : 2V → R

+ defined as:

ρ(S) = max
L̂⊆L

min
�∈L̂

Ξ�(S)

⎛
⎝∑

�′∈L̂

w(�′)

⎞
⎠

β

, (4)

find a subset of vertices S∗ ⊆ V that maximizes ρ function.

Note that given layer weights w(�), we aim to solve a max-min problem
over Ξ�(S). Also, given a layer �, maximizing the Ξ�(S) is equivalent to maxi-
mizing Ω�(S)p for p > 0 and minimizing Ω�(S)p for p < 0. Therefore, for the
sake of simplicity, in the following we aim to optimize (maximize or minimize)
Ω�(S)p. Following, we use Δ�(S/{u}) = Ω�(S)p − Ω�(S/{u})p, to denote the
difference that removing a node u can cause to the density of layer �. When
p = 1 and w(.) = 1, the p-mean MDS problem reduces to ML densest subgra-
pah problem [16].

3.1 Generalized FirmCore Decomposition

Next, inspired by the success FirmCore [22] in approximating the ML densest
subgraph problem, we generalized it to layer-weighted ML networks and design
an algorithm to find all existing FirmCores. In Sect. 3.2, we use the generalized
FirmCore to approximate Problem 1.

There are two steps to generalize this concept: 1 FirmCore treats all lay-
ers the same and consider the number of selected layers, accordingly. However,
generalized FirmCore needs to consider the cumulative importance of selected
layers, to take advantage of layer weights. 2 In simple densest subgraph problem
(i.e., p = 1), each node in a subgraph contributes the same to the denominator
of the density function (i.e., subgraph size |S|), while each node’s contribution
to the numerator (i.e., number of edges) is as much as its degree. Traditionally,
core structures attracts attention to approximate the densest subgraph as they
provide lower bound for the minimum degree. However, in the p-mean density,
the contribution of each node does not equal to its degree. As we discussed above,
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removing each node makes Δ�(S/{u}) = Ω�(S)p − Ω�(S/{u})p difference to the
numerator of the Ωp

� (S). Accordingly, in the general case p ∈ R ∪ {−∞,∞}, we
want our generalized FirmCore to provide lower bound for the Δ�(S/{u}).

Definition 1 (Generalized FirmCore) Given an ML graph G, a non-
negative real-value threshold λ, an integer k ≥ 0, and p ∈ R ∪ {−∞,+∞}, the
(k, λ, p)-GFirmCore of G is a maximal subgraph H = G[Ck] = (Ck, E[Ck], L)
such that for each node v ∈ Ck there are some layers with cumulative impor-
tance of at least λ (i.e., ∃{�1, ..., �s} ⊆ L with

∑s
i=1 w(�i) ≥ λ) such that

Δ�(S/{u}) ≥ k, for 1 ≤ i ≤ s.

Proposition 1 When p = 1 and w(�i) = 1 for all �i ∈ L, (k, λ, p)-GFirmCore
is equivalent to the (k, λ)-FirmCore [22].

Proposition 2 (Hierarchical Structure) Given a real-value threshold λ, an
integer k ≥ 0, and p ∈ R∪{−∞,∞} the (k+1, λ, p)-GFirmCore and (k, λ+ε, p)-
GFirmCore of G are subgraphs of its (k, λ, p)-GFirmCore for any ε ∈ R

+.

From now, to avoid confusion, when we refer to (k, λ)-GFirmCore, we assume
that λ is maximal. That is, for at least one vertex u in (k, λ)-GFirmCore, there is
a subset of layers with an exact summation of λ in which u has a degree not less
than k. Next, we show that GFirmCore decomposition is strictly harder then the
FirmCore decomposition, which is solvable in polynomial time, unless P = NP .

Theorem 1. GFirmCore decomposition, which is finding all possible GFirm-
Cores in an ML network, is NP-hard.

Proof. Here we provide the proof sketch for the sake of space constraint. Given a
sequence of layer weights w1, w2, . . . , w|L|, the decision problem of whether there
is a non-empty (k, λ, p)-GFirmCore can be simply reduced to the well-known
NP-hard problem of the Subset Sum over w1, w2, . . . , w|L|, as its YES (resp.
NO) instance means there is (resp. is not) a subset of wis with summation of λ.

Algorithm. Here, we design a polynomial-time algorithm that finds all (k, λ, p)-
GFirmCores for given λ and p. Given λ and p, we define the GFirmCore index
of a node u, Gcoreλ(u), as the set of all k ∈ N, such that u is part of a (k, λ, p)-
GFirmCore. For each node u in subgraph G[H], we consider a vector Ψ(u) that
its �-th element, Ψ�(u), shows Δ�(H/{u})’s in layer �. We further define Top-
λ(Ψ(u)) as the maximum value of k that there are some layers {�1, . . . , �t} with
a cumulative weight of at least λ in which Δ�(H/{u}) ≥ k. To calculate the
Top-λ(Ψ(u)), we can simply sort the vector Ψ(u) and check if the cumulative
weights of layers in which u has a Δ�(H/{u}) more than k is ≥ λ or not.
This process takes O(|L| log |L|) time. It is easy to see that u can be in at most
(k, λ, p)-GFirmCore, where k =Top-λ(Ψ(u)). Accordingly, Algorithm 1 processes
the nodes in increasing order of Top−λ(Ψ(u)). It uses a vector B of lists such
that each element i contains all nodes with Top−λ(Ψ(u)) = i. This technique
allows us to keep vertices sorted throughout the algorithm and to update each
element in O(1) time. Algorithm 1 first initializes B with Top−λ(Ψ(u)) and then
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Algorithm 1. Finding all (k, λ, p)-GFirmCores for a given λ

Input: An ML graph G = (V, E, L,w), and a threshold λ ∈ R
≥0

Output: GFirmCore index Gcoreλ(v) for each v ∈ V
1: for v ∈ V do
2: I[v] ← Top-λ(Ψ(v))
3: B[I[v]] ← B[I[v]] ∪ {v}
4: end for
5: for k = 1, 2, . . . , |V | do
6: while B[k] �= ∅ do
7: pick and remove v from B[k]
8: Gcoreλ(v) ← k, N ← ∅
9: for (v, u, �) ∈ E and I[u] > k do

10: update Ψ�(u) and remove u from B[I[u]]
11: update I[u] and B[I[u]] ← B[I[u]] ∪ {u}
12: end for
13: V ← V \ {v}
14: end while
15: end for

starts processing B’s elements in increasing order. If a node u is processed at
iteration k, its Gcoreλ is assigned to k and removed from the graph. In order to
remove a vertex from a graph, we need to update the degree of its neighbors in
each layer, which leads to changing the Top−λ(Ψ) of its neighbors and changing
their bucket accordingly (lines 10–12). Note that it is simple to show that the
above algorithm can find all (k, λ, p)-GFirmCores, given λ and p. That is, at the
end of (k − 1)-th iteration, each remaining nodes like u has Top−λ(Ψ(u)) ≥ k
as we removed all nodes with Top−λ(Ψ) less than k in the (k − 1)-th iteration.

3.2 Approximation Algorithms

Algorithm 2 shows the pseudocode of the proposed approximation algorithm.
Given a threshold α, we first construct a candidate set for the value of λ. To this
end, we consider the set of summations of all possible subsets of layer weights
with size 1 ≤ s ≤ α, denoted as M. Next, we use Algorithm 1 for each λ ∈ M,
and then report the densest GFirmCore as the approximate solution. In our
experiments, we observe that always α = 10 results in a good approximate
solution. Given p, let S∗

SL be the p-mean densest subgraph among all single-layer
densest subgraphs, and �∗ denote its layer. Let C∗ and S∗ denote our found
approximation solution and the optimal solution, respectively. Finally, we use
w∗, wmin, and wmax to refer to the summation of all layer weights, minimum
weight, and maximum weight, respectively.
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Lemma 1. Let C be the (k, λ, p)-GFirmCore of G, we have:

ρ(C) ≥ k1/p

w∗1/p
× max

L̃⊆L̂

⎧⎪⎨
⎪⎩

⎛
⎝λ −

|L̃|∑
i=1

w(�i)

⎞
⎠

1/p

× max
�∈L̃

w(�) ×
⎛
⎝∑

�∈L̃

w(�)

⎞
⎠

β
⎫⎪⎬
⎪⎭ (5)

≥ k1/p × wmin

w∗1/p
× max

{
λ1/p, λβ/p

}
, (6)

where L̂ is the first |L̂|-th element in sorted L with respect to the number of
nodes like u with Ψ�(u) ≥ k for � ∈ L̂, and wmin is the smallest layer weights
that contributed to C (i.e., removing it changes either k or λ).

Algorithm 2. Approximation algorithm for the p-mean MDS
Input: An ML graph G = (V, E, L,w), a parameter p ∈ R∪{−∞, ∞}, and parameter

α ∈ {1, . . . , L}.
Output: Approximation solution to p-mean MDS.
1: M ← summations of all possible subsets of layer weights with size 1 ≤ s ≤ α;
2: for λ ∈ M do
3: Qλ ← find all (k, λ, p)-GFirmCore � Using Algorithm 1
4: Ĉλ ← calculate the density and find the densest (k, λ, p)-GFirmCore ∈ Qλ ρ().
5: end forreturn the densest subgraph among all Ĉλ for λ ∈ M.

Proof. By definition, each node v ∈ C has at least Ψ(u) ≥ k in some layers with
cumulative weights ≥ λ, so based on the pigeonhole principle, there exists a layer
�′ such that there are ≥ λ|C|

w∗ nodes like u that each has Ψ�′(u) ≥ k. So we have:

Ω�′(|C|) ≥ w(�′) ×
(

k × λ|C|
w∗

|C|

)1/p

= w(�′)
(

k × λ

w∗

)1/p

.

Now, ignoring this layer, exploiting the definition of C, and re-using the pigeon-
hole principle, we can conclude that there exists a layer �′′ such that there are
≥ (λ−w(�′))|C|

w∗ nodes like u that each has Ψ�′′(u) ≥ k. By iterating this process,
we can simply conclude the Inequality 6. Note that the last inequality is obtained
from the first and last iterations of the above procedure.

Case 1: p ≥ 1. Let C∗
SL be the (p + 1)1/p approx solution for S∗

SL by [28] (it
exists when p ≥ 1), and μ = min Δ�∗(C∗

SL). Since C∗
SL is the optimal obtained

solution, removing a node cannot increase its p-mean density (if increases, then
we find a better approx solution as it is certainly produced in the algorithm).
Therefore, it is simple to see that Ω�∗(S∗

SL)p ≤ w(�∗)p(p + 1)μ. Based on the
definition of μ and Δ, there is a non-empty (k+, λ+)-GFirmCore that k+ ≥ μ.
So we have k+ ≥ Ω�∗ (S∗

SL)p

w(�∗)p(p+1) .
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Lemma 2. Ω�∗(S∗
SL)w∗β ≥ ρ(S∗).

Proof. Ω�∗(S∗
SL)w∗β ≥ max�∈L Ω�(S∗)w∗β ≥ maxL̂⊆L min�∈L̂ Ω�(S∗)(∑

�′∈L̂ w(�′)
)β

.

Theorem 2 (Approximation Algorithm for p ≥ 1).

ρ(C∗) ≥ 1
(p + 1)1/p

×
wmin × max

{
λ+1/p

, λ+β/p
}

wmaxw∗β+1/p
× ρ(S∗), (7)

Proof. The proof of this theorem is based on Lemmas 1 and 2, and the fact that
k+ ≥ Ω�∗ (S∗

SL)p

w(�∗)p(p+1) .

Note that for the sake of simplicity, in the above theorem, we used Inequal-
ity 6. For a tighter bound, one can use Inequality 5 in Lemma 1. When p = 1 and
w(.) = 1, the approximation guarantee matches the approximation guarantee by
Hashemi et al. [22], which is the best existing guarantee for this special case.
Note that, our work is the first algorithm for the generalized p-mean MDS case.
Case 2: p ∈ [−∞, 1]. In this part, we show that our approx solution to 1-mean
MDS, can provide an approximation solution to p-mean MDS, when p ∈ [−∞, 1].

Theorem 3 (Approximation Algorithm for −∞ ≤ p ≤ 1).

ρ(C∗) ≥ 1
(p + 1)1/p

×
wmin × max

{
λ+1/p

, λ+β/p
}

2 × wmaxw∗β+1/p
× ρ(S∗), (8)

Proof. Let S∗(1)

SL be the optimal solution of Ω�∗(S∗
SL) when p = 1. We know that

min
u∈S∗(1)

SL
deg�∗(u) ≥ 1

2Ω�∗(S∗(1)

SL ) = 1
2Ω

(1)
�∗ (S∗(1)

SL ) for p = 1, since removing the
node with the minimum degree cannot increase the density. On the other hand,
as discussed by Chekuri and Torres [9], p-mean function over the degree of nodes
in a graph is monotone. Therefore, we have:

Ω�∗(S∗(1)

SL ) ≥ min
u∈S∗

SL

deg�∗(u) ≥ 1
2
Ω

(1)
�∗ (S∗

SL) ≥ 1
2
Ω�∗(S∗

SL) (9)

The last inequality comes from the monotonicity of p-mean function over the
degree of nodes in a graph. Using Lemma 2 and Theorem 2, we can simply show
the above approximation guarantee.

Note that, while empirically the value of α can affect the performance, the-
oretically its value cannot affect the approx guarantee as we only need α = 1.

4 Experiments

Setup. Designed algorithms and baselines are implemented in Python (compiled
by Cython). All experiments are performed on a Linux machine with Intel Xeon
2.6 GHz CPU and 128 GB RAM.
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Datasets. In our experiments, we use 10 real-world datasets [2,6,8,10–12,16,
21,22,26,27] whose domains cover social, genetic, co-authorship, financial, and
co-purchasing networks. The main characteristics are summarized in Table 1. We
use an unsupervised learning method to learn the importance of each layer [3]
and treat them as layer weights.

Results. Table 1 reports the average edge density and multiplex density for
different values of p. Based on these results, our definition of density can find
different and meaningful dense structures. Also, it is notable that the effect of p
on the performance depends on the datasets, which again shows the importance
of the flexibility that our formulation can provide. GFirmCore in all datasets
finds a densest structure that is denser than the found solution by FirmCore,
which shows the significance of considering weights for different layers.

Table 1. Comparison of the solutions found by GFirmCore and the state-of-the-art
FirmCore [22]. The superior performance of GFirmCore with different p shows the
importance of considering weights for different relation types.

Metric Dataset Homo Sacchcere FAO Brain DBLP Amazon FFTwitter Friendfeed StackO Google+

|V | 18k 6.5k 214 190 513k 410k 155k 510k 2.6M 28.9M

|E| 153k 247k 319K 934K 1.0M 8.1M 13M 18M 47.9M 1.19B

|L| 7 7 364 520 10 4 2 3 24 4

GFirmCore Edge
Density∑

�∈L w�|E�[S]|
w∗×(|S|

2 )

p = −∞ 0.73 0.68 0.45 1.00 0.52 0.48 0.74 0.39 0.50 0.98

p = −1 0.73 0.49 0.47 1.00 0.39 0.48 0.59 0.36 0.53 0.56

p = 0 0.39 0.55 0.39 0.92 0.39 0.33 0.59 0.78 0.46 0.73

p = 1 0.58 0.46 0.47 0.90 0.39 0.51 0.59 0.48 0.53 0.84

Multiplex
Density [16]

p = −∞ 28.36 20.79 1553.84 3941.55 77.46 41.89 111.42 163.58 96.20 153.99

p = −1 30.17 19.53 1559.25 3941.55 81.17 42.01 98.50 165.72 97.18 172.87

p = 0 28.49 31.26 1674.41 7180.09 82.46 40.51 98.73 183.76 99.03 148.16

p = 1 31.14 28.59 1854.07 7935.29 82.91 61.38 99.26 216.74 118.33 173.81

Runtime (s) p = −∞ 38 96 7199 9207 930 992 894 4375 23698 71148

p = −1 43 101 7418 9491 1061 1206 1089 4810 26056 74703

p = 0 39 113 7407 9462 1128 1135 1103 4729 26114 74669

p = 1 48 105 7369 9503 1076 1160 1057 4788 25671 74893

FirmCore Edge
Density∑

�∈L w�|E�[S]|
w∗×(|S|

2 )

p = −∞ 0.69 0.61 0.45 0.92 0.44 0.37 0.60 0.42 0.46 0.74

p = −1 0.58 0.61 0.45 0.92 0.35 0.33 0.52 0.38 0.49 0.70

p = 0 0.32 0.61 0.39 0.92 0.35 0.31 0.52 0.36 0.41 0.52

p = 1 0.47 0.42 0.35 0.78 0.41 0.42 0.52 0.36 0.45 0.52

Multiplex
Density [16]

p = −∞ 27.85 22.91 1553.84 6997.12 75.19 39.28 98.46 167.19 98.51 162.43

p = −1 28.14 23.69 1598.66 7034.50 75.83 39.15 98.03 167.56 100.03 163.88

p = 0 28.53 25.82 1659.41 7180.09 76.11 39.64 99.12 168.44 100.98 162.07

p = 1 29.74 25.87 1673.18 7163.89 78.91 43.52 100.24 170.87 107.09 164.81

Runtime (s) p = −∞ 19 36 2403 3169 322 348 297 799 6951 34814

p = −1 21 37 2964 3613 438 489 386 841 8116 35726

p = 0 20 46 2954 3486 447 467 394 835 8170 35482

p = 1 20 41 2454 3273 362 394 359 891 8053 36027

Since there is no algorithm for exactly finding the multiplex densest subgraph,
we generate two synthetic datasets, S1 and S2, both with |V | = 100, |E| = 10000,
|L| = 4. We use the same approach as real-world datasets to obtain layer weights.
We also inject the densest subgraph via clique density to S1 and average degree
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density to S2. Figure 1 reports the ratio of the found solution and the optimal
solution obtained by our algorithms (p = 1, 2, 3) and baselines FirmCore [22]
and ML k-core [16]. Our algorithms outperform both baselines in both datasets
and all values of p including p = 1, which they are designed for. This result
shows the importance of handling different importance for different layers.

Figure 2 shows the running time of our algorithms and baselines. While our
algorithms are much faster than ML k-core [16], FirmCore is more efficient than
our algorithms. The main reason is that FirmCore does not consider different
weights and as we discussed in Sect. 3, this relaxation can change the complexity
of the decomposition (GFirmCore is NP-hard while FirmCore is polynomial). It
is notable that our algorithms are scalable to graphs with billions of edges.

Case Study: Brain Networks. Detecting and monitoring functional systems
in the human brain is a primary task in neuroscience. Brain Networks obtained
from fMRI, are graph representations of the brain, where each node is a brain
region and two nodes are connected if there is a high correlation between their
functionality. However, the brain network generated from an individual can be
noisy and incomplete. Using brain networks from many individuals can help
to identify functional systems more accurately. A dense subgraph in a multi-
plex brain network, where each layer is the brain network of an individual, can
be interpreted as a functional system in the brain. Figure 3 shows the densest
subgraph including the occipital pole found by FirmCore and GFirmCore as
well as the ground-truth functional system of the occipital pole (i.e., visual pro-
cessing). The densest subgraph found by GFirmCore is more similar to ground
truth than FirmCore. The main reason is that the brain network generated
from an individual can be noisy/incomplete and FirmCore treats all layers the
same.

Fig. 1. The quality of found solution
by GFirmCore and baselines. (Left) S1,
(Right) S2 datasets.

Fig. 2. The running time of GFirm-
Core and baselines. (Left) S1, (Right)
S2 datasets.
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Fig. 3. The running time of GFirmCore and baselines. (Left) S1, (Right) S2 datasets.

5 Conclusion

In this paper, we propose and study a novel extended notion of core in layer-
weighted multiplex networks, GFirmCore, where each layer has a weight that
indicates the importance/significance of the layer. We show that theoretically
this problem is more challenging than its layer-unweighted counterpart and is
NP-hard. We further extend the notion of multiplex density to layer-weighted
multiplex networks. For the sake of unifying existing density measures, we pro-
pose a new family of densest subgraph objectives, parameterized by a sin-
gle parameter p that controls the importance of larger/smaller degrees in the
subgraph. Using our GFirmCore, we propose the first polynomial approxima-
tion algorithm that provides approximation guarantee in the general case of
p-mean densest subgraph problem. Our experimental results, show the efficiency
and effectiveness of our algorithms and the significance of considering different
weights for the layers in multiplex networks.

References

1. Azimi-Tafreshi, N., Gomez-Garde, J., Dorogovtsev, S.N.: k-corepercolation on mul-
tiplex networks. Phys. Rev. E 90(3) (2014). ISSN 1550-2376

2. Behrouz, A., Hashemi, F.: CS-MLGCN: multiplex graph convolutional networks
for community search in multiplex networks. In: Proceedings of the 31st ACM
International Conference on Information and Knowledge Management, CIKM ’22,
pp. 3828–3832. New York, NY, USA (2022). Association for Computing Machinery.
ISBN 9781450392365. https://doi.org/10.1145/3511808.3557572

3. Behrouz, A., Seltzer, M.: Anomaly detection in multiplex dynamic networks: from
blockchain security to brain disease prediction. In: NeurIPS 2022 Temporal Graph
Learning Workshop (2022). https://openreview.net/forum?id=UDGZDfwmay

4. Behrouz, A., Seltzer, M.: Anomaly detection in human brain via inductive learning
on temporal multiplex networks. In: Machine Learning for Healthcare Conference,
vol. 219. PMLR (2023)

5. Behrouz, A., Seltzer, M.: ADMIRE++: explainable anomaly detection in the
human brain via inductive learning on temporal multiplex networks. In: ICML
3rd Workshop on Interpretable Machine Learning in Healthcare (IMLH) (2023).
https://openreview.net/forum?id=t4H8acYudJ

https://doi.org/10.1145/3511808.3557572
https://openreview.net/forum?id=UDGZDfwmay
https://openreview.net/forum?id=t4H8acYudJ


60 A. Behrouz and F. Hashemi

6. Behrouz, A., Hashemi, F., Lakshmanan, L.V.S.: Firmtruss community search in
multilayer networks. Proc. VLDB Endow. 16(3), 505–518 (2022). ISSN 2150-8097.
https://doi.org/10.14778/3570690.3570700

7. Cardillo, A., et al.: Emergence of network features from multiplexity. Sci. Rep.
3(1), 1–6 (2013)

8. Celli, F., Di Lascio, F.M.L., Magnani, M., Pacelli, B., Rossi, L.: Social network
data and practices: the case of friendfeed. In: Chai, S.-K., Salerno, J.J., Mabry,
P.L. (eds.) SBP 2010. LNCS, vol. 6007, pp. 346–353. Springer, Heidelberg (2010).
https://doi.org/10.1007/978-3-642-12079-4 43

9. Chekuri, C., Torres, M.R.: On the generalized mean densest subgraph problem:
complexity and algorithms. arXiv preprint arXiv:2306.02172 (2023)

10. De Domenico, M., Lima, A., Mougel, P., Musolesi, M.: The anatomy of a scientific
rumor. Sci. Rep. 3(1) (2013). ISSN 2045-2322

11. De Domenico, M., Porter, M.A., Arenas, A.: MuxViz: a tool for multilayer analysis
and visualization of networks. J. Complex Netw. 3(2), 159–176 (2014). ISSN 2051-
1329. https://doi.org/10.1093/comnet/cnu038

12. De Domenico, M., Nicosia, V., Arenas, A., Latora, V.: Structural reducibility of
multilayer networks. Nat. Commun. 6, 6864 (2015)

13. Du, X., Jin, R., Ding, L., Lee, V.E., Thornton, J.H.: Migration motif: a spatial -
temporal pattern mining approach for financial markets. In: KDD, pp. 1135–1144
(2009)
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24. Kivelä, M., Arenas, A., Barthelemy, M., Gleeson, J.P., Moreno, Y., Porter, M.A.:
Multilayer networks. J. Complex Netw. 2, 203–271 (2014). ISSN 2051-1310.
https://doi.org/10.1093/comnet/cnu016

25. Lanciano, T., Miyauchi, A., Fazzone, A., Bonchi, F.: A survey on the densest
subgraph problem and its variants (2023)

26. Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing.
ACM Trans. Web 1(1), 5-es (2007). ISSN 1559-1131

27. Omodei, E., De Domenico, M., Arenas, A.: Characterizing interactions in online
social networks during exceptional events. Front. Phys. 3, 59 (2015). ISSN 2296-
424X. https://doi.org/10.3389/fphy.2015.00059

28. Veldt, N., Benson, A.R., Kleinberg, J.: The generalized mean densest subgraph
problem. In: Proceedings of the 27th ACM SIGKDD, KDD ’21, pp. 1604–1614,
New York, NY, USA (2021). ACM. https://doi.org/10.1145/3447548.3467398

https://doi.org/10.1093/comnet/cnu016
https://doi.org/10.3389/fphy.2015.00059
https://doi.org/10.1145/3447548.3467398


Influence Robustness of Nodes
in Multiplex Networks Against Attacks

Boqian Ma , Hao Ren , and Jiaojiao Jiang(B)

School of Computer Science and Engineering, University of New South Wales,
Kensington, NSW 2052, Australia

{boqian.ma,hao.ren}@student.unsw.edu.au, jiaojiao.jiang@unsw.edu.au

Abstract. Recent advances have focused mainly on the resilience of
the monoplex network in attacks targeting random nodes or links, as
well as the robustness of the network against cascading attacks. How-
ever, very little research has been done to investigate the robustness
of nodes in multiplex networks against targeted attacks. In this paper,
we first propose a new measure, MultiCoreRank, to calculate the global
influence of nodes in a multiplex network. The measure models the influ-
ence propagation on the core lattice of a multiplex network after the core
decomposition. Then, to study how the structural features can affect the
influence robustness of nodes, we compare the dynamics of node influence
on three types of multiplex networks: assortative, neutral, and disassor-
tative, where the assortativity is measured by the correlation coefficient
of the degrees of nodes across different layers. We found that assortative
networks have higher resilience against attack than neutral and disassor-
tative networks. The structure of disassortative networks tends to break
down quicker under attack.

Keywords: Multiplex network · Resilience · Complex network ·
Centrality

1 Introduction

Many studies have been conducted to analyse the resilience of different types
of networks, such as monoplex, interconnected, or multiplex networks, against
different types of attacks (such as random, targeted, or cascading attacks). In
monoplex networks, Albert et al. [1] found that networks with a broad degree
distribution (such as scale-free) exhibit a low degree of resilience if the attack
happened on a large degree node, and a high degree of resilience otherwise. A
similar phenomenon occurs when cascading attacks occur in monoplex networks
[10,27]. In interconnected networks, the malfunction of nodes within one network
might trigger the collapse of reliant nodes in separate networks. Contrary to the
behavior observed in single-layer networks, Buldyrev et al. [9] demonstrated
that a more heterogeneous degree distribution amplifies the susceptibility of
independent networks to stochastic failures. Within the context of multiplex
networks, which are composed of multiple layers sharing a common set of nodes
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[4], various studies have indicated that correlated interconnections can influence
the structural resilience of these networks in a complex manner [7,25].

The resilience of a network against attacks is often measured from the per-
spective of network functionality, such as the probability of the existence of giant
connected components [9]. However, this could not reflect the robustness of the
node influence, which is of great significance. For example, in a power grid net-
work, if a high-degree node is removed, many nodes that are connected to it
will also be removed. Such removal will result in changes in the influence of the
neighbouring nodes and beyond. To maintain the communication efficiency of
a network, we often need to retain the robustness of influential nodes. Little
research has been done to study the influence robustness of nodes in multiplex
networks against attacks. In monoplex networks, Jiang et al.[21] used the notion
of coreness to measure the global influence of nodes. They found that nodes with
high coreness in assortative networks tend to maintain their degree of coreness
even after the influential nodes are removed. On the other hand, in disassortative
networks, the node’s influence is distorted when influential nodes are removed.

In this paper, we extend the study of influence robustness of nodes against
attacks from monoplex to multiplex networks. We first develop a new node cen-
trality, MultiCoreRank, that measures the global influence of nodes in a multi-
plex network. Current centrality measures in multiplex networks are based on
(1) projecting all layers into a monoplex network before applying the metrics
on monoplex networks or (2) calculating the metrics in each individual layer
separately, before aggregating to form a value for each node [17,30]. However,
these methods overlooked the multi-relation nature of multiplex networks, which
could cause information loss in the process. To address this gap, we extend the
idea of core decomposition in multiplex networks presented in [20] and calculate
the global influence of nodes through propagation of node influence along the
“core lattice”.

The main contributions of this paper include:

– We propose, MultiCoreRank, a new node centrality that measures the global
influence of nodes in multiplex networks.

– We analyse the influence robustness of nodes across different types of multi-
plex network: assortative, neutral, and disassortative networks.

– The experimental results demonstrate that the assortative multiplex networks
have greater robustness and are more resilient against targeted attack.

The rest of the paper is organised as follows. Section 2 introduces some related
work. In Sect. 3, we introduce the proposed centrality measure. Section 4 outlines
our experimental results, followed by the conclusion in Sect. 5. In addition, code
is available at https://github.com/Boqian-Ma/MultiCoreRank.

2 Related Work

Let G = (V,E,L) be a multiplex network, where V is a set of vertices, L is a set of
layers and E ⊆ V ×V ×L is a set of links. Each layer of G is a monoplex network
G[α], α ∈ L. Each layer α is associated with an adjacency matrix A[α] =

(
a
[α]
ij

)
,

https://github.com/Boqian-Ma/MultiCoreRank
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where a
[α]
ij = 1 if there is a link between i and j on layer α, and 0 otherwise. In

the following, we first introduce some existing centrality measures, and then we
discuss some related work on network resilience.

2.1 Node Centrality Measures

Various centrality measures have been developed to calculate the influence of
nodes on monoplex and multiplex networks. Degree Centrality quantifies the
number of edges attached to a specific node in a monoplex network. It was
extended into Overlapping Degree in multiplex networks by summing the
node’s degree across various layers [3]. A node is considered influential if it is
connected to a high number of edges. Bonacich et al. formulated Eigenvector
Centrality, and proposed that the principal eigenvector of an adjacency matrix
serves as an effective indicator of a node’s centrality within the network [5].
Extending this to multiplex networks, Sola et al. [31] introduced multiple alter-
native metrics to evaluate the significance of nodes. Betweenness centrality
measures the importance of a node by considering how often a node v lies in a
shortest path between i and j [6]. Chakraborty et al. [11] extend betweenness
centrality to multiplex networks and introduced cross-layer betweenness central-
ity. Closeness Centrality [29] quantifies the proximity of a given node to all
other nodes within a network by calculating the average distance via the shortest
pathways to all other nodes. A node gains significant importance if it is situated
closer to every other node within the network. Mittal et al. [26] introduced cross-
layer closeness centrality for multiplex networks. We note the above measures as
classical centrality measures and their counterparts on multiplex networks.

More recently, other novel centrality methods have been proposed based on
random walks [12,18], gravity model [14], and posteriori measures [23].

Table 1 provides a list of classical centrality measures in monoplex and mul-
tiplex networks. Note that the counterpart of each centrality measure on a mul-
tiplex network is simply the sum of node centralities obtained on the different
layers. For more complicated centrality measures, the readers can refer to [16].

Table 1. Node centralities in monoplex networks and multiplex networks. In the for-
mula, λ[α] represents the principal eigenvalue corresponding to the adjacency matrix
A[α]. σpq(i) signifies the aggregate number of shortest paths from node p to node q
that traverse through node i, while σpq indicates the overall number of shortest paths
between nodes p and q. dist(i[α], j[α]) is used to describe the minimal path distance
between nodes i and j within layer α.

Centrality Monoplex Multiplex

Degree d
[α]
i =

∑
j∈V a

[α]
ij di =

∑
α∈L d

[α]
i

Eigenvector e
[α]
i = 1

λ[α]

∑
j∈V a

[α]
i,j e

[α]
j ei =

∑
α∈L e

[α]
i

Betweenness b
[α]
i =

∑
i�=p �=q∈V

σ
p[α]q[α] (i

[α])

σ
p[α]q[α]

bi =
∑

α∈L b
[α]
i

Closeness c
[α]
i = n−1

∑
j∈V dist(i[α],j[α])

ci =
∑

α∈L c
[α]
i
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2.2 Network Resilience

Network resilience is measured by the ability of a network to retain its structure
when some nodes in the network are removed [13]. It can be measured by network
assortativity, which describes the tendency of nodes in a network to connect
to other nodes that are similar (or different) in some way. In recent decades,
extensive contributions have been made to network resilience analysis [1,10,21,
27]. Understanding network resilience is of high research interest because it will
allow us to design fail-safe networks such as transportation or energy networks.

In terms of the robustness of multilayer networks, Buldyrev et al. [9] found
that an interconnected network is vulnerable to random failures if it presents a
broader degree distribution, which is the opposite of the phenomenon in mono-
plex networks. De et al. [15] employed random walks to establish an analytical
model for examining the time required for random walks to cover interconnected
networks. Their findings indicate that such interconnected structures exhibit
greater resilience to stochastic failures compared to their standalone layers. Min
et al. [25] studied the resilience of multiplex networks and found that correlated
coupling can affect the structural robustness of multiplex networks in diversed
fashion. Brummitt et al. [8] generalised the threshold cascade model [32] to study
the impact of multiplex networks on cascade dynamics. They found that multi-
plex networks are more vulnerable to global cascades than monoplex networks.

More recently, Fan et al. [19] proposed a multiplex network resilience metric
and studied link addition strategies to improve resilience against targeted attacks.

Kazawa et al. [22] proposed effective link-addition strategies for improving
the robustness of multiplex networks against degree-based attacks.

Recent studies mainly analyse resilience from a network functionality per-
spective, such as the probability of the existence of giant connected components
[9]. This work extends from Jiang et al.’s previous work on the influence robust-
ness of nodes on monoplex networks. In this paper, we study the resilience of
nodes in multiplex networks under targeted (i.e. attacking nodes based on
their influence) and uniformly random attacks. Before that, we first develop
a method to measure node influence based on core decomposition in multiplex
networks (see Sect. 3).

3 Proposed Node Centrality

3.1 Preliminaries

Given a multiplex network G = (V,E,L) and a subset S ⊆ V , we use G[S] =
(S,E[S], L) to denote the subgraph of G, where E[S] is the set of all the links in
E connecting the nodes in S and L is the set of layers. We use τ [α][S] to denote
the minimum degree of nodes on layer α in the sub-graph The core decomposition
in multiplex networks is defined as follows.

Definition 1 (k-core percolation [2]). Given a multiplex network G =
(V,E,L) and an |L|-dimensional integer vector k = [k[α]]α∈L, the k-core of
G is defined as the maximum subgraph G[C] = (C,E[C], L) such that ∀α ∈ L :
τ [α][C] ≥ k[α]. k is termed as a core vector.
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Hence, k-core is the maximal subgraph that each node has at least k[α] edges
of each layer, α ∈ L. The k-core of a multiplex network could be calculated by
removing nodes iteratively until k[α] ∈ k, α ∈ L no longer satisfied. Taking the
two-layer graph in Fig. 1(a) as an example, the (1, 2)-core is {A,B,D,E} and
the (2, 2)-core is {B,D,E}.

Theorem 1 (Core containment [20]). Given a multiplex network G =
(V,E,L), let Ck and Ck′ be the cores given by k = [k[α]]α∈L and k′ = [k′[α]]α∈L,
respectively. It follows that if ∀α ∈ L : k′[α] ≤ k[α], then Ck ⊆ Ck′ .

The partial containment of all cores can be represented by a lattice structure
known as the core lattice. The core lattice of the example network in Fig. 1(a) is
shown in Fig. 3. The nodes in the lattice represent cores and edges represent the
containment relationship between cores where the “father” core contains all of its
“child” cores (i.e. all cores from a core to the root). Using the core lattice struc-
ture, Galimberti et al. [20] developed three algorithms for efficiently computing
cores in multiplex networks: DFS-based, BFS-based, and hybrid approaches. In
the centrality method we are proposing in the next subsection, we use the BFS-
based approach because, in order to update a node’s influence given a core,
all father cores must be calculated first. The approach based on Breadth-First
Search (BFS) leverages two key observations: (1) a non-empty k-core is a subset
of the intersection of all its preceding cores”fathers”, and (2) the quantity of such
preceding cores for any non-empty k-core is commensurate with the number of
non-zero components in its associated core vector k.

A B C

D E F

Fig. 1. An example two-layer network,
where solid lines signify edges belong-
ing to the first layer, while dashed lines
indicate edges associated with the sec-
ond layer.

A B C

D E F

Fig. 2. The network after removing
node B and its edges in Fig. 1.

3.2 MultiCoreRank Centrality

On a core lattice, we can observe that (1) nodes that appear in deeper level
cores are more connected, which makes them more influential than those that
only appear in shallower levels, and (2) for nodes on the same lattice level, those
that appear in fewer cores are less influential than those that appear in more
cores, as they have higher chances to have child cores, according to the core
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Fig. 3. The core lattice of the network in Fig. 1. The numbers in the core vectors are
the minimum degrees of each layer in a core. (i.e. (2,1) consists of nodes with at least
degree 2 on layer 1 and at least degree 1 on layer 2.) The level in which a core is in
the lattice is given by the L-1 norm of its core vector. The core vector (0,3) is shown
as an example of empty core while other empty cores are omitted.

containment theory in Theorem 1. We argue that an ideal centrality measure
based on the core lattice should at least consider these two points.

Using the two observations above, we consider the calculation of the overall
influence of a node v ∈ V as a message passing process, which iteratively calcu-
lates the influence of node v on layer l + 1 based on its influence on level l on
the lattice.

Before introducing MultiCoreRank, we first define a father-child relationship,
kl+1

father−−−−→ kl, of the two corresponding core vectors on levels l + 1 and l,
respectively, if there exists an edge between kl+1 and kl on the core lattice. For
an arbitrary node v ∈ V , we use infl(v) to denote the influence of node v on
level l of the core lattice, if there exists a kl-core such that v ∈ Ckl

. Also, let
|fatherkl

| be the number of fathers of the core given by kl.
Now, considering observation (1), for an arbitrary level l, we assign it a weight

l, allowing nodes at deeper lattice levels to have a larger weight. Next, consider-
ing observation (2), for an arbitrary node v, if v appears at both level l and level
l + 1 on the lattice, we aggregate v’s influences from all the cores that contain
node v on level l as its influence on level l + 1. In this way, nodes with more
appearances will be assigned a higher influence than those with fewer appear-
ances. The following formula gives the detailed calculation of the MultiCoreRank
influence of a node v on level l + 1 of a core lattice:

infl+1(v) =
∑

{
k l+1

∣
∣v∈Ck l+1

,v∈Ck l
,k l+1

father−−−−→k l

}(l + 1) · infl(v) · inf(Ck l) · |fatherk l+1 |,
(1)
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where inf(Ckl
) is the influence of the kl-core, calculated by

inf(Ckl
) =

∑
v∈Ck l

infl(v)

|Ckl
| . (2)

Note that our proposed influence measure can be calculated using the BFS-
based approach mentioned in Sect. 3.1 because of the layer-by-layer and iterative
nature of this method. The influence of a node v on layer l + 1 is calculated on
the basis of its influence on level l, hence all cores on layer l must be calculated
before moving onto layer l + 1. Referring to Fig. 3, the order in which the cores
are calculated from layer 0 to 2 is (0, 0), (1, 0), (0, 1), (2, 0), (1, 1), (0, 2).

To illustrate our method, consider node A in Fig. 1 and the lattice in Fig. 3.
At level 0 of the lattice, since the (0, 0)-core contains the entire network, we
initialise the influence of all nodes to 1. On level 1, after the (1, 0)-core and the
(0, 1)-core are found using BFS, we apply Eq. (1) to node A to get

infl=1(A) =
∑

kl∈{(0,1),(1,0)}
1 · infl=0(A) · inf(Ckl−1) · |fatherskl

| = 1 + 1 = 2.

On level 2, we have the following equation:

infl=2(A) =
∑

kl∈{(1,1),(0,2)}
2 · infl=1(A) · inf(C(kl−1) · |fatherskl

|

= (2 · 2 · 2 · 2) + (2 · 2 · 2 · 1) = 24.

The rest can be deduced accordingly1.

4 Empirical Analysis of Influence Robustness of Nodes
in Multiplex Networks

In this section, we commence by delineating the assortativity metric employed
for gauging the structural characteristics of multiplex networks. Subsequently,
we provide an overview of the data sets utilized for experimental validation.
Following that, we assess the performance efficacy of the proposed centrality
metric for nodes. Lastly, we undertake an analysis of the robustness of multiplex
networks under varying levels of assortativity.

4.1 Multiplex Network Assortativity

We study the resilience of multiplex networks by analysing the dynamics of node
influence when the most influential nodes are removed. We particularly consider
the structural feature of assortativity of multiplex networks.

1 When implementing this method on a large-scale network, appropriate normalisation
techniques are required when the network is large to prevent numeric overflow.
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The assortativity of a multiplex network is measured by the average layer-
layer degree correlation [28]. If we denote d[α] = (d[α]

1 , · · · , d
[|L|]
|V | ) and d[β] =

(d[β]1 , · · · , d
[|L|]
|V | ) as the degree vectors of layer α and β respectively, the layer-

layer degree correlation between these two layers is given by

rα,β =
〈d[α]d[β]〉 − 〈d[α]〉〈d[β]〉

σd[α]σd[β]
, (3)

where σd[α] =
√

〈d[α]d[α]〉 − 〈d[α]〉2. rα,β is the Spearman coefficient of d[α] and
d[β]. rα,β being close to 1 (assortative) means that the nodes in layers α and β
are likely to have a similar tendency when connecting with their neighbours (i.e.
a node has relative high/low degrees in both layers), whereas rα,β being close to
−1, means that the nodes in α and β are less likely to have a similar tendency
when connecting with their neighbours (i.e. a node has relative high/low degrees
in one layer by the opposite in the other layer).

In this paper, we compute the assortativity of a multiplex network as the
average of all layer-layer degree correlation given by

rG =

∑
α<β∈L rα,β

|L|2 − L
(4)

Without losing generality, we disregards all correlations of a layer to itself.

4.2 Datasets

We selected two datasets for each of the assortative, neutural, and disassortative
networks for our experiments. The details of the datasets are as follows, and
Table 2 gives the basic statistics of the datasets. C.elegans2 [28] is the neural
network of the C.elegans nematode worm that consists of two layers representing
synapses and gap junctions. Aarhus [24] is a five-layer network that encapsulates
five different types of interactions (Facebook, Leisure, Work, Co-authorship, and
Lunch) among employees within the Computer Science department at Aarhus
University. OpenFlight continental airport networks3 [28] consists of inter-
national flight routes, where layers represent an airline company, node represent
airports and edges represent routes provided by the airlines. We selected layers of
South America and North America such that the network is disassortative
and layers of Asia and Europe such that the network is neutral.

2 https://manliodedomenico.com/data.php.
3 https://openflights.org/.

https://manliodedomenico.com/data.php
https://openflights.org/
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Table 2. Statistics of the datasets used in this paper, where rG is the assortativity
calculated from Eq. (4).

Dataset Network #nodes #links # Selected
layers

rG

C.elegans Assortative 281 2476 2 0.6414

Aarhus Assortative 61 620 5 0.2160

Airlines-Europe (Air-EU) Neutral 476 3068 75 0.0139

Airlines-Asia (Air-Asia) Neutral 348 1281 63 0.0125

Airlines-SouthAmerica (Air-SAM) Disassortative 129 272 13 −0.0141

Airlines-NorthAmerica (Air-NAM) Disassortative 528 1699 33 −0.0052

Fig. 4. The number of cores remaining in the network after a percentage of nodes are
removed. Two types of removal are performed 1) sorted attack based on MultiCoreRank

and 2) uniformly random attack. (1) and (2) correspond to the two assortative net-
works, (3) and (4) correspond to the two neutral networks, and (5) and (6) correspond
to the two disassortative networks.

4.3 Effectiveness of the Proposed Centrality

To evaluate the effectiveness of our method, we calculated the Spearman’s Coef-
ficient between our measurement and other node centralities. The results are
shown in Table 3. We found that our method correlates the most with overlap-
ping degree (di). This is justifiable since k-core is obtained by removing nodes
that no longer satisfy the degrees given by a coreness vector, leaving only the
nodes with higher degrees. Hence, our method is also based on the degree of a
node. For the assortative and neutral datasets, our method has shown strong cor-
relations with the eigenvector, betweenness, and closeness centralities. However,
with the disassortative datasets, SouthAmerica and NorthAmerica, eigenvector
and betweenness centrality show relatively weak correlation.
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In addition, we compare the effectiveness of our method when random and
influential nodes are removed from the network. Figure 4 simulates the changes
in the network structure when proportions of nodes is removed, which simulate
attacks. In general, the quality of our centrality measure is demonstrated through
the sharp decrease in the number of cores at the beginning of the attacks (i.e.
Figure 4 (3, 4, 5, 6)). This corresponds to the effectiveness of our method in
identifying highly influential nodes because removing them caused significant
structural changes.

4.4 Influence Robustness of Nodes

Continuing on the node removal experiment from the previous section, we also
analyse the impact on the overall network assortativity when nodes are removed.
Figure 5 (1,3,5) shows the change in the percentage of nodes when the influential
nodes are removed in order. Comparing Fig. 5 (1) with (3,5), we see that the
change in the number of remaining cores is less drastic in the assortative networks
when influential nodes are removed. That is to say, 1) assortative networks are
more robust under targeted attacks, 2) the removal of high-influence nodes in a
neutral and disassortative network has a high impact on the network robustness.
On the other hand, when nodes are removed randomly as shown in Fig. 5 (2,4,6),
the network structure does not show visible trends in terms of changes.

Table 4 presents the change in assortativity when a percentage of high-
influence nodes are removed. The assortative networks (C.Elegans, Aarhus)
remained relatively assortative after node removal. The disassortative networks
remained disassortative. The neutral networks remained neutral. However, there

Fig. 5. The change in percentage of cores as a percentage of nodes are removed in dif-
ferent types of networks. The top row shows the sorted attack results. The bottom row
shows the random attack results. The exponential fit on the top row is an exponential
function,y = ae−xb, fitted on the average y-value given by each dataset at each x-value.
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Table 3. Spearman’s rank correla-
tion coefficients between node influ-
ence rankings from our method and
other centrality measures in a com-
plete network.

Dataset di λi bi ci

C.Elegans 0.85 0.65 0.65 0.78

Aarhus 0.82 0.76 0.49 0.81

Air-EU 0.51 0.45 0.38 0.55

Air-Asia 0.76 0.56 0.50 0.72

Air-SAM 0.93 0.29 0.62 0.86

Air-NAM 0.83 0.37 0.49 0.60

Table 4. Calculated coefficients of degree
correlation between network layers follow-
ing the targeted removal of the top 10%,
20%, and 30% of nodes.

Dataset 0% 10% 20% 30%

C.Elegans 0.6414 0.4174 0.4182 0.4315

Aarhus 0.2163 0.2723 0.3364 0.4110

Air-EU 0.0139 0.0061 0.0081 0.0042

Air-Asia 0.0125 0.0065 0.0072 0.0057

Air-SAM −0.0141 −0.0050 0.0005 −0.0273

Air-NAM −0.0052 −0.0042 −0.0057 −0.0062

is a trend in decreasing in assortativity in all types of network. This suggests
that the initial network assortativity is a good indicator of the robustness of a
given network.

Overall, from the above experiments, we can see that, similar to monoplex
networks, assortative networks have shown higher robustness against attack than
neutral and disassortative networks. The change in the overall k-core structure
of the networks is smaller for the assortative networks.

5 Conclusion

In summary we developed a new node centrality measure, MultiCoreRank node
centrality, based on core decomposition in multiplex networks. This measure
takes into account the multi-relation nature of such networks and has shown con-
sistency with existing methods through empirical comparisons. We then analysed
the influence robustness of nodes across different types of multiplex networks:
assortative, neutral and disassortative networks. We found that, in assortative
networks, the k-core structure remains more consistent when nodes of high influ-
ence are removed. However, in neutral and disassortative networks, the number
of k-cores tends to quickly decrease when they are under attack. In future work,
we aim to study defence mechanisms to increase the robustness of multiplex
networks and extend our method to multi-layer networks.
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31. Solá, L., Romance, M., Criado, R., Flores, J., Garćıa del Amo, A., Boccaletti, S.:
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Abstract. In this work, we propose a novel representation of complex
networks, which is compact and enables very efficient network analysis.
Multi-relational networks capture complex data relationships and have a
wide range of applications. As they get to be used with ever larger quan-
tities of data, it is crucial to find efficient ways to represent and analyse
them. This paper introduces the concept of Prime Adjacency Matrices
(PAMs), which utilize prime numbers, to represent the relations of the
network. Due to the Fundamental Theorem of Arithmetic, this allows for
a lossless, compact representation of a complete multi-relational graph,
using a single adjacency matrix. Moreover, this representation enables
the fast computation of multi-hop adjacency matrices, which can be use-
ful for a variety of downstream tasks. We illustrate the benefits of using
the proposed approach through various network analysis tasks.

Keywords: complex networks modeling · graph classification ·
relation prediction · efficient graph analytics

1 Introduction

In recent years, research on complex networks has matured, and they have been
the focus of study in multiple domains, such as biological, social, financial, and
others [1]. This is because they allow us to model arbitrarily complex relation-
ships between the data, thus making them very useful in real-world scenarios
where complex structures arise. The observation that entities (i.e. nodes) in a
complex network may be connected through multiple types of links has resulted
in the study of multi-relational networks and their variants such as multi-layer,
multi-dimensional or multi-plex networks. In this work, we will use the term
complex graph/network as an umbrella term to express all kinds of data collec-
tions, that can be represented through triples of the form (h, r, t), where h and
t correspond to head and tail entities and r is the relation connecting them.

The goal when analyzing such graphs is to generate insights by aggregating
the information expressed through each relation. There are many approaches to
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1143, pp. 75–86, 2024.
https://doi.org/10.1007/978-3-031-53472-0_7
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analyzing networks for different downstream tasks, such as generating embed-
dings for the nodes and the relations in the graph [20], symbolic method-
ologies [7] and more recently graph neural networks [24]. However, many of
these approaches make use only of the direct relations between entities, without
being able to capture relations that are expressed through multiple hops in the
graph [14]. Moreover, in many domains [5,10] the paths connecting entities are
useful for identifying the true nature of their relationship, the role of each entity,
and finally help with the task at hand. Due to these requirements, there is a need
for a framework that will facilitate easy and fast calculations of representations
that capture the rich multi-hop information of the network.

To this end, we propose the Prime Adjacency Matrix (PAM) representa-
tion for complex networks. This representation compacts, in a lossless manner,
all one-hop relations of the original network in a single adjacency matrix. By
mapping each relation type to a distinct prime, we can construct the PAM in a
manner that allows us to express all the information of the original graph without
loss. Then, having at our disposal one adjacency matrix for the whole graph, we
can easily calculate its powers and generate multi-hop adjacency matrices for the
graph. This process is very fast and can scale easily to large, complex networks
that cover many real-world applications.

These higher-order PAMs contain multi-hop information that is easily acces-
sible; simply by looking up the values of the matrices. We motivate multiple
scenarios where this representation can be used to generate structurally rich
representations for graphs, nodes, pairs of nodes, etc. In this first exposure to
the new representation, we design simple processes and present experimental
results on tasks such as graph classification and relation prediction.

The main contributions of this work are the following:

– We introduce a new paradigm for representing complex networks in a single
adjacency matrix using primes. To the best of our knowledge, this is the first
work to model the full multi-relational graph in a single adjacency matrix in
a lossless fashion.

– We use this compact representation for the fast calculation of multi-hop adja-
cency matrices for the complex graph, emphasizing its value for network anal-
ysis.

– We showcase the usefulness of the framework by conducting experiments on
relation prediction and graph classification, where we greatly improve runtime
using simple models while performing on par with commonly used models.

The rest of the paper is structured as follows: Sect. 2 introduces the PAM
framework in detail. Then we present its application on different downstream
tasks in Sect. 3. Finally, in Sect. 4, we summarize the main aspects of the novel
method and propose future work.1

1 The code and related scripts can be found in https://github.com/SubmissionUser/
CN PAM.

https://github.com/SubmissionUser/CN_PAM
https://github.com/SubmissionUser/CN_PAM
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2 Methodology

In this section, we introduce the proposed framework and highlight its main
features.

2.1 Definition

Let us start with an unweighted, directed, complex graph G, with N nodes and R
unique relation types. We can represent all possible edges between the different
nodes with an adjacency tensor A of shape N × N × R:

A[i, j, r] =

{
1, if r connects nodes i, j

0, otherwise
(1)

We now associate each unique relation type r ∈ R with a distinct prime number
pr, through a mapping function ϕ, such that: ∀r ∈ R : ϕ(r) = pr, where pr is
prime and pi = pj ⇐⇒ i = j. This mapping function is a design choice and
simply allocates distinct prime numbers to each r ∈ R. In its simplest form,
we would randomly order the relations and allocate the first prime to the first
relation, the second prime to the second one, and so forth.

With this mapping in place, we can construct the Prime Adjacency Matrix
(PAM) P of shape N × N in the following form:

P [i, j] =

⎧⎪⎨
⎪⎩

∏
r:A[i,j,r]=1

pr, if ∃r : A[i, j, r] = 1

0, if ∀r : A[i, j, r] = 0
(2)

As we can see in Eq. (2), each non-zero element P [i, j] is the product of the
primes pr for all relations r that connect node i to j. Due to the Fundamental
Theorem of Arithmetic (FTA), we can decompose each product to the original
primes that constitute it (i.e. the distinct relations that connect the two nodes),
thus preserving the full structure of G in P without any loss.

We will also define here P+, a variant of the above matrix, which aggregates
the relations between two cells through their sum instead of their product, as
shown in Eq. (3):

P+[i, j] =

⎧⎪⎨
⎪⎩

∑
r:A[i,j,r]=1

pr, if ∃r : A[i, j, r] = 1

0, if ∀r : A[i, j, r] = 0
(3)

As a note here, if each pair of nodes i, j exhibits at most one relation between
them (i.e. only one edge connects them directly), we can see that P = P+, from
Eq. (2) and Eq. (3).
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2.2 A Simple Example

Let us consider a simple toy graph, as the one shown in Fig. 1, where we have
5 nodes and 3 types of relation mapped to 3 (green), 5 (blue) and 7 (magenta),
accordingly. The resulting PAM would be (with node A corresponding to index

0, node B to index 1, and so forth): P = (
0 3 5 0 0
0 0 0 0 5
0 7 0 0 0
3 7 3 0 0
0 0 0 7 0

).

Fig. 1. A toy complex graph with 5 nodes and 3 types of relation.

Hence, for the edge A
3−→ B we have P [0, 1] = 3, for A

5−→ C we have
P [0, 2] = 5 and so on, expressing all the edges in the graph. Even in this toy
graph, the compact PAM representation facilitates interesting observations. For
example, we can see all the incoming/outgoing edges and their types by simply
looking at the corresponding columns/rows of P . So, looking at P [0, :] and P [:, 0]
we see that node A has two outgoing edges (i.e. non-zero elements) of types 3 and
5, and one incoming edge of type 3. Another graph property that can be easily
inferred is the frequency of different relations. If we simply count the occurrences
of the non-zero elements of P , we get the distribution of edges per relation type,
which is {3 : 3, 5 : 2, 7 : 3}.

2.3 Moving to Multi-hop Relationships

Having a single adjacency matrix for the whole G allows us to utilize tools from
classical network analysis. Most importantly, we can easily obtain the powers
of the adjacency matrix. In a single-relational and unweighted network, the ele-
ment (i, j) of the power k of an adjacency matrix, contains the number of paths
of length k from node i to node j. Generalizing this property to the PAM rep-
resentation, where each value in the matrix also represents a specific type of
the relation, the values of P k[i, j] allow us to keep track of the relational chain
linking two nodes.

For instance, the second-order PAM for the example graph of Fig. 1 will be:

P 2 = P × P = (
0 35 0 0 15
0 0 0 35 0
0 0 0 0 35
0 30 15 0 35
21 49 21 0 0

).
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Let us examine the values of this matrix, by starting with the node pair (A, B)
for which we have P 2[0, 1] = P 2[A,B] = 35. We can see from Fig. 1, that we
can get from node A to node B in two hops only through node C, by following
the directed path A

5−→ C
7−→ B. The relations 5 and 7 that are exhibited along

this 2-hop path, are directly expressed in the value of P 2[A,B] = 35, through
its prime factors, as 35 = 5∗7. The same goes for the rest of the matrix: there is
P [A,E] = 15 = 3∗5 corresponding to A

3−→ B
5−→ E, and also P [E,A] = 21 = 7∗3

corresponding to E
7−→ B

3−→ A, and so on. Hence, using this representation the
products in P k express the relational k-chains linking two nodes in the graph.

It is also important to note the case of P 2[D,B] = 30, which is the sum
of the two possible paths 30 = 9 + 21 = 3 ∗ 3 + 3 ∗ 7, corresponding to paths
D

3−→ A
3−→ B and D

3−→ C
7−→ B accordingly. This case shows that each cell

(i, j) in P k aggregates all “path-products” of k-hops that lead from i to j. This
is aligned with the notion of adjacency matrix powers in classical graph theory,
with the added benefit of encoding the types of relations in the value of the cell.

Moreover, we can easily extract structural characteristics for nodes, pairs,
subgraphs, and the whole graph, by looking up these higher-order PAMs. For
instance, we can calculate the frequency of the two-hop paths as in the one-
hop case, by simply counting the occurrences of non-zero values in P 2, which
in this case are: {15 : 2, 21 : 2, 30 : 1, 35 : 4, 49 : 1}. These can be used for
further analysis according to the task at hand. In general, k-order structural
characteristics about the graph can be easily extracted through simple operations
on the corresponding P k.

It is important to note that the value P 2[D,B] = 30 could be also decom-
posed into 30 = 15 + 15 = 3 ∗ 5 + 3 ∗ 5, rather than 9 + 21 = 3 ∗ 3 + 3 ∗ 7 which
is the actual case. In this case, without any further validation (e.g. checking
whether the node B has incoming edges of type 5 that would indicate that the
first decomposition is correct), the exact paths can’t be reconstructed using the
value 30 alone. This means that in k-hop PAMs we have some loss of information
(for k > 1, as the 1-hop PAM is lossless as shown in Eq. (2)). As the k-hop PAMs
are lossy by design due to such collisions (i.e. aggregates of different paths that
result in the same sum value) and for computational reasons, we will use P+ as
introduced in Eq.(3) as a starting point for the calculations of P k, as both P
and P+ will result in lossy P k.

To sum up, if we want to represent the full graph G without loss, using a 1-
hop matrix, we will need to use Eq. (2) and generate P . When we are interested
in calculating the k-hop PAMs, it is better to start directly with P+ from Eq. (3).
Nonetheless, these collisions are not so common in real-world scenarios (and can
be greatly reduced with sparsely-spaced primes, which is not the scope of this
work), allowing k-hop PAMs to retain useful information, despite their lossy
nature, as we will showcase in the following section.
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3 Applications

In the following subsections, we will showcase the usefulness of the framework,
first by showcasing its usability and then by utilizing the PAMs to generate
expressive feature vectors for downstream tasks.

3.1 Calculating Prime Adjacency Matrices

To showcase the usability of the PAM representation and the simplicity of
the calculations needed, we used some of the most common benchmark knowl-
edge graphs and generated their P k matrices. Specifically, we experimented on
WN18RR [4], YAGO3-10 [11] FB15k-237 [17], CoDEx-S [13] and HetioNet [6].
The first three are some of the most well-known and commonly used datasets for
link prediction in knowledge graphs, CoDEx-S was selected to showcase results
in a small use case, while, on the other hand, the biomedical knowledge graph
HetioNet was selected as the largest use case (in terms of the number of edges).

Table 1. Main characteristics of KG datasets and the time needed to calculate the
corresponding P 5 PAMs.

Dataset N R # Edges P 5 (sec.)

CoDEx-S 2,034 42 32,888 0.2

WN18RR 40,493 11 86,835 0.3

FB15k-237 14,541 237 272,115 39.0

YAGO3-10 123,182 37 1,079,040 23.9

HetioNet 45,158 24 2,250,197 213.2

The basic characteristics of the datasets can be seen in Table 1, along with the
total time needed to set up PAM and calculate all PAMs up to P 5. We can see
that for small and medium-scale KGs the whole process takes less than a minute.
Interestingly, the time needed to calculate P 5 for HetioNet is disproportionately
longer than for YAGO3-10, which is of comparable size, and this is mainly due to
the structure of the dataset. It is 5 times denser, leading to denser PAMs, which
takes a toll on the time needed for their calculation. Still, the whole process is
completed in a matter of minutes. As a final note here, we have not optimized
the generation procedure for PAMs, and we simply multiply sparse matrices
iteratively.

3.2 Relation Prediction

The first task which we will tackle using PAMs is relation prediction. This task
consists of predicting the most probable relation that should connect two existing
nodes in a graph. Essentially, we need to complete the triple (h, ?, t) where h is
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the head entity and t is the tail entity, by connecting them with a relation r
from a set of known relations.

Our idea is that we can use the PAMs to construct expressive feature vectors
for each pair, as they contain complex relational patterns. To this end, we devised
a nearest neighbor scheme, where for each training sample (h, r, t), the pair (h, t)
is embedded in a feature space as a point and r is used as a label for that point.
This feature space is created by the user utilizing the PAMs as shown next.
At inference time, given a query pair (hq, tq), we embed it in the same space
and the missing relation is inferred via the labels (i.e. relations) of its nearest
neighbors. Because of the simplicity of this approach (no trainable parameters),
the representation of the pairs must be rich enough to capture the semantics
needed to make the correct prediction.

To create such a representation for a given pair of nodes (h, t) we designed a
simple procedure, that utilizes both information about the nodes h, t, and the
paths that connect them. Specifically, the feature vector for a pair (h, t) is simply
the concatenation of the representations for the head node, the tail node, and
the paths that connect them. More formally, we express this as:

R(h, t) = [Path(h, t)‖Path(t, h)‖R(h)‖R(t)] (4)

where Path(h, t) denotes the feature vector of the path connecting h to t, R(x)
denotes the feature vector of node x and the symbol ‖ denotes the concatenation
of vectors.

Fig. 2. The construction of the feature vector of the pair (0, 1) for the graph in Fig. 1,
using the PAMs up to P 3. On the left side, we see the PAM matrices, while on the
right side the feature vector construction process. From top to bottom, we have the pair
features, the node features, and the final pair representation, which is the concatenation
of the individual vectors.
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This procedure is highlighted in Fig. 2 for the pair (0, 1) of the graph in Fig. 1.
First, we create the feature vectors for the paths that connect the head to the
tail and vice versa. The feature vector Path(h, t) is simply a k-sized vector where
each cell contains the corresponding value from the cell P k[h, t], that is:

Path(h, t) = [P [h, t], P 2[h, t], · · · ]
We can see in the top-right of Fig. 2 that creating these path feature vectors is

very easy; essentially accessing the values of the appropriate P k matrix cells. In
the example shown, the green ones correspond to the original path from 0 → 1,
while the blue ones correspond to the inverse path from 1 → 0.

For the feature vectors of the head (tail) entity, we simply keep track of the
products of the non-zero elements of the corresponding row (column), which
essentially expresses the outgoing (incoming) relations and metapaths that the
node exhibits. For the head h (tail t) entity, this simply is:

R(h) = [
∏

P [h, :],
∏

P 2[h, :], · · · ] R(t) = [
∏

P [:, t],
∏

P 2[:, t], · · · ]

The idea of using different representations for the head and the tail (i.e. using
the rows that represent the outgoing paths for the head, versus using the columns
that represent the incoming paths for the tail), accentuates the different roles
these entities play in a relational triple. Finally, using the above representations
for the paths and the entities themselves, we simply concatenate them to create
the final feature vector for the pair as per Eq. (4). In the example of Fig. 2, the
outcome can be seen in the bottom right.

In order to evaluate this model, which we name PAM-knn we will follow
the experimental setup presented in [19]. There, the authors experiment on this
task with 6 KG datasets, but we will focus on the 3 most difficult ones which
were: NELL995 [21], a collection of triples extracted from [3], WN18RR [4], as
introduced in Sect. 3.1, and DDB14, which was created by the authors and is
based on the Disease Database, a medical database containing biomedical entities
and their relationships.

We compare PAM-knn to several widely used graph embedding models,
namely TransE [2], ComplEx [18], DistMult [22], RotatE [16] and QuatE [23].
For a given entity pair (h, t) in the test set, we rank the ground-truth relation
type r against all other candidate relation types according to each model. We use
MRR (mean reciprocal rank) and Hit@3 (hit ratio with cut-off values of 3) as
evaluation metrics, as in the original work. The performance of the competing
models is reported as found in [19]. More details on the models, their hyper-
parameters, and the experimental setup can be found in the original article.
Regarding the hyper-parameters of PAM-knn, namely the number of neighbors
to take into account and the power of k in P k, we used the validation part of
each dataset to perform a simple grid-search and select the optimal ones.

The results of the experiments are presented in Table 2. Once again, our goal
was to highlight the usefulness of the PAM framework using a simple model that
heavily relies on the expressivity of the framework and performs comparably well.
We can see from Table 2 that the simple PAM-knn approach outperformed the
competing models in WN18RR, while in the other 2 datasets its performance
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was not far from the competition. It is important to note here that PAM-knn,
has no trainable parameters and the whole procedure can be completed in a few
minutes on all datasets using a CPU, while the competing models were trained
for hours using a GPU. This can be seen in the last column, where the number
of trainable parameters for each model on DDB14 are reported, which are in the
order of millions for the embedding models, while PAM-knn has none.

Table 2. Results of relation prediction on all datasets. The best results are highlighted
in bold. For DDB14 the number of parameters for each model is shown as well.

NELL995 WN18RR DDB14

MRR H@3 MRR H@3 MRR H@3 # Params

TransE 0.784 0.870 0.841 0.889 0.966 0.980 3.7M

CompleX 0.840 0.880 0.703 0.765 0.953 0.968 7.4M

DistMult 0.847 0.891 0.634 0.720 0.927 0.961 3.7M

RotatE 0.799 0.823 0.729 0.756 0.953 0.964 7.4M

QuatE 0.823 0.852 0.752 0.783 0.946 0.962 14.7M

PAM-knn 0.740 0.843 0.852 0.957 0.915 0.961 0

To sum up, we presented a simple model for relation prediction that relies on
the expressive representations of node pairs, which can be naturally constructed
using the PAMs and, as shown in the results, performs on par with many widely
used graph embedding methodologies. The method is very fast, has no trainable
parameters, and can be used as a strong baseline for relation prediction. We could
devise more sophisticated representations for node pairs or train a model using
the same feature vectors in a supervised setting, but this simple approach serves
to highlight the inherent expressiveness and efficiency of the PAM framework.

3.3 Graph Classification

Another application in which the structural properties of the graph play an
important role is graph classification. There are several ways to use the P k

matrices of a given graph to capture complex relational patterns. In this work,
we propose the following simple procedure. First, we calculate all the PAMs up to
a pre-defined k. Then, from each matrix P k, we calculate the product of its non-
zero values gk =

∏
Pk[i,j]>0

P k[i, j] as a single representative feature for the matrix.

For example, as we can see in the top matrix of Fig. 2, the resulting g1 would be
g1 = 231525, the product of all the primes in the graph (i.e. {3, 3, 3, 5, 5, 7, 7, 7}).
We call this approach PowerProducts (PP).

The intuition behind PP lies in the fact that these non-zero values express the
paths found at that k-hop. By design, the gk number captures the information
of the distribution of different relations and k-hop paths in the graph in a single
number, which acts as a “fingerprint” for the structure of the graph. Having
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generated all individual gk values, up to a certain k, the final feature vector that
represents the graph is simply F (G) = [g1, g2, ..., gk]. By combining all gk in
a feature vector, we aim at capturing the structure of the different sub-graphs
residing in a complex graph.

We experimented with the PP method in the task of graph (binary) classifi-
cation, utilizing the benchmark datasets from [12]. We use the multi-relational
ones, which are mainly small-molecule datasets, with graphs being molecules
exhibiting specific biological activities. It is also worth noting that all the nodes
have labels in these experiments (i.e. the type of the atom). We compared the
PowerProducts approach, in terms of time and accuracy, versus one of the best-
performing graph kernels [9], the Weisfeiler-Lehman Optimal Assignment (WL-
OA) kernel [8]. We opted for comparison with graph kernels, as they are compu-
tationally efficient and not far from the state-of-the-art in these datasets. Sim-
ulating the behavior of graph kernels, we used a Radial Basis Function (RBF)
kernel to calculate the similarity of the graphs given their PP feature vectors.

Moreover, we created a variant that takes into account the node labels, using
a Vertex Histogram (VH) kernel [15]. We call this variant PP-VH, and it sim-
ply is the average of the similarity matrices as generated by the PP and VH
models. This variant will allow us to check the impact of utilizing the node-label
information, which is not used in PP. As this is a classification task, we use a
Support Vector Machine (SVM) (with the similarity kernel precomputed by the
underlying model). We use a nested cross-validation (cv) scheme, with an outer
5-fold cv for evaluation and an inner 3-fold cv for tuning the penalty parame-
ter C of the SVM. The rest of the parameters for WL-OA and VH are left to
their default values, as proposed in [9]. For PP and PP-VH we use k = 3 for all
datasets.

Table 3. Results on graph classification. Firstly, the characteristics of the datasets
are shown (averaged per dataset). Then, the presented values are percentage point
differences in the performance of the proposed models versus the WL-OA kernel.

PP PP - VH

Dataset Graphs Nodes Edges ΔAcc% ΔTime% ΔAcc% ΔTime%

AIDS 2,000 15.69 16.20 −1.45 −99.65 +0.40 −99.44

BZR MD 306 21.30 225.06 +5.66 −94.78 +12.22 −88.42

COX2 MD 303 26.28 335.12 −20.20 −95.79 +0.15 −93.26

DHFR MD 393 23.87 283.01 −16.99 −93.78 −48.90 −18.50

ER MD 446 21.33 234.85 −0.38 −92.10 +7.45 −89.90

MUTAG 188 17.93 19.79 −8.69 −89.88 +2.21 −82.93

Mutagenicity 4,337 30.32 30.77 −28.53 −99.75 −20.23 −95.72

PTC FM 349 14.11 14.48 −2.99 −95.37 −18.06 −67.87

PTC FR 351 14.56 15.00 −10.25 −94.16 +10.97 +234.68

PTC MM 336 13.97 14.32 −18.35 −93.99 −7.73 −27.64

PTC MR 344 14.29 14.69 −9.83 −95.45 −14.39 −72.10
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The results are shown in Table 3. For brevity, we report the percent change
in accuracy ΔAcc% and time ΔTime% of PP and PP-VH over the results of
WL-OA which is used as a strong baseline. In terms of accuracy, the WL-OA
outperforms PP in almost every dataset, except BZR MD. However, PP-VH,
which uses the node-label information, outperforms WL-OA in 6/11 datasets.
The good results of PP-VH indicate that for many datasets in the small-molecule
classification task, structure alone is not sufficient and the types of the atoms
in the molecule play an important role as well. In terms of computational per-
formance, PP takes up only 10% of the WL-OA runtime, across all datasets.
Even when adding the VH kernel, the resulting model is more than 65% faster
than WL-OA in 8/11 datasets. Thus, using the PP-VH variant we can have less
than half of the WL-OA runtime, while also improving the performance in 6/11
datasets.

To sum up, we have proposed a simple graph representation methodology
that capitalizes on the information captured by PAMs and can be used for graph
classification. We showcased its usefulness, as it is (on average) much faster
while also performing comparably or better with one of the best graph kernels.
Moreover, the proposed feature extraction methodology using PAMs is a very
simple one and more sophisticated ones may yield greater results.

4 Conclusions

In this work, we presented the Prime Adjacency Matrix (PAM) framework for
complex networks. It is a compact representation that allows representing the
one-hop relations of a network losslessly through a single-adjacency matrix. This,
in turn, leads to efficient ways of generating higher-order adjacency matrices,
that encapsulate rich structural information. We showcased that the represen-
tations created are rich enough to be useful in different downstream tasks, even
when utilized by simple models. These models perform on par with commonly-
used graph models, while greatly improving the runtime. In the future, we aim
to strengthen the methodology, by addressing details of the framework (e.g. the
effect of the mapping function φ) and experimenting on other downstream tasks.
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Abstract. Finding the k-median in a network involves identifying a sub-
set of k vertices that minimize the total distance to all other vertices in
a graph. While known to be computationally challenging (NP-hard) sev-
eral approximation algorithms have been proposed, most with high-order
polynomial-time complexity. However, the graph topology of complex
networks with heavy-tailed degree distributions present characteristics
that can be exploited to yield custom-tailored algorithms. We compare
eight algorithms specifically designed for complex networks and evaluate
their performance based on accuracy and efficiency for problems of vary-
ing sizes and application areas. Rather than relying on a small number of
problems, we conduct over 16,000 experiments covering a wide range of
network sizes and k-median values. While individual results vary, a few
methods provide consistently good results. We draw general conclusions
about how algorithms perform in practice and provide general guidelines
for solutions.

1 Introduction

The k-median problem is an important and fundamental problem in graph the-
ory, and various application areas. Given a connected network, it seeks to find
k vertices which are the closest (in terms of average distance) to the remaining
vertices in the network graph. This is crucial in the spread of viral messages in
social networks, disease contagion in epidemiological models, operation and dis-
tribution costs for goods and services, marketing and advertising, design layout
of communication networks, and other wide-ranging applications.

Finding such an optimal set of vertices is referred to as the influence max-
imization problem [8] and numerous algorithms have been proposed to address
this issue. Although these algorithms were not explicitly designed for the k-
median problem, they share mathematical similarities, as they attempt to find
influential vertices that are similarly well-connected and can quickly disseminate
information throughout the network. The level of influence can be measured
in various ways, typically employing diffusion models such as independent cas-
cade model [4] or epidemiological models of the Susceptible-Infected (SI) and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1143, pp. 89–101, 2024.
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Susceptible-Infected-Recovered (SIR) [5] types. Formally, the k-median problem
on network graphs has been shown to be NP-hard (in terms of k) by reduction
to the dominant cover problem [7] and is computationally intractable for large
network graphs.

2 Notation and Definitions

Definition 1. k-median problem: Given an integer k and a connected graph
G = (V,E), find a set of S of k vertices that minimize the summation of distances
from S to the remaining vertices of G.

Using d(v, u) as the distance (length of shortest path) between vertices v and u,
we can define the distance d(v, S) between a single vertex and a vertex set S as
the minimum distance between v and any vertex in S. We can then define the
average distance A(S) as

A(S) .=
∑

v ∈ V d(v, S)
|V − S| (1)

In this context, we can restate the k-median problem on a network graph G to
be the identification of a set of k-vertices which minimize the average distance
to the remaining |V | − k vertices:

M∗(k) .= min
|S|=k

A(S) (2)

We refer to M∗(k) as the true optimal value of the k-median problem on a graph
G, and let M(k) denote an approximation to this solution using the methods
described in Sect. 3. When necessary, we use Mmethod(k) to avoid ambiguity.

3 Approximation Algorithms and Related Problems

The field of approximation methods to the k-median problem is quite large.
Resse [17] provides a comprehensive overview of over 100 methods from linear
programming, genetic algorithms, simulated annealing, vertex substitution, and
other approaches. In general, the algorithm with the best guaranteed approxima-
tion ratio is a local search and swap method [1] with provides a bound of 3+2/p
where p is the number of vertices simultaneously swapped. Its computation time
is O(np), where n is the number of vertices. Thus, even for a quadratic-order
complexity O(n2), which is quite limiting for large networks, the best guarantee
we can get is a factor of four from optimal. While these approaches were ade-
quate for small networks, the higher-order polynomial time complexity makes
them unfeasible for networks with thousands or million of vertices [18].

Instead, researchers have turned their attention to algorithms for finding
effective spreaders in connected networks with heavy-tailed degree distributions,
often employing an Susceptible-Infected (SI) or Susceptible-Infected-Recovered



K-Median Algorithms 91

(SIR) model of spread [14,15], where I(t) denotes the number of infected nodes
at time t, and I(0) is the number of initially infected nodes. The k-median can
be thought of a special case of an SI model where the probability of an infected
node transmitting the disease to a susceptible neighbor is 1.0, or an SIR model
with the probability of recovery for each node is 0.0. In which case, the solution
to the k-median problem can be thought of as maximizing the integral of the
number of infected nodes over the propagation steps, starting with k initial
infected vertices.

3.1 Degree Ordering

Approximating the k-median solution as the top k hubs of the network is perhaps
the most straightforward approach:

Xdegree (k) ← argmax[k]
v∈V

deg(v) (3)

The idea here is that the hubs (high-degree vertices) serve as efficient spread-
ers since they are connected to large number of neighbors. This is countered by
the notion that there may be significant overlap among their aggregate neighbor-
hoods, with other vertices potentially covering the graph more effectively. This
is a common criticism of degree ordering for this problem, but our experimental
results show that this may not be as critical an issue in practice (see Sect. 6).

3.2 Extended Degree Ordering

A more sophisticated approach is the extended degree ordering, which measures
the sum of degrees for neighboring vertices, and uses the top k values as an
approximation of the k-median solution:

Xdegree+ (k) ← argmax[k]
v∈V

∑

x∈N(v)

deg(x) (4)

This is a semi-local algorithm, utilizing more information about the network’s
topology by analyzing the second-level neighborhood, i.e. neighbors of neighbors.
The motivation for this centrality measure is that it uses more information about
the graph topology and can lead to an improved metric for identify candidate
vertices for the set S.

3.3 PageRank Ordering

PageRank is a variant of the eigenvalue centrality, which treats the network as
a flow graph and values vertices with high eigenvalues. It is the basis for some
commercial web search engines. [14]. Given a damping factor, 0 ≤ δ ≤ 1, the
PageRank centrality is given as the convergence of the iteration

PageRank(v) = (1 − δ) + δ
∑

u∈N(v)

PageRank(u)
deg(u)

(5)
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typically a value of δ = 0.85 is used in these calculations [14]. The corresponding
approximation for the k-median solution is

XPRank (k) ← argmax[k]
v∈V

PageRank(v) (6)

3.4 VoteRank Ordering

A method developed by Zhang et al. [18], is the VoteRank algorithm, which uses
an iterative voting methodology to determine the best influencer nodes. Each
vertex i has a pair of values (Si, Ti) denoting the collective (incoming) votes
from neighbors Si and the number of (outgoing) votes to give out in each voting
round, Ti. At each voting round (complete pass through the graph) a vertex with
the maximum (incoming) vote score is selected (i∗) and its (S∗

i , T ∗
i ) values are

set to zero, effectively taking it out of future voting in subsequent rounds. The
neighbors of vertex i∗ have their respective Ti votes reduced by a fixed value f ,
and the process is repeated until k vertices are found. In their paper, the authors
use f = 1/〈d〉, where 〈d〉 is the average degree of the graph, and this value is
fixed throughout the algorithm. Typically, one would choose f such that kf � 1
but this implementation does not allow the Ti values to go negative. The VRank
k-median approximation is given by

XVRank (k) ← argmax[k]
v∈V

VoterRank(v) (7)

3.5 Coreness Ordering

Another vertex centrality measure that has been proposed for finding effective
spreaders is based on the degeneracy of network graphs. The i-core of a graph
is collection of connected components that remain after all vertices with degrees
less than n have been removed. (This is often referred to as the k-core of a graph
in the literature, but we use i to avoid conflict with the k used in the k-median
formulation.) To compute the i-core of a graph, we remove all vertices of degree
i − 1 or less. This process is repeated until there are no vertices of the graph
with degrees less than n. The notion here is that vertices in higher value i-cores
represent the inner backbone of the network, as opposed to lower-valued i-cores
which lie at its periphery, and serve as better-connected vertices to efficiently
spread information throughout the network. The core-number of a vertex is the
largest value i which it belongs to the i-core of the graph. Although one could
use this centrality to identify candidate vertices [9], one problem that has been
noted is that the core values of the highest vertices are often the same and hence
are not distinguishable to form a proper ordering [2]. To remedy this, a slightly
extended centrality has been proposed that replaces the i-shell value of a vertex
with the sum of its neighbors’ core-number. That is, if c(v) is the core-number
of v, then the core algorithm is

Xcore (k) ← argmax[k]
v∈V

∑

u∈N(v)

c(u) (8)
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3.6 Extended Coreness Ordering

Extensions to the C(v) centrality have also been proposed [2] as an improved
measure for influence. In a similar manner to deg+, neighborhood coreness, or
core+, uses the values of its neighbor’s core centrality. We refer to this algorithm
as core+

Xcore+ (k) ← argmax[k]
v∈V

∑

u∈N(v)

C(u) (9)

3.7 H-Index Ordering

The Hirsch index or H-index [6], originally intended to measure the impact of
authors and journals by way of citations, has also been studied as centrality
to measure ranking of influence and its relation to other centralities [12]. The
original measure for an author or journal was determined as the number of n
publications that have at least n citations. In terms of a network graph, the
Hirsch index of a vertex v, given as H(v), can be represented as the maximal
number of n neighbors that each have at a degree of n or more. That is, if h(v, n)
is the number of neighbors of v with degree at least n,

h(v, n) .= {e | deg(e) ≥ n, e ∈ N(v)} (10)

then
H(v) .= max

n
{|h(v, n)| ≥ n} (11)

The k-median approximation can be then be given as the H-index algorithm:

XH−index (k) ← argmax[k]
v∈V

H(v) (12)

3.8 Expected Value (Random)

The mean average-distance of every k-element vertex set is simply the expected
value of all possible combinations:

E∗(k) .=
1

(|V |
k

)
∑

|S|=k

A(S) (13)

That is, the average value of a random guess chosen from a uniform distribution
of all

(|V |
k

)
possible sets. This can be computed exactly by brute force for small

networks and small k-values. For larger cases, the expected value is approximated
by sampling a finite subset of these possibilities and use of the Central Limit
Theorem (CTL).
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4 Experiments and Methodology

For these experiments, we focused on connected simple graphs that were undi-
rected, unweighted, with no self-loops or multi-edges. This represents the least
common denominator for graph topologies, as not all datasets have edge weights
and other metadata. Directed graphs were represented as undirected by making
each edge bi-directional. For disconnected networks, we used the largest con-
nected component. Additionally, the input networks had their vertices renum-
bered to be contiguous for optimized operations, and therefore did not necessarily
match the vertex numbers in the original sources.

Table 1. Application network topologies used in this study (largest connected compo-
nent of undirected graph). The average degree is 〈d〉 and the maximum degree is Δ.

Network Application |V | |E| 〈d〉 Δ Δ/〈d〉
Zebra animal contact network 23 105 9.13 14 1.5

Dolphin animal contact network 62 159 5.13 12 2.3

Terrorist network social network 64 243 7.59 29 3.8

High School social network 70 274 7.83 19 2.4

MIT students mobile social network 96 2,539 52.90 92 1.7

Hypertext 2009 social interaction 113 2,196 38.9 98 2.5

Florida ecosystem wet food network 128 2,075 32.42 110 3.4

PDZBase metabolic network 161 209 2.59 21 8.1

Jazz collaboration network 198 2,742 27.79 100 3.6

GE 200 top-level web graph 200 1,202 12,02 124 10.3

Chevron 200 top-level web graph 200 5.450 54.50 189 3.5

Abilene218 computer network 218 226 2.07 10 4.8

Bethesda top-level web graph 255 422 3.31 81 24.5

C. Elegans neural network 297 2,148 14.46 134 9.3

NetScience co-authorship 379 914 4.82 34 7.0

Arenas-email email communications 1,133 5,451 9.62 71 7.4

FAA air traffic infrastructure 1,226 2,408 3.9 34 8.6

Human protein protein interaction 2,217 6,418 8.94 314 26.5

ca-GrQc co-authorship 4,158 13,422 6.46 81 12.5

ca-HepTh co-autorship 8,638 24,806 5.74 65 11.3

ca-HepPh co-authorship 11,204 117,619 23.38 491 21.0

ca-CondMat co-authorship 21,363 91,286 8.54 279 32.6

email-Enron email communications 33,696 180,811 10.73 1,383 128.9

cit-HepPh citation network 34,401 420,784 24.46 846 34.6

flickrEdges online social network 105,722 2,316,668 43.83 5,425 123.8

email-EuAll email communications 224,832 339,925 3.02 7,636 2,525.3

com-YouTube online social network 1,134,890 2,987,624 5.27 28,754 5,631.3

soc-Pokec online social network 1,632,803 22,301,964 27.32 14,854 543.8

soc-LiveJournal online social network 4,846,609 42,851,237 17.68 20,333 1,149.9
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The dataset comprised a wide range of application areas, including social,
mobile, metabolic, neural, email, biological, and collaboration networks listed
in Table 1. Examples were collected from network databases Konect [10],
SNAP [11], and UC Irvine [3], as well as several webgraphs generated by exam-
ining public websites. Network sizes ranged from less than 100 vertices (for exact
verification of k-median problems) to networks with over 1 million vertices, with
most networks containing several thousand vertices. This study focused on 32 of
these networks, comparing the eight algorithms from Sect. 3 for k-values from 1
to 100, resulting in roughly 16,000 experiments of graph, algorithm, and k-value
combinations. This provided a clearer view of the performance landscape and
algorithm behavior.

Table 2. Average error (%) to true-optimal for small graphs (1 ≤ k ≤ 5)

Network random degree degree+ VRank PRank core core+ H-index

Abilene218 68.9 11.1 3.4 10.2 54.0 4.4 3.4 8.4

USAir87 60.0 2.6 2.7 2.6 3.1 2.7 2.7 10.7

ca-HepTh 46.4 4.7 5.8 4.7 4.7 26.2 26.2 34.9

ca-netscience 68.6 32.7 65.3 18.0 17.0 56.0 67.0 66.8

celegans 50.2 1.8 2.1 1.8 3.3 1.8 2.1 25.9

faa 48.4 10.7 5.0 10.7 8.9 4.8 5.3 12.6

foodweb florida wet 53.8 5.6 5.6 5.6 5.6 5.6 5.6 5.0

hypertext 2009 38.8 3.3 0.6 3.0 3.3 0.6 0.6 7.5

jazz 43.7 7.7 10.1 7.7 5.8 10.1 10.1 15.0

pdzbase 64.3 10.7 22.9 10.7 10.7 20.0 14.2 32.6

Computational experiments were conducted on a desktop workstation, run-
ning Ubuntu Linux 5.15.0-46, with an AMD Ryzen 7 1700x (8-core) proces-
sor running at 3.4 GHz, and outfitted with 32 MB of RAM1. The algorithms
were coded in C++, and compiled under GNU g++ 11.1.0 with the following
optimization and standardization flags: [-O3 -funroll-loops -march=native
-std="c++11"]. Modules were used from the NGraph C++ library and Network
Tookit [16], as well as optimized C++ implementations of algorithms noted in
the paper.

5 Results

The results of the computational experiments on real networks showed significant
variations. Despite claims made for any particular approach, we did not see a
1 Certain commercial products or company names are identified here to describe our

study adequately. Such identification does not imply recommendation or endorse-
ment by the National Institute of Standards and Technology, nor does it imply that
the products or names identified are necessarily the best available for the purpose.
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single method consistently producing a winner in every case. Instead, we were
presented with trade-offs for varying network topologies. Nevertheless, we were
able to form general observations about the expected behavior on classes of
networks and provide some guidelines for choosing appropriate methods.

5.1 Comparisons with Optimal k-median solutions

For small networks, we compared the accuracy of the approximation algorithms
by running them for various values, up to k = 5, except where limited by the
computation effort. The results reveal several interesting patterns: (1) guessing
a solution (random) performs, on average, within a factor of 2 from optimal, (2)
for k > 2 some approximation methods (degree+, core, core+, H-index) can
perform worse than random guessing, (3) most methods (excluding random)
stay within a 1.5 factor of optimal, (4) VRank and PRank seem to be perform
best, staying within 1.2 of optimal for 1 ≤ k ≤ 5, and (5) core, core+, and
H-index, typically perform worse, underperformed only by random.

The C. Elegans network, for example, shows extremely good approximations
(relative error less than 5%) for all methods, except for random and H-index. In
the Abilene218 network, we encounter quite different behavior: the PRank method
performs substantially worse than every other one, except random guessing. This
is in sharp contrast to other examples, where VRank and PRank methods perform
similarly and are often outperformed other algorithms. Finally, the USAir87
network illustrates that the approximation algorithms are capable of calculating
good-quality solutions (even H-index) that are significantly better than random
guessing.

Table 3. Ranking of methods by actual error (%) in small graphs: average relative
errors for each method in Table 2

method error (%)

VRank 7.5

degree 9.1

PRank 11.6

degree+ 12.3

core 13.2

core+ 13.7

H-index 21.9

random 54.3

Table 2 provides a tabular form of similar results from a larger study of 10 net-
works. From this data we see that the behavior of these methods on real networks
can vary significantly. Ignoring random and H-index momentarily, the remain-
ing competitive methods can be quite accurate for these networks. For example,
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C Elegans, hypertext 2009, USAir87 and foodweb florida wet all exhibit approxi-
mations that are within 5% of optimal. The ca-netscience network was the sole
outlier, with the best methods of the group exhibiting roughly a 20% error.

Taking the average error for each method across the networks we arrive at
(Table 3) illustrating that VRank performed the best overall, with the other meth-
ods not too far behind. In this experiment, degree+, core, and core+ did not per-
form as badly, while H-index and random fared significantly worse. This table rep-
resents the analysis for small network comparisons with exact solutions. It illus-
trates that the top methods generally work quite well, typically within 10% to 20%
of optimal and seem reasonable candidates for testing on larger networks.

5.2 Case Studies: Million-Node Networks

Here we focus on three larger examples with millions of vertices and edges used in
the study of large social networks [13]. For the YouTube network (V = 1,134,890
E = 2,987,624), the various heuristics perform about the same: roughly 35% better
than a random guess. In this case, all methods yield nearly identical values, and
one can simply use the fastest one (degree) to generate competitive results.

Table 4 lists the how each method ranked in the top 1%, 10%, and 100% of
solutions. For example, degree scored in the top 10% solutions about 3/4 of
the time, while random guessing always remained within a factor 2 of the best
solution. Using the fastest method (degree) as a reference, we see that VRank
and PRank provided the best solutions, but at a computational cost of nearly
three orders of magnitude.

Similar results are seen for the soc-pokec social network (V=1,632,803,
E=22,301,964). From these two examples, one may be tempted to conclude that
the algorithms perform equally well for large networks. However, computations
for the LiveJournal social network (V=4,846,609 E= 42,851,237) show a signif-
icant difference between various methods, with PRank, VRank, and degree per-
forming better than most other heuristics and roughly 30% better than random.

Table 4. Percentage of cases where each method scored within x% of best solution
(k = 1, . . . , 100) for million-vertex network (YouTube). Nearly all methods are within
a factor of two of best solution.

method 0% (best) 1% 10% 100%

degree 12.5 24.0 75.7 100.0

degree+ 8.5 11.5 42.7 99.9

VRank 20.4 44.2 91.9 100.0

PRank 18.5 33.7 91.6 100.0

core 9.1 15.5 50.1 99.0

core+ 6.3 8.7 41.0 97.8

H-index 3.9 6.0 39.7 95.5

random 0.6 3.1 12.3 99.4



98 R. Pozo

5.3 Overall Results

Table 5 describes the overall performance of approximation algorithms on the 32
networks under consideration. The values are described as relative error to the
best solution for each method. For example, a value of 10 signifies that particular
method performed on average within 10% above the best possible heuristic for
each k from one to one hundred. From here we see that VRank and PRank come
in first and second position, respectively, for the majority of cases while degree
comes in a close third position.

Table 5. Quality of methods for large graphs (k = 1, 2, . . . 100). Relative performance
(%) from best solution. A value of 10 signifies that on average that method performed
10% above best possible value from all heuristics.

Network degree degree+ VRank PRank core core+ H-index random

Abilene218 8.2 11.1 3.2 10.1 8.6 12.8 13.4 79.7

USAir87 10.0 18.1 0.4 1.8 18.0 18.9 19.7 43.7

amazon0302 0.5 3.0 0.3 0.4 0.8 3.0 3.9 48.0

areans email 3.3 9.4 0.0 0.8 7.3 11.1 10.9 30.9

as20000102 1.4 12.5 0.0 0.5 4.5 11.4 7.0 76.1

bethesda 3.6 10.9 0.8 1.5 17.4 11.5 40.7 76.8

ca-CondMat 4.3 11.3 1.3 0.0 11.6 13.9 12.6 40.0

ca-GrQc 40.1 51.3 1.3 1.4 51.7 51.7 56.2 37.9

ca-HepPh 11.7 13.1 1.4 1.1 14.1 14.7 16.6 20.2

ca-HepTh 4.8 21.1 0.2 0.9 61.5 63.0 47.4 34.4

ca-netscience 12.6 34.9 0.3 3.2 35.6 59.5 48.0 50.9

celegans 0.9 6.9 0.1 0.9 1.6 6.6 7.8 25.0

chevron top200 0.0 0.5 0.0 0.0 0.5 1.1 1.1 7.8

cit-HepPh 3.2 11.3 2.3 0.0 8.8 15.2 18.8 38.6

com-youtube 0.8 2.7 0.1 0.4 2.5 3.2 3.6 51.3

dlmf 3.1 7.6 0.0 2.0 8.5 7.5 8.3 67.2

email-Enron 2.7 11.6 0.7 0.4 9.0 12.1 13.3 59.1

email-EuAll 2.4 11.8 2.4 3.2 5.0 10.5 12.5 66.9

faa 8.6 31.0 0.7 1.8 18.0 41.1 30.8 40.3

flickrEdges 8.2 79.4 2.3 0.5 88.8 89.2 89.5 35.6

foodweb florida wet 0.1 0.6 0.1 0.1 0.4 0.7 1.5 8.7

ge top200 3.0 14.3 0.3 0.3 9.4 17.4 22.8 36.0

human protein gcc 2.7 30.4 0.1 1.3 6.2 30.0 20.6 58.4

hypertext 2009 0.3 0.0 0.3 0.3 0.0 0.0 0.8 8.5

jazz 5.1 12.4 1.2 0.1 14.2 14.8 13.6 11.2

p2p-Gnuetalla31 0.3 1.5 0.0 1.5 0.6 2.6 5.5 32.3

pdzbase 7.1 69.6 0.1 3.7 19.3 70.9 55.2 71.1

roadNet-PA 8.8 17.5 8.7 1.2 19.1 32.1 351.3 3.5

soc-Epinions 1.2 4.0 0.1 0.2 3.3 4.4 5.0 48.8

soc-Slashdot0922 0.8 1.8 0.2 0.5 1.1 2.8 3.6 45.8

web-Stanford 2.2 21.3 0.8 0.7 12.4 20.9 26.5 37.0

wiki-Vote 1.6 2.0 0.6 0.1 2.8 2.0 2.2 38.5



K-Median Algorithms 99

Table 6. Efficiency of k-median approximations on large networks: computation time
(secs)

Network degree degree+ VRank PRank core core+ H-index random

soc-LiveJournal 0.01 0.8 50.8 35.2 5.4 11.5 5.6 166.9

soc-pokec 0.01 0.5 24.4 20.0 2.2 4.7 3.28 62.5

com-youtube 0.01 0.04 2.1 1.4 0.1 0.32 0.75 7.0

Table 7. Ranked performance of k-median approximations. A value of x signifies that
Mmethod (k), on average, was within x% of the best solution for each graph and k-value
combination from Table 5.

method performance (%)

VRank 0.9

PRank 1.3

degree 5.1

core 14.4

degree+ 16.7

core+ 20.5

H-index 30.3

random 41.6

Table 7 summarizes these results, where we compute the overall error
of each method from the best solution for each k-value. For example, degree is
typically about 5% greater than the best solution, while random produced, on
average, a solution that was less than 50% greater than the best algorithm.

6 Conclusion

We have compared eight k-median approximation methods for various k-values
(typically 1 to 100) on 32 networks over a diverse range of application areas. After
conducting thousands of experiments, we have observed patterns and formulated
guidance for solving the k-median problem on a broad range of application net-
work problems. Overall, these approximation algorithms are efficient and some
can produce good-quality solutions on complex networks. However, they do not
replace traditional methods[17] for general graphs without heavy-tailed degree
distributions.

We have demonstrated that the algorithms in this study can indeed yield
high-quality results on smaller networks where we can compute the optimal
solution explicitly (Sect. 5.1, Table 3) with degree, VRank, and PRank achieving
roughly a 1.1 factor of the true solution. By contrast, the best algorithms for
general graphs provide a guaranteed factor of 3 or higher.
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For larger networks, the exact optimal solution is not computationally
tractable and we can only compare the approximation methods against them-
selves, and one may reach an incomplete or premature conclusions by examining
only a small number of networks. Exploring a larger and more diverse dataset,
however, reveals certain patterns that aid in algorithm choices.

Like many approximation heuristics, the practical question comes down to a
trade-off between performance (computational cost) and quality of solution. If
one is willing to accept a factor of 2 from the best methods, then simply choosing
k random vertices from an uniform distribution may suffice. (This may come as a
unexpected result, as hard problems typically do not behave in this manner.) If a
higher quality solution is need, then we can consult Table 7 which summarizes the
results of over 16,000 experiments. Here we see that VRank and PRank perform,
on average, within about a 1.01 factor of the best method in every k-value in the
[1:100] range. The simple degree method yields results on average within about
1.05 factor of the best method while exhibiting a performance speedup of three
orders of magnitude over VRank and PRank.

Thus, we can form a general best-practices guide for choosing the appropriate
algorithms:

– if a quality factor of 2 is sufficient, choose k random vertices from uniform
distribution (random)

– if a better quality solution is needed, choose the top k hubs (degree)
– if quality still not sufficient, use VRank or PRank for slight improvement (at a

102 to 104x computational cost)

In practice, these approximation algorithms remain efficient, even for networks
containing millions of elements. The more expensive algorithms (VRank, PRank)
require about a minute to approximate k-median solutions for up to k = 100 on a
personal computer (Table 6). Thus, one possible approach would create an amal-
gamate super-algorithm which would run the seven methods (degree, degree+,
VRank, PRank, core, core+, H-index) concurrently and choose the best one for
each k-value. A final step could compare this to the expected value (random)
to give an indication how well the approximation methods have improved the
solution.

In summary, the methods presented here do a reasonable job at estimating
the k-median problem on complex networks. Despite the challenges of this fun-
damental problem, these methods provide a reasonable approximation and can
be used efficiently to formulate approximations to this important problem, pro-
viding researchers with practical tools in studying large-scale complex networks.
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Abstract. In the study of the behavior of centrality measures with
respect to network modifications, score monotonicity means that adding
an arc increases the centrality score of the target of the arc; rank mono-
tonicity means that adding an arc improves the importance of the target
of the arc relative to the remaining nodes. It is known [7,8] that score and
rank monotonicity hold in directed graphs for almost all the classical cen-
trality measures. In undirected graphs one expects that the correspond-
ing properties (where both endpoints of the new edge enjoy the increase
in score/rank) hold when adding a new edge. However, recent results [6]
have shown that in undirected networks this is not true: for many cen-
trality measures, it is possible to find situations where adding an edge
reduces the rank of one of its two endpoints. In this paper we introduce a
weaker condition for undirected networks, semi-monotonicity, in which
just one of the endpoints of a new edge is required to enjoy score or
rank monotonicity. We show that this condition is satisfied by closeness
and betweenness centrality, and that harmonic centrality satisfies it in
an even stronger sense.

1 Introduction and Definitions

In this paper we discuss the behavior of centrality measures in undirected net-
works after the addition of a new edge. In particular, we are interested in the
following question: if a new edge is added to a network, does the importance of
at least one of its two endpoints increase? This question was left open in [6],
where the authors proved that for many centrality measures it is possible to find
situations where adding an edge reduces the rank of one of its two endpoints.
Note that these results are in jarring contrast with the corresponding properties
for directed networks, where it is known [7,8] that score and rank monotonicity
hold for almost all centrality measures.

Formally, in this paper we introduce semi-monotonicity, a weaker condition
than monotonicity for undirected networks in which we require that at least
one endpoint of the new edge enjoys monotonicity. Score semi-monotonicity, in
particular, means that adding a new edge increases the score of at least one of
the two endpoints:
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1143, pp. 102–113, 2024.
https://doi.org/10.1007/978-3-031-53472-0_9
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Definition 1 (Score semi-monotonicity). Given an undirected graph G, a
centrality c is said to be score semi-monotone on G iff for every pair of non-
adjacent vertices x and y we have that

cG(x) < cG′(x) or cG(y) < cG′(y),

where G′ is the graph obtained adding the edge x— y to G. We say that c is
score semi-monotone on a set of graphs iff it is score semi-monotone on all the
graphs from the set.

As we already know from the directed case, a score increase does not imply
that the rank relations between the two vertices involved in the new edge and
the other vertices in the network remain unchanged. For this reason, rank mono-
tonicity was introduced, where we require that every vertex that used to be
dominated is still dominated after the addition of the new edge. Formally, the
request for at least one of the two endpoints can be expressed as follows:

Definition 2 (Rank semi-monotonicity). Given an undirected graph G, a
centrality c is said to be rank semi-monotone on G iff for every pair of non-
adjacent vertices x and y at least one of the following two statements holds:

– for all vertices z �= x, y:

cG(z) < cG(x) ⇒ cG′(z) < cG′(x) and
cG(z) = cG(x) ⇒ cG′(z) ≤ cG′(x),

– for all vertices z �= x, y:

cG(z) < cG(y) ⇒ cG′(z) < cG′(y) and
cG(z) = cG(y) ⇒ cG′(z) ≤ cG′(y),

where G′ is the graph obtained adding the edge x— y to G. We say that c is
rank semi-monotone on a set of graphs iff it is rank semi-monotone on all the
graphs from the set.

In particular, we say that c is rank semi-monotone at x if the first state-
ment holds, and rank semi-monotone at y if the second statement holds (if both
statements hold, c is rank monotone).

Definition 3 (Strict rank semi-monotonicity). Given an undirected graph
G, a centrality c is said to be strictly rank semi-monotone on G iff for every pair
of non-adjacent vertices x and y at least one of the following two statements
holds:

– for all vertices z �= x, y: cG(z) ≤ cG(x) ⇒ cG′(z) < cG′(x),
– for all vertices z �= x, y: cG(z) ≤ cG(y) ⇒ cG′(z) < cG′(y),

where G′ is the graph obtained adding the edge x— y to G. We say that c
is strictly rank semi-monotone on a set of graphs iff it is strictly rank semi-
monotone on all the graphs from the set.
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Again, we say that it is strictly rank semi-monotone at x if the first statement
holds, and strictly rank semi-monotone at y if the second statement holds (if both
statements hold, c is strictly rank monotone).

In the rest of the paper, we assume that we are given an undirected connected
graph G, and two non-adjacent vertices x, y ∈ NG; G′ will be the graph obtained
by adding the edge x— y to G. From now on, duv will refer to the distance (i.e.,
the length of a shortest path) between u and v in G (i.e., before the x— y
addition), and d′

uv will refer to the distance in G′ instead. In general, we will use
the prime symbol to refer to any property or function of G when translated to
G′.

2 Distances and Basins

Geometric centrality measures [8] depend only on distances between vertices.
In the next two sections we are going to prove new results about the semi-
monotonicity of two geometric centrality measures—closeness centrality [2,3]
and harmonic centrality [4,8]. To understand the semi-monotonic behavior of
these centrality measures, we introduce the following notion:

Definition 4 (Basin). Given an undirected graph G and two non-adjacent ver-
tices x and y we define the basin of x (with respect to y) Kxy and the basin of
y (with respect to x) Kyx as

Kxy :={u ∈ NG | dux ≤ duy}
Kyx :={u ∈ NG | duy ≤ dux}

That is, the basin of x contains those vertices that are not farther from x than
from y: see Fig. 1 for an example. Note that the vertices that are equidistant
from x and y are included in both basins, and the score of such vertices cannot
change in any geometric centrality when adding the edge x— y.

Let us consider a key property:

Definition 5 (Basin dominance). A centrality c is said to be basin dominant
on an undirected graph G iff for every pair of non-adjacent vertices x and y we
have that

c′(u) − c(u) ≤ c′(x) − c(x) for every u ∈ Kxy, u �= x

c′(v) − c(v) ≤ c′(y) − c(y) for every v ∈ Kyx, v �= y.
(1)

It is strictly basin dominant iff the same conditions are satisfied, but inequalities
(1) hold with the < sign.

Intuitively, basin dominance means that the increase in score of x and y is at
least as large as (or larger than, in the strict case) the increase in score of all
other nodes in their respective basin.

The following theorems will be used throughout the paper:
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Fig. 1. An undirected graph G, with Kxy (the basin of x w.r.t. y) shown in red and
Kyx (the basin of y w.r.t. x) in blue.

Theorem 1. If a centrality measure is strictly basin dominant on a graph then
it is strictly rank semi-monotone on the same graph.

Proof. Let c be strictly basin dominant, and let us assume by contradiction that
c is not strictly rank semi-monotone. This implies that we should be able to find
u, v such that:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c(x) ≥ c(v)
c(y) ≥ c(u)
c′(v) ≥ c′(x)
c′(u) ≥ c′(y).

(2)

As a consequence of (2), c′(v)−c(v) ≥ c′(x)−c(x) and c′(u)−c(u) ≥ c′(y)−c(y),
which by the assumption of strict basin dominance imply v �∈ Kxy and u �∈ Kyx.
Therefore v ∈ Kyx and u ∈ Kxy. But then again using strict basin dominance and
(2) we have c′(y)−c(y) > c′(v)−c(v) ≥ c′(x)−c(x) > c′(u)−c(u) ≥ c′(y)−c(y),
a contradiction. ��

For the non-strict case, a similar result holds:

Theorem 2. If a centrality measure is basin dominant on a graph then it is
rank semi-monotone on the same graph.

Proof. Let c be basin dominant, and let us assume by contradiction that c is not
rank semi-monotone. This implies that we should be able to find u, v satisfying
one of the following four sets of inequalities:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c(x) > c(v)
c(y) > c(u)
c′(v) ≥ c′(x)
c′(u) ≥ c′(y)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c(x) = c(v)
c(y) > c(u)
c′(v) > c′(x)
c′(u) ≥ c′(y)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c(x) > c(v)
c(y) = c(u)
c′(v) ≥ c′(x)
c′(u) > c′(y)

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

c(x) = c(v)
c(y) = c(u)
c′(v) > c′(x)
c′(u) > c′(y).

(3)
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The proof is similar to the strict case. In all sets of inequalities we have c′(v) −
c(v) > c′(x) − c(x) and c′(u) − c(u) > c′(y) − (y), which by the assumption of
basin dominance imply v �∈ Kxy and u �∈ Kyx. Therefore v ∈ Kyx and u ∈ Kxy.
Using basin dominance and (3), in all cases we have c′(y)− c(y) ≥ c′(v)− c(v) >
c′(x) − c(x) ≥ c′(u) − c(u) > c′(y) − c(y), a contradiction. ��

3 Closeness Centrality

Closeness centrality [2,3] was shown to be score monotone but not rank mono-
tone on connected undirected networks [6]. In the latter paper, it was left open
the problem of whether closeness was (in our terminology) rank semi-monotone
or not. In the rest of this section, we will solve this open problem by showing
that closeness is in fact rank semi-monotone, but not in strict form.

Recall that, given an undirected connected graph G = (NG, AG), the periph-
erality of a vertex u ∈ NG is the sum of the distances from u to all the other
vertices of G:

p(u) =
∑

v∈NG

duv.

The closeness centrality of u is just the reciprocal of its peripherality:

c(u) =
1

p(u)
.

Consistently with the previous notation, we will use p(u) for the peripherality
of u in G, and p′(u) for the peripherality of u in G′.

y x

z

u

dyz
dxz

duz

dxy

dux

Fig. 2. Path labels represent the distance between the two endpoints. The dashed edge
is the x— y edge that we add to G, obtaining G′.

We have that:

Lemma 1. Closeness centrality is basin dominant on connected undirected
graphs.

Proof. We first show that for every vertex u ∈ Kxy and for every z �= u, x:

duz − d′
uz ≤ dxz − d′

xz. (4)
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Then, the result follows by adding both sides for all z (as for z = u or z =
x the inequality trivializes) and using the fact that closeness is reciprocal to
peripherality. To prove (4) we consider two cases (see Fig. 2):

– if d′
uz = duz then the inequality trivially holds (because dxz ≥ d′

xz always);
– if d′

uz < duz then d′
uz = dux + 1 + dyz < duz and d′

xz = dyz + 1. Using
duz ≤ dux + dxz from the triangle inequality we have

duz − d′
uz = duz − (dux + 1 + dyz) ≤

(dux + dxz) − (dux + 1 + dyz) = dxz − (dyz + 1) = dxz − d′
xz.

��
This lemma is the undirected version of Lemma 2 in [7] (provided that in the
latter you sum the inequality in the statement over all nodes w): it is interesting
to observe that in the directed case the inequality holds for all u’s, while here
it holds only within the basin.

Applying Lemma 1 and using Theorem 2, we obtain that:

Theorem 3. Closeness centrality is rank semi-monotone on connected undi-
rected graphs.

Interestingly, and regardless of their initial score, we can always tell which of
the two endpoints of the edge x— y will have smaller peripherality (i.e., higher
centrality) in G′. In fact:

Lemma 2. The following property holds:

p′(x) − p′(y) = |Kyx| − |Kxy|.

Proof. We can write the peripherality of x and y in G′ as

p′(x) =
∑

u∈Kxy

dux +
∑

u∈Kyx

(1 + duy) −
∑

u∈Kxy∩Kyx

(1 + duy)

p′(y) =
∑

u∈Kxy

(1 + dux) +
∑

u∈Kyx

duy −
∑

u∈Kxy∩Kyx

(1 + dux).

Note that for each u ∈ Kxy ∩ Kyx we have dux = duy. Computing the difference
between the two expressions gives the result. ��

It is not hard to build a graph G where x has a smaller basin than y but a
greater score: Lemma 2 tells us that y becomes more central than x in G′, due
to having a greater basin.

We conclude this section by showing that:

Theorem 4. Closeness centrality is not strictly rank semi-monotone on (an
infinite family of) connected undirected graphs.
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...

y x

u

w
...

k k + 4

Fig. 3. A counterexample to strict rank semi-monotonicity for closeness centrality. For
all k ≥ 10, u and x have the same score before and after the addition of the edge x— y.
Moreover, u has the same score of y (or smaller) before the addition, but a higher score
after the addition, breaking strict rank semi-monotonicity.

Proof. Consider the graphs in Fig. 3, where u ∈ Kxy. This is an infinite family
of graphs with a parameter k which controls the sizes of the two stars around
vertices w and y. Computing the peripheralities of u, x and y before and after
the addition of x— y, we obtain

p(u) = 2 · (k + 4) + 4 · k + 13 p′(u) = 2 · (k + 4) + 3 · k + 12
p(x) = 3 · (k + 4) + 3 · k + 9 p′(x) = 3 · (k + 4) + 2 · k + 8
p(y) = 4 · (k + 4) + k + 15 p′(y) = 4 · (k + 4) + k + 12.

For all k ≥ 10, we have that

p(x) = p(u), p′(x) = p′(u), p(y) ≤ p(u), p′(y) > p′(u),

showing that closeness is not semi-monotone at y (because y used to be at least
as central as u, but it is less central after the addition of the edge) and not
strictly rank semi-monotone at x (it is always as central as x, before and after
adding the edge). ��

4 Harmonic Centrality

Harmonic centrality [4] solves the issue of unreachable vertices in closeness cen-
trality. In particular, if we assume ∞−1 = 0, we can define it as

h(u) =
∑

v∈NG\{u}

1
duv

,

so that unreachable vertices have a null impact on the summation and, thus, on
the final centrality score of the node. Being a geometric measure, it is trivially
score monotone but not rank monotone, as shown in [6], where the same coun-
terexample disproving rank monotonicity for closeness centrality also shows that
harmonic centrality fails at satisfying this axiom.
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Lemma 3. Harmonic centrality is strictly basin dominant on connected undi-
rected graphs.

Proof. We first show that for every vertex u ∈ Kxy and for every z �= u, x:

1
d′

uz

− 1
duz

≤ 1
d′

xz

− 1
dxz

. (5)

Then, the result follows by adding both sides for all z. Note that the unique
term in h(u) and h′(u) (i.e., when z = x) is equal to the unique term in h(x)
and h′(x) (i.e., when z = u), and they are both equal to 0. Also, we remark that
(5) holds with a strict inequality at least in one case, i.e., when z = y, since
d′

xy < dxy always.
We consider two cases:

– if d′
uz = duz then the inequality trivially holds (because d′

xz ≤ dxz always);
– if d′

uz < duz then d′
uz = dux + 1 + dyz < duz and d′

xz = dyz + 1. Using
duz ≤ dux + dxz from the triangle inequality we have

1
d′

uz

− 1
duz

−
(

1
d′

xz

− 1
dxz

)

=
1

dux + 1 + dyz
− 1

duz
−

(
1

dyz + 1
− 1

dxz

)

=
(dyz + 1) − (dux + 1 + dyz)
(dux + 1 + dyz)(dyz + 1)

+
duz − dxz

duzdxz

= − dux

(dux + 1 + dyz)(dyz + 1)
+

duz − dxz

duzdxz

< − dux

duzdxz
+

(dux + dxz) − dxz

duzdxz
= 0,

which proves the inequality.

��
Using Lemma 3 and Theorem 1, we obtain that:

Theorem 5. Harmonic centrality is strictly rank semi-monotone on connected
undirected graphs.

The stronger result we can give for harmonic centrality should be compared to
the fact that on strongly connected graphs harmonic centrality is strictly rank
monotone, whereas closeness centrality is just rank monotone [6].

5 Betweenness Centrality

Betweenness centrality [1,9] focuses not only on the length of shortest paths,
but also on how many of them involve a given node, trying to estimate the
amount of flow passing through nodes in a network. Note that betweenness is
not a geometric measure.
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Formally, if we call σvw the number of shortest paths between two vertices
v and w and σvw(u) the number of such paths passing through u, then we can
define the betweenness centrality of a vertex u ∈ NG as

b(u) =
∑

i,j �=u,
σij>0

σij(u)
σij

.

In the following, we let NG(u) denote the set of neighbors of u in G, and
G[u] the subgraph of G induced by NG(u) (sometimes called the ego network of
u). As in the previous section, we denote with σ and σ′ the number of shortest
paths before and after the addition of an edge x— y, and with b and b′ the
betweenness centrality before and after the addition of the edge.

We know from [6] that this centrality measure is neither rank nor score
monotone. Nonetheless, we can show that the betweenness centrality of two
vertices can never decrease after we link them with a new edge. In fact:

Lemma 4. The following properties hold:

σ′
ij(x)
σ′

ij

− σij(x)
σij

≥ 0 for all i, j �= x.

As a consequence, b′(x) ≥ b(x).

Proof. For all i, j ∈ NG such that i, j �= x, let us call px (px, respectively) the
number of shortest paths between i and j passing (not passing, resp.) through
x. We have to show that, for each such pair i, j �= x, the following holds:

σ′
ij(x)
σ′

ij

− σij(x)
σij

=
p′

x

p′
x + p′

x

− px

px + px

≥ 0. (6)

Summing over all i, j �= x proves the second part of the statement.
To show that (6) is indeed true we consider two cases:

– d′
ij < dij , meaning that in G′ all the shortest paths i∼j pass through the

edge x— y (in particular through x). Thus, we obtain:

1 − px

px + px

≥ 0,

which is clearly true, since the second term of the left side of the inequality
is a value between 0 and 1.

– d′
ij = dij , which implies that p′

x = px and p′
x ≥ px. We express p′

x as px + α
with α ≥ 0, obtaining:

px + α

px + α + px

− px

px + px

=
p2x + pxpx + αpx + αpx − (p2x + αpx + pxpx)

(px + α + px)(px + px)
=

=
αpx

(px + α + px)(px + px)
≥ 0,

which is again true, concluding the proof. ��
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Incidentally, we can always tell if the betweenness centrality of a vertex is
zero without actually computing it. In fact,

Lemma 5. Let G be a connected undirected graph and u ∈ NG. Then:

b(u) = 0 ⇐⇒ G[u] is a clique.

Proof. If b(u) = 0 no shortest paths are passing through u: but then any two
neighbors of u must be adjacent (or otherwise they would have distance 2, and
the path through u has length 2). Conversely, suppose that G[u] is a clique and
let i, j �= u. A path from i to j cannot involve u, otherwise it would touch two
neighbors of u, say i′, j′, and we might shorten it by skipping u and taking the
i′ — j′ edge instead of i′ — u — j′. ��

x

yu

Fig. 4. Simple counterexample for score semi-monotonicity and strict rank semi-
monotonicity for betweenness centrality. The dashed edge is the x— y edge that we
add to G, obtaining G′. The betweenness score of vertices x, y and u is 0 both in G
and G′.

As a consequence, and differently from geometric measures, we can show that

Theorem 6. Betweenness centrality is not score semi-monotone on (an infinite
family of) connected undirected graphs.

Proof. Consider a graph G such that G[x] and G[y] are cliques and moreover,
NG(x) = NG(y), that is, x and y have the same neighborhood in G (see Fig. 4
for an example). Then, by Lemma 5 we know that b(x) = b(y) = 0. It is easy to
observe that G′[x] and G′[y] are still cliques, hence we can use the same lemma
and say that b′(x) = b′(y) = 0, meaning that the addition of the x— y leaves
the score of both the endpoints unchanged. ��

Moreover, we can say that

Theorem 7. Betweenness centrality is not strictly rank semi-monotone on (an
infinite family of) connected undirected graphs.
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Proof. Consider a graph G with three vertices x, y and u adjacent to a clique,
but with x, y, and u not adjacent to each other, as in Fig. 4. Then, by Lemma 5
we know that b(x) = b(y) = b(u) = 0; if we add the edge x— y to G, obtaining
G′, we also have b′(x) = b′(y) = b′(u) = 0 by the same lemma. ��

We are now going to show that, somehow unexpectedly, betweenness cen-
trality is rank semi-monotone on connected undirected graphs. In fact, we show
that it enjoys the same dominance property of closeness centrality, in spite of
being a non-geometric measure:

Lemma 6. Betweenness centrality is basin dominant on connected undirected
graphs.

Proof. Let us call Δz = b′(z) − b(z) the score difference for a vertex z ∈ NG,
and for every pair of nodes i, j (with i �= j) let also

Δz(i, j) =
σ′

ij(z)
σ′

ij

− σij(z)
σij

.

Obviously
Δz =

∑

i,j �=z

Δz(i, j).

We want to show that Δu ≤ Δx for every u ∈ Kxy. We do this by analyzing the
summands Δu(i, j) and Δx(i, j) separately. For reasons of space, the remaining
part of the proof appears only in the full version available on arXiv [5]. ��

Hence, applying Theorem 2 with Lemma 6 we have that:

Theorem 8. Betweenness centrality is rank semi-monotone on connected undi-
rected graphs.

6 Conclusions and Future Work

Table 1 summarizes the results of this paper along with those of [6–8]. For all
the negative results, we have an infinite family of counterexamples (for instance,
there are infinitely many graphs on which closeness is shown to be not strictly
semi-monotone).

The notion of basin dominance turned out to be the key idea in all proofs
of semi-monotonicity. It would be interesting to investigate whether basin dom-
inance applies to other geometric measures, or even other centrality measures
based on shortest paths, as in that case one gets immediately rank semi-monoto-
nicity.

Proving or disproving score and (strict) rank semi-monotonicity for other
measures (in particular, for the spectral ones) remains an open problem.
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Table 1. Summary of the results about monotonicity obtained in this paper (in bold-
face) and in [6–8]. All results are about (strongly) connected graphs.

undirected directed [7,8]

score rank score rank

Closeness monotone [6] semi-monotone monotone monotone

Harmonic centrality monotone [6] strictly semi-mon. monotone strictly monotone

Betweenness not semi-monotone semi-monotone not monotone not monotone
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Abstract. Rewiring of molecular interactions under different conditions
causes different phenotypic responses. Differential Network Analysis (also
indicated as DNA) aims to investigate the rewiring of gene and protein
networks. DNA algorithms combine statistical learning and graph theory
to explore the changes in the interaction patterns starting from experi-
mental observation. Despite there exist many methods to model rewiring
in networks, we propose to use age and gender factors to guide rewiring
algorithms. We present a novel differential network analysis method that
consider the differential expression of genes by means of sex and gender
attributes. We hypothesise that the expression of genes may be repre-
sented by using a non-gaussian process. We quantify changes in non-
parametric correlations between gene pairs and changes in expression
levels for individual genes. We apply our method to identify the differ-
ential networks between males and females in public expression datasets
related to mellitus diabetes in liver tissue. Results show that this method
can find biologically relevant differential networks.

Keywords: Non parametric Differential Network Analysis ·
Algorithms · Biological Networks

1 Introduction

The always more performing high-throughput technologies for studying genes,
proteins and non-coding RNA allowed us to identify and study many associa-
tions among changes in their abundance and diseases [2,7,8,11,25]. The avail-
ability of data has also motivated the introduction of novel methods of analysis
based on a systemic perspective by using network science. Networks have been
used to represent the set of associations among biological molecules in a given
state starting from experimental observation [10]. An interesting application of
network modelling is the possibility of gathering information by comparing bio-
logical networks associated with different conditions (e.g. healthy vs diseases).
Differential Network Analysis (DNA) has been introduced to model differences
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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between two conditions represented as two distinct networks in a single net-
work (differential network) which model the differences [14]. DNA methods have
been used to compare experimental configurations (e.g. two different drugs) or
phenotypes. Recently, many observations have evidenced that the age and sex of
patients may have a role in causing different responses to drugs, outcomes of dis-
eases and incidence of comorbidities for many complex chronic diseases [12,26].
Experimental observations evidenced that both the incidence and progression
of some diseases have remarkable differences considering sex and age as factors.
For instance, patients affected by diabetes are more likely to develop comorbidi-
ties as they grow older, as well as studies about mortality caused by COVID-19
pandemia, showed higher number of deaths in older males wrt female [4,18].
Consequently, the necessity of defining novel algorithms to identify motivations
or possible candidates that causes such differences at the molecular level and
depending on age or genders, arises.

DNA algorithms aim to identify changes in measures of association in terms
of network rewiring, which can distinguish different biological conditions C∞, C∈.
Let C∞, C∈ be two different biological conditions in two different networks repre-
senting molecular interactions, DNA algorithms aim to identify changes in net-
work rewiring (and differences) among the two networks that may be possible
candidates associated to changes among C1 and C2. Given two gene expression
datasets corresponding to two experimental conditions, DNA algorithms first
derive two networks N∞,N∈ corresponding to the examined condition. Each
network usually has a node for each gene of the dataset, while a weighted edge
between nodes represents the association or the casual dependency among them
and the weight represents the strength of the association. Finally, a single net-
work N� describing the changes is calculated. The final network represents the
rewiring of association in condition, and it has been used in the past to study
changes associated with pathological conditions [3,12]. Given two datasets cor-
responding to gene expressions related to two different biological experiments,
DNA is based on the following steps. Firstly two networks N∞,N∈ correspond-
ing to the examined conditions are defined. Each node in a network corresponds
to a gene in the dataset, and weighted edges between nodes represent the asso-
ciation or the casual dependency among genes, while the weight on an edge
represents the strength of the associations among genes. Then, DNA algorith-
mic implementations compute a new single network N� describing the changes
(i.e. the differents among networks N∞ and N∈). The resulting network rep-
resents the rewired associations that can be used to study biological triggers
causing rewiring differences. This may be used to study variations associated
with pathological conditions as reported in [3,12].

Many existing methods are based on the hypothesis that experimental obser-
vation such as gene expression values come from parametric distribution, e.g.
normal, paranormal, binomial or Poisson distribution [7,13,17,19]. NGS data,
different to microarray technology, are similar to count data, thus parametric
distribution hypothesis sometimes does not hold. Consequently, there is a need
for the introduction of non-parametric methods for DNA analysis.
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We here propose a novel DNA method to identify differential edges among
two networks and integrate differential expressions between nodes (i.e. genes)
also using gender-based differences [6]. Moreover, gene expression level is statis-
tically predicted by using multivariate count data, and the conditional depen-
dence graph is built by using pairwise Markov random fields [22]. Differently to
existing methods where gene expression values are obtained by using paramet-
ric distribution (such as normal, paranormal, binomial or Poisson) [7,13,17,19],
DNA analysis requires non-parametric methods. In a nutshell, the proposed DNA
algorithm works as follows. We build two graphs for the two tested conditions;
then, we derive the final graph from the previous two. Finally, we prune the
resulting graph by admitting only edges incident to at least one differential
expressed gene. The proposed DNA has been used with genes dataset related
to patients affected by diabetes and we use results to identify the differential
networks also using gender attributes (i.e. male and female patients).

The paper is structured as follows: Sect. 2 discusses state-of-the-art methods;
Sect. 3 presents the proposed approach; Sect. 4 discusses the results of some
experiments; finally Sect. 5 concludes the paper.

2 Related Work

DNA is largely used to identify differentially expressed genes between groups
of samples, and thus useful to compare genes from patients with a particular
disease compared to healthy subjects. In molecular biology and bioinformatics
it is used for identifying genes that are differentially expressed between groups
of samples, such as those from patients with a particular disease compared to
healthy individuals.

DNA algorithms aim to identify changes in the network structures between
two states, or conditions [24]. In biology, DNA algorithms have been used to
identify changes between the healthy and diseased status of the same biological
system [10]. There exist some different formulations of the problem, we here
focus on networks with the same node sets and different edge sets. Formally,
given two different conditions C1, and C2, represented by means of two graphs
G1(V,E1) and G1(V,E2), DNA aims to identify changes between them.

When dealing with biological systems it should be noted, that nodes are
directly measurable, while edges among them should be derived from a set of
observations over time. For instance, when considering gene networks derived
from microarray experiments, nodes are fixed while edges should be inferred
from the observations by means of statistical graphical models [9,15,23]. In a
statistical graphical model, we use a graph G = (V,E), and each node v ∈ V
is associated with a set of m random variables X1, . . . , Xm representing quan-
titative measurements of v, and edges are inferred from X1, . . . , Xm. We focus
on undirected graphs. In such models differential associations are measured
by analysing the difference of partial correlations between experimental data of
two conditions. Changes are measured by means of specific statistics test defined
to measure the modification among correlation between entities. Moreover, the
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changes in gene expression levels are quantified by using the classical Student’s
t-test statistics [28]. Then, the two test statistics are integrated into a single opti-
misation model which aims to evidence the hierarchical structures of networks.
Nevertheless, some hypotheses of the previous models (e.g. gaussian distribution
of data) are not valid in all the experimental conditions, therefore non-parametric
methods have been introduced. These methods are in general computationally
efficient and often easier to implement and the results can be more interpretable.
The main limitation of these methods is that they require the data to adhere
to specific distributional assumptions, and if these assumptions are violated, the
results can be biased or incorrect.

Some works considered a nonparanormal distribution of data (or Gaussian
copula) instead of normality or multivariate normality of data [1] and they used
a rank-based correlation matrix, such as Spearman correlation or Kendal’s τ .
Since the nonparanormal model presents some restrictions on the nature of data,
some conditionally-specified additive graphical models have been proposed such
as graphical random forest and kernel-based estimators [24].

In particular such models have been used for brain data and counts based
data, such as sequencing. To overcome the time limitations of the non-parametric
methods, efficient Bayesian models have been proposed [24]. Such methods are
based on the calculation of probabilities of the edges among data by inferring
their likelihood. Some of the proposed methods used different heuristics to infer
such probabilities which are hard to derive from data, such as in [22]. We here
selected this last method which outperforms the other state-of-the-art methods.

Non-parametric methods make fewer assumptions about the underlying data
distribution and they are based on data-driven techniques to assess the dif-
ferences in network connectivity between conditions. These methods are more
flexible and robust, as they do not assume a specific data distribution and can
handle complex and non-linear relationships between nodes in the network. On
the other hand, they can be computationally intensive and less interpretable.

Choosing between parametric and non-parametric differential network anal-
ysis depends on the nature of the data, the underlying assumptions, and the
research question. Researchers often perform sensitivity analyses and cross-
validate their results to ensure the robustness and reliability of the findings.
Additionally, combining information from both approaches may provide a more
comprehensive understanding of the differential network structure.

3 The Proposed Pipeline

This section explains the method we designed and implemented as depicted in
Fig. 1. The method starts by gathering expression data grouped by tissues and
for each tissue we build two different datasets filtered by using gender of the
individual they belongs to.
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Fig. 1. Figure depicts the main steps of the experiments we performed.

3.1 Non Parametric Differential Network Analysis

Let us suppose that two biological conditions C1 C2, have been investigated
by means of gene expression analysis giving two different expression datasets
encoded in two matrices N × M (N samples, M genes) X1, X2. Each row of Xj

stores the expression values of M genes of the i sample. Therefore Xc
i , j (c =

1,2, i = 1..n, j = 1..m) denotes a pair of N × M matrices.
Many approaches suppose that gene expression datasets are samples from two

multivariate normal distributions. We here do not hold this hypothesis, so we
hypothesise that two gene expression datasets are samples from non-parametric
distributions.

Let P1,2 (‖P‖ = nxn) be two matrices representing the relation among nodes.
Both matrices represent the conditional independence among nodes [22].

We may define the differential matrix between two conditions as the difference
as P1 and P2.

Following pair-wise MRF [5,27], we consider the following joint probability
mass function for P -dimensional count-valued data X as in [22],

Pr(X1, . . . , XP ) ∝ exp
( P∑

j=1

[αjXj − log(Xj !)] −
P∑

�=2

∑
j<�

βjlF (Xj)F (X�)
)

,

where F (·) is a monotone increasing bounded function with support [0,∞). We
let F (·) = (tan−1(·))θ for some positive θ ∈ R

+ to define a flexible class of mono-
tone increasing bounded functions. The exponent θ provides additional flexibil-
ity, including impacting the range of F (X),

(
0, (π

2 )θ
)
. The parameter θ can be

estimated along with the other parameters, including the baseline parameters α
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controlling the marginal count distributions and the coefficients βjl controlling
the graphical dependence structure. For simplicity and interpretability, we esti-
mate θ to minimize the difference in covariance between F (X) and X following
[22] For detailed descriptions of the method, readers are encouraged to check
[22].

If βj� = 0, we have Xj and X� to be conditionally independent i.e. P (Xj ,X� |
X−(j,�)) = P (Xj | X−(j,�))P (X� | X−(j,�)), where X−(j,�) stands for all the
variables excluding Xj and X�. Our estimated graphical relation would rely on
β̂j�’s, and thus, our model is a probabilistic model that encodes the conditional
independence structure in a graph.

Consequently, we define a differential network as the difference β
(1)
j,k − β

(2)
j,k

for each edge (j,k) where β
(1)
j,k and β

(2)
j,k are estimated coefficients under two

conditions 1 and 2. From the MCMC samples, we can get the posterior estimates
of these differences as β̂

(1)
j,k −β̂

(2)
j,k . Alternatively, we may be able to compute other

posterior summaries such as P (|β(1)
j,k − β

(2)
j,k | > c | D1,D2), which is the posterior

probability that |β(1)
j,k − β

(2)
j,k | is greater than some pre-specified cutoff given the

two datasets, denoted as D1 and D2.

4 Experimental Results

Figure 1 depicts the main steps of our experiments. We start by considering
GTEx gene-expression data [16]. Genotype-Tissue Expression (GTEx) data por-
tal [16], which is a publicly available resource containing expression data of
patients integrated with information related to the tissue of provenance, sex
and age (grouped into six classes). The current version of the GTEx database
accessed on February 01st stores 17382 samples of 54 tissues of 948 donors, see
at https://gtexportal.org/home/tissueSummaryPage [18,20,21]. We downloaded
data and integrated it with information related to sex and age with an ad-hoc
realised script. Then for each tissue, we split data into male and female samples.
For each tissue, we randomly selected the same number of samples.

We used Conga [22] R package to derive non-parametric differential networks.
Conga receives as input two datasets corresponding to the different experimental
conditions. We ran conga using default parameters. We here show results for
genes related to diabetes expressed in the liver tissue in Fig. 2.

To explain this network’s biological and medical relevance, we perform a
Gene Ontology analysis using the String Database as depicted in Fig. 3.

https://gtexportal.org/home/tissueSummaryPage
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Fig. 2. Figure represents a differential network between males and females in liver
tissue.

Fig. 3. Figure depicts the main enriched function of the obtained network. We used the
String Database and we selected Gene Ontology Biological Process. All the functions
are enriched with a p-value after false discovery rate correction value less than 0.01
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5 Conclusion

The results presented in the article demonstrate the effectiveness of the proposed
non-parametric approach for Differential Network Analysis (DNA) in uncovering
meaningful biological insights from gene expression data. The analysis focuses
on gender-based differences in liver tissue using the Genotype-Tissue Expression
(GTEx) database.

The differential network provides a visual representation of how gene inter-
actions change between males and females, offering insights into gender-specific
molecular relationships. To understand the biological relevance of the identi-
fied differential associations, we performed a Gene Ontology analysis using the
STRING Database. The enriched Gene Ontology terms shed light on the bio-
logical processes that may be influenced by gender-specific gene interactions in
liver tissue.

The results highlight specific genes and interactions that exhibit gender-based
differences. This information is valuable for understanding why certain diseases
or conditions might affect males and females differently. By identifying gender-
specific molecular associations, researchers can potentially uncover molecular
mechanisms underlying sex-related disparities in disease susceptibility, progres-
sion, or response to treatments.

The success of the approach in identifying known gender-specific molecular
differences validates the effectiveness of the method. If the identified differential
network aligns with existing knowledge about gender-related gene interactions or
processes, it strengthens the credibility of the approach and its ability to reveal
biologically relevant insights.

While the results provided promising insights, the analysis may also be influ-
enced by factors like data quality, sample size, and the choice of statistical param-
eters. Additionally, the results might be specific to the dataset used (GTEx), and
their generalizability to other datasets or tissues should be considered.

Understanding gender-specific molecular differences has implications for per-
sonalized medicine. The identified genes and interactions could potentially serve
as biomarkers for predicting disease risk, prognosis, or treatment response based
on an individual’s gender. This could lead to more tailored and effective medical
interventions.

In summary, the results presented in the article showcase the potential of
the non-parametric Differential Network Analysis method to uncover gender-
based differences in gene interactions. The identified differential network and
enriched Gene Ontology terms provide insights into the molecular underpin-
nings of gender-related disparities in liver tissue. This approach has broader
implications for understanding sex-specific responses to diseases and treatments,
advancing the field of personalized medicine.

References

1. Allen, G.I., Liu, Z.: A local poisson graphical model for inferring networks from
sequencing data. IEEE Trans. Nanobiosci. 12(3), 189–198 (2013)



122 P. H. Guzzi et al.

2. Buccitelli, C., Selbach, M.: mRNAs, proteins and the emerging principles of gene
expression control. Nat. Rev. Genet. 21(10), 630–644 (2020)

3. Cannataro, M., Guzzi, P.H., Mazza, T., Tradigo, G., Veltri, P.: Using ontologies for
preprocessing and mining spectra data on the grid. Futur. Gener. Comput. Syst.
23(1), 55–60 (2007)

4. Cannistraci, C.V., Valsecchi, M.G., Capua, I.: Age-sex population adjusted analysis
of disease severity in epidemics as a tool to devise public health policies for COVID-
19. Sci. Rep. 11(1), 1–8 (2021)

5. Chen, S., Witten, D.M., Shojaie, A.: Selection and estimation for mixed graphical
models. Biometrika 102(1), 47–64 (2014)

6. Chiarella, G., et al.: Vestibular disorders in euthyroid patients with hashimoto’s
thyroiditis: role of thyroid autoimmunity. Clin. Endocrinol. 81(4), 600–605 (2014)

7. Cho, Y.R., Mina, M., Lu, Y., Kwon, N., Guzzi, P.H.: M-finder: uncovering func-
tionally associated proteins from interactome data integrated with go annotations.
Proteome Sci. 11(1), 1–12 (2013)

8. Cookson, W., Liang, L., Abecasis, G., Moffatt, M., Lathrop, M.: Mapping complex
disease traits with global gene expression. Nat. Rev. Genet. 10(3), 184–194 (2009)

9. Galicia, J.C., Guzzi, P.H., Giorgi, F.M., Khan, A.A.: Predicting the response of the
dental pulp to SARS-CoV2 infection: a transcriptome-wide effect cross-analysis.
Genes Immun. 21(5), 360–363 (2020)

10. Grimes, T., Potter, S.S., Datta, S.: Integrating gene regulatory pathways into dif-
ferential network analysis of gene expression data. Sci. Rep. 9(1), 1–12 (2019)

11. Gu, S., Jiang, M., Guzzi, P.H., Milenković, T.: Modeling multi-scale data via a
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Abstract. Player synergies are a salient feature of team sports. In
the team game of cricket, player synergies may be reflected in batting
partnerships. Batting partnerships have been analysed extensively. In
this paper, we introduce and precisely define bowling partnerships. We
explain their importance, and analyse ball-by-ball data from three for-
mats of the game: 2,034 one-day international matches, 634 Test matches
and 1,432 Twenty-20 international matches, in order to find such bowl-
ing partnerships (“bowlerships”). We find that bowlerships exist. We
construct bowlership networks based on these pairwise synergies. We
assert that these bowlership networks can be analysed for team selec-
tion before a match, and making bowling changes during the match. We
present Algorithm bowler-select that selects a team based on bowler-
ships.

Keywords: Data Mining · Cricket Analytics · Network Science

1 Introduction

Team sports are all about player synergies; deciding when to let your partner
take the shot in Tennis doubles or anticipating the next pass in Football. This
is why often the best single’s champions are not necessarily the best doubles’
champions in Tennis, and the team with more star players does not necessarily
win the Football match.

Cricket is a team sport played in most Commonwealth countries. There
are various formats of the game varying from five-day long matches to 3-hour
matches. Batsmen and Bowlers in Cricket are traditionally ranked according to
their batting and bowling averages respectively [6]. Batsmen bat in pairs, and
the pair is known as a partnership. A partnership continues batting until one of
the batsmen is dismissed. It has long been believed that synergies exist between
effective batting partners. Some batting pairs are part of legend. For example,
Matthew Hayden and Justin Langer of Australia and Desmond Haynes and
Gordon Greenidge of the West Indies are mentioned by Wisden [14]. In their
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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paper [10], the authors investigate the importance of batting partnerships in
Test and one-day cricket with respect to improved performance. Based on their
statistical analyses, the authors conclude that synergies in opening partnerships
may be considered a sporting myth.

In this paper, we investigate bowler pairs. We introduce and precisely define
a bowling partnership. Bowlers bowl in pairs from opposite ends of the field
alternately. It is often the case that a pair of bowlers bowl several consecutive
overs alternately. We define such pairs of bowlers a bowling pair. Are some bowl-
ing pairs more effective than others? Are they effective in terms of saving runs
or taking wickets?

Wisden also lists famous bowling partnerships [15]. The bowling partnership
list contains pairs of bowlers who bowled in the same match but not necessarily
together. Bowlers have two goals: saving runs and taking wickets. Commentators
sometimes anecdotally observe that when one of the bowlers is economical (sav-
ing runs), the other bowler is targeted by the batsmen leading them to make
errors and give away wickets. This raises the question whether two bowlers are
more effective as a pair with each other, in saving runs or taking wickets or both.

Definition 1. A bowler’s economy rate is the average number of runs he/she
has conceded per over bowled. The lower the economy rate is, the better the bowler
is performing.

Definition 2. A bowler’s hitrate is defined as the average number of wickets
he/she has taken per over bowled. The higher the hitrate, the better the bowler
is performing.

Deciding which bowler should bowl from which end and when is a crucial
decision to be made by the captain. As with other things, bowler (team) selec-
tion (before the match) and deciding bowling changes (during the match) takes
skill and experience. Such decisions depend upon a number of complex factors
including pitch conditions and assessing the competitor team’s strengths and
weaknesses. If effective bowling partnerships do in fact exist, then this could
inform the strategies for team selection as well as bowling changes.

Bowlers are typically assessed on two aspects – the wickets they take (the
more the better) and the runs they concede (the less the better). While the
former matters the most in Test cricket (5-day matches), in the limited overs
versions (one-day internationals and T20 matches) the latter matters too. The
Bowling strike rate is defined for a bowler as the average number of balls bowled
per wicket taken [12], and the economy rate is the average number of runs they
have conceded per over bowled [11]. Therefore a bowling pair can be deemed
effective (synergistic) if the pair together saves more runs and/or takes more
wickets. This could happen in three ways: (i) both the bowlers have improved
economies, (ii) both the bowlers take more wickets, (iii) one of them has an
improved economy while the other gets more wickets.

Our analysis involves a comparison of the performance of a bowler together
with his partners to investigate if the performance of the bowler with a given
partner is statistically superior to his performance with the rest. The findings of
such analysis can inform bowler selection and bowling changes.
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We analysed data across all formats of the game — Test Cricket, ODIs and
T20Is. In Sect. 2, we define and explore these bowling partnerships, and investi-
gate if there are any statistically significant partnerships. In Sect. 3, we present
results from the 3 formats of the game and compare them. Some discussion and
concluding remarks are then provided in Sect. 4.

2 Methodology

We acquired ball-by-ball data of Men’s Test Matches, One-day internationals and
T20 Internationals in separate files in the YAML format from cricsheet.org [2].
These include metadata like venue, date, participating teams, toss details includ-
ing striker, non-striker, bowler, runs scored on each ball, wickets taken (if any),
type of dismissal, extras information and outcome of the game.

We analysed 2,034 ODIs, 634 Test matches and 1,432 T20Is. There were a
total of 1148 ODI bowlers, 495 test bowlers and 1518 T20I bowlers. In general,
the falling of a wicket is a rare event. This is quite unlike scoring runs. Roughly,
the falling of a wicket occurs once in 3, 9 and 12 overs respectively in T20Is,
ODIs and Tests.

(a) ODIs (b) Tests (c) T20s

Fig. 1. Hitrate vs. Economy: This scatter plot show the economy on the X-axis along
with their respective hitrates on the Y-axis for all the bowlers. Bowlers to the top
left are good at both traits – conceding fewer runs and taking more wickets whereas
bowlers to the bottom right are conceding the most runs and taking the fewest wickets
per over.

It is uncommon to concede too few or too many runs in an over. Hence, we
expected the distribution of runs conceded by all bowlers across all overs to be
normal. Figure 1 shows the Economy v Hitrate plots indicating the trends of all
the bowlers in each format. To measure a bowler’s performance, Croucher [3]
defines the bowling index as:

Bowling Index = Bowling average × Bowling Strikerate

where, bowling average is the number of runs conceded by a bowler per wicket
taken and bowling strikerate is the average number of balls bowled for every
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Table 1. The results of 3 statistical tests of Normality. The test of normality failed
several data points.

Normality Test ODIs Tests T20Is

Fail Pass Fail Pass Fail Pass

Chi-square 578 393 295 129 232 609

(60%) (40%) (70%) (30%) (28%) (72%)

Shapiro-Wilk 674 297 360 64 316 525

(71%) (29%) (85%) (15%) (38%) (62%)

Anderson-Darling 785 186 390 34 463 378

(81%) (19%) (92%) (8%) (55%) (45%)

wicket taken. A bowler is successful if he takes wickets and/or gives away few runs
and hence the Economy and the Hitrate are separate metrics and are analysed
separately as well. For each bowler, we plotted the runs conceded per over and
checked if these distributions were normal. Table 1 summarises the results. We
conducted three normality tests: Chi-square test [4], Shapiro-Wilk test [7] and
Anderson-Darling test [8]. Except in the case of T20Is for the former two tests,
more bowlers fail than pass the test. Therefore, for most bowlers, the distribution
is not normal. Since the falling of a wicket is a rare event, the distribution of
wickets per over for each bowler is not normal either.

Definition 3. A pair of bowlers constitute a bowling pair at individual threshold
ti and pairing-threshold tp iff: (a) each bowler has bowled at least ti overs in his
career, and (b) together they bowl at least tp consecutive overs alternately over
all the matches.

In order to exclude trivial bowling pairs, we set the following conditions:

T1. (for ti) The individual bowlers in a bowling pair should have bowled at least
300 overs (in Tests), 300 overs (in ODIs) and 80 overs (in T20Is) throughout
the span of their careers.

T2. (for tp) In order for a pair of bowlers to be considered a bowling pair, we
set the pairing-threshold – the number of consecutive overs that they should
have bowled alternately – to 60 (in Tests), 60 (in ODIs) and 16 (in T20Is).

Based on condition T1: 64 Test bowlers (out of 495) and 80 ODI bowlers (out
of 1148) have bowled at least 300 overs each. We found 45 T20I bowlers (out
of 1518) have bowled at least 80 overs. Further filtering based on the additional
condition T2, we got: 81 Test bowler pairs, 41 ODI bowler pairs and 18 T20I
bowler pairs who have together bowled at least 60, 60 and 16 overs respectively.

While these numbers appear to have been arbitrarily chosen, the basic
rationale is to ensure that an individual bowler has bowled enough overs and
the choice of the pairing-threshold is such that it allows a bowler to have a
few potential bowling pairs (5 with the above values). The analysis detailed
in this section could easily be conducted by choosing other values to obtain
corresponding results. We discuss this further in Sect. 4. We need to compare
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the performance of an individual bowler with the bowling pairs that the bowler
is a part of. Since the individual distributions are not normal, we use the non-
parametric Mann-Whitney U test [13], to do the comparisons.

2.1 Mann-Whitney U Test

We consider the set of all the overs that bowler A bowls with a particular partner
B (bowlership set) and the set of all overs bowled by the bowler A (individual
set). Since not all bowlers’ economy rates or wickets per over aren’t normal, we
use the Mann-Whitney U test to compare an individual bowler’s performance
with a paired performance of the same bowler with a partner. The number of
runs conceded in each over is considered for this test. We conduct three tests:

1. “greater”| H0: Individual Economy better than or same as the Bowlership Economy.
2. “two-sided”| H0: Individual Economy is same as the Bowlership Economy.
3. “less”| H0: Individual Economy worse or same as the Bowlership Economy.

If the first two tests fail, then the two null hypotheses can be rejected and we
can conclude that the bowlership pair performs better than the individual. In
this case, we say that a positive bowlership exists from A to B. This relationship
is not symmetric. Bowler A may bowl better with a Bowler B, while the opposite
need not be true. If the last two tests fail, then the two null hypotheses can be
rejected and we can conclude that the bowlership pair performs worse than the
individual. In this case, we say that a negative bowlership exists from A to B.
We conduct similar tests for Bowlership Hitrates.

2.2 Bowlership Networks

(a) Examples of directed signed
graphs on a pair of vertices.

(b) Corresponding weighted undirected
versions.

Fig. 2. Conversion of directed signed graph into a weighted undirected graph.

We can construct a directed signed graph Gd = (V,
−→
E ) where V is the set of

bowlers, and we draw a positive directed edge from a bowler A to B if A bowls
better with B and a negative directed edge if A bowls worse with B. Figure 2a
indicates the various cases between a pair of bowlers.

We can analyse these graphs to suggest bowling changes during the match
as well as team (bowler) selection before the match. The basic idea is to select
a set of bowlers with as many positive bowlership pairs as possible to give the
captain maximum flexibility in making bowling changes during the match.
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We first convert the directed signed graph Gd into an undirected weighted
graph Gu. Each signed directed edge is replaced by an undirected weighted edge
as depicted in Fig. 2. While the directed version for nodes C,D as well as nodes
I, J are different, they result in the same weighted undirected graph. This is
because a negative edge from A to B nullifies the effect of a positive edge from
B to A, since A and B are essentially incompatible. After this transformation,
the weight of an edge indicates the strength of bowlership between the endpoints.

Definition 4. A subgraph S of the undirected weighted graph Gu (which may
contain negative edges), has an associated average weighted degree W (S) =∑

w(S)
|S| where w(S) is the sum of weights of all edges induced by S and |S|

is the number of vertices in S.

Algorithm create-weighted-graph
Input: directed signed graph Gd

Output: undirected weighted graph Gu

1: For any given pair of vertices A,B in Gd, given the directed signed edges between them, replace
them with their corresponding undirected signed weighted version depicted in Figure 2. This
results in Gu, the undirected weighted version of the graph. Gu may have negative edges.

Algorithm bowler-select
Input: undirected weighted graph Gu, required bowlers k // (k = 5 or 6.)
Output: k bowlers maximising positive bowlerships
1: Let C be the set of disconnected components of Gu.
2: for each component c in C do
3: for i ∈ {2, . . . , k} do
4: Find all subgraphs Si = {Si1, . . . , Sip} of size i.

5: For each subgraph, calculate W (Sij) =
∑

w(Sij)
|Sij | ,

where w(S) is the sum of the edge weights induced by S.
6: end for
7: end for
8: Output subgraph Smax with maximum W (Sij).
9: for |Sij | ∈ {1, . . . , (k − |Smax|)} do

10: Let Xij be the set of cross edges connecting Sij and Smax, and w(Xij) be the sum of the
weights of such edges.

11: WT (Sij) ← (W (Sij) + w(Xij))
12: end for
13: remain ← (k − |Smax|).
14: size ← remain.
15: while remain �= 0 do
16: if size > remain then
17: size ← remain
18: end if
19: Select Sij with |Sij | = size with maximum WT (Sij).
20: if no such Sij exists, then
21: size ← size - 1.
22: continue
23: end if
24: Output Sij .
25: remain ← remain − |Sij |.
26: end while
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The higher the average weighted degree of a subgraph, the more the bowler-
ship synergy among the corresponding bowlers. Maximising the average weighted
degree of the subgraph of the selected bowlers during team (bowler) selection
before the match increases the flexibility of bowling changes during the match.

Algorithm bowler-select takes as input Gu and a number k of bowlers to be
selected and returns a set of bowlers such that the average weighted degree of the
selected bowlers is greedily maximised. Steps 2–6 computes the average weighted
degree for each connected subgraph of size ≤ k, the required number of bowlers.
Step 8 outputs a subgraph Smax with the maximum average weighted degree.
If the size of this subgraph equals k, then we are done. Otherwise, we need to
find another subgraph to fulfill the k bowler requirement. For this, we need to
take into account not just the weight of a candidate subgraph in consideration,
but also the weight of its connectivity with Smax. This total weight is calculated
in Steps 9–12. The selection of any remaining bowlers is done in Steps 13–26,
until the required number of bowlers k is reached. The number k of required
bowlers in our setting is small, so the exhaustive computation in steps 2–6 is
practical. While there are other algorithms in literature [1,5,9], only [9] supports
negative edge weights, but they are simultaneously trying to maximise the sum of
positively weighted edges (reward) and minimise the sum of negatively weighted
edges (risk), unlike our case where we consider a single sum.

(a) ODIs (b) Tests (c) T20Is

Fig. 3. Individual and bowlership economy: The X-axis has the name of the bowler
and the Y-axis depicts the economy. The plot points in orange show the bowlership
economy whereas the plot points in blue depict the bowler’s economy with all other
bowler partners combined. The bowlership economy need not be better than the overall
economy for a bowlership to be positive.

3 Results

Mann-Whitney Analysis: As we can see in Fig. 3, the overall economy of
a bowler throughout his career in comparison with his overall economy in the
bowlership has no role in determining whether the bowlership is ‘better’ than the
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individual. In these figures, the points in orange depict the bowlership economies,
which, for a majority of bowlers, lie below their individual average economies.
This shows that merely taking averages across all overs is not enough.

(a) West Indies (b) England (c) India

Fig. 4. Test Bowlership Network.

Interestingly, we weren’t able to reject the null hypotheses of the ‘two-sided’
or the ‘less’ tests for any of the formed bowler pairs for various confidence levels.
This means, we did not have any negative bowlerships. Hence, we refer to bowler-
ships that aren’t positive but couldn’t be proved negative as non-bowlerships (no
edge exists between the pair of bowlers). For the Mann-Whitney experiments
with wickets taken per over for bowlers who had bowled at least a certain num-
ber of overs, we were not able to reject any of the null hypotheses. This may be
due to the reason that the taking of a wicket is a rare event.

Bowlership Networks: Figure 4 depicts the bowlerships networks for Tests:

– The test network is the densest and the T20 Network(not shown) is sparsest.
This could be due to frequent bowling changes in the shorter formats.

– While it is an artefact of the chosen parameters (T1 and T2), two way positive
bowlerships are quite uncommon across all formats. We also expected to see
fewer disconnected components.

– For the Test Bowlership Network 4, the results of running Algorithm bowler-
select look quite intuitive. The algorithm may run efficiently since the sizes
of these graphs is small.

A positive bowlership does not necessarily imply better economy. In practice,
we could select positive bowlerships that also have better economies. The more
the outgoing edges from a bowler, the more the number of bowlers he bowls
better with. The more the more incoming edges to a bowler, the more the num-
ber of bowlers who bowl better with him. For the threshold values chosen, the
bowlership networks have disconnected components, with no components having
more than 5 vertices. Such networks can therefore be visually analysed.
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4 Conclusion

Player synergies are an integral part of team sports. Unlike games such as football
and tennis, where all players are simultaneously participating in the one activity
at a time, cricket and baseball have one team fielding while the other is batting.
In cricket, bowling partnerships have not been analysed extensively. We define
what constitutes a bowling partnership, and then analyse all formats of the game
in search of effective bowler partnerships. i.e., “bowlerships”.

Our analyses showed that bowlerships exist. These bowlerships can be lever-
ages both strategically (for team formation) and tactically (for bowling changes
while the match is in progress). We presented Algorithm bowler-select to select
bowlers which account for bowler synergies during team selection.

In future work, it would be very interesting to investigate the various bowler-
ship patterns that emerge based on varying the thresholds. Is there a systematic
way to determine the thresholds? Also, we need to look deeper into the reason
why negative bowlerships were not found. How do we compare a pair of positive
bowlerships? Can we add weights to the directed signed graph Gd? This would
help us differentiate between stronger and weaker bowlership pairs.
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Abstract. We present here a critical correction of the heuristic algo-
rithm MinimalFlipSet in [8] for the NP -hard problem of finding a min-
imum size subset of edges in an unbalanced signed graph G whose
‘+’/‘−’ edge-labels can be flipped to balance G.
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1 The Problem of Balancing an Unbalanced Graph

In a signed graph G = (V,E), where V is the set of nodes and E is the set of
edges, each edge (x, y) ∈ E has a ‘+’/‘−’ label or sign denoted by s(x, y). A
political or social network can be modeled [3,4] by a signed graph G, where V
represents the individuals, E represents the pairs of individuals who communi-
cate directly with each other, s(x, y) = ‘+’ indicates that the individuals x and y
agree on some given issue such as voting the same way (‘yes’/‘no’) on the issue,
and s(x, y) = ‘−’ indicates x and y disagree, voting the opposite way. The signed
graphs are also used in modeling intra-cellular regulatory system [9].

A signed graph G is called balanced if each cycle in G is balanced, i.e., has
an even number of ‘−’ edges. If G has at least one ‘−’ edge, this is equivalent
to saying [5] that we can write V = V1 ∪ V2, where V1 and V2 are disjoint non-
empty subsets, such that each ‘+’ edge (in short, p-edge) connects two nodes in
the same Vi and each ‘−’ edge (in short, n-edge) connects two nodes in different
Vi’s. A social network G, where no one lies about his/her opinion or vote, is
always balanced and we can let V1 represent the people who voted ‘yes’ and V2

the people who voted ‘no’. For a signed graph G, the partition V = V1 ∪ V2 is
unique if and only if G is connected. Clearly, G is balanced if and only if each
connected component of G is balanced. Now imagine that for some subset of
edges E′ = {(xi, yi) : 1 ≤ i ≤ m} ⊆ E in a social network G, both xi and yi lie
to each other about their yes/no votes. In that case, G is still balanced. However,
if for each (xi, yi) ∈ E′ exactly one of xi and yi lies, then depending on E′ the
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graph G may be unbalanced. The two simplest ways of balancing a signed graph
G are: (1) flip the signs of a subset of edges Eflip ⊆ E such that each cycle ξ in
G becomes balanced, i.e., |Eflip ∩ ξ| is even or odd according as ξ is balanced
or not, and (2) delete a subset of edges Edel ⊆ E such that |Edel ∩ ξ| ≥ 1 for
each unbalanced cycle ξ in G. (For a social network G, an Edel is a set of edges
(xi, yi) where exactly one of xi and yi lies and hence the importance of finding
an EoptDel, i.e., a minimum size Edel because it gives the minimum number of
one-sided lies, if any, among the links in G.)

It is known [6] that the optimal (minimum size) flipping edge-sets EoptF lip(G)
of a signed graph G are the same as its optimal (minimum size) deletion edge-sets
EoptDel(G). Thus, finding an EoptF lip(G) equivalent to and equally important as
that of finding an EoptDel(G). Henceforth, we use the shorter notations EoptF lip

and EoptDel when the underlying graph G is clear from the context. If each edge
in G is an n-edge, then finding an EoptDel is the same as finding a maximum
size (in terms of #(edges)) bipartite subgraph of G. Because the latter problem
is known to be NP -hard, the problem of finding an EoptF lip for a signed graph
G is also NP -hard. Henceforth, EmalF lip(G) (in short EmalF lip) will denote a
minimal flipping edge-set Eflip, which may or may not be optimal.

We write K+
n (resp., K−

n ) for a complete graph on n nodes with only p-
edges (resp., n-edges) and Kb

n for a balanced signed complete graph on n nodes.
Clearly, each K+

n is a Kb
n and no K−

n is a Kb
n for n > 2. If G = (V,E) is a

balanced graph on n nodes, then the result in [5] on the partition V = V1 ∪ V2

that we mentioned earlier shows that G is a subgraph of some Kb
n.

Example 1. The p-edges in Fig. 1(i) show an EoptF lip(K−
5 ); it consists of 4 edges

forming a K+
3 (top 3 nodes) and a vertex disjoint K+

2 (bottom 2 nodes). Thus,
#(EoptF lip(K−

5 )) = 10 assuming the nodes are labeled. The p-edges in Fig. 1(ii)
show an EmalF lip(K−

5 ) that is not an EoptF lip(K−
5 ); it consists of 6 edges forming

a K+
4 and there are 5 such edge-sets. This gives the total #(EmalF lip(K−

5 )) =
10+5 = 15. We will see that for G = K−

5 our algorithm always gives an EoptF lip

whereas the algorithm in [2] sometimes gives a non-optimal minimal EmalF lip.
Figures 1(i)-(ii) are the only two possible structures of a Kb

5 other than K+
5 . �

(i) The parts V1 and V2
are of sizes 3 and 2.

(ii) The parts V1 and V2
are of sizes 4 and 1.

p-edge
n-edge

Fig. 1. The structures of a Kb
5 with at least one n-edge.

In [1], bounds on |EoptF lip(G)| are derived in terms of |V | and |E|. For k =
|EoptF lip(G)|, an O(2k|E|2) algorithm for balancing G is given in [7]. In [10],
a related NP-hard problem is considered where one wants to find a maximum
size node set V ′ ⊆ V such that the induced subgraph of G on V ′ is balanced.
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A heuristic algorithm based on signed spectral theory and perturbations of the
graph Laplacian is given in [11]. The problem of balancing G as much as possible
by deleting up to b edges is considered in [12].

The critical correction of the heuristic algorithm MinimalFlipSet in [8] pro-
vided here is the following. That algorithm works with an arbitrarily selected
spanning tree T in the given G (similar to the algorithm in [2]) and it computes
a flipping edge-set Eflip, which may or may not be minimal, i.e., an EmalF lip,
and which may consist of both edges in T and edges not in T . (Although the
algorithm in [2] always computes an EmalF lip(G) and that EmalF lip(G) consists
only of edges not in T , unlike the algorithm in [8], we do not know of any com-
bination of a graph G and a spanning tree T in it for which the latter computes
a larger Eflip(G) than the EmalF lip(G) computed by the former.) We show here
that in some rare cases the algorithm in [8] selects a tree-edge e for flipping more
than once and this was overlooked in [8]. Moreover, the algorithm in [8] wrongly
includes such a tree-edge e in the computed Eflip even if e is selected for flipping
an even (>0) number of times although this is equivalent to not flipping e. In
addition, keeping such an e in the intermediate stages of computing the final
Eflip may lead to include other unnecessary edges in the final Eflip. If we force
the algorithm in [8] to not consider a tree-edge e after it is added the first time
in Eflip, the algorithm can perform poorly and give a large Eflip.

2 Preliminaries

For a p-edge (x, y), we think of its label s(x, y) = ‘+’ as a short form of ‘+1’
and, likewise, for an n-edge we think of its label s(x, y) = ‘−’ as a short form
of ‘−1’. For a cycle ξ = 〈x1, x2, · · · , xm, x1〉 of length m ≥ 3, we write s(ξ)
=

∏
j≤m s(xj , xj+1), where xm+1 = x1. Thus, ξ is balanced if and only if s(ξ)

= ‘+’, i.e., #(n-edges in ξ) is even. The cycle ξ is called simple if the nodes
x1, x2, · · · , and xm are distinct. If ξ is not simple and unbalanced, then there
is a simple unbalanced cycle ξ′ whose edges are a subset of the edges of ξ.
Henceforth, by a cycle we will mean a simple cycle. Thus, G is balanced if and
only if every (simple) cycle in G is balanced. Because each (simple) cycle in G is
contained in a bicomponent of G, it follows that G is balanced if and only if each
of its bicomponents is balanced. Henceforth, by “graph” we mean a biconnected
signed graph, i.e., having just 1 bicomponent, with |V | ≥ 3.

Definition 1. Given a spanning tree T of G, we say an edge (x, y) /∈ T covers an
edge (u, v) ∈ T if (u, v) is in the unique xy-path πx,y in T . By abuse of language,
we also say (u, v) covers (x, y) and this should not cause any confusion. The cycle
ξx,y formed by (x, y) /∈ T and πx,y is called the fundamental cycle of (x, y). We
write ξ(G,T ) or ξ(G), in short, for the fundamental cycles of G for a given T .

We sometimes use the short notations k-path for a path connecting k + 1
distinct nodes (and hence having k edges), k-cycle for a (simple) cycle of k (≥ 3)
edges, k-set for a set of k (≥ 1) items, and maxEdjuc(G) for the maximum
#(edge-disjoint unbalanced cycles in G). The following theorem, which gives a
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tight lower bound on EoptF lip and EmalF lip of a graph G in terms maxEdjuc(G),
is straightforward and is stated here without proof. We use it to show that an
EmalF lip(G) is an EoptF lip(G) by showing that the former has size maxEdjuc(G).

Theorem 1. For each graph G, |EmalF lip(G)| ≥ |EoptF lip(G)| ≥ maxEdjuc(G).

Example 2. The graph G1 in Fig. 2(i) has 8 edges and hence ≤ 2 edge-disjoint
cycles. The cycles 〈x1, x2, x3, x1〉 and 〈x3, x4, x5, x3〉 show that maxEdjuc(G1) =
2. Here, {(x1, x2), (x4, x5)} and {(x2, x3), (x3, x5)} are two of the three possible
EoptF lip(G1). For the graph G2 = K−

4 in Fig. 2(ii), each of its four 3-cycles is
unbalanced, and it is easy to see that maxEdjuc(G2) = 1 < 2 = |EoptF lip(G2)|,
with {(x1, x2), (x3, x4)} being one of 3 possible EoptF lip(G2). �

x1 x2 x3 x4 x5

(i) An unbalanced graph G1 with
maxEdjuc(G1) = 2 = EoptFlip(G1).

x1 x2 x3 x4

(ii) An unbalanced graph G2 with
maxEdjuc(G2) = 1 < 2 = EoptFlip(G2).

Fig. 2. Illustration of Theorem 1.

The choice of a spanning tree T in a given G greatly affects the fundamen-
tal cycles ξ(G,T ). This, in turn, greatly affects the EmalF lip computed by the
algorithm in [2]. Theorem 2 and Lemma 1 below show that the choice of a T
and hence the computed EmalF lip in [2] is independent of ‘+’/‘−’ labels of the
edges in T in some sense. (The problem of choosing a T so that the computed
EmalF lip in [2] is an EoptF lip is NP -hard.)

Theorem 2. Given a signed graph G = (V,E), a spanning tree T of G, and an
arbitrary relabeling of the edges in T , there is a relabeling of 0 or more edges in
G−T such that there is no change in the balancedness of the fundamental cycles
ξ(G,T ) and hence in the edge-sets EmalF lip(G) and EoptF lip(G).

Proof. Let (u, v) ∈ T be an edge which is relabeled (from a p-edge to an n-edge
or vice-versa). We then reverse the label of each (x, y) ∈ G − T covered by
(u, v) and let G′ be the new relabeled form of G. Clearly, the relabeling does
not change the balancedness (or unbalancedness) of any fundamental cycles in
ξ(G,T ). Thus, if flipping the edges E′ ⊂ E in G balances all fundamental cycles
in ξ(G,T ) then the same is true for ξ(G′, T ); the converse is also true. Thus, G
and G′ have the same edge-sets EmalF lip and also the same edge-sets EoptF lip.
We can now repeat the process for each relabeled edge (u, v) ∈ T . (Note that an
edge (x, y) ∈ G − T will have its label unchanged in the final G′ if and only if
|{(u, v) ∈ T : (u, v) is relabeled and (x, y) is covered by (u, v)}| is even.) �

Because of Theorem 2 and Lemma 1, the spanning trees in each of Figs. 5,
6(i), and 7 are shown with p-edges. By the same reason, we can make all spanning
tree-edges in Fig. 4(i) p-edges by replacing the whole graph by that in Fig. 3(ii),
without affecting the behavior of the algorithm NewFlipSet in Sect. 3.2.
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Lemma 1. For an unbalanced graph G and a spanning tree T of G, the algo-
rithm in [2] gives the same EmalF lip for G and its modified form G′ based on a
relabeling of the edges in T as in Theorem 2. The same holds for our algorithm
NewFlipSet in Sect. 3.2.

Proof. The proof follows immediately from the following two facts: (1) the flip-
ping edge-set generated by both the algorithms depend only the balancedness
of the fundamental cycles in ξ(G,T ) and not on the labels of the edges in G,
and (2) The graphs G and G′ in the lemma have the same balancedness of the
fundamental cycles. �

Example 3. Figures 3(i), 3(iii), and 3(v) show the three possible structurally dif-
ferent spanning trees T in G = K−

5 and Figs. 3(ii), 3(iv), and 3(vi) show the
corresponding new graph G′ obtained in the proof of Theorem 2 when we relabel
each n-edge in T to a p-edge. In particular, for Fig. 3(iii), we do not change the
label of any edge in G−T , i.e., G ang G′ have the same label (sign) for the edges
in G−T . It is easy to see that in all three cases of T , EmalF lip(G) = EmalF lip(G′)
and EoptF lip(G) = EoptF lip(G′). �

p-edge in T
n-edge in T

p-edge (x, y) in G − T of a balanced ξ x,y

n-edge (x, y) in G − T of a balanced ξ x,y

p-edge (x, y) in G − T of an unbalanced ξ x,y

n-edge (x, y) in G − T of an unbalanced ξ x,y

x1 x2 x3 x4 x5

(i) A spanning tree T in G = K−
5

shown by the thick lines.

x1 x2 x3 x4 x5

(ii) The graph G′ in Theorem 2 for
relabeling n-edges in T in (i) to p-edges.

x1 x2 x3 x4 x5

(iii) A structurally different
spanning tree T in K−

5 than (i).

x1 x2 x3 x4 x5

(iv) The graph G′ in Theorem 2 for
relabeling n-edges in T in (iii) to p-edges.

x1 x2 x3 x4 x5

(v) Another structurally different
spanning tree T in K−

5 than (i) and (iii).

x1 x2 x3 x4 x5

(vi) The graph G′ in Theorem 2 for
relabeling n-edges in T in (v) to p-edges.

Fig. 3. Illustration of Theorem 2 for G = K−
5 .
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2.1 Verifying Balancedness of G via the Node Labels s(x)

Given a signed connected graph G and a spanning tree T in G, we can assign
a ‘+’/‘−’ sign (label) s(x) to each node x as follows. Choose an arbitrary node,
say, x1 as the root of T and let s(x1) = ‘+’. For each node xi �= x1, if π(xi) =
〈x1, x2, · · · , xi〉 is the unique x1xi-path in T , then let s(xi) =

∏
j<i s(xj , xj+1),

i.e., s(xi) = ‘+’ if #(n-edges in π(xi)) is even and let s(xi) = ‘−’ otherwise. In
particular, if node y is a child of node x or, equivalently, x = par(y), the parent
of y in T , then s(y) = s(x)s(x, y), which is the same as s(x, y) = s(x)s(y). If
we start with the opposite label s(x1) = ‘−’ for x1 = root(T ), then the new
label of each node xi would be the opposite of its previous label. Moreover, if
we choose a different node xi �= x1 as root(T ) and label the nodes of T starting
with the current label s(xi) for the new root xi of T , then for each node xj its
new label is the same as its current label s(xj). In this sense, we can say that
the above method gives a unique ‘+’/‘−’ labeling of the nodes of G based on T .
Henceforth, the node labels s(x) will correspond to those obtained with some
choice of root(T) and its label ‘+’. We say x is a p-node (resp., an n-node) if
s(x) = ‘+’ (resp., ‘−’). Clearly, the computation of all node labels s(x) takes
O(|V |) time. Note that if G is balanced, then the product

∏
s(xj , xj+1) of the

labels of the edges in an xy-path in G is independent of the xy-path because
two xy-paths would form a cycle (which may not be simple) and that cycle is
balanced. Thus, the node labels s(x) are independent of T for a balanced G.

Consider now a fixed rooted spanning tree T in a graph G and the associated
node labels s(x) based on T . For an edge (x, y) ∈ G − T , the fundamental cycle
ξx,y is balanced means s(ξx,y) = s(x, y)s(πx,y) = +1, i.e., s(x, y) = s(πx,y),
where πx,y is the xy-path in T . If z is the nearest common ancestor in T of x
and y, then πx,y = πx,zπz,y, the concatenation of the paths πx,z and πz,y in T .
If z = x, say, then we take πz,x to be empty-path with no edges and s(πz,x) =
+1. We have s(x)s(y) = s(π(z))s(πz,x)s(π(z))s(πz,y) = s(πz,x)s(πz,y) = s(πx,y).
This gives Lemma 2 below to test the balancedness of the fundamental cycle
ξx,y for (x, y) /∈ T . (Recall that the equation in Lemma 2 holds if (x, y) ∈ T .)

Lemma 2. A fundamental cycle ξx,y is balanced if and only if s(x, y) =
s(x)s(y).

2.2 An Algorithm for EmalF lip by Alabandi et al.

Let G be a signed graph and T a spanning tree in G. The algorithm by Alabandi
et al. [2] shown below uses the fact that G is balanced if and only if each fun-
damental cycle in ξ(G,T ) is balanced. It gives the EmalF lip = {(x, y) ∈ G − T :
ξx,y is unbalanced} ⊆ G − T , which depends on T . We will show that this
EmalF lip(G) can have size as big as |EoptF lip(G)| ×O(|V |2). For (x, y) ∈ G−T ,
we can determine whether ξx,y is balanced or not using Lemma 2 in O(1) time
compared to the O(|V |) time in [2]. This led to the more efficient (by a factor of
O(|V |)) implementation MinimalFlipSetOfNonTreeEdges in [8] of the algorithm
in [2].
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3 Flipping Edges in T to Balance G

We need a few definitions to discuss the impact of flipping an edge in a spanning
tree T of G on balancing G, i.e., its fundamental cycles ξ(G,T ).

Algorithm NonTreeEdgesFlipSet of Alabandi et. al in [2]:

Input: A signed graph G = (V , E) and a spanning tree T of G.
Output: A minimal flipping edge set EmalFlip ⊆ G − T to balance G.

1. For each (x, y) ∈ G − T , include it is EmalFlip if it is unbalanced.

Definition 2. We write ξcov(u, v) = {ξx,y : (x, y) /∈ T covers (u, v)}, ξbcov(u, v)
= {ξx,y ∈ ξcov(u, v) : ξx,y is balanced}, and ξucov(u, v) = {ξx,y ∈ ξcov(u, v) : ξx,y
is unbalanced}. Clearly, ξcov(u, v) = ξbcov(u, v) ∪ ξucov(u, v), a disjoint union.

Table 1 shows ξbcov(u, v) and ξucov(u, v) for the graph G and its spanning tree
T in Fig. 3(iii); here, each ξbcov(u, v) = empty-set because each ξx,y ∈ ξ(G,T )
is unbalanced. For the same graph G and its spanning tree shown in Fig. 3(i),
ξbcov(x1, x2) = {(x1, x4)} and ξucov(x1, x2) = {(x1, x3), (x1, x5)}.

Table 1. The edge-sets ξbcov(u, v) and ξucov(u, v) for (u, v) ∈ T in Fig. 3(iii).

Edge
(u, v) ∈ T

Edges (x, y) /∈ T such
that ξx,y in ξbcov(u, v)

Edges (x, y) /∈ T such
that ξx,y in ξucov(u, v)

(x1, x3) none (x1, x2), (x1, x4), (x1, x5)

(x2, x3) none (x1, x2), (x2, x4), (x2, x5)

(x3, x4) none (x1, x4), (x2, x4), (x4, x5)

(x3, x5) none (x1, x5), (x2, x5), (x4, x5)

For a given spanning tree T of G, flipping the label of an edge (x, y) ∈ G−T
changes the balancedness of only ξx,y and has no effect on any other fundamental
cycle in ξ(G,T ). However, flipping the label of an edge (u, v) ∈ T changes the
balancedness of all fundamental cycles ξx,y ∈ ξcov(u, v). If ξx,y ∈ ξbcov(u, v), then
flipping the label of (u, v) makes ξx,y unbalanced and we need to rebalance ξx,y
by flipping the label of some other edge in T that covers ξx,y or by flipping the
label of (x, y) itself. We can often (see Example 4) obtain a smaller EmalF lip

when we use a combination of edges in T and edges in G − T than that when
we use only the edges in G − T as in [2].

3.1 Selection Criteria for an Edge (u, v) ∈ T for Flipping

If we flip the label of (u, v) ∈ T , then to rebalance each ξx,y ∈ ξbcov(u, v) we
can flip the label of (x, y). Thus, flipping the label of (u, v) ∈ T is better in
reducing #(unbalanced ξx,y in G) even with flipping each (x, y) ∈ ξbcov(u, v)
than flipping each (x, y) ∈ ξucov(u, v) when the inequality in eqn. (1) below is
strict. This suggests the definitions of gain(u, v) and Gunbal(T ) (in short, Gunbal)
in eqns. (2)-(3). If gain(u, v) > 1, then it is advantageous to flip (u, v) ∈ T to
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balance G. If we write gain(x, y) = 1 for an unbalanced ξx,y and gain(x, y) = −1
for a balanced ξx,y, then flipping (x, y) reduces Gunbal by gain(x, y) just as
flipping (u, v) ∈ T reduces Gunbal by gain(u, v), which can be ≤ 0.

Condition for flipping (u, v) ∈ T : |ξbcov(u, v)| ≤ |ξucov(u, v)|−1 (1)

gain(u, v) = |ξucov(u, v)| − |ξbcov(u, v)| for (u, v) ∈ T (2)

Gunbal(T ) = #(unbalanced ξx,y based on current labels of E) (3)

3.2 Corrected Form of MinimalFlipSet in [8]

As in the MinimalFlipSet algorithm in [8], the algorithm NewFlipSet below first
successively selects an edge (u, v) ∈ T in a greedy fashion to reduce Gunbal by
the maximum amount, i.e., with maximum gain(u, v) ≥ 1 and flips them. When
no (u, v) ∈ T has gain(u, v) ≥ 1, it chooses the remaining unbalanced edges
(x, y) ∈ G − T in the modified G due to the flipping of the selected tree-edges
to include in the final edge-set, denoted by EsmallF lip, to balance G. The 2nd
half of step 3(b.1) is the correction added here to the algorithm in [8]. Because
the algorithm may choose the same tree-edge (u, v) more than once and flip it,
the only tree-edges (u, v) that were selected an odd number of times will be in
the final EsmallF lip. In that sense, we may say that the algorithm NewFlipSet is
not a truly greedy algorithm. The tree-edges that are selected an even number
of times and hence not included in the final EsmallF lip can be thought of as a
kind of “corrections” to the greedy choice.

Algorithm NewFlipSet (corrected form of MinimalFlipSet in [8]):

Input: A connected signed graph G = (V , E) and a spanning tree T of G.
Output: A small flipping edge-set EsmallFlip consisting of possibly edges

from both T and G − T for balancing G.

1. Initialize EsmallFlip = empty-set.

2. For each edge (u, v) ∈ T , determine ξ bcov(u, v), ξucov(u, v), and gain(u, v).

3. Repeat steps (a)-(c):

(a) Select an arbitrary tree-edge (u′, v′) ∈ T such that gain(u′, v′) = M =
max {gain(u, v): (u, v) ∈ T}.

(b) If (M ≥ 1), then do the following:

(b.1) Modify G by flipping the label of the edges (u′, v′) and (x, y) ∈
ξ cov(u′, v′). Add (u′, v′) to EsmallFlip if (u′, v′) ∉ EsmallFlip and
otherwise remove it from EsmallFlip.

(b.2) Let T (u′, v′) = {(u′′, v′′) ∈ T : (u′′, v′′) is covered by some (x, y)
∈ ξ cov(u′, v′)}, and recompute ξ bcov(u′′, v′′), ξucov(u′′, v′′), and
gain(u′′, v′′) for each (u′′, v′′) ∈ T (u′, v′).

while (M ≥ 1).

4. Add the non-tree edges {(x, y) ∈ G − T : ξ x,y is unbalanced} to EsmallFlip.
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It is worth mentioning that if (u, v) ∈ T is selected in step 3(a) at some point,
then the same (u, v) cannot be selected in the very next iteration of step 3(a).
This is because gain(u, v) immediately after flipping (u, v) equals the negative
of gain(u, v) immediately before flipping (u, v).

The following example and Fig. 4 are the same as in [8] because no tree-edge
is selected here more than once. It is included here for the sake of completeness.

Example 4. Figure 4 illustrates algorithm NewFlipSet for G = K−
5 . The span-

ning tree T in Fig. 4(i) is a depth-first tree G for root(T ) = x1. Figure 4(ii)-(iv)
show a sequence of choices of tree-edges for flipping and the results of flipping
them. Finally, we flip (x3, x5) ∈ G − T to balance G. The resulting EsmallF lip =
{(x1, x2), (x3, x4), (x4, x5), (x3, x5)} is an EoptF lip. If the first two choices are
(x2, x3) and (x3, x4) in that order, then we must choose (x1, x5) and (x2, x4)
next, again giving an EoptF lip. The algorithm in [2] here also gives an EoptF lip

consisting of the four unbalanced edges in Fig. 4(i). The situation is quite differ-
ent if we choose T as in Fig. 3(iii). Each EsmallF lip determined by NewFlipSet is
now an EoptF lip, involving 2 edges selected first from T and 2 edges selected next
from G − T , but the algorithm in [2] gives the non-optimal EmalF lip = G − T of
size 6. �

x1 x2 x3 x4 x5

(i) Each tree-edge has gain 1 and can
be taken as the 1st edge in EsmallFlip.

x1 x2 x3 x4 x5

(ii) After flipping (x1, x2) in (i), (x3, x4)
is the only choice for the 2nd tree-edge.

x1 x2 x3 x4 x5

(iii) After flipping (x3, x4) in (ii), (x4, x5)
is the only choice for the 3rd tree-edge.

x1 x2 x3 x4 x5

(iv) After flipping (x4, x5) in (iii),
there are no choice for a tree-edge.

Fig. 4. Illustration of the algorithm NewFlipSet for G = K−
5 .

Theorem 3. The algorithm NewFlipSet always terminates.

Proof. Because Gunbal is reduced by gain(u, v) ≥ 1 (in the current G) after
flipping an (u, v) ∈ T and by 1 after flipping an(x, y) for ξx,y ∈ ξ(G,T ), it
immediately follows that the algorithm terminates. (Note that in the latter case
ξx,y might have been initially unbalanced or have become unbalanced due to
flipping of some of tree-edges.) �
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Example 5. Fig. 5(i) shows a graph G, a spanning tree T in G, and an EoptF lip of
size 2. However, the algorithm NewFlipSet gives a minimal but non-optimal solu-
tion {(x2, x3), (x3, x5), (x3, x7)} of size 3 by first choosing the tree-edge (x2, x3).
(The same problem arises for the algorithm in [8].) It is easy to see that if G′

is the result of flipping (x2, x3) in G then maxEdjuc(G′) = 2 and thus any
EmalF lip of G containing (x2, x3) will have size ≥ 1 + 2 = 3. Here, the pattern
of the edges within the nodes X1 = {x3, x4, x5} and those from X1 to {x1, x2}
is repeated for X2 = {x3, x6, x7}. If we have k ≥ 2 such sets of nodes, then the
algorithm NewFlipSet gives an EmalF lip(G) of size k + 1 > k = |EoptF lip(G)|.
Figure 5(ii) on the other hand shows a type of graph G and a spanning tree T
in G for which the algorithm in [2] has the worst performance in that it gives
the EmalF lip = G−T of size O(|V |2) while |EoptF lip| = 1 and which is found by
the algorithm NewFlipSet (and also by the algorithm MinimalFlipSet in [8]). �

x1 x2 x3

x4 x5

x6 x7

(i) The algorithm NewFlipSet gives here
a non-optimal flip-set of size 3 containing
(x3, x4) but EoptFlip = {(x3, x4), (x3, x6)}.

x1 x2 x3 x4

x5 x6 x7 x8

(ii) The algorithm in [2] gives here
EmalFlip = G − T of size 15 but
EoptFlop = {(x1, x5)} has size 1.

Fig. 5. Examples of two kinds of exceptional graphs, one for the algorithm NewFlipSet
and one for the algorithm in [2].

3.3 Repeated Flipping of an Edge

We now give examples of the pairs (G,T ) such that the algorithm NewFlipSet
(and also the algorithm in [8]) flips a tree-edge multiple times.

Example 6. For the graph G in Fig. 6(i), the pattern of edges within the nodes
X1 = {x1, x2, x3} and the edges from the nodes in X1 to the nodes {x13, x14}
is repeated 3 more times for nodes Xj = {xj , xj+1, xj+2}, j = 4, 7, and 10.
Here, the algorithm NewFlipSet first selects and flips the tree-edge (x13, x14) and
reduces Gunbal by gain(x13, x14) = 4. Figure 6(ii) shows the graph after flipping
(x13, x14). The next three iterations of step 3(a) in NewFlipSet can select any
three of the tree-edges {(x2, x3), (x5, x6), (x8, x9), (x11, x12)}, each of gain 1,
for flipping in some order. Figure 6(iii) shows the result of flipping the edges
{(x2, x3), (x5, x6), (x8, x9)}, reducing Gunbal by 1 each time. Then, NewFlipSet
flips (x13, x14) again with current gain(x13, x14) = 2, making (x13, x14) an n-edge
as in Fig. 6(i). Finally, the algorithm selects and flips the tree-edge (x11, x12)
to balance G and gives the unique EoptF lip = EsmallF lip = {(x2, x3), (x5, x6),
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(x8, x9), (x11, x12)}. The same EoptF lip is obtained for other alternative choices
of the tree-edges in the next three iterations of step 3(a) in NewFlipSet for
the graph in Fig. 6(ii). (The algorithm MinimalFlipSet in [8] behaves exactly
the same way as NewFlipSet for the graph in Fig. 6(i).) It is not difficult to
create variations of the graph in Fig. 6(ii) with more nodes and edges in which
NewFlipSet can flip a tree-edge an arbitrary number (≥ 2) of times if G is
sufficiently large. �

Example 7. If we modify the graph in Fig. 6(i) by deleting the edge (x4, x14) so
that the spanning tree shown in thick lines becomes a depth-first tree, then the
algorithm NewFlipSet finds the same unique optimal EsmallF lip = EoptF lip as
before without flipping a tree-edge more than once. Figure 7 shows a graph G,
which is closely related to that in Fig. 6(i), and a depth-first spanning T in G with
root(T ) = x1. Here, nodes {x16, x17} play the roles of nodes {x13, x14} in Fig. 6(i)
except that the edge (x4, x17) is deleted here so that the tree T shown in the
thick lines is a depth-first tree. The edges among the extra nodes {x13, x14, x15}
and the edges from them to the nodes {x16, x17} have the same pattern as the
other 3-node groups, The algorithm NewFlipSet now flips the tree-edges in the
order (x16, x17), (x5, x6), (x2, x3), (x8, x9), (x11, x12), (x16, x17), and (x14, x15),
with the tree-edge (x16, x17) flipped twice. We get the final EsmallF lip = EoptF lip

= {(x2, x3), (x5, x6), (x8, x9), (x11, x12), (x14, x15)}. �

x1 x2 x3

x4 x5 x6

x13 x14

x9 x8 x7

x12 x11 x10

(i) The best tree-edge to flip is (x13, x14).

x1 x2 x3

x4 x5 x6

x13 x14

x9 x8 x7

x12 x11 x10

(ii) The graph after flipping (x13, x14) in (i).

x1 x2 x3

x4 x5 x6

x13 x14

x9 x8 x7

x12 x11 x10

(iii) The graph after flipping {(x2, x3), (x5, x6), (x8, x9)} in (ii).

Fig. 6. The algorithm NewFlipSet flips tree-edge (x13, x14) twice for the graph in (i).
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x1 x2 x3

x4 x5 x6

x16 x17

x9 x8 x7

x12 x11 x10

x15 x14 x13

Fig. 7. A graph related to Fig. 6(i), with the thick lines forming a depth-first tree.

4 Conclusion

We present here a critical correction to our heuristic algorithm in [8] to balance
a connected unbalanced signed graph G based on a spanning tree T of G. An
extensive experimental runs of the new algorithm NewFlipSet showed that it
often succeeds in finding an optimal (minimum size) flipping edge-set EoptF lip(G)
in cases where the algorithm in [2] failed. In a few rare cases, where NewFlipSet
failed to find an EoptF lip(G) we observed that the use of the well-known look-
ahead technique [13] improves its ability to find an EoptF lip(G).
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2. Alabandi, G., Tešić, J., Rusnak, L., Burtscher, M.: Discovering and balancing fun-
damental cycles in large signed graphs, In: Proceedings of the International Con-
ference for High Performance Computing, Networking, Storage and Analysis, 2021,
pp. 1–17 (2021)

3. Aref, S., Neal, Z.: Detecting coalitions by optimally partitioning signed networks
of political collaboration. Sci. Rep. 10(1), 1–10 (2020)

4. Cartwright, D., Harary, F.: Structural balance: a generalization of heider’s theory.,
Psychological Rev. 63(5), 277 (1956)

5. Harary, F.: On the notion of balance of a signed graph. Michigan Math. J. 2(2),
143–146 (1953)

6. Harary, F.: On the measurement of structural balance. Behav. Sci. 4(4), 316–323
(1959)
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Abstract. Numerous research efforts have centered on identifying the
most influential players in networked social systems. This problem is
immensely crucial in the research of complex networks. Most existing
techniques either model social dynamics on static networks only and
ignore the underlying time-serial nature or model the social interac-
tions as temporal edges without considering the influential relationship
between them. In this paper, we propose a novel perspective of modeling
social interaction data as the graph on event sequence, as well as the
Soft K-Shell algorithm that analyzes not only the network’s local and
global structural aspects, but also the underlying spreading dynamics.
The extensive experiments validated the efficiency and feasibility of our
method in various social networks from real world data. To the best of
our knowledge, this work is the first of its kind.

Keywords: Influential Node Detection · Dynamics of Network ·
Non-epidemic Spreading

1 Introduction

Real-world networks exhibit high complexity as there are a large number and
variety of nodes, interactions, or relationships. Therefore, modeling the spread-
ing phenomenon (which could be either informative or physical) is difficult yet
critical in a variety of fields such as infectious disease research [1], social media
study [2], communication study [3]. The most intuitive way to find those opinion
leaders in a network is to rank the nodes according to their influence. Numerous
studies have been done to identify opinion leaders in various complex networks
[4,5]. The majority of research on opinion leader detection in complex networks
has assumed that the network is a static model, in which each node corresponds
to an individual and the edges represent their long-term relationships.

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1143, pp. 147–158, 2024.
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However, many real-world social systems cannot be accurately depicted using
static graphs due to their inability to account for temporal fluctuations in interac-
tions and assume that the graph’s structure remains unchanged [6]. The existing
temporal network models mainly constructed network models by adding time-
respecting edges on static models, therefore being able to model edge dissolving
network phenomena.

Although the already existing network models are able to describe some net-
work spreading mechanisms, these models overlook the relevant causal relation-
ships within a sequence of events. Additionally, they fail to provide a quantifi-
cation of influence. In some non-epidemic spreading situations (e.g. information
spreading), people actively make decisions or react to received information rather
than being passively affected [7]. In this case, the process of one person influ-
encing another becomes a ‘two-step’ process: an actor first posts a message or
commits a change, and another network member then reacts by doing the same
(like posting or committing). The causal relationship here hinges on the chain of
events, not just the network of individuals, as these active participants react to
content or changes rather than just the sender [8]. These responsive actions or
interactions can be summarized as ‘events’ in a non-epidemic network. See the
example in Fig. 1.

Fig. 1. A texting network example. The temporal model is not able to capture the
affection relationship E1 → E2 → E3, as the adjacent edges do not necessarily have a
direct affection relationship in a temporal graph.

In a texting network, the chain of messages is usually highly informative and
has long-distance influences. Thus, sending the message can be conceptualized as
an event. When A sends a message to B saying ‘shall we (A,B,C) have a dinner
this weekend? ’ (first event), and B forward this to C afterward for confirmation
(second event). Then, C texts A with ‘Yes, Sunday is great! ’ (third event). In this
example, the third event is obviously a direct result of the first event, in other
words, the first event influences the third event. However, the influence and
chain-like relationships will not be captured in the current static or temporal
network models (demonstrated in Fig. 1 left), as those models can only treat
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individuals as nodes and interactions as edges, while the relationship between
edges (events) is usually ignored [6].

To fix the mentioned gap, this study offers a new perspective to model the
graph on event sequence and to detect influential nodes in dynamic networks.
In this model, we focus on social networks constructed with chains of informa-
tive events, and the influence of each social opinion is precisely measured by
applying the Hawkes process model [9], which is a stochastic processes model
that describes the progression of events through time, wherein the occurrence
of prior events can influence the probability of future events. Furthermore, we
propose a novel opinion leader mining method, the Soft K-shell, which func-
tions on the graph on event sequence. The Soft K-shell algorithm applies the
Hawkes process model on influence measurement and is able to use a variety
of node properties (both topological and contextual) to find influential nodes.
We conduct experiments on networks of different sizes and types to assess the
Soft K-Shell’s performance. The experimental results show that the proposed
algorithm is feasible to perform better than the current benchmark algorithms.

2 Proposed Method

This section presents the proposed model (the graph on event sequence), and a
related novel influential node detection algorithm (namely Soft K-shell).

2.1 Graph on Event Sequence

This research proposes a new type of social network graph model: the graph on
event sequence. To make it clearer, the explanation of this term is given in this
subsection. Unpack:

1: The graph is a directed structure (V,E) made of nodes V and edges E.
2: The event sequence is a sequence of interacting nodes {vi} in successive

order. The temporal feature of the informatic flow is stored in the event
sequence. The event sequence can be generated according to various situa-
tions. In the Fig. 2 example, to identify influential social media users we may
define the top right event sequence, whereas the bottom right event sequence
is more suitable for studying content of messages (e.g. influential scientific
papers) in the social media community.

3: The term ‘on’ here simply means that the graph itself is extracted from the
event sequence.

Why ‘Graph on Event Sequence’? One major disadvantage of the static
graph model for studying social media is that they do not take the temporal
features of information diffusion into account. That is to say, all interactions
within the populations are considered equally in a static model, even if they
are not. On the other hand, existing temporal models mainly consider network
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Fig. 2. A example of a graph on event sequence. The left plot illustrates an online
social media screenshot, the colored circles (or ‘bulbs’) symbolize the network elements
connected by the topological graph. Each ‘bulb’ (node) represents a post on social
media. The extracted graph is shown in the middle, where each edge is an interaction
between posts (e.g. reply or retweet). Interestingly, the same graph can be extracted
from different event sequences (the right plots). For example, the top event sequences
represent the posts from three users, where each user’s posts are lined on the same
arrow and the interaction between posts is represented by the dotted arrow. Here, the
same contour color means the same users, while the filled color suggests the topic that
the post is concerning. On the other hand, the bottom event sequences indicate the
posts concerning two topics. In this event sequence, the contour color shows the topic
and the filled color shows the publisher (e.g. Twitter user).

models only consisting of individuals while failing to construct a network for
events. The graph on event sequence model provides an approach of combining
the topological and temporal features for influential measurement to address the
above issues, the graph on event sequence modeled the underlying dynamical
process of events chain as a Hawkes process. Therefore, it is able to accurately
describe the impact of each network event on its respondents. The graph on
the event sequence model primarily serves as a content impact mining method,
but it can also measure an individual’s influence within a social network by
summing the influences of events in a sequence, offering versatility for analyzing
the impact of different content attributes, such as ranking influential journals
based on their overall influence in a citation network.

2.2 Hawkes Process for Influence Measurement

The Hawkes process [9] is a mathematical model used in statistics and stochastic
processes to describe the probability of occurrence of events {vi} over time using
an intensity function. Hawkes processes is widely used in the area of influence
measurement of non-epidemic spreading process [10–13]. The classic Hawkes Pro-
cess is a counting process that models ‘self-excited’ events over a time period. In
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this research, a typical type of the multivariate Hawkes processes, the topological
Haweks process model is applied to measure the influence of receiving informa-
tion on reaction [14,15]. We propose to measure the impact of each network
event on its respondents using the Hawkes process.

Definition 1. A graph on event sequence is a direct graph G = (V,E) that each
node v ∈ V is an element in an event sequence, a directed edge e ∈ E represents
the interaction relationship between the two nodes.

Definition 2. Given a threshold R, a graph G = (V,E) and an influential func-
tion I = I(v) where v is the node and I(v) is the rank, a node v ∈ V is called
opinion leader if and only if it is in the top R nodes among the influentially
ranking list that is sorted by I(v).

Definition 3. The weight of each edge is defined as W (e) = e−β(T (u)−T (v))

where u, v are the nodes connected by edge e = v → u, T (v) represents the
timestamp when v occurred, and β is the scale parameter.

Lemma 1. Each connected component of the graph on event sequence is an
acyclic graph.

Proof. For any path in the graph on event sequence, the timestamp of suc-
cessor nodes is later than their precursor’s. Therefore if there is a cycle in any
connected component, a time machine is invented.

Theorem 1. Each connected component of the graph G = (E, V ) is a feed-
forward network. For each node v in the graph, its direct successor nodes S(v)
is {u|u ∈ V, (v, u) ∈ E}, and the total influence of node v on its neighbor is,

I(v) =
∑

u∈S(v)

α(u)e−β(T (u)−T (v)) (1)

Proof. By lemma 1, we have that each connected component of the graph
G = (E, V ) is directed and acyclic, thus, it is a feed-forward network. For each
u ∈ S(v), the influence of v on u is α(u)e−βT (u)−T (v) By summing up those
influences we have the above result. Note that the term α only depends on the
property of node u, therefore it can be estimated by various machine learning
or statistical algorithms.

Lemma 2. For any two nodes v and u, the influence of v on u is m ×
α(u)e−β(T (u)−T (v)) if T (v) ≤ T (u) and u, v both belong to a same connected
component of G, otherwise the influence is 0. Here m is the number of distinct
paths from v to u. If we do not consider any node properties then α is set to 1.

Proof. Suppose u and v are below to same connected component of G, by
Lemme 1, this connected component is an acyclic directed network. Thus there
are m paths from v to u and none from u to v. Select one chain p, let {wi}
denote the nodes on one of those chains from v to u as follows,

p : v → w1 → w2 → ... → wn → u (2)
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By the definition of intensity function and formula (1), there is,

Ip
u(v) = α(u)e−β(T (u)−T (v))

If there are m different chains from v to u, the summed influence should be,

Iu(v) =
∑

p∈P (v,u)

Ip
u(v) =

∑

p∈P (v,u)

α(u)e−β(T (u)−T (v)) = mα(u)e−β(T (u)−T (v))

(3)
where P (v, u) represents the set of paths from v to u. The influence of a node v
on itself is α(v)e−β(T (v)−T (v)) = α(v). If u, v do not belongs to a same connected
component of G, Iu(v) is naturally 0.

Theorem 2. The overall influence of a node v in the graph can be obtained by
directly computing its accumulated influence, which is defined as

A(v) = α(v) +
∑

u∈S(v)

e−β(T (u)−T (v)A(u) (4)

where S(v) is the set of direct successors of v. Note that m is not shown in for-
mula (5) as there will only exist one direct path (an edge) for each neighbouring
(u, v) pair.

Let S′(v) denote the set of successors of v in G. By Lemma 2, there is

Ip
w(v) = α(w)e−β(T (w)−T (v)) and, A(v) =

∑

w∈S′(v)

∑

p∈{P (v,w)}
Ip
w(v)

where p(v, w) denotes a direct path from v to w. Therefore,

A(v) =
∑

w∈S′(v)

∑

p∈{P (v,w)}
α(w)e−β(T (w)−T (v))

= α(v) +
∑

w �=v,w∈S′(v)

∑

p∈P (v,w)

α(w)e−β(T (w)−T (v))
(5)

The summed form in (5) can also be written as
∑

w �=v,w∈S′(v)
∑

p∈P (v,w) · =∑
p∈P (v,·) · where P (v, ·) represents all paths in G that start from v. Further,

Note that any path p in G must include at least one node u which is a direct
successor of v, one can split P (v, ·) into

⋃
u∈S(v) P (u, ·), where u is the closest

node to v on path p. And for u in S(v),

e−β(T (w)−T (v)) = e−β(T (w)−T (u))e−β(T (u)−T (v)) (6)

Therefore, the summed form in (5) is equal to
∑

w

∑

p

· =
∑

p∈P (v,·)
α(w)e−βT (w)−T (v) =

∑

u∈S(v)

e−β(T (u)−T (v))A(u) (7)

By combining formula (5) and (7) there is,

A(v) = α(v) +
∑

u∈S(v)

e−β(T (u)−T (v))A(u) (8)
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2.3 Soft K-Shell Algorithm

Accordingly, we propose a novel method, namely the Soft k-shell algorithm, that
considers the topological Hawkes process of interaction. The proposed method
addresses the task of detecting influential nodes by assessing the global influence
of individual nodes in the graph using the Hawkes process and subsequently
ranking them based on their overall influence1. The algorithm is executed as
follows: first, if the node attribute is used, each node v’s ranking is initially set
to α(v), as it is proved by Theorem 2, the influence of a node v on itself is
α(v). Otherwise, α(v) = 1. It is advised that α(v) be set to a value between
0 and 1. Second, the global influence of node v whose direct successor u has
a 0 degree ({u|u ∈ V, (v, u) ∈ E, degree(u) = 0}) is calculated recursively by
adding its self influence (which is initialized as α) and its influence over u,
which is e−β(T (u)−T (v))A(u). After performing this computation, node u will be
permanently removed from the graph, and A(u) is the final result of u’s global
influence. By repeatedly removing zero degree nodes us and updating the global
influence of their predecessor vs, the graph G itself is also shrinking. As the
graph is acyclic, there will always be new zero-out-degree nodes until all nodes
are removed. We name this method the Soft K-shell algorithm. Two versions of
the Soft K-Shell algorithm are considered here. If node-property is true then the
property of nodes is used as α(v)2, otherwise α(v) is set to 1.

3 Experiments and Results

This study compares the performance of our method with four other methods for
detecting opinion leaders in dynamic social networks. To evaluate the feasibility
and generalizability of our method, six real world data sets of various types are
used. Four of them are a collection of long-term Dutch tweets containing Coro-
navirus tags from February 2020 to January 2021 [16], which are split into four
different data sets (NCF(reply), NCF(quote), NCF(retweet), NCF(together))
depending on their interaction type. The fifth data set (NCJ) contains short-
term Dutch tweets related to the COVID-19 pandemic (three hours around a
pandemic press conference on 14th January 2022) [17], while the sixth data set
(DBLP V1) is the first version of the DBLP dataset (citation network) [18]. The
specifications of the data sets utilized in the studies and the source code can be
found in the paper’s repository.

3.1 SIR Simulation Results

In this study, we compare the experimental results of our method with those
of four other state-of-the-art algorithms, utilizing the Susceptible-Infected-
1 A pseudocode of the proposed Soft K-shell algorithm could be found in this paper’s

repository, https://github.com/com3dian/SoftKShell.
2 For the soft k-shell model, the parameter of node properties α is user-defined. In our

conceptual framework, this value is assumed to be calculated using other machine
learning techniques and given as the prior knowledge. Consequently, we do not delve
into the methodologies for obtaining this parameter in the paper.

https://github.com/com3dian/SoftKShell
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Removed (SIR) [19] simulation infection rate and computational complexity.
The SIR model is a widely used framework for simulating the diffusion of infor-
mation within networks. In scenarios where opinion leaders are designated as the
initial set of infected nodes, upon achieving convergence, this model yields an
infection rate that serves as a quantitative measure of the influence exerted by
these initial opinion leaders throughout the entire information diffusion process.
The transmission rate τ of each edge is 0.98 and the recovery rate γ of each node
is 0.02. In every simulation, the top 5% ranked nodes were selected and infected
initially. The simulations were conducted for 50 rounds. During our experiments,
we used the number of followers as α for the NCF/NCJ datasets and citation
numbers as α for the DBLP dataset.

(a) The SIR results from a larger scale. (b) The SIR results from a smaller scale.

Fig. 3. Following the SIR model, the infection rates of various approaches on the
NCF(together) network are presented (with different zoom scales). The x-axis shows
the number of the initial opinion leaders (seed set), while the y-axis shows the final
proportion of infection (in percentage). All comparable methods use the same size of
opinion leaders’ set as the seed set of SIR. The plot shows that the proposed method,
Soft K-Shell, outperforms all other methods. The final SIR infection rate does not
significantly differ between the two versions of the Soft K-Shell (with and without
node properties). MMD and RIPS also perform well.

The results of Soft K-Shell (SKS) and several other state-of-the-art methods
in the literature were used to validate the proposed model and algorithm. Leader-
Rank algorithm (LR) [20], mixed degree decomposition (MDD) [21], k-shell iter-
ation factor (ksIF) [22], and Randomized Influence Paths Selection (RIPS) [23]
are selected as the baseline. The first three algorithms are widely used base-
lines in opinion leader mining tasks, while the RIPS is the state-of-art algorithm
according to its results [23]. The parameters used in the following experiment
are suggested by its authors.

In particular, four versions of the RIPS algorithm are used for comparison.
Two versions consider the Hawkes intensity e−β(T (u)−T (v) as edge weight while
the other two use equal weight for all edges. Additionally, we consider two ver-
sions of the Soft K-Shell algorithm in the experiments (with node property or
not). Figures 3a and 4 depict the SIR model infection rates on the NCF(together)
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Fig. 4. In the NCJ dataset, the Soft K-Shell algorithm with node property achieves
the highest infection rate, while the K-Shell iterative factor algorithm also performs
well. Notably, the performance between the two versions of Soft K-Shell differs a lot,
indicating the significant impact of node property in enhancing algorithm performance.
This enhancement can be attributed to the characteristics of the NCJ dataset, which
mainly consists of short-term Twitter interactions. In short-term information diffusion,
users with a larger follower count exert a more significant influence. This phenomenon
enhances the advantage of the Soft K-Shell algorithm with respect to its feasibility in
combining node properties.

data set and the NCJ data set respectively. To better show the subtle difference
in Fig. 3a, we also present plots of infection rates from the smaller scale in Fig. 3b.

Table 1 presents the highest infection rates obtained through SIR simulations
across all six datasets, considering various algorithm settings. Our proposed algo-
rithm consistently achieved the highest infection rate across datasets of varying
sizes and social interactions. This demonstrates the feasibility and generalizabil-
ity of our opinion leader mining method.

Table 1. The infection rate after SIR model reached the convergence of different
methods results. Top 5% nodes found by each algorithm are used in the SIR model.
The highest score on each data set is bolded. The Soft K-shell algorithm outperforms
every other model.

Datasets LR MMD Ksif RIPS SKS SKS with node property

NCF(reply) 0.048 0.087 0.102 0.092 0.133 0.133

NCF(quote) 0.155 0.240 0.199 0.212 0.250 0.250

NCF(retweet) 0.050 0.481 0.373 0.469 0.490 0.488

NCF(together) 0.050 0.481 0.373 0.469 0.489 0.490

NCJ 0.056 0.067 0.067 0.076 0.050 0.108

DBLP V1 0.100 0.164 0.140 0.181 0.198 0.210
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Table 2. Computational complexity of different methods

Algorithms Complexity

K-Shell O(|V |2)
MDD O(|V |2)
ksIF O(|V |2 + |E|)
RIPS O(|V |log(|V |) + 2|E|)
Soft K-Shell O(|V |2)

3.2 Computational Complexity Results

In this paper, we also assess the proposed method based on the computational
complexity. The time complexity of five algorithms is listed in Table 2. The Soft
K-shell algorithm has the same time complexity as the K-shell algorithm. In
terms of the number of nodes |V |, RIPS appears to be the most effective algo-
rithm because its highest ordered component is |V |log(|V |), whereas other algo-
rithms have the term |V |2. However, in many real world networks, the amount
of edges |E| has the same order as |V |2. Additionally, because the RIPS tech-
nique uses a Monte-Carlo-based methodology, the constant coefficients in the
asymptotic complexity term are significantly larger than those in the other four
methods.

3.3 Soft Shell Decomposition

Besides the quantitative results, we had another interesting discovery even
though the Soft K-Shell algorithm does not compute a ‘hard’ decomposition
of the network, its computed node ranking follows a multimodal distribution.
As demonstrated in Fig. 5, the scatter plot of the NCF(together) data set has
four ‘shells’ which together can be described as a soft shell decomposition. This
is also the inspiration for naming this algorithm. The four ‘shells’ from the inside
out each represent one type of posts in the NCF(together) dataset. The most
centered shell (purple) represents the most influential tweets; while the second
shell (deep blue) represents the posts that have a small range impact in the
‘local’ social network; the third shell (green) represents the most ordinary posts;
the fourth shell (yellow) represents the ‘dead’ posts that are rarely noticed by
any other people. It can be concluded that the Soft K-shell ranking result is also
able to reveal the soft shell nature of a network. The above soft shell decomposi-
tion result not only gives the ranking of posts regarding their influence, but also
gives a distribution of their influence. With the help of that distribution, a more
specific community opinion study on the purple shell can be carried out, since
the purple shell is highly representative of the community and is much smaller
compared to the entire network. As a result, the soft shell decomposition can
immensely benefit the analysis of social media platforms’ processes for forming
opinions based on their content.
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Fig. 5. The shell decomposition or the coreness decomposition of the NCF(together)
data set. Each data point is a rank of a node in NCF(together)(which representing
a post on Twitter), which has been scaled by exponential function e1−rank(v), where
rank(v) is ranging from 1 to +∞. The coreness trait is also seen in the result of Soft
K-Shell algorithm, despite the fact that it does not use the original K-Shell technique.

4 Conclusion

With the increasing popularity of social networks, resolving essential problems
about these networks, such as opinion leader detection, has gained a lot of inter-
est. However, most of the existing static and temporal methods fail to explain the
underlying dynamic of non-epidemic spreading process in the networks. There-
fore, a new method that considers the Hawkes process of information flow to
combine the topological and temporal features for influential measurement, is
proposed in this paper. The proposed model outperforms the state-of-the-art
model by a significant margin while keeping a competitive time complexity. In
future work, more theoretical study shall be accomplished on finding the scale
parameter β and the node’s property α. Also, we plan to investigate more into
using the time serial structure of the Hawkes process to forecast social network
dynamics and its impact on public opinion.
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Abstract. We study a distributed optimization problem which uses
an undirected, unweighted hypergraph communication from a dynam-
ical system viewpoint. The stability analysis of the dynamical system
is conducted with the use of approaches relevant to non linear decen-
tralized control where we also use the hypergraph Laplacian matrix for
the decomposition of the dynamical system. Additionally, we present a
Laplacian matrix for the case of a directed and weighted hypergraph and
we show how this Laplacian matrix is decomposed for the stability anal-
ysis of the distributed optimization problem with the specific directed
and weighted hypergraph communication structure.

Keywords: Hypergraphs · Distributed Optimization · Decentralized
Control

1 Introduction

Distributed optimization can be traced back to the seminal works of [5] and [6]
and a common way of solving such problems is the use of first order methods
as in [12] and [13]. In this paper we study a distributed optimization problem
which uses a hypergraph communication despite the fact that graph communica-
tion is the most commonly used graphical structure in distributed optimization
problems [14]. Hypergraphs were introduced in [7] as a generalization of graphs.
The importance of the hypergraph lies in the fact that it allows more than two
nodes to be linked in the same edge (hyperedge). As a result, a hypergraph can
depict more complex relationships compared to the communication structure
of a graph. This different communication structure exists in reality e.g. large
online social networks, supply chain management, etc. Various advantages of
the hypergraph communication are presented in [8–10]. It is important to note
that a hypergraph based distributed optimization problem can also be viewed
as a multiple consensus problem, a consensus must achieved among the nodes
(agents) that are attached to each hyperedge. A review of distributed optimiza-
tion and consensus theory can be found in [14] and [15] respectively. As the
communication matrix of the distributed optimization problem we will use the
Bolla’s Laplacian for hypergraphs [11].
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https://doi.org/10.1007/978-3-031-53472-0_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-53472-0_14&domain=pdf
https://doi.org/10.1007/978-3-031-53472-0_14


160 I. Papastaikoudis and I. Lestas

Our contribution in this work is the study of the primal dual algorithm for
the hypergraph distributed optimization problem and its interpretation from
a dynamical system perspective. We prove that the equilibrium point of the
resulting primal dual dynamical system is the optimal solution of the hypergr-
raph distributed optimization problem and we show its convergence with the use
of non linear control theoretic techniques from passivity and Lyapunov theory.
We utilize in the decomposition process of the communication matrix the fact
that hypergraph Laplacian in our given information structure is also a projection
matrix.

Finally, we will present a formula for a Laplacian matrix in the case of a
directed weighted hypergraph by introducing a new type of incidence matrix.
We will also show how this new Laplacian matrix can be decomposed in the
stability analysis setting that we will present for the unweighted/undirected
case. Various Laplacian matrices have been proposed in the literature for the
cases of weighted and/or oriented hypergraphs such as in [16] but in most cases
these matrices are constructed for specific case studies and they do not satisfy
many of the usual properties of a Laplacian matrix as these are presented in the
preliminaries section.

The paper is organized as follows: Sect. 2 presents the mathematical tools
that will be used from non linear control theory [2], hypergraph theory [3], opti-
mization theory [1] and matrix theory [4]. Section 3 introduces the hypergraph
distributed optimization problem while in Sect. 4 we present the primal dual
algorithm along with the respective equilibrium and convergence proofs. Finally,
in Sect. 5 we present a Laplacian matrix formula for a directed weighted hyper-
graph and we show how this matrix is decomposed for the stability analysis
setting that we studied previously. Numerical examples are provided alongside
with the evolution of the theory.

2 Preliminaries

2.1 Notation

The set of real numbers is R. For x ∈ R
n, x ≥ 0 (x > 0) means that all com-

ponents of x are nonnegative (positive). We use || · ||2 to denote the Euclidean
norm in R

n. We use |C| to denote the cardinality of set C.

2.2 Non Linear Control Theory

We will study a continuous, autonomous nonlinear system

ẋ(t) = f(x(t)) (1)

where x(t) ∈ R
n and f : Rn → R

n is continuous. A function V : Rn → R that
satisfies ||x|| → ∞ ⇒ V (x) → ∞ is called radially unbounded. The function
V̇ : Rn → R is called the Lie derivative of V and is defined as:

V̇ (x(t)) = ∇V (x(t))T · ẋ(t) = ∇V (x(t))T · f(x(t)).
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Fig. 1. Negative Feedback Interconnection of Systems.

Theorem 1. Let x∗ be an equilibrium point of (1). If V : Rn → R is radially
unbounded and V̇ (x) < 0,∀ x 	= x∗ then x∗ is globally asymptotically stable and
V is a valid Lyapunov function for (1).

Definition 1. Consider a system Σ, with the following state space expression

ẋ(t) = f(x(t), u(t))

y(t) = h(x(t))

with state x(t) ∈ R
n, input u(t) ∈ R

n, output y(t) ∈ R
n and f, h : Rn → R

n. The
system Σ is said to be passive if there exists a function S : Rn → R+ := (0,∞),
called storage function, such that

Ṡ(x(t)) ≤ uT (t)y(t) (2)

holds for all states x(t) ∈ R
n, all inputs u(t) ∈ R

n and all outputs y(t) ∈ R
n. In

the case that we have:

Ṡ(x(t)) ≤ uT (t)y(t) − ψ(x(t)) (3)

for some positive definite function ψ then the system is called strictly passive.

Theorem 2. The negative feedback interconnection of a passive and a strictly
passive system is a stable system (Fig. 1).

Definition 2. A domain D ⊆ R
n is called invariant for the system ẋ = f(x) if

∀ x(t0) ∈ D ⇒ x(t) ∈ D, ∀ t ∈ R.

Definition 3. A domain D ⊆ R
n is called positively invariant for the system

ẋ = f(x), if
∀ x(t0) ∈ D ⇒ x(t) ∈ D, ∀ t ≥ t0.
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Theorem 3 (LaSalle’s Invariance Principle). Let Ω ⊂ D be a compact pos-
sitively invariant set with respect to ẋ = f(x). Let V : D → R be a continuously
differentiable function such that V̇ (x) ≤ 0 in Ω. Let X be the set of all points in
Ω where V̇ (x) = 0. Let M be the largest invariant set in X . Then every solution
starting in Ω approaches M as t → ∞.

Lemma 1. Consider a convex function f : Rn → R
n. Then, its gradient ∇f :

R
n → R

n is incrementally passive, i.e., the following inequality holds for any
x, y ∈ R

n,
(∇f(x) − ∇f(y))T (x − y) ≥ 0.

If f is strictly convex, the inequality strictly holds as long as x 	= y. In that case,
∇f is strictly incrementally passive.

Lemma 2. A function f : A ⊂ R
n → R

n is locally Lipschitz if for each x, x0 ∈
A, there exist constant M > 0 and δ0 > 0 such that ||x − x0|| < δ0 ⇒ ||f(x) −
f(x0)|| ≤ M ||x − x0||.

2.3 Hypergraphs

A hypergraph is a pair H = (V, E) where V = {v1, ..., vn} is a finite set of nodes
and E = {E1, ..., Em} is the set of hyperedges. Each hyperedge can join any
number of nodes and not just two as it is in the case of a graph. A hypergraph
H is connected if there is a path from any node to any other node in H. The
degree of a node vi denoted by |vi| is the total number of hyperedges adjacent to
this node and the degree of a hyperedge Ej denoted by |Ej | is the total number
of nodes adjacent to this hyperedge. We define by DV the diagonal |V| × |V|
matrix whose entries are the degrees of each node, i.e., DV = diag{|v1|, ..., |vn|}
and by DE the diagonal |E| × |E| matrix whose entries are the degrees of each
hyperedge, i.e., DE = diag{|E1|, ..., |Em|}. For a hypergraph H, the incidence
matrix, denoted by E is a |V| × |E| matrix whose (i, j)-th entry is defined as:

E =

{
1, vi ∈ Ej

0, otherwise.

The hypergraph Laplacian (Bolla’s Laplacian) Q is a |V| × |V| matrix given by
the formula:

Q = DV − ED−1
E ET .

2.4 Optimization Theory

For the following equality constrained optimization problem:

min
x∈Rn

f(x)

s.t. Ax = b (4)
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x is the decision variable, f : Rn → R is the objective function, A ∈ R
r×n and

b ∈ R
r are the constant matrix and vector for equality constraints respectively.

We define the Lagrange function of (4) as L : Rn × R
n → R given by:

L(x, v) = f(x) + vT (Ax − b)

where x ∈ R
n is the primal variable and v ∈ R

n is the dual variable. The
primal-dual dynamics as a solution to (4) are ginen by:

ẋ = −∇f(x) − AT v

v̇ = Ax − b

and the set of the optimality solutions is defined as

X∗ := {(x∗, v∗) ∈ R
n × R

n}

where x∗ and v∗ satisfy the following equations

∇f(x∗) + AT v∗ = 0, Ax∗ − b = 0.

2.5 Matrix Theory

For a matrix M ∈ R
n×n by MT and S(M) we denote its transpose and its

spectrum respectively. Matrix P ∈ R
n×n is an orthogonal projection matrix

when P 2 = P = PT with spectrum S(P ) = {0, 1}. A symmetric matrix M is
called positive (semi)definite M() � 0 if and only if xTMx(≥) > 0 for every
nonzero x ∈ R

n. The Laplacian matrix L of a connected graphical structure is
symmetric (L = LT ), positive semidefinite, M -matrix (its off-diagonal elements
are nonpositive), every row and column sum to zero and its eigenvalues satisfy
the following inequalities 0 = λ1 ≤ λ2 ≤ ... ≤ λN . The eigendecomposition
of a positive semi definite matrix M is M = CTBC where B is the diagonal
matrix with the eigenvalues of matrix M and B is the matrix with the respective
eigenvectors. The square root of matrix M is M1/2 = CTB1/2C where B1/2 is
the diagonal matrix with the respective square roots of the eigenvalues of M .

3 The Hypergraph Distributed Optimization Problem

We have the following hypergraph distributed optimization problem for K sub-
systems with hypergraph H = (V, E) describing the coupling variables of the
different subsystems,

min
x=[x1,...,xK ]T

K∑
i=1

fi(xi)

s.t. Qx = 0. (5)

where
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– fi : R
pi → R is the objective function of ith subsystem and is considered

to be strictly convex, continuously differentiable with its gradient ∇fi being
locally Lipschitz.

– Vectors xi ∈ R
pi ,∀ 1 ≤ i ≤ K denote the variables of the subsystems which

we assume are coupling (i.e. there are common components among differ-
ent variables). We assume that the total number of common values for the
coupling components is N .

– The node set V of H is partitioned into V = {V1, ...,VK} where each node in
subset Vi is associated with a component of variable xi.

– Each hyperedge Ej ∀ 1 ≤ j ≤ N is associated with the jth common value
of coupling variable components. We assume that each node of H can be
adjacent to only one hyperedge.

– Matrix Q is the hypergraph Laplacian matrix and in our information structure
it can also be expressed as

Q = I − E(ETE)−1ET

since DV = I and DE = ETE. Matrix Q allocates the coupling variable
components of the different subsystems to their respective common values.

For the hypergraph H we have,

|V| = p1 + ... + pK = p, |E| = N

DV = Ip×p , DE = diag{|E1|, ..., |EN |} and E =

⎡
⎢⎣

E1

...
EK

⎤
⎥⎦ ,where

Ei is a pi × N matrix whose (l, j)-th entry is given by

Elj
i =

{
1, if xl

i = Ej , ∀ 1 ≤ l ≤ pi, ∀ 1 ≤ j ≤ N

0, otherwise
(6)

with xl
i denoting the lth component of variable xi.

Lemma 3. The hypergraph Laplacian matrix Q in (5) is also an orthogonal
projection matrix.

Proof. We have that

Q2 = [I − E(ETE)−1ET ]2

= [I − E(ETE)−1ET ][I − E(ETE)−1ET ]

= I − 2E(ETE)−1ET + E(ETE)−1ETE(ETE)−1ET

= I − 2E(ETE)−1ET + E(ETE)−1ET

= I − E(ETE)−1ET

= Q

and also Q = QT . As a result, Q is an orthogonal projection matrix.
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Example 1. We have the following sum of objective functions

f1(x1
1) + f2(x1

2) + f3(x1
3, x

2
3) + f4(x2

4)

Fig. 2. Hypergraph Communication.

with two coupling variable components that have the hypergraph represen-
tation of Fig. 2. The nodes associated with variables {x1

1, x
1
2, x

1
3} are attached to

hyperedge E1 while the nodes associated with variables {x2
3, x

2
4} are attached to

hyperedge E2. We also have that

|V| = 5, |E| = 2,DV = I5×5,DE =
(

3 0
0 2

)
and E =

⎡
⎢⎢⎣

E1

E2

E3

E4

⎤
⎥⎥⎦ =

⎛
⎜⎜⎜⎜⎝

[
1 0

][
1 0

][
1 0
0 1

]
[
0 1

]

⎞
⎟⎟⎟⎟⎠

respectively. The hypergraph Laplacian matrix Q is

Q = I − E(DE)−1ET =

⎛
⎜⎜⎜⎜⎝

2
3

−1
3

−1
3 0 0

−1
3

2
3

−1
3 0 0

−1
3

−1
3

2
3 0 0

0 0 0 1
2

−1
2

0 0 0 −1
2

1
2

⎞
⎟⎟⎟⎟⎠ .

4 Primal Dual Algorithm

In this section we propose a primal dual algorithm for the distributed optimiza-
tion problem (5). We define the Lagrangian of (5) to be

L(x, v) = f(x) − vTQx
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where f(x) =
K∑
i=1

fi(xi) and v ∈ R
p are the respective dual variables. The primal

dual dynamics of (5) are:

ẋ(t) = −∇Lx = −∇f(x(t)) + Qv(t) (8a)
v̇(t) = ∇Lv = −Qx(t). (8b)

Theorem 4. Let (x∗, v∗) be an equilibrium point of the dynamical system (8a)–
(8b) then (x∗, v∗) satisfies the optimality conditions of (5).

Proof. We find the equilibrium point of the dynamical system from ẋ(t) = 0 ⇒
∇f(x∗) = Qv∗ and v̇(t) = 0 ⇒ Qx∗ = 0. We notice that the equilibrium point
satisfies the optimality conditions as they were presented in the preliminaries
section and as a result, the equilibrium point of the dynamical system (8a)–(8b)
solves the optimization problem (5).

Fig. 3. Primal Dual Decomposition.

Theorem 5. The dynamical system (8a)–(8b) is a negative feedback intercon-
nection of a passive and a strictly passive system.

Proof. The dynamical system (8a)–(8b) can be seen as a negative feedback inter-
connection of a passive and a strictly passive system in Fig. 3.
The first system which is enclosed by the blue parallelogram refers to the
primal dynamics and is a negative feedback interconnection of two systems
where the first system is the system of non-linearities which is ∇f(x(t)) =
[∇f1(x1(t))−∇f1(x∗

1), ...,∇fK(xK(t))−∇fK(x∗
K)]. Each ∇fi(xi(t)), i = 1, ...,K
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is strictly incrementally passive and as a result, the system of the non-linearities
is strictly passive. The other system is an integrator system and in order to
be passive there must exist a storage function S1(t) : R

p → R such that
Ṡ1(t) ≤ uT

1 (t)y1(t) where u1(t) = −(∇f(x(t)) − ∇f(x∗)) + Q(v(t) − v∗) and
y1(t) = x(t) − x∗. We define the storage function to be S1(t) = 1

2 ||x(t) − x∗||2
where S1(t) : R

p → R. The Lie derivative of the storage function is Ṡ1(t) =
ẋ(t)T (x(t)−x∗) = [−(∇f(x(t))−∇f(x∗))T +Q(v(t)−v∗)](x(t)−x∗) ≤ u1(t)y1(t)
where we have used that ∇f(x∗) = Qv∗ and as a result, the primal dynamics
integrator system is passive. The overall system enclosed by the blue parallelo-
gram is strictly passive.
The second system which is enclosed by the red parallelogram refers to the
dual dynamics. The system is an integrator which is premultiplied and post-
multiplied by Q. This pre/post multiplication preserves passivity since matrix
Q2 = Q is positive semidefinite as an orthogonal projection matrix. For the
integrator system we have u2(t) = −Q(x(t) − x∗) and y2(t) = Q(v(t) − v∗).
In order for this system to be passive there must exist a storage function
S2(t) : Rp → R such that Ṡ(t) ≤ uT

2 (t)y2(t) = −(x(t) − x∗)TQTQ(v(t) − v∗) =
−(x(t) − x∗)TQ(v(t) − v∗) since QTQ = Q2 = Q. We define the storage func-
tion to be S2(t) = 1

2 ||v(t) − v∗||2 where S2(t) : R
p → R. The Lie deriva-

tive of the storage functions is Ṡ2(t) = v̇(t)T v(t) = −(Qx(t))T (v(t) − v∗) =
−(Qx(t) − Qx∗)T (v(t) − v∗) = −(x(t) − x∗)TQ(v(t) − v∗) where we have used
that Qx∗ = 0. As a result, Ṡ2(t) = −(x(t) − x∗)TQ(v(t) − v∗) ≤ uT

2 (t)y2(t)
and the second system is passive. In conclusion we have a passive and a strictly
passive system interconnected in negative feedback.

Theorem 6. The equilibrium point of the dynamical system (8a)–(8b) is globally
asymptotically stable.

Proof. The Lyapunov function of the dynamical system (8a)–(8b) can be con-
structed as the sum of the respective storage functions. We choose as candidate
Lyapunov function V (t) : Rp → R where V (t) = 1

2 ||x(t) − x∗||22 + 1
2 ||v(t) − v∗||22.

The respective Lie derivative is

V̇ (t) = ẋT (t)(x(t) − x∗) + v̇T (t)(v(t) − v∗)

= (−∇f(x(t)) + Qv(t))T (x(t) − x∗) + (−Qx(t))T (v(t) − v∗)

= −∇f(x(t))T (x(t) − x∗) + vT (t)Q(x(t) − x∗) − xT (t)Q(v(t) − v∗)

= −∇f(x(t))T (x(t) − x∗) + vT (t)Qx(t) − vT (t)Qx∗ − xT (t)Qv(t)+

+ xT (t)Qv∗

= −∇f(x(t))T (x(t) − x∗) − vT (t)Qx∗ + xT (t)Qv∗

= −∇f(x(t))T (x(t) − x∗) + ∇f(x∗)Tx(t) − ∇f(x∗)Tx∗

= −(∇f(x(t)) − ∇f(x∗))T (x(t) − x∗) < 0, ∀x 	= x∗

since ∇f(x) is strictly incrementally passive. From LaSalle’s invariance principle
we have convergence to the largest invariant set for which V̇ = 0, i.e. x = x∗.
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This set includes only the equilibrium point (x∗, v∗). As a result, the dynamical
system (8a)–(8b) converges asymptotically to the solution (x∗, v∗). In the fifth
line of the proof we have used that vT (t)Qx(t) = xT (t)Qv(t) while in the sixth
line of the proof we have used that vT (t)Qx∗ = 0, xT (t)Qv∗ = ∇f(x∗)Tx(t) and
∇f(x∗)Tx∗ = 0 from the equilibrium properties.

4.1 Directed Weighted Laplacian

The stability methodology and results of our previous study can also be extended
for the case of a distributed optimization problem that uses a weighted and
directed hypergraph. The only difference of such a problem with the case that we
studied previously would be the structure of the hypergraph Laplacian matrix.
We define the Laplacian matrix of a directed and weighted hypergraph as

Q′ = ZWZT (10)

with W being the positive definite diagonal p × p weight matrix with p = p1 +
... + pK representing the sum of the respective dimensions of the K subsystems
and the matrix Z with dimensions p × N to be an incidence matrix of the form

Z = [Z1, ..., ZN ]

where
Zi = Di

in − Di
out, ∀ 1 ≤ i ≤ N

with Di
in,D

i
out being the p×1 in-degree and out-degree vectors of ith hyperedge

respectively. For the unweighted case, (10) becomes

Q′ = ZD−1
E ZT

where DE is the hyperedge degree matrix. A suitable decomposition of (10)
for the stability analysis that we conducted throughout this work would be
Q′ = AAT where A = ZW 1/2 with W 1/2 being the square root of matrix W .

Remark 1. The proposed Laplacian matrix in (10) satisfies all the properties of a
Laplacian matrix presented in the introduction except of the M -matrix property
which is natural since the hyperedges may have multiple directions.

Example 2. Given the unweighted directed hypergraph of Fig. 4 we have

Z1 =

⎛
⎜⎜⎝

−2
1
1
0

⎞
⎟⎟⎠ , Z2 =

⎛
⎜⎜⎝

0
0

−1
1

⎞
⎟⎟⎠ , Z =

⎛
⎜⎜⎝

−2 0
1 0
1 −1
0 1

⎞
⎟⎟⎠ and DE =

(
3 0
0 2

)
.

As a result, the directed hypergraph Laplacian is

Q′ = ZD−1
E ZT =

⎛
⎜⎜⎝

4
3

−2
3

−2
3 0

−2
3

1
3

1
3 0

−2
3

1
3

5
6

−1
2

0 0 −1
2

1
2

⎞
⎟⎟⎠ .
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Fig. 4. Directed Hypergraph.

5 Conclusion

We have studied the primal dual algorithm of a distributed optimization prob-
lem that uses an undirected and unweighted hypergraph as its communication
structure from a dynamical system approach. We proved the stability of this
dynamical system with the use of non linear control theory and an appropriate
decomposition of the respective hypergraph Laplacian matrix. Finally, we have
extended our study for the case of a weighted and directed hypergraph where
we presented a Laplacian matrix for this communication structure and we pro-
posed a decomposition of this matrix for the stability analysis setting studied
throughout this work.
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Abstract. We analyze a recipe stream created on a social media site
dedicated to sharing homemade recipes in terms of a temporal hyper-
graph over a set of ingredients. Unlike the previous studies for transition
analysis of temporal higher-order networks, we propose a novel analysis
method based on topics and projected graphs to effectively characterize
the structural transitions of the temporal hypergraph immediately before
and after the occurrences of hyperedges. First, we propose a probabilistic
model to extract the topics of hyperedges on the basis of the trends and
seasonality of recipes, and present its Bayesian inference method. Next,
we propose employing the projected graph of the entire hypergraph, and
examining whether each of its main edges is present or not in the tem-
poral hypergraph, both immediately before and after the occurrences of
hyperedges for each topic. Using real data of a Japanese recipe sharing
site, we empirically demonstrate the effectiveness of the proposed anal-
ysis method, and reveal several interesting properties in the evolution of
Japanese homemade recipes.

Keywords: ingredient network · social media analysis · temporal
higher-order network · transition analysis

1 Introduction

The growing popularity of social media sites dedicated to sharing cooking recipes
has opened up an opportunity to explore the evolution of creative homemade
recipes made by ordinary people. Recently, there has been an increasing inter-
est in food science and computing [15], leading to the use of network science
methods [2] to analyze ingredient co-occurrence properties in recipes [1,9,18].
Networks offer a fundamental tool of modeling complex systems, and have been
successfully applied in various fields including social media analysis. Traditional
network-based models use graphs with nodes representing basic elements and
edges encoding their pairwise interactions. However, in many real-world settings
such as a human interaction in a group and a combination of ingredients in
a recipe, it becomes crucial to analyze interactions among more than two ele-
ments. Thus, attention has recently been devoted to an analysis of higher-order
networks [3,4,20].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1143, pp. 171–182, 2024.
https://doi.org/10.1007/978-3-031-53472-0_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-53472-0_15&domain=pdf
https://doi.org/10.1007/978-3-031-53472-0_15


172 K. Uga et al.

From the perspective of link prediction, many studies have been conducted
on the evolution of traditional dyadic networks [13]; however, little is known
about the evolution of higher-order networks since their analysis can be compu-
tationally challenging. Benson et al. [4] have presented a framework to examine
the evolution of higher-order networks, focusing on simplicial closure, which is
a unique phenomenon of higher-order structures not captured by conventional
network analysis such as triadic closure. On the other hand, Cencetti et al. [6]
have analyzed the configuration transitions for the evolution of higher-order
networks of human proximity interactions, unlike link prediction tasks such as
simplicial closure. More specifically, they examined the transitions of configu-
rations around higher-order links of a given size immediately before and after
their occurrences, and found several interesting properties in five different social
settings. Fujisawa et al. [8] have extended the work of Cencetti et al. [6] in the
case of temporal simplicial complexes, and presented an effective framework for
analyzing the transitions of boundary-based active configurations around new
simplices of a given dimension immediately before and after their occurrences.
However, these previous studies basically restricted their transition analysis to
higher-order links of a given size that is relatively small. Thus, it is desirable to
develop an effective framework for transition analysis that is independent of the
size of target higher-order links.

In this paper, we investigate a recipe stream generated on a social media site
dedicated to sharing homemade recipes in terms of a temporal hypergraph on
a set of ingredients. To effectively characterize the structural transitions of this
temporal hypergraph immediately before and after the occurrences of hyperedges
(i.e., recipes), we propose a novel method that leverages topics and projected
graphs. To extract the topics of hyperedges that relate to the trends and season-
ality of recipes, we first propose a probabilistic model and develop its Bayesian
inference method. Next, as an effective characterization framework that is inde-
pendent of the size of generated hyperedges, we focus on the projected graph of
the entire hypergraph and propose examining whether each of its main edges is
present or not in the temporal hypergraph, both immediately before and after
the occurrences of hyperedges for each topic. Using real data of a Japanese
recipe sharing site, we empirically evaluate the proposed probabilistic model,
and explore the characteristics in the evolution of Japanese homemade recipes
by applying the proposed analysis method.

2 Related Work

Recently, there has been a lot of research in the field of food science and com-
puting, leading to a wide range of food-oriented applications being explored [15].
From the perspective of network science, several researchers have analyzed ingre-
dient networks based on flavor compounds [1,9,14,16]. Also, Kikuchi et al. [12]
have analyzed the dynamic changes in ingredient pairs jointly used together in
recipes by leveraging temporal ingredient networks. Other studies have examined
population-wide dietary preferences through recipe queries on the Web [21], and
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investigated cuisines and culinary habits in the world, considering ingredients,
flavors, and nutritional values derived from large-scale online recipe data [17]. For
cross-region recipe analysis, visualizations of recipe density and ingredient cate-
gories have allowed for comparisons of food cultures from around the world [10].
Concerning recipe recommendation, researchers have explored the use of com-
plement and substitute networks for ingredients [18], and discussed the relation-
ship between algorithmic solutions and recipe healthiness [19]. In this paper,
we explore the characteristics in the evolution of Japanese homemade recipes
through an analysis of the structural transitions of temporal hypergraphs derived
from recipe sharing sites.

This paper also has a relationship with probabilistic topic models for network
generation. For the generation of traditional networks (i.e., graphs), a variety of
studies on probabilistic topic models, such as stochastic blockmodels, have been
conducted. These models have been successfully applied to network clustering
(see e.g., [11]). On the other hand, there has been a small number of studies
that have devised probabilistic topic models for generating clustered hypergraphs
and successfully applied them to hypergraph clustering (see e.g., [7]). Note that
these studies partition the set of nodes in a hypergraph by assigning a topic
to each node. In contrast, in this paper, we employ a probabilistic topic model
to partition the set of hyperedges in a hypergraph by assigning a topic to each
hyperedge, considering the trends and seasonality of recipes as well.

3 Preliminaries

3.1 Temporal Hypergraphs of Recipe Streams

We focus on a social media site dedicated to sharing homemade recipes, where
active interactions among users are performed and these interactions can pro-
mote the creation of better recipes. We analyze the characteristics of recipe
streams generated from the social media site, where each recipe stream consists
of recipes with time-stamps.

From a perspective of a temporal hypergraph {Ht = (V,Ht)}t∈T , we inves-
tigate a recipe stream R during a time-span T , where the day is used as our
time unit. We fix a set of main ingredients V , and refer to each element of V as
a node in hypergraph Ht for any t ∈ T . We set

V = {v1, . . . , vN}, (1)

where N is the number of main ingredients. For each recipe r ∈ R, let τ(r)
denote its time-stamp, meaning that recipe r is published on the site at time
τ(r). Using the cooking procedure of recipe r in terms of V , we first express r
as a sequence of nodes 〈w1(r), . . . , wn(r)(r)〉, where w1(r), . . . , wn(r)(r) ∈ V and
n(r) is an integer more than one. Note that there might be two nodes wi(r) and
wj(r) (1 ≤ i, j ≤ n(r), i �= j) such that wi(r) = wj(r). Then, we identify recipe
r as an unordered node tuple with repeated nodes, [w1(r), . . . , wn(r)(r)], and
represent r as an N -dimensional vector

h(r) = (h1(r), . . . , hN (r)), (2)
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Fig. 1. Transition analysis of temporal
hypergraph {Ht} for a hyperedge h(r)

Fig. 2. Example of the projected graph
of a hypergraph.

where each hi(r) is the number of times that node vi appears in 〈w1(r), . . . ,
wn(r)(r)〉 (see Eq. (1)). Note that

h1(r) + · · · + hN (r) = n(r).

Let n1(r), . . . , nm(r)(r) denote the nonzero components of vector h(r), where
n1(r) < · · · < nm(r)(r). Note that m(r) is the number of nonzero components
of vector h(r). We refer to h(r) as an m(r)-hyperedge that is placed on node
set {vn1(r), . . . , vnm(r)(r)} with multiplicity (hn1(r)(r), . . . , hnm(r)(r)) and that is
generated at time τ(r). Let Ht denote the set of all hyperedges generated at time
t ∈ T . Note that h(r) ∈ Hτ(r). We say that {Ht = (V,Ht)}t∈T is the temporal
hypergraph derived from recipe stream R during time-span T .

3.2 Structural Transitions of Temporal Hypergraphs

We consider the structural transition of the temporal hypergraph {Ht = (V,Ht)}
before and after the occurrence of each hyperedge h(r) (see Fig. 1). We focus on
a time-span T −(r) immediately before the occurrence of h(r) and a time-span
T +(r) immediately after it, where

T −(r) = [τ(r) − Δt0, τ(r)) ⊂ T , T +(r) = (τ(r), τ(r) + Δt0] ⊂ T , (3)

and Δt0 is a positive integer indicating the length of the “Before-After” inves-
tigation period. We examine the hypergraph H−(r) = (V,H−(r)) immediately
before the occurrence of h(r) and the hypergraph H+(r) = (V,H+(r)) immedi-
ately after it, which are defined as

H−(r) = {h(r′) ∈ Ht | t ∈ T −(r)}, H+(r) = {h(r′) ∈ Ht | t ∈ T +(r)}.

Let G−(r) = (V,E−(r)) and G+(r) = (V,E+(r)) denote the projected graphs of
hypergraphs H−(r) and H+(r), respectively. Here, G′ = (V ′, E′) is referred to
as the projected graph of a hypergraph H ′ = (V ′,H′), when each undirected edge
e′ = [u′, v′] in G′ (u′, v′ ∈ V ′) is derived from the projection of some hyperedge
h′ in H ′, i.e., e′ ⊂ h′, and the projections of any hyperedge in H ′ are edges in G′

(see Fig. 2). Note that G′ represents the basic graph structure inherent in H ′.
For a relatively small positive integer m ≥ 3, Cencetti et al. [6] and Fuji-

sawa et al. [8] dealt with configurations around each m-hyperedge created, and
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examined the characteristics of the configuration transitions before and after the
occurrences of those m-hyperedges. Unlike these previous studies, in this paper,
we focus on the projected graphs G−(r) and G+(r) for analyzing the structural
transition of {Ht} before and after the occurrence of h(r). Moreover, we inves-
tigate the structural transition of {Ht} from the perspective of the topics of
created hyperedges (i.e., the topics of created recipes), rather than based on the
size m of the created hyperedges.

4 Analysis Method

We consider the temporal hypergraph {Ht = (V,Ht)}t∈T derived from recipe
stream R. Let T∗ ⊂ T be a time-span to be analyzed. We focus on the set
of hyperedges created within T∗, H∗ = {h(r) ∈ Ht | t ∈ T∗}. We explore the
structural transition of {Ht}t∈T immediately before and after the occurrences
of hyperedges in H∗ from the perspectives of topics and projected graphs.

4.1 Extraction of Topics

First, we extract the topics of hyperedges from H∗. To this end, we simply
assume a Dirichlet mixture of multinomial distributions over V as a probabilis-
tic model generating hyperedges with topics. To take into account the trends
and seasonality of recipes (i.e., hyperedges) in time-span T and automatically
estimate the number of topics, we propose incorporating a distance dependent
Chinese restaurant process (ddCRP) by Blei and Frazier [5].

The proposed probabilistic model generates each hyperedge h(r) (see Eq. (2))
in the following way: First, a collection of topic assignments Z = (z(r))r∈R
is drawn from a ddCRP, where a positive integer z(r) represents the topic of
hyperedge h(r) (i.e., the topic of recipe r). More specifically, for each recipe
r ∈ R, the ddCRP independently generates a recipe assignment cr ∈ R from
the probability distribution

p(cr |Δt1, γ) ∝
{

I(|τ(cr) − τ(r)| < Δt1) if cr �= r,

γ if cr = r,
(4)

where Δt1 > 0 and γ > 0 are hyper-parameters, and I(q) is the indicator
function of a proposition q such that I(q) = 1 if q is true and I(q) = 0 if q
is false. For the collection of recipe assignments C = (cr)r∈R, we consider the
graph G(C) over R that is determined by C. Then, Z = Z(C) is the partition
of R that is derived from the connected component decomposition of the graph
G(C). Let K = K(Z) be the number of topics in Z, i.e., the number of different
values in {z(r) | r ∈ R}. Next, for each topic k, a multinomial parameter θk =
(θk,1, · · · , θk,N ) is drawn from a Dirichlet distribution

p(θk |μ) =
Γ

(∑N
i=1 μi

)
∏N

i=1 Γ (μi)

N∏
i=1

{θk,i}μi−1
, (5)
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where μ = (μ1, . . . , μN ), μ1, . . . , μN > 0 are hyper-parameters, and Γ (s) is the
gamma function. We put Θ = (θ1, . . . ,θK). Finally, given the number n(r) of
main ingredients in recipe r, hyperedge h(r) (see Eq. (2)) is generated according
to the multinomial distribution

p(h(r) |Z(C), Θ) =
n(r)!∏N

i=1 hi(r)!

N∏
i=1

{θz(r),i}hi(r). (6)

We now consider extracting the collection of topics Z for the hyperedges in
the observed data H∗ on the basis of a Bayesian inference framework. Then, the
likelihood of H∗ is given by

p(H∗ |Z(C),μ) =
∫

Ω

∏
h(r)∈H∗

p(h(r) |Z(C), Θ)
K(Z)∏
k=1

p(θk |μ) dθk, (7)

where Ω stands for the appropriate domain of integration. Note that Eq. (7)
is analytically calculated from Eqs. (5) and (6). We estimate the collection of
recipe assignments C from H∗ by employing the Gibbs sampling

p(cnewr |C−r,H∗,Δt1, γ,μ) ∝ p(cnewr |Δt1, γ) p(H∗ |Z(C−r ∪ cnewr ),μ) (8)

for each recipe r, and consequently extract the collection of topic assignments
Z(C). Here, C−r indicates removing the current assignment cr of r from C,
and C−r ∪ cnewr indicates adding a new assignment cnewr of r to C−r. Note that
the Gibbs sampler (see Eq. (8)) can be efficiently calculated by using several
properties of ddCRP (see [5]). Due to space constraints, we omit the details. We
will provide a more comprehensive explanation of our inference method in the
extended version of the paper.

4.2 Topic-Based Analysis of Structural Transitions

For each hyperedge h(r) ∈ H∗, we investigate the structural transition of tem-
poral hypergraph {Ht} before and after the occurrence of h(r).

To examine the structural transition of {Ht} in terms of projected graphs, we
first consider the hypergraph H = (V,H) derived from R during the entire time-
span T and its projected graph G = (V,E), where H =

⋃
t∈T Ht. We introduce

a set of main edges in E (see Sect. 5.3 for more details),

Emain = {e1, . . . , eM} ⊂ E, (9)

where each ej indicates a main pair of ingredients during T . To examine the
structural transition of {Ht} in terms of topics, we also consider the topic decom-
position of H∗,

H∗ = H∗,1 ∪ · · · ∪ H∗,K (disjoint union), (10)

which is extracted by the method described in Sect. 4.1. Note that each H∗,k

consists of the hyperedges (i.e., recipes) in topic k during time-span T∗.
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For every hyperedge h(r) ∈ H∗, we first examine whether each ej ∈ Emain

is present or not in the projected graphs G−(r) and G+(r) to characterize the
structural transition of {Ht} before and after the occurrence of h(r). Then,
we classify each ej ∈ Emain into one of the four classes “p → p”, “p → n”,
“n → p” and “n → n” with respect to hyperedge h(r) based on the following
conditions: if “ej ∈ E−(r) and ej ∈ E+(r)” is satisfied, it belongs to class “p →
p”; if “ej ∈ E−(r) and ej /∈ E+(r)” is satisfied, it belongs to class “p → n”; if
“ej /∈ E−(r) and ej ∈ E+(r)” is satisfied, it belongs to class “n → p”; and if
“ej /∈ E−(r) and ej /∈ E+(r)” is satisfied, it belongs to class “n → n”.

Moreover, for every topic k, we investigate the classes of each ej ∈ Emain with
respect to the hyperedges in H∗,k (see Eq. (10)). Let Pk(p → p | ej), Pk(p →
n | ej), Pk(n → p | ej) and Pk(n → n | ej) denote, respectively, the fractions of
hyperedges h(r) in H∗,k such that ej belongs to classes “p → p”, “p → n”, “n
→ p” and “n → n” with respect to h(r). Note that

Pk(p → p | ej) + Pk(p → n | ej) + Pk(n → p | ej) + Pk(n → n | ej) = 1.

Then, we further classify each ej ∈ Emain into one of the four classes “p → p”,
“p → n”, “n → p” and “n → n” with respect to topic k based on the maximum
value of posterior probabilities Pk(p → p | ej), Pk(p → n | ej), Pk(n → p | ej) and
Pk(n → n | ej). To analyze the structural transitions of temporal hypergraph
{Ht} immediately before and after the occurrences of hyperedges for any topic
k, we propose characterizing them in terms of the class of each ej ∈ Emain with
respect to the topic k.

5 Experiments

We investigated Dessert, Fish-dish, Meat-dish and Vegetable-dish categories on
Japanese recipe-sharing site “Cookpad”1 during time-span T from Dec 4, 2011
to Jan 28, 2013.

5.1 Datasets and Experimental Settings

By taking into account the attributes of Cookpad, we set the length of the
“Before-After” investigation period Δt0 as 28 days (see Eq. (3)), and analyzed
the creation of hyperedges (i.e., the creation of recipes) within time-span T∗ from
Jan 1, 2012 to Dec 31, 2012.

We constructed four datasets, each of which corresponds to one of the four
categories described above. For each dataset, we identified the set of main ingre-
dients2 (i.e., the set of nodes V ). Then, the numbers of nodes for the Dessert,
Fish-dish, Meat-dish and Vegetable-dish datasets were 3, 157, 1, 538, 2, 713 and

1 https://cookpad.com/.
2 We first excluded common ingredients for Japanese food such as soy sauce, salt,

sugar, water, edible oil, and the like. Then, we identified the ingredients that
appeared in two or more recipes for each dataset.

https://cookpad.com/
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(a) Results for log-likelihood ra-
tio LLR

(b) Results for prediction log-
likelihood ratio pLLR

Fig. 3. Evaluation results of the proposed model for the four datasets.

4, 985, respectively. Moreover, we focused on the recipes containing at least two
main ingredients (i.e., the m-hyperedges with m ≥ 2). Then, the numbers of
hyperedges for the Dessert, Fish-dish, Meat-dish and Vegetable-dish datasets
were 654, 495, 511 and 712, respectively.

5.2 Evaluation of Proposed Model

For extracting the topics of hyperedges from H∗, we evaluated the proposed
probabilistic model (see Sect. 4.1).

We compared the proposed model to three baseline models. As the first base-
line model, we considered a multinomial distribution over V , which is same as the
proposed model with only one topic. As the second baseline model, we adopted
a Dirichlet mixture model of multinomial distributions over V that incorporates
a Chinese restaurant process (CRP). Note that this is regarded as the proposed
model with Δt1 = ∞ and ignores the temporal trends and seasonality for topics
in the proposed model. In the experiments, we set the hyper-parameter Δt1 of
the proposed model to Δt1 = 7 days, considering the attributes of Cookpad. To
confirm the suitability of this hyper-parameter setting, we also considered the
proposed model using Δt1 = 14 days as the third baseline model, and compared
it with our proposed model using Δt1 = 7 days.

We evaluated the proposed model in two different manners. First, we esti-
mated the four target probabilistic models from the entire data H∗, and eval-
uated how well they fit H∗ in terms of log-likelihood ratio LLR, where LLR is
defined as the difference between each target probabilistic model and the first
baseline model with respect to the log-likelihood for H∗ (see Eq. (7)). Next, we
divided H∗ into the training set Htrain

∗ and the test set Htest
∗ , where Htrain

∗ is
the set of hyperedges (i.e., recipes) created from Jan 1, 2012 to Nov 30, 2012,
and Htest

∗ is the set of hyperedges (i.e., recipes) created from Dec 1, 2012 to
Dec 31, 2012. We estimated the four target probabilistic models from the train-
ing set Htrain

∗ , and evaluated their prediction performance in terms of predic-
tion log-likelihood ratio pLLR, where pLLR is defined as the difference between
each target probabilistic model and the first baseline model with respect to
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(a) Dessert (b) Fish (c) Meat (d) Vegetable

Fig. 4. Distribution of the number of topics with respect to which a main edge in the
projected graph G of the entire hypergraph H belongs to class “n → p”.

the log-likelihood for the test set Htest
∗ (see Eq. (7)). As for learning the tar-

get probabilistic models, we set the hyper-parameters γ and μ to γ = 1 and
μ1 = · · · = μN = 2, and implemented 500 iterations with 50 burn-in iterations.

Figure 3 shows the evaluation results of the proposed model (ddCRP(Δt1 =
7)), the second baseline model (CRP) and the third baseline model (ddCRP(Δt1
= 14)) for the Dessert, Fish-dish, Meat-dish and Vegetable-dish datasets, where
Fig. 3a and 3b indicate the results for log-likelihood ratio LLR and the results
for prediction log-likelihood ratio pLLR, respectively. We see that the proposed
model with Δt1 = 7 significantly outperforms the three baseline models for the
four datasets. These results imply that there exists a topic structure for the
set of hyperedges created in the temporal hypergraph {Ht}, and their topics are
related to the temporal trends and seasonality. Thus, we consider that the topics
extracted from H∗ by the proposed model (see Eq. (10)) have significance.

5.3 Analysis Results

We investigated the structural transition of the temporal hypergraph {Ht} for
the four datasets using the proposed analysis method (see Sect. 4.2). For each
dataset, we identified the set of main edges Emain (see Eq. (9)) by the criterion
that an edge ej in the projected graph G is main, i.e., ej ∈ Emain, if there
are ten or more hyperedges h(r) ∈ H∗ such that ej ⊂ h(r). Also, we extracted
the topics from H∗ by the proposed model (see Eq. (10)), where we excluded
topics including fewer than ten hyperedges (i.e., recipes) for simplicity. Then,
the number of main edges M (see Eq. (9)) and the number of topics K (see
Eq. (10)) were (M = 1, 262,K = 24), (M = 857,K = 20), (M = 1, 912,K = 25)
and (M = 2, 378,K = 28) for the Dessert, Fish-dish, Meat-dish and Vegetable-
dish datasets, respectively.

For each topic k, we analyzed the main edges ej belonging to class “n →
p” with respect to topic k since they tend to be newly created immediately
after the occurrence of a hyperedge (i.e., recipe) in topic k. To this end, we first
examined the number of topics with respect to which each main edge ej ∈ Emain
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(a) Sequence of hyperedge occurrences (b) Result for probabilities {P13(· | ej)}

Fig. 5. Analysis results for topic “k = 13” in the Fish-dish dataset.

belongs to class “n → p” for the four datasets. Figure 4 shows the distribution of
the number of topics for any main edge. We observe that there were a few main
edges belonging to class “n → p” with respect to a majority of topics, while there
were a considerable number of main edges not belonging to class “n → p” with
respect to every topic. We also see that for the four datasets, the distribution
exhibited a bell-shaped-like curve having a peak at a relatively small number of
topics (i.e., four or five topics). Here, we focused on the main edges belonging
to class “n → p” with respect to only one topic since they are considered to
represent the characteristic structural transitions unique to the corresponding
topics. For the Fish-dish dataset, for instance, the seven unordered pairs of
ingredients [‘mackerel’, ‘ginger’], [‘octopus’, ‘sake’], [‘righteye flounder‘, ‘ginger’],
[‘squid’, ‘cucumber’], [‘macrophyll’, ‘rice’], [‘shishito green pepper’, ‘sake’] and
[‘myoga’, ‘sake’] became main edges satisfying the above condition, and topic
“k = 13” was their corresponding topic.

Due to space constraints, we focus on an analysis of topic “k = 13” in the
Fish-dish dataset as an example. Figure 5 shows the results. Here, Fig. 5a indi-
cates the occurrence sequence of hyperedges (i.e., recipes) in topic “k = 13” for
the Fish-dish dataset. We observe that the hyperedges in topic “k = 13” con-
centrated on some period of early summer, implying that topic “k = 13” was
related to seasonality. After carefully reviewing the recipes in topic “k = 13”, we
found that topic “k = 13” represents Japanese-style fish dishes that go well with
beer in early summer. In fact, for example, the recipes in topic “k = 13” that
received many Cooksnaps3 were “Easy Pan-fried Japanese Amberjack Teriyaki”,
“Easy Sesame Mayonnaise Salad with Exquisite Crispy Cucumbers” and “Grilled
Salmon with Sesame Miso Mayonnaise”. Figure 5b indicates the probabilities
P13(n → p | ej), P13(p → n | ej), P13(p → p | ej) and P13(n → n | ej) for each
main edge ej , where the main edges ej ∈ Emain are arranged in decreasing order
according to their P13(n → p | ej) values. The seven main edges described above

3 On Cookpad, when users love a posted recipe, they can show their appreciation by
sending a “Thank You” message along with a photo of the dish they actually cooked.
This type of message is called a Cooksnap.
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were ranked within the top 200 in the P13(n → p | ej) value-based ranking of
main edges. For the top-ranked main edges in this ranking, their P13(n → p | ej)
values were significantly higher than their P13(p → n | ej), P13(p → p | ej) and
P13(n → n | ej) values. Thus, such top-ranked main edges represented class “n
→ p” in topic “k = 13”. Here, the four main edges [‘basil’, ‘onion’], [‘baking
powder’, ‘wheat flour’], [‘ketchup’, ‘wheat flour’] and [‘garlic’, ‘grape tomato’]
were top-ranked in this ranking although they also belonged to class “n → p”
with respect to topics other than topic “k = 13”. These pairs of ingredients also
characterize the structural transition of the temporal hypergraph {Ht} for topic
“k = 13”. Here, we emphasize that our topic-based analysis method, investigat-
ing the structural transition of {Ht} derived from recipe stream R, has offered
novel insights not uncovered by the previous studies [6,8]. It has also revealed
several intriguing properties in the evolution of Japanese homemade recipes.
These results demonstrate its effectiveness.

6 Conclusion

We have explored a recipe stream created on a social media site dedicated to shar-
ing homemade recipes in terms of a temporal hypergraph over a set of ingredi-
ents. Aiming to uncover the characteristics in the evolution of homemade recipes
on the site, we have analyzed the structural transitions of the temporal hyper-
graph immediately before and after hyperedges are created. Unlike the previous
studies for transition analysis of temporal higher-order networks by Cencetti
et al. [6] and Fujisawa et al. [8], we have proposed a novel method based on
topics and projected graphs for this “Before-After” analysis of created hyper-
edges. To identify the topics of hyperedges by taking into account the trends
and seasonality of recipes, we have first proposed a probabilistic model with a
ddCRP prior and presented its Bayesian inference method. Next, to provide an
effective characterization framework that is independent of the size of created
hyperedges, we have focused on the projected graph of the entire hypergraph,
and proposed examining whether each of its main edges is present or not in the
temporal hypergraph, both before and after the occurrences of hyperedges for
each topic. Using real data of Japanese recipe sharing site “Cookpad”, we have
empirically showed the effectiveness of the proposed probabilistic model, and
uncovered several intriguing properties in the evolution of Japanese homemade
recipes by employing the proposed analysis method.
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Abstract. For the past decade, immigration has taken center stage in
the Italian public discourse, providing fertile ground for far-right parties
to cultivate fear and ultimately nurturing sentiments of animosity and
racism. The Russian invasion of Ukraine introduced a unique narrative
as European white refugees sought shelter, diverging from the conven-
tional refugee archetype ingrained within the Italian collective conscious-
ness. Employing the tools of Network Science, this study aims to dissect
whether the Russo-Ukrainian conflict in 2022 has triggered shifts in Ital-
ians’ viewpoints toward refugees. Specifically, we delve into whether the
proximity of the conflict and the ethnic parallels between refugees and
Italians have prompted changes in attitudes toward refugees. Through
an exploration of the intricate interplay between international conflict,
social network dynamics, and evolving sentiments, this research con-
tributes to understanding the intricate dynamics that underlie shifts in
public sentiment regarding migration.

Keywords: Refugees · Russo-Ukrainian Conflict · Migrants · Social
Network Analysis · Twitter · Opinion Dynamics · Community
Discovery

1 Introduction

Italy’s geographical location has historically positioned it as a primary route for
undocumented migrants, encompassing those migrating for economic motives
and asylum seekers alike. Notable events such as the Arab Spring in 2011 and
the Syrian War in 2014 contributed to a significant rise in boat arrivals on Italian
shores [15]. As these numbers surged, far-right political entities in Italy adeptly
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steered the migration discourse toward themes of “threat” and “security,” effec-
tively integrating migration as a pivotal element within their political agendas.
This strategic maneuver led to the establishment of echo-chambers, distorting the
factual migrant and asylum seeker statistics. An Ipsos study conducted in 2019
[6], revealed a discrepancy between the perceived migrant presence on Italian soil
(31%) and the actual data (9%). Moreover, 63% of Italians acknowledged expo-
sure to misinformation on immigration, which led them to erroneously attribute
a majority of crimes to migrants (33% of respondents) and perceive immigration
as a menace to Italy (57% of respondents).

As expounded by Dylan Patrick Mcginnis in an article within the Yale Review
of International Studies [9], the strategies employed by political figures such as
Matteo Salvini (Lega’s leader) and Giorgia Meloni (leader of Fratelli d’Italia)
have positioned immigration policies within the far-right ideological spectrum.
This approach hinges on cultivating an “us versus them” dichotomy, casting
migrants as the ‘other’ and ascribing Italy’s economic woes to immigrant pop-
ulations. In accordance with these postulates, the presence of a proximate con-
flict, exemplified by the Russian invasion of Ukraine, holds the potential to elicit
empathetic sentiments among Italians toward refugees. Additionally, ethnic sim-
ilarities might dismantle Salvini’s entrenched “us versus them” dichotomy.

This article seeks to delve into the dynamics shaping Italians’ perceptions
of refugees, with a particular emphasis on scrutinizing the evolution and trans-
formation of opinions prior to and following the 2022 Russo-Ukrainian conflict.
The analysis is rooted in an examination of a dataset comprising tweets written
in Italian.

2 Related Work

In recent decades, the issue of immigration has become increasingly relevant both
in the social and academic contexts. Studies by Ambrosini [1] and Venturini [13]
demonstrate how this phenomenon impacts various aspects of our lives, from
the economic to the political sphere. Several publications, including Hampshire’s
work [5], have highlighted how politics has often been inadequate in controlling
migratory flows, especially during critical periods such as the Libyan war or the
Arab Spring [4]. Public opinion and the media’s treatment of the subject have
been frequently investigated to understand their evolution over time. Kosho’s
study [8] reports that mass media exert significant influence on the opinions
of individual citizens and regulators, and how these actors often influence each
other in a continuous cycle. A media coverage report [10] centered on the main
Italian newspapers highlighted a positive correlation between their consumption
and a positive attitude towards migrants. With the evolution of technology and
the widespread use of social networks, the debate has increasingly shifted to
the internet. Vilella et al. [14] have proposed a study based on data extracted
from Twitter, showing that citizens’ opinions are not strongly correlated with
their geographic location but are more closely tied to their political orientation.
These results have also been confirmed by the study published by Radicioni [11].
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Looking at the behavior of migrants and native on Twitter has been showed that
migrants have more followers than friends and that they tends to connect more
based on nationality despite the country of residence [7]. It is often observed
that war refugees and economic migrants are perceived by citizens as a single
entity, raising the question of whether there is a genuine awareness of the differ-
ence between the two. A passage from Torres’ study [12] reports that, despite
European citizens’ understanding of this difference, a sort of “us against them”
dynamic is often created, fueled by anti-migrant populist narratives. Building
upon some established results over time, our study aims to investigate whether
the outbreak of the war between Russia and Ukraine has changed opinions about
migrants within the Italian territory.

3 Italians’ Perception of Migrants on Twitter

In this section, we delve into the investigation of public opinion dynamics exhib-
ited by a representative subset of Italian speaking Twitter users with regard to
refugees. Our primary focus centers on the temporal trajectory preceding and
subsequent to the Russo-Ukrainian conflict in 2022 [16].

Methodology and Experimental Setup: Our analysis proceeds through two
essential stages. Firstly, we detail the methodology employed for data analysis
and classification. Subsequently, we elaborate on our experimental environment,
emphasizing the evolution of opinions across time. Two discrete datasets are
formulated for distinct purposes:

– Graph Construction and Analysis Dataset (GCAD):
To construct the social interaction graph, a comprehensive dataset was
acquired by scraping Italian tweets containing relevant hashtags associated
with immigration1 from September 1, 2020, to September 1, 2022. The ini-
tial dataset comprised 71,735 tweets, encompassing 13,575 distinct users and
69,580 conversations. Naturally, certain samples were discarded due to incon-
sistencies, duplicated entries, and other data anomalies. Exploiting conversa-
tion IDs, we further collected all tweets affiliated with those conversations to
reconstruct complete discourse.

– Classifier Training Dataset (CTD):
we created a specialized dataset focused on tweets featuring polarized hash-
tags associated with a common theme. The collection period spanned from
September 2018 to September 2022. Each of these tweets is assigned a label
that indicates the extent of positive sentiment towards migrants conveyed in
the text. Tweets marked with #restiamoumani2 were designated with a label
of 1, signifying a pro-refugee stance, while those containing #portichiusi3 were

1 In Italian: [#rifugiato, #rifugiati, #profugo, #profughi, #migrante, #migranti].
English: [#refugee, #refugees, #migrant, #migrants].

2 In English #stayhuman.
3 In English #closedharbors.
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assigned label 0, indicating an anti-refugee leaning. This dataset serves as the
foundation for training a classifier, which subsequently operates to categorize
the tweets extracted from the GCAD.

Nodes Labeling: The CTD serves uniquely as a training dataset for developing
a classification model fine-tuned to categorize the tweets of the GCAD. The
classifier assign a tweet label (TL) to each tweet of the GCAD:

– TL = 1: positive leaning about refugees;
– TL = 0: negative leaning about refugees.

Throughout the experimentation phase, an assortment of models underwent eval-
uation. Among these models, the Logistic Regression model emerged as the opti-
mal candidate, displaying the highest performance metrics, including an accu-
racy score of 0.78, along with effective probability calibration.

In pursuit of a user-centric viewpoint, we introduced a unique continuous
score computation for each user, predicated on the average predicted leaning of
their associated TL. This user label (UL) encapsulates the collective sentiment
trajectory exhibited by each user towards the subject matter. For instance, if
a user contributed two tweets, characterized by labels 1 and 0, their UL would
manifest as 0.5. By adopting this approach, we attain a comprehensive portrayal
of the prevailing inclination of each user concerning the focal theme.

Network Characterization: The network G = (V, E) employed in our analysis
is constructed based on the GCAD. Within this framework, users were desig-
nated as nodes, represented by V, while the interactions in the form of replies
between users were accounted for as edges, depicted as E. Due to the presence of
isolated nodes, our focus was directed towards the giant component of the net-
work. Post the cleansing process, the resulting G comprises |V | = 46, 978 nodes
and |E| = 88, 029 edges. G has a density of 7.98·10−05, and it exhibits an average
Clustering Coefficient of 0.078, coupled with an average shortest path length of
3.39. Notably, G showcases a minor degree of disassortativity, as inferred from
its Newman Assortativity coefficient of R = −0.2.

Meso-scale Topologies: The interactions and information assimilation within
discussions lead individuals to be influenced by their neighbors and the broader
context. Consequently, delving into how users cluster on a meso-scale level, such
as forming communities, during the two-year observation period, becomes piv-
otal. This endeavor facilitates the comprehension of network dynamics and offers
insights into the composition of debates and the amalgamation of ideological
perspectives. To gain insights into how or if the ongoing debate impacted the
network’s topology, we partitioned the dataset into four distinct semesters. Sub-
sequently, we extracted the giant component for each semester. From these snap-
shots, we derived node clusters using the Principled Clustering algorithm [3].
Across the four snapshots, the count of communities generated varied between
eight and nine. This variation highlights the occurrence of diverse community
dynamics during the observation period. A brief summary of the results and
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Table 1. Results and performance of Principled Clustering (PC) algorithm on the four
different snapshots

Snapshot #communities Modularity Conductance

Sep 2020–Feb 2021 8 0.5670 0.2860

Mar 2021–Aug 2021 9 0.5504 0.3119

Sep 2021–Feb 2022 8 0.5919 0.2496

Mar 2022–Aug 2022 9 0.5685 0.2970

(a) Community 0 (b) Community 1 (c) Community 2

Fig. 1. User label distribution across a sample of communities. The histograms offer
a cumulative perspective across four timestamps. The counts are color-coded: blue for
the first semester, yellow for the second semester, green for the third semester, and red
for the fourth semester.

performances of the PC algorithm is shown in Table 1. To assess the relevance
of community changes w.r.t. ideological composition, we studied the user label
distribution within each community over time. As depicted in Fig. 1, it becomes
evident that communities predominantly do not consist of users who exclusively
share a singular opinion. This characteristic is consistent across all community-
label composition distributions trough time and is supported by both the high
variance and the similarity in means for each distribution. Therefore, the compo-
sition of communities appears to exclude the presence of polarized conversations
in the network under analysis, instead fostering heated discussions and a fluent
flow of ideas and information.

A Comparison of the User Label Distribution: We conducted a compar-
ative analysis to determine whether tweets concerning Ukraine exhibited a more
positive sentiment compared to those discussing migrants in a broader context.
To achieve this, we visualized the distribution of user labels (as computed in the
nodes labeling subsection) in Fig. 2, considering two distinct scenarios: tweets
containing the substring ucr (the first three letter of the Italian word Ucraina
- Ukraine) and tweets without it. Figure 2a, centered on the former scenario,
vividly demonstrates a distinct shift in the UL distribution towards 1, indicat-
ing a pronounced positive inclination. In contrast, Fig. 2b, which addresses the
latter scenario, reveals a more evenly distributed UL. This trend gains further
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(a) Tweets containing the substring ucr (b) Tweets without the substring ucr

Fig. 2. Distribution of the user label in the two cases.

validation from the mean user label values: in the former case, the mean com-
putes to 0.72, while in the latter, it stands at 0.51. This observation underscores
that tweets related to Ukraine tend to manifest a more optimistic sentiment
compared to the broader dataset.

Pre- and Post-Russo-Ukrainian Conflict Comparison: The comparison
of opinions before and after the Russo-Ukrainian conflict entails partitioning the
dataset GCAD into two distinct time frames:

– “before the war”: all the tweets written before the Russian invasion of Ukraine
(24/2/2022)

– “after the war”: all the tweets written after the Russian invasion of Ukraine
(24/2/2022).

Subsequently, the user label underwent re-computation, resulting in the mean
value of each tweet label within each temporal frame, contingent on users who
composed at least two tweets within each temporal snapshot. For enhanced data
visualization and manageability, a decision was made to categorize the user labels
into four distinct bins, incorporating the user label within:

– 0–0.25 (bin 0): negative leaning about migrants;
– 0.25–0.5 (bin 1): slightly negative leaning about migrants;
– 0.5–0.75 (bin 2): slightly positive leaning about migrants;
– 0.75–1 (bin 3): positive leaning about migrants;

To provide empirical support for the evolving dynamics of users’ opinions, we
employed a Sankey Plot, as depicted in Fig. 3. This visual representation effec-
tively illustrates the shifts in users’ opinion distributions across the previously
identified temporal snapshots.

To validate the observed shifts, we infer whether we can reject the hypothesis
H0 which asserts that the observed change of opinions are only due to random
fluctuations. Under this hypothesis of total randomness, each user with opinion
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Fig. 3. Sankey Diagram of user label in the two temporal snapshots, before and after
the 2022 Russo-Ukrainian conflict

x has the same probability of changing his opinion to some value x′. Thus, the
aleatory variable x′ is distributed according to a continuous uniform distribution
U(0, 1). Since x′ is independent of the original opinion x, we can treat each
original bin i (i.e. the bins on the left side of Fig. 3) independently from the
other ones. Under the hypothesis H0, the fluxes coming from each bin i behave
in the same way as 4 histograms hi of ni samples extracted from U(0, 1). As a
statistical test, we adopt a goodness of fit based on the likelihood ratio statistic
λ [2], which tends to a non-central χ2 in the asymptotic limit, as stated by
Wilk’s Theorem. Therefore, we can test the counts in each flux with the classic
Pearson’s χ2, defined as

λ(nij) =

(
nij − fij

)2

σ2
ij

, (1)

where:

– nij is the number of counts in the flux from the bin i to the bin j;
– fij = ni/4 is the mean of the multinomial distribution of the counts yij bin

j, i.e. the integral of the pdf U(0, 1) over the range of the bin j;
– σ2

ij = nij

ni
(ni − nij) is the variance of the multinomial distribution of the

counts yij bin j.

For the calculation of the mean fij and variance σ2
ij we employ the multino-

mial distribution since the parameter ni is fixed apriori. The critical region for
the test is then

λ(nij) > qα with qα : 1 − Fχ2
1
(qα) = α
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Table 2. Values used and results for the goodness of fit test of the hypothesis H0 of
random change of opinion. nij is the number of counts in the flux from the bin i to
the bin j; λ(nij) is the statistic based on the likelihood ratio, defined in (1); q5% is
the significant threshold; the last two rows indicate whether the test is significant and
which p-value is associated to it.

0→ 0 0→ 1 0→ 2 0→ 3 bin 0 1→ 0 1→ 1 1→ 2 1→ 3 bin 1

nij 99 82 141 47 / 149 158 272 112 /

λ(nij) 0.658 1.519 34.350 29.594 66.101 4.353 1.679 76.029 28.485 110.546

q5% 3.841 3.841 3.841 3.841 9.488 3.841 3.841 3.841 3.841 9.488

significant N N Y Y Y Y N Y Y Y

p-value 0.417 0.218 4.6e−9 5.3e−8 1.5e−13 0.037 0.195 2.8e−18 9.4e−8 5.6e−23

2→ 0 2→ 1 2→ 2 2→ 3 bin 2 3→ 0 3→ 1 3→ 2 3→ 3 bin 3

nij 178 158 422 224 / 57 78 205 138 /

λ(nij) 24.745 41.582 169.191 2.511 238.029 43.584 19.216 81.565 3.819 648.184

q5% 3.841 3.841 3.841 3.841 9.488 3.841 3.841 3.841 3.841 9.488

significant Y Y Y N Y Y Y Y N Y

p-value 6.5e−7 1.1e−10 1.1e−38 0.113 2.4e−50 4.1e−11 1.2e−5 1.7e−19 0.074 6.3e−149

We set α = 0.05 and calculate the p-value as

p = 1 − Fχ2
1
(λ)

In Table 2 we report a brief of the p-value obtained for each flux ij and a
combination of them.

The test results are significant for each bin. Moreover, the general p-value
p can be obtained by combining the individual pi obtained for each bin i by
creating the statistics

λ′(p − i) = −2 log
∏

pi = −2 log
∑

pi � 602, (2)

which also follows a χ2 distribution with n =
∑

i i degrees of freedom. Since
the value of lambda is much larger than the threshold value of 26.296 (calculated
from the χ2 distribution with n = 16 dof), we conclude that the test is significant.
With this test, we can then infer that the fluxes are generally not random, with
the exception of the fluxes 0 ⇒ 0, 0 ⇒ 1 1 ⇒ 1, 2 ⇒ 3 and 3 ⇒ 3. We can thus
conclude that the majority of the observed changes in opinion are not due to
random fluctuations, but rather, there is some underlying effect responsible for
users transitioning from one category to another.

The result shown in Fig. 3 highlights the natural behaviour of a user to have
a moderate change of opinion instead of a drastic one. Another noticeable trend
is the enlargement of the bins 0 and 3 in the snapshot following the conflict. This
intensified polarization might stem from the influx of Ukrainian refugees or could
be an outcome of the proximity to the Italian election. Within our dataset, a
substantial quantity of tweets were authored post-May 2022, with a pronounced
peak in July 2022, coinciding with the commencement of the electoral campaign
for the Italian election scheduled in September 2022. Consequently, this temporal
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Table 3. Percentage variation in the User Label (UL) within each bin (or bin com-
bination). BtA represents the alteration in user labels from before to after the 2022
Russo-Ukrainian Conflict; BtA/Ukr signifies the same, with tweets containing the sub-
string “ucr” removed; “one to two” denotes the change between the initial and second
temporal snapshots outlined in the Meso-scale topologies section.

0–0.5 0.5–1 0–0.25 0.25–0.5 0.5–0.75 0.75–1

BtA −9% +7% +31% −31% +6% +9%

BtA/Ukr −9% +6% +33% −31% +5% +9%

one to two −5% +4% −2% −9% −0.1% +6%

interval hosts a significant volume of tweets authored by politicians who possess
distinct viewpoints on immigration. This, in turn, can trigger a cascade effect,
leading users to adopt more definite positions as well.

Given our objective of discerning shifts in opinions regarding migrants and
refugees, we additionally investigate the distribution of the user label differ-
ence, denoted as xij = xj − xi. This quantifies the extent to which a user’s
opinion has altered from one temporal snapshot i to another j. To explore
the potential influence of the conflict on these shifts in opinions, our analysis
centers on the temporal snapshots labeled as “before the war” and “after the
war.” The dataset capturing these calculated opinion differences is denoted as
“Before to After (BtA).” In our initial analysis, we concentrate on examining
the percentage increase or decrease of each bin count between the two temporal
snapshots. This approach provides us with a quantitative gauge of the extent of
opinion change across these periods. Furthermore, we extend our investigation to
encompass a dataset excluding tweets containing the substring “ucr”, referred
to as “BtA/Ukr”. This exclusion aims to mitigate potential biases, since the
tweetws regarding Ukraine are in general more positive, as depicted in Fig. 2a.
Beyond the changes in individual bins, it is insightful to consider the cumu-
lative values within the bins 0–1, and 2–3, which correspond, respectively, to
negative and positive leaning. To validate the analysis, we repeat the analysis
between the first two semestral snapshot created in the Meso-scale topologies
paragraph, calling this dataset “one to two”. Table 3 presents the outcomes of
this analysis. Comparing the rows for BtA and BtA/Ukr reveals their similarity,
indicating no significant alteration. However, a subtle effect is observed in the
slight decrease of the positive class (0.5–1), accompanied by a corresponding
increase in the negative leaning class, aligning with our expectations. Compar-
ing the changes in “on to two”, these are significantly smaller than the ones
in row BtA. This may be a hint that the Russo-Ukrainian conflict (and also
the Italian election) could have had an effect on the Italians’ opinion about
migrants. To validate this kind of inference, a 2-samples Kolmogorov-Smirnov
(KS) test is designed, where we test whether the distribution of xij is different
in the case of “Before to After” with respect to a random split like “one to two”.
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Fig. 4. Distribution of the difference of UL between to temporal snapshot. In orange
we reported the difference between the temporal snapshot before and after the conflict,
while in blue between the first and second semester defined in the Meso-scale topologies
paragraph

The test result significant, with a p-value of p = 2.44 · 10−5, i.e. the two distri-
bution are really different from one another. The overlap of the distribution is
reported in Fig. 4.

4 Conclusions

The goal of this article was to investigate the dynamics of Italians’ opinions about
refugees, with a specific focus on the comparison and shifting opinions before and
after the 2022 Russian-Ukrainian conflict. Our analysis underlies that most of
the observed change of opinions between the studied temporal snapshots are not
random, conversely the test we designed highlights that there is an undergoing
effect. We studied whether this effect is different between the temporal snapshots
regarding the war or between two randomly chosen intervals. The KS test we
designed resulted significant. Our hypothesis is that this difference is due to the
Russian-Ukrainian conflict: such a variation emerged indeed, however, we can
not conclude on the relative importance of different confounders that generated
such an effect.
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Abstract. Homophily is the social network phenomenon whereby sim-
ilar individuals have a greater propensity to form ties. Motivated by
concerns of risky-prescribing among older patients in the United States,
we developed exponential random graph models to estimate the effect of
homophily of risky prescribing net of other physician characteristics and
network features in a complex network. We also developed novel network
measures and associated non-parametric statistical tests that allow for
greater homophily in specific triadic confgurations (“super-homophily”).
Using a shared-patient network of all physicians who treated patients
residing in the US state of Ohio in 2014, we found statistical evidence
of physician homophily (both in level and heterogeneity across regions)
and triadic homophily on risky prescribing. Our findings may explain
the emergence of prescriber communities, motivate group-level prescriber
interventions to directly reduce risky-prescribing, and motivate interven-
tions that reshape physician shared-patient networks to indirectly reduce
risky-prescribing.
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prescribing · Shared-patient physician network · State-space ·
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1 Introduction

Risky prescribing among the older population is a health concern for which
public health interventions are highly sought-after. Risky prescribing commonly
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refers to the excessive prescribing (“polypharmacy”) of unwarranted prescrip-
tions that deviate from guidelines [5,10,13]. The older population in the United
States (U.S.) consumes more than one-third of prescription medications, yet they
consist of around 15% of the U.S. population [12,32]. Even more concerning are
the adverse events associated with risky prescribing. Specifically, the combined
usage of opioids and benzodiazepines or non-benzodiazepine sedative-hypnotics
(sedative-hypnotics) is reported to have a higher risk of overdose than using opi-
oids alone [7,9,30]. Social network analysis has proven to be effective for study-
ing collaborations among physicians and their association with patients’ health
outcomes [4,11,20,24]. Therefore, social network analysis has great potential to
provide insights for intervening on physicians to help combat risky prescribing.

Understanding how different prescribing behaviors are embedded in a shared-
patient physician network may help identify the most important physicians to
intervene on and subgroups of physicians where the intervention is likely to have
greatest impact. For example, if actors with certain traits in common under-
lie the network, then an intervention that targets groups of connected actors
with similar traits might be the most effective form of intervention. Homophily
in the healthcare setting among physicians can reveal important factors driv-
ing physicians’ communications and collaborations. Previous studies have found
that physicians in closer geographic proximity or with similar patient panels were
more likely to share patients, and physicians with similar organizational affili-
ations were more likely to develop professional relationships [17,19]. Another
study found that homophily in a network of opioid users was associated with
the number, type, and daily dosage of opioid prescriptions [3]. The existence of
homophily can reinforce the influence between dyads (a pair of connected indi-
viduals in a social network) such that individuals are more prone to interact with
individuals they resemble than those lacking traits in common [6]. By comparing
physician homophily associated with prescribing at the state and HRR levels,
we examine whether physician prescribing intensity clusters across geographic
regions, extending the health care variations literature in a unique way.

Exponential random graph models (ERGMs) provide a general modeling
framework for relating network phenomena and actor attributes to the likeli-
hood of observing a network. One challenge with ERGMs is model degeneracy,
the phenomenon in which a model puts most of its mass on a very dense or sparse
network. Degeneracy has been commonly encountered by researchers seeking to
estimate the extent to which dyadic-dependent network phenomena such as tran-
sitivity underlie the network [15,16]. When using ERGMs to study homophily,
degeneracy often limits our ability to isolate the true level of homophily from
confounding effects of other network effects such as the various forms of triadic
dependence (network dependence involving three actors), including transitivity.
To overcome this problem, we introduce two new network statistics and random-
ization tests of whether their prevalence in the network exceeds that expected in
the absence of homophily, gaining unique insights into the extent to which risky
prescribing is associated with the network structure of physician relationships.
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In this study of the relationship of physician networks to risky-prescribing, we
developed several innovations related to the study of complex networks. These
include novel triadic network statistics and non-parametric statistical tests to
study prescribing-associated homophily within dyads to partially overcome the
challenge of triadic dependency in ERGMs and development of a state-space
framework to quantify physician prescribing behavior by attributing their con-
tribution to prescribing and deprescribing based on patient drug status change.
With the above novelties, we shed unique light on the emergence of prescriber
communities and motivate group-level prescriber interventions to reduce risky
prescribing.

2 Methods

2.1 Study Overview

Medicare Part D prescription fill records for three classes of risky drugs (opi-
oids, benzodiazepines, and sedative-hypnotics) along with their corresponding
prescribers were extracted for a 40% random sample of beneficiaries with Part
D claims in 2014. Separately, we used a 40% random sample of all Medicare
fee-for-service beneficiaries residing in the state of Ohio in 2014 to extract rel-
evant physician-patient encounters for constructing a unipartite physician net-
work. A visit to physician i followed by another visit to physician j by the same
patient within a certain time window (a “patient referral”) may provide evi-
dence of a meaningful professional relationship from physician i to j [1,2,22]. In
the binary-undirected physician network that we constructed, physicians i and
j were connected if they had directed edges in both directions during 2014 (i.e.,
they shared at least one patient in each direction). The network was limited to
physicians who had at least prescribed one drug in the aforementioned three
drug classes and was reduced to its largest connected component (LCC) to elim-
inate isolated dyads of physicians who only shared patients among themselves
as they are likely practicing in a reduced manner. To further study homophily
associated with risky prescribing in hospital referral regions (HRRs) and its
possible variation across different HRRs, we partitioned the LCC network into
HRR sub-networks. More details of the study cohort definition, workflow, and
physician network construction are in Sections 1.1 and 1.2 and Figure S1 of the
supplemental online appendix (see GitHub link at the end of this paper).

2.2 Exponential Random Graph Models (ERGMs)

An ERGM is an exponential family model designed for relational data. Stan-
dard regression models cannot handle network data if the status of the edges
(ties) in the network are statistically dependent, such as in a complex network,
as this violates the independence and no interference assumptions of standard
regression models [8]. ERGMs overcome this issue and allow nodal attributes,
edge attributes, dyadic dependencies, and some higher-order network dependen-
cies to be simultaneously accounted for when modeling the network [26,27,29].
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ERGMs model the probability distribution of all possible networks given a set
of nodes, and in estimation, seek the values of the parameters of the network
statistics that make the observed network the most likely compared to all other
possible realizations of the network [26]. Mathematically, the model is given by,

Pr(Y = y) = (
1
κ

)exp{
∑

A

ηAgA(y)} (1)

where y represents the observed network (yij = 1 if there is an edge between
node i and j, and 0 otherwise) and gA(y) represents possible network statistics
such as the number of edges, the number of reciprocated or mutual edges (for
directed networks), certain degree-related configurations (e.g., k-stars), triadic
configurations, and nodal or edge-level attributes. The set A indexes the network
statistics included in a model vector g(y). The parameter ηA is the coefficient
of certain network statistics, which corresponds to the conditional log odds of
a tie with a one-unit change in the network statistics holding the rest of the
terms in the model fixed. A positive value of an element of ηA indicates that
the network statistic represented by the corresponding element of gA(y) is more
prominent in the observed network than expected by chance given the other
network statistics in the model. The quantity κ is a normalizing constant equal
to the sum of exp{∑A ηAgA(y)} over all possible realizations of the network
with the given number of nodes [14].

A wide range of network statistics capturing various elements of network
structure may be included as predictors in an ERGM [21]. Network statistics
that capture the level of homophily of specified attributes in the network are of
primary interest in our application (see Section 1.3 and Table S1 of the supple-
mental online appendix for the mathematical specifications of these statistics).

2.3 New Network Statistics: Triadic Homophily Associated
with Risky Prescribing

Models with any combination of the network statistics that are dyadic inde-
pendent can be estimated straightforwardly. However, triadic terms introduce
statistics that induce dependence across dyads (this is seen from the fact that
changing the status of one of the three dyads comprising a triad restricts the
possible statuses of the other two dyads). To overcome model degeneracy encoun-
tered when including triadic terms, we computed two triadic statistics that are
restricted through the involvement of attribute information: 1) the proportion
of closed triangles with the same node attribute Tri1, and 2) the proportion of
open two-paths (2-stars or open-triangles) with the same node attribute that are
closed Tri2. Suppose A = [aij ] is the adjacency matrix of the binary-undirected
network, and aij = 1 if physician i and j shared at least one patient during
2014. Let {xi, xj , xk} denote the attribute of nodes i, j, and k. For a binary
node attribute taking the value of 0 or 1, the statistic Tri1 is defined as,

Tri1 =
Σxixjxk · aijajkaki

Σaijajkaki
. (2)
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The statistic Tri2 is defined as,

Tri2 =
Σxixjxk · aijajkaki

Σxixjxk · aijaik
. (3)

If xh denotes whether physician h has contributed to risky prescribing, Tri1
is the proportion of times that three physicians who shared patients among
themselves all contributed to risky prescribing. The interpretation of Tri2 is the
proportion of triads in the 2-star with physician i as the apex (an undirected
path of length 2 from j to k via i) that are closed (physician j and k also shared
patients) among those for which nodes i, j, and k are all risky prescribers. Thus,
Tri2 can be viewed as an attribute-restricted version of node transitivity [18];
see Fig. 1 for illustration of Tri1 and Tri2.

Fig. 1. Diagram of computing triadic homophily statistics Tri1 and Tri2 in an example
network. Suppose nodes A, B, C, and D are physicians who have contributed to risky
prescribing, and nodes E and F are non-risky-prescribing physicians. The number of
risky 2-stars with nodes A, B, C, and D being the center vertex is 1, 3, 1, and 0,
respectively. Therefore, the total number of 2-stars among risky prescribing physicians
is five.

2.4 Non-parametric Test for Triadic Homophily

The numerator and denominator in Eq. 2 are available as ERGM terms in the
statnet package [15]. However, to the best of our knowledge, the ratio of them
is not. Similarly, the denominator in Eq. 3, the total number of 2-stars among
nodes with a certain attribute, is a statistic that is not directly available in
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statnet. Therefore, we develop a non-parametric test based on randomly re-
distributing the node attribute in question across the nodes. The test preserves
the total number of nodes, the number of nodes with a certain attribute, and
the structure of the observed network. In each test, we repeatedly re-assigned
the attribute of interest at random to the nodes across the network 30 times.
On each permuted-attribute network we computed Tri1 and Tri2 to form a
null distribution of what is expected by chance under the null hypothesis of no
homophily in the given attribute conditional on the structure of the network.
We compared the resulting distributions with the corresponding observed values
and computed a p-value as a measure of statistical significance. These two triadic
homophily statistics generalize to continuous attributes standardized to have a
range from 0 and 1. All the analyses were performed using Python 3.7 and R.
[25,31]

3 Application to Study of Homophily in Physician
Prescribing and Deprescribing

We applied the general methodology in Sect. 2 to study the homophily of risky
prescribing in our physician shared-patient network. We constructed novel mea-
sures to quantify physician risky prescribing based on Medicare Part D data
from 2014 that involved prescriptions of the aformentioned three drug classes of
interest, including opioids (O), benzodiazepines (B), and non-benzodiazepine
sedative-hypnotics (S). A series of indexes were computed for each individ-
ual physician to reflect their involvement in risky prescribing or deprescribing,
including 1) IOBS : the extent of a physician’s involvement in simultaneously pre-
scribing drugs in each of the three risky drug classes to patients, 2) IeverOBS : the
binary counterpart of IOBS , 3) Ipresc2mr: a physician’s contribution to simultane-
ously prescribing two or more drugs to patients and its deprescribing counterpart
Idepresc2mr. The supplemental online appendix provides more details about data
preprocessing for the risky-prescribing analyses, modeling patient drug status as
a state space process, algorithms for attributing physicians to prescribing and
deprescribing events based on patient drug status change, and mathematical
specifications and contextual descriptions of the risky prescribing indices.

4 Results

4.1 Physician Shared-Patient Networks

The Ohio shared-patient physician network we constructed consists of 35,765
physicians who had clinical encounters with patients residing in Ohio in 2014
identified from Medicare fee-for-service claims. After linking physicians in this
Ohio shared-patient network to their prescribing measures identified from Medi-
care Part D data, 22,655 physicians were included in the Ohio shared-patient
prescribing network. Thus, approximately 63% of physicians in the Ohio shared-
patient physician network were identified as prescribers of at least one opioid,
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benzodiazepine, or sedative-hypnotic, and around half of the ties in the network
took place among the prescribers indicating that the rate of risky prescribing is
likely to be highly prevalent.

The largest connected component (LCC) of the Ohio shared-patient pre-
scribing network contains 17,363 physicians, amounting to more than 76% of
physicians and more than 98% of the ties in the full network. The prescribing
network and its LCC were similar in terms of network statistics and physician
prescribing measures, except that the physicians in the LCC had a slightly higher
average node degree (hence, density was substantially greater in the prescribing
network) and number of distinct Ohio patients encountered annually.

Table S2 in the supplemental online appendix provides a more detailed
account of the network statistics of the Ohio shared-patient physician network,
the prescribing network, and the LCC of the prescribing network. Descriptive
statistics about the prescribing-deprescribing measures are in Section 3.1 and
Figure S3 of the supplemental online appendix while Figure S4 is graphical depic-
tion of the association between physician network position and involvement in
certain types of risky prescribing.

For the HRR sub-network analyses, only the 12 HRR sub-networks with at
least 100 physicians were included; 100 was the smallest network size for which
prescribing behavior could be measured stably for all physicians in the network.

4.2 ERGMs for Adjusted Homophily

Table 1 shows estimated ERGM-adjusted homophily effects in the LCC of the
shared-patient prescribing physician network. When controlling for network den-
sity and the main effects of nodal prescribing and deprescribing attributes, the
network exhibited assortative patterns in terms of different prescribing mea-
sures. An overall state-wide homophily effect was found among physicians in
terms of whether they have ever contributed to bringing patients to the OBS
state (est. = 0.037(odds-ratio of 1.038), p < 0.001. Physicians with a larger
difference in their likelihood of bringing patients to OBS were less likely to
be connected to each other (est. = −1.200(odds ratio of 0.301), p < 0.001). A
larger difference in the likelihood of prescribing two or more drugs to patients at
once was associated with a lower likelihood of a tie between physicians (est. =
−0.619(odds-ratio of 0.538), p < 0.001). Physicians were also less likely to form
ties with each other if there was an increased difference in their propensity to
deprescribe two or more drugs (est. = −0.203(odds-ratio of 0.816), p < 0.01).
Because such a high proportion of the physicians in Ohio prescribed at least one
risky drug and the physicians in the LCC dominate the prescribing network,
these effects are clinically and statistically significant. Physicians’ propensity to
form ties with other physicians of the same specialty was consistent across models
including different prescribing measures. Compared to primary care physicians,
emergency medicine physicians, neurologists, and psychiatrists were less likely
to have connections with other physicians in the network. After controlling for
the main effect of physician specialties, primary care physicians and neurologists
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were less likely to connect to peers in the network of the same specialty. In con-
trast, emergency medicine physicians and psychiatrists were more likely to form
ties with physicians of the same specialty.

Table 1. ERGM adjusted homophily effects for models estimated on the largest con-
nected component of the Ohio 2014 shared-patient physician prescribing network.

Model 1 Model 2 Model 3 Model 4

Est. SE p Est. SE p Est. SE p Est. SE p

Edges −5.732 0.012 *** −5.614 0.006 *** −5.609 0.006 *** −5.620 0.006 ***

Node attribute Prescribing

Binary

IeverOBS = 1 0.327 0.010 ***

Continuous

IOBS 1.202 0.109 ***

Ipresc2mr 0.492 0.049 ***

Idepresc2mr 0.337 0.066 ***

Specialty (ref. PC)

EM −0.584 0.006 *** −0.614 0.006 *** −0.614 0.006 *** −0.611 0.006 ***

Neuro −0.338 0.010 *** −0.358 0.010 *** −0.359 0.010 *** −0.357 0.010 ***

Psych −0.668 0.009 *** −0.654 0.009 *** −0.653 0.009 *** −0.651 0.009 ***

Other −0.396 0.004 *** −0.423 0.005 *** −0.423 0.005 *** −0.420 0.005 ***

Prescribing homophily

Binary

IeverOBS = 1 0.037 0.011 ***

Continuous

absdiff(IOBS) −1.200 0.114 ***

absdiff(Ipresc2mr) −0.619 0.054 ***

absdiff(Idepresc2mr) −0.203 0.068 **

Specialty homophily

PC −1.509 0.009 *** −1.509 0.009 *** −1.511 0.009 *** −1.509 0.009 ***

EM 0.541 0.019 *** 0.541 0.019 *** 0.541 0.019 *** 0.541 0.019 ***

Neuro −0.190 0.091 * −0.190 0.091 * −0.190 0.091 * −0.190 0.091 *

Psych 0.673 0.050 *** 0.670 0.050 *** 0.674 0.050 *** 0.673 0.050 ***

Note: The node attribute term and the homophily term associated with the attribute
were added one at a time in the model for each of the prescribing or deprescrib-
ing indexes, yielding five separate models. In each model, physician specialty and
homophily of physician specialty (restricted to homogeneous effects across the spe-
cialties) were included in the model. Absdiff is the ERGM term for examining
the homophily of a continuous node attribute, with a negative estimate indicating
homophily (smaller differences imply a higher likelihood of a network connection).
Abbreviations: PC = primary care, EM = emergency medicine, Neuro = neurology,
Psych = psychology. Significance levels: ∗ ∗ ∗p < 0.001; ∗ ∗ p < 0.01; ∗p < 0.05.

At the HRR-level, 6 out of 12 HRRs show significant homophily for the risky
prescribing index, IOBS , and 10 of them show significant homophily for the
index quantifying prescribing intensity, Ipresc2mr (Table 2). Further, the scale
of homophily varies across the HRRs. For other prescribing or deprescribing
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indexes, homophily is not as significant nor prevalent as at the state level. The
discrepancy of prescribing-associated homophily between the state and HRR
levels, especially the homophily found at the state-level but not in some of the
HRRs, may indicate that some prescribing clusters at the state-level rely on
cross-HRR physician patient-sharing.

Table 2. ERGM adjusted homophily effects in HRR shared-patient sub-networks in
2014.

Homophily effects of indexes

Descriptive Stats absdiff(IOBS) absdiff(Ipresc2mr) absdiff(Idepresc2mr) IeverOBS

HRR N Density Coef. SE Coef. SE Coef. SE Coef. SE

180 129 0.116 −3.998 3.662 0.004 1.623 1.052 1.898 0.026 0.133

357 193 0.106 0.810 2.707 −1.541* 0.714 0.467 0.775 −0.268 0.149

331 256 0.128 −5.156 2.675 −1.792* 0.697 −0.325 0.773 0.047 0.117

332 415 0.048 −1.765* 0.745 −0.863*** 0.250 0.299 2.410 0.056 0.079

335 550 0.060 −1.887* 0.920 −0.881** 0.305 −0.545 0.416 0.063 0.070

326 648 0.050 −1.281 0.795 −1.066*** 0.306 44.210 280.321 −0.080 0.056

325 750 0.030 −0.469 0.814 −0.917** 0.279 0.496 0.699 0.0002 0.089

334 1039 0.029 −0.532 0.416 −1.190*** 0.226 −0.301 0.209 0.018 0.045

330 1164 0.024 −1.205** 0.419 −0.339 0.196 −0.071 0.319 0.0002 0.037

327 1760 0.015 −1.711** 0.584 −0.783*** 0.179 −0.362* 0.171 0.120** 0.044

328 2623 0.010 −1.603*** 0.370 −0.897*** 0.142 −0.193 0.227 0.060 0.034

329 3101 0.008 −1.181*** 0.234 −0.754*** 0.109 −0.327* 0.157 −0.018 0.025

Note: The HRR sub-networks were partitioned from the largest connected component of
the Ohio 2014 shared-patient physician prescribing network and the HRR sub-networks
were not restricted to their respective largest connected components thus they may not
be fully connected. Significance levels: ∗ ∗ ∗p < 0.001; ∗ ∗ p < 0.01; ∗p < 0.05.

4.3 Triadic-Level Hyper Homophily

The triad-level risky prescribing indices evaluated through the involvement of
IeverOBS in Tri1 and Tri2 are 0.0015 and 0.0007, respectively (Fig. 2). The
interpretation of the index for Tri1 is that among 10,000 closed triangles (three
nodes fully connected with one another), 15 of them include nodes with the
same attribute (each physician contributed to bringing at least one patient to
state OBS). The interpretation of Tri2 is that among 10,000 open two-paths
(2-stars) with the same node attribute (IeverOBS) in the network, 7 of them are
closed. By the attribution re-distribution test, the values of Tri1 and Tri2 in
the observed network are significantly higher than expected (p = 0.000). These
results suggest that 1) when three physicians share patients among themselves,
they are more likely to all be involved in risky prescribing than by chance; and
2) when two physicians share patients with a common third physician, and all
three of them have been involved in risky prescribing, the two physicians are
more likely to also share patients between them than by chance. These results
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Fig. 2. Histogram of triadic homophily network statistics generated by the triadic
homophily non-parametric test. The triadic homophily statistic Tri1 is the proportion
of closed triangles with the IeverOBS node attribute (whether a physician has ever
contributed to bringing patients to the riskiest prescription state OBS) in the network.
The triadic homophily statistic Tri2 is the proportion of open two-paths with all nodes
having the same attribute that are closed in the network. Panel (a) is the histogram of
Tri1 and panel (b) is the histogram of Tri2 calculated from 30 networks with randomly
shuffled node attributes under the null hypothesis of no homophily with respect to
the given prescribing index. The red vertical lines denote the values in the observed
network.
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further demonstrate the importance of homophily of risky prescribing and its
intersectionality with triadic clustering net of dyadic-level homophily.

5 Conclusions

We developed a framework to quantify physicians’ prescribing and deprescribing
behaviors comprehensively and studied the homophily associated with prescrib-
ing in a shared-patient physician network. We discovered substantial homophily
of prescribing behaviors among physicians, as well as assortative and disassor-
tative mixing patterns associated with physician specialties in the prescribing
network. We also found a level of triadic-level risky-prescribing homophily in
the observed network statistically significantly greater than expected by chance.
We found that physicians’ level of involvement in prescribing and deprescrib-
ing varied across specialties and that there was heterogeneity in the level of
prescribing-associated homophily across HRRs.

Our findings related to the homophily associated with physician prescrib-
ing behavior and their specialty in a complex shared-patient physician network
provides a basis for promoting guideline-concordant prescribing practice and
informing interventions. Previous literature revealed that physicians were more
likely to share patients with those having similar traits, patient panels, and insti-
tutional affiliations. [17,19] Our results add to this literature by demonstrating
the influence of prescribing preference on the propensity of sharing patients
and attempting to reveal the mechanism underlying the formation of prescriber
communities. Previous literature suggests that homophily in professional net-
works may hinder the diffusion of innovations but may also promote healthcare
consistency. [17] Homophily can be a roadblock to reducing non-compliant pre-
scribing among heavy prescribers. The act of sharing patients can be a channel
for behavior changes and so physicians who only share patients with risky pre-
scribers might expose the focal physician to so much high-risk behavior that
their own practice changes, forming a loop of reinforced problematic prescrib-
ing. Given this homophily-driven potential reinforcement of influence between
physicians, [6] external interventions may be warranted to help break the cycle
of risky prescribing among communities of guideline non-concordant prescribers.

Even without identifying the precise mechanism underlying observed cluster-
ing on risky prescribing, the detection of observed homophily patterns has its own
merits. For example, the knowledge that homophily exists would motivate efforts
to discover peer physicians defined according to shared-patient network ties or
otherwise following identification of a risky prescribing candidate for potential
intervention. Such efforts, which can be thought of as link tracing designs, are
likely to identify more potential intervention candidates more efficiently, which
may be critical given limited resources and budgets. Our finding of the variation
in prescribing-associated homophily across HRRs also adds to previous literature
on the geographic variability in healthcare utilization and outcomes and the use
of physician patient-sharing network characteristics to provide new insights into
previously unexplained variation [17].
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Another methodological contribution is the introduction of two measures of
triadic homophily that mitigate the common degeneracy issues encountered in
ERGMs when dyad dependence is imposed by including triadic terms. These two
measures elevate homophily from the dyad to the triad level, defining a form
of super-homophily. Although we use a non-parametric random redistribution
(partial permutation) test to compare the observed statistics to those expected
by chance, this does not account for other network phenomena. One avenue for
future research is to embed these terms in ERGM software packages to enable
their adjusted effects net of other predictors to be easily estimated.

This study is subject to several limitations. First, the data used in this study
was cross-sectional, which led to challenges in accounting for triadic dependence
in the network. The availability of longitudinal network data would have allowed
dyadic dependent network effects to be modeled as lagged variables, avoiding
degeneracy [23], and helped distinguish social selection (i.e., the factors govern-
ing the selection of relationships [28]) from social influence (i.e., the influence of
individuals on one another). Second, our study focused on the Medicare popu-
lation, whereas the same research question within younger populations is also of
interest. Thirdly, it is important to appreciate that not all risky prescribing is
bad prescribing. There are instances in which the prescribing of risky drugs from
one or multiple classes is warranted. Distinguishing these from those instances
in which the prescribing is unnecessarily risky is challenging using claims data
alone (the additional of electronic medical record data would help to determine
the appropriateness of prescriptions and prescription regimes by providing more
insights into the condition of a patient leading up to a prescription being writ-
ten). Although the prescribing indices we studied are technically measures of
physicians’ involvement in potentially risky prescribing, not binary indicators of
whether physicians intentionally conducted risky prescribing or not, the extent
of the risky prescribing observed in these data far exceeds what could be consid-
ered reasonable (combinations of drugs such as OB, OS, and OBS should almost
never be prescribed together).

In summary, we proposed a novel framework to model the relationship
between physician professional networks and developed new measures for quan-
tifying physicians’ prescribing and deprescribing behavior. We found that
homophily was associated with prescribing among physicians’ connections mea-
sured through sharing patients. These findings provide important insights into
the spread of risky prescribing among the older population in the United States
and how communities of prescribers emerge and evolve, helping incentivize inter-
ventions to reduce guideline-non-compliant practices and promote safe practices
among healthcare providers.

Supporting Information. The supplemental online appendix, tables, and figures

referred to in the main text are available at the GitHub site: https://github.com/

xinran02/PolyRxNetworkHomophily/blob/main/Appendix

https://github.com/xinran02/PolyRxNetworkHomophily/blob/main/Appendix
https://github.com/xinran02/PolyRxNetworkHomophily/blob/main/Appendix
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Abstract. The expansion of coordinating communities via focal information
spreaders on online social networks has attained much-needed attention over
the past few years. Several methods have been applied to investigate the influ-
ential communities of information spreaders in static social networks. However,
investigating static social networks does not entirely reflect the activities and the
dynamics of evolving communities over time. Researchers have applied advanced
operationalmethods such as game theory and evolving complex graphs to describe
the change in the regular communities in dynamic social networks.Yet, thesemeth-
ods need the ability to describe the focal information spreaders in dynamic social
networks. For this purpose, in this research, we propose a systematic approach
to measure the influence of focal information spreaders and track their evolution
in social networks over time. This novel approach combines the focal structure
analysis model and the adaptation algorithm to identify the coordinating commu-
nities of information spreaders in social networks and illustrate their development
in the network over time, respectively. We evaluate our findings using a real-
world dynamic Twitter network collected from the Saudi Arabian women’s Right
to Drive campaign coordination in 2013. The outcomes of this approach allow
observing, predicting, tracking, and measuring the coordination among the focal
information spreaders over time. Correspondingly, this approach investigates and
illustrates when the information spreaders will escalate their activities, where they
concentrate their influence in the network, and what coordinating communities of
spreaders are more tactical than others in the network.

Keywords: Dynamic Social Networks · Focal Structure Analysis · Adaptation
Algorithm · Betweenness Centrality · Modularity Method · focal information
spreaders

1 Introduction

Millions of people worldwide use social platforms like Facebook, Twitter, and Instagram
to communicate, shop, trade, advertise, book flights, and catch up with relatives, friends,
and co-workers. The widespread use of such platforms welcomes all users, communi-
ties, and agencies to share public announcements and breaking news to quickly influence
the maximum number of users. However, in the past few years, most online social net-
works (OSN) have witnessed, discovered, and suffered from coordinated online users
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campaigns spreading massive amounts of information across networks and mobilizing
crowds. For example, we witnessed that online campaigns were able to spread misin-
formation and fake news and damage numerous economic systems around the world,
as reported in [1], seen in influenced political and election campaigns [2], and evident
recently in the volatile of the stock markets [3]. The stock markets’ volatility and fluctu-
ations in the price of GameStop (GME) stocks is a perfect example demonstrating that
coordinated campaigns on social networks have a crucial impact on the real-world mar-
ket and life. Moreover, such campaigns, now being termed as OccupyWall 2.0, started
on Reddit and quickly gained traction, leading hordes of redditors to buy and sell the
stock in a coordinated fashion [3]. Likewise, in a different event, a group of online users
on Twitter organized an armed movement against the COVID-19 lockdown in Michigan
state in May 2020 [4]. In this event, Twitter was used to coordinate the date and time of
the protest.

In response to these ongoing problems in social networks, several researchers [5,
6] have attempted to identify and limit the activities of focal information spreaders
(influential sets of users coordinating to spread information) on Twitter, Facebook, and
other platforms. These studies used traditional community detection methods such as
the centrality method to locate the influential users and the modularity method to explore
patterns of users/communities in complex OSNs [7]. However, studies in [5, 6] aggre-
gated temporal local and global social interactions into one static snapshot, ignoring the
development of the communities and the dynamic aspects of the social networks over
time [8]. Also, many other scholars studied and clustered the regular communities in
dynamic social networks, as presented in Sect. 2, but our goal in this research is to study
the behavior of the focal information spreaders in dynamic social networks and present
their influence over time.

For this purpose, the research proposed in this paper considers that all regular
users/communities are evolving and that their behavior changes over time. In addi-
tion, the model presented here identifies focal information spreaders, measures their
influence and development over time, and estimates when they will disappear from the
network after serving their purpose. Moreover, the dynamic analysis of these focal infor-
mation spreaders unveils their ability to change in size and space from one time period
to another, making analysis a complex and intrinsically dynamic process. To investigate
such NP-hard problems [7], the main contributions and challenges within this research
are as follows:

• to identify and track focal information spreaders in evolving real-world social
networks.

• to measure, record, illustrate, and investigate the growth/shrink of focal information
spreaders in evolving real-world social networks.

To overcome the above challenges, the main objective of this research is to create
a systematic approach that integrates the focal structure analysis model presented in
[9], which identifies the focal sets spreading information in dynamic social networks,
with the adaptation algorithm presented in [10], which spots the behaviors of focal
information spreaders over time. The resultant approach is an integrated systematic
model that utilizes the decomposition optimization model and adaptation method to
project the development of focal information spreaders over time.
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The rest of the paper is organized as follows. Section 2 reviews the related works.
Section 3 describes the proposed methodology. Section 4 explains the experimental
results. Section 5 is the research conclusion and future work.

2 Related Work

The main point of interest is modeling the focal sets’ behavior and their growth in
dynamic OSNs. Currently, most of the implemented community detection methods were
deployed using static OSNs, as presented below.

Şen et al. (2016) introduced the focal structure analysis model into OSNs; the authors
identified the smallest possible influential sets of online users that were able to mobi-
lize crowds, spread information to thousands of users, and organize protest campaigns
through social networks [5]; the authors proposed a greedy algorithm to identify the
focal structures responsible for spreading information in static Facebook and Twitter
networks. Also, the authors stated that these influential sets could not be discovered by
regular community detection algorithms such as HITS [11], PageRank [12] or central-
ity methods [5]. Alassad et al. (2019) presented a bi-level centrality-modularity model
to examine the intensive groups of co-commenters spreading information in a static
YouTube network; the authors explored the hidden focal groups of commenters and
ranked them for further investigations [6]. Authors in [2] examined the key information
spreaders in complex static social networks: they designed a decomposition optimiza-
tion method to reveal the focal sets of users influencing other users. In an extended
study, Alassad et al. (2021), used a computational social science technique to identify
coordinated groups spreading information on social networks about the smart cities’
infrastructure. In this research, the authors implemented a static Twitter network to mea-
sure the model’s applicability [1]. The model explored the intensive sets of spreaders
and measured their power to influence other users across the network. The authors in
[9] implemented a comprehensive decomposition optimization model for locating the
key sets of commenters that spread information in the static social networks. Alassad
et al. (2021) studied the computational social science techniques to identify coordinated
actions on social networks; the authors explained the behavior toward the smart cities’
infrastructure from the influential coordinating users on social networks [13]. Shajari
et al. (2023) studied the commenter behavior characterization on different YouTube
channels to identify suspicious behavior [14].

However, the methods mentioned were applied only to static social networks. But, in
this research we focus on the dynamic social networks, the behavior of focal information
spreaders in the evolving social networks, and their development and activities in the
network over time, and we project the influence of focal information spreaders across
the social networks over time.

Moreover, many other studies have investigated the influential nodes in large-scale
networks, their resources in such networks, and what positions they occupy in the struc-
ture of such networks. The authors in [15] studied when influential bloggers were able to
impact other bloggers and explored the challenges of identifying such influential nodes
in communities. Blondel et al. (2008) studied the fast unfolding of communities in large
networks by using the modularity method [16]. Xu et al. (2020) investigated the devel-
opment of communities—the new and easy ways of social mass movements and flash
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mobs influenced by social networks [17]. Chen et al. (2017) used label propagation to
identify communities and the direct neighbor relationship in social networks [18]. How-
ever, none of the mentioned papers considered the dynamicity of communities and the
evolution of the network over time.

In addition, Zhu et al. (2020) designed two vital node algorithms to identify the
influential nodes in complex networks [19]; the authors used the nodes’ removal tech-
nique to measure network changes. Kitsak et al. (2010) used the K-shell decomposition
method to identify key spreaders in complex networks, where they found that influ-
ential spreaders occupied positions in the core of the network’s structure [20]. Chen
et al. (2012) identified influential nodes in complex networks; the authors proposed a
semi-local centrality method to overcome the gap in the analysis of the betweenness and
closeness centrality methods and to identify influential nodes in complex networks [21].
However, none of the mentioned methods studied the evolution of the influential nodes
in dynamic networks or measured their development over time.

Nonetheless, many scholars have excessively investigated regular community detec-
tion in dynamic social networks. Alvari et al. (2014) applied a game theory method to
measure an agent’s utilities over time and captured the regular communities in dynamic
networks [22]. Dakiche et al. (2019) identified two types of growth for a regular commu-
nity in dynamic networks. The authors defined community diffusion growth as attracting
new members through ties to existing members [23]. Their second definition referred
to the non-diffusion growth communities, where individuals with no prior ties become
part of other communities. Dakiche et al. (2019) predicted the lifespan of a regular com-
munity in dynamic networks based on a consistent set of structural features [24], where
the authors extracted some features of the communities from the profiles of the users
and communities to predict the dynamic lifespan. Takaffoli et al. (2014) implemented
a similarity function to match the regular communities in dynamic networks from one
time step to another to detect changes such as merging, splitting, dissolving, and sur-
viving [25]. Bródka et al. (2012) modeled a classifier to discover events in dynamic
social networks, where the authors utilized the changes between snapshots to measure
the patterns over time [26].

The studies mentioned above were implemented to study and cluster the regular
communities in dynamic social networks; however, our goal in this research is to study
the behavior of focal information spreaders in dynamic social network and to present
their influence over time.

3 Methodology

The main objective in this research is to design a systematic approach that integrates the
focal structure analysis presented in [9] and the adaptation method presented in [10],
while relaxing the complexity of time dimension in the analysis, to identify and study
the focal information spreaders in evolving real-world events on social networks.

Consider G is a network of an event on an online social network consisting of a
set of S snapshots S = {1, 2, . . . , n}, where G = {G1,G2, . . . ,Gn} and time T =
{t1, t2, . . . , tn}. Each snapshot is Gi = (Vi,Ei,Ti) and represents the snapshot Si with
total number of nodes |Vi|, and total number of edges |Ei| at time ti. Each snapshot Gi
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is used to represent a connected social network at time ti. In other words, (Vi,Ei,Ti) is
when users (vi, vj) mention or retweet each other while implementing the edge ei at time
ti. . Introducing the dynamic (temporal) focal structure analysis model presented in this
research, given Gi = GF as shown in Fig. 1, we find the set KGF that can influence the
maximum number of users and increase the information spread in G over time, or the
focal sets of users in GF , where KGF = {

k1GF , k2GF , . . . , kjGF , kmGF

}
, and j ≤ m.

3.1 Definitions

Focal Structure Analysis: As mentioned in Sect. 2, various studies are applied to
identify the focal sets responsible for information diffusion in static social networks. The
focal structure analysis model identifies the focal influential sets of users coordinating to
spread information to the maximum number of users, mobilize crowds, and participate
in different communities across the OSNs. The authors in [2, 6, 9] applied models to
identify focal sets in static social networks; however, a static network is not sufficient
to reveal the events and the development of the users/communities during a real-world
event on OSNs. In this research, we present an extended focal structure analysis (FSA)
model to identify and study the behavior of focal information spreaders as the network
changes over time.

AdaptationAlgorithms:Using the adaptive algorithm presented in [10] helps avoid
recalculation methods and repeatedly measures all instances and changes in every snap-
shot in complex dynamic OSNs. The adaptive algorithm helps to overcome problems
such as having expensive execution time, getting trapped in the local optimal solutions,
and receiving the same reactions to tiny changes to inactive local communities in dynamic
OSNs.

Fig. 1. Overall structure of the model.

In addition, the adaptive algorithm provides the ability to track the qualitative and
quantitative changes generated by kjGi over time. Relatedly, the main advantages for
implementing this method to the social network analysis are the following:
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• This method is less computationally expensive compared to repeatedly recomputing
the development of OSNs from scratch every snapshot.

• This method is less time consuming and avoids the difficulty of continuously
recomputing the multitude of variables in every snapshot.

• This method can observe the local campaigns on OSNs and illustrate the significant
transformation of the communities or the focal information spreaders over a long
duration in dynamic OSNs.

Themethodology presented in this research applies into any dynamic social networks
as presented in the steps below:

Step 1: from the dynamic social networkG, we selectedGF ∈ G as shown in Fig. 1.
Step 2: The focal structure analysis model presented in [9] was applied to find

KGF ∈ GF . The resultantKGF , is the influential sets of users (focal information spreaders)
in Gi, where the users in each set KjGF communicate to each other over time, and the
communications should remain as the network evolves with each snapshot.

Step 3: Using the adaptation algorithm [10] and the methods stated in Sect. 3.1, the
impacts of KGF to other snapshots GFi �=j ∈ G were measured.

3.2 Validation and Verification

This section introduces the methods used to validate the results of the model and quanti-
tatively measure the impacts of focal information spreaders in dynamic social networks.
The methods explained below should reveal guidelines about where, when, and which
focal information spreaders are more active than others in dynamic social networks:

• The modularity method introduced by Newman-Girvan [27] and the adaptation
method [10] implemented measure the changes on the communities’ level in the
dynamic network.We employed themodularity method to find the patterns of users in
each snapshot before and after suspending each set of the focal information spreaders
from Gi ∈ G. The adaptation method [10] employed illustrates, records, and com-
pares the network’s development in each snapshot before and after suspending the
set of the focal information spreaders from G, as shown in Fig. 1.

• The depth-first search and linear graph algorithm [28] and the adaptation method [10]
were implemented tomeasure the changes on the users’ level in the dynamic network.
The depth-first search algorithm [28] is used to measure the weakly connected users
in social networks. This algorithm is employed to measure the weakly connected
users in the network before and after suspending the sets of the focal information
in each snapshot Gi ∈ G. The adaptation method [10] is used to for calculating
the transformation of the users before and after suspending each focal information
spreaders from G, as presented in Fig. 1.

Finally, a real-world dynamic Twitter network was implemented to verify the
accuracy and applicability of the proposed approach.
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4 Results

For the purpose of this research, the model presented here tracks the development of
the focal information spreaders in all snapshots in G. The examination was applied to
a network of an event on the Twitter platform related to the Saudi Arabian women’s
collective actions of the “Oct26Driving” campaign network as shown in Fig. 2 [5].

4.1 Development of the Campaign on Twitter Over Time

In this section, we present the general aspects of the dynamic Twitter network as follows.
Dataset. The dataset used is a real-world event on Twitter network that was generated

during the Saudi Arabia women’s activities to drive campaign in October 2013. The
dataset was collected from Twitter using a Twitter API from Oct 9th to Oct 30th, 2013.
TheOct26Driving dataset consists of 70,000 tweets posted frommore than 100 countries
as described in [5] and presented in Fig. 2. The network includes a large number of
users/edges that evolved during the campaign as presented in Table 1, and the network
was structured into 20 days (snapshots).

Figure 3 illustrates the growth of the network onTwitter, where this growthwas based
on the usage of dominant hashtags dedicated to the campaign such as ‘#oct26driving’ [5].
The dataset changes with respect to the users’ frequencies varying between hundreds to
thousands of users’ tweets about the campaign per day. Likewise, the reader can observe
that the campaign received more popularity after snapshot # 3,G3, on Oct. 13th as shown
in Fig. 4. After this time slot, the number of users increased and then started to bend the
curve on and after Oct. 28th, three days after the campaign day Oct. 25th.

Table 1. Twitter network statistics.

Min # of Users 413

Max # of Users 6933

Min # of Edges 461

Max # of Edges 8399

Figure 4observes the users’ communications behavior over time,where all userswent
into massive activities, made frequent actions, and spread information about the event on
Twitter after snapshot #G3, Oct. 13th. The clustering coefficient values measure the level
of friendship between users and their neighbors in the network [7]. We implemented this
method to observe the communications between users and their neighbors, where the
reader can see the values highly increased on Oct. 20th, snapshot G10, compared to Oct.
9th. In other words, the increase in the clustering coefficient values projects the increase
of the communications between users a few days before the campaign day on Oct. 25th.

In addition, the average path length method defined [7] was implemented to measure
how quickly the information transfers between users in the network. Figure 3 shows the
increase in the transfer of information between users in the network over time. These
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Fig. 2. Static Twitter Network.

values highly decreased compared to Oct. 9th, where the results indicated that speedier
information was transferred in the network before Oct. 25th.

Likewise, the average path length values minimized on Oct. 18th through Oct. 20th,
suggesting a surge in the users’ activities a week before Oct. 25th.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

9
-O

ct

1
0

-O
ct

1
1

-O
ct

1
2

-O
ct

1
3

-O
ct

1
4

-O
ct

1
5

-O
ct

1
6

-O
ct

1
7

-O
ct

1
8

-O
ct

1
9

-O
ct

2
0

-O
ct

2
1

-O
ct

2
2

-O
ct

2
3

-O
ct

2
4

-O
ct

2
5

-O
ct

2
6

-O
ct

2
7

-O
ct

2
8

-O
ct

2
9

-O
ct

3
0

-O
ct

N
u

m
b

er
 o

f 
U

se
rs

 /
 E

d
g

es

TIME

Nodes Edges

Fig. 3. Users and links change in an
evolving social network over time.
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Fig. 4. The communication behavior of the
users in an evolving Twitter network over time.

4.2 Focal Structure Analysis in Dynamic Networks

Step 1 in Sect. 3.1, mentions selecting a snapshot, and Step 2 then deploys upon the
snapshot the focal structure analysis model presented in [9].

For this purpose,GF = G1 onOct. 9th was selected. This snapshot includes 413 users
and 461 edges. Alassad et al. (2021) had mentioned that Oct. 9th is when the campaign
started spreading information on the Twitter network publicly and when the users began
to coordinate with others to spread the words on Twitter extensively [9]. In addition,
implementingG1 has an advantage for the purpose of the focal structure analysis model,
since the model focuses on identifying the active seed groups on a network and then
tracing and analyzing the development of these groups on the Twitter network over time.
Also, selecting an early snapshot helps to validate themodel’s predictability feature, since
the stakeholders can observe the focal information spreaders at the very beginning of
the campaign’s life cycle. In addition, this process is a systematic method to limit the
spread of information, rather than suspending random influential users from the network
in different time windows. Furthermore, an early detection approach helps to track the
focal sets’ evolutions and observe when they would merge with other communities and
disappear from the network.



216 M. Alassad and N. Agarwal

The focal structure analysis model in [9] initially identifiedKG1 = 13 focal informa-
tion spreaders inG1, where these focal sets consist of influential users and include users
acting in different communities. For example, Fig. 5 presents the network on Oct. 9th

before and after suspending focal set # 5 (k5G1 ) from the network. As presented, when
suspending this focal set, (which included only 35 users, 8.5% of the total number of
users on Oct. 9th and 0.5% of users on Oct. 28th) the network shifted from the connected
and highly dense network shown in Fig. 5 (left side) into a completely disconnected
and scattered network as presented in Fig. 5 (right side). In summary, the model appar-
ently projects a large number of users disconnected from others, and the spread of the
information was limited only to a few users instead of the whole network on Oct. 9th.

4.3 Validation and Evaluation in Dynamic Social Networks

Step 3 in Sect. 3.1 was to implement the adaptation algorithm to measure, present, and
track focal spreaders’ behavior changes in the activities over time.

For this purpose, themodel suspended each focal information spreaderKG1 fromeach
snapshot inG, as presented in Fig. 1 and explained in Sect. 3.1. The model recorded and
compared the changes in the networkG after suspending each focal information spreader
in set KG1 . In addition, we utilized other criteria, such as the Clustering Coefficient
method [7] to measure and reflect other important changes in G, as presented below.

4.3.1 Changes in Clustering Coefficient Values Over Time

As part of step 3 in Sect. 3.1, the Clustering Coefficient method was utilized to provide
robust information on the links between users and their neighbors in the network [7].
In this section, the adaptation algorithm was implemented to record the changes in the
clustering coefficient over time.

Consequently, by definition, the focal structure sets are participating in different
activities in different parts of the networks [5]; therefore, suspending each focal informa-
tion set should disconnect a large number of links (edges) and decrease the connectivity
of the users in each time slot in the dynamic network. In other words, after suspending
any focal information spreaders, the clustering coefficient values would decrease dra-
matically compared to the values before appending any focal information spreaders as
presented earlier in Fig. 3.

Figure 6 shows the changes in the clustering coefficient values after suspending each
focal information spreaders KG1 from other snapshots in G. In addition, the focal infor-
mation spreaders (k4G1 , k5G1 , and k6G1 ) were able to decrease the clustering coefficient
valuesmore than other focal sets, scattering the larger complex communities into smaller
more powerless groups and disrupting the connectivity of the users with their neighbors
in G.

4.3.2 Changes in Modularity Values Over Time

The modularity method was implemented to observe the changes in the regular commu-
nities in each snapshot before and after suspending the focal information spreaders from
G [7]. In other words, eliminating any focal information spreaders should scatter the
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Before After 

Fig. 5. Original Oct. 9th snapshot (left). Oct. 9th snapshot after suspending focal set # 5 (right).

network into smaller communities and increase the modularity values in each snapshot
in G.

Figure 7 shows the changes in the modularity values after suspending each focal
information spreadersKG1 from other snapshots inG over time. Furthermore, the results
show a huge increase in the modularity values in G compared to the values presented in
Fig. 3.
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Fig. 6. Changes in the communication
behavior of the users after suspending KG1
from G.
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Moreover, Fig. 8 shows that the focal information sets # (k4G1 , k5G1 , and k6G1 )
increased the modularity values in G more than other sets.

4.3.3 Changes in Network’s Edges Over Time

In this section, we show the changes in the number of edges between users after sus-
pending each focal information spreaders from G. The adaptation algorithm and the
depth-first search illustrated a significant decrease in the users’ connectivity after sus-
pending each focal information spreader from G; where the focal information spreaders
in KG1 , occupying critical positions in the structure of the network. Figure 8 shows a
huge decrease in users’ connectivity after suspending KG1 from G over time.

Moreover, the focal information spreaders # (k4G1 , k5G1 , and k6G1 ) were able to
decrease the number of edges inGmore than other focal information spreaders compared
to the number of edges shown in Fig. 3.
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Fig. 8. Changes in the number of edges
after suspending KG1 from G.
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Fig. 9. Changes in the number of disconnected
users after suspending KG1 from G.

4.3.4 Changes in the Connectivity of the Users Over Time

The depth-first search method revealed information about the users’ connectivity in
dynamic social networks. Thismethodmeasures the disconnected users after suspending
each focal information spreader from G. Figure 9 shows the development of the online
users in G after suspending KG1 , where a massive decrease in the number of users is
reported.

Moreover, suspending the focal information spreaders # (k4G1 , k5G1 , and k6G1 )
increased the number of disconnected users compared to the original number of users
reported in Fig. 3. In other words, these sets were close to disconnected from the entire
network, where they could disconnect hundreds and thousands of users over time. Also,
the values represent the activities and communications of these sets over time.

5 Conclusion

In this research, we studied the dynamic aspects of focal information spreaders and their
ability to spread information to the maximum number of users in dynamic OSNs. For
this purpose, the focal structure analysis model was used to identify the focal sets of
information spreaders, and the adaptation algorithm was utilized to observe the growth
of focal sets of information spreaders in social networks over time. In addition, the
modularity method, the depth-first search method, and the clustering coefficient method
were implemented to measure and validate the development of focal sets of information
spreaders and illustrate the behavior of the dynamic social network over time.

Furthermore, basedon the analysis presented in this research, appending the focal sets
of information spreaders from the dynamicOSNswould reduce the clustering coefficient
values, reduce the number of edges between users, increase the modularity values in the
network, and increase the number of disconnected users in dynamic OSNs. In addition,
this research proposed a systematic and a simplified method to investigate the evolution
of the focal sets of information spreaders over time, project their activities early, and
systematically limit the information spread in an evolving Twitter network. Throughout
this research, we were able to illustrate when information spreaders will increase their
activities in a network, revealing which focal sets were more active than others in the
dynamic network.

For future work, due to the limitations in the nodes’ removals, we would study alter-
nativemethods for removing focal information spreaders and improving the effectiveness
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of the users’ suspension from the network. The authors in [29] developed a modularity
vitality method to calculate the exact change in modularity values in the network. Such
research needs more investigation with respect to the focal structure analysis model in
the dynamic social network and the robustness of the networks, as mentioned in [30,
31].
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Abstract. Solving maze puzzles is a recreational activity with long-
standing roots in human civilization dating back several thousands of
years. This paper considers the problem of automated maze generation
for a more recent class of maze puzzles, the logic maze, popularized by
Abbott in 1990. Although there are several distinct types of logic mazes,
we present a single unified generation strategy based on a state graph rep-
resentation. We capture desirable features of a maze in an objective func-
tion that consists of several network science metrics on the state graph
and the original maze. We then optimize this objective function through
the use of local state space search and obtain high-quality results.

Keywords: logic maze · state graph · maze characteristics · local
search

1 Introduction and Related Work

Mazes and labyrinths have been discovered in multiple ancient civilizations [5].
These classical mazes can typically be viewed as a two-dimensional grid with
adjacent elements sometimes separated by a barrier or wall. The goal is to trace
a valid path from start to end. The maze is represented as a graph with a
vertex for each grid square, while an edge denotes permitted moves between
adjacent squares. Algorithmically, the problem is easily solved by initiating a
simple traversal such as a Breadth-First Search (BFS) at the start vertex. This
work explores a newer type of maze: the Logic Maze (originally referred to as a
Mad Maze, a term coined by Abbott in his 1990 book). Logic Mazes [3] retain the
notion of physical space as in a classical maze, but introduce additional rules that
govern movement. They are also known as Multi-state mazes because a solution
may require one to visit the same location multiple times in different logical
“states.” These logic mazes present interesting and challenging graph modeling
problems, and have been used by the authors in the undergraduate Algorithms
class at the Colorado School of Mines. The primary purpose of this work is to
generate logic mazes of desired size and difficulty, both to introduce students
to the rules of each maze and test their implementations of a graph model and
solution. Abbott and others designed much of their mazes by hand. To the best of
our knowledge, the only work that focuses on this type of automated generation
is Neller et al. [11], which we discuss in the next section.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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2 Modeling Logic Mazes

Although our work has been used to generate different types of Logic Mazes, we
focus solely on Jumping Mazes in this paper due to space limitations. The first
Jumping Maze Abbott introduces is Maze #7 Jumping Jim [1]—this simple ver-
sion of a jumping maze consists of a simple numeric grid. The grid has a number
on each cell that indicates how far one must move (horizontally or vertically,
but not diagonally) from that cell. Starting from the upper left-hand corner,
the goal is to reach the bottom right-hand corner in the minimum number of
“jumps” (note it is the number of jumps that we try to minimize and not the
total length of the jumps). Once again, this maze can be intuitively modeled as
a graph—followed by a BFS for an algorithmic solution. Neller et al. emphasize
the generation of this specific type of jumping maze in their research [11]. Their
work stands as the primary, if not the sole, contribution in this domain.

The Jumping Maze variant introduced in Maze #15 Jumping Jim’s Encore
(JJE) is more complex [1]. It includes circled numbers that change the direction
of movement (Fig. 1). If one lands on a circled number while moving horizontally
or vertically, then one’s movement direction changes to diagonal until reaching
another circled number, at which point it reverts to vertical/horizontal. This
small change introduces the concept of “movement state” into the maze, making
it possible to visit the same cell twice, once in the state of vertical/horizontal (or
cardinal) movement and once in the state of diagonal movement. It is possible to
solve this problem either by (1) developing a customized JJE-variant of BFS or
(2) by modifying the underlying graph model and retaining the use of the original
BFS Algorithm. The former approach results in a higher cognitive load because
both the underlying data structure and algorithm are simultaneously modified,

Fig. 1. Jumping maze instance with diagonal state changes. The shortest solution to
this maze is (1,1), (7,1), (6,2), (2,2), (5,5), (1,1), (7,7), (4,4), (6,6), (2,6), (8,6), (8,5),
(3,5), (4,5), (1,5), (5,1), (2,4), (4,6), (6,8), (8,6), (7,5), (4,8), (1,5), (5,5), (5,1), (2,1),
(3,1), (3,3), (7,3), (7,7), (4,7), (4,6), (4,4), (6,4), (6,8), (8,8), where (1,1) and (8,8)
respectively denote the top-left and bottom-right corners.
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increasing the likelihood of design errors. The latter modeling approach can be
viewed as a reduction to a state graph (or a maze without state) followed by
standard BFS, which is available and reliably (i.e., without bugs) implemented in
graph libraries associated with many programming languages. For these reasons,
in our Algorithms class project, we require the latter approach to our instruction:
both to modularize and simplify the design and as an example of good software
engineering practice.

Further, this graph modeling paradigm allows for a unified solution to the
problem we seek to address in this paper—the generation of suitable maze
instances with desirable characteristics. This facilitates the use of similar com-
ponents in the maze design function and enables the consideration of similar
traits when rating the difficulty of multiple logic mazes. Additionally, there is no
need to “reinvent the wheel” by devising new maze-specific metrics, as there are
already existing network science metrics that can be used to evaluate graphs.

Given that we are modifying the graph and not the BFS, consider the follow-
ing model for the JJE maze instance M : Let G be a directed, unweighted graph
that will model M . For each cell s in M with uncircled number n, create two
vertices in G, s1 and s2, that respectively represent the cardinal and diagonal
states of s. Add directed edges from s1 to the cardinal vertices of distance n
from s considering cardinal movement. Add directed edges from s2 to the diago-
nal vertices of distance n considering diagonal movement. The process is similar
for circled numbers, except the outgoing edges connect to vertices of the other
movement type. Thus, we add directed edges from s1 to the diagonal vertices
of distance n considering diagonal movement and directed edges from s2 to the
cardinal vertices of distance n considering cardinal movement. Create only one
vertex for the goal cell. When it is possible to reach the goal in one move whether
in the cardinal state or the diagonal state, add an edge to this single goal vertex.

To eliminate the notion of “state”, which is the movement type, we have
expanded the number of vertices in the graph relative to the number of grid
cells. There are two states (vertices) per cell, and thus double the number of
vertices in the state graph (minus one for the goal). In effect, we have created
a two-level multilayer network [10] with a cardinal level and a diagonal level,
linked by the circled numbers. This technique is common for logic mazes with
state changes; we often increase the number of vertices in the graph relative to
the original maze in order to capture its complexity. However, the result is not
always a multilayer network-that is contingent on the initial puzzle.

Other mazes such as arrow mazes (Apollo and Diana/Apollo’s revenge), con-
nections mazes (Grandpa’s Transit Map), and multiplayer mazes (Spacewreck,
Meteor Storm) can also be modeled as state graphs [1]. These mazes were
modeled and generated in the longer paper, but are omitted due to length
constraints [7].
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3 Maze Characteristics

The primary objective of this research was to create logic maze instances of
varying sizes, both small enough to serve as instructional examples for students
to become familiar with the rules of the maze, and large enough to test their
implementations. A local search implementation resulted in the highest-quality
mazes. Hence, it became vital to define qualities of a maze to determine a score
for the purposes of local search.

The state graph reduction applied to all mazes in this work allows for analysis
of both the underlying graph representation and the high-level problem instance,
as they are reduced to an unweighted directed graph. This unique approach
enables the use of an identical objective function when calculating the score
of state graphs, regardless of maze type, which is a significant contribution of
this work. Additional qualities can then be applied to the higher-level problem
instances individually.

Neller et al. [11] discuss some desired maze attributes that will be introduced.
Abbott also outlines several metrics by which he hand-designed his mazes, which
will be mentioned as well. We found some additional maze qualities to be chal-
lenging based on our experience. These properties are all intuitive and combined
in our work, but we caution that to our knowledge, none of the metrics presented
have been formally evaluated via human testing to determine their validity.

Before delving into specific maze characteristics, we note at the outset that
when designing a maze for humans to solve, a common solving method is to
work backward from the goal instead of forward from the start [3]. Therefore, it
follows that the maze ought to be equivalently difficult when attempting to solve
it forward or backward, otherwise it will be easily solved through back-tracing.
A practical method to address this is to compute a metric’s value for both the
state graph and its transpose and take the minimum when including it in the
objective function.

3.1 Paths, Branching, Reachability

Abbott suggests leaving a substantial amount of space for several long false paths
when deciding what portion of the vertices should be involved in the shortest
path [2]. From experience with our program, a good number is 15–35%, but
exceeding 35% could limit the potential for other characteristics that increase
maze difficulty.

In addition to the length of the shortest path, the existence of multiple short-
est paths can affect the solver’s motivation. Neller et al. find there is a level of
satisfaction achieved when one discovers the shortest (or best) solution, and the
existence of a unique shortest solution can motivate solvers to continue working
on a maze even after solving it [11].

Branching is a relatively intuitive characteristic that refers to the number of
different locations one could be in after exactly X moves from the start, usually
calculated as a percentage of the shortest path length. It is similar to the idea
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of a “branching factor” in the growth of a search tree/space, and is used to help
reduce sections of forced moves at the beginning or end of the maze.

A reaching vertex v is a vertex from which it is possible to reach the goal
g. A reachable vertex is a vertex that can be reached from the start s [11]. A
traversal from the start (finish) on the state graph (transpose) can be used to
calculate the portion of reachable (reaching) vertices. Sixty percent is a good
minimum portion of the maze to be reachable (reaching) from the start (finish).
This restriction can greatly influence the creation of traps, as traps are often
only accessible when moving in one direction through the maze.

Reachability also measures the efficiency of a maze because the number of
vertices in the state graph is a function of the puzzle size, which usually does
not change while generating an instance. Vertices that are both unreachable and
unreaching are denoted isolates, and these represent wasted resources—vertices
in the state graph that cannot be reached from the start nor backward from the
finish. The puzzle instance perhaps ought to be redesigned so these are included
as a part of the maze.

3.2 Traps and Holes

From the definitions of reachable and reaching vertices, we can define several
different traps to entertain and confuse the maze solver. A dead end of a maze
is a set of one, or many reachable, unreaching vertices. A reverse dead end is a
set of reaching, unreachable vertices in the state graph.

A black hole is a set of strongly connected, reachable, unreaching vertices in
the state graph. In effect, it is a false path that ends in loop(s) instead of at
a singular dead end. Black holes, especially large black holes, can significantly
increase a maze’s difficulty because a maze solver may spend a lot of time in
the trap before realizing there is no escape. This definition is slightly different
than the one given in [11] because we wanted to focus on the strongly connected
vertices, which is the core of the trap, and neglect the fringes. Black holes usually
force the solver to restart the maze once they realize there is no path to the
solution because the solver does not remember how they initially entered the
black hole [11]. A white hole is a set of strongly connected, reaching, unreachable
vertices in the state graph. It is identical to a black hole when considering the
transpose of the state graph (with the start becoming the finish and vice versa).

These types of traps only affect one direction of solving the maze and directly
conflict with reachability. Reverse dead ends and white holes have no impact
on individuals solving in the forward direction because they cannot be reached
when moving forward. Similarly, dead ends and black holes do not impede solvers
attempting to move backward from the solution. A whirlpool is a set of strongly
connected, reaching, reachable vertices. In effect, it is a hole that can be reached
in both directions. The placement of such traps is more difficult and important.
A whirlpool located near the start is vulnerable to back-tracing from the finish,
and the same can be said of a whirlpool close to the finish.
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3.3 Decisions, Required Vertices, Bridges/Dominance

The presence of traps such as black/white holes in a maze does not guarantee it
is difficult to solve. We have generated many mazes where multiple traps exist,
but a solver may not encounter them unless they are unlucky while a lucky solver
may never encounter these traps.

We want to maximize the chances for a solver to become lost in traps for them
to truly increase the maze’s difficulty. The first solution that comes to mind is
to consider the decisions that a maze solver must make along the shortest path.
Consider each vertex on the shortest path n. From n, there are several cases for
each immediate descendent d (the resulting vertex of each outgoing edge of n):

– d is the next vertex on the shortest path.
– d is in an unreaching trap (black hole/dead end).
– d is in a reaching trap (whirlpool) or on a suboptimal path to the solution.
– d is a previous vertex on the shortest path.

We aim to have as many decision points as possible that lead into reach-
ing/unreaching traps or suboptimal paths. However, merely counting the num-
ber of outgoing edges from each vertex on the shortest path that satisfy these
requirements is overly simplistic. Decisions within a few vertices of the solution
are usually trivial, some traps ought to be weighted more than others (based on
the furthest distance a solver can travel without retracing his/her steps), and
most importantly, not all solvers may encounter every decision along the short-
est path. Solvers may find longer paths that are in entirely separate parts of the
graph, or multiple shortest paths may exist.

Because decisions are one of the primary factors in determining the difficulty
of a maze [11], it is important to consider only the decisions that every solver,
regardless of the path chosen, must make. Therefore, we need to determine which
vertices are “required” vertices R that are present on all paths from the start
vertex s to the goal vertex g. This question has been studied and solved in the-
ory related to control-flow graphs and is referred to as Dominance. A vertex v
dominates another vertex u if v lies on every path from the entry vertex to u. We
need to determine which vertices dominate the goal vertex with an entry node
of the starting vertex. Cooper, Harvey, and Kennedy [4] give a O(V 2) algorithm
that in practice runs faster on graphs with less than 1000 vertices than the clas-
sical O(E log(V )) Lengauer-Tarjan Algorithm. State graphs of human-solvable
typical mazes do not usually exceed this number of vertices. After computing
the dominator tree, we can identify the vertices that dominate the goal ver-
tex. By only including the decision scores associated with these vertices, we can
ensure the maze’s perceived difficulty is based on decisions that all solvers must
consider.

Mazes often have characteristics unique to the problem instance itself that
ought to be included in the objective function, such as the number of circled
locations that swap the direction of movement, u-turns, and revisiting the same
location on the grid in both movement types [1], etc. Because the state graph
abstracts away some qualities of the maze instance, these characteristics cannot
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be captured by the state graph and must be separately included in the objective
function of each specific maze type.

4 Local Search Generation

One efficient way to implement the detection of attributes discussed is to use the
state graph reduction combined with a robust graph library such as Networkx
in Python 3. This library includes pre-implemented versions of all the neces-
sary functions to detect and score state graph attributes, such as dominance,
traversals, and distance calculations [6]. As mentioned previously, local search
maze generation does not start from scratch but rather takes a currently gener-
ated maze instance and makes small modifications that increase the value of an
objective function. When defining local search solutions to problems, there are
generally three items to define:

1. An objective function that returns a score given a solution instance to the
problem. We seek to either minimize or maximize this function.

2. A notion of a neighborhood, or a set of small modifications made to a given
solution to turn it into another solution then rated by the objective function.
Typically, a solution has multiple neighbors.

3. A search algorithm, that is, a method to choose between the neighbors of a
given solution [12].

In the context of maze generation, the objective function will be as defined
previously and contain metrics to rate both the state graph and the maze
instance. The neighborhood definition turns one maze instance into another,
which involves making a small change to the maze that is simultaneously reflected
in the state graph. For jumping mazes, a neighbor state is simply changing the
number and/or the circling of a particular square on the grid.

5 Example Objective Function

In this section, we will provide an example search function used for state graph
generation that focuses on decisions. Let n denote the number of vertices in the
state graph. It is best (if possible) to try and scale terms using n to provide
weightings that represent importance.

Additionally, depending on the size of the instances being generated, some
terms in the objective function may necessitate coefficients for proper weighting
(which we include below). Furthermore, the generator can adjust these coeffi-
cients based on the desired maze metrics they aim to ensure the instance pos-
sesses. Note that we will be attempting to maximize the score of the maze (and
not minimize it). When logical, the score of a trait ought to be calculated for
both the state graph and the transpose and the minimum added to the score,
as mentioned previously.

The score is initialized to zero. The function comprises three primary com-
ponents: a Path score, Reachability Score, and Decisions score, with some mis-
cellaneous additional terms. We define the following function to score the state
graph.
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Path. Let L represent the ratio of the length of the shortest path(s) to n,
indicating the proportion of vertices included in the shortest path. A bonus c1n
is provided for one shortest path as mentioned in Sect. 3.

P =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

−n3 no path
−n2 multiple shortest paths, L ≤ 0.15 ∨ L ≥ 0.35
−n2 + c1n one shortest path, L ≤ 0.15 ∨ L ≥ 0.35
c1n one shortest path, 0.15 ≤ L ≤ 0.35

(1)

Branching and Reachability. Calculate the sum of vertices b (bt on the
transpose) that are reachable after a certain number of moves (10–20% of the
shortest path length is a good starting point). Let r and rt respectively denote
the set of reachable and reaching vertices.

Branching = min(b, bt) (2)

Reachability = min(r, rt) + |r ∪ rt| − (n − |r ∪ rt|)2 (3)

Decisions. The most important factor in determining the difficulty of a maze,
given all other traits are equal, is the decision score that dictates the exact
decisions every maze solver considers. Compute the required nodes that every
path from the start to the finish contains [4]. Then, evaluate the decisions at
these vertices in both the state graph (D) and its transpose Dt, as discussed
in Sect. 3, take the minimum, (multiply by a constant to increase the weight if
desired) and add to the score.

Decisions = c2 min(D,Dt) (4)

Misc. and Maze Instance Terms. A dead end is a reaching or reachable
vertex in a state graph that does not have any outgoing edges. Holes make better
traps than dead ends. Subtract the number of dead ends d times a constant (the
cost of each dead end) from the score. Although we use the objective function
terms above to rate the state graphs, we still need to consider the higher-level
maze instances during the generation process. Briefly, we introduce metrics to
avoid large clusters of the same number as mentioned in Neller et al. [11], to
avoid a large number of circled locations, and provide small bonuses for each
time a movement change is required (from cardinal to diagonal or vice versa),
each time a square is visited in both movement states, and each time a u-turn
is encountered (multiple repeated moves forward and backward along the same
row/column/diagonal). These are denoted as M .
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Final Formula. In every instance generated, the final case for the path score
was always met. Taking this into consideration, we have the following objective
function:

F (n) = c1n + min(b, bt) + min(r, rt) + |r ∪ rt| − (n − |r ∪ rt|)2
+ c2 min(D,Dt) − c3d + M

(5)

6 Results

Table 1 shows the results of several mazes generated using this objective function
and simulated annealing with random restart and offers several items to consider.
The path score (SP score) is the same for each instance. Every maze has a single
shortest path, and thus all have the c1n resulting SP score. We purposefully
chose c1 = 10 to enforce this condition, and we appear to have been successful.
The branching score gives a small bonus to the score as desired to help prevent
long sections of forced moves.

There are fewer reachable/reaching vertices due to holes in the highest-rated
mazes. This is a common theme we have noticed when generating instances:
one can maximize reachability at the cost of traps, which results in a higher
reachability score at the cost of a lower decisions score, or one can maximize hole
sizes, which results in a higher decision score at the cost of a lower reachability
score. Compare maze one to maze seven. Maze seven has the highest reachability
score (241) of the instances presented in Table 1 with the highest proportion of
reachable (91.3%), reaching (90.6%), and both reachable and reaching (81.9%)
vertices. However, it has the lowest decision score.

The decision score dominates the overall score, usually representing about
40%. We claimed previously that decisions are the most important factor when
considering the difficulty of a state graph, and this principle is reflected in the
scoring criteria we have adopted.

The highest-rated mazes generally have a combination of the most required
decisions, (which may or may not be the most required vertices), large black and
white holes, and many entrances to these traps from required vertices (which is
the BH/WH entrances table entry). The top two mazes exhibit these traits, and
both have the highest decision scores. A very low R and R score is indicative of
mazes with large unreaching/unreachable traps; in the most optimal version of
these mazes (according to this objective function), only the shortest path vertices
are reachable and reaching, and all other vertices are part of large strongly
connected holes.

As designed, the state graph score plays a much larger role than the instance
score. When using the same objective function to generate multiple different
mazes, it would defeat the purpose of sharing a state graph objective function if
it did not play a more significant role than the individual maze instance terms.
The most exceptional of these mazes is depicted in Fig. 1 and its component
graph is shown in Fig. 2.
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Table 1. Jumping generation maze results are shown below with the primary compo-
nents of the scores highlighted in bold. To generate this table, we used c1 = 10, c2 =
2, c3 = 5. SP = shortest path, BH = black hole, WH = white hole, R or R = Reachable
or Reaching, R and R = Reachable and Reaching. The hole entrances are only to the
largest hole. The required decisions is the sum of the required vertices out degrees,
which represents the minimum quantity of choices maze solvers will consider. Fwd and
bwd decisions are the forward and backward decisions, and the other metrics are as
specified previously.

Metric/Maze 1 2 3 4 5 6 7 Avg.

SP Length 36 38 34 27 22 36 43 33.7

SP Quantity 1 1 1 1 1 1 1 1

SP Score 1270 1270 1270 1270 1270 1270 1270 1270

Branching Score 24 31 31 15 15 15 17 21.1

Reachable (%) 68.5 66.9 72.4 72.4 69.3 88.2 91.3 75.6

Reaching (%) 62.2 66.1 74.0 89.0 92.9 89.8 90.6 80.7

R or R (%) 98.4 99.2 99.2 100 98.4 99.2 100 99.2

R and R (%) 32.3 33.9 47.2 61.4 63.8 78.7 81.9 57.0

Reachability Score 199 208 216 218 208 236 241 218

Required Vertices 36 38 33 26 20 32 39 32.0

Required Decisions 82 87 78 60 50 70 84 73.0

Largest BH 35 30 22 8 2 2 2 14.4

BH Entrances 18 16 15 2 1 1 1 7.7

Largest WH 25 24 22 4 17 2 2 13.7

WH Entrances 25 23 14 10 18 6 1 13.9

Fwd Decisions 1024 902 834 832 794 558 418 766

Bwd Decisions 1046 990 850 834 794 560 418 784.6

Decision Score 1024 902 834 832 794 558 418 766.0

Dead End Score −50 −50 −60 −50 −80 −60 −60 −58.6

State Graph Score 2467 2361 2291 2285 2207 2019 1886 2216.6

Circled (%) 23.4 21.9 25 21.9 23.4 21.9 23.4 23.0

State Changes 7 7 10 4 6 12 12 8.3

Double Visited 8 10 6 4 3 8 11 7.1

U-turns 9 9 10 9 5 15 17 10.6

Instance Score 143 186 137 99 54 235 276 161.4

Overall Score 2610 2547 2428 2384 2261 2254 2162 2378
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Fig. 2. Component graph of the excellent jumping maze instance. Colors indicate the
distance from the start and finish (red = start, blue = finish, uncolored means unreach-
able). Vertex labels denote the number of vertices in each SCC. Diamond shapes indi-
cate that it’s impossible to reach the finish, star shapes represent the start/finish, and
edge labels denote the number of direct connections between components. (Color figure
online)
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7 Conclusions and Future Work

In this work, we created challenging logic mazes for humans, crafting objective
functions based on maze attributes, but these functions require validation. A
potential validation method is simulating human interactions with these mazes,
comparing results to our objectives, and further investigating human maze-
solving methods as discussed in [13]. Karlsson [9] employed a DFS for this,
but noted its limitations due to human non-deterministic choices at intersec-
tions. Future research could pinpoint an algorithm that aptly represents human
exploration, serving as an alternate difficulty metric for state graphs.

Any game that can be modeled as a state space can be represented using
this model, and its metrics and traits rated by the scoring methods we have
developed. This has potential for applications in the gaming industry. Modeling
a game as a state space and identifying qualities the space must contain to be
entertaining and challenging for humans to solve is a potential application. Many
other games such as Sokoban can be represented as state spaces [8] and rated in
such a fashion as the logic mazes presented in this work.
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Abstract. Exploring and comprehending the culinary heritage of a
nation holds a captivating allure. It offers insights into the structure
and qualities of its cuisine. The endeavor becomes more accessible with
the availability of a well-organized dataset. In this paper, we present the
introduction of INDoRI (Indian Dataset of Recipes and Ingredients), a
compilation drawn from seven distinct online platforms, representing 18
regions within the Indian subcontinent. This comprehensive geographi-
cal span ensures a portrayal of the rich variety within culinary practices.
Furthermore, we introduce a unique collection of stop words, referred
to as ISW (Ingredient Stop Words), manually tuned for the culinary
domain. We assess the validity of ISW in the context of global cuisines
beyond Indian culinary tradition. Subsequently, an ingredient network
(InN) is constructed, highlighting interconnections among ingredients
sourced from different recipes. We delve into both the defining attributes
of INDoRI and the communal dimensions of InN. Additionally, we outline
the potential applications that can be developed leveraging this dataset.
Addressing one of the applications, we demonstrated a research problem
on InN with a simple weighted community detection algorithm. Further-
more, we provide a comparative analysis of the results obtained with this
algorithm against those generated by two baselines.

Keywords: Dataset · Food Computing · Ingredient Network · Stop
Words

1 Introduction

India, characterized by its rich tapestry of cultures, hosts a plethora of dis-
tinct cuisines. Tackling food computing challenges within this culinary landscape
is indeed complex. One significant hurdle stems from the dearth of structured
data that spans India’s diverse cuisines despite numerous websites house exten-
sive recipe databases. The reason for the same is that the information available
therein is predominantly unstructured, comprising text and multimedia content.

This paper introduces the Indian Dataset of Recipes and Ingredients
(INDoRI), encompassing a total of 5187 recipes. Recipes were extracted and
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gathered from seven different online platforms [1–7]. These recipes span a vari-
ety of Indian cuisines, reflecting the rich cultural diversity across regions such
as Punjabi, Bengali, and Gujarati. INDoRI stands as a structured repository
of recipes and their corresponding ingredients. Further, the dataset includes a
graph-based representation of ingredient relationships, namely, ingredient net-
work (InN). InN is formed by capturing ingredient relationships based on their
co-occurrence within recipes.

Extracting meaningful information from widely available recipes from the web,
required to remove several stop words apart from the natural language stop words.
For instance, terms like “pinch” and “mix” appear with the list of ingredient in a
recipe needs to be removed to extract actual ingredient. We introduced a novel set
of 572 stop words aligning with food ingredients and named that set as Ingredi-
ent Stop Words (ISW). Furthermore, validity of ISW is checked with three other
cuisines i.e., Japanese, American and Italian. The use of these stop words proves
instrumental in effectively extracting and refining ingredient names.

In summary, the paper presents

1. Proposal of INDoRI, a dataset of Recipes and Ingredients of Indian cuisines.
It includes over 5K recipes with 18 different cuisines. The characteristics and
possible applications of the data set are reported.

2. A novel set of stop words ISW for the culinary domain.
3. Construction of the Ingredient Network (InN) on top of INDoRI.
4. Demonstrated a research problem on InN with a simple weighted community

detection algorithm (WABCD).

2 Literature Survey

Datasets: Over the course of time, numerous benchmark food datasets have been
introduced in research literature. For instance, Matsuda et al. [8] introduced a
Japanese food image dataset in 2012, encompassing a collection of 14,361 images.
In 2014, Bossard et al. [9] released the ETHZ Food-101 dataset. The year 2016
saw the unveiling of a large dataset by Rich et al. [10] containing 800 thousand
images. Many of these existing datasets are focused on images, although a few
exceptions exist in the form of datasets oriented towards recipes. Notably, three
recipe-centric datasets emerged in 2018. These are: a recipe question-answering
dataset by Semih et al. [11], comprising approximately 36k questions that users
can query against the dataset; Epic Kitchen, introduced by Damen et al. [12], fea-
turing cooking videos and accompanying recipes; and the extensive “Recipe1M”
dataset containing both recipes and images, brought forth by Salvador et al. [13].
The work of Salvador et al. [13] notably focuses on embedding recipes and images.
Furthermore, they extended their dataset to create “Recipe1M+” [14].

Ingredient Network: Over time, researchers have explored ingredient networks
in various contexts. One such study [15] resulted in the creation of two ingredi-
ent networks: “complement” and “substitute”. The complement network exhib-
ited two distinct communities, one centered around savory ingredients and the
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other around sweet ingredients. On the other hand, the substitute network was
constructed based on user-generated suggestions, offering alternative ingredient
choices for specific recipes. Similarly, another work [16] focused on two types of
networks: ingredient-ingredient and recipe-ingredient networks. These networks
were designed to recommend recipes to users based on the ingredients they had
available. By analyzing the relationships between ingredients and recipes, the
system could suggest suitable recipes that aligned with the user’s resources.
Apart from recipe recommendations, ingredient networks have also been applied
to food recognition tasks. For instance, Min et al. [17] achieved food recognition
by developing an innovative Ingredient-Guided Cascaded Multi-Attention Net-
work. This approach utilized the ingredient network to enhance the accuracy of
food recognition systems, leveraging the knowledge of the associations among
the food ingredients. However, we introduced INDoRI, which distinguishes itself
by encompassing not only recipes, ingredients, and cooking instructions, but also
comprehensive cuisine information representative of the entirety of India.

3 Indian Dataset of Recipes and Ingredients (INDoRI)

Creating a comprehensive dataset of Indian cuisines possesses unique challenges.
One of them is to compiling recipes that span diverse cultural landscape of
India. Due to the same reason one may not find all the recipes from one single
web portal. As there is no common data format available, each portal present
data differently and the data are unstructured. Hence the second challenge is
to extract meaningful information from it. We consider seven different recipe
websites to address the first challenge. All the unstructured data therein are
crawled using Python script. Basic cleaning is performed on the collected data
and the following methodology is used to structurized it using both tabular and
network structures.

Identification of Novel Stop Words for Food Ingredients (ISW):
Amidst the data preparation phase, novel food-related stop words were intro-
duced. Notable examples encompass ‘kg,’ ‘gms,’ ‘cup,’ ‘tbls,’ ‘pinch,’ ‘chopped,’
‘boiled,’ ‘sliced,’ and ‘split’. 527 specific keywords are identified, scrutinized, and
extracted manually from the ingredient data. The validity of ISW was tested on
other global cuisines, including Japanese [18], Italian [19] and American [20].
For each of the cuisine hundred recipes were taken along with the ingredients
needed to prepare them. The ingredient names were extracted manually and
through stop word removal using ISW. The details were reported in Table 1.
A comprehensive breakdown of the calculations and results are presented in an
online repository1

Removal of Stop Words and Numbers: The exclusion of stop words
and numerical values from ingredients yielded beneficial results in obtaining
clean ingredient names. Solely ingredient names are employed to construct the

1 Link to the supplementary material: https://shorturl.at/gwzFN.

https://shorturl.at/gwzFN
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Table 1. Cuisine wise accuracy statistics: ISW accuracy for global Cuisine.

Cuisine Avg. Accuracy Min. Accuracy Max. Accuracy

Indian 81.98 80.0 92.85

Italian 75.42 68.75 83.33

Japanese 53.36 42.85 60.0

American 72.31 62.50 85.71

Fig. 1. Key Characteristics of INDoRI

ingredient network (InN). Nonetheless, these numerical values can potentially
be considered for recommendation purposes hence kept separately.

Characteristics of INDoRI: INDoRI stands as a unique and innovative
Indian recipes dataset, distinguishing itself from conventional counterparts. It
contains a total of 5187 recipe, presenting a diverse array of culinary offerings.
Additionally INDoRI encompasses additional attributes such as cuisine, cate-
gory, and preparation time. All recipes are classified into 8 different types. Apart
from 925 unclassified recipes rest are also categorized into 18 different cuisines.
Figure 1 shows the key characteristics of INDoRI. In order to examine the inter-
relationships among ingredients, we formed a network of ingredients referred to
as the Ingredient Network (InN). Further information regarding this network is
outlined in the subsequent Section.

3.1 Ingredient Network Construction

We constructed the ingredient network out of INDoRI where each node is an
ingredient. A link is constructed when two ingredient appear in the same recipe.
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Statistics
oNdetceriD

Weighted Yes
3341sedoN
46403segdE

Average Clustering Coefficient 0.8455
Number of Triangles 424048
Fraction of Closed Triangles 0.3485
Diameter 4
Average Edge Weight 39.7861

Fig. 2. Characteristics and statistics of InN and ingredients.

Total of 30,464 relationships were found among all ingredients. The ingredient
network is a graph G(V,E,w), where V is a set of ingredients, E is the connec-
tions between ingredients and w : V × V → R of an edge signifies the number
of association between ingredients in different recipes. The more they appear
together in diverse recipes, more stronger is the association. The strongest asso-
ciation, is between salt and oil, appearing together in 1958 recipes.

Characteristics of Ingredients and InN. Sample sub graph of InN is shown
in top right of Fig. 2. Here thick edges represent stronger associations, while thin-
ner edges represent weaker associations. The size of the node shows the degree.
The bigger the size greater is the degree. Top left Table shows the statistics of the
network InN. We also investigated the presence of ingredients in multiple recipe
categories. The bottom images of Fig. 2 represents the ingredient overlaps. While
the left image provide overlap across five recipe categories viz Chutney, Desert,
Bread, Breakfast and Lunch/Dinner the right image shows the overlap among
Drink, Raita, Pickle, Breakfast and Lunch/Dinner. It is evident that there were
62 ingredients shared among all categories in the left image and overlap of 18
ingredients is found in the right image. This gives an interesting observation of
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the distinct communities for each category. The degree distribution of InN fol-
lows a power law, making it a scale-free network as shown in Figs. 3 (a) and (b)
shows the cumulative degree distribution.

(a) Degree Distribution (b) Cumulative Degree Distribution

Fig. 3. Distribution Plot of InN.

3.2 Communities in InN

The average clustering coefficient of InN is measured as 0.8455, indicating a
higher tendency for nodes to form clusters or groups within the network. We
employed the weighted Leiden algorithm [21] to identify community structure
of InN. The outcomes are presented in Sect. 4.1, highlighting that the network
is partitioned into five distinct communities. We tried to uncover the inherent
characteristics of each partition, leading us to recognize a distinct pattern. Specif-
ically, we observed that the majority of categories, excluding dessert, are having
strong associations with the first partition or community. Conversely, the excep-
tions displayed associations with the second partition. This observation presents
a fascinating challenge for researchers to devise a weighted algorithm tailored
for community detection within InN. Such an algorithm has the potential to
identify diverse trends in the network structure.

4 Applications on INDoRI and InN

Food Computing is defined as the study of food and its properties using compu-
tational methods and methodologies [22]. One such method is modeling and sim-
ulation. It involves many tasks such as acquiring, analyzing, recognition [23], rec-
ommendation of food and recipes. Considering the characteristics of this dataset,
researchers have the opportunity to delve into the tasks both on INDoRI and
InN. Some of the potential applications are listed in Table 2. The outcomes of
two applications of INDoRI are described in the online repository2

2 Link to the supplementary material: https://shorturl.at/gwzFN.

https://shorturl.at/gwzFN
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Table 2. Potential Applications on INDoRI and InN.

INDoRI

Application Description

Recipe Categorization Automatic categorization of recipes into categories such as break-
fast,
lunch, dinner etc. based on text descriptions like ingredients and
cooking instructions.

Cuisine Classification Automatic categorization of recipes into cuisines
such as Punjabi, Bengali, Hyderabadi etc. based on text descriptions
like ingredients and cooking instructions.

InN

Application Description

Community Identification Algorithms to identify communities in the Ingredient Network (InN)
where each community can be correlated with cuisine or category.

Ingredient Pair Prediction Development of methods to predict occurring pairs of ingredients
in recipes, aiding link prediction and recommendation.

INDoRI + InN

Application Description

Recipe Similarity Design of techniques that measure recipe similarity or dissimilarity
based on ingredient overlap, cooking techniques, and other
attributes.

Ingredients based Recipe Recommendation Proposal of recommendation algorithms predicting recipes based on
ingredient availability, offering personalized suggestions

4.1 Example: Community Detection for Better Categorization
of Ingredients

Addressing the challenge we have discussed in Sect. 3.2 for community identifi-
cation in InN, we proposed a simple Weighted Association Based Community
Detection (WABCD) algorithm that groups nodes based on the strong associa-
tion between them. The input to the algorithm is a weighted graph G(V,E,w)
and it outputs community structure therein. The algorithm (Algorithm 1) works
in the following manner. At the outset, every vertex denotes a unique commu-
nity. In the first cycle, communities merge according to the most substantial
weighted edge between two vertices. Starting from the second iteration, each
vertex within a community is compared with vertices from other communities,
and the average weight between the communities is calculated. Merging occurs
based on the highest average value between two communities. The algorithm
terminates when the average weight computed in an iteration is lower than that
calculated in the previous iteration.

Comparison of WABCD with Baselines. We compare the proposed
WABCD algorithm with other community detection algorithms. Baseline algo-
rithms considered were weighted Leiden and weighted Louvain [24]. The results
were shown in Fig. 4. The communities identified by weighed Leiden, Louvain
and WABCD is 5, 4, 7 respectively. To uncover the inherent characteristics of
each partition we have created multiple sub-graphs based on the category of
recipes and compare them with the communities obtained from all three algo-
rithms. The results were shown in Table 3. One may observed that with both
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Algorithm 1: WABCD (G,V,E,w)
Input: G: InN graph, V : set of vertices of G, E: set of edges of G and w: set of weights on

edges

Output: Acquired communities in dictnew

1 dictnew = {};
2 for i in range (0, len(V )) do

3 dictnew [V [i]] = V [i];

end

4 while True do

5 dict = dictnew.copy();

6 for key1 in list(dict.keys()) do

7 bestinc = 0; c = 0; key = dict[key1 ];

8 for key2 in list(dict.keys()) do

9 newkey = dict[key2 ];

10 if key1!= key2 and len(key) > 0 and len(newkey) > 0 then

11 sumweight = 0;

12 for m in key do

13 for n in newkey do

14 if G hasedge(m,n) then

15 sumweight = sumweight + G.getedgedata(m, n)[weight];

c+=1;

end

16 else

17 continue;

end

end

end

18 if c > 0 then

sumweight = sumweight / c;

end

19 accnode = sumweight;

20 if accnode > bestinc then

21 bestinc = accnode; k = newkey; q = key;

end

end

end

22 if bestinc > 0 then

23 if dictnew[key1] != -1 then

24 for qw in k do

25 dictnew [key1 ].append(qw);

end

26 dictnew [key1 ] = -1;

end

27 delete dict[key1 ];

end

end

28 for key in list(dictnew.keys()) do

29 if dictnew[key] == -1 then

30 dictnew.pop(key);

end

end

31 if bestinc == 0 then

32 break;

end

end
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weighted Leiden and Louvain algorithm, the second community exhibit connec-
tion with recipe category Desert whereas the rest tend to have more associa-
tion with Lunch/Dinner category. Conversely, the WABCD approach succeeds
in identifying four prominent recipe categories: Bread, Lunch/Dinner, Drink,
and Deserts. However the desired number of communities is 8 with overlap in
between as shown in Fig. 2 and the problem remain open to solve.

(a) Weighted Leiden

(b) Weighted Louvain

(c) WABCD

Fig. 4. Results from Different Community Detection Algorithms a) Weighted Leiden
detects 5 communities b) Weighted Louvain detects 4 communities c) WABCD detects
7 communities
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Table 3. Comparison of community detection algorithms

Weighted Leiden Weighted Louvain WABCD

C1 Lunch/Dinner Recipes Lunch/Dinner Recipes Bread Recipes

C2 Desert Recipes Desert Recipes Bread Recipes

C3 Lunch/Dinner Recipes Lunch/Dinner Recipes Lunch/Dinner Recipes

C4 Lunch/Dinner Recipes Lunch/Dinner Recipes Drink Recipes

C5 Lunch/Dinner Recipes - Lunch/Dinner Recipes

C6 - - Dessert Recipes

C7 - - Lunch/Dinner Recipes

5 Conclusion

This paper presented our INDoRI dataset with a general characterization along
with its ingredient network. We thoroughly examined and shown its distinc-
tive features and attributes. Furthermore, we have put forth a set of novel stop
words specifically tailored for the food ingredients. The creation of the Ingredi-
ent network (InN) from ingredient interconnections has been a focal point, with
a comprehensive analysis on community identification. Our discourse extends to
addressing the potential applications on top of INDoRI and InN. We present
and compare the communities identified using WABCD and other baseline com-
munity detection algorithms. Overall, INDoRI and InN not only enriches our
understanding of Indian cuisine but also opens up fresh avenues for research,
encouraging a deeper exploration of its culinary intricacies.
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Abstract. This paper presents an approach to enhancing neonatal care through
the application of artificial intelligence (AI). Utilizing network-oriented modeling
methodologies, the study aims to develop a networkmodel to improve outcomes in
neonatal respiratory support. The introduction sets the stage by outlining the sig-
nificance of neonatal respiratory support and the challenges faced in this domain.
The literature review delves into the existing body of work, highlighting the gaps
and the need for a network modeling approach. The network-oriented model-
ing approach provides a robust framework that captures various states, such as
world states, doctors’ mental states, and AI coach states, facilitating a compre-
hensive understanding of the complex interactions in neonatal respiratory sup-
port. Through Matlab simulations, the study investigates multiple scenarios, from
optimal conditions to deviations from standard protocol. The main contribution
focuses on the introduction of an AI coach, which serves as a real-time interven-
tion mechanism to fill in the doctor’s knowledge gaps. The research serves as a
seminal work in the intersection of artificial intelligence and healthcare, demon-
strating the potential of network-orientedmodeling in improving patient outcomes
and streamlining healthcare protocols.

Keywords: Adaptive network model · Infant Care · AI Coach

1 Introduction

In the Netherlands, 166,891 babies were born in 2022. That is 457.24 per day (Cijfers
over geboorte | Nederlands Jeugdinstituut 2023). Approximately 7% experience respi-
ratory distress at birth, necessitating immediate and specialized medical intervention
(Edwards and Kotecha 2013). This translates to a staggering number of infants requiring
critical respiratory support each day, highlighting the urgency for effective and opti-
mized neonatal care. Neonatal respiratory support is a critical aspect of infant care,
as timely interventions can have significant impacts on survival and long-term health
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outcomes (Kaltsogianni et al. 2023). With advancements in technology, Artificial Intel-
ligence (AI) has emerged as a tool with potential applications across various healthcare
domains, including neonatal care (Malak et al. 2018).

This paper explores the question, ‘How can the development and analysis of a net-
work model, representing world, AI coach, and doctors’ mental states, provide insights
into neonatal respiratory support through the simulation of the process of respiratory
support of a newborn baby?’ The research builds on principles of network-oriented
modeling by adaptive self-modeling networks (Treur, 2016; Treur 2020a, 2020b, 2020c),
encompassing three key states and modeling three scenarios:

1. A Successful Scenario: Reflecting optimal processes as described in neonatal care
guidelines.

2. An Error Scenario: Some deviation takes place: an often occurring error or omission.
3. An AI-Coached Error Detection &Knowledge Improvement Scenario: The AI coach

detects an error and improves the knowledge of the doctor if needed.

By analyzing these scenarios, this paper aims to contribute to the understanding of
the AI Coach’s role in optimizing neonatal respiratory support.

2 Background Literature

Neonatal respiratory support is a vital aspect of care for newborns, particularly in the
moments immediately following birth. Roehr and Bohlin (2011) state that a protective
respiratory support strategy from birth is essential as it may not only reduce breath-
ing difficulties in the immediate neonatal period, but may also influence some known
triggers for the development of BPD, such as inflammation, oxidative stress and lung
growth. The importance of this intervention has been highlighted in various clinical
guidelines, emphasizing the need for immediate assessment and support of breathing
in newborns (Anne and Murki 2021). Advances in neonatal respiratory care have led
to improved survival rates and outcomes for preterm infants and those with specific
respiratory conditions.

Even with recent progress, there are still some hurdles in giving the best breathing
support to newborns (Kaltsogianni et al., 2023b). These hurdles include identifying
which babies need help, choosing the right treatments, deciding when to offer support,
and avoiding mistakes. There’s also inconsistency in how treatments are given, making
things even more complicated. However, technology like Artificial Intelligence (AI)
could help overcome some of these issues (Kaltsogianni et al., 2023b). By using network
models that show different situations related to breathing support, healthcare providers
could get a clearer idea of how to best handle this crucial part of caring for newborns.

The integration of Artificial Intelligence (AI) into healthcare has marked a trans-
formative era, revolutionizing various medical domains, from diagnostics to personal-
ized treatment (Khan et al. 2022). The convergence of AI technologies with medical
practices has led to improved efficiencies, enhanced patient outcomes, and the opening
of new avenues for research and innovation. In the context of neonatal care, AI has
demonstrated promising applications, including the analysis of complex medical data,
predictive modeling for patient outcomes, and assistance in decision-making (Bajwa



Optimizing Neonatal Respiratory Support Through Network Modeling 247

et al. 2021). These applications extend to neonatal respiratory support, where timely and
precise interventions are crucial.

One specific area where we can investigate if AI shows potential in the process of
the respiratory support of neonatal is with the use of network modeling. This approach
involves the construction of network models representing various states and relation-
ships, enabling the simulation and analysis of different scenarios related to respiratory
support (Treur 2016; Treur 2020a, 2020b, 2020c). For instance, network models can
represent the world states, AI coach states, and doctors’ states, each with specific roles
and interactions. The development of such network models allows for a systematic
exploration of neonatal respiratory support processes, including the simulation of opti-
mal processes, common deviations, and AI-coached interventions. By leveraging the
computational capabilities of AI, these models can provide insights, guide clinical deci-
sions, and potentially optimize respiratory support for newborns. Network modeling and
analysis in neonatal respiratory support offers a novel approach to understanding and
enhancing care, with potential implications for both immediate neonatal outcomes and
the future of technology-driven medical care.

The development of network models that represent various states and interactions is
an innovative approach in healthcare, providing a computational framework to under-
stand and analyze complex processes. In the context of neonatal respiratory support,
these models can include states such as:

• World States: capturing states of the baby and the broader context and environment,
including hospital settings, equipment, and external factors that may influence care.

• AICoach states: Representing an intelligent entity that guides, monitors, and supports
the healthcare process, offering insights and interventions when needed.

• Doctors’ mental and action states: Reflecting the healthcare provider’s actions,
decisions, knowledge, and interactions with both the world and AI coach states.

These states and their interactions are covered by the network model, allowing for
the simulation and analysis of different scenarios. The scenarios can include:

1. Successful Processes: Simulating the ideal process of neonatal respiratory support,
serving as a baseline for understanding best practices and optimal outcomes.

2. Common Deviations: Modeling frequent errors or omissions, highlighting potential
risks, and areas for improvement in care delivery.

3. AI-CoachedErrorDetection andKnowledge Improvement: Integrating anAI coach to
detect and rectify mistakes in real-time, enhancing accuracy and safety. And utilizing
AI to support healthcare workers in enhancing their knowledge, skills, and adherence
to guidelines, thus improving overall care quality.

The ability tomodel and simulate these scenarios offers valuable insights into neona-
tal respiratory support, allowing for a nuanced understanding of the interactions and
dependencies within the process. It opens opportunities for targeted interventions, con-
tinuous learning, and optimization of care, aligning with the broader goals of precision
medicine and technology-driven healthcare.

By leveraging networkmodeling, this approach fosters a data-driven, evidence-based
practice that transcends traditional boundaries, offering a new perspective on neonatal
care and beyond.
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Computational causal modeling is a powerful tool in AI that can help us understand
complex healthcare situations better (Sarker 2022). In the case of helping newborns
breathe, this type ofmodeling canmap out how different factors like doctors, AI coaches,
and the baby’s condition interact. This approach is unique because it shows not only
what directly causes what but also how changes in one area can affect the whole system
(Squires and Uhler 2022). By using this method, researchers can simulate different
outcomes, such as what happens when things go right, when they go wrong, how AI can
spot mistakes, and how AI can help improve our knowledge (Campos and Fleury 2022).

This kind of modeling can help identify why certain treatments work or fail and point
out where critical decisions should be made to improve care. The research aims to add
to the growing field of network modeling in healthcare. The findings could impact not
just how doctors treat newborns, but also broader healthcare policies and future studies,
laying the groundwork for improving the care of newborns overall.

In conclusion, the development and application of network modeling, coupled with
computational causal modeling, represent a novel and promising avenue in neonatal
respiratory support. By drawing on relevant literature and innovative methodologies,
this research aims to shed new light on the complexities of neonatal care and pave the
way for technology-driven improvements in this vital area of healthcare.

3 Modeling Approach for Neonatal Respiratory Support

The research conducted for this paper employs a network-orientedmodeling approach to
understand and analyze the complex interactions and processes in neonatal respiratory
support (Weigl et al. 2023). This methodology encompasses various states, such as the
world, AI coach, and doctor states, capturing the interactions and causal impacts within
the system. Key features characterize the structure of the network (Weigl et al. 2023).
State are often indicated byX and Y; they have activation values (real numbers, usually in
the interval [0, 1])X(t) andY(t) that vary over time t.Connectivity Characteristics specify
connections from a state X to a state Y as defined by their weights ωX,Y , symbolizing
the strength of the causal impact from X to Y. Aggregation Characteristics are specified
for any state Y by a combination function cY (…) outlines the aggregation applied to
the single causal impacts ωX,YX(t) on Y from its incoming connections from states X.
Timing Characteristics specify for each state Y a speed factor ηY , indicating how quickly
it changes for a given causal impact.

Based on these network characteristics a standard numerical format described by the
difference equation defines the dynamics of the network model:

Y (t + �t) = Y (t) + ηY [cY (ωX1,Y X1(t), · · ·ωXk ,Y Xk(t)) − Y (t)]�t

Various combination functions are available to handle the aggregation of multiple
impacts, with the specific functions used here detailed in Table 1.

The modeling approach also includes the concept of network reification or self-
modeling network, extending the base model by additional states, referred to as reifica-
tion states or self-model states (Treur 2020a, 2020b, 2020c). Examples are self-model
statesWX,Y ,CY ,HY (reification states) to represent the adaptive network structure char-
acteristicsωX,Y , cY ,ηY for a stateY of the base network. Such self-model states are called
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W-states, C-states and H-states, respectively. This can be iterated to get higher-order
self-model states. For example, the self-model state WWX 1,Y1,WX 2,Y2 is a second-order
self-model state that indicates the weight of a communication channel from WX1,Y1 to
WX2,Y2. This will be used in the introduced model for communication from AI Coach
to Doctor.

This network-oriented methodology provides a robust framework to explore and
analyze scenarios related to neonatal respiratory support. The modeling and simulations
are conducted using Matlab, providing a comprehensive approach to simulating and
analyzing the scenarios related to neonatal care. In the development of an network
model for optimizing neonatal respiratory support, two essential mathematical functions
as shown in Table 1 have been employed within the MATLAB environment.

Table 1. Combination functions used

Function Notation Formula Parameters

Advanced logistic sum alogisticσ,τ(V1, . . . ,Vk ) [ 1
1+e−σ(V1+···+Vk−τ)

−
1

1+eστ )](1+ e−στ)

steepness σ

threshold τ

Identity id(V1, . . . ,Vk ) V1 –

The advanced logistic sum function represents a nonlinear transformation that takes
the weighted sum of the input variables V1,…,Vk for incoming single causal impacts
and applies a logistic function. This function is characterized by two parameters: the
steepness σ and the threshold τ. The steepness parameter σ controls the slope of the
logistic curve, whereas the threshold parameter τ determines the point at which the
function transitions from one state to another. In the context of neonatal respiratory sup-
port, this function can be utilized to model complex relationships and transitions within
the respiratory system, such as the response to different ventilatory support parameters.
The identity function is a straightforward mathematical transformation that just returns
the input value itself. In terms of the respiratory support model, the identity function
can represent parameters or variables that are directly observed or controlled without
the need for transformation or scaling. Together, these two functions serve critical roles
within the network model. The advanced logistic sum provides the capability to capture
nonlinear dynamics and complex relationships within the respiratory system, while the
identity function ensures that certain aspects of the system can bemodeled in a direct and
unaltered manner. They enable the creation of sophisticated graphs that can be analyzed
to better understand the underlying mechanisms of neonatal respiratory support. The
ultimate goal is to leverage these insights to develop more effective and personalized
interventions for post-birth infant care.

In (Appendix A, 2023) tables with explanations for all states and for the role matrices
that are used for the simulation of the scenarios can be found. Here we explain the base
world states. The pathway shown in Fig. 1 is followed. The red cross represents what
happens from Scenario 3, where the doctor has no knowledge that you have to follow
certain instructions after gasping, or he forgets to do this.
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Fig. 1. The base level world states in the network model

The concept of a world state encompasses the environment in which neonatal res-
piratory support takes place. Understanding the world state is pivotal for the realistic
simulation of scenarios that aim to optimize neonatal respiratory support.Within the net-
work model, various states coexist to collectively influence the outcome of respiratory
support for a neonate. These states can be categorized as follows (Table 2):

• Context States: These states provide information on specific conditions that could
influence respiratory support. For example, Context State G Indicates that the baby
is gasping in this scenario.

• Evaluation States: These states, like eval_hr_br and evaluate_30sec, are pivotal for
ongoing assessment of the baby’s physiological parameters.

• Intervention States: These states dictate the medical interventions that should be
considered, such as cpap_spo_ecg and infl_spo_ecg.

• Outcome States: These states represent the outcomes of previous actions and
evaluations, like true_incr_hr and hartfreq_high.

• eval_hr_br (Evaluate heart rate, breathing, color, and muscle tone): This state is
crucial for the initial evaluation post-birth. It encapsulates the assessment of multiple
physiological parameters to decide the subsequent course of action.

• infl_spo_ecg (Open airway, give 5 inflation breaths (30 cm H2O), SpO2 and ECG
monitoring): This state outlines the protocol for cases where initial assessment
indicates respiratory distress, thereby requiring inflation breaths and continuous
monitoring.

• evaluate_30sec (Evaluate heart rate every 30 s): This state underscores the necessity
for frequent re-evaluation to adapt the treatment strategy effectively.

The states are not static but interact dynamically within the network model. For
example, if the state hartfreq_low is activated, the network transition to thor_100_3comp
for immediate intervention. This dynamic interplay is essential for simulating the real-
world complexity of neonatal respiratory care. The granularity and complexity of these
statesmake them ideal candidates for networkmodeling.Byapplying advanced functions
like alogistico’,τ for nonlinear relationships and id for direct variables, the model can
simulate intricate scenarios that mimic real-life conditions. These simulations, therefore,
hold the potential to significantly improve neonatal respiratory support protocols.

In this part, we’ll look at the roles of doctors and AI coaches in helping newborns
breathe. See alsoFig. 2, these roles are complex and include everything from thedecisions
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Table 2. World states and their explanations

State name Description

context state N Whether or not there is: no_incr_hr

context state L Whether or not there is: hartfreq_low

context state G Whether or not there is: gasping

context state I Whether or not there is: inadequate

context state T Whether or not there is: true_incr_hr

context state H Whether or not there is: hartfreq_high

baby_born Birth

eval_hr_br Evaluate heart rate, breathing (color and muscle tone)

inadequate Inadequate breathing

gasping Gasps or apnea

cpap_spo_ecg Open airway, consider CPAP
SpO2 and ECG monitoring

infl_spo_ecg Open airway, give 5 inflation breaths (30 cm H2O) SpO2 and ECG
monitoring

evaluate Evaluate heart rate

no_incr_hr No increase in heart rate

true_incr_hr Increase in heart rate

chesex Check head and mask position. Consider alternate airway strategies.
Repeat 5 inflation breaths

evaluate_chesex Evaluate whether chest excursions had an effect on heart rate

convinced_chesex Convinced of chest excursions

venti_for_30 Ventilation for 30 s

hartfreq_high Heart rate is higher than 60/min

hartfreq_low Heart rate is less than 60/min

thor_100_3comp Start chest compressions. Increase oxygen percentage to 100%. 3
compressions on 1 breath

evaluate_30sec Evaluate heart rate every 30 s

freq_low_and_care If heart rate < 60/min: Provide i.v. access and give adrenaline Consider
other causes (such as pneumothorax, hypovolemia, congenital
abnormalities)

briefing Inform parents, debrief with team and register

healthcare providersmake to themedical guidelines they follow.The idea is to understand
how doctors think and act in these situations. For example, if a doctor knows that a baby
is having trouble breathing, they would follow a specific treatment plan, known as the
CPAP_SPO_ECG procedure. This decision is based on the doctor’s existing knowledge
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Fig. 2. The introduced overal network model

and experience. By breaking down the thought processes and actions of healthcare
providers in this way, we can get a clearer picture of how decisions are made and
treatments are administered in neonatal respiratory care.

So, if the W-state of this relation has no value, the doctor would not know that it
needs to do CPAP_SPO_ECG after he diagnoses that the baby has gasping. The doctor
states encapsulate various functionalities:

• Intervention States: Such as cpap_spo_ecg (doctor MS) and infl_spo_ecg (doctor
MS), dictating specific medical actions.

• Assessment States: Focused on continuous evaluations, e.g., evaluate (doctor MS)
and evaluate_30sec (doctor MS).

• Outcome States: Representing the results of interventions, like hartfreq_high (doctor
MS) and hartfreq_low (doctor MS).

In our model, W-states serve as quantitative indicators of the doctor’s level of
knowledge, confidence, or belief regarding the relationship between other states. For
example:

• Wbaby_born dms,eval_hr_br dms represents the doctor’s confidence in the necessity of
immediate evaluations like heart rate and breathing following birth.

• Wgasping dms, cpap_spo_ecg dms reflects the level of belief the doctor has in initiating
CPAP and monitoring when gasping or apnea is detected in a newborn.
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TheseW-states are crucial for capturing the cognitive landscape of the medical prac-
titioner, incorporating both objective knowledge and subjective beliefs into the decision-
making model. Understanding the Doctor States, especially the cognitive aspects cap-
tured by W-states, is pivotal for our model aiming to interface effectively with health-
care providers. By modeling these intricate cognitive processes, the AI system can
be trained to offer real-time, knowledge-aligned recommendations that can improve
neonatal respiratory care outcomes.

TheAI coach functions bymonitoring various states andW-states in real-time, identi-
fying gaps in the practitioner’s actions or knowledge, and providing timely interventions
to enhance learning and improve patient care. Learning states are specialized W-states
for the AI Coach that interact with the corresponding W-states in the doctor model.
They serve as the mechanism through which the AI Coach improves the practitioner’s
knowledge and decision-making. When the AI Coach detects a gap or a deviation in the
doctor’s actions, it uses these learning states to adjust the doctor’s weight states, thus
facilitating learning and improvement.

This goes as follows. TheAI coach continuouslymonitors the doctor’s actions.When
it identifies a lapse, such as the doctor forgetting to initiate cpap_spo_ecg upon detecting
gasping, it triggers the learning W-state

WWgasping AICMS,cpap_spo_ecg AICMS, Wgasping dms,cpap_spo_ecg dms  

This second-order self-model state models a communication channel fromAI Coach
to Doctor that adjusts the corresponding doctor’s W-state, Wgasping dms,cpap_spo_ecg dms,
to fill in the knowledge gap. This adjustment informs the doctor of the necessary action,
thereby enhancing the doctor’s knowledge and improving patient outcomes. In a scenario
where a newborn is detected to be gasping, and the doctor fails to initiate cpap_spo_ecg,
the AI coach monitors this and intervenes. Through this learning state, the AI coach
updates the doctor’s corresponding W-state, in turn making them aware of the need to
initiate CPAP, thereby facilitating immediate and appropriate medical intervention.

The incorporation of an AI coach equipped with learning states into the network
model offers several advantages:

• Real-Time Intervention: The AI coach provides immediate feedback, allowing for
real-time adjustments in the doctor’s actions.

• Knowledge Enhancement: The learning states serve as a conduit for knowledge trans-
fer from the AI coach to the medical practitioner, ensuring that the doctor is always
updated on the best course of action.

• Adaptive Learning: The model can adapt and evolve over time, capturing the nuances
of each practitioner’s learning curve and adjusting its coaching strategy accordingly.

By effectively utilizing learning states, the model becomes an invaluable tool for
continuous professional development, ensuring that healthcare providers are always at
the forefront of medical knowledge and practice, ultimately leading to improved patient
outcomes.

Monitor states serve as an integral part of the network model, capturing real-time or
near-real-time observations or measurements from the system. In the context of neonatal
respiratory support, these states are crucial for continuously assessing various conditions
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and parameters. They provide the data that informs the weight states, thus influencing
the medical practitioner’s decision-making process. The primary role of monitor states
is to provide timely and accurate data for various attributes or conditions that are crucial
in neonatal care. This data is then used to adjust the W-states, which represent the
level of confidence or belief a medical practitioner might have in certain protocols or
interventions. For example, if the doctor forgets to do the process that comes with the
state cpap_spo_ecg, the monitoring of the AI coach will make sure that the doctors
knowledge about this will be updated. Examples of monitoring states are:

• MONITOR cpap_spo_ecg: This monitor state observes the effectiveness of CPAP
(Continuous Positive Airway Pressure) along with SpO2 and ECG monitoring. The
data collected helps in dynamically adjusting the weight state W gasping dms,
cpap_spo_ecg dms, which influences the decision to initiate or continue CPAP.

• MONITOR freq_low_and_care: This state keeps track of the frequency and quality
of care provided when the heart rate is below 60/min. The information is then used
to adjust the weight at W evaluate_30 s dms, freq_low_and_care dms, affecting the
urgency and type of interventions considered.

Incorporating monitor states allows the AI system to make real-time adjustments
based on current observations, making the model more adaptive and robust. These states
serve as a bridge between the realworld conditions and the weight states, providing
a dynamic feedback loop that enhances the model’s predictive and decision-support
capabilities. By understanding and effectively utilizing these monitor states, the model
can offer more precise, timely, and context-sensitive recommendations, contributing to
improved outcomes in neonatal respiratory care.

4 Findings from Network Model Simulations

This section presents the findings derived from simulations of the network model using
Matlab. These simulation results are visualized as graphs, offering valuable insights into
the model’s effectiveness across various scenarios. The primary aim of this research is
to address specific errors commonly made during the respiratory support of neonatal
infants. In our Matlab simulations, we concentrated on rectifying a particular error:
the omission of the cpap_spo_ecg action by doctors upon recognizing that the baby is
gasping.

Importantly, all actions that a doctor can take are structured similarly within the net-
workmodel. For the sakeof simplicity and focus,we chose to zero in on the cpap_spo_ecg
process. We posit that if our solution proves effective for this process, it should be gen-
eralizable to other processes as well. For all scenarios, see (Appendix A, 2023). Here we
focus on Scenario 3. This scenario involves an AI coach that not only detects the error or
omission with the help of monitor states but also aids healthcare workers in improving
their knowledge.

In this scenario, both the cpap_spo_ecg state and the corresponding W-state repre-
senting the doctor’s knowledge remain deactivated. However, the introduced AI Coach
is connected to the doctor’s knowledge W-state. A specialized higher-order W-state
denoted as WWgasping AICMS,cpap_spo_ecg AICMS, Wgasping dms,cpap_spo_ecg dms is in place to
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Fig. 3. Scenario 3 focused

facilitate the transfer of knowledge from the AI Coach to the doctor when needed. Essen-
tially, if the state values are already optimal (e.g., knowledge value is 1), the AI coach
will not intervene, and the monitor state will remain in observational mode without trig-
gering any actions. The inclusion of the specialized higher-order W-state provides an
opportunity for the doctor to gain knowledge from the AI Coach. As observed in Fig. 3,
the doctor’s knowledge initially starts at 0 but increases to 0.9 due to the input from the
AI coach. The concept underlying the connection between the AI coach’s knowledge
and the doctor’s knowledge is that a single intervention should suffice for knowledge
improvement. In otherwords, if the doctor receives guidance from theAI coach once, that
guidance should be sufficient for future situations, thus negating the need for repeated AI
interventions for the same action. The monitor state value for cpap_spo_ecg is notably
low in Fig. 3, where the doctor’s knowledge stands at 0. Interestingly, the monitor state

Fig. 4. cpap_spo_ecg knowledge is already adequate
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value escalates significantly when the AI coach imparts knowledge to the doctor. This
monitor state serves as an error-detection mechanism, intervening only when neces-
sary. As evidenced in Fig. 4, when the doctor’s knowledge level is already at 1 and
the cpap_spo_ecg procedure has been performed, the monitor state peaks at 0.24. In
contrast, in the absence of the doctor’s knowledge, the peak is 0.52. In this instance, the
monitor state only checks for errors and does not take any further action, as the necessary
conditions are already met.

5 Discussion

The primary objective of this paper was to investigate how network modeling could
optimize neonatal respiratory support protocols. Utilizing a network-oriented modeling
approach as outlined in (Treur 2020a, 2020b, 2020c), various scenarios were created and
analyzed within the Matlab environment. The findings from these scenarios contribute
significantly to both the fields of neonatal respiratory support and networkmodeling. The
second scenario emphasized the interconnectedness within the model. It revealed that
missing links or incomplete knowledge could have far-reaching implications, affecting
multiple aspects of neonatal respiratory support. This finding underscores the need for
comprehensive and accurate data in models. The third scenario illustrated the potential
of incorporating an AI coach into the model. The AI can not only act as a fail-safe
tool but also as an educational tool. It provided real-time decision-making support and
reinforced the doctor’s knowledge base for future scenarios. The AI coach’s intervention
is a one-time requirement for each specific action or decision, equipping the doctor for
future similar situationswithout additional AI assistance.Monitor states proved effective
as safeguards, ensuring optimal performance and error minimization across different
scenarios.

These findings provide evidence that an AI coach can be successfully applied to
healthcare settings, particularly in the area of neonatal respiratory support. Some limi-
tations concern that scaling up has not been addressed yet, the effectiveness has not yet
been validated, and only some scenarios have been explored. Moreover, when dealing
with healthcare data, you are primarily dealing with Personal Health Information (PHI),
a category of data that is highly sensitive and heavily regulated to protect individuals’
privacy. Health data can be a target for cyber attackers. Thus, robust security measures
need to be in place to prevent unauthorized access and protect against data breaches.
Future Research may address such limitations. For further details, see (Appendix 2023).
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Abstract. Network alignment is a commonly encountered problem in
many applications, where the objective is to match the nodes in differ-
ent networks such that the incident edges of matched nodes are consis-
tent. Gromov-Wasserstein (GW) distance, based on optimal transport,
has been shown to be useful in assessing the topological (dis)similarity
between two networks, as well as network alignment. In many practi-
cal applications of network alignment, there may be “seed” nodes with
known matchings. However, GW distance assumes that no matchings
are known. Here, we propose Generalized GW-based Network Align-
ment(GGWNA), with a loss/distance function that reflects the topo-
logical similarity of known matching nodes. We test the resulting frame-
work using a large collection of real-world social networks. Our results
show that, as compared to state-of-the-art network alignment algo-
rithms, GGWNA can deliver more accurate alignment when the seed
size is small. We also perform systematic simulation studies to char-
acterize the performance of GGWNA as a function of seed size and
noise, and find that GGWNA is more robust to noise as compared to
competing algorithms. The implementation of GGWNA and the Supple-
mentary Material can be found in https://github.com/Meng-zhen-Li/
Generalized-GW.git.

Keywords: Gromov-Wasserstein Distance · Network Alignment

1 Introduction

Network alignment is the problem of aligning nodes that belong to the same
entity from different networks based on the similarity of their connections [14].
In social networks, network alignment is often used to match the users that are
the same person [12]. In biological networks, network alignment is used to identify
molecules with similar evolutionary history and/or biological function [8].

Gromov-Wasserstein (GW) distance [9] is a measure that aims to quantify
the distance between two networks (or similarity matrices) based on their topo-
logical (dis)-similarity. The formulation of GW derives an optimal transport
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(OT) [16], which compares probability distributions and minimizes the trans-
port cost between the distributions [11]. There are many existing variations of
GW distance. Entropic GW distance [10] introduces an entropic regularizer to
the loss function. Sliced GW [15] projects each distribution in an 1D form and
improves efficiency.

Fig. 1. Illustration of the seed-informed network alignment problem. Given
the blue and red networks, and the known mappings of some nodes in the networks
(solid green lines), the objective is to identify mappings of other nodes (dashed green
lines) to maximize topological consistency.

The computation of GW distance between two networks also entails compu-
tation of a fuzzy mapping (the “transport” matrix) between the nodes of the two
networks, which is useful for network alignment. Motivated by this observation,
many recent studies develop GW-based methods for network alignment[2,17].
GW is also shown to be useful in computing node embeddings for multiple net-
works, by jointly performing graph alignment and node embedding [17].

The classical formulation of GW distance and its existing variations assume
that the mapping between the nodes of the two networks is unknown (or irrel-
evant) and formulate the optimization problem purely based on topology. How-
ever, in graph alignment applications involving real-world networks, there are
some known matchings (Fig. 1), which can be used as prior knowledge in com-
puting the mapping of remaining node pairs [4]. In this paper, we propose a
novel framework for Gromov-Wasserstein based network alignment and intro-
duce a new loss function that takes into account the known matchings between
the two networks as “seed nodes” used to guide the alignment process. The
proposed “generalized Gromov-Wasserstein distance” fixes the known match-
ing of seed nodes in the optimal transport, while incorporating the topological
consistency of these nodes in the loss function. We comprehensively assess the
performance of the proposed Generalized Gromov-Wasserstein-based Network
Alignment (GGWNA), in comparison to standard GW-based alignment, as well
as other network alignment algorithms[5,18]) on a rich corpus of social networks
and synthetic datasets. We also investigate the effect of several factors and hyper-
parameters on the performance of GGWNA and other algorithms: 1) the number
of seed nodes that are available, 2) the node overlap between the networks, 3) the
divergence of edges between the two networks, and 4) the relative importance
assigned to he topological consistency between seed vs. free matchings in our loss
function. Our results show that (i) the use of seed matchings greatly improves
the accuracy of GW-based alignment, (ii) GGWNA performs better when more
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attention is given to the topological consistency of the seed nodes, (iii) GGWNA
is drastically more robust than non-GW based algorithms to small seed sizes
and more divergence between the networks. These results establish GW-based
algorithms as a compelling alternative for seed-driven network alignment, while
also enabling computation of GW distance for a broader range of networks.

2 Background

2.1 Optimal Transport

Optimal transport [10] minimizes the mapping cost between two probability
distributions. Suppose that p ∈ R+

m and q ∈ R+
n are two distributions, given a

cost matrix Cij ∈ R
m×n representing the transport cost from i to j. The optimal

transport problem aims to find a matrix T to minimize the transport cost:

minimize
∑

i,j

Ci,jTi,j subject to: T ∈ R
m×n
+ : T1m = p, TT1n = q. (1)

This optimization problem can be solved using quadratic optimization[13]. In
our experiments, we compute the optimal transport using the Python Optimal
Transport (POT) package [3].

2.2 Gromov-Wasserstein Distance

Based on the optimal transport theory, GW distance [9] was proposed as a
measure to quantify the (dis)similarity between two matrices. GW distance is
defined between (C1, p) and (C2, q), where C1 and C2 are two similarity matrices
that represent the pairwise similarities or distances of elements, p and q are the
two distributions that represent the relative importance of the elements [10].

This representation can be applied to quantifying the (topological) dissimi-
larity between two networks G1 and G2, as C1 ∈ R

m×m and C2 ∈ R
n×n can be

selected as the adjacency matrices of G1 and G2. In its most general setting, the
GW distance between two adjacency matrices C1 and C2 is defined as:

GW (C1, C2, p, q) = min
T

∑

i,j,k,l

L(C1(i, k), C2(j, l))T (i, j)T (k, l) (2)

where i and k refer to nodes in G1, j and l refer to nodes in G2, p and q are vectors
representing the relative importance of the nodes in the two networks, L(.) is a
loss function, and T is constrained by p and q as in (1). In common applications of
Gromov-Wasserstein based network distance, quadratic loss L(a, b) = 1

2 |a − b|2
is used along with uniform distributions for p and q, i.e., p = 1

m1m and 1 =
1
n1n [10].
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2.3 Network Alignment Problem

Network alignment aims to find a matching between the nodes of two networks,
G1 = (V1, E1) and G2 = (V2, E2) to maximize the consistency of the incident
edges of matched nodes. Network alignment algorithms differ in terms of how
they formulate an objective function to reflect this aim, as well as how they
solve the resulting optimization problem(s) [5,6,18]. Network alignment algo-
rithms can be supervised [18] or unsupervised [5]. GW-based network alignment
formulates the problem as an optimization problem as in (2), where T represents
the resulting mapping of the nodes. Here, we consider the seeded variant of the
problem, where the matching between a subset of nodes S = V1 ∩ V2 is known.
The objective of seeded network alignment is to find a mapping between the
nodes in V1 − S and V2 − S to maximize topological consistency.

3 Methods

3.1 Generalized Gromov-Wasserstein with Known Matching Nodes

Suppose that we have two networks G1 = {V1, E1} and G2 = {V2, E2} such that
a subset of nodes S = V1∩V2 is common. We aim to compute T , |V1−S|×|V2−S|
transport matrix such that T (i, j) provides a mapping of the remaining nodes
that maximizes topological consistency of the networks, given S.

Generalized Gromov-Wasserstein Distance. Let C1 and C2 denote the
adjacency matrices of G1 and G2. Reorganize matrix Ci (i = 1, 2) as follows:

Ai Bi

B′
i Di

⎡

⎢⎢⎢⎢⎣

⎤

⎥⎥⎥⎥⎦

S

S

Here, Ai corresponds to the edges between nodes that exist in both networks,
Bi and B′

i correspond to edges between one node in S and one node outside
S, and Di corresponds to edges that are between nodes outside S. Since the
mapping of nodes in S are fixed, the topological consistency of A1 and A2 is not
informative on the mapping of the nodes in V1 − S vs. V2 − S. Thus we consider
the topological consistency of B1 vs B2, B′

1 vs B′
2, and D1 vs D2 to generalize

Gromov-Wasserstein distance for this scenario:

L1 =
∑

i,k∈V1−S
j,l∈V2−S

1
2
(D1(i, k) − D2(j, l))2 T (i, j)T (k, l) (3)

L2 =
∑

i∈S
k∈V1−S
l∈V2−S

1
2
(B1(i, k) − B2(i, l))2 T (k, l)2 (4)
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Here, L1 is the same as the GW distance between D1 and D2. L2 considers each
common node i ∈ S, and penalizes the inconsistencies in the neighborhood of i
created by the mapping of other nodes in the networks. We define the generalized
Gromov-Wasserstein distance as the weighted sum of these two loss functions:

Lgeneralized = min((1 − α)L1 + αL2) (5)

Here, 0 ≤ α ≤ 1 is a parameter that balances the relative importance of prior
information (edges with one side fixed) vs. free mappings (edges with both sides
to be mapped). Increasing α assigns more weight to L2, so that the learning
algorithm depends more on the known matchings instead of other nodes. α = 0
corresponds to standard GW distance between D1 and D2 (ignoring the parts
of G1 and G2 that are induced by the seeds), while α = 1 corresponds to taking
into account the edges incident to seeds only.

Peyré et al. [10] propose an efficient learning algorithm for computing the GW
distance by incorporating a 4-way tensor L and a tensor matrix multiplication
L ⊗ T . The loss function of Gromov-Wasserstein distance can be rewritten as:

GW (C1, C2, T ) = 〈L(C1, C2) ⊗ T, T 〉 (6)

in which L(C1, C2) ⊗ T is the cost matrix C in the optimal transport. A decom-
position of L(C1, C2) ⊗ T is also proposed to improve efficiency.

The optimal transport can be computed by solving a quadratic optimiza-
tion problem [13]. Building on this approach, we propose an efficient learn-
ing algorithm for computing the Generalized GW disance by generalizing the
quadratic problem to fit our objective function. For this purpose, we first define
a |V1 − S| × |V2 − S| matrix:

E(k, l) =
∑

i∈S

(B1(i, k) − B2(i, l))2 (7)

which is a constant matrix and can be computed by matrix operations. Then
the loss function of the generalized Gromov-Wasserstein becomes:

Lgeneralized = 〈(1 − α)L(D1,D2) ⊗ T + αE � T, T 〉 (8)

where E � T is the element-wise multiplication of E and T , and (1 −
α)L(D1,D2) ⊗ T + αE � T is the cost matrix C.

We use Algorithm 1 to compute the Generalized GW distance of two net-
works. We first initialize the optimal transport T as the outer product of p and
q (defined in Sect. 2.1). At each iteration, we compute the gradient direction of
T and use Algorithm 2 to compute the optimal learning rate τ to minimize the
cost of T + τΔT :

τ = arg min
0≤τ≤1

Lgeneralized(T + τΔT ) (9)
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The update function L1 is derived in [13] as a quadratic function of τ . Using E
as defined above, we derive the following update function for L2:

L2(B1, B2, T +τΔT ) =
∑

k∈V1−S
l∈V2−S

E(k, l)(ΔT (k, l)τ2 +2T (k, l)ΔT (k, l)τ +T (k, l)2)

(10)
Thus the update function for Lgeneralized can also be expressed as a quadratic
function of τ . We then compute the optimal learning rate τ as the value that
minimizes the resulting update function for Lgeneralized and update T accord-
ingly. When τ = 0 or ΔT is less than a threshold, the process converges and
stops. The complexity of the algorithm is O(mn2 + m2n), where m and n are
the number of nodes in V1 − S and V2 − S.

Algorithm 1. Optimization for GGWNA
1: T (0) ← pqT

2: for i = 1, 2, . . . do
3: C ← cost matrix of the iteration
4: T ← OT (C, T (i−1))
5: ΔT ← T − T (i−1)

6: τ (i) ← line search using algorithm 2
7: T (i) ← T (i−1) + τ (i)ΔT
8: end for

Algorithm 2. Line Search
1: a ← −2(1 − α)〈D1ΔTD2, ΔT 〉 + α〈E � T (i−1), T (i−1)〉
2: b ← (1 − α)〈cD1,D2 , ΔT 〉 - 2(1 − α)(〈D1ΔTD2, T

(i−1)〉 + 〈D1T
(i−1)D2, ΔT 〉) +

2α〈E � T (i−1), ΔT 〉
3:
4: c ← Lgw(T )
5: if a > 0 then
6: τ ← min(1, max(0, −b

2a
))

7: else
8: τ ← 1 if a + b ≤ 0 else τ ← 0
9: end if

Algorithm 3. Greedy Matching
Require: optimal transport T ∈ R

p×q

Ensure: array M ∈ R
min(p,q)×2 of matchings

1: M ←− ∅

2: while size of M < min(p, q) do
3: i, j ←− the row and column indices of max(T )
4: if i /∈ M(1) and j /∈ M(2) then
5: add node pair [i, j] to M
6: end if
7: end while
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3.2 Seeded Network Alignment Using Optimal Transport

Having computed the optimal transport matrix T , we aim to find an optimal
matching between the two networks. For a pair of nodes i ∈ G1 and j ∈ G2,
Tij is assigned a larger value by the optimal transport algorithm if the local
topology around them are more similar (also considering their edges with the
nodes in S). While there are many algorithms in the literature to compute a
discrete mapping of the nodes based on the weights in T [1], these algorithms
are computationally costly. Here, since our focus is on computing T (as opposed
to using T to compute a mapping), we use a simple greedy algorithm (Algorithm
3) to compute a mapping T , thereby enabling repeated computational experi-
ments to compare the proposed algorithm against alternative algorithms. The
framework we propose here can be used with any matching algorithm once T
is computed using Algorithm 1. In each iteration of this algorithm, we find the
row and column indices of the maximum value in T , and align the corresponding
pair of nodes. If one of the nodes is already aligned, we skip the pair and find
the next maximum value in T , until min(|V1 − S|, |V2 − S|) nodes are aligned.

Table 1. The networks used in the experiments. Left: Real network pairs. Right:
Networks used to create network pairs in simulation studies.

Network Pairs #Nodes #Edges #Matchings

Douban Offline 1118 1511
1118

Douban Online 3906 8164

ACM 9872 39561
6325

DBLP 9916 44808

Twitter 5120 130575
1609

Foursquare 5313 54233

Phone 1000 41191
1000

Email 1003 4627

Networks #Nodes #Edges

Facebook 4039 88234

lastfm 7624 27806

Arxiv 5242 14496

4 Experimental Results

4.1 Datasets

We use real-world social network pairs to compare GGWNA with other network
alignment algorithms. The network pairs [18] used in our experiments are shown
in Table 1. Douban is an online social network providing user review and recom-
mendation services for movies, books, and music. ACM and DBLP are two co-
authorship networks, in which nodes indicate authors and edges indicate that the
two authors published at least one paper together. The twitter-foursquare data
includes friend relationships from two online social networks, and the overlaps
are the people who are in both networks. In the Phone-Email dataset [19], the
Phone and Email networks respectively correspond to communications among
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people via phone and emails. For all datasets, the matchings are the users that
are identified as the same person in different social networks.

Besides real-world network pairs, we perform simulation studies on real-world
network [7] to generate synthetic network pairs with controlled characteristics.
We assess the effect of the following variables in simulation studies (Fig. 2):

– Network pairs with different levels of divergence: For each network
G = (V,E) in Table 1, we generate 10 networks by adding or removing γ|E|
edges from G, where γ represents divergence (also referred to as noise, varying
from 0.05 to 0.8). In the experiments, we align the 10 new networks with the
original network G and assess the mean and variance of accuracy.

– Divergent network pairs with identical degree distribution: For each
network G = (V,E) in Table 1, we generate 10 divergent networks with γ:
0.05, 0.1, 0.2, 0.4, 0.8. To preserve degree distribution, we randomly remove
two randomly selected edges (i, j), (k, l) ∈ E, and add edges (i, k) and (j, l)
at each iteration of the randomization process (repeated γ|E|/2 times).

– Network pairs with different levels of node overlap: We simulate the
case when two partial observations of a network are aligned. We generate 10

Re
mo
vin

g

Adding

(a) Adding noise by adding/removing randomly selected edges. Left: Original network.
Upper right: Dashed edge is removed. Lower right: Red edge is added to the network.

(b) Adding noise by swapping nodes in two randomly selected edges. Left: Original
network. Right: Network after one edge swap.

Net
wor

k 1

Network 2

(c) Splitting a network into two networks with fixed overlap. The red nodes selected
from the original graph are the overlapping nodes of the new graphs.

Fig. 2. Simulation techniques used to generate synthetic network pairs.
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network pairs with different levels of node overlap: 0.1, 0.2, 0.4, 0.8. For a
network G = (V,E) in Table 1(Right), we split it into two networks, where
λ|V | (λ denotes the overlap parameter) nodes appear in both networks, and
other nodes are equally distributed in the two networks. If there is an edge
(i, j) ∈ E, then edge (i, j) also appears in the new networks. After the pair
is constructed, we add 20% noise to both networks as described above.

4.2 Baseline Methods

GW: The Gromov-Wasserstein distance was introduced in Sect. 2.2. We learn
the optimal transport matrix using all nodes (including seed nodes) to apply the
greedy matching algorithm, ignoring the seed matching.

FINAL. [18] is a supervised network alignment method for attributed networks.
The FINAL algorithm leverages the node/edge attribute information to guide
topology-based alignment process. In our experiments, the networks are not
attributed networks, so the node attribute matrices are empty, and only topolog-
ical consistencies are considered. We use the default hyperparameters of FINAL.

Fig. 3. Comparison of network alignment algorithms on real-world network
pairs. The x-axis shows the percent of overlap that are used to train the models. The
curves and error bars show the means and variances across 10 runs. Here, α = 0.8 for
GGWNA (the effect of this parameter is shown in Fig. 3).

REGAL. [5] first learns a node embedding for each network by a proposed
matrix factorization technique (xNetMF). Then, the embeddings are used to
compute the cross-network node similarities of each pair of nodes.
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4.3 Experimental Setup

We compare our method with the baseline methods in terms of the accuracy
of network alignment. Let S′ = V1 ∩ V2 denote the set of all known matching
in the two networks. For a given “seed size σ (fraction of known matchings in
the training set), we randomly select σ|S′| nodes from S′ to construct S. The
remaining nodes in S′ − S become the test. For all algorithms S is provided as
the set of seed matching and the resulting mapping of the node pairs in S′ −S is
obtained by using the greedy matching algorithm (Algorithm 3) on the weighted
mapping matrix returned by the algorithm. The accuracy is of alignment is then
computed as the fraction of correctly aligned pairs in S′ −S. All the experiments
are repeated 10 times, and the averages and variances are shown in the figures.
The x-axes of all figures are in log scale.

4.4 Results on Real Network Pairs

The network alignment accuracy of the four algorithms on four different pairs of
real network pairs as a function of seed size is shown in Fig. 4. On all datasets,
GGWNA and FINAL clearly outperform GW and REGAL. In addition, for
all datasets, GGWNA outperforms FINAL for smaller seed sizes, while FINA
outperforms GGWNA when the seed size is large. These results suggest that
GGWNA is quite robust to smaller seed size.

Fig. 4. The effect of α on the performance of GGWNA. The x-axis shows
percent overlap used to train the models and the error bars show the variances.
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In most cases, the accuracy of GGWNA increase as the seed size becomes
larger, but the performance of GGWNA begins to decline when the seed size is
too large (40% or 80%). The reason might be: As the seed size becomes larger,
the Di part of the adjacency matrices (Sect. 3.1) is smaller and will have less
weight in the loss function. Therefore, the learning process depends more on the
topological features of the seed nodes and less on the topological similarities of
the nodes in the test set. FINAL performs better than GGWNA when more seed
nodes are used in training, but 80% seed sizes can be unrealistic in practice. GW
and REGAL do not work well on these datasets, and since they are unsupervised,
the accuracy does not increase as the seed size becomes larger.

Figure 3 shows the effect of α on the performance of GGWNA. Overall, the
accuracies of GGWNA increases as α increases from 0.2 to 0.8, but the perfor-
mance goes down in most cases as we increase α to 1, since we depend too much
on the known matchings instead of the topology. As α goes higher, the weight
of the known matchings increases, and the optimal transport will depend more
on B1 and B2 parts of the adjacency matrices.

4.5 Results on Simulated Pairs of Networks

We investigate the effect of various parameters using simulated network pairs
(Fig. 2). We show the results on networks generated using the Facebook dataset
here, the results of other datasets are in the Supplementary Material.

The Effect of Divergence/Noise. As seen in Fig. 5, the accuracy of the algo-
rithms declines as the two networks diverge. GGWNA is most robust against

Fig. 5. Accuracy of network alignment accuracy as a function of
noise/divergence between networks. Top: Uniform noise, Bottom: Degree-
preserving noise. The seed sizes are 10% (left), 20% (center), and 50% (right).
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Fig. 6. Network alignment accuracy on partial observations of a network.
Two networks are samples from the original network, with overlap levels from 10% to
80% as shown on the x-axis. 20% random noise is added to each network. Seed size:
10% (left), 20% (center), 50%(right) of the overlapping nodes.

noise, the accuracy decreases slightly as the noise level increases. The accuracy
of FINAL improves as the seed size increases from 0.05 to 0.8, but GGWNA
remains at a higher accuracy even when the seed size is small. Accuracy declines
more sharply for degree-preserving noise (bottom panel), since this presents a
more difficult instance for the algorithms (i.e., the algorithms cannot use node
degree information to match the nodes), which can be more relevant in practice.

Partial Observations of a Network. From the results on real network pairs
(Fig. 4), we observe that GGWNA works better than other techniques when the
node overlap between nodes the networks is larger (e.g. the ACM-DBLP and
phone-email datasets). In the experiments reported in Fig. 6, we investigate the
effect of node overlap between two observations of a single network. As seen in
the figure, the accuracy of all algorithms improves as the node overlap becomes
larger, especially for GGWNA. However, GGWNA is still robust to smaller seed
sizes as there is no obvious differences between the curves of the three subplots.

5 Conclusions

In this paper, we proposed generalized Gromov-Wasserstein for network align-
ment (GGWNA), by introducing a new loss function that takes into account
the connectives of seed nodes for which matchings are known. We compared the
accuracy of the algorithm on real network pairs as well as simulated pairs, and
showed that our generalized GW outperforms other network alignment methods
at most time, and it is robust to high divergence between networks and smaller
seed sizes. Avenues for future research include introducing labels into the loss
function, and applying generalized GW to a broader range of types of networks.
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Abstract. Navigation plays a pivotal role in the operation of real-world
complex networks. In this paper, we delve into the extensive realm of
the ’store and forward’ principle, comprising two fundamental compo-
nents: the addressing scheme for network nodes and the routing function
responsible for establishing paths between network endpoints. Particu-
larly, we show that the hyperbolic geometry of complex networks can be
used to greatly improve the orderliness of navigation patterns in com-
plex networks implementing the store and forward principle. By using
entropy-based measures applied on the forwarding tables we provide a
formal assessment for the orderliness which can also be used to estimate
the memory requirements of navigation directly at individual nodes and
in the whole network.

Keywords: hyperbolic complex networks · navigation · routing ·
entropy

1 Introduction

When compiling a roster of prevalent network functions, information routing
invariably occupies a prominent position. Consequently, it’s unsurprising that a
multitude of networks have demonstrated navigability, enabling nodes to adeptly
channel information throughout the network, even in cases where the overall
structure remains undisclosed to individual nodes.

Among technological networks, the Internet stands out as a fundamental case,
primarily designed to route information among computers. In the present day,
the majority of computer networks are constructed upon the distributed hop-
by-hop routing paradigm. Within this framework, routers uphold forwarding
tables that correlate incoming packets with succeeding hop routers, relying on
the destination address embedded within the packet headers. Subsequent routers
adhere to the same mechanism, progressively transporting packets hop-by-hop
toward their desired destinations. Consequently, routers are required to retain a
sufficient amount of information within their internal memory, enabling them to
accurately forward any packet – regardless of its destination address – towards
the appropriate next-hop router [4,9].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1143, pp. 271–282, 2024.
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The utility of hyperbolic geometry has been notably impactful in the realms
of network analysis and synthesis. In a seminal work [6] authors established a
geometric framework for investigating the intricate structure and functionali-
ties of complex networks. Expanding upon this hyperbolic geometric framework,
[2] delved into the realm of large-scale Internet routing, and this exploration
was further extended within Internet-like architectures as demonstrated in [10].
In addition, hyperbolic geometry has found successful applications within net-
worked neuroscience. This fact is underscored in [1], which affirms that hyper-
bolic space offers a nearly impeccable method for charting navigable maps of con-
nectomes across various species. This finding reveals that hyperbolic distances
harmoniously align with the intricate structures inherent in brain networks.

In this paper we deal with the analysis of orderliness of forwarding pat-
terns in hyperbolic complex networks. Assuming the store and forward (hop by
hop) routing principle we follow the information-theoretic approach introduced
in [5] to measure the orderliness of forwarding patterns. More specifically, the
first order empirical entropy of forwarding tables as sequential strings of node
addresses is measured and analyzed. We introduce a heuristic approach utiliz-
ing hyperbolic coordinates to create an address space that holds the potential
to notably decrease the first-order entropy of forwarding strings at the network
level. We have made numerical comparisons on several synthetic networks and a
real-world network, and found that our method significantly increase the orderli-
ness compared to the random choice of addresses and slightly better than other
heuristic based on hierarchical clustering of nodes. We think that our results
form an important step towards disclosing the intricate relationship between
network structural dynamics, network geometry and address space optimization
of hop by hop navigation.

2 Related Works

2.1 Hyperbolic Geometry of Complex Networks

In the original model of hyperbolic complex networks, N points are distributed
(quasi-)uniformly across a two-dimensional hyperbolic disk with a radius of R [6].
Two points are connected if the distance between them does not exceed R. These
points symbolize the network nodes, and the connections they form constitute
the links within the resulting networks. By employing polar coordinates for a pair
of points (u, v), denoted as (ru, φu) and (rv, φv), this elegantly straightforward
generation rule can be formally defined as follows: connect points u and v if
their hyperbolic distance satisfies d(u, v) ≤ R. The hyperbolic distance d(u, v)
between u and v can be expressed using the hyperbolic cosine law:

cosh(d(u, v)) = cosh(ru) cosh(rv) − sinh(ru) sinh(rv) cos(φu − φv) (1)

which can be used to calculate efficiently hyperbolic distances and angles.
The hyperbolically (quasi-)uniform node density implies that we assign the

angular coordinates φ ∈ [0, 2π] to nodes with the uniform density ρ(φ) = 1
2π ,

while the density for the radial coordinate is exponential as
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ρ(r, α) := α
sinhαr

cosh αR − 1
(2)

where 0.5 ≤ α ≤ 1. When α = 1 than the distribution of the nodes are uniform,
otherwise the density is changing from the centre to the periphery with constant
rate.

In our illustrations (see Fig. 1), we utilize the native representation of a
hyperbolic plane, employing hyperbolic coordinates as if they were Euclidean.
While this choice might lead to some peculiar visual effects, it enhances the
comprehensibility of algorithmic descriptions and examples within the text. For
example, such a peculiar phenomenon in our representations that nodes appear
non-uniformly distributed across the disk. This apparent distortion originates
from the non-isometric nature of the native representation. It’s important to
note that other representation models within the Euclidean plane lack isometry
as well, mainly due to the fact that the hyperbolic plane inherently contains
a significantly larger volume-exponentially so-than its Euclidean counterpart.
Nevertheless, our calculations and derivations remain independent of any spe-
cific representation models and properties.

2.2 Modeling Forwarding Tables

The store and forward routing principle entails that packets carry essential global
information about their destination node (identifier/address). At each interme-
diate node, the routing function identifies the neighboring node (next-hop) to
which the packet should be forwarded on its journey toward its destination. In
packet-oriented communication networks like on the Internet the global identi-
fiers of the nodes are the IP addresses, in smaller administrative domains the
routing function is usually providing the shortest path, and the forwarding deci-
sion is performed based on a forwarding table (often referred to as forwarding
information base, FIB).

Definition 1 (Routing table). Let G(V,E) be a connected, undirected graph
with N nodes. The routing table or routing function for a node v ∈ V is the
function rv : V → NG(v) ∪ v, where NG(v) stands for the neighbourhood of the
node v.

Remark 1. The rv routing functions can be determined using different routing
strategies (i.e. shortest path), however, in the paper we suppose, that the routing
functions {rv}v∈V are readily available.

Remark 2. Please note, that the value of rv(v) can be chosen freely. In the paper
we suggest that rv(v) = v.

For the purpose of modeling, we assume a flat address space over the nodes
of the graph, and we assign unique continuous integer identifiers to nodes from
the set [1, 2, . . . , N ], where N is the number of nodes in the graph.

Definition 2 (Node identifiers). Let Σ = [1, 2, . . . , N ] be a finite set, with
size |Σ| = N . The set Σ is called the alphabet or node identifiers.



274 D. Ficzere et al.

Definition 3 (Ordering). Let G(V,E) be a connected, undirected graph with
N nodes and let Σ be the alphabet. Also, let p : V → Σ be a bijection. The
bijection p is called the ordering or permutation of the nodes.

Definition 4 (Routing string). Let G(V,E) be a connected, undirected graph
with N nodes, let Σ be the alphabet (|Σ| = N), let p be a node ordering and
rv is the routing function of node v ∈ V . The routing string or forwarding
string for node v is the finite sequence defined by the function fv : Σ → Σ and
fv : p(ξ) �→ p(rv(ξ)) for every node ξ ∈ V .

Remark 3. Please note, that indeed, fv defines a finite sequence, since it maps
every node identifiers [1, 2, . . . , N ] to another node identifier (but not necessarily
surjectively).

2.3 Measures to Orderliness

Definition 3 defines ordering as a bijective function p. However, to measure the
orderliness of the routing table, we define different measures based on routing
strings. These definitions only aim to measure the orderliness of the routing table
of one node only – however, in the results we will show different statistics for
orderliness of multiple nodes to characterize the whole graph.

Definition 5 (Sprint). Let G(V,E) be a connected, undirected graph and Σ is
the alphabet, and let sv = (a1, a2, . . . , aN | ai ∈ Σ) be a routing string for a node
v ∈ V and for some p ordering. A sprint of length K > 0 (K ∈ N) at k is a
sequence, denoted as Sk, where |Sk| = K, ak �= ak−1 (if ak−1 exists) and ak+K−1 �=
ak+K (if ak+K exists) and ai = ai+1 for every i ∈ [k, k + 1, . . . , k + K − 2].

Remark 4. Note, that a sprint can be located at the beginning and at the end
of a string (in this case ak−1 or ak+K not exists).

Remark 5. Note also, that not every k can be paired to a sprint, since ak might
not equal to ak−1. E.g. in the sequence (1, 2, 2, 2, 3, 5, 5), sprints can be found at
k = 1, 2, 5, 6, with |S1| = 1, |S2| = 3, |S5| = 1 and |S6| = 2.

Definition 6 (Longest sprint). The quantitymax {|Sk| | k ∈ Σ and Sk exists}
is called the longest sprint.

Depending on the amount of information used on the routing strings, entropy-
based lower bounds have been introduced for hop-by-hop routing in [5]. These
bounds can be used to estimate the memory requirements of encoding the for-
warding strings.

Definition 7 (Zero-order empirical entropy). Let G(V,E) be a connected,
undirected graph and let sv be a routing string for a node v ∈ V . The zero-order
entropy for node v ∈ V is defined as

H0(sv) =
∑

i∈Σ

ni

|sv| log
|sv|
ni

(3)

where ni is the number of times i appears in sv.
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Remark 6. In the paper, 0 log 0 and 0 log ∞ are supposed to be 0.

Remark 7. Please note, that the zero-order entropy is invariant under the order-
ing of the nodes, e.g. it does not change after some permutation of the node
identifiers.

Higher-order entropies extend the concept further by encompassing not only
the frequencies, but also the intricate sequences in which these IDs appear [3].
Higher-order empirical entropy is strongly related to the entropy of Markov-
chains, however, it measures the entropy of a very specific sequence. In the
paper, we use the first-order empirical entropy (as in [5]), which requires first to
define the context string.

Definition 8 (Context string). Let s = (a1, a2, . . . , aN ) be a routing string
with an alphabet Σ (|Σ| = N). For a t ∈ Σ context, the context string is the
sequence Ct = (ai | ai−1 = t, 1 < i ≤ N).

Definition 9 (First-order empirical entropy). Let G(V,E) be a connected,
undirected graph and let sv be a routing string for a node v ∈ V and for some p
ordering. The first-order empirical entropy is defined as

H1(v) =
1

|sv|
∑

t∈Σ

|Ct| · H0(Ct) (4)

where Ct is the context string of sv for context t ∈ Σ, and H0 is the zero-order
entropy.

3 Data Sets

In our work, we evaluate our hypotheses on a synthetic network and on a real
world example. Both networks have hyperbolic representations defined as follows.

Definition 10 (Hyperbolic representation). Let G(V,E) be a connected,
undirected graph. Hyperbolic embedding is a function h : V → R

2, which assings
hyperbolic (polar) coordinates to every v ∈ V and satisfy Eq. (1).

3.1 Synthetic Network Generation

To generate the synthetic network we used the following parameters: N = 1000,
R = 10 and α = 1. The resulting network, generated according to the rule
outlined earlier, is depicted in Fig. 1a. The initial identifiers of nodes 1, 2, . . . , N
align with the sequence of nodes’ coordinates generated randomly. This string’s
structure, depicted in Fig. 3 (a), exhibits a noticeable horizontal orientation.
The identifiers are interleaved randomly, and there are no longer continuous
sequences of identical IDs in the forwarding string. The longest sequence of a
single ID within this string is merely 4, with most runs consisting of just one.
On average, the length of these sequences is 1.067.
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3.2 Internet AS-Level Topology - A Real World Example

The Internet data set representing the global internet structure at the
autonomous system (AS) level is from [2]. The topology contains 23748 nodes
and 58414 connections. The average degree of a node is 4.92, however, the degrees
are distributed in a wide range according to a scale free distribution. The net-
work layout presented in Fig. 1b. The hyperbolic embedding of ASs are from
[8] using the HyperMap algorithm. This algorithm is deterministic and is based
on the previous observation that the latent geometry of scale-free and strongly
clustered real networks is hyperbolic. Originally, in the dataset the nodes are
ordered according to their level in the hierarchy and their degrees are also taken
into account. This means that nodes with low values of IDs are strongly con-
nected to each other forming the so-called core of high-rank ASs in the network.
The core is also connected to the periphery of the network formed by lower level
autonomous systems.

(a) A synthetic hyperbolic network exam-
ple with N = 1000 and R = 10.

(b) The hyperbolic network embedding
of the Internet AS network.

Fig. 1. The network layout of the examined graphs.

4 Methods

The main problem analyzed in the paper can be stated as follows: find a p
ordering for a graph G(V,E) with routing functions {rv}v∈V to increase the
orderliness of the routing strings. For orderliness, we use the measures defined
in Subsect. 2.3.

4.1 Ordering IDs According to the Hyperbolic Angular Coordinates

In this subsection we present our new idea to increase the orderliness of for-
warding strings of nodes in hyperbolic complex network. The idea is based on
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generating a new address space by using the hyperbolic angle coordinates. As
described earlier, in the hyperbolic generative model we assign the angular coor-
dinates φ ∈ [0, 2π] to nodes with the uniform density ρ(φ) = 1

2π . There is no
distinguished direction in the model, only the difference of the angle coordinates
of nodes counts in the distance calculation.

Heuristic 1 (Angular ordering). Let G(V,E) be a connected, undirected
graph, and h : V → R

2 the hyperbolic representation for the nodes v ∈ V .
Choose p ordering such that p(v) > p(w) ⇔ φv > φw for all v, w ∈ V , where φv

is the angular coordinate in h(v).

Figure 3a and Fig. 3d presents the randomly organized FIB of the highest
degree nodes. Similarly, Fig. 3b and Fig. 3e depict the newly organized FIB of
the highest degree nodes. In this way, one can visually recognize that the highly
interleaved horizontal clusters of points on Fig. 3a and Fig. 3d are collected into
longer sequences of same IDs on Fig. 3b and Fig. 3e.

4.2 Ordering IDs Based on Hierarchical Clustering

For comparison, we use another heuristics for decreasing the first order entropy
adopted from [5], the so called hierarchical clustering. Korosi et al. uses single-
linkage clustering, however, their results seem to be based on complete-linkage
clustering, since single-linkage would result in merging a cluster and a node
periodically, which trivially turns into an astray clustering.

Definition 11 (Node cluster). Let G(V,E) be a graph. We call a set of nodes
as node cluster, denoted as Ci, i ∈ N, i.e. Ci ⊆ V .

Algorithm 1 (Complete-linkage hierarchical clustering). Let G(V,E) be
a connected, undirected graph, and d(u, v) the length of the shortest path between
u ∈ V and v ∈ V . Let all nodes be in its own cluster, so the set of clusters is
C = {{v}}v∈V . In each step, clustering means the merging of two closest clusters,
where the distance is measured between clusters is d(Ci, Cj) = max

x∈Ci,y∈Cj

d(x, y).

The clustering is ended, if |C| = 1. The result is a binary merging tree, called
the dendogram of clustering, where each node represents the merging of its two
child clusters.

Heuristic 2 (Clustering based ordering). Let G(V,E) be a connected, undi-
rected graph. Let D be a dendogram of the complete-linkage hierarchical clustering
of the graph G. Chose p ordering to be the permutation of nodes which is the
result of post-order traversal of the dendogram.

Remark 8. Please note, since the dendogram is not strictly an ordered tree, there
can be many different permutations using this method.
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The results of the hierarchical clustering for both networks (synthetic and
AS Internet) are presented in Fig. 2. Furthermore, the FIB of the highest degree
nodes are presented in Fig. 3c and Fig. 3f. It can be seen that the ordering
increased compared to the randomly ordered nodes, but the relation to the angle-
based approach cannot be judged; some kind of metric is needed for that.

(a) The hierarchical clustering of
the synthetic network with 10
clusters.

(b) The hierarchical clustering of
the Internet AS network.

Fig. 2. The hierarchical clustering results of the examined networks with 10 clusters.

5 Discussion

The statistics on H1 and on the sprint-lengths clearly show that the angular-
based addressing produces the highest orderliness. Figure 2 illustrates how the
clustering method forms clusters with relatively low angular distances between
nodes, essentially resembling sections of a disk. Therefore, both methods produce
similar results in terms of H1 and sprint-length statistics. Moreover, it is worth
noting that the orderliness, as indicated by the statistics, is significantly greater
when using angular-based address space, see Fig. 4, 5, 6. The numerical results
for some notable metrics are summarized in Table 1. These results are also sup-
port the hypothesis, that the angle-based ordering performs best. It’s essential
to emphasize that defining these statistics for every node in the network would
have been valuable. However, this endeavor demands substantial computational
resources, particularly in the case of the AS Internet network, where calculating
the shortest paths for every node across the entire graph is necessary. Conse-
quently, we opted to compute these features for a random sample of 100 nodes.
Importantly, we verified that the results remained largely consistent irrespective
of the sampling method.
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Fig. 3. The forwarding string representation of the highest degree node for the three
examined methods.
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Fig. 4. The sequence length distribution of the highest degree node of the synthetic
and the Internet AS network.
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Table 1. Comparison of the statistics of 100 sampled nodes for both the synthetic and
AS graph. The statistics of the 100 nodes are aggregated using averaging. (Random:
random ordering, Angle: angle based ordering, HC: hierarchical clustering)

H1 Sequence

Network Method mean median Average
mean

Average
median

Max
mean

Max
median

Synthetic Random 0.96 0.91 11.35 6.01 55.84 26

Angle 0.48 0.47 22.68 9.37 447.34 375

HC 0.65 0.71 8.6 2.57 196.78 143

AS Random 0.42 0.04 3579.63 617.25 7996.27 4207

Angle 0.23 0.01 3750.90 1213.98 9872.99 11547

HC 0.37 0.13 2709.13 16.70 6880.03 965

The intuition behind the use of hyperbolic angle coordinates as ordering rules
is the following. On one hand it is known from previous studies that the short
paths between the nodes are not very far from the geodesics of the nodes in
the hyperbolic space [6]. The geodesics are the ’straight lines’ and in this sense
they are pointing from the source (or an intermediate node) to the destination.
Hence, the initial step in a short path, the next hop should also be found more
or less towards the destination, at least in a certain angle range containing also
the destination node. Hence, it is very unlikely that the next hop from a node
is seen in a very different direction than the direction in which the destination
node is seen. On the other hand, the sequence in which nodes appear to an
arbitrary ’observer’ node on the hyperbolic plane while the observer revolves is
significantly correlated to the order of node hyperbolic angle coordinates (which
can be considered as the observer was in the center of the disk). According to
our preliminary investigations, this correlation is very high when the observer
node has higher radial coordinates lying between R/2 and R. Note that on
the hyperbolic disk for reasonable N and R the radial coordinates of almost
all points fall in the range [R/2, R]. Here, it is also worth noting that authors
in [7] demonstrated the significance of angular differences between nodes as a
similarity measure. This also strengthens our intuition.

For the time being the shortest path routing function is used in our anal-
ysis for orderliness of forwarding tables. Although the shortest path routing is
omnipresent in communication networking and can be a reference in many other
types of networks, in network science there is another widely studied navigation
scheme, the so-called greedy routing or greedy navigation. The greedy forward-
ing scheme uses coordinates and distance calculations to decide the next hop for
forwarding, and does not apply forwarding tables at all for saving memory space.
Hence, greedy routing is suitable for complex networks embedded in a metric
space like the hyperbolic plane. Here, we advocate that it will be worth analyzing
greedy routing (we plan doing this) as if it had forwarding tables (which could
be generated by the simple rule of greedy forwarding), because the entropies
on (even hypothetical) forwarding tables are more general bounds, they are not
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Fig. 5. H1 entropy statistic of 100 sampled nodes for the synthetic and the Internet
AS network.
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Fig. 6. Sprint mean statistic of 100 sampled nodes for the synthetic and the Internet
AS network.

only lower bounds for the memory requirements of tables but they may also
forecast the overall complexity if such schemes which does not use forwarding
tables at all.
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6 Conclusion

Minimizing globally the first order entropy (thus maximizing the global order-
liness) at network level is hard and seems to be hopelessly intractable. Other
possibility is to use exhaustive search in the parameter space, but this is nei-
ther suitable even for networks with moderate size because of the exponentially
growing number of permutations of node IDs. For very small networks and very
special graphs the global optimization can be solved, however, these results have
less substance in large scale real-world complex networks. Therefore, heuristic
approaches have special significance in finding high level of orderliness in naviga-
tion patterns. Our approach presented is unique in a sense that we try to couple
address space optimization with the hidden hyperbolic space of real-world com-
plex networks. We feel that the hyperbolic geometry of complex networks may
provide a rich set of possibilities for address space optimization heuristics. The
ordering node IDs based on the hyperbolic angular coordinates is only the first
and maybe the simplest way, other orderings are worth trying like those based
on mutual hyperbolic distances between nodes or based on the hyperbolic trees.
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Abstract. Re-globalization is a currently understudied topic and previous
research focuses mostly on theoretical discussion of the problem. Empirical re-
globalization related research suggests that re-globalization in terms of structural
changes in financial network did not start recently, but was already observed after
global financial crisis. It might have been further strengthened by pandemic and
recent geopolitical tensions, but these tendencies have not been tested empiri-
cally. Among possible scenarios of re-globalization, most likely are discussed to
be geographical regionalization or ally-based bipolar regionalization. Therefore,
we aim to test these scenarios empirically. Using 5-layer multiplex financial net-
work data of 2009–2020 from 234 countries, we found that multiplex financial
network appears to be already highly regionalized, but regionalization and glob-
alization appears to be not contradictory processes. Geographical regionalization
did not increase in terms of shifting interregional investment to intraregional terri-
tory as interregional investment network density and value also increased as well
as intraregional. The world appears to have become bipolarly ally-regionalized
with 2 main communities - US & Europe vs. China. However, it is worth noting
that Europe’s role is still unclear as not all European countries belong to the same
identified cluster. Future research could aim to explore in detail what are the main
factors affecting ally-familiarity based region formation.

Keywords: Multiplex financial network · Re-globalization · Regionalization ·
Global financial network · Community analysis · Geographical proximity

1 Introduction

Re-globalization topic, which is currently dominating scientific and practical discus-
sions, denotes deep change in structure of globalization with regard to counterparties,
types of financial flows and their amounts. This topic became widely discussed after
recent events of Covid-19 pandemic and following geopolitical tensions and conflicts
in Europe, which highlighted drawbacks of being excessively interconnected with some
particularly risky or unstable counterpartieswith regard to trade (supply chain) or finance
(investments). These structural changes might be particular salient in financial sector
where physical distance is much less important factor than in trade. Research suggests
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that changes of countries’ importance are happening what fosters new approach to glob-
alization (Paul 2021; Scott and Wilkinson 2021). Multiplex financial network topology
changed after global financial crisis (hereinafter -GFC) as number of strongly andweakly
connected countries decreased and more countries became included in the network and
same trends remain since (Lund et al. 2017; Lambert et al. 2015). Positions of separate
countries in the network reveal tendency of decreased importance of developed countries
(e.g., Europe) and increased importance of developing ones (e.g., especially Asia region)
(Korniyenko et al. 2018), which also seems to be continuing after GFC, thus, proving
this process longevity and supporting the notion of a new phase of globalization.

There is currently no unified belief towards where this new phase of globalization
might lead. Several scenarios of re-globalization have been developed (Wray et al. 2022;
Grosskurth et al. 2022) recently including mainly bipolar regionalization, geographical
regionalization, localization and continued globalization. Both bipolar and regional seg-
mentation scenarios imply regionalization, but at a different level. For instance, bipolar
segmentation would treat US&Europe as one region while China and its’ possible allies
as another. Geographical regional segmentation might imply some segments based on
geographical proximity. Regionalization is not a recent phenomenon and its increase was
identified in post-GFC period research, especially in banking sector (Lund et al. 2017;
Lambert et al. 2015; Gaigaliene et al. 2018). As re-globalization might have started
already after GFC, regionalization observed during post-GFC period, could also charac-
terize re-globalization. Thus, in this research we aim to test the regionalization scenarios
of re-globalization empirically as suggested by re-globalization megatrend.

2 Literature

Re-globalization is a currently understudied topic, partly due to its recency, partly due
to its concept still being formulated. Part of previous literature about re-globalization
mostly focuses on theoretical discussion of the problem (Paul 2021; Scott andWilkinson
2021). For example, Paul (2021) argues that the period of ‘hyper-globalization’may need
a change as increasing role of China and its allies pose some new challenges. Scott and
Wilkinson (2021) suggest that world trade and financial flows have to re-globalize in
order to avoid deglobalization.

There is a strand of empirical re-globalization research, which suggest that re-
globalization in terms of structural financial network changes did not start recently, but
appears to be observed after GFC. For instance, Korniyenko et al. (2018) study shock
propagation within multiplex financial network and find rising role of Asian countries
(China, Hong Kong SAR). Del Rio-Chanona et al. (2020) research revealed that sev-
eral major European countries decreased in rank and that several major Asian countries
increased in rank since 2008. This indicates structural changes happening in global
financial system network regarding the rising role of Asian regions especially driven by
China and Hong Kong SAR economies (Del Rio-Chanona et al. 2020).

Futurists also discuss some possible scenarios of re-globalization. The scenarios are
not intended to predict the future but to present snapshots of a range of possible futures
(Grosskurth et al. 2022) (Table 1).
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Table 1. Re-globalization scenarios in previous literature

Author Scenarios Common grounds

Wray, J., Jones, O.,
Rickert McCaffrey, C.,
Krumbmüller, F. (2022)

4 1. Self-reliance reigns
2. Globalization lite
3. Cold War II
4. Friends first

1. Bipolar peace (US &
Europe vs. China)

2. Regionalization mosaic
3. Localization
4. Globalization

reconnections
continuing

Grosskurth, P., Karunska,
K., Masabathula, S.,
Zahidi, S. (2022)

4 1. Globalization 5.0:
Reconnection

2. Analogue Networks:
Virtual Nationalism

3. Digital dominance: Agile
Platforms

4. Autarkic World: Systemic
Fragmentation

Source: compiled by authors based on references in Table 1.

Wray et al. (2022) highlights that recent event of pandemic and the war in Ukraine,
have accelerated a shift toward amultipolar world. Grosskurth et al. (2022) suggest 4 sce-
narios of re-globalization depending on how different economic centers of gravity will
choose between physical and virtual integration, fragmentation or isolation until 2027.
All scenarios could be summarized to some common grounds based on their essence (see
Table 1). Bipolar peace between US & Europe vs. China could be summarized into first
scenario, though the role of Europe is not completely clear. Another plausible scenario
could be geographical regionalization. A tendency of localization of supply chains and
investment could define third scenario. Finally, somewhat changed globalization may be
continuing characterized by more responsible connections, end of geopolitical conflicts
and stronger alliances. Localization scenario appears to be least likely as it would lower
gains from international investment and trade.While continuance of reconnected global-
ization could be plausible, most recent research support regionalization-related scenarios
(Del Rio-Chanona et al. 2020; Korniyenko et al. 2018; Lund et al. 2017; Lambert et al.
2015) as they would seem most likely at least for the nearest future.

Regionalization phenomena is mainly understood as countries grouping into regions
in order to becomemore economically and politically important, working in a decentral-
ized manner. Regionalization denotes increased connectedness at a regional level (Kim
and Shin 2002). Regionalization is often analyzed using network approach as it allows
to consider interconnectedness aspect. Regionalization measurement focuses mainly on
intra-regional value or density comparison with inter-regional for geographical regions
(Kim and Shin 2002).

Hence, as some increase in regionalization was already observed after GFC, current
pandemic and geopolitical tensionsmight have further impacted regionalism preferences
and regionalization. Thus, in this research we aim to evaluate bipolar (US & Europe vs.
China) and geographical regionalization scenarios using multiplex financial network in
re-globalization context.
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3 Methodology

3.1 Logics and Methods

We construct multiplex financial network, which includes 5 layers used to encode differ-
ent types of edges and represent diverse relationship between nodes by intralayer edges,
which connect node-layer tuples within a layer. No interlayer edges, which connect
node-layer tuples from different layers, are used. We construct 6 multiplex networks: (i)
cross-border net direct investments in equity; (ii) cross-border net portfolio investments
in equity; (iii) cross-border net portfolio investments in debt assets; (iv) cross-border
net direct investments in debt assets; (v) cross-border net bank loans and deposits and
(vi) aggregated network of bilateral international financial positions defined as a sum of
the five individual networks. Each element (cell) xij in a matrix is a bilateral exposure
from country j to country i. 12 years covered by the analysis (2009–2020) resulting
in total 72 networks. We build networks for stock (positions) to capture the effect of
overall position outstanding. Each country in the dataset is a node within the network.
Directional links between nodes represent net cross-border investment claim positions
outstanding from country j to country i. Links exist for strictly positive net positions,
i.e., cross-border investment assets of a reporting country are higher than cross-border
investment liabilities vis-à-vis another country (‘net assets’) channeled through financial
system between the source and the destination country. This research is performed in 2
stages (see Table 2).

Stage 1 is aimed to reveal possibly increased trend towards geographical regional-
ization (Scenario 1) based on 6 world regions, i.e., Europe, Northern America, Latin
America and the Caribbean, Asia, Africa and Australia and Oceania, for the first geo-
graphical regionalization scenario. Regions are divided based on United Nations world
regions classification (2023), Americas region is divided into Latin America and the
Caribbean and Northern America regions. Only Cyprus is reclassified from Western
Asia region to Southern Europe sub-region within EU, as Cyprus belongs to European
Union to keep coherency.

Table 2. Logics of the research

Stages Stage 1. Multiplex network geographical
regionalization (Scenario 1)

Stage 2. Multiplex network bipolar
regionalization (Scenario 2)

Methods Network intra and inter density, value and
value to world GDP

Network communities’ analysis

Data Global financial network matrices Global financial network matrices

Source: compiled by authors.

We then construct intraregional and interregional adjacency matrices. This is in line
with the research by Kim and Shin (2002), which addressed regionalization issues. For
these regions we calculate intraregional and interregional network density measures for
different points in time. Simple network density is calculated using the following formula
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(adapted from Martinez-Jaramillo et al. 2014):

d =
∑N ,k

i=1,k

∑N ,k
j=1,k xijk

Nk(Nk − 1)
(1)

where N is the number of nodes, k – layer index, and d ∈ [0, 1]. Comparison of den-
sity in different points in time allows to measure whether connectedness within the
network increased or decreased. Intraregional density is calculated as a simple density
(see formula 1), but of a network, which consists only of a certain region’s countries’
cross-border claim positions. Interregional density is also calculated as a simple density
(see formula 1), but of a network, which consists only of between regions’ cross-border
claim positions. We then sum up all regions’ actual connections and divide by sum of
all regions’ possible connections to get intraregional and interregional density, total. We
calculate such totals for each of three types of assets (layers), i.e., equity (direct and
portfolio summed up), debt (direct and portfolio summed up) and banking.

We also calculate intraregional and interregional network nominal value and value to
world GDP to capture network value trend for each region. We then sum up all regions’
intraregional and interregional values to get total values.We calculate them for all of three
types of assets (layers). We also divide calculated total intraregional and interregional
values by world GDP to eliminate nominal effect for each layer.

The aim of Scenario 1 testing is to analyze if the level of multiplex financial network
geographical regionalization increased during post-crisis period. To test it we analyze
data based on 3 criteria. All of them should be true to confirm that multiplex finan-
cial network geographical regionalization increased. The following criteria is used: 1)
Intraregional density and value of geographical regions increased; 2) Interregional den-
sity and value of geographical regions decreased; 3) Intraregional density and value
of geographical regions is higher than interregional density and value of geographical
regions. For criteria 1, we compare intraregional density and value over analysis period
to check if it has increasing tendency or decreasing. We follow same approach for crite-
ria 2 for interregional density and value. In case regionalization would have increasing
tendency, we would expect intraregional density and value to increase and interregional
to decrease, thus indicating shift from interregional investment to intraregional. The idea
behind criteria 3 is to reveal is there is state of higher intraregional density and value of
geographical regions compared to interregional, thus revealing the state of regionaliza-
tion. For criteria 1 and 2 testing, we use Paired t test for statistical significance analysis,
where p-values are calculated using the formula (Shein-Chung et al. 2002):

p − value = x1 − x2

σ/

√
1
n1

+ 1
n2

(2)

where x1 is 2017–2020 period mean, σ – standard deviation, x2– 2009–2012 period
mean, n1 – number of observations of first sample period, n2– number of observations of
first second sample period. We aim to test H0: intraregional and interregional each layer
density and value mean of 2009–2012 is equal to the intraregional and interregional each
layer density and valuemean of 2017–2020. For criteria 3 testing, we use the same Paired
t test for statistical significance analysis, where p-values are calculated using the formula
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(2). We aim to test H0 : intraregional 3 layer 2009–2020 mean is equal to interregional
3 layer 2009–2020 mean.

Graphical analysis of total intraregional and interregional density and value shows
higher increase of density and value during the period 2009–2012 and slower increase
during the period 2017–2020, thus, we separate year periods into two groups, i.e., 2009–
2012 and 2017–2020 and calculate period means for each layer.We then compare period
mean differences between 2 year groups for each layer and its statistical significance, to
check if intraregional and interregional density and value increased. In case intraregional
(interregional) either network value, network value to GDP or network density increases
(decreases) significantly comparing periods 2009–2012 and 2017–2020 for any of the
layers, then Criteria 1 (Criteria 2) is accepted.

Then, we calculate interregional and intraregional network value, network value to
GDP and network density 3 layer mean and period 2009–2020 mean. We compare total
interregional layer and period mean with intraregional layer and period mean to identify
the higher. In case intraregional either network value, network value to GDP or network
density is significantly higher than interregional, then Criteria 3 is accepted.

For Stage 2 analysis Scenario 2 of bipolar regionalization is tested. Bipolar region-
alization scenario suggests that 2 main regions (communities) are likely to form due
to re-globalization, i.e., US and Europe (1st community) vs. China (2nd community).
The aim of Scenario 2 testing is to analyze if bipolar regionalization has formed during
post-crisis period with 2 main clusters - US & Europe vs. China. We calculate multiplex
aggregate global financial networks’ actual communities for the period 2009 and 2020
usingNetMiner software.We analyze actual communities in 2009 and 2020 and compare
them to communities US & Europe vs. China. In case in 2009, actual communities did
not correspond to communities US&Europe vs. China, but in 2020 they did correspond,
then Scenario 2 is accepted revealing the change towards communities US & Europe vs.
China comparing 2009 and 2020.

3.2 Data

Research is limited by the data period available, i.e., post-GFC period from 2009 until
2020 could be covered as latest data of 2022–2023 is not yet available (see Table 3).
Limitation of this research is that it includes only positive net cross-border investment
positions, i.e., net positions of a reporting country vis-à-vis another country (’net assets’)
were used. All negative positions (‘net liabilities’) were replaced with zeros and ignored
in the analysis in line with the research of Minoiu and Reyes (2012). Research is limited
by data availability and gaps, which are caused by investment positions data not provided
by some countries or suppressed due to confidentiality reasons.

For non-reporting countries or reporting, but for which data was not provided, mirror
data was used.
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Table 3. Research data

No. Layer Asset type Countries* Source

1 Banking Net bank loans and deposits 208 BIS LBS by residence

2 CDIS equity Net direct investment in
equity

227 CDIS

3 CDIS debt Net direct investment in debt 213 CDIS

4 CPIS equity Net portfolio investment in
equity

201 CPIS

5 CPIS debt Net portfolio investment in
debt

201 CPIS

6 Aggregate All above aggregated 234 BIS, CPIS, CDIS

Source: compiled by authors based on BIS LBS by residence (2020), CPIS (2020) and CDIS
(2020).
Note:* The terms “country” and “economy” do not always refer to a territorial entity that is a state
as understood by international law and practice. Sometimes an economy has a separate physical
or legal zone that is under its control, but to which, to some degree, separate laws are applied
(e.g., a free trade zone or offshore financial center) (CDIS 2020). Nevertheless, if statistical data
for territorial entities that are not states are maintained on a separate basis, such territorial entities
are included in the analysis.

4 Results

4.1 Geographical Regionalization

Firstly, for interregional and intraregional network value, network value to GDP and
network density change testing over the period 2009–2020, we calculate mean differ-
ences between two year groups for each layer and its statistical significance. Calculation
results are provided in Table 4.

As revealed inTable 4, intraregional banking aswell as interregional debt andbanking
network density increased significantly comparing 2009–2012 and 2017–2020 period
averages. Interregional debt period 2009–2012 average increased the highest, i.e., by
+ 4.6 percentage points (pp) as compared to period 2017–2020 average, followed by
interregional banking increase by + 2 pp. Intraregional network value has increased
significantly only for equity layer by + 9.3 mln. of US dollars. Interregional equity and
debt layers’ network value also increased significantly comparing 2009–2012 and 2017–
2020 period averages with the highest increase in equity layer, i.e., + 11.7 trillion of
US dollars. Similar results appear in relation to intraregional and interregional network
value as % of world GDP. Intraregional network value as % of world GDP has increased
significantly for equity layer by + 7.4 pp. Interregional network value as % of world
GDP has increased significantly for equity layer by+ 9.9 pp. Overall the lowest increase
in intraregional as well as interregional network density, value and value as % of world
GDP is observed in banking layer, then in debt layer and the highest increase in equity
layer. Regarding Scenario 1 and its criteria testing, since intraregional either network
value, network value to GDP or network density has increased significantly during the
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Table 4. Interregional and intraregional network value, network value to GDP and network
density 2009–2012 and 2017–2020 mean differences by layer

(I) 2009–
2016
Mean

(J) 2017–
2020
Mean

Network value,
(millions USD)

Network value, (% of
world GDP, decimal
form)

Network density (%,
decimal form)

Mean
difference (J-I)

P-value Mean
difference (J-I)

P-value Mean
difference (J-I)

P-value

Intraregional
equity

9275668* 0.001 0.074* 0.027 0.065 0.188

Intraregional
debt

339770 1.261 – 0.014 0.636 0.061 0.123

Intraregional
banking

– 340251 3.931 – 0.023 1.078 0.020* 0.003

Interregional
equity

11657934* 0.003 0.099* 0.013 0.041 0.109

Interregional
debt

2749273* 0.001 0.014 0.140 0.046* 0.026

Interregional
banking

1308854 0.095 0.000 6.000 0.020* 0.002

Source: own calculations based on BIS LBS by residence data (2020), CPIS (2020), CDIS (2020)
Paired t test significance statistics’ p-value shown in the table, * denote significance level of 5%.
P-values corrected using Bonferroni correction (Armstrong 2014).

period 2009–2020 for any of the layers, criteria 1 is accepted. Since interregional either
network value, network value to GDP or network density has also increased significantly
during the period 2009–2020 for any of the layers, criteria 2 is rejected.

Next, we compare intraregional network value, network value to GDP and network
density layer and period 2009–2020 mean with interregional mean in order to analyze
if they differ significantly (see Table 5).

As shown in Table 5, average intraregional density is significantly higher than inter-
regional density by +11 pp. However, intraregional network value and network value
as % of world GDP are significantly lower than interregional – intraregional network
value as % of world GDP is lower by −2 pp, and nominal network value lower by −
1.6 trillion of US dollars. Thus, even though network has become significantly more
connected intraregionally, significant investments in terms of value are made inter-
regionally. Regarding criteria 3 testing, since intraregional network density layer and
period 2009–2020 mean is significantly higher than interregional (even though network
intraregional value and value to GDP is significantly lower than interregional), criteria 3
is accepted. Thus, overall, since only 2 of 3 criteria are accepted, Scenario 1 is rejected,
concluding that the level of multiplex financial network geographical regionalization
did not increase during post-crisis period. It is noted that geographical regionalization
increase in network density could be observed and a decrease in regionalization based
on network value. It is observed that interregional network density is also increasing,
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Table 5. Interregional and intraregional network value, network value to GDP and network
density layer and period 2009–2020 mean comparison

Network density (%,
decimal form)

Network value (% to
world GDP, decimal
form)

Network value,
millions USD

Intraregional 3 layer
2009–2020 mean (I)

0.208 0.134 10249253

Interregional 3 layer
2009–2020 mean (J)

0.098 0.154 11875230

Mean Difference (J-I) −0.110* 0.020* 1625977*

P-value 0.000 0.000 0.000

Source: own calculations based on BIS LBS by residence data (2020), CPIS (2020), CDIS (2020)
Paired t test significance statistics’ p-value shown in the table, * denote significance level of 5%.

which suggest that regionalization and globalization are not contradictory processes. In
addition, interregional network value is higher than interregional indicating that main
investment amounts are invested interregionally. Hence, such increasing trend of inter-
regional investment may suggest a shift towards interregional connections also given the
increase in interregional density. As results reveal that not only intraregional connections
are increasing, but also interregional, it could not suggest increasing regionalization, but
it may indicate new clusters forming, which may include also interregional countries.
Analysis of network communities is needed to identify intraregional and interregional
investment clusters.

4.2 Bipolar Regionalization

Firstly, we calculate aggregate global financial networks’ communities for the period
2009–2020. Communities are calculated using Louvain algorithm created by Blondel
et al. (2008) once on the aggregated network, which is one of the most widely used
algorithm for community detection. In order to analyze the change of countries’ com-
position within the communities and to check what clusters are forming, whether there
were some changes and to check if bipolar segmentation scenario of US & Europe vs.
China alliances is likely to happen, we map each country to its respective community
(see Fig. 2).

Aggregate financial networks had 3 communities in total in 2009 and 3 as well in
2020. However, countries in these communities have changed. In 2009, Community 1
(light grey)wasmainly constituted fromSouthern, Northern and Eastern Europe (includ-
ing Russia); Western, South-eastern, Central and Southern Asia (including India); some
Caribbean countries and New Zealand. In 2009, Community 1 had been characterized
by a close geographical proximity of cluster countries. In 2020, Community 1 European
part remained connected, however, Northern America (including US and Canada) has
joined. In addition, several countries of South America (including Brazil, Colombia)
have joined Community 1. It is also noted, that countries in Community 1 in 2020,
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2009 2020 

Fig. 2. Aggregate financial networks’ communities in 2009 and 2020. Source: own calculations
based on BIS LBS by residence data (2020), CPIS (2020), CDIS (2020) Country color depends
on its community, calculated using Louvain algorithm created by Blondel et al. (2008).

became much less impacted by geographical proximity as countries from 3 different
world regions constituted this community. Thus, if in 2009 Community 1 was mainly
led by Eastern Europe, in 2020, US and Canada have joined leaders of this cluster.

Community 2 (dark grey) in 2009 mainly included Western (including France,
Germany, Belgium), some Northern Europe countries, US, some south America and
Caribbean countries, almost all African countries; Central, South-eastern, Western,
Southern and Eastern Asia (including China) and Australia and Oceania region (includ-
ing Australia). Community 2 in 2009 was not tightly connected geographically. In 2020,
Africa, Asia, Western and Northern Europe, Australia and Oceania countries remained
in Community 2. However, US has left this cluster. In 2020, Community 2 remained
dispersed geographically, however, to a somewhat lesser extent. Thus, if in 2009 Com-
munity 1 was mainly led by US, Western Europe and China, in 2020, US have left this
cluster, it became mainly led by Western Europe and China.

In 2009, Community 3 (black) mainly included Canada, South America (including
Brazil, Mexico, Chile, Colombia), some Eastern Asia countries (including Japan) and
South-eastern Asia (including Indonesia). In 2009, Community 3 had been characterized
by a close geographical proximity of cluster countries. In 2020, Community 3 countries
have changed to a large extent asNorthern Europe (including Finland and Sweden), some
Asia countries (including India) and some Africa countries have joined the cluster, but
Canada, South-eastern Asia (including Indonesia) and some South America countries
(including Brazil and Colombia) have left this cluster. In addition, in 2020 Community 3
becamemuchmore dispersed geographically. Thus, if in 2009 Community 3 was mainly
led by Canada, Brazil, Colombia, Japan and Indonesia, in 2020, Finland, Sweden and
India became leaders of this cluster.

Robustness of Louvain communities is checked by comparing no. of countries in
Louvain community as percentage of countries in Modularity community, computed
using algorithm by Wakita and Tsurumi (2007), see Table 6. Both algorithms give 3
communities, no. of countries overlapping in both algorithms communities’ is high,
thus, we consider Louvain communities’ results robust.
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Table 6. Percentage of overlapping countries in Louvain and Modularity communities in 2009
and 2020

Communities Type 2009 2020 Type 2009 2020

1 Modularity % of
Louvain

93% 88% Louvain % of
Modularity

59% 61%

2 88% 74% 94% 72%

3 17% 44% 50% 63%

Source: own calculations based on BIS LBS by residence data (2020), CPIS (2020), CDIS (2020).

Concluding Louvain Community 1, 2 and 3 analysis, results show that in 2009
US and China belonged to the same Community 2, however, in 2020, China remained
in the same Community 2, but US has joined Community 1. Thus, in 2020, 2 main
clusters have formed – one led by China and Western Europe and another by US and
Northern andEasternEurope.Hence, Scenario 2, thatmultiplexfinancial network bipolar
regionalization has formed during post-crisis period with 2 main clusters - US & Europe
vs. China, is accepted.However, it is worth noting that not all European countries belongs
to the same cluster, but rather Eastern and Northern Europe, while Western Europe
belongs to the same cluster as China.

5 Conclusions and Discussion

Re-globalization is a currently understudied topic and previous research focuses mostly
on theoretical discussion of the problem. Empirical re-globalization related research
suggests that re-globalization in terms of structural financial network changes did not
start recently but appears to be observed after global financial crisis. Global financial
systemanalysis after global financial crisis in 2008 already revealed some regionalization
trends based on structural network analysis, which might have been further strengthened
bypandemic and recent geopolitical tensions.Amongdiscussed possible future scenarios
of re-globalization, most likely are discussed to be geographical regionalization mosaic
or ally-based bipolar regionalization.

Multiplex financial network constructed from cross-border capital stock appears to
be highly regionalized. Not only intraregional density is increasing, but also interre-
gional. It suggests that globalization as well as regionalization may be not contradictory
processes in line with Kim and Shin (2002). Geographical regionalization scenario anal-
ysis revealed that intraregional equity network value, network value to GDP or network
density has increased significantly and intraregional debt and banking network density
has increased significantly. Concerning interregional debt and equity network value,
network value to GDP or network density it has also increased significantly as well as
interregional banking network value and network density. Intraregional network density
is higher than interregional, but intraregional value and value to GDP is lower than inter-
regional. Thus, overall results suggest that geographical regionalization did not increase
during post-crisis period. Our results are supported by Altman & Bastian (2023) who
show decreasing intraregional share, which does not reveal increase in regionalization.
Bipolar regionalization scenario revealed that networks are highly clustered as number
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of communities is small. In 2020, 2 main clusters have formed – one led by China and
Western Europe and another by US and Northern and Eastern Europe. Hence, bipo-
lar regionalization scenario with 2 main clusters formed - US & Europe vs. China, is
accepted. However, not all Europe belongs to the same cluster as US, but rather Eastern
and Northern Europe, while Western Europe belongs to the same cluster as China. Thus,
further position of Europe in cluster formation could be of change. Our results support
Talebian and Kemp-Benedict (2020) who claim that bipolar regionalization could be
one of likely scenarios of re-globalization.

As increase in geographical regionalization could not be confirmed, but bipolar
regionalization could, it suggests that geographical proximity is no longer a decisive
factor considering cross-border capital investment, but region formation is likely to
be impacted by other factors such as alliances, familiarity or ideological and political
rationale. Hence, this research results support friend shoring rather than nearshoring.
Future research could aim to explore in detail what are the main factors affecting ally-
familiarity based region formation.
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Abstract. Network backbone extraction techniques reduce the size of
networks while trying to preserve their topological features. The litera-
ture reports numerous backbone extraction algorithms. However, there
are few works about their ability to highlight the network community
structure, although it is an essential property of many real-world net-
works. This paper presents an experimental comparison of six popu-
lar backbone extraction techniques in a typical modular network (Dis-
parity Filter, Locally Adaptive Network Sparsification (LANS), Doubly
Stochastic, High Salience Skeleton, Metric Backbone, globally and locally
adaptive network backbone (GLANB)). Investigations on a modular net-
work representing the American elementary school system reveal valu-
able insights into how each technique influences the network’s underly-
ing community structure. Disparity and LANS backbones exhibit multi-
component structures. The Doubly Stochastic backbone maintains tran-
sitivity. Moreover, it retains a significant proportion of inter-community
edges and maintains a balanced ratio of intra and inter-community links.
Other methods prioritize intra-community edges. The GLANB method
excels in network filtering and accurate representation of the commu-
nity structure. By shedding light on these nuanced aspects of backbone
extraction techniques, our study contributes to a better understanding
of their effects on network topology, enabling their practical use in real-
world scenarios.

Keywords: Complex Networks · Backbone Extraction · Filtering
Techniques · Network Compression · Graph Summarization ·
Sparsification · Communities · Community Detection · Social
Network · Network Analysis

1 Introduction

In recent decades, networks have become a valuable tool for complex systems
analysis with multiple applications such as computer vision [1–4] and 3D object
modeling [5–9] . They model complex systems, using nodes to denote elements
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H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1143, pp. 296–308, 2024.
https://doi.org/10.1007/978-3-031-53472-0_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-53472-0_25&domain=pdf
https://doi.org/10.1007/978-3-031-53472-0_25


A Modular Network Exploration of Backbone Extraction Techniques 297

and edges representing their interactions. Common analytical tasks include com-
munity detection [10,11], identification of influential nodes [12–16], and investi-
gation of network formation [17]. Processing large-scale networks presents sub-
stantial challenges. Therefore, several backbone extraction methods have been
developed to reduce the network’s size while retaining its essential characteris-
tics. One can classify these methods into two primary categories: structural and
statistical approaches.

Structural techniques involve filtering edges or nodes based on specific topo-
logical properties such as network modularity distance metrics and identifying
overlapping communities [18–21]. Statistical methods such as the disparity fil-
ter [22]assess edge significance through statistical tests removing the least sig-
nificant edges.

In recent years, there has been a notable surge in the study of transporta-
tion and urban networks [23]. Network backbone extraction methods have proven
instrumental in expediting analysis and enhancing the visualization of these com-
plex networks. They facilitate rapidly identifying vital spatial and topological
structures within the network. Prior research has already compared statistical
and structural methods in this domain [24–26].

Brattig et al. [27] investigate nine contact networks in a recent study. They
show that these networks contain a significant number of redundant links. Inter-
estingly, they show using the metric backbone to remove these redundancies has
minimal impact on the community structure and the spread of epidemics. Con-
sequently, they proposed the metric backbone as an optimal subgraph for the
sparsification of social contact networks. Building upon this work, we compare
six backbone extraction methods, encompassing two statistical, three structural,
and one hybrid approach. Our goal is to investigate how well they preserve the
original community structure.

The selected methods cover various backbone extraction methodologies. Sta-
tistical methods include the popular Disparity filter [22] and the LANS filter [28].
The Disparity filter exploits a uniform null model, while LANS rely on the
empirical distribution of weights. Structural techniques incorporate the metric
backbone method [19], the high salience skeleton [18], and the doubly stochas-
tic method [29]. The Metric backbone fully preserves the shortest paths of the
original graph. The high-salience skeleton removes low-salience links, and the
doubly stochastic method relies on normalized edge weights. Additionally, we
incorporate a hybrid method, the GLANB [30], combining the Disparity filter
and high salience skeleton.

The Experimental comparative evaluation involves several steps. First, we use
the Netbone package [31] to extract the backbones of the American Elementary
school network. Second, we evaluate these backbones’ fundamental topological
properties, including edge and node fractions, component count, and transitivity.
Following this preliminary analysis, we quantify the proportion of intra and inter-
community edges retained by each method compared to the original network.
Finally, we assess their effectiveness in filtering the network while preserving the
original community structure.
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2 Backbone Extraction Methods

Backbone extraction methods aim to identify essential network components.
They fall into two categories: statistical methods, which use hypothesis testing
to evaluate edge importance, and structural methods, which consider network
topology. Hybrid methods combine both approaches.Table 1 presents briefly the
methods under test.

3 Data and Methods

This section introduces the dataset under examination and describes the method-
ology of the comparative analysis.

3.1 Data

The US-ES contact network depicts student social interactions at an Ameri-
can Elementary School. It spans seven grades, each with three classes. In Fig. 1
(panel A), nodes represent students, color-coded by grade, with varying shades
for classes. This visualization highlights community patterns: more interactions
within the same class and, alternatively, within the same grade. This dataset [32]
was compiled at a suburban elementary school in Utah, USA, over two days,
specifically on January 31st and February 2nd, 2013. It was recorded at inter-
vals of approximately 20 s. The metadata included information on gender and
grades (ranging from Kindergarten to 6th grade), with 21 different classes span-
ning across seven grades. Table 2 reports the main topological properties of the
network.

3.2 Methods

To assess the performance of the backbone extraction techniques, we conducted
a series of three experiments. First, using the netbone package [31], we extract
the various backbones and analyze their basic topological properties (edge and
node fractions, number of components, and transitivity). This analysis allows
evaluation of how filtering influences network connectivity and transitivity, as
these factors significantly impact the performance of community detection algo-
rithms. Indeed, one can apprehend isolated components as detached communi-
ties. Furthermore, higher transitivity typically signifies more robust community
structures.

In the second experiment, we plot the extracted backbone using Gephi [33]
to visualize the community structure. Then, we investigate the proportion of
intra and inter-community edges preserved in each backbone concerning the
original network and the corresponding backbone. This examination allows us
to determine if the backbone extraction methods are biased toward intra or inter-
community edges. This factor directly influences the effectiveness of community
detection algorithms in uncovering the communities.
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Table 1. Overview of backbone extraction methods characteristics.

Category Method Description Scope Parameters

Statistical Disparity [22] Assumes that the normalized weights of a node’s
edges follow a uniform distribution. Then it
computes the edge p-values by comparing the
observed normalized edge weights to this null
model.

Local α (significance level)

LANS [28] It employs the empirical cumulative density
function to evaluate the statistical significance of
an edge. It calculates the probability of choosing
an edge randomly with a weight equal to the
observed weight.

Local α (significance level)

Structural Doubly
Stochastic [29]

It transforms the network’s adjacency matrix
into a doubly stochastic matrix by iteratively
normalizing the row and column values using
their respective sums. Next, it sorts the edges in
descending order based on their normalized
weight. Finally, it adds the edges to the
backbone sequentially until it includes all nodes
in the original network as a single connected
component.

Local -

High Salience
Skeleton [18]

It constructs a shortest path tree for each node
by merging all the shortest paths from that node
to every other node in the network. Then, the
edge salience is computed as the proportion of
shortest-path trees where the edge is present.

Global β (threshold)

Metric
Backbone [19]

It extracts a subgraph comprising the shortest
paths within the network. The shortest path
length is defined as the sum of the edge distances

Global -

Hybrid GLANB [30] It defines the involvement of an edge as the
fraction of all the shortest paths connecting a
node to the rest of the network through this
edge. Then, it defines a null hypothesis to
determine the statistical significance of each edge
based on its involvement. A parameter regulates
the influence of the node’s degree on its
statistical significance

Local &
Global

c (involvement) & α
(significance level)

Lastly, we evaluate the ability of the backbone to unveil the community
structure. We employ the Louvain algorithm [34] to identify the community
structure within the original network and the extracted backbones. We consider
the classes in the social network as the ground truth. Subsequently, we compare
the composition of nodes within the backbone communities with the ground
truth to determine which backbone method best facilitates the identification of
the community structure.

Table 2. The Topological features of the American Elementary School social network.
N is the number of nodes. E is the number of edges. < k > is the average degree. ρ is
the density. T is the transitivity.

N E <k> ρ T

339 16,546 97.6 0.28 0.44
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4 Experimental Results

4.1 Backbones Basic Topological Properties

Table 3 reports the basic topological characteristics of the backbones extracted
from the US-ES network. It includes the fraction of edges, the fraction of nodes,
the number of components, and the transitivity of each backbone. We rank the
methods in descending order of their fraction of edges. The Doubly Stochastic
backbone ranks first. It retains approximately 18% of the original social interac-
tions. The worst is the High Salience Skeleton, with around 3% of the interac-
tions remaining in the backbone. Other methods are between these two extremes,
keeping roughly 5% to 6% of the edges from the original network. Importantly,
all the backbone extraction methods retain the complete set of nodes within the
network.

Interestingly, most methods maintain a single connected component, except
for the Disparity and LANS methods. Their backbones split into multiple com-
ponents of differing sizes.

Transitivity decreases in all backbones except for the Disparity Filter
extracted backbone. Indeed, its transitivity increases from 0.44 in the original
network to 0.55 in the backbone. The Doubly Stochastic backbone demonstrates
the lowest deviation from the original network, with a transitivity value equal to
0.43. The High Salience Skeleton backbone is not transitive. For other backbones,
the transitivity values range from 0.19 to 0.35.

Table 3. The fraction of edges retained, the fraction of nodes preserved, the number
of components, and the transitivity of each backbone.

Backbone Edge Fraction Node Fraction Components Transitivity

Doubly Stochastic 0.182 1.0 1 0.43

Disparity 0.104 1.0 4 0.55

Metric Backbone 0.068 1.0 1 0.26

LANS 0.064 1.0 7 0.35

GLANB 0.054 1.0 1 0.19

High Salience Skeleton 0.031 1.0 1 0.07

4.2 Qualitative Comparisons of the Backbones Community
Structure

We visualize the extracted backbone with the same node colors and positions
as the original network. They are arranged in descending order according to the
fraction of retained edges, in Fig. 1B–G.

First, all the extracted backbones exhibit greater clarity and sparsity than
the original network. Notably, each method maintains community connections,
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specifically the edges linking students within the same class. Nonetheless, the
density of edges within these communities correlates directly with the number of
edges retained in the backbone. For instance, the Doubly Stochastic Backbone
in Fig. 1B displays highly interconnected communities, as it keeps the largest
fraction of edges. In contrast, the communities exhibit reduced connectivity in
the High Salience Skeleton illustrated in Fig. 1G.

Some methods preserve the edges connecting different communities. For
example, in Fig. 1B, the Doubly Stochastic Backbone communities are almost
entirely interlinked. Conversely, in Fig. 1E, the communities of the LANS Back-

Fig. 1. The American Elementary School Social Network: (A) The original
network. (B) Doubly Stochastic Backbone, (C) Disparity Backbone, (D) Metric Back-
bone, (E) LANS Backbone, (F) GLANB Backbone, and (G) High Salience Skeleton
Backbone. The backbones are arranged in descending order according to the fraction
of retained edges. The Colors represent the grades: kindergartners in cyan, 1st grade
in yellow, 2nd in green, 3rd in orange, 4th in pink, 5th in blue, and 6th in red. Lighter
or darker shades of the same color separate classes within the grade.
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bone exhibit minimal interconnections. Meanwhile, the community linkages
within the other backbone methods fall between these extremes, featuring vary-
ing connections between communities.

4.3 Preserving Inter or Intra-community Edges

To gain deeper insights into the extracted backbones within the framework of
community structure, we compare the proportion of intra-community and inter-
community edges within the extracted backbones and the original network. As
a reminder, intra-community edges refer to connections between students within
the same class. In contrast, inter-community edges refer to relations between
nodes belonging to different classes in the social network. Table 4 reports the per-
centage of preserved intra-community and inter-community links in each back-
bone.

Looking at the retained intra-community and inter-community edges, it
appears all methods preserve more intra-community than inter-community
edges. The Doubly Stochastic backbone conserves nearly 10% of the original
network’s inter-community edges. In stark contrast, the other methods retain
less than 2% of these edges. It is roughly one-ninth of what the Doubly Stochas-
tic method preserves.

Shifting focus to analyzing intra and inter-community edges within each back-
bone, a distinct pattern emerges. The Doubly Stochastic method maintains a
nearly equal distribution between intra and inter-community edges. Indeed, 58%
are intra-community edges and 42% are inter-community edges. Conversely, the
other methods emphasize retaining intra-community edges, wherein at least 80%.

Table 4. The ratio of preserved intra-community and inter-community edges in each
backbone relative to both the edges in the original network and the edges in the cor-
responding backbone.

Backbone Network Backbone

% Intra Edges % Inter Edges % Intra Edges % Inter Edges

Doubly Stochastic 63.51 9.29 57.63 42.37

Disparity 57.94 1.02 91.86 8.14

Metric 33.43 1.61 80.53 19.47

LANS 36.56 0.49 93.66 6.34

GLANB 26.77 1.27 80.77 19.23

High Salience Skeleton 15.77 0.69 82.01 17.99

4.4 The Backbone Power in Revealing the US-ES Communities

In the US-ES social network context, we consider that classes represent the
ground truth communities. Consequently, the social network contains twenty-
one communities, with three corresponding to each grade. To evaluate the ability
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of the extracted backbones to unveil these communities, we use the Louvain
community detection algorithm [34] to the original network and the extracted
backbones. Table 5 summarizes the results.

The community detection algorithm uncovers 13 communities in the original
network. It is considerably fewer than the reference ground truth. In contrast,
Louvain detect more communities in the extracted backbones, However, this
number is still lower than the ground truth. Specifically, the Doubly Stochastic
and Metric backbones revealed 16 and 18 communities, respectively. In the Dis-
parity, Metric, LANS, GLANB, and High Salience Skeleton (HSS) backbones,
the Louvain algorithm identify 19 communities, just two communities shy of the
ground truth.

Table 5. The number of classes (considered as the ground truth) and the number
of communities identified by the Louvain algorithm in the original network and the
extracted backbones.

Ground Truth Original Doubly Stochastic Metric Disparity LANS GLANB HSS

21 13 16 18 19 19 19 19

However, the table merely presents the number of communities in the back-
bones. We conduct a more comprehensive analysis to understand better which
backbone best captures the community structure. This analysis involves com-
paring the nodes within the communities between the ground truth, the original
network, and the extracted backbones. Figure 2 illustrates two layers of Snakey
plots for each backbone extraction method. On the left, we observe the commu-
nities detected in the original network using the Louvain algorithm. The social
network classes (the ground truth) are in the middle. On the far right, we find the
communities within the backbones, also identified by the Louvain algorithm. The
plots are organized in ascending order according to the number of communities
the Louvain algorithm detects.

Upon closer examination, we notice that the Louvain algorithm tends to
merge multiple classes when applied to the original network. This merging man-
ifests in two ways: firstly, it combines classes from different grades, such as joining
class 20 and a portion of class 12 (belonging to grades 6 and 4, respectively).
Secondly, it combines classes within the same grade, with classes 15, 16, and 17
forming grade 5.

Likewise, the Doubly Stochastic backbone merges some classes. Indeed,
classes 15, 16, and 17 form a single community. Simultaneously, it disperses nodes
from five ground truth classes among backbone communities. For instance, nodes
from class 13 are distributed between the communities of class 12 and class 14 in
the backbone. We observe a comparable pattern i in the High Salience Skeleton
Backbone (bottom right plot).

In contrast, the community structure identified in the other backbones closely
resembles the ground truth, except for a few class mergers within the backbones.
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For instance, the Metric, Disparity, LANS, and GLANB backbones consider
classes 12 and 13 as one community. Classes 15 and 17 are treated as a single
community in the Metric, Disparity, and LANS backbones, while the Metric
backbone combines classes 9 and 10. Additionally, the GLANB backbone iden-
tifies classes 15 and 16 as a single community. These merged classes are in the
same grades, such as classes 12 and 13 in grade 4, classes 15 and 17 in grade 5,
and classes 9 and 10 in grade 3.

Fig. 2. Two Layers Snakey plots comparing the communities: On the left, the original
network communities detected using the Louvain algorithm. In the middle are the
ground truth communities representing the school classes. On the left are the backbone
communities detected using the Louvain algorithm. (A) Doubly Stochastic Backbone,
(B) Metric Backbone, (C) Disparity Backbone, (D) LANS Backbone, (E) GLANB
Backbone, and (F) High Salience Skeleton Backbone. The green labels represent the
detected communities that follow the ground truth, while the red one doesn’t.

5 Discussion

This investigation involves comparing six distinct methods for extracting back-
bones of the American Elementary School social network.
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Initially, we extract the backbones from the social network and assess their
fundamental topological characteristics, including the proportions of retained
edges, nodes, the number of components, and transitivity. The findings reveal
that the Doubly Stochastic method preserves the largest number of edges among
the methods. Furthermore, all methods inherently retain all nodes, except for
the High Salience Skeleton, which we adjusted to maintain all nodes. Concerning
connectivity and transitivity, the results indicate that the LANS and Disparity
backbones have multiple components, whereas the Doubly Stochastic backbone
closely aligns with the original network transitivity.

Subsequently, we evaluate the ratio of intra and inter-community edges
within each backbone compared to the original network and the corresponding
backbone. The results indicate that all methods retain more intra-community
edges from the original network. Notably, the Doubly Stochastic process keeps
the highest fraction of inter-community edges. The Doubly Stochastic method
includes an equivalent proportion of intra and inter-community edges, while the
other methods prioritize intra-community edges.

Lastly, we assess the effectiveness of the backbones in uncovering the commu-
nity structure by comparing it to the ground truth and the original network. The
results demonstrate that all methods outperform the original network in reveal-
ing the community structure. However, the Doubly Stochastic method uncovers
the fewest ground truth communities, potentially due to its retrieval of many
inter-community edges. Conversely, the other techniques reveal more communi-
ties. Nevertheless, the High Salience Skeleton communities mix the communities
similarly to the Doubly Stochastic backbone. In contrast, the Metric, Dispar-
ity, LANS, and GLANB backbone communities closely align with the ground
truth. It is worth noting that the Disparity and LANS backbones consist of
multiple components. Thus, among all the methods, the GLANB method is the
most effective in filtering the network while revealing the underlying community
structure. The metric backbone method follows.

Furthermore, it’s important to highlight that the GLANB method falls
into the category of hybrid methods, combining both structural and statisti-
cal approaches. It proves efficient in this context.

6 Conclusion

This exploration of network backbones extraction techniques uncovers various
insights into their behaviors and influence on the network’s community structure.

Comparing the basic properties of these backbones shows that most meth-
ods effectively preserve network connectivity, while the Disparity and LANS
backbones split the backbone into multiple components. The Doubly Stochas-
tic backbone maintains transitivity, whereas other methods either decrease or
increase it. These observations have direct implications for the community struc-
ture within the extracted backbones.

The balance between intra and inter-community edges shows that the Doubly
Stochastic method retains the highest proportion of inter-community edges. Fur-
thermore, concerning the backbone, the Doubly Stochastic algorithm keeps an



306 A. Yassin et al.

almost equal ratio of intra and inter-community edges. Other methods prioritize
intra-community edges.

Evaluating the efficacy of these backbone extraction methods
GLANB emerges as the most effective method for revealing the community

structure. It excels in both filtering the network effectively and preserving its
community structure. The metric backbone method also performs well in this
context.

Future investigations will extend this preliminary study to various real-world
networks to validate and expand upon these insights.
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Abstract. Identifying the influential spreaders in complex networks has
emerged as an important research challenge to control the spread of
(mis)information or infectious diseases. Researchers have proposed many
centrality measures to identify the influential nodes (spreaders) in the
past few years. Still, most of them have not considered the importance
of the edges in unweighted networks. To address this issue, we propose a
novel centrality measure to identify the spreading ability of the Influen-
tial Spreaders using the Potential Edge Weight method (IS-PEW). Con-
sidering the connectivity structure, the ability of information exchange,
and the importance of neighbouring nodes, we measure the potential
edge weight. The ranking similarity of spreaders identified by IS-PEW
and the baseline centrality methods are compared with the Susceptible-
Infectious-Recovered (SIR) epidemic simulator using Kendall’s rank cor-
relation. The spreading ability of the top-ranking spreaders is also com-
pared for five different percentages of top-ranking node sets using six
different real networks.

Keywords: Complex Networks · Centrality measure · Information
exchange · Potential edge weight · Influential spreaders

1 Introduction

Due to the rapid progress of network science in recent decades, many real-world
applications are modelled into complex networks. There are some particular
nodes in every complex network by which we can explore the structural prop-
erties of the entire network [12]. Identifying the specific nodes from the net-
works is one of the most critical research domains to control the spread of any
information or infection. The important nodes (influential spreaders) can help
to control network attacks, block rumour spreading, prevent infectious diseases
(like COVID-19), advertise new products, and many other fields [20,23].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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In recent years, [9,12,21] proposed several centrality measures based on many
network properties. Among them, based on the topological location of the nodes,
there are four types of centrality measures: local centrality, global centrality,
semi-global centrality, and hybrid centrality [23]. In the local centrality mea-
sure, the local information is measured considering the nearest neighbouring
information. Some examples of local centrality measures are degree [2] and clus-
ter rank [5]. In global centrality, the information of a node is measured globally
i.e. considering all other nodes in the networks. Some examples are Betweenness
[4], Closeness [18]. Some authors measure semi-global centrality to minimize the
disadvantages of local and global centrality based on some level of neighbour-
ing information. Some examples of semi-global centrality are: the neighbourhood
coreness method (CNC) [1], Global Local Structure (GLS) [19], and many others
[9,15]. Combining more than one centrality measure, the authors proposed the
hybrid centrality methods, e.g. GSM [21] and many others [23].

Apart from the topological information, we observe that distance is also an
important parameter to measure the connection strength between the nodes,
which is inversely proportional to measuring the importance between the nodes
[16]. In almost all existing studies, the distance between the nodes is considered
a static parameter[12]. In the case of real-time networks, the strength between
the nodes may not always remain the same, like friendship in social networks,
protein-protein interaction, and many others[3]. To address this issue, we mea-
sure the strength between the nodes in terms of distance, considering the ability
of information exchange between them. The maximum capacity of information
exchange between nodes implies the shortest distance between nodes, i.e. nodes
are closer to each other.

To measure the spreading potentiality of nodes, we also explore the struc-
tural connectivity between nodes. Inspired by the cluster rank [5], we feel that
whenever the neighbouring nodes are connected, the information (or infection)
spreading potentiality increases. In this regard, we observe that whenever a trian-
gle structure is formed with the neighbouring nodes, the information propagation
capabilities between them increase accordingly [10]. Hence, to understand the
structural connectivity properties of any nodes, the triangle structural percent-
age between nodes is also considered while measuring node importance.

The information or infection propagation from an influential node is done by
its neighbouring node. Hence, the influential ability of a spreader is also depen-
dent on its neighbouring nodes [9,15]. Whenever a node is connected to more
important neighbouring nodes, the influence ability of the nodes is increased
accordingly. To efficiently identify the neighbouring importance, we measure the
importance of neighbouring nodes by considering their topological information.
Where the topological information of the neighbouring nodes is measured locally
and globally to identify the neighbouring importance.

This paper proposes a new centrality method to rank the Influential Spread-
ers using Potential Edge Weight (IP-PEW). The contributions of this paper are
as follows:
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– A novel centrality measure by calculating potential edge weight between nodes
by aggregating the connectivity structure, ability of information exchange, and
the neighbouring importance, for the undirected and unweighted networks.

– Introduce a new parameter “ability of information exchange”, to measure the
strength between the nodes in terms of distance.

– The novel measure can efficiently identify the spreading ability of every node
without any extra tunable parameters.

The rest of the paper is as follows: The following section presents existing
centrality methods - considered baseline centrality methods - to compare the
efficiency of the IS-PEW method. Section 3 describes the working principle of
the IS-PEW method to measure the potential edge weight and subsequently
identify the spreading ability of every node. Section 4 presents the experimental
setup that aims to measure the performance of IS-PEW. Section 5 presents and
discusses the experiments’ results. Finally, the last section concludes the paper.

2 Baseline Centrality Methods

In a graph, G = (V,E), V represents the set of nodes connected through a set
of edges E. The connectivity structure between any two nodes says va and vb

described by the adjacency matrix is Aab ∈ V ×V . Where Aab=1 indicates their
exist an edge between two nodes va and vb, Aab=0 otherwise.

In this section, We present the benchmark methods for identifying the influ-
ence spreaders from the network.

Degree Centrality (DG): The degree of a node va is the sum of the number of
immediate neighbouring nodes [2]. Due to less complexity, the degree centrality
is widely used to measure the local importance of any node.

Betwenness Centrality (BC): For a node va, betweenness centrality implies
the total number of the shortest path between the pair of nodes via the node
va [4].

Closeness Centrality (CC): Measures the node influence based on the path
information. It is calculated by taking the reciprocal of the sum of minimum
path distance from node va to the remaining nodes in the network [18].

Kshell Decomposition (KS): Considering the topological structure of all the
nodes, the kshell decomposition method assigns the kshell index to the nodes [7].
In the initial phase, all nodes with degree value one are removed and assigned
the kshell index as one. The process of removing one-degree nodes continues
until there is no more than 1-degree node. After that, the algorithm removes
those nodes having degree value two and assigns kshell index as two The process
of removing nodes and assigning the kshell index value accordingly is continued
until any node is left in the network.

Global Local Structure (GLS): It is calculated by considering global as
well as local structural information, where the global structural information is
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measured by the closeness of other nodes whereas local structural information
is measured by the degree and the contribution probability [19].

Global Structure Model (GSM): The authors [21] proposed an indexing
method to measure the self-influence and global-influence of every node. The
GSM calculates the global importance considering the contribution of the neigh-
bouring nodes, where the distance between nodes has been measured using the
Dijkstra algorithm.

Aggregating Local Structure Information (ALSI): Utilizing the degree
and kshell method, the authors [22] proposed the ALSI method by aggregating
the own influence ability of a node and the neighbouring contribution.

2.1 Research Motivation

After studying several existing works, it is shown that the importance of a node
is closely related to the spreading ability of connected edges, where the spreading
ability of the edge is measured by its potential edge weight. In unweighted and
undirected networks, the potential edge weight depends on the connected nodes.
Most of the studies have considered all edges to be equal in importance. In
real-life applications, the edge weight represents the relationship between the
connected edges, which may not be the same for all edges. Inspired by this idea,
we measure the potential edge weight between every node pair in the undirected
and unweighted networks.

3 Proposed Method: IS-PEW

We present a novel centrality measure to identify the influential spreaders based
on the potential edge weight. We calculate the potential edge weight of two adja-
cent nodes by their connectivity structure, the ability of information exchange,
and the neighbouring importance which are discussed in the following subsec-
tions.

3.1 Connectivity Structure

In a network, when the nodes form any triangular structure, means the neigh-
bouring nodes are closer to each other [10]. A node with a larger number of
triangular structures between its neighbours implies the neighbour nodes can
also easily propagate any information or infection to other neighbour nodes.
The node having the maximum percentage of the triangular structure between
the neighbouring nodes is considered a great influential node [15]. Based on this
idea, we identify the percentage of the triangular structure TP (vA) of node vA

by the equation (1).

TP (vA) =
NTC(vA)

TC
(1)

where NTC(vA) is the number of triangular structures of node vA with its
neighbours, and TC is the total number of triangular structures in the network.
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3.2 Ability of Information Exchange

Distance is the most important parameter while measuring the interaction
between the nodes. Since the information propagation capability of every node is
not the same, we consider the strength between the nodes in terms of distance.
Concerning real networks, the interaction between the nodes may differ, e.g.
friendship in social media, protein-protein interaction in a biological network,
and many others. Inspired by this idea, we calculate the distance considering
the ability of information exchange between two connected nodes. For an edge
(vA,vB), we calculate the information exchange ability InfE(vA, vB) between
the node vA with its connected nodes vB by equation (2).

InfE(vA, vB) =
DG(vA) ∗ DG(vB)

1 +
∑

k∈η(vA∩vB) DG(k)
(2)

where k denotes the common neighbours of two connected nodes vA and vB

(vA �= vB). The equation (2) signifies that the larger value of the degree centrality
of two connected nodes enhances their ability to information exchange. Similarly,
for two different connected nodes, if they have more common neighbours with
large degree values, then the ability for information exchange between those
two nodes is minimized. During information propagation between two nodes,
a greater number of common neighbours with large degree values can spread
the information to other nodes as well, which decreases their ability to infor-
mation exchange (i.e. increases their distance). Hence the ability of information
exchange between two connected nodes is inversely proportional to their distance
i.e. ED(vA, vB) = 1

InfE(vA,vB) .

3.3 Importance of Neighbouring Nodes

The spreading ability of nodes mainly depends upon the neighbouring nodes.
When a node is connected to more important nodes, then the influence poten-
tiality of that node is increased. We calculate the importance of neighbouring
nodes by considering their local importance using degree (DG) and global impor-
tance using kshell (KS). The degree and kshell decomposition methods are used
due to their lower computational complexity than other centrality methods. We
calculate the importance of neighbouring nodes of node vA by equation (3).

NIPvA
=

∑

va∈η(vA)

√
DG(va) ∗ KS(va) (3)

where η(vA) is the neighbouring nodes of vA, denoted by va.

3.4 Calculation of the Influential Spreaders

Based on the parameters described in Sect. 3.1, 3.2, and 3.3, we calculate the
potential edge weight (described in the following subsection). After that, we
measure the influential ability of an arbitrary node based on the incident edges
with their calculated potential edge weight.
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Calculate Potential Edge Weight. We calculate the potential edge weight
between two nodes (vA, vB) by aggregating the connectivity structure (explore
the hidden topological structure), the ability of information exchange (measure
strength between the nodes in terms of distance), and the neighbouring impor-
tance (measure the spreading ability) together.

The potential edge weight between two nodes EW(vA,vB) is calculated by the
equation (4).

EW(vA,vB) =
[

KS(vA)∗(1+TP (vA))
ED(vA,vB) ∗ NIPvA

]
+

[
KS(vB)(1+TP (vB))

ED(vB ,vA) ∗ NIPvB

]
(4)

where KS(vA) and KS(vB) are the used to measure the coreness of the nodes
vA and vB using kshell index. The equation (4) implies the edge weight between
two adjacent nodes is proportional to their connectivity structural (described
in 3.1, and coreness 2), and neighbouring importance (described in 3.3) and
also inversely proportional to their distance (described in 3.2). Considering two
connected nodes, whenever there is a very few numbers of common neighbours
with lesser degree value, then their ability to information exchange is high (i.e.
distance between those nodes is low) which enhances the potentiality of edge
weight between them.

Identify the Influential Spreaders. Finally, influential spreaders are iden-
tified by calculating the spreading ability of every node (ISvA

) considering the
calculated potential edge weight of the adjacent edges, shown in equation (5).

ISvA
=

∑

vB∈η(vA)

EW(vA,vB) (5)

where the number of adjacent edges of vA (i.e. directed neighbours of vA) is
denoted by η(vA).

3.5 Algorithm Details

Computational steps of IS-PEW are shown in Algorithm 1.

3.6 Computational Complexity

We first calculate the degree and kshell index of the nodes, so the time com-
plexity is O(V ) and O(E), respectively. The complexity of computing the per-
centage of triangular structure is O(E). Similarly, the computational complexity
to measure the ability of information exchange is O(E) + O(V ). To calculate
the importance of neighbouring nodes, the required time is O(< k >2), where
k is the average degree of the nodes. Hence, the time complexity of IS-PEW is
(O(E) + O(E) + O(V ) + O(< k >2), where for the large networks the average
degree < k > is very small compared to the number of nodes V . Therefore the
computational complexity of the IS-PEW methods is low and can be used to
identify the influential spreaders for large networks.
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Algorithm 1: Influential Spreaders using Potential Edge Weight
Input: A input graph G = (V, E)
Output: G with potential edge weight and the ranking of the nodes
begin

for each edge(vA, vB) in graph G do
Measure degree of node vA and vB
Measure kshell of node vA and vB
Measure connectivity structure of node vA and vB using equation (1)
Measure ability of information exchange between node vA and vB using
equation (2)

for each neighbouring nodes va of vA and vb of vB do
Measure importance of neighbouring nodes of vA and vB using
equation (3)

end
Measure potential edge weight between vA and vB using equation (4)

end
for each node (vA) in graph G do

Identify influential spreaders by equation (5)
end

end

4 Methodology to Evaluate IS-PEW

To measure the efficiency of IS-PEW, we run two experiments by considering
the SIR epidemic simulator, and Kendall’s tau, using six real-time networks
(see 4.1). The next sections present details of this evaluation.

4.1 Dataset Description

We use six different real-time networks (see Table 1).

Table 1. Description of the networks, V: count of vertices, E: count of edges, D:
network diameter, <k>: average degree, βth: SIR simulator epidemic threshold

Network V E D <k> βth Description of networks

Blogs 1224 16718 8 27.32 0.0123 Multiple blogs connected through the hyperlinks [8]

Hamsterster friendships 1858 12534 17 13.49 0.0221 Friendship between the users of Hamsterster.com [8]

Odlis 2900 16382 9 11.30 0.0139 Hypertext reference resources of a library [17]

ca-GrQc 4158 13422 17 6.46 0.0556 Scientific collaboration network [17]

Dmela 7393 25569 11 6.92 0.0422 Biological network of protein-protein interactions [17]

DBLP 12590 49651 10 7.89 0.0228 Authors of a publication database [8]

4.2 Tools

We describe the essential tools to measure the effectiveness of IS-PEW in the
following paragraphs.
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SIR Epidemic Simulator: The spreading efficiency of identifying influential
nodes is measured by the SIR epidemic simulator [14] which is widely adopted
as the benchmark in the domain of complex network analysis. Researchers often
evaluate different meta-heuristic techniques by assessing their performance in
the context of these SIR rankings [13]. In this propagation model, the nodes of
a network can be in any one of the three states: S (Susceptible)- which means
the nodes are in a healthy state, i.e., not infected yet, I (Infected)- describes
the nodes are infected and also can spread the infection to other nodes and
R (Recovered or Removed)- means that nodes have completed their infected
state and cannot be infected again. At the beginning of the propagation, all the
nodes are in the susceptible state except the seed nodes (infected state). After
each iteration, the seed nodes may infect the neighbouring susceptible nodes
with probability β. Thereafter the previously infected nodes become recovered
or removed with probability λ. The process will run again and again until there
remain no nodes in the infected state. The epidemic threshold βth represents in
the experiment the division of the average degree by the second-degree average
on the network. The λ value is considered one which means the recovered nodes
cannot be infected again. As this is a stochastic model, every simulation runs a
large number of times (1,000 times for the networks having up to 5,000 nodes,
and 100 times for the networks having more than 5,000 nodes), and the average
number of recovered nodes is reported as the SIR measure for the nodes.

Kendall’s tau (τ) Correlation : To measure the correlation between the two
ranks list of the centrality measures, we use Kendall’s τ method [6]. The τ value
close to one (1) means the ranking lists are very similar and the value close to
minus one (−1) means the ranking lists are dissimilar. The τ is calculated by
Eq. (6):

τ =
(N1 − N2)

0.5 ∗ N ∗ (N − 1)
(6)

where the number of concordant and discordant pairs are represented as N1 and
N2, and N represents the number of nodes present on that network.

4.3 Experiments

We perform two experiments to measure the performance of the IS-PEW.

Experiment 1: To calculate the correlation for different infection prob-
abilities: We compare the ranking correlation identified by IS-PEW and the
baseline centrality method (described in Sect. 2) with the SIR epidemic simu-
lator (described in Sect. 4.2) under different infection probability (β) using the
Kendall tau method (described in Sect. 4.2). We take motivation from [11] and
consider the range of infection probability β between βth to 2*βth with 5% incre-
ment in every step.

Experiment 2: To calculate the correlation for different percentages
of node sets: We compare the ranking correlation identified by the IS-PEW
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method and the baseline centrality methods (see Sect. 2) with the SIR epidemic
simulator (described in Sect. 4.2) under different percentages of top ranking node
sets (P = (0.04, 0.08, 0.12, 0.16, 0.20)) using the Kendall’s τ method (described
in Sect. 4.2). Inspired by [23], in this experiment, we consider the β (i.e. infection
probability) value as βth + 0.001.

5 Results and Analysis

The correlation results for different infection probabilities (six different real net-
works - Experiment 1) are shown in Fig. 1. In each sub-figure, the x-axis indicates
the different infection probability (β), and the y-axis indicates the percentage of
ranking correlation with the SIR simulator.

Fig. 1. Kendall’s rank correlation (τ) between ranking generated by different centrality
measures and SIR ranking

Figure 1 shows that for the Blogs dataset, the correlation between the SIR
simulator and the IS-PEW is maximum and has the highest average correlation
value of 91.1% compared to the baseline centrality methods. Considering the
Hamsterster friendships dataset, the correlation between the SIR simulator and
the IS-PEW is maximum and has the highest average correlation value of 88.9%
compared to the baseline centrality methods. Considering the Odlis dataset, the
correlation between the SIR simulator and the IS-PEW is maximum and the has
highest average correlation value of 68.7% compared to the baseline centrality
methods. Considering the ca-GrQc dataset, the correlation between the SIR
simulator and the IS-PEW is maximum and has the highest average correlation
value of 74.8% compared to the baseline centrality methods. Considering the
Dmela dataset, the correlation between the SIR simulator and the IS-PEW is
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maximum and has the highest average correlation value of 73.9% compared to
the baseline centrality methods. Considering the DBLP dataset, the correlation
between the SIR simulator and the IS-PEW is maximum and has the highest
average correlation value of 69.4% compared to the baseline centrality methods.

The correlation results for different percentages of node-set (for the six real
networks - Experiment 2) are summarised in Table 2. The first column is the
percentage of top-ranking node sets, and the correlation percentage for different
centrality methods with the SIR simulator is in the subsequent columns.

Table 2. Correlation value of centrality measures with SIR simulator considering dif-
ferent percentages of top-ranking node sets

Blogs Hamsterster friendships Odlis

P DG BC CC KS GLS GSM ALSI IS-PEW DG BC CC KS GLS GSM ALSI IS-PEW DG BC CC KS GLS GSM ALSI IS-PEW

0.04 0.83 0.54 0.6 0.65 0.92 0.85 0.83 0.92 0.78 0.50 0.75 0.66 0.79 0.89 0.79 0.96 0.78 0.71 0.66 0.67 0.78 0.72 0.79 0.84

0.08 0.78 0.60 0.64 0.66 0.85 0.81 0.81 0.94 0.80 0.85 0.80 0.88 0.81 0.87 0.83 0.92 0.72 0.56 0.66 0.71 0.74 0.74 0.77 0.85

0.12 0.86 0.63 0.67 0.77 0.92 0.86 0.89 0.97 0.79 0.59 0.82 0.89 0.80 0.87 0.82 0.91 0.68 0.53 0.70 0.72 0.71 0.76 0.73 0.83

0.16 0.89 0.69 0.71 0.90 0.92 0.85 0.90 0.95 0.82 0.61 0.84 0.90 0.82 0.89 0.84 0.90 0.70 0.49 0.71 0.74 0.70 0.76 0.74 0.80

0.20 0.89 0.70 0.73 0.95 0.91 0.84 0.91 0.95 0.80 0.62 0.85 0.87 0.80 0.90 0.84 0.93 0.70 0.45 0.75 0.73 0.71 0.78 0.74 0.83

ca-GrQc Dmela DBLP

P DG BC CC KS GLS GSM ALSI IS-PEW DG BC CC KS GLS GSM ALSI IS-PEW DG BC CC KS GLS GSM ALSI IS-PEW

0.04 0.80 0.16 0.40 0.74 0.80 0.49 0.82 0.83 0.68 0.56 0.69 0.72 0.68 0.72 0.70 0.79 0.56 0.38 0.61 0.52 0.57 0.63 0.58 0.65

0.08 0.64 0.21 0.42 0.65 0.67 0.68 0.68 0.83 0.72 0.64 0.75 0.80 0.73 0.78 0.74 0.81 0.59 0.41 0.67 0.63 0.60 0.69 0.61 0.70

0.12 0.65 0.27 0.44 0.66 0.66 0.70 0.66 0.85 0.75 0.66 0.80 0.80 0.75 0.81 0.76 0.82 0.65 0.47 0.69 0.70 0.66 0.70 0.66 0.74

0.16 0.65 0.34 0.52 0.66 0.66 0.72 0.68 0.85 0.75 0.68 0.80 0.79 0.75 0.80 0.76 0.81 0.69 0.54 0.71 0.73 0.69 0.72 0.70 0.78

0.20 0.69 0.41 0.58 0.70 0.69 0.72 0.71 0.84 0.76 0.68 0.80 0.81 0.76 0.79 0.77 0.81 0.72 0.61 0.76 0.75 0.72 0.77 0.73 0.80

Table 2 shows that for the Blogs dataset, IS-PEW is most correlated with the
SIR simulator and also has a maximum correlation value of 97% (by consider-
ing P = 0.12) with the SIR simulator compared to baseline centrality methods.
Considering the Hamsterster friendships dataset, IS-PEW is most correlated
with the SIR simulator and also has a maximum correlation value of 96% (by
considering P = 0.04) with the SIR simulator compared to baseline centrality
methods. Considering the Odlis dataset, IS-PEW is most correlated with the
SIR simulator and also has a maximum correlation value of 85% (by consider-
ing P = 0.08) with the SIR simulator compared to baseline centrality methods.
Considering the ca-GrQc dataset, IS-PEW is most correlated with the SIR simu-
lator and also has a maximum correlation value of 85% (by considering P = 0.12
and P = 0.16) with the SIR simulator compared to baseline centrality methods.
Considering the Dmela dataset, IS-PEW is most correlated with the SIR simula-
tor and also has a maximum correlation value of 82% (by considering P = 0.12)
with the SIR simulator compared to baseline centrality methods. Considering
the DBLP dataset, IS-PEW is most correlated with the SIR simulator and also
has a maximum correlation value of 80% (by considering P = 0.20) with the
SIR simulator compared to baseline centrality methods.

We proved that the ranking of IS-PEW is more correlated to the SIR simu-
lator considering different infection probability values and different percentages
of top-ranking node sets. Since the SIR simulation score is considered a bench-
mark, more percentage of correction means that IS-PEW is the best centrality
measure compared to baseline centrality methods.
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6 Conclusion

This paper presents IS-PEW, a method that addresses the issue of not consid-
ering the edge importance of unweighted networks. We calculate the potential
edge weight of the edges considering the connectivity structure, the ability of
information exchange, and the importance of neighbouring nodes. To explore
the hidden connectivity structure, we consider the percentage of the triangu-
lar structure of the nodes. Since in real-life networks, the distance between the
nodes is not the same, we calculate the strength between the nodes in terms of
distance considering the ability of information exchange. During the information
spreading, the importance of neighbouring nodes plays a significant role, which
is also measured by considering the global measure (kshell decomposition) and
the local measure (degree). Finally, the influence ability of every node is mea-
sured by combining the associated potential edge weight value. The efficiency
of IS-PEW is compared with the SIR epidemic simulator with respect to six
real-time networks. The experimental results show that IS-PEW performs bet-
ter compared to the baseline centrality methods. As future work, we will work
on detecting the potentiality of the edges for the time series networks.
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Abstract. Understanding of real systems relies on the identification of
its central elements. Over the years, a large number of centrality mea-
sures have been proposed to assess the importance of nodes in com-
plex networks. However, most real networks are incomplete and contain
incorrect data, resulting in a high sensitivity of centrality indices. In this
paper, we examine the robustness of centrality to the presence of errors in
the network structure. Our experiments are performed on weighted and
unweighted real-world networks ranging from the criminal network to
the trade food network. As a result, we discuss a sensitivity of centrality
measures to different data imputation techniques.
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1 Introduction

Many real-world systems, such as infrastructural, biological, brain and social,
can be represented as networks, where nodes denote the components and links
denote relations or interaction between these components. A fundamental issue
concerning the complex systems is to understand the impact of individual nodes
on the whole system. However, the notion of importance can be defined in dif-
ferent ways depending on the nature of a network or features that a researcher
wants to consider while ranking nodes. Therefore, the researchers have intro-
duced more than 400 centrality measures [1], ranging from classical centralities
[2] to the measures that take into account specific features of a network [3–
5]. These measures have shown a great value in understanding many real net-
works, including citation networks, computer networks, and biological networks.
In general, centrality measures provide different central elements, consequently,
the choice of the most appropriate centrality measure depends on the type of a
network and the interpretation of important elements.

In most real networks, however, information about the structure is inaccurate
due to presence of errors in the data. For instance, Ficara et al. [6] have exam-
ined criminal networks that suffer from data incompleteness (due to the nature of
the network), data incorrectness (unintentional data collection errors and inten-
tional deception by criminals) and data inconsistency (misleading information
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from different sources). Aleskerov et al. [7] have studied the banking foreign
claims network, which covers about 94% of total foreign claims as some coun-
tries do not report. Meshcheryakova [8] has investigated the trade network under
asymmetry as many countries report their own versions of a trade flow between
them (up to 7 · 107% difference) due to the different commodity classification
systems, the different costs calculation (including/excluding transportation and
insurance costs) or the time lag. Therefore, the analysis of centrality in these
networks requires a careful examination, because many centrality measures are
very sensitive to small changes in the graph structure.

The effects of missing or incorrect data in complex networks have been exten-
sively studied in the literature. Most of the studies focus on the sensitivity
of centrality in artificial graph structures such as Erdős-Rényi (ER) random
graph, Barabási-Albert (scale-free) graph, Watts-Strogatz (small-world) graph
and other classical graph structures [9–14]. These studies are mostly limited
to the perturbation analysis of classical centrality measures (degree, eigenvec-
tor, betweenness, closeness and PageRank) in the case of 1 structural change
(edge/node removal/addition). Moreover, all the changes in the structure are
performed at random, which might be meaningless for real-world networks.

Some studies are aimed to examine centrality measures in real-world net-
works. Bolland [15] has examined the performance of 4 classical centrality mea-
sures (random changes) on Chillicothe data. Herland et al. [16] consider 3 clas-
sical centrality measures and their robustness to random changes in 4 real net-
works. Niu et al. [17] have examined the stability of 5 centrality measures (degree,
betweenness, closeness, eigenvector, k-shell) on 9 real datasets towards random
edge addition/removal/rewiring and have evaluated the Spearman correlation
between centrality rankings. Segarra and Ribeiro [11] evaluate the effect of ran-
dom changes on the air traffic network and the network of interactions between
sectors of the US economy. These studies are mostly limited to a very small
amount of centralities and to the analysis of random changes in a network.

In this paper, we consider two real-world networks that are incomplete or
may contain incorrect data. Our goal is to examine how much the set of central
nodes is sensitive to the presence of errors in the graph structure. We consider
several data imputation strategies, which take into account the nature of the
network, and evaluate the robustness of 13 centrality measures.

The paper is organized as follows. Section 2 provides some basic informa-
tion about the centrality measures and describes our methodology. In Sect. 3,
we examine the perturbation analysis of centrality measure on the real-world
networks. Section 4 concludes.

2 Methodology

2.1 Preliminaries

We consider a graph G = (V,L), where V = {1, ..., n} is a set of nodes, |V | = n,
and L ⊆ V ×V is a set of L links. The graph G is described by an n×n adjacency
matrix A whose elements aij are either one or zero depending on whether there is
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a link between nodes i and j or not and aii = 0 for all i ∈ V The graph is called
undirected if aij = aji for all i, j ∈ V and directed, otherwise. Additionally,
the graph G can be described by a non-negative weight matrix W , where each
element wij represents the weight of a link between nodes i and j and wii = 0
for all i ∈ V . Given a graph G, a centrality measure c(·) associates a real number
c(i) to each node i ∈ V , which is interpreted as follows: the larger c(i), the more
central node i should be.

2.2 Centrality Measures

In general, the identification of central elements in a network is an ill-defined
problem. Thus, there exist multiple centrality measures that take into account
particular aspects of the problem. Table 1 presents a list of centrality measures,
which are applied to real networks from Sect. 3. A detailed description of the
centrality measures is provided in [2,5,23].

Table 1. Centrality Measures

# Centrality Description

1 Degree the number of node neighbours

2 Eigenvector the importance of a node depends on the importance of its
neighbours

3 Katz the generalization of the eigenvector centrality

4 Betweenness how often nodes lie on the shortest paths between other nodes

5 Closeness the inverse of the total distance to other nodes

6 Harmonic the sum of inverse distances to other nodes

7 Subgraph the number of closed walks of different length in a graph

8 PageRank the probability to visit nodes by random walks

9 HITS hub: the node has a high score if it links to many authorities,
authority : the node has a high score if it is pointed by many
hubs

10 LRIC the centrality depends on individual attributes of nodes, their
group and indirect influence

11 Laplacian the drop in the Laplacian energy after deleting a node from
the graph

12 k-shell the nodes in the k -core that are not in the (k + 1)-core

13 Collective
Influence

the centrality is proportional to the degree of a node and
degrees of its neighbours at a particular distance

We remark that centrality measures, which are based on the paths (between-
ness, closeness, harmonic and subgraph centralities), as well as the eigenvec-
tor, Katz, Laplacian, k-shell and Collective Influence (CollInf) centralities are
computed only for the unweighted network. Similarly, we apply 4 versions of
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weighted degree centrality (inDegree, outDegree, Degree = inDegree + outDe-
gree, DegreeDiff = outDegree - inDegree), Hubs and Authorities only to the
weighted network.

2.3 Imputation Methods and Performance Analysis

The effects of missing data is hard to estimate as there might be multiple sources
of the errors. Therefore, the perturbation analysis depends on the data structure,
the nature of a network as well as on the type of errors in the data. Tables 2–
3 illustrate the actions, which we have applied to modify the structure of the
criminal (unweighted, undirected) and the international food trade (weighted,
directed) networks. RAE, RAN and RCE consider random modifications of the
graph structure. DAE and DAN perform the addition of links with respect to the
configuration model where the expected number of edges between two nodes is
proportional to the product of their degrees. Finally, PAE is driven by the idea
of similarity between nodes, which can be estimated by the shortest distance
between them. The presented list of graph changes is not exhaustive. Some other
imputation methods are also discussed in [18,19].

Table 2. List of modifications in the criminal network (unweighted, undirected).

# Name Description

1 RAE random addition of k new links

2 DAE addition of k new links with a probability that is proportional
to the product of the incident nodes degrees

3 PAE addition k new links with a probability that is inversely
proportional to the shortest path distance between nodes

4 RAN addition of a new node to d random vertices

5 DAN addition of a new node to d vertices with probability that is
proportional to their degrees

Table 3. List of modifications in the food trade network (weighted, directed).

# Name Description

1 RCE random change of link weights in the range of [−5%, 5%]

2 RAE addition of links with the total weight s

3 DAE addition of links with the total weight s with a probability
proportional to the product of the source outdegree and the
target indegree

Finally, 5 performance metrics are used to assess the stability of centralities:

1. Correlation: the Kendall rank correlation coefficient, which measures the
similarity of the orderings of centrality measures1.

1 In the case of node addition, we assume that the added node was initially isolated.
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2. TOP1: the percentage of nodes, which remain TOP-1 after modification.
3. TOP3: the percentage of nodes, which remain TOP-3 after modification.
4. TOP5: the percentage of nodes, which remain TOP-5 after modification.
5. TOP10: the percentage of nodes, which remain TOP-10 after modification.

All the performance measures are averaged over T = 1, 000 modifications in
the graph structure. We perform a pairwise comparison of centrality measures
and provide their ranking with respect to various data imputation methods. In
particular, the ranking of centralities is constructed using the Copeland score,
which is a social choice rule that measures the difference between the cardinality
of dominating and dominated2 sets [20,21]. Compared to the average value, the
Copeland score is more stable for ranking objects and is less sensitive to the
outliers.

Fig. 1. The difference between the Copeland score and the average value.

Figure 1 shows an example of 3 objects, which are compared by 5 experiments.
Objects A and B have the same average value, although A demonstrates a better
performance than B in 4 experiments out of 5. On the contrary, A has the
highest Copeland score (A is better than B and C) while B is ranked second
(B is better than C but B is dominated by A). Since our experiments explore
possible realizations of the initial partially-observed graph, we believe that the
Copeland score is more reliable for the ranking of centrality measures than the
average value.

3 Robustness of Centrality Measures in Real Networks

We consider some real-world networks that suffer from data incompleteness and
incorrectness. For each of the networks, we apply various data imputation strate-
gies and evaluate the sensitivity of centrality measures from Sect. 2.2.

3.1 The Analysis of the Criminal Network

The first network refers to Sicilian Mafia interconnections. Ficara et al. [22] col-
lected two datasets of phone calls and personal meetings respectively between
members of “criminal Families” in Sicily. The data are derived from Court
reports in 2007 based on the results of anti-mafia “Montagna Operation”. Ficara
2 The dominating set of centrality x includes a list of centrality measures, which are

more sensitive than x to the graph modification based on the pairwise comparison.
Similarly, the dominated set of x contains centralities that are less sensitive than x.
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et al. make a remark that such datasets are compiled from judicial documents
and suffer from incompleteness. Therefore, the stability analysis of centrality
measures toward small graph modifications is reasonable for these networks.

The mafia phone calls network consists of 100 nodes and 124 edges whose
weights are integers between 1 and 8. The mafia meetings network consists of
101 nodes and 256 weighted edges with the maximum weight of 10. There are 47
mafia members that are present in both networks. In this paper, we focus on the
meetings between mafia members and examine the unweighted mafia network.

The list of graph modifications, which may occur in the Mafia network due to
the incompleteness of information, is presented in Table 2. We consider parameter
k = 5% of the total number of edges3 in a graph and assume that parameter d is
equal to the average degree in a graph. We do not take into account the deletion
of nodes and edges as we suppose that all presented actors and connections
have been identified correctly. We consider all the centralities measures from
Table 1 except for the HITS. We remark that the collective influence (CollInf )
is proposed in [23] to analyze influential members in criminal networks.

Table 4. The ranking of centralities by the Copeland score (addition of 5% edges).
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Degree 3 1-10 11 2 5

Eigenvector 6 1-10 7 9 1

Katz 4 11 2 5 2

Betweenness 12 1-10 12 10 12

Closeness 9 12 6 8 11

Harmonic 8 1-10 4 7 8

Subgraph 2 1-10 3 6 4

PageRank 10 1-10 8 4 9

LRIC 11 1-10 10 12 10

Laplacian 5 1-10 5 3 7

K-shell 1 1-10 1 1 3

CollInf 7 1-10 9 11 6

minValue .78 .99 .88 .84 .88

maxValue .96 1 1 1 .99
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1 1-8 1 1 3
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.82 .99 .89 .85 .89

.96 1 1 1 0.99

The results for RAE, DAE and PAE graph modifications are presented in
Table 4. First, most centrality measures are equally stable in the context of
TOP1 nodes within RAE and PAE graph modifications. We also observe that

3 We have also performed the analysis for k = 10% and the overall results are highly
agreed with k = 5%, even though the centrality measures are less stable.
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the relative position of centrality measures by the TOP10 metric is identical for
RAE and PAE scenarios with a little difference for the DAE scenario. Second,
the k-shell centrality demonstrates the most stable results for all edge addition
scenarios. For instance, TOP1 includes 7 nodes, that are not changed for all
considered modifications. On the contrary, the degree, the Katz and the subgraph
centralities are the most sensitive indices in case of the missing edges in the
network. Next, the degree centrality provides more stable results within DAE
than for RAE and PAE. Under the DAE scenario, we are more likely to add new
edge between nodes that have high degree scores, which only strengthen their
degree centrality. Similarly, the harmonic centrality is more stable within PAE
than in RAE and DAE scenarios as the shortest path distances do not change
dramatically. Interestingly, the closeness centrality is more sensitive to the edge
addition than the closeness centrality. Overall, the betweenness, the closeness
and the LRIC are the most sensitive to the edge addition.

The results for the node addition scenarios are provided in Table 5. In general,
we observe a high correlation coefficient (> 0.92) for all the centrality measures.
Hence, all the centralities are relatively stable toward the addition of a new
node. Similarly, the node addition also does not change the TOP1 in the graph
for all centrality measures. As for the relative position of centrality measures, the
subgraph centrality is the most stable according to the correlation coefficient.
The k-shell centrality is stable in the context of all discussed TOP metrics. On
the other hand, the LRIC, the collective influence, the betweenness and the
closeness centralities are the most sensitive measures compared to other indices.

Table 5. The ranking of centralities by the Copeland score (node addition).
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PageRank 9 1-12 7 4 7

LRIC 12 1-12 9 11 10

Laplacian 5 1-12 1-5 1-3 8

Kshell 4 1-12 1-5 1-3 1-3

CollInf 7 1-12 11 12 4-5
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3.2 The Analysis of Food Trade Network

The global trade process is a major part of international relations. We study the
network of trade between countries. In particular, we consider the international
trade of cereals.

In order to construct a directed weighted network, we address to the World
Integrated Trade Solution (WITS) database [24], where bilateral trade statis-
tics are provided. We use data that are reported by importers only. Still, some
information is lost as, first, not every country reports its statistics and, second,
export and import statistics for a particular flow may differ in many times [8].
Overall, we obtain a directed weighted network that represents 222 countries
and 9,384 trade flows between them in 2020. The largest value of a flow is equal
to 5,426,071.14 thousand dollars from Canada to USA.

We consider some reasonable graph modifications in order to evaluate the
stability of centrality measures (see Table 3). We assume that the initial graph
covers around 99% of the total trade, consequently, 1% of trade is added with
respect to RAE and DAE scenarios.

Table 6. The ranking of centralities by the Copeland score for the trade network.
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The Copeland scores of eight centrality measures are provided in Table 6.
First, the random change of edge weights (RCE, ±5%) does not significantly
change the centrality of nodes in the network. Second, the random addition of
new links (RAE, 1%) highly influences the set of central elements. The highest
stability is observed for the hub score: TOP1 and TOP3 nodes remain the same
in more than 93% of cases while the Kendall rank correlation is moderate (0.54).
As to the TOP5 and TOP10 nodes, the highest stability is for the outDegree
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centrality (≥ 84%). Overall, outDegree, Degree, Hubs and LRIC measures are
the only centralities with a correlation coefficient, which is greater than 0.37, and
a higher sustainability of the most central nodes. Finally, inDegree, PageRank
and Authorities are the most sensitive to the presence of missing links.

The addition of new links with respect to the node degree (DAE, 1%) also
affects all the centralities. OutDegree and Hubs provide the most stable results.
These measures provide a strong correlation coefficient (≥ 0.78) and a stable
set of central elements (TOP1-TOP10 ≥ 70%). In fact, the most central node
remains the same under the DAE scenario for all centrality measures except for
the inDegree, the Authorities and the PageRank. Interestingly, DegreeDiff is sta-
ble for TOP1-TOP10 nodes (≥ 70%) but has a very weak correlation coefficient
(≈ 0.14). On the contrary, the overall ranking of nodes with respect to the LRIC
score is stable (correlation ≈ 0.71, TOP1 ≈ 100%), however, the TOP3-TOP10
nodes remain the same only in 40–50% of cases. We also remark that inDegree
and Authorities are the least stable with respect to the DAE scenario.

4 Discussion

Data incompleteness and incorrectness is a serious challenge to the analysis of
real systems. In this regard, the set of the most central elements in the system
requires a careful examination. In this paper, we have examined how the presence
of missing or incorrect links affect the results of 13 existing centrality measures
in the criminal (unweighted) and the food trade (weighted) networks. Our main
observation for the unweighted network is that the addition of new edges influ-
ences the stability of centrality measures more than the addition of a new node.
Overall, there is no evidence of considerable changes in most centrality scores
(except for the betweenness, closeness and LRIC indices) under all discussed
modifications in the criminal network. For the weighted network, we observe
that 5% inaccuracy in edge weights does not significantly affect the centrality
of the nodes while the presence of missing links may dramatically influence the
results of some centrality measures (e.g.: inDegree, PageRank and Authorities).

The results on the robustness of centrality measures are only valid for the
criminal network and the trade food network. To draw meaningful and robust
conclusions for partially-observed networks, more experiments on a large set of
different benchmark network topologies should be performed.

We would like to emphasize that our work is not intended to demonstrate the
deficiency of some centrality indices but to show that some centralities require
a cautious interpretation in the presence of missing or incorrect data.
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Abstract. This paper presents ATEM, a novel framework for studying
topic evolution in scientific archives. ATEM employs dynamic topic mod-
eling and dynamic graph embedding to explore the dynamics of content
and citations within a scientific corpus. ATEM explores a new notion of
citation context that uncovers emerging topics by analyzing the dynam-
ics of citation links between evolving topics. Our experiments demon-
strate that ATEM can efficiently detect emerging cross-disciplinary top-
ics within the DBLP archive of over five million computer science articles.
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1 Introduction

The evolution of science is a continuous process that examines the development
of new theories shaped by the collective efforts of scientists through research,
experimentation, and analysis [1]. Understanding the evolution of science pos-
sesses the capacity to revolutionize the research landscape, as it has significant
implications for research funding and public policy decisions in academic and
industrial environments [2]. One of the most useful analyses of the evolution
of science is the detection of topic emergence, which involves the identification
of new areas of research and study within scientific disciplines [3]. Emerging
topics are ideas or issues that gain attention or become more prominent in a
particular field or area of interest. Detecting emerging topics has far-reaching
implications for society, as it provides a way to track the progression of scientific
fields and shape future research and technological development [4]. This task
has been described by various communities using different terminologies such
as trend analysis [5] and knowledge flow patterns [6]. Existing approaches suf-
fer from certain limitations: Some of these approaches can identify trends for
specific terms or phrases [7], but may not capture the broader context and rela-
tionships between scientific concepts. On the other hand, some can capture the
relationships between scientific articles [8] but are less effective at identifying
trends for specific terms or phrases. These limitations highlight the need for a
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more holistic and versatile approach to provide a deeper understanding of topic
evolution while preserving the nuanced relationships between scientific topics.

In this paper, we aim to discover emerging topics by proposing a framework
called ATEM that discovers the evolution of science with different analyses.
ATEM is driven by the recognition that citation links serve a dual purpose: they
not only signify semantic connections among various subjects but also suggest
the potential emergence of new topics within the cited interdisciplinary domains.
Dynamic graph embedding allows ATEM to detect emerging topics and discover
new interdisciplinary topics of the future.

2 Evolution Analysis in Scientific Archives

Several approaches have been proposed in the literature to analyze science evo-
lution in scientific archives [9,10]. We categorize these approaches into two
classes based on different factors that contribute to the advancement of sci-
ence: Single-Domain Evolution Analysis and Cross-Domain Evolution Analysis.
Single-Domain (SD) evolution refers to the development of scientific knowledge
and methods within a particular discipline independent of external factors, while
Cross-Domain (CD) evolution refers to the interaction and cross-fertilization of
different scientific disciplines leading to new insights and discoveries.

Single-Domain Evolution Analysis attempts to describe the change in conceptual
characteristics of scientific topics over time. This analysis is widely studied by
dynamic topic models [11,12], which reflect the evolution by discovering latent
semantic structures of the documents published in different time periods. A more
recent family of topic models uses novel word embedding and language models
to analyze content evolution. For example, Leap2Trend [13] relies on temporal
word embeddings to track the dynamics of similarities between pairs of keywords
and their rankings over time.

Cross-Domain Evolution Analysis focuses on observing the relational evolution
of topics over time [14]. By comparing topic representations in different time
periods, it is possible to build structured topic evolution networks and iden-
tify evolution patterns like topic merge and split [15]. The predictive power
of evolutionary topic networks is also validated through the use of community
detection algorithms to identify emerging topic correlations [16]. Document cita-
tion networks contain additional information about other semantic relationships
between topics, such as topic influence and information flow [17,18]. By analyz-
ing the structure of these networks over time, it is possible to study various more
complex trends in the interaction between different topics [3,19] and to identify
novel topic in its embryonic stage [20].

SD-based approaches are generally able to identify trends in the use of specific
terms or phrases [7], but may not capture the broader context and relationships
between scientific concepts. On the other hand, CD-based approaches can cap-
ture the relationships between scientific articles [8], but may be less effective at
identifying trends in the usage of specific terms or phrases.
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Fig. 1. The Architecture of ATEM

3 ATEM Framework

ATEM is a general-purpose framework for modeling and analyzing the evolu-
tion of topics generated from scientific archives. ATEM extracts evolving topics
using dynamic topic models and builds evolving topic-citation graphs that con-
nect topics through temporal citation links. One of the main goals of ATEM
is to identify emerging research topics based on the topic citation graph. Our
hypothesis is that citations in documents indicate a relationship between the
topics discussed in those documents. ANTM explores the emergence of evolving
topics by defining the notion of citation context using dynamic graph embedding
techniques. This framework is consisting of 3 layers as illustrated in Fig. 1.

3.1 Extracting Evolving Topics

ATEM extracts evolving topics from a corpus of documents using a dynamic
topic model. We use the following abstract definition of topics extracted from a
scientific archive A.

Definition 1 (Topics). A topic t ∈ T is a couple (D(t), R(t)) where D(t) ⊆ A
denotes a subset of semantically similar documents, called the document cluster
of t, and R(t) is a weighted vector of terms in some vocabulary V , called the
representation of topic t.

Definition 2 (Evolving Topics). Given an ordered sequence of possibly over-
lapping time periods P = [p0, ..., pn] and a scientific archive A, an evolving topic
is a sequence of topics t = [t0, ..., tn] such that all documents in D(ti) have
been published during the time window pi and D(t) = ∪ti∈tD(ti), is a cluster of
semantically similar documents.

An example of evolving topics with its temporal representations is illustrated
in Table 1. This layer allows to analyze the change within the word representation
of a single evolving topic. Observing this change allows us to explore the semantic
transformation in our understanding of a single topic by examining the words
and phrases that are commonly associated with that topic. Besides, one can
identify changes in the way people conceptualize a single topic for discussion
and research. This kind of information is useful for researchers and companies
seeking to stay up-to-date on the way people think about and discuss a particular
topic.
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Table 1. The Temporal Word Representation of The Evolving Topic ID T680C6.

Year Label

2004 [’knn’, ’linear classifier’, ’nearest neighbors’, ’nearest neighbor’, ’distributional’, ’neighbor classifier’]
2005 [’knn’, ’nearest neighbors’, ’euclidian’, ’pearson’, ’instance based’, ’neighbor nn’]
2006 [’knn’, ’instance based’, ’neighbor classifier’, ’nearest neighbors’, ’neighbor nn’, ’neighbor knn’]
2007 [’knn’, ’relief’, ’nn classifier’, ’neighbor nn’, ’membership values’, ’nearest neighbors’]
2008 [’knn’, ’neighbor nn’, ’nearest neighbour’, ’nn algorithm’, ’nearest neighbors’, ’instance based’]
2009 [’knn’, ’neighbor knn’, ’nn classifier’, ’nearest neighbors’, ’neighbor nn’, ’text classification’]
2010 [’nearest neighbors’, ’neighbor classification’, ’knn’, ’metric learning’, ’knn classifier’, ’neighbor classifier’]
2011 [’instance selection’, ’knn’, ’neighbor classifier’, ’neighbor classification’, ’nearest neighbors’, ’instance based’]
2012 [’knn’, ’nearest neighbors’, ’neighbor knn’, ’test sample’, ’instance based’, ’nn classifier’]
2013 [’knn’, ’nearest neighbors’, ’based nearest’, ’knn classifier’, ’decision boundary’, ’neighbor classifier’]
2014 [’knn’, ’metric learning’, ’nearest neighbors’, ’nn classifier’, ’knn classifier’, ’neighbor nn’]
2015 [’nn classifier’, ’knn classifier’, ’knn’, ’instance based’, ’pmc’, ’class label’]
2016 [’knn’, ’instance selection’, ’knn algorithm’, ’knn classification’, ’dpc’, ’nn classification’]
2017 [’knn classifier’, ’local mean’, ’harmonic mean’, ’nearest neighbors’, ’knn’, ’based nearest’]
2018 [’cent’, ’knn classifier’, ’knn’, ’neighbor method’, ’instance selection’, ’nearest neighbors’]

3.2 Creating Evolving Topic-Citation Graph

ATEM aims to discover citation relationships among the evolving topics as indi-
cators of cross-domain evolution. This layer projects the structure of the citation
network into evolving topics extracted in the previous layer and creates an evolv-
ing topic-citation graph. This graph is defined as follows.

Definition 3 (Evolving Topic Citations Graph). Let T be a set of evolving
topics defined over a scientific archive A and ED(A) ⊆ A × A by a set of
citation links defined on A. Then, the topic clusters D(ti), all topics ti ∈ T and
the document citation edges ED define a set of edges (tx, ty, j) ∈ ET from an
evolving topic tx to evolving topic ty if there exists at least one citation from
some document in D(tjx) to a document in D(tky) where 0 ≤ k ≤ j :

ET = {(tx, ty, j) | d ∈ D(tjx), d′ ∈ D(tky), 0 ≤ k ≤ j : ED(d, d′)} (1)

We add to each edge (tx, ty, i) in ET a weight w which corresponds, to the
number of citations which exist between the documents in D(tjx) and D(tky),
0 ≤ k ≤ i. Figure 2 is an example of Evolving Topic-Citation Graphs.

Fig. 2. Evolving Topic Citation Graph

This layer allows ATEM to observe the cross-domain evolution of evolving
topics. Figures 3(b) and 3(d) show the evolution of citations to topics T680C6
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and T485C6 (with at least 5 citations) illustrated respectively by the word clouds
in Figs. 3(b) and 3(c). ATEM investigates factors that contribute to the growth
or decline of topics by observing the evolution of citation links between topics.
Any variation in the existence and number of citation links between topics is
a signal of change for the discovery of new knowledge, and in particular the
emergence of new research topics. Figure 3(f) shows the evolution of co-citations
to evolving topic T680C6 and T485C6. We can see that both topics have been
cited by topic T70C6 (Fig. 3(e)) in 2009 and from 2012 to 2020. The number of
co-citing topics increases in 2012 which might be considered as a first indication
that both concepts are the origin of a new emerging research topic about nearest
neighbor classifiers and apnea analysis.

(a) Evolving topic T680C6. (b) Citations to evolving topic T680C6.

(c) Evolving topic T485C6. (d) Citations to evolving topic T485C6

(e) Evolving topic T70C6 (f) Co-citations of T680C6 and T485C6

Fig. 3. Co-citation Analysis with ATEM

3.3 Extracting Emerging Topics

This layer applies a dynamic graph embedding method on the evolving topic-
citation graph and defines the notion of citation context for evolving topics.
Using this notion, Emerging Topics are defined as the couples or the sets of
evolving topics with similar citation contexts.
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Citation context refers to the ways in which documents in a given topic
cite and are cited by documents in other topics. The citation context similarity
between two topics can be seen as a measure of the likelihood of discovering new
interdisciplinary topics in the future by merging these topics. We assume that
two evolving topics ti and tj with a highly similar citation context at a given
time period produce an emerging evolving topic ti,j . Based on this assumption,
we need to define a similarity measure that allows us to compare the context of
two nodes defined by the topic citation graph ET . A graph embedding [21] of a
graph G is a mapping function emb : G �→ 2�d

, which aims to represent nodes,
edges, sub-graphs, or even the entire graph by low-dimensional feature vectors
v ∈ �d that preserve the topological and other contextual information about
the encoded entity. The embedding dimension d is expected to be much smaller
than the size of the graph d 	 n, where n is the number of nodes in G, which
allows nodes to be efficiently compared by the encoded properties.

Table 2. Common documents for topic (T680C6,T661C6) emerging in 2013

Year Title

2020.0 Performance evaluation of classification methods with PCA and PSO for diabetes.
2020.0 An Empirical Evaluation of Machine Learning Techniques for Chronic Kidney Disease Prophecy
2020.0 Using Machine Learning to Predict the Future Development of Disease
2019.0 Performance Analysis of Machine Learning Techniques to Predict Diabetes Mellitus.
2018.0 Accurate Diabetes Risk Stratification Using Machine Learning: Role of Missing Value and Outliers.
2017.0 Automatic Diagnosis Metabolic Syndrome via a k- Nearest Neighbour Classifier.
2016.0 Predicting risk of suicide using resting state heart rate.
2015.0 Computer-aided diagnosis of diabetic subjects by heart rate variability signals using discrete wavelet trans-

form method
2013.0 Automated detection of diabetes using higher order spectral features extracted from heart rate signals

There are several dynamic representation learning methods capable of embed-
ding nodes in a low-dimensional vector space which captures the evolution of the
network structure. We use dynamic node embeddings [22], which project each
node v in a sequence of graphs into a sequence emb(v) of low-dimensional vec-
tors. By projecting the topic citation links ET defined in previous layer on each
time period pi ∈ P a set of topic edges Ei

T = {(tx, ty) | (tx, ty, i) ∈ ET }, we
can produce a sequence of graphs G(P ) = [(T i, Ei

T ) | pi ∈ P ] ordered by periods
pi that reflects the distribution of citations between documents of all topics for
all time periods. Our hypothesis is that the dynamic topic embedding vector
emb(t) of a topic t in a dynamic topic citation graph represents the evolution of
the citation context of t, and that two topics with similar embedding (citation
context) at period pi are likely to generate new emerging topics. More formally,
we can now provide a more precise definition of emerging topics:

Definition 4 (Emerging Topics). Two evolving topics ti and tj define an
evolving topic ti,j emerging at time period pk, if the context distance dist(tki , t

k
j )

at period pk is above a given threshold φ and below this threshold before pk.

To compute the similarity between the citation context of two evolving topics, we
use cosine-similarity on the dynamic vector representations of evolving topics.
Using this definition, we can now detect emerging topics in two ways:



338 H. Rahimi et al.

1. K-nearest neighbors of a given topic t: we generate for each evolving topic
t and period pi a set of nearest neighbors with minimal embedding distance
higher than a given threshold.

2. Cluster the embeddings of each period: we apply a clustering algorithm on
the topic embeddings of each period. Each cluster represents an emerging
topic defined by a set of similar topics.

Figure 4(a) shows the evolution of the embedding distance in the neighbor-
hood of topic T680C6 (nearest neighbor classifiers) in 2013. We can see, for
example, topic T661C6 describing documents on diabetes appears in 2013 as
a near embedding neighbor of evolving topic T680C6 (with a maximal dis-
tance of 0.2). Table 2 shows the documents that are common to T680C6 and
T661C6. These documents are obtained by taking the intersection of the results
of two queries R(T680C6) =[’nearest neighbors’, ’knn’, ’nearest neighbor’] and
R(T661C6) =[’glycemic’, ’hypoglycemia’, ’hyperglycemia’] ranked by the aver-
age search score. The result shows that most of the top relevant documents
for emerging topic (T680C6, T661C6) have been published after its emergence
period 2013.

(a) Evolution of embedding distance for topic
T680C6 at time period 2013 (b) Evolving topic T661C6

Fig. 4. Extracting emerging topic T661C6 with citation context

4 Implementation

ATEM has been applied to the DBLP dataset of 5M scientific articles pub-
lished between 2000 and 2020. The evolving topics are extracted through the
customized architecture of BERTopic [23] and Top2Vec [24]. This customiza-
tion includes a combined method for document clustering, which is based on
Doc2Vec [25] on document content and Leiden community detection [26] on the
citation graph. These clusters are aggregated into a set of new clusters that
regroup semantically similar documents published and cited within a scientific
community. The topic document clusters D ∈ T are then divided into n = |P |
time frames denoted by D = (D1, . . . , Dn) where each Di, is a cluster of docu-
ments in period pi. In this regard, we adopt the dynamic document integration
of clusters upon using static time windows. We only keep clusters with a mini-
mal number of 3 documents. Each of these topic clusters is represented in two
manners:
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– Nearest Words: we compute for each document cluster a centroid vector by
averaging over the embeddings of its vectors. The cluster representation is
defined by the top-n words corresponding to the n nearest embedding neigh-
bors of the centroid vector.

– Class-based TF-IDF: similar to [23], we regroup the documents of each topic
cluster D(ti) in all time periods pi and apply TF-IDF to each group to find
the top-n word representation for each group.

We then create the evolving topic-citation graph as explained in the previous
section. To compute the temporal node embeddings on the topic citation graph,
we used OnlineNode2Vec [27], which is based on StreamWalk and online second-
order similarity. The result is a temporal embedding for each topic, which can be
used to compare evolving topics by their citation context. In particular, it allows
us to identify evolving topics (tx, ty) when the distance between two evolving
topics tx and ty is less than a given threshold.

5 Proof of Concept

The objective of this section is to demonstrate the effectiveness of the proposed
framework in identifying emerging topics as compared to co-citation analysis.
To achieve this, we compare the emerging topics within two groups: one based
on the embedding representations of the topic-citation graph (referred to as
EmbeddingContext), and the other based on the shortest citation paths defined
between topics (referred to as CitationContext). To facilitate this compari-
son, we generate a set of emerging topics from both EmbeddingContext and
CitationContext. We assess the validity of these emerging topics by examining
the presence of related documents in the past and future of their discovery. To
quantify this, we employ a predictability metric that evaluates the distribution
of related documents over time. By scoring the emerging topics based on this
metric, we can effectively evaluate their predictive power and performance.

We first generate a random sample of 200 evolving topics T . For each evolving
topic t ∈ T , we generate two sets of n = 10 topics in each time period pi:

– EmbeddingContext(ti) contains n topics tx that are new nearest embedding
neighbors of ti at period pi with a given maximum distance threshold of 0.2
and minimum embedding norm equal to 0.22 to remove noisy embedding
vectors (tx was not a neighbor before period pi).

– CitationContext(ti) contains a random set of n topics tx connected for the
first time to the evolving topic t at period pi by a citation path of maximal
length 3.

In both sets, each pair te=(t,tx) generated by tx ∈ CitationContext(ti) and
tx ∈ EmbeddingContext(ti) is expected to form an emerging topic at period pi.
To explore this expectation, we consider all pairs te as emerging in time period
pi with representation R(te) = [R(tj) ∪ R(tjx) | pj ∈ P ] and a document cluster
D(te) = [D(tj) ∩ D(tjx)) | pj ∈ P ] over all periods pj in P .
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We then look at each of these new topics and investigate their emergence pre-
dictability based on the year their papers get published. Therefore, we partition
D(te) into two subsets: Dpast(te) of documents published before the emergence
period of te, and Dfuture(te) of documents in D(D) published after the emer-
gence period of te.

Finally, we quantify the emergence predictability E of each topic pair te by
defining the following function that measures the distribution of its documents
before and after its emergence period:

E(te) :
|Dfuture(te)| − |Dpast(te)|

|D(te)|
(2)

meaning (i) when E(te) = 1, all documents are published at emergence period
of (t, te) or afterwards, (ii) when E(te) = 0, the same number of documents are
published before and after the emergence period and (iii) when E(te) = −1, all
documents are published before period p.

Figure 5 compares the predictability values for emerging topics of
EmbeddingContext and CitationContext. We find that random pairs from
EmbeddingContext have higher predictability compared to CitationContext.
Figures 6(a) and 6(b) show the box-plot and violin distribution of predictabil-
ity values. By Eq. (3), we can observe that in average (i) 75% of emerging
topics generated by EmbeddingContext have 1.25/0.75 = 1.66 times more
publications after emergence than before and (ii) 50% of emerging topics in
EmbeddingContext, have 2.6/0.4 = 6.2 more publications after emergence than

Fig. 5. Average emergence values of EmbeddingContext and CitationContext.

(a) Box-plot distribution (b) Violin plot distribution

Fig. 6. Emergence predictability distribution.
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before, whereas the ratio is 1 for topics generated by CitationContext.

|Dfuture(te)|
|Dpast(te)

| =
E(te) + 1
1 − E(te)

(3)

Emerging topic properties. Fig. 8(b) shows the correlation between various
parameters that shape the dynamics of emerging topics. We can see that the
average embedding distance (dist) per period increases in time (year). This sig-
nifies that the applied dynamic embedding method estimates that the analyzed
topics get more and more diverse. However, this conclusion has to be confirmed
by a deeper analysis of the bias introduced by the dynamic computation algo-
rithm. Second, the predictability (emergence) decreases with increasing distance
and strongly decreases in time (see also Fig. 7(a)). This is a natural consequence
of the definition of emergence which compares the number of relevant docu-
ments before and after the emergence period. This number is also influenced by
the “relative length” of the past and the future covered by the archive (as shown
in Fig. 7(b), the average emergence of topic pairs is positive before 2016 and
becomes negative afterward). Finally, we can see that the average cluster size
(all) of emerging topics is independent of the period, the average predictability,
and the average embedding distance.

(a) Distance distribution (b) Average predictability by year

Fig. 7. Distance and predictability of emerging topics.

Figure 8(a) shows the correlations between the average number of new emerg-
ing topics (EmbeddingContext) by period (n), the average number of connected
pairs (CitationContext) by period (c), and the average number of connected
emerging topics (intersection of EmbeddingContext and CitationContext) by
period (cn). We can see that the average number of embedding neighbors
decreases with time, which is consistent with the observation that the embed-
ding distance increases. The fraction of connected neighbors is independent of
the number of neighbors, but increases with the number of connected topics.
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(a) Embedding & citation context (b) Emerging topic properties.

Fig. 8. The correlation analysis

6 Conclusion

This article presents a new framework for studying the evolution and emer-
gence of topics over time. The analysis framework is based on the notions of
single-domain and cross-domain evolution, aiming to distinguish between the
evolution of individual topics and the evolution of relationships between topics.
This framework is then used to detect emergent topics by using recent graph
embedding techniques on topic citation graphs to analyze the evolution of cita-
tion context at the topic level and to detect similar topic pairs as new emergent
topics. We have implemented this framework, and our experiments show that
citation context-based topic similarity is efficient for detecting emerging topics.
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Abstract. The transparent nature of public blockchain systems allows
for unprecedented access to economic community data. Examples of such
communities are the fungible token networks created by the ERC-20
standard on the Ethereum protocol. In this paper we study ERC-20
token networks, where nodes represent users and edges represent fun-
gible token transfers between them. We focus our analysis on the top
100 largest networks, including a total of about 160 million edges and
60 million nodes. After a global analysis of the size and temporal evo-
lution of such networks, we define and study seven features describing
their main topological properties. In an attempt to characterize the net-
works by their topologies, we use the introduced features to cluster the
networks together. To evaluate our results, we manually classify each
network depending on the application domain of the corresponding con-
tract and measure the homogeneity of the obtained clusterings. Overall,
the results appear to indicate a lack of relationship between the scope of
a contract and the topological features of the induced networks.

Keywords: Blockchain · Ethereum · Fungible Token · Network
Analysis

1 Introduction

The advent of blockchain technology has disrupted traditional paradigms across
multiple sectors, including financial systems, intellectual property, decentralized
identity and supply chain management. Indeed, blockchains have the ability to
provide secure, transparent, and decentralized record-keeping, eliminating the
need for trusted intermediaries in transactions. Within this ever-evolving land-
scape, Ethereum – ranking as the second largest blockchain by market capi-
talization – has stood out for its innovations, foremost among them being the
capability to store and execute code, in the form of smart contracts [13]. A
smart contract is a piece of arbitrary code whose execution is validated by con-
sensus, i.e., replicated by all participants of the blockchain network. Smart con-
tracts have enabled the development of a wide range of decentralized applications
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(DApps) running on the blockchain. Nowadays, DApps serve a variety of pur-
poses, including decentralized finance, gaming, and social networking. Moreover,
many DApps utilize the concept of token, namely a transferable asset that can
be either fungible or non-fungible. Fungible tokens are interchangeable and iden-
tical, like traditional currencies. For instance, in the context of gaming, fungible
tokens may represent reputation or player skills, while in the field of finance
they can be used to represent assets or fiat currencies. Conversely, non-fungible
tokens (NFTs) are unique digital assets with distinct properties, each with a
distinct value. NFTs are often used to represent ownership of digital or physical
items (e.g., works of art, collectibles, and more).

To enforce interoperability among fungible tokens on Ethereum, the ERC-
20 standard was introduced. This standard defines rules for smart contracts
implementing such tokens, facilitating token integration and exchange across
various decentralized applications. In addition to this, each ERC-20 token creates
a unique economy within the Ethereum ecosystem, where participants hold and
trade tokens of the same kind. From a more theoretical perspective, we can say
that each economy can be modeled as a token network, i.e., a graph whose nodes
correspond to participants and edges represent token exchanges. Therefore, the
analysis of ERC-20 token networks provides useful insights on the corresponding
token economies. Indeed, it allows us to understand the evolution of transfers
and how users tend to interact within these economies, e.g., whether they form
communities, or if certain users hold more central roles with respect to others.

Motivated by these reasons, in this paper we study the properties of the top
100 ERC-20 token networks by total number of transfers. To gather informa-
tion about transfers, we use data from the first 15 million Ethereum blocks,
covering the time period between July 30th, 2015 and June 21st, 2022. Specifi-
cally, we exploit Ethereum transaction receipts, which include information about
ERC-20 Transfer events. Indeed, such events serve as the main mechanism for
notifying participants of token transfers, recording the sender, recipient, and the
amount of tokens transferred. Our main contribution is articulated as follows.
First, we study the historical evolution of transfer events within the analyzed
data set. Then, we analyze the topological properties of token networks by asso-
ciating each network with a set of seven features describing its connectivity,
degree distribution, transitivity, density, diameter, and average shortest path
length. Subsequently, we use such features to conduct further analysis based on
clustering techniques, aiming at identifying groups of networks sharing similar
topological properties. Finally, we classify token networks based on the applica-
tion domain of the corresponding token. We use this classification to investigate
possible connections between the topology of a network and the semantics of the
corresponding ERC-20 token.

Related Work. Ethereum token networks have already been studied in the lit-
erature. The authors of [9] analyzed the global ERC-20 token network, i.e. the
union of all ERC-20 token networks, between February 2016 and February 2018.
They found out that the degree distribution follows a power-law and the token
popularity among buyers and sellers also follows a power law model. Similarly,
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the analysis in [11] revealed that many ERC-20 token networks exhibit either
a star or hub-and-spoke topology. Additionally, such networks tend to have low
clustering coefficients and are disassortative. Instead, the authors of [4] found
out that, despite the high number of ERC-20 tokens, only a few are active and
valuable. Moreover, few accounts hold a large number of tokens, while many
accounts only hold a small number of tokens. Lastly, the authors discovered that
some addresses create a large number of tokens to attack the Ethereum network.

If compared to prior works, our analysis is based on a broader time period
and focuses on the top 100 networks with the highest number of token transfers.
Moreover, our contribution is not solely focused on analyzing networks but also
on comparing them with each other by associating each network with a set of
numerical features capturing its topological properties. Lastly, our analysis also
introduces a semantic classification of token contracts obtained by manually
retrieving information from the internet.

2 Background

Blockchain. A blockchain is a shared, immutable, and decentralized ledger orga-
nized in blocks, each containing ledger state updates and managed through a
distributed consensus algorithm. Ethereum [13] has been the first blockchain
project implementing a Turing-complete virtual machine, called Ethereum Vir-
tual Machine (EVM). This means that, besides monetary transactions, the
Ethereum blockchain is also capable of storing and executing pieces of arbi-
trarily complex code, called smart contracts [10]. Smart contracts are written in
a high-level language (e.g., Solidity) and then compiled to bytecode. Their exe-
cution is validated by distributed consensus and replicated by all participants.
Specifically, each call to a function of a smart contract is executed sequentially
in the current block state, and the final state is updated accordingly.

Decentralized Applications and Fungible Tokens. As stated in Sect. 1, smart con-
tracts enable the development of decentralized applications (DApps), which may
serve a wide range of purposes (e.g., finance, gaming, social networking). Many
DApps adopted the concept of fungible token to represent interchangeable assets
that can be transferred between participants. The ERC-20 implementation pro-
posal [12] introduces a standard for fungible tokens. Specifically, it defines a
consistent set of methods for creating and interacting with tokens. Also, it
ensures token interoperability, meaning that all compliant tokens can be eas-
ily integrated into different decentralized applications. For the purposes of this
paper, we remark that, whenever an ERC-20 contract transfers tokens between
two addresses, an event must be raised. In Ethereum, events are a mechanism
adopted to notify a state update or a particular condition being met during
the execution of a smart contract. This facilitates the communication between
contracts and off-chain applications. In Solidity, events are identified by a signa-
ture specifying the type and number of their parameters. The signatures of the
Transfer and Approval events defined by the ERC-20 standard are:



Analysis and Characterization of ERC-20 Token Network Topologies 347

event Transfer(address, address, uint256)
event Approval(address, address, uint256)

The Transfer event is emitted every time a token transfer occurs between
two addresses. Its signature consists of three parameters: the sender address,
the recipient address, and the amount of tokens transferred. Conversely, the
Approval event is triggered when a user allows another participant to transfer
a certain number of tokens on their behalf. We observe that, according to the
ERC-20 standard definition, after the issuance of an Approval event, a Transfer
event notifying the actual transfer of tokens must necessarily follow. Thus, for
the remainder of this paper, we will only consider Transfer events to study token
transfers among participants.

3 Transfer Event Graph

Transfer events represent redistributions of tokens between two users. By gath-
ering information about the occurrences of such events, it is therefore possible
to analyze the evolution of a token economy. To this aim, in this section we
formalize the concept of Transfer event graph, i.e., the graph where nodes rep-
resent users and edges represent Transfer event occurrences. In the following,
we denote by A the set of all Ethereum addresses, which are used to identify
network participants. An occurrence of a Transfer event can be represented as a
tuple e = (t, from, to, v), where t ∈ N is a numeric timestamp, from ∈ A is the
address of the sender, to ∈ A is the receiver address and v ∈ N is the amount of
tokens transferred. In the following, given a contract C, we denote by T (C) the
set of ERC-20 Transfer events triggered by C. We can then define the Transfer
event graph of C as a simple undirected graph GC = (VC , EC). Here, the set
of vertices VC = {a ∈ A | ∃ (t, from, to, v) ∈ T (C) s.t. a = from ∨ a = to}
contains all addresses induced by the events in T (C), while the set of edges
EC = {(a, b) | ∃ (t, from, to, v) ∈ T (C) s.t. a = from ∧ b = to} includes one edge
between two nodes a and b if and only if there exists at least one token transfer
between them.

4 Experimental Results

In this section we present the experimental results of our analysis of token net-
works. First, we study the evolution of Transfer events over time. Then, we
compare the topological properties of Transfer event networks and examine pos-
sible connections between such properties and the semantics of the corresponding
smart contracts. For our experiments, we downloaded the first 15 million blocks
of the Ethereum blockchain along with the corresponding transaction receipts,
which include all necessary information about triggered events. The time period
covered by our data set ranges from July 30th, 2015 03:26:13 PM UTC, to June
21st, 2022 02:28:10 AM UTC. The code for the experiments and data anal-
ysis has been written in C++, Java and Python and is publicly available at
https://github.com/mloporchio/EthTokenAnalysis. In particular, the Transfer
event graph analysis was conducted using igraph [6] and WebGraph [1].

https://github.com/mloporchio/EthTokenAnalysis
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4.1 Global Analysis

By analyzing the transaction receipts in our data set, we were able to collect
Ne = 961 603 795 occurrences of the Transfer event, raised by Nc = 386 615
different smart contracts. The plots of Fig. 1 provide further insight into the
occurrences of Transfer events. In particular, Fig. 1a illustrates the frequency of
ERC-20 Transfer events within the analyzed blocks. It appears that a significant
number of blocks (i.e., above 106) do not contain any occurrence of such events.
Also, we can notice that blocks with a large quantity of transfers are less frequent.
Instead, Fig. 1b illustrates the total number of Transfer events on a monthly
basis starting from 2015 (i.e., the year of the Ethereum blockchain inception)
until June 2022. Using a logarithmic scale on the y-axis, the plot highlights how
the number of such events experienced a rapid growth in 2016 and 2017, before
stabilizing at around 107 transfers per month starting from 2018.

(a) (b)

Fig. 1. Frequency distribution of ERC-20 transfers (left) and monthly number of raised
Transfer events (right).

4.2 Graph Construction

To gain insight on the trading volume of each token economy, we first ranked
the ERC-20 contracts based on the number of raised Transfer events. Table 1
displays the first ten positions of our ranking. As the reader may notice, these
contracts alone include approximately 357 million occurrences, thus covering
about 37% of the total number of events Ne despite being less than the 0.012%
of the number of contracts Nc. Moreover, we can also observe that eight tokens
out of ten are related to the field of decentralized finance, as they are associated
with stablecoins or wrapped tokens. The only exceptions are represented by the
tokens of ChainLink [3], i.e., a decentralized oracle network, and Livepeer, a
framework for decentralized video streaming applications.

We selected the top 100 contracts from our ranking and constructed, for each
of them, the corresponding Transfer event graph, as discussed in Sect. 3. We then
computed the number of nodes and edges of each graph and noticed that, on
average, Transfer event graphs have about 759 004 nodes and 1 701 879 edges. We
remark that the number of nodes coincides with the number of participants in the
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Table 1. Top 10 ERC-20 token contracts by triggered Transfer events.

Contract address Token name N. of Transfers Percentage

dac17f958d2ee523a2206206994597c13d831ec7 Tether USD (USDT) 149 408 698 15.537

c02aaa39b223fe8d0a0e5c4f27ead9083c756cc2 Wrapped Ether (WETH) 104 183 120 10.834

a0b86991c6218b36c1d19d4a2e9eb0ce3606eb48 USD Coin (USDC) 42 601 224 4.430

6b175474e89094c44da98b954eedeac495271d0f Dai Stablecoin (DAI) 14 387 573 1.496

514910771af9ca656af840dff83e8264ecf986ca ChainLink Token (LINK) 11 388 177 1.184

174bfa6600bf90c885c7c01c7031389ed1461ab9 More Gold Coin (MGC) 8 947 669 0.930

95ad61b0a150d79219dcf64e1e6cc01f0b64c4ce SHIBA INU (SHIB) 7 781 424 0.809

990f341946a3fdb507ae7e52d17851b87168017c Strong (STRONG) 6 964 935 0.724

58b6a8a3302369daec383334672404ee733ab239 Livepeer Token (LPT) 6 025 932 0.627

03cb0021808442ad5efb61197966aef72a1def96 coToken (coToken) 5 370 855 0.559

Total 357 059 607 37.130

corresponding token economy. For a more detailed insight, Fig. 2a summarizes the
cumulative frequency of the number of nodes among all graphs. From the plot, it
is possible to notice that the majority of all graphs has between 104 and 106 nodes.
Specifically, we can notice that 80 graphs out of 100 have less than 1 million nodes.
Similarly, Fig. 2b illustrates the cumulative distribution function for the number
of edges, highlighting that approximately 80% of all graphs have less than 1 mil-
lion edges. Speaking of graph sizes, we observe that the graph with the lowest
number of nodes, amounting to 691, corresponds to the “Bancor Network” token,
which is related to the field of decentralized finance. Instead, the graph with the
highest number of nodes, namely 23 176 194, is that of “Tether USD” token, the
stablecoin holding the first position in Table 1. To give a sense of our data set, we
note that, if all 100 graphs were combined into a single graph describing all par-
ticipants and Transfer events of the corresponding 100 economies, the resulting
graph would comprise 59 120 625 unique nodes and 160 259 567 unique edges.

(a) (b)

Fig. 2. Cumulative distributions for number of nodes (left) and edges (right) of the
considered Transfer event graphs.

4.3 Graph Analysis

We then analyzed the constructed Transfer event graphs. To this aim, we asso-
ciated each graph with seven numerical features capturing their topological
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properties. To deal with disconnected graphs, we have chosen to always compute
such measures on the largest connected component for consistency. As such, all
features we describe from now on always refer to the subgraph induced by the
nodes and edges of the largest component. In particular, given a Transfer event
graph G with largest connected component GLCC , we computed the following
features. (1) Coverage, namely the percentage of nodes of G included in GLCC .
(2) Alpha, which represents the exponent of the power law distribution best fit-
ting the degree distribution of GLCC . (3) Fitting error, which corresponds to
the error obtained during the fitting process to obtain the previously described
alpha. (4) Relative diameter, which represents the ratio between the diameter of
GLCC and the natural logarithm of the number of nodes. (5) Relative average
shortest path length, which is computed as the average shortest path length of
GLCC divided by the natural logarithm of the number of nodes. (6) Transitiv-
ity coincides with the global clustering coefficient of GLCC , namely the ratio
between the number of triangles and connected triples in the graph. (7) Den-
sity, as the ratio between the actual number of edges and the maximum possible
number of edges in GLCC . To fit a power law curve on the degree distribution
of each graph, we used the procedure detailed in [5]. In accordance with such
method, we use the Kolmogorov-Smirnov statistic to quantify the fitting error as
the distance between the two distributions. Moreover, we remark that the aver-
age shortest path lengths have been computed using the HyperBall algorithm,
which provides an approximate but reasonably accurate result [2]. Indeed, due
to the sizes of the analyzed graphs, obtaining the exact value for the lengths
turned out to be too computationally expensive.

Figure 3 summarizes the distributions of the features among all graphs. In
particular, the histogram of Fig. 3a illustrates the coverage distribution and pro-
vides information about the connected components of the examined graphs. We
can observe that, for 98% of the graphs, the largest connected component covers
a percentage of nodes ranging from 90% to 100%. This means that, in most
cases, as the token economy evolves, token transfers tend to create a single,
large community of users, with only a few nodes remaining isolated. There are,
however, two graphs where the coverage percentage falls between 10% and 20%.
A further analysis revealed that these two outliers correspond to the “Etheal
Promo” and “INS Promo” tokens, whose largest connected components cover
around 18% and 14% of all nodes, respectively. Both tokens were launched on
the market through airdropping, a marketing strategy where tokens are sent to
existing users’ wallets, typically as a free giveaway.

Our analysis of node degrees is summarized by Figs. 3b and 3c, which illus-
trate the distributions of the fitted power law exponents and fitting errors,
respectively. More than half of the tokens have a power law exponent between 2.5
and 3.75, while the majority of graphs have a fitting error below 0.05. Indeed, we
observed that the mean fitting error over all graphs is 0.02. Interestingly enough,
the graph with maximum fitting error (i.e., approximately 0.15) corresponds to
the “More Gold Coin” token. As discussed in [7], the associated contract address
is known for its spamming campaign, which took place in July 2019. During this



Analysis and Characterization of ERC-20 Token Network Topologies 351

massive campaign, small quantities of tokens were airdropped to many users
causing a sudden congestion on the entire Ethereum network.

For what concerns the relative diameter, we observe a mean value of approx-
imately 1.55. Indeed, Fig. 3d shows that, for more than 70% of all graphs, this
feature is below 2. So the diameter is within a low linear factor of the logarithm
of number of nodes, a classical behaviour in small world networks. Similarly, for
the relative average path length, Fig. 3e shows how the values for this feature
are concentrated between 0.2 and 0.3 for most graphs, with a mean of 0.28.

The histograms of Figs. 3f and 3g describe the transitivity and density distri-
butions, respectively, using a logarithmic scale on the y-axis. As the reader may
notice, in both cases the distributions are positively skewed, with a mean value
of about 3.55 × 10−4 for transitivity and 2.07 × 10−4 for density. This suggests
that interactions among participants tend to be sparse. Moreover, it leads us to
believe that token networks have a weak community structure and participants
are not likely to form well-connected groups, in contrast with the small world
behavior observed when looking at the diameter.

(a) (b) (c)

(d) (e) (f) (g)

Fig. 3. Distributions of the selected features.

4.4 Clustering

After examining the features of each graph individually, we conducted another
analysis employing clustering techniques. The goal of this analysis is to identify
groups of contracts with similar topological properties. For our initial experi-
ment, we attempted to identify which subset of the features described in Sect. 4.3
yields the best clustering. To achieve this aim, we employed the K-means algo-
rithm, testing all possible feature subsets while varying the number of clusters
k from a minimum of 2 to a maximum of 20. For each subset, we then selected
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the value of k maximizing the silhouette coefficient. We note that, with 7 dif-
ferent features, the number of valid subsets is equal to 127. Each subset then
generates 19 possibilities, resulting in a total of 2 413 combinations. Figures 4a,
4b and 4c illustrate, respectively, the top three clusterings obtained with this
approach, namely those with the highest silhouette scores. As the reader may
notice, all three configurations comprise k = 2 clusters. The first configuration,
with a silhouette of 0.945, was obtained using only the coverage feature. The
second configuration, which returned a score of 0.834, was obtained using only
the density feature. Finally, the third configuration was obtained by combin-
ing both features together, yielding a silhouette of 0.785. We observe that, in
all three cases, the obtained clusterings are highly imbalanced. Indeed, we can
always find a small cluster, containing no more than 20 elements, and a large
cluster, with more than 80 elements.

To attempt a different clustering approach, we also conducted further analysis
based on dimensionality reduction. In particular, we used principal component
analysis to reduce the number of features and then executed the K-means algo-
rithm on this reduced data set. Before applying the dimensionality reduction,
however, we used the explained variance ratio method to determine the optimal
number of components. More precisely, we set a threshold of 0.8 (to keep 80%
of the total variance of the original data) and selected the minimum number of
principal components such that the explained variance ratio is above the thresh-
old. In this regard, the plot of Fig. 4d illustrates the total explained variance
ratio as the number of components varies. As the reader may notice, it appears
that the optimal number of features is equal to 4. We then applied the K-means
algorithm again to the reduced data set, trying values of k ranging from 2 to 20.
As before, among the 19 configurations tested, we chose the one that maximized
the silhouette score. As shown in Fig. 4e, the maximum silhouette value (slightly
above 0.7) is achieved, once again, for k = 2 clusters. The corresponding cluster-
ing for this configuration is described by the plot of Fig. 4f: it can be observed
that this partitioning is highly unbalanced, with 97 contracts assigned to the
first cluster and only 3 elements to the second one.

Considering the difficulty encountered in separating contracts according to
the associated features, we introduced a new classification based on contract
semantics. Specifically, we manually assigned to each contract a categorical label
describing its main application domain. The ultimate goal of this analysis was
to study the composition of the obtained clusters, in order to determine whether
similar graphs correspond to contracts with similar purposes. In this regard, we
identified nine token categories: (1) defi comprises all tokens related to decentral-
ized finance (e.g., stablecoins, wrapped tokens, tokens issued by exchanges and
automated market makers, etc.); (2) games includes all token related to games;
(3) blockchain denotes all tokens related to independent blockchain projects;
(4) layer-2 contains tokens related to layer-2 solutions aimed at improving the
scalability of Ethereum; (5) content includes reward tokens related to content
creation platforms; (6) storage represents all tokens related to decentralized stor-
age solutions; (7) mining indicates tokens associated with cryptocurrency mining
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services; (8) multimedia comprises all tokens related to multimedia content (e.g.,
music, video streaming services, etc.); (9) other comprises all tokens whose appli-
cation domain is not included into any of the previous categories. Table 2 illus-
trates the number of contracts for each application domain. We can notice that
the most numerous category is that of tokens related to decentralized finance,
comprising 54 contracts out of 100. Furthermore, 15 contracts did not fall into
any of the application domains and were therefore labeled as “other”.

Table 2. Contract classification based on their application domain.

Category Count

defi 54

other 15

games 9

blockchain 5

layer-2 4

content 4

storage 4

mining 3

multimedia 2

Total 100

We then used this labeling to measure clustering homogeneity. Homogeneity
quantifies, on a scale from 0 to 1, how much each cluster predominantly contains
elements belonging to a certain category of contracts [8]. We assigned a score
to each clustering by comparing the labels returned by the K-means algorithm
with our manually-assigned categories. To better understand how the clustering
reflects such categories, we have focused on clustering results with k = 8, i.e.,
one cluster per category excluding the heterogeneous “other” category. In this
regard, Fig. 4g reports the clustering result with k = 8, colored by category,
yielding the maximum silhouette among all possible combinations of features.
Moreover, to also illustrate the best possible division of the categories among
clusters, we show in Fig. 4h the result with maximum homogeneity. Finally, in
Fig. 4i we report the coloring for k = 8 considering the principal component
analysis clustering. In all cases we can see how the semantic categories are spread
among different clusters. Indeed, in Fig. 4g, despite the high silhouette score
indicating a good level of cohesion among the elements within each cluster, the
homogeneity of the clusters is rather low. Conversely, the configuration of Fig. 4h
exhibits a higher homogeneity, but a lower silhouette score. This suggests that,
while the graphs have similar topological properties, their similarity does not
reflect on the application domain of the respective contracts. In other words, the
topology of Transfer event graphs is not a good indicator of the semantics of the
corresponding contracts.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. Clustering analysis results (est apl in figure (h) represents the relative average
shortest path feature).

5 Conclusions and Future Work

In this paper we have analyzed the top 100 ERC-20 token networks by number
of transfers. The study of the topological properties has revealed that – despite
their diameter being of the order of the logarithm of the number of nodes – all
networks exhibit a low clustering coefficient. This leads us to believe that such
graphs are not small-world networks. Moreover, by analyzing the structure of the
largest connected components and their degree distributions, we identified three
networks that are associated with promotional tokens. Such tokens were launched
through airdropping campaigns and one of them is regarded as an attempt at
spamming the Ethereum network by the user community. To identify groups
of networks with similar topological characteristics, we conducted a clustering
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analysis and compared the results with manually-assigned labels describing the
application domains of the contracts. Results suggest that a token network topol-
ogy does not effectively reflect the semantics of the associated contract, meaning
that contracts with similar applications can induce different network structures,
and vice versa. Concerning future work, we plan to further explore the relation
between contract semantics and network topology by considering additional fea-
tures and different clustering methods. It could also be possible to enrich the
graph with edge weights (e.g., transfer timestamp or amount). The data set
might also be expanded by considering more contracts, including non-fungible
ones.
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Abstract. Understanding the properties of anonymity networks such as
the Invisible Internet Project (Garlic router) and Tor (Onion router) is
critical for the future of cybersecurity, cyberwarfare and Internet free-
dom. In this paper, we theoretically model the Invisible Internet and
provide the preliminary components for developing a theoretical lens
that can be used to address its open questions. Additionally, this work
lays the theoretical foundation for studying I2P’s key network properties
such as resilience, anonymity and minimum attackers/routers ratio to
exploit the network. The model was validated against a simulated I2P
network.
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1 Introduction

Peer-to-peer overlay networks are becoming extremely important as they con-
stitute the backbone that supports blockchain [7,14], cryptocurrencies [20,27]
and the dark web [8]. The Invisible Internet Project (Garlic Router) [5] and
Tor (Onion Router) [11], two overlay anonymity networks, are at the forefront
of fighting censorship [15,16], facilitating whistleblowing [10,22] and supporting
anonymous communication [9,13].

It is becoming extremely important to study anonymity networks such as
Invisible Internet Project (I2P) and Tor for multiple reasons. Firstly, social causes
such as whistleblowing and censorship evading, which are very important to the
society [21], rely on hidden services and anonymous communication. Secondly,
cyberattackers leverage anonymity networks to obfuscate and anonymize bot-
master and master-attacker connections [23]. Accordingly, formalizing cyber attri-
bution requires understanding anonymity networks. Lastly, I2P and Tor have
unique network characteristics [19]. This deprives the community from using exist-
ing theoretical lenses [6] to understand I2P and Tor’s network properties.

One of I2P’s open research questions is as follows “Is there a way that I2P
could perform peer selection more efficiently or securely?” [3]. The peer selection
process is the seed that emerges into I2P’s network structure. This structure
governs key network properties such as resilience and obfuscation, which are
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essential to both censorship and attribution evasion. Before proposing a more
efficient peer selection mechanism, we should measure the efficiency of the cur-
rent one, which is still an open question especially due to the lack of a suitable
theoretical framework. In this paper, we model the I2P network and develop a
basic theoretical framework for predicting I2P’s network structure. The motiva-
tion behind this work is modeling the I2P and laying the theoretical foundation
for studying its network’s properties such as resilience, obfuscation and mini-
mum attackers/routers ratio to exploit the network. The main contributions of
this work are as follows:

1. Develop a simple recursive description of weighted node selection probability
with replacement. This description facilitates modeling anonymity networks
with weighted peer selection mechanism.

2. Model I2P’s degree distribution, which allows us to predict the number of
active links as a function of network parameters.

3. Validate the correctness of the proposed model against simulated I2P network.

The remaining of this paper is organized as follows, Sect. 2 introduces I2P’s peer
selection mechanism. Section 3 develops a simple recursive description of node
selection probability under weighted random sampling. Section 4 builds on top
of Sect. 3 to develop node’s probability of joining a tunnel. Section 5 builds the
I2P’s theoretical network structure model. Section 6 validates the model against
simulated I2P and Sect. 7 concludes the work.

2 Backgound: Descriptive Explanation of Garlic Routing
and I2P Tunneling

I2P is a full mesh overlay P2P network composed of nodes, called routers. Even
though a router is theoretically connected to all other routers in the network,
only a small number of connections are active at any point in time. Figure 1(a)
shows a full mesh network which is the very abstract representation of I2P.
The blue circles represent the I2P routers and the light blue lines represent the
inactive neighboring connections.

Generally speaking, a router establishes a multi-router tunnel to act as a
multi-layer Mix-Net for ensuring anonymization [11]. Every I2P router estab-
lishes multiple tunnels, each for a different purpose as will be discussed later.
Let’s consider for now, that a router wants to establish one tunnel, an out-
bound one. This router will be the first node in the tunnel and will be called
Outbound Gateway (OG) [5]. The tunnel will then include a certain number
of routers called Outbound Participants (OP ). A tunnel supports between 0
and 5 Outbound Participants, but is defaulted to 1 [1]. The tunnel ends with
a router called Outbound Endpoint (OE). Figure 1(b) shows a full mesh I2P
network. The blue circles represent the I2P routers and the light blue lines rep-
resent the inactive neighboring connections. The yellow router represents the
Outbound Gateway, the green router represents the Outbound Participant and
the red router represents the Outbound Endpoint. The solid blue lines are the
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(a) I2P abstract
representation as
full mesh. Blue
circles represent
the I2P routers
and the light blue
lines represent in-
active neighboring
relationships.

(b) I2P tunnel.
Yellow router
represents (OG),
green represents
(OP ) and red
represents (OE).
Solid blue lines are
active connections.

(c) I2P traffic
exiting the yellow
router’s outbound
tunnel (yellow →
green → red) into
the orange router’s
inbound tunnel
(light red → light
green → orange).

(d) I2P routers. The
routers are assigned into
one or more sets which
are high capacity, fast,
standard and Router-
Infos based on their
reliability in a process
called peer profiling.

Fig. 1. I2P network representation (Color figure online)

active connections. Accordingly, a router’s active connections are due to his tun-
nels and the tunnels he is assisting. In addition to the outbound tunnel, I2P
routers establish inbound tunnels; since tunnels are unidirectional. The inbound
tunnel starts with a router called Inbound Gateway, followed by 0 to 5 (default
is 1) routers called Inbound Participant and ends with the router establishing
the tunnel called Inbound Endpoint. Figure 1(c) shows a full mesh I2P network
where the yellow I2P router sending information to the orange router. To ensure
anonymity, the information is not sent directly to the orange router, but exits
from yellow router’s outbound tunnel and then enters through the orange router’s
inbound tunnel. The orange router is thus the Inbound Endpoint. The remaining
routers in the inbound tunnel are Inbound Gateway indicated in light red and
Inbound Participant indicated in light green. The traffic exiting the outbound
tunnel and entering the inbound tunnel is colored in red. It is worth noting that
for the orange router to respond back, he has to use another tunnel (orange
router’s outbound tunnel) and send it to the yellow router’s inbound tunnel. A
two-way communication needs two pairs of tunnels. It is also worth noting that
the same outbound tunnel can be used to communicate with multiple inbound
tunnels, until the outbound tunnel is dismantled. Not all routers have the same
chance of joining a tunnel [4]. Routers are profiled based on their performance
over the last 7 days and assigned into one of three overlapping sets which are:

– high capacity: this is a set of the 30 most reliable routers.
– fast: this is a set of the 75 most reliable routers (including those in “high

capacity”).
– standard: this is a set of least reliable or recently joined routers. This set

does not have a limit but contains typically around 500 routers (including
those in ”fast”).
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All routers, including “standard set” are tracked using “RouterInfos”, which
is stored in the local network database. We can consider “RouterInfos” as the
universe of all active routers in I2P network at any moment [4]. Figure 1(d) shows
a full mesh I2P network with the routers assigned to one or more sets which are
high capacity (Red), fast (green), standard (yellow) and RouterInfos (gray). Any
router, in the RouterInfos set, creates two types of tunnels, communication and
exploratory. The communication tunnels are made of inbound and outbound
tunnels. Each of those tunnels survive for a short period of time (usually 1
minute), before being dismantled and replaced by another tunnel. The routers
participating in a tunnel are randomly selected from the ”high capacity” set.
There are some restrictions on the selection, but it is generally random. The
exploratory tunnels are created by selecting routers from the ”standard set”.
In case the initiating router was not able to find reliable routers for his tunnel,
routers from the ”fast” set are also selected using a weighted random selection
process.

3 Weighted Random Sampling Without Replacement

Weighted random sampling is still an open question [26] for statisticians [18],
computer scientists [12,17,24], mathematicians and network scientists [25].
Weighted random sampling with replacement is trivially easy, while weighted
random sampling without replacement is still, to the best of our knowledge, not
yet solved analytically and approached computationally as shown in [26]. This
section aims at developing a simple recursive description of node selection prob-
ability, which is I2P’s aspect of interest in weighted random sampling without
replacement.

Consider two sets A and B, with sizes Na and Nb respectively. The elements
in A are equiprobable and the elements in B are equiprobable as well, but the
chance of selecting an element from A and B is a and b respectively. Let a,b ∈ N

+.

Corollary 1. The probability of selecting node na from A, nb from B, a node
from A and from B is respectively:

P (n = na, a, b,Na, Nb) = a/(aNa + bNb), P (n = nb, a, b,Na, Nb) = b/(aNa + bNb)

P (n ∈ A, a, b,Na, Nb) = aNa/(aNa + bNb), P (n ∈ B, a, b,Na, Nb) = bNb/(aNa + bNb)

Theorem 1. The probability of selecting node na in a sample out of x weighted
random selections without replacement, where na ∈ A, is the xth unit of geomet-
ric recursive sequence:

P (na ∈ Sx) = Pr(x, a, b,Na, Nb) = P (n ∈ B, a, b,Na, Nb) × Pr(x − 1, a, b,Na, Nb − 1)

+
a

aNa + bNb
+

(Na − 1)

Na
× P (n ∈ A, a, b,Na, Nb) × Pr(x − 1, a, b,Na − 1, Nb) (1)

where Pr(0, a, b,Na, Nb) = 0, x ≤ Na and x ≤ Nb
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Fig. 2. Graphical description of weighted sampling without replacement.

Let Sx be a weighted randomly selected sample from A∪B with replacement.
Let n be any element in A ∪ B other than na i.e. (n ∈ A ∪ B − {na}). Then

P (na ∈ Sx) = P (na, n, .., n)...+ P (n, n, .., na) = P (na, n, .., n) + P (n) × P (na ∈ Sx−1)

= P (n = na) + P (n) × P (na ∈ Sx−1)

Let P (na ∈ Sx) be defined as = Pr(x, a, b,Na, Nb). Then

P (na ∈ Sx−1) =

{
Pr(x − 1, a, b,Na, Nb − 1), n ∈ B

Pr(x − 1, a, b,Na − 1, Nb), n ∈ A′

where A′ = A − {na}. Since Sx is a weighted random sample, then

P (na ∈ Sx) =P (n = na) + P (n ∈ B,Na, Nb) × Pr(x, a, b,Na, Nb − 1)
+ P (n ∈ A − {na}, Na, Nb) × Pr(x, a, b,Na − 1, Nb)

Accordingly, P (na ∈ Sx) = P (x, a, b,Na, Nb) = 1
aNa+bNb

× (a

+bNb×Pr(x−1, a, b,Na,Nb−1)+a(Na−1)×Pr(x−1, a, b,Na−1, Nb))

The proof of Theorem 1 is visualized in Fig. 2.

4 Tunnel Formation in Complete Graph

Considering two complete homogeneous graphs Γ and Ω of sizes Nγ and Nω

respectively, where Nγ > 2 and Nω > 2. Let γ and ω be the set of nodes in Γ
and Ω respectively, defined as γ = {n1, n2, ..., nNγ} and ω = {n1, n2, ..., nNω}
respectively. Let γ ⊂ ω and thus Γ a subgraph of Ω. Let, for the sake of simplicity,
ω ∩ γ̄ be denoted as γ̄, which is considering ω to be the universe.

Let T be a tunnel, which is a linear chain graph, starting with node ns, where
ns ∈ ω, and followed by H unique nodes randomly selected from γ. Let τ be the
set of nodes in T .
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Corollary 2. The cardinality of γ, ω and τ are respectively:
Card(γ) = Nγ ; Card(ω) = Nω; Card(τ) = H + 1

Lemma 1. The probability of a node ni to be part of τ , knowing that ni ∈ γ is:

P (ni ∈ τ | ni ∈ γ) =
H × Nω + Nγ

Nω × Nγ
(2)

P (ni ∈ τ | ni ∈ γ) = P (ni ∈ τ | ni ∈ γ & ns ∈ γ̄) × P (ns ∈ γ̄)

+ P (ni ∈ τ | ni ∈ γ & ns ∈ γ & ns = ni) × P (ns ∈ γ & ns = ni)

+ P (ni ∈ τ | ni ∈ γ & ns ∈ γ & ns �= ni) × P (ns ∈ γ & ns �= ni)

=
H

Nγ
× Nω − Nγ

Nω
+ 1 × 1

Nω
+

H

Nγ − 1
× Nγ − 1

Nω
=

H × Nω + Nγ

Nω × Nγ

Each of the tunnel’s terminal nodes (Gateway and Endpoint) engage in 1
tunnel-related link, but the intermediate nodes (Participant) engage in 2 tunnel-
related links. Accordingly, the sum of degrees resulting from one tunnel is 2×(H).

Corollary 3. The expected tunnel-related degree of a node ni to be part of τ ,
knowing that ni ∈ γ is:

Deglink(ni ∈ τ | ni ∈ γ) =
Hl × Nω + Nγ

Nω × Nγ
(3)

where Hl = 2 × H − 1. Following Lemma 1,

Deglink(ni ∈ τ | ni ∈ γ) =
2 × H − 1

H
×

(
H

Nγ
× Nω − Nγ

Nω
+

H

Nω

)
+ 1 × 1

Nω

Lemma 2. The probability of a node ni to be part of τ , knowing that ni ∈ γ̄ is:

P (ni ∈ τ | ni ∈ γ̄) =
1

Nω
(4)

P (ni ∈ τ | ni ∈ γ̄) = P (ni ∈ τ | ni ∈ γ̄ & ns ∈ γ̄) × P (ns ∈ γ̄)

+ P (ni ∈ τ | ni ∈ γ̄ & ns ∈ γ & ns = ni) × P (ns ∈ γ & ns = ni)

+ P (ni ∈ τ | ni ∈ γ̄ & ns ∈ γ & ns �= ni) × P (ns ∈ γ & ns �= ni)

= 0 × Nγ

Nω
+ 1 × 1

Nω
+ 0 × Nω − Nγ − 1

Nω
=

1

Nω

Considering two complete homogeneous graphs G1 and G2 of sizes Ng1 and
Ng2 respectively, where Ng1 > 2 and Ng2 > 2. Let g1 and g2 be the set of
nodes of G1 and G2 respectively. Let G1 be a subgraph of G2 which is in turn a
subgraph of Ω and thus g1 ⊂ g2 ⊂ ω.

Let Te be a tunnel, which is a linear chain graph, starting with node ns,
where ns ∈ ω, and followed by H unique nodes randomly selected from g1 and
g2 with weight α for selecting from g1 and β for selecting from g2 ∩ ḡ1. Let τe be
the set of nodes in Te.
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Corollary 4. Probability of randomly selecting a node from g1 and g2 with
weight α for selecting from g1 and β for selecting from g2 ∩ ḡ1 is:

P (ni ∈ g2) =

{
α

α×Ng1+β×(Ng2−Ng1) , ni ∈ g1
β

α×Ng1+β×(Ng2−Ng1) , ni ∈ g2 ∩ ḡ1
(5)

following Corollary 1 and replacing Sx with τe, x with H + 1, a with α, b with
β, Na with Ng1 and Nb with Ng2 − Ng1.

Following the definition of τe, we can conclude that:

Corollary 5. Probability of node ni to be part of τe, knowing that ni ∈ ω ∩ ḡ2
is:

P (ni ∈ τe | ni ∈ ω ∩ ḡ2) =
1

Nω
(6)

Similar to Lemma 2. τe formation is a weighted random sampling without
replacement, as described in Sect. 2. We can conclude, following Theorem 1 and
Lemma 1, that:

Lemma 3. Probability of node ni to be part of τe, knowing that ni ∈ g1 is:

P (ni ∈ τe | ni ∈ g1) =
1

Nω
(1 + (Ng1 − 1) × Δg1(−1, 0))

+ (Ng2 − Ng1) × Δg1(0,−1) + (Nω − Ng2) × Δg1(0, 0)) (7)

where Δg1(i, j) = Pr(H,α, β,Ng1 − i,Ng2 − Ng1 − j)

Corollary 6. The expected tunnel-related degree of a node ni to be part of τe,
knowing that ni ∈ g1 is:

Deglink(ni ∈ τe|ni ∈ g1) =
(

P (ni ∈ τe|ni ∈ g1) − 1
Nω

)
×

(
2H − 1

H

)
+

1
Nω

(8)

Similar to Corollary 3

Symmetrically, this discussion can be extended to g2 ∩ ḡ1 by switching α
with β and Ng1 with Ng2 − Ng1. Accordingly, we can conclude that:

Lemma 4. Probability of node ni to be part of τe, knowing that ni ∈ g2 ∩ ḡ1 is:

P (ni ∈ τe | ni ∈ g2 ∩ ḡ1) =
1

Nω
(1 + (Nω − Ng2) × Δg2(0, 0))

+ (Ng1) × Δg2(0,−1) + (Ng2 − Ng1 − 1) × Δg2(−1, 0)) (9)

where Δg2(i, j) = Pr(H,β, α,Ng2 − Ng1 − i,Ng1 − i)

Corollary 7. The expected tunnel-related degree of a node ni to be part of τe,
knowing that ni ∈ g2 ∩ ḡ1 is:

Deglink(ni ∈ τe | ni ∈ g2 ∩ ḡ1) =(
P (ni ∈ τe|ni ∈ g2 ∩ ḡ1) − 1

Nω

)
× 2H − 1

H
+

1
Nω

(10)

Similar to Corollary 3
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5 I2P Network Structure

Each router is theoretically connected to all other routers, but maintains a
smaller set of active connections. Those connections are due to the tunnels
formed by the router and those tunnels the router is invited to join, as dis-
cussed in Sect. 2. It was shown in Sect. 4 that a router is invited to join a tunnel
with a probability proportional to the set it belongs to. We can thus predict
that a router’s degree (number of active connections) is proportional to the set
it belongs to. I2P assigns each router to one of its 4 sets (and indirectly to
the larger sets) which are: high capacity ⊂ fast ⊂ standard ⊂ RouterInfos, as
discussed in Sect. 2. Those sets were resembled in Sect. 4 as γ ⊂ g1 ⊂ g2 ⊂ ω.

Each router creates two types of tunnels, as presented in Sect. 2, where each
type has at least one inbound and one outbound tunnels. Routers manage tun-
nels using tunnel pools, but let’s consider for now that each router has four
different tunnels: inbound communication, outbound communication, inbound
exploratory and outbound exploratory. Accordingly, the I2P network has 2×Nω

communication tunnels and 2 × Nω exploratory tunnels. We can thus calculate
the expected degree of each router.

Lemma 5. The degree of a router in set “high capacity” (ni ∈ γ) is expected to
be:

Deg(ni ∈ γ) = 4 + 2HNω +
4H − 2

H
((Ng1 − 1) × Δg1(−1, 0)

+ (Ng2 − Ng1) × Δg1(0,−1) + (Nω − Ng2) × Δg1(0, 0))) (11)

The degree of node ni (number of active connections), where ni ∈ γ, is:

Deg(ni ∈ γ) = Card(τ) × Deglink(ni ∈ τ | ni ∈ γ)
+ Card(τe) × Deglink(ni ∈ τe | ni ∈ γ)

Card(τ) = Card(τe) = 2 × Nω.
Deglink(ni ∈ τ | ni ∈ γ) from Corollary 3, Eq. 3.
Deglink(ni ∈ τe | ni ∈ γ) = Deglink(ni ∈ τe | ni ∈ g1) defined in Corollary 6,
Eq. 8.

Lemma 6. The degree of a router in set ”fast” (ni ∈ g1 ∩ γ̄) is expected to be:

Deg(ni ∈ g1 ∩ γ̄) = 4 +
4H − 2

H
((Ng1 − 1) × Δg1(−1, 0)

+ (Ng2 − Ng1) × Δg1(0,−1) + (Nω − Ng2) × Δg1(0, 0))) (12)

The degree of node ni (number of active connections), where ni ∈ g1 ∩ γ̄, is:

Deg(ni ∈ g1 ∩ γ̄) = Card(τ) × Deglink(ni ∈ τ | ni ∈ g1 ∩ γ̄)
+ Card(τe) × Deglink(ni ∈ τe | ni ∈ g1 ∩ γ̄)

Card(τ) = Card(τe) = 2 × Nω.
Deglink(ni ∈ τ | ni ∈ g1 ∩ γ̄) = P (ni ∈ τ | ni ∈ γ̄) defined in Lemma 2, Eq. 4.
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Deglink(ni ∈ τe | ni ∈ g1 ∩ γ̄) = Deglink(ni ∈ τe | ni ∈ g1) defined in Corollary
6, Eq. 8. Accordingly,

Deg(ni ∈ g1 ∩ γ̄) = (2 × Nω) × (
1

Nω
+(

P (ni ∈ τe | ni ∈ g1) − 1
Nω

)
×

(
2 × H − 1

H

)
+

1
Nω

)

Lemma 7. The degree of a router in set ”standard” (ni ∈ g2 ∩ ḡ1) is expected
to be:

Deg(ni ∈ g2 ∩ ḡ1) = 4 +
4H − 2

H
((Nω − Ng2) × Δg2(0, 0)

+ (Ng1) × Δg2(0,−1) + (Ng2 − Ng1 − 1) × Δg2(−1, 0)) (13)

The degree of node ni (number of active connections), where ni ∈ g2 ∩ ḡ1, is:

Deg(ni ∈ g2 ∩ ḡ1) = Card(τ) × Deglink(ni ∈ τ | ni ∈ g2 ∩ ḡ1)
+ Card(τe) × Deglink(ni ∈ τe | ni ∈ g2 ∩ ḡ1)

Card(τ) = Card(τe) = 2 × Nω.
Deglink(ni ∈ τ | ni ∈ g2 ∩ ḡ1) = P (ni ∈ τ | ni ∈ γ̄) defined in Lemma 2, Eq. 4.
Deglink(ni ∈ τe | ni ∈ g2 ∩ ḡ1) defined in Corollary 7, Eq. 10. Accordingly,

Deg(ni ∈ g2 ∩ ḡ1) = (2 × Nω) × (
1

Nω
+(

P (ni ∈ τe|ni ∈ g2 ∩ ḡ1) − 1
Nω

)
×

(
2 × H − 1

H

)
+

1
Nω

)

The degree of node ni (number of active connections), where ni ∈ ω ∩ ḡ2, is:

Deg(ni ∈ ω ∩ ḡ2) = Card(τ) × P (ni ∈ τ | ni ∈ ω ∩ ḡ2)
+ Card(τe) × P (ni ∈ τe | ni ∈ ω ∩ ḡ2)

Card(τ) = Card(τe) = 2 × Nω.
P (ni ∈ τ | ni ∈ ω ∩ ḡ2) = P (ni ∈ τ | ni ∈ γ̄) defined in Lemma 2, Eq. 4.
P (ni ∈ τe | ni ∈ ω ∩ ḡ2) defined in Corollary 5, Eq. 6. Accordingly,

Deg(ni ∈ ω ∩ ḡ2) = (2 × Nω) × 1
Nω

+ (2 × Nω) × 1
Nω

= 4

Lemma 8. The degree of a router in set ”RouterInfos” (ni ∈ ω∩ ḡ2) is expected
to be:

Deg(ni ∈ ω ∩ ḡ2) = 4 (14)

Theorem 2. The degree of a router is expected to be:

Deg(ni) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Deg(ni ∈ γ), if ni ∈ γ

Deg(ni ∈ g1 ∩ γ̄), if ni ∈ g1 ∩ γ̄

Deg(ni ∈ g2 ∩ ḡ1), if ni ∈ g2 ∩ ḡ1

Deg(ni ∈ ω ∩ ḡ2), if ni ∈ ω ∩ ḡ2

(15)
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(a) (α = 1, β = 10) (b) (α = 2, β = 1) (c) (α = 5, β = 1)

(d) (α = 10, β = 1) (e) Simulated I2P network

Fig. 3. Validating I2P Model vs. Simulation. Figures (a)-(d) represent simulated aver-
age degree distribution (bar), per node type, vs. predicted (line). Network configura-
tion: (Nω = 1000, Ng2 = 500, Ng1 = 75, Nγ = 30, H = 3). Figure (e) illustrates the
simulated I2P network where red, green, yellow and gray represent high capacity, fast,
standard and RouterInfo sets respectively. Black and blue links represent communica-
tion and exploratory respectively.

6 Validation

The aim of this section is to validate the developed model and its ability to
describe the I2P network that emerges from the current peer selection mech-
anism. First, we simulated I2P’s peer selection mechanism and its emerging
network structure using Netlogo, where the code is shared [2] for result repro-
ducibility and to help researchers visualize I2P’s expected structure. Figure 3(e)
shows a simulated I2P network that emerged from the current peer selection
mechanism. The routers are colored following Fig. 1(d) where red, green, yellow
and gray represent high capacity, fast, standard and RouterInfo sets respec-
tively. It is worth noting that this network was configured as follows: (Nω = 70,
Ng2 = 50, Ng1 = 30, Nγ = 20, H = 1, α = 1, β = 1). This network does not
represent the real network sizes presented in Sect. 2, but has been modified for
visibility. It is also worth noting that the black links represent communication
tunnels while the blue links represent the exploratory tunnels.
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Figure 3 shows the simulated average degree distribution (per node type)
vs. the I2P model described in Theorem 2. The bars represent averaged degree
distribution of the simulated I2P network, while the lines present that predicted
by the I2P model. It can be seen that the model was able to accurately predict
the I2P network, which emerged from the current peer selection mechanism.
The model has been tested (against the simulated I2P network) for a wide range
of configurations and was able, in each time, to accurately predict the network
structure. The remaining results were not added due to lack of space.

7 Conclusion

This work has laid the theoretical foundation for studying the I2P network
through modeling its degree distribution and validating the results. This work
should help in understanding I2P’s key network characteristics such as resilience,
obfuscation and minimum attackers/routers ratio to exploit the network. This
work should also help in measuring current peer selection mechanism’s accuracy
as a prerequisite for answering I2P’s major open research questions.
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Abstract. The world economy is experiencing the novel adoption of
distributed currencies that are free from the control of central banks.
Distributed currencies suffer from extreme volatility, and this can lead
to catastrophic implications during future economic crisis. Understand-
ing the dynamics of this new type of currencies is vital for empower-
ing supervisory bodies to behave proactively as well-informed planners
rather than reactively as incident responders. Bitcoin, the first and dom-
inant distributed cryptocurrency, is still notoriously vague, especially for
a financial instrument with market value exceeding $1 trillion. Model-
ing the Bitcoin Overlay Network poses a number of important theoretical
and methodological challenges. This drastically undermines the ability to
predict key features such as network’s resilience. In this work, we devel-
oped Evolutionary Random Graph, a theoretical model that describes
the network of bitcoin miners. The correctness of this model has been
validated using real and simulated bitcoin data.

Keywords: Bitcoin · Blockchain · Random graph · Scale-free
networks · Evolutionary random graph · Scaling laws

1 Introduction

Scale-free networks [2,3,6] evolved attempting to describe the dynamics of real
networks that other graphs failed to describe, mainly Erdös and Rényi’s random
graph [15]. New real-world information networks such as BitOverNet (Bitcoin
Overlay Network), the network of miners supporting all bitcoin transactions, do
not show scale-free properties and fail to be described by the graphs existing in
literature [17,22]. As indicated earlier, theorizing the network’s dynamics yields
important benefits and BitOverNet is not an exception. Additionally, our lack
of understanding of bitcoin overlay’s network dynamics is resulting in numerous
problems such as forking and valuation.

To deal with those shortcomings, two approaches can be followed namely
physical network measurement (probing) and network modeling. The first
method only measures a snapshot of the network, fails to predict its dynamics
and accordingly fails to predict the network’s resilience, tipping points and other
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1143, pp. 371–383, 2024.
https://doi.org/10.1007/978-3-031-53472-0_31
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important properties. Although being trivial, all existing probing techniques fail
to measure and map the BitOverNet as shown in Sect. 2. The community does
not agree on a theoretical model for BitOverNet, which is the second method,
where some researchers describe it as Mandala [25] while others disapprove [18].
This work is the first, to the best of our knowledge, to successfully build a
grounded mathematical model for BitOverNet. It is worth noting that this work
focuses on BitOverNet not “Bitcoin Transaction Network” which was studied in
[24,26].

The motivation behind this work is modeling the BitOverNet and identifying
its key properties and thus laying the theoretical foundation for studying the
network’s properties such as resilience and valuation. The main contributions of
this work are as follows:

1. Show that scale-free networks and other network models (graphs) found in
literature are not able to describe the BitOverNet.

2. Propose evolutionary random graph, show that it describes the BitOverNet
and show that it predicts the properties of the BitOverNet. This is the first
model to describe and predict the properties of BitOverNet.

3. Show the correctness of proposed model in predicting the current properties
of the BitOverNet. The model was tested against real collected data.

4. Deduce BitOverNet’s key graph properties and lay the theoretical foundation
for studying the network’s key properties.

In Sect. 2 we will survey existing physical network measurement techniques
(probing) developed for bitcoin. We will model the probability density func-
tion followed by the BitOverNet in Sect. 3. We will also propose the graph that
describes the BitOverNet and name it “Evolutionary Random Graph”. Based on
“Evolutionary Random Graph”, we will calculate key graph properties in Sect. 4
and validate its adequacy in predicting the BitOverNet in Sect. 5. Finally, Sect. 6
concludes this work.

2 Related Work

Lischke and Fabian [19] analyzed the public transaction network history of the
first four years of Bitcoin with respect to economic and network aspects by
introducing benchmark data. Their analysis showed that large portions of the
network follow a power law distribution and can be considered as scale-free net-
works. It is worth noting that their study focuses on Bitcoin transaction network,
which is a different layer than BitOverNet. Deshpande et al. [11] developed a
framework named BTCmap to discover and map the Bitcoin network topology.
The framework includes two modules, sniffer that communicate with real peers;
and Bitcoin peer emulator for outbound neighbors’ selection and generate the
topology. Their analysis showed that the online peers list remains valid during
56 min 40 s. Within this duration, BTCmap requested more than 8200 reachable
peers to map the visible part of the real Bitcoin network topology. Neudecker
and Hartenstein [21] reviewed different attacks on the network layer of permis-
sionless blockchains [7,28]. They showed that there is a lack of models that
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analyze and formalize the tradeoffs of most network design decisions of permis-
sionless blockchains. They emphasized that simulation-based approaches could
cope with these limitations and are suited for the analysis of the network layer
of permissionless blockchains.

Delgado-Segura et al. [10] presented TxProbe, a technique for reconstruct-
ing the Bitcoin network topology. They validated their reconstructing topology
technique on Bitcoin testnet and showed that the precision and recall surpassing
90%. Essaid et al. [16] proposed a real-time Bitcoin-based topology discovery
system for Bitcoin P2P links with the use of a customized version of the Page-
Rank algorithm that can determine in real-time which nodes require deeper
graph analysis. Ben Mariem et al. [4] presented a Bitcoin crawler that is able to
discover and track all the active nodes of the BTC P2P network and use it to
analyze and characterize the BTC network topology and main properties from a
purely network measurements-based approach. Eisenbarth et al. [14] presented
an open measurement dataset on the Bitcoin p2p network. They assessed their
crawler soundness and made it available with the used scripts to perform analysis
to provide facilities to reproduce and extend the study.

Donet et al. [13] presented an analysis of the collected data of the decen-
tralized P2P network identifying more than 872000 different Bitcoin nodes. The
analysis showed that the Bitcoin P2P network is homogeneously spread all over
the world, with some exceptions on very low populated areas and underdevel-
oped countries. Park et al. [23] presented a comparative measurement study of
nodes in the Bitcoin network by scanning the live Bitcoin network for 37 d in
2018 and compare them with the data reported by prior work in 2013–2016.
Their measurements showed that there are approximately 1 million users in the
Bitcoin networks, but only around 8500–23000 are full node peers that partic-
ipate in information propagation. Miller et al. [20] introduced AddressProbe, a
technique that discovers peer-to-peer links in Bitcoin, and apply this to the live
topology, within the discovered topology, they found “influential” nodes that
appear to directly interface with a hidden topology that consists of mining pools
that are otherwise not connected to the public Bitcoin network.

The surveyed research fails in mapping the BitOverNet because of the
reliance on physical probing techniques which are limited to the visible part
of the network. Additionally, even if physical mapping is successful, the resul-
tant empirical measurement lacks generalizability and is limited to one instance
of the network (captured at one moment in time).

3 Evolutionary Random Graph

BitOverNet can be modeled as having N connected nodes, when node (N + 1)
gets introduced, it gets connected to each other node with the same probability
p(N+1) = p

N , as shown in Algorithm 1. It is similar to random networks in the
way that a new node connects equiprobably to all existing nodes, but as more
nodes join the network, the probability of connection decreases. In bitcoin, each
new node has to establish a fixed number of outgoing connections called m. It is
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Algorithm 1. Node addition in Evolutionary Random Graph
1: procedure Add-node-evol-random(N+1)
2:
3: for i ∈ [1, n] do
4: if (random(0, 1) < p/N) then
5: link(i, N + 1) � link node i to the new node
6: end if
7: end for
8: end procedure

worth noting that for implementation purposes, every released “Bitcoin Core”
version has a hard-coded list of IP addresses that were available during the time
the specific version was released [12]. This list does not create any guarantees
about the availability of those addresses, else this centrality results in a fatal
flaw. We propose “Evolutionary Random” graph as a theoretical model that
describes how BitOverNet behaves, as shown in Algorithm 1.

Lemma 1. After the Nth node join the network, node i should have received in
average Λi links, where:

Λi = max(m − i, 0) + m × (HN−1 − Hmax(m−1,i−1)) (1)

where H is the harmonic number. Let m,x, i,N ∈ N where:

– m is the fixed number of neighboring connections initiated by a new node
– x is the network size (number of nodes already in the network)
– i is the node’s arrival index (number of nodes in the network before node i)
– N is the total number of nodes to join the network (final network size)

For every new node joining the network, an existing node will receive a neigh-
boring request from the new node with probability equals to:

P =

{
1 x ≤ m,

m
x−1 x > m

If node i arrived, where i ≥ m, and then two more nodes arrived after it,
then node i will receive in average m

i−1 + m
i incoming neighboring requests. The

number of incoming neighboring requests node i will receive, in average, when
all the N nodes arrive is:

Λi =

{∑m
x=i+1 1 +

∑N
x=m+1

m
x−1 i < m,∑N

x=i
m

x−1 i ≥ m

=⇒ Λi = max(m − i, 0) +

{
m × ∑N

x=m+1
1

x−1 i < m,

m × ∑N
x=i+1

1
x−1 i ≥ m
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=⇒ Λi = max(m − i, 0) +

{
m × (HN−1 − Hm−1) i < m,

m × (HN−1 − Hi−1) i ≥ m

=⇒ Λi = max(m − i, 0) + m × (HN−1 − Hmax(m−1,i−1))

Corollary 1. The number of incoming neighboring requests, node i receives, is
a random variable with probability mass function:

P (x = k, i) =
Λk

i

k! × eΛi
(2)

The incoming neighboring requests, a node receives, are discrete consecutive
random events and thus the number of incoming neighboring requests is a discrete
random variable following Poisson distribution.

Theorem 1. Evolutionary Random Graph’s degree distribution is:

P (k) =
N∑

i=1

Λk
i

k! × eΛi
(3)

The probability a node receives k incoming neighboring requests depends on
i, which is the node’s arrival index. Each node’s probability mass function is a
shifted version of the others and thus the graph’s probability mass function is the
average of the shifted probability mass functions (shifted by i). Accordingly, the
number of incoming neighboring requests (incoming links) a node receives is a
random variable with probability mass function:

Pk = 1
N × ∑N

i=1 P (x = k, i) = 1
N × ∑N

i=1
Λk

i

k!×eΛi

Accordingly, the degree distribution is: P (k) =
∑N

i=1
Λk

i

k!×eΛi

To measure the accuracy of our bitcoin model, we simulated a BitOverNet
(of 1000 miners) and measured the number of peers having k links (degree distri-
bution). Figure 1(a) shows the degree distribution of the bitcoin network (green
bars) in addition to our predicted bitcoin model (red line) and a fitted power-
law distribution (black line). It can be easily seen that BitOverNet does not
show scale-free properties and that evolutionary-random graph nicely predicts
the dynamics of the bitcoin network. We can now utilize evolutionary-random
graph as a foundation for understanding the BitOverNet, predicting forks and
considering its implications.

4 Key Graph Properties

Network diameter has been defined by [1] as “the maximal distance between any
pair of its nodes.” Random graphs have, in average, the diameter [1,8]:

drandom =
ln(N)
ln(pN)

=
ln(N)
ln(〈k〉) (4)
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where k is the number of links per node and 〈k〉 is the average number of links.
Scale-free networks scale better than random graphs when it comes to diameter
which can be represented as [1]:

dscale−free = A × ln(N − B) + C (5)

(a) BitOverNet’s incoming link distribution.
The green bars represent the BitOverNet’s in-
coming link distribution, which are considerably
different from scale-free’s powerlaw distribution
(black line). On the contrary, it is nicely pre-
dicted by evolutionary random graph (red line).

(b) Radius and diameter verifica-
tion: simulated BitOverNet and evo-
lutionary random graph. The x-axis
represents the network size and the
y-axis represents the radius and di-
ameter

Fig. 1. Coverage verification

where A, B and C are fitting configuration parameters. Its diameter tends
asymptotically to:

dscale−free ∝
{

ln(N)
ln(ln(N)) λ = 3, (Bollobas & Riordan [6])

ln(N) λ > 3, (Cohen and Havlin [9])

Theorem 2. Evolutionary Random Graph’s diameter and radius are:

der =
ln(N − 2 × m)

ln(
∑∞

k=1(k + m) × Pk)
+ 2 (6)

rer =
ln(N − m)

ln(
∑∞

k=1(k + m) × Pk)
+ 1 (7)

Evolutionary Random Graph’s diameter can be calculated theoretically, using
the same method used in [1,8], but following evolutionary random graph (Eq. 3),
as: (

∑∞
k=1(k + m) × Pk)(der−2) = N − 2 × m where the left side of the equation

calculates the average number of nodes reached in (diameter − 2) steps. The
−2 is used to reserve the first and last steps only for peripheral nodes which
are only connected through the m outgoing links without incoming links. This
concept is not available in graphs that do not distinguish between outgoing and



Modeling the Dynamics of Bitcoin Overlay Network 377

incoming neighbor requests such as random graph and scale-free. The right side
of the equation is total number of nodes, while excluding the direct neighbors
of the two periphery nodes reserved on the left side. Solving for der results in:
der = ln(N−2×m)

ln(
∑∞

k=1(k+m)×Pk)
+ 2

In the same context, the graph’s radius can be calculated, following the radius
definition in [9], as: (

∑∞
k=1(k + m) × Pk)(rer−1) = N − m

where the left side of the equation calculates the average number of nodes
reached in (radius) steps, assuming that we are starting from a highly con-
nected node (high centrality score). For calculating the radius, the differentiation
between the incoming and outgoing neighbor requests is not needed, for the ini-
tiator, and thus the calculation is similar to [9]. The terminal node is peripheral
and accounts for the 1 in (rer −1). The right side of the equation is total number
of nodes to be reached, while excluding the direct neighbors of the periphery node
reserved on the left side. Solving for rer results in: rer = ln(N−m)

ln(
∑∞

k=1(k+m)×Pk)
+ 1

Corollary 2. Assuming constant processing time at each node and constant
propagation time at each link, convergence, the time needed for a message to
be broadcasted from one node to all the nodes in the network, is:

converr ≤ conver ≤ converd (8)

where converr = rer × Shd, converd = der × Shd and Shd is the single hop
delay i.e. the time needed for a message to be transmitted over a link, received
and processed by the receiving node and have it ready for broadcasting (constant
processing time at a node + constant propagation time at a link).

It is beneficial, in many cases, to calculate the conver time of a block, but
it is also very insightful to study the propagation of the block and calculate the
number of reached nodes as a function of time.

Lemma 2. Assuming constant processing time at each node and constant prop-
agation time at each link, coverage, the number of nodes that have received the
broadcasted block, is:

coverr(t) ≥ cover(t) ≥ coverd(t) (9)

where cover(t) is the coverage of the generated block, coverr(t) is the coverage
lower bound representing block generated by a central node and coverd(t) is the
coverage upper bound representing block generated by a periphery node.

Following the definition, we can deduce that at time 0 only the initial issuer
has the block: coverr(0) = cover(0) = coverd(0) = 1
We can also deduce that at respective conver time, the block reached all the
nodes: coverr(converr) = cover(conver) = coverd(converd) = N

Theorem 3. Evolutionary Random Graph’s coverage bounds are:

coverr(t) =

⎧⎪⎨
⎪⎩

1 t < Shd

(
∑∞

k=1(k + m) × Pk)(t
′) Shd ≤ t < converr

N t ≥ converr

(10)
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coverd(t) =

⎧⎪⎨
⎪⎩

1 t < Shd

m + (
∑∞

k=1(k + m) × Pk)(t−1) Shd ≤ t < converd

N t ≥ converd

(11)

where t′ = min(t,converr)
Shd in Eq. 10 and t′ = min(t,converd)

Shd in Eq. 11.

Following the assumptions in Lemma 2, block propagation events happen, the-
oretically, in multiples of Shd and thus it makes sense to convert the continuous
time t into discrete hops. It is worth reminding that conver is radius×Shd (tak-
ing lower bound as example), following Corollary 2, and thus t

Shd is a coverage
hop using the same unit as radius which is hops. It is also worth noting that any
time beyond conver will not result in any coverage events and thus the discrete
representation of time, we will use, is min(t,conver)

Shd , where conver depends on
the initial broadcaster of the block, following Theorem 2.

For the lower bound, the first and third cases are trivial following Lemma 2.
The second case is based on Eq. 7. The upper bound of t′ is (rer −1) and thus the
second case’s upper bound is N −m following Theorem 2. The last hop is m, also
following Theorem 2 which specifies that the last node is peripheral. This makes
coverage reaches N precisely. For the upper bound, The first and third cases are
trivial following Lemma 2. The second case is based on Eq. 6. The upper bound
of t′ is (der −1) and thus the upper bound of t′ −1 is (der −2). The second case’s
upper bound is N −2×m following Theorem 2. The last hop is m, also following
Theorem 2 which specifies that the last node is peripheral. This makes coverage
reaches N precisely. It is worth noting that second case’s m is due to the first
peripheral hop.

In Sects. 3 and 4, we deduced mathematically the graph that describes
BitOverNet and we calculated some of its key properties namely, radius, diame-
ter, convergence and coverage. To validate the adequacy of “Evolutionary Ran-
dom graph” in predicting BitOverNet, Sect. 5 is spent on validating the predic-
tions using real data collected from the BitOverNet.

5 Verification of Key Graph Properties

The correctness of the proposed distribution, Eq. 3, and its ability to describe
BitOverNet’s link degree has been validated in Sect. 3, especially in Fig. 1(a). In
this section, we validate the correctness of the key graph properties deduced in
Sect. 4.

5.1 Verification: Diameter and Radius

In this section we verify the correctness of Theorem 2, namely der of Eq. 6 and rer

of Eq. 7. The correctness of der and rer is verified against simulated BitOverNet.
Verifying against the real bitcoin network is not possible for two reasons:
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1. As discussed in Sect. 2, the existing probing techniques are only able to mea-
sure the reachable BitOverNet and thus unable to accurately measure the
whole BitOverNet. Verifying against inaccurate measurements defy its pur-
pose.

2. Even if accurate measurements were possible, we can only verify the instan-
taneous network size, but using simulated BitOverNet, the accuracy of the
deduced properties has been verified over 4 orders of magnitude.

To measure the accuracy of the deduced radius and diameter, we simulated
the BitOverNet with different sizes (values of N between 200 and 100000) and
measured its network radius and diameter (averaged over 100 iterations). The
measurements of the simulated BitOverNet and the deduced radius and diameter
can be seen in Fig. 1(b) where the x-axis represents the network size and the y-
axis represents the radius and diameter. As can be seen in Fig. 1(b), the deduced
radius and diameter are able to predict the simulated BitOverNet for network
sizes spanning over 4 orders of magnitude.

5.2 Verification: Coverage

As discussed in Sect. 5.1, the measurements generated from existing probing
techniques are not complete, and thus cannot be used to verify the correctness
of diameter and radius. However, the measurements reported by [5,27] include
timestamps of the first 1000 miners receiving a newly generated block. Those
measurements are enough to verify the correctness of the coverage function (The-
orem 3) for the initial 1000 nodes. We extracted from [5,27] 1000 bitcoin blocks
generated by the BitOverNet between Wednesday, December 22, 2021 5:57:12
AM (GMT) and Wednesday, December 22, 2021 4:12:01.884 PM (GMT). Out
of the 1000 blocks we list, in Table 1, 10 blocks ranging from the block with
fastest coverage, out of the 1000 observed blocks, to that with slowest cover-
age. Those 10 blocks span the coverage spectrum. In Table 1, the first column
includes index, which is a number we give to each of the 10 short-listed blocks.
The second column includes time, which is the generation time of the block. The
third column includes hash, which is the PoW hash. It is worth noting that time
and hash are enough to uniquely identify a bitcoin block.

Those 10 blocks are plotted in Fig. 2(a), where the x-axis represents the
number of miners reporting the reception of the newly generated block and the
y-axis represents the arrival time. This figure illustrates the coverage, for the first
1000 miners, for each of the ten plotted blocks. Block 3 has the fastest start,
which resembles a block generated by a miner with high centrality (central).
This coverage is the closest to coverr. Block 7 resembles a block generated by
a miner with low centrality (peripheral). This coverage is the closest to coverd.
It is worth noting that neither block 3 nor block 7 are the exact bounds defined
in Theorem 2. The solid lines represent the empirical coverage bounds (blocks
3, 7 and 8) and the dotted lines represent the coverage spanning between the
empirical coverage bounds. We can also observe that the coverage function is
behaving like a step function, where the steps are 2000 ms. This step is in fact the
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Shd and thus we can conclude that the Shd is 2000 ms. To verify the correctness
of coverage function (Theorem 3) for the initial 1000 nodes, we averaged the
coverage of each of the 10 blocks listed in Table 1 and compared it to the coverage
function (Theorem 3) as shown in Fig. 2(b). As can be seen in Fig. 2(b), the
coverage function (coverd(t) and coverr(t)) envelopes the averaged coverage of
real bitcoin blocks. This verifies the correctness of the Theorem 3.

(a) Coverage of blocks 3, 7 and 8.
Blocks 3 and 8 resemble blocks gener-
ated by a central node. Block 7 resem-
bles a block generated by a peripheral
node.

(b) Coverage function envelop-
ing the average coverage of real
bitcoin blocks, showing its abil-
ity to predict block propagation
and coverage

Fig. 2. Coverage verification

Table 1. List of 10 sample blocks that span the coverage spectrum

Block Information

Index Time (12/22/2021) Hash

1 6:13:50.016 0048aff673f37dd5c5020246b630a00cfc4b2004c29afe097a0c0fa4043abc1a

2 6:17:45.978 3ea038dfc7083e96030d18e757f17022d985ffbeaa93eedaa18c3656d0996b74

3 6:15:15.931 15bf68a078a25bf7b2f0f53830d8fb98478f5ba54cc533e22412eb3ef55dd79d

4 6:17:53.707 da0128876c568a1cceaf54f7e99e7a74b062e8e683566d9f56aff20544de6807

5 6:14:25.960 5f8aa6c0bb36c5746e5779aff54e9109ab771799c6b7542f84027c3651d967a3

6 6:12:51.964 846a4be7a47d5e2bde2fdde423def3f38b785425904918d12c09c43aee65a5c1

7 6:12:12.008 6e64e3aa92e871c6ae3ce59390c1e6e3f5710c5c1f9511235833c96462ae7561

8 6:15:57.937 a39b5ce4b641f437453bd0f24c64f184c3b3eba62896eb75b55cfd9f4e9e0b08

9 6:13:15.377 fb78c02bab5091e442279616fe5060bd69315b05838e0adb036e5b39faa5b224

10 6:13:41.417 403f8a3d23d56c446e032f18627fe9c58c9fa17b60432d84ab444186f2cf8f79
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6 Conclusion

Peer-to-peer overlay networks including BitOverNet, blockchain, Tor anonymiza-
tion network (onion router) and Invisible Internet Project (I2P Garlic Routing)
are free from spatial-temporal restrictions and thus unexplainable using existing
theoretical lenses. The lack of theoretical model to understand those peer-to-peer
overlay networks has significant implications such as:

– Inability to predict the dynamics and thus manage the characteristics of Peer-
to-peer overlay networks.

– Inability to model network’s tipping points, disintegration and other network
failures, which can be the result of malicious activities.

– Inability to determine whether the network is efficiently operating.

In this work, we aimed at developing a theoretical model for explaining the
behavior of BitOverNet. To the best of our knowledge, this work is the first in this
direction. The contributions of this work are multi-folded. First, we showed that
BitOverNet does not follow scale-free networks or other network models (graphs)
found in literature. Second, we proposed evolutionary random graph and showed,
using real data, its ability to describe and predict the current properties of the
BitOverNet. Third, we developed key graph properties, which are important for
proactively managing the BitOverNet. As a future work, we plan on building on
top of this theoretical layer to investigate key bitcoin properties such as resilience
and valuation. We are also planning on investigating other peer-to-peer overlay
networks by generalizing evolutionary random graph to overcome its specificity
to BitOverNet.
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Abstract. We propose an original density estimator built from a cloud
of points X ⊂ R

d. To do this, we consider geometric graphs G(X , r) on
the cloud. These graphs depend on a radius r. By varying the radius,
we see the emergence of large components around certain critical radii,
which is the phenomenon of continuum percolation. Percolation allows
us to have both a local view of the data (through local constraints on
the radius r) and a global one (the emergence of macro-structures). With
this tool, we address the problem of galaxy filament extraction. The den-
sity estimator gives us a relevant graph on galaxies. With an algorithm
sharing the ideas of the Fréchet mean, we extract a subgraph from this
graph, the galaxy filaments.

Keywords: geometric graphs · continuum percolation · Fréchet
mean · galaxy filaments

1 Introduction

At scales of billions light-years, the observable universe—matter and light—does
not follow a uniform distribution but forms what are known as ‘large-scale struc-
tures’ [3,13]. These structures seem arranged hierarchically: 1◦ super-clusters of
galaxies (hyper-dense small volumes, sometimes called ‘knots’ or ‘nodes’); 2◦

‘sheets’ or ‘walls’ of galaxies ; 3◦ ‘filaments’ of galaxies. These different clusters
delimit large “voids” regions that are virtually empty of galaxies: they shape the
“cosmic web”, like a giant sponge or a spider’s web.

Astronomical surveys [1,2] now contain millions of galaxies, making it impos-
sible to extract these structures with the naked eye. Various types of algorithms
have been proposed to extract automatically these clusters, and particularly the
galaxy filaments. (Cf. the survey “Tracing the cosmic web” [22]). Most are based
on density estimators1 (two comparative studies: [12,14]). The density-based
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methods are often based on the Delaunay density estimator DTFE [28], estima-
tor derived from Delaunay triangulation; the estimated density being inversely
proportional to the area of the neighbouring triangles (the analogous exists with
Voronöı tiling). We will look at another classical density estimator used: The
K-Nearest Neighbours (K-NN) algorithm [6]. This very simple algorithm can
produce—with some refinements—impressive results. For example, the HDB-
SCAN hierarchical clustering algorithm [10] is based on the High-Density Levels
of the K-Nearest Neighbours density estimator.

Obtaining a filamentary structure naturally led to introduce graphs on the
galaxies (considered as points in space). As early as 1985, the pruned minimal
spanning tree [5] was proposed as a filamentary model.

More interesting is the idea proposed by Colberg [11] who also pruned min-
imal spanning tree and studied what happens at the percolation stages. The
percolation thresholds are directly linked to the types of structure that appear.
This is the key point to observe.

The Delaunay and K-Nearest Neighbours estimators have only a local view
of the data. K-NN estimator has good properties (consistency, calculation speed,
see monograph by Biau & Devroye [6]). However, obtaining consistency requires
that k tends to infinity. In practice, k is taken smaller than 10 and the number
of galaxies is insufficient too much hope in this estimator.

Percolation is a phenomenon which, under local constraints, can be observed
macroscopically: It is the precise moment when macro-structures appear. Perco-
lation allows us to have both a local view of the data (through local constraints
on the graph) and a global one (through the emergence of macro-structures).

If we assume galaxies are IID points plotted in space by an unknown measure
of density f , thanks to the hierarchical structures, we could identify galaxy
clusters with the highest density clusters [18,25], i.e. f−1([h; +∞)) = {x ∈
R

d | f(x) ≥ h}.
In this article we propose a new estimator for density levels and filament

extraction using geometric graphs [25]. If X denotes the cloud points and G(X , r)
the geometric graph of radius r built on these points, we vary r from 0 until the
percolation phases. At each radius r, we associate a cluster Σr ⊂ R

d, the density
level for radius r. Σr increases with r (like G(X , r)).

An intuitive idea for extracting filaments from the cluster Σr is to take its
medial axis [4,8]. However, we would not take advantage of the persistent infor-
mation (r can vary), nor the fact that we have a graph (with an induced dis-
tance). This is why we prefer to proceed as follows: increasing the radius r until
big components in G(X , r) appear. At this moment, we initialise a new filament
within the big component by its Fréchet mean [15]. As the component grows
with r, we add points to the filament so that the augmented filament satisfies a
minimum condition (similar to Fréchet’s mean minimization).

We show an example of such filament extraction on a synthetic 2D-image of
galaxies. At a glance, we compare our results with a stochastic method [29].

For a quantified comparison, we compare our density level estimator with
conventional density estimators for this type of problem (Delaunay estimator,
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K-Nearest Neighbours) on point cloud generated by a known density function f .
Our estimator is already showing very good results, especially for high-density
clusters.

2 Preliminaries

In this section, we introduce the mathematical background.

Geometric Graphs. Given a set X of points in R ⊂ R
d and a radius r, the

geometric graph G(X , r) is the undirected graph whose nodes are the points in
X , and whose edges join all the nodes that are at a distance less than r.

Percolation Phenomenon [9,23,25]. Let Hλ be a Poisson point process on R
d

of intensity λ and Hλ,0 := Hλ ∪ {0}. Denote p1(λ), p2(λ), . . . the probabilities
that the component containing origin in G(Hλ,0, 1) has exactly 1, 2, . . . nodes.
And p∞(λ) the percolation probability (this component is of infinite size):

p∞(λ) := 1 −
∞∑

k=1

pk(λ).

p∞(.) is an increasing function of λ; there exists a critical value λc (which
depends on the dimension d of the space) below which p∞(λ) = 0 (for λ < λc)
and above which p∞(λ) > 0 (for λ > λc). In the latter case, p∞(λ) can be
seen as the proportion of points that fall into the giant component (the second
component being of negligible size compared to the first).

This phenomenon of percolation, i.e. the appearance of a giant connected
component, is very interesting for modelling and studying numerous problems.
For example, the spread of a forest fire (the nodes being the trees, the neigh-
bourhood radius r the threshold below which a tree devoured by flames sets fire
to its neighbours). We can then deduce from the density of the forest whether
an outbreak of fire is likely to be naturally confined to a limited area or not.

2.1 Density Estimator and Density Levels

Various indicators exist for comparing probability measures, such as the
Kullback-Leibler divergence [14,21] or Wasserstein distance [24,32]. But what
do these tools mean when the provided density estimator is not integrable,
like the K-Nearest Neighbours estimator? There is a much stronger objection:
The Kullback-Leibler divergence and the Wasserstein distance do not take into
account the specific features of our problem: galaxy clusters to be identified are
highly hierarchical. We are asking for good relative accuracy (preserving density
hierarchy), not necessary absolute.

To have a tool that conforms to the hierarchical structure of clusters, we are
going to define a notion of density level inspired by the “High-Density Clusters”
introduced by Hartigan [18], cf. also the introduction of Penrose’s book [25].
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The High-Density Clusters of level h are the different connected components
of f−1([h; +∞)). Hartigan [19] showed that the connected components of geo-
metric graphs is a consistent estimator of these clusters in dimension 1.

Let P ∈ [0; 1] be a parameter representing the proportion of classified points
(those of highest density). To this proportion P , we can associate the density-
height hP defined as follows:

hP = inf
{

h |
∫

f≥h

f(x)dx ≤ P

}
.

Now, given a point x ∈ R
d, we attribute to x the first P such that x lies into

one of the clusters of level hP :

P : x ∈ R
d �→ P(x) := inf

{
P ∈ [0; 1] | x ∈ f−1 ([hP ; +∞))

}
.

Intuitively, P(x) represents the proportion of points that must be taken in the
cloud points for x to appear in one of the High-Density Clusters.

For convenience, we will consider the function 1 − P instead, which is thus
an increasing function of the density. It is this 1 − P function that we call the
map of density levels.

This hierarchical classification is perfectly suitable if we have a good estimate
of the proportion of galaxies which lie in each kind of clusters (superclusters,
walls, filaments [20]). If this knowledge is lacking, the proportion P (r) of classi-
fied points as a function of r can still be used to highlight percolation phases.

Comparison for the Identification of a Specific Cluster. We may wish to
compare two estimators for the correct identification of a particular cluster. We
can then use the following protocol, inspired by the Precision/Recall method:
Let CP be a cluster of level P (a connected component of level hP for the true
density function f) with volume |CP |. Let ĈP ′ be the corresponding empirical
cluster and |ĈP ′ | its volume. We can then define Precision and Recall :

Precision(P, P ′) =
|CP ∩ ĈP ′ |

|ĈP ′ | , Recall(P, P ′) =
|CP ∩ ĈP ′ |

|CP ′ | .

Comparison of Density Level Maps. Now suppose that we have a complete
density level map of a region R ⊂ R

d observed:

1 − P̂ : x ∈ R
d �→ 1 − P̂(x) ∈ [0; 1]

which is an estimator of the ground truth function 1−P. We can then take the p
norms (from the Lp space) to compare our estimators with the original function.

3 Our Method

Let us describe more accurately our method in this section. In three main steps:



388 L. Hauseux et al.

– Starting with a radius r equal to 0 and increasing it. For each radius r, we
construct G(X , r). From this graph, we retain only the connected components
with more nodes than a certain percolation threshold. We then look at the
proportion P of points lying into one of these major connected components.

– The associated estimator of the High-Density Clusters of level hP is a set
ΣP ⊂ R

d containing the points of the major connected components.
– Each time a large component appears, a new filament is created. (Filaments

are modelled by sub-graphs of connected components). Filaments are initial-
ized with the Fréchet mean of the component (for the distance induced on
the graph). Then, they grow progressively with the High-Density cluster.

Persistent Ingredients. By analogy with persistent homology (see the sur-
vey by Bobrowski & Kahle [7] ), we call ‘persistent’ the variational method of
observing what happens when the radius r varies.

3.1 Theoretical Advantage: The Percolation Rate

Percolation is a ‘fast’ phenomenon. Let H1 be a Poisson point process on R
2

with fixed intensity λ = 1: We only vary the radius r of the geometric graph
G(H1, r).

Starting with r = 1, percolation has not yet taken place. The largest com-
ponent therefore contains a proportion p∞(1) = 0 of the points. For r := rc =√

λc ≈ 1.2 [27,34], percolation occurs: A giant component appears2.
As soon as the giant component appears (for r ≥ rc), if we increase radius r

slightly, the probability of percolation p∞(r) approaches 1 very quickly. At this
point, the giant component includes almost all the points (a proportion p∞(r)).

The plot below3 shows a simulation of p∞(r) on R
2.

How can we measure the speed of percolation? From a certain radius, rmin,
the giant component becomes non-negligible in size compared with the cloud of
points. Suppose it contains ε ← 5% of the points. That is:

rmin := p−1
∞ (ε).

For another larger radius rmax ≥ rmin, the giant component encompass almost all
the points (a proportion 1− ε). We can consider the percolation to be complete:

rmax := p−1
∞ (1 − ε).

The quantity of interest is
rmax

rmin
.

2 But still p∞(rc) = 0. Although it is widely accepted that for any d ≥ 2, p∞(rc) = 0,
this has only been proved for d = 2 (cf. theorem 4.5 by Meester & Roy [23] and by
Tanemura for d sufficiently large [30]).

3 Thanks to Vinay Kumar [33] for sharing the data.

https://github.com/vinkumbr/Prob.fwding
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Fig. 1. Estimation of percolation probability p∞(r) in R
2 by simulation on giant

Random Geometric Graphs. c© [33]. With ε = 0.05, it gives the following results:
rmin = 1.15 and rmax = 1.30. Note that on this curve, p∞(r) is positive even if
r � rc ≈ 1.2; this is due to the approximation of R

2 by a finite square 251 × 251.

Suppose there are two large contiguous regions, of intensity λ1 and λ2 with
λ2 < λ1. From a certain radius r

(1)
min, percolation begins in the first region with

the highest λ1 intensity. To identify this region correctly without confusing it
with the neighbouring region of lower intensity λ2, the first percolation phase
must be ‘completed’ before percolation begins in the second region. In other
words, we want to have :

r(1)max < r
(2)
min.

Now, in R
d, r

(2)
min =

(
λ2
λ1

) 1
d × r

(1)
min and r

(2)
max =

(
λ2
λ1

) 1
d × r

(1)
max, the two regions

can therefore be correctly and distinctly identified if and only if :

rmax

rmin
<

(
λ2

λ1

) 1
d

.

(The quantity rmax
rmin

being independent of the intensity λ of the region).

Percolation will be all the faster as the ratio rmax
rmin

becomes close to 1. On
Fig. 1, for ε = 0.05, we can see that this ratio is indeed close to one: rmin = 1.15
and rmax = 1.30. Thus: rmax

rmin
≈ 1.30

1.15 ≈ 1.13 in R
2.

The ‘Percolation’-Graph. Introducing percolation ingredients into the geo-
metric graph is made in a very simple way: We set a robust percolation threshold
(e.g. PercolThreshold ← 50), and consider only connected components with
more than PercolThreshold nodes. We denote G|(X , r) the graph pruned of the
small connected components.

3.2 Filament Extraction from a Graph

In this sub-section, we fix the radius r of the pruned geometric graph G|(X , r) and
look at one of the big connected components, which is a sub-graph G(V,E) with
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vertices V and edges E. A filament Filament may already have been drawn on
this component (for previous radii). We have a distance d on this graph induced
by Euclidean distance between two neighbouring points. If x, y ∈ V are two
vertices, ShortPath(x, y) denotes the set of vertices of the shortest path (for the
distance d) from x to y in G.

The variable Centres denotes the set of vertices which are chosen to represent
Filament. The first centre is the Fréchet mean of G. FilNodes are the vertices
of Filament which join the Centres such that Filament is the Minimal Tree
spanning Centres nodes.

Algorithm 1. Filament extraction of a connected component G(V,E)
Centres � The centres of the pre-existing filament
FilNodes � Nodes of Filament
PercolThreshold ← 50 � The percolation threshold
while |Centres| < int(|V |/PercolThreshold) do � We search for a new centre

D ← {} � The sums of the distances to minimise
for x ∈ V do � x is the hypothetical new centre

NodesF ilament ← copy(FilNodes)
Branchx ← ShortPath(x, NodesF ilament) � Hypothetical new branch
NodesF ilament ← NodesF ilament ∪ Branchx

D[x] ← 0
for y ∈ V do

D[x] ← D[x] + d(y, NodesF ilament)2

end for
end for
x ← argmin(D) � The new centre chosen
Centres ← Centres ∪ {x}
FilNodes ← FilNodes ∪ Branchx

end while
Filament ← MinimalSpanningTree(FilNodes)
Returns Filament

Note that the first centre chosen with the Algorithm 1 is the Fréchet mean
[15] of the graph G(V,E). Moreother, the Filament result is a tree.

In some cases, we might want to ‘close’ the tree by inserting a loop and
introduce a closing post-processing algorithm.

A final post-processing consists of pruning the filamentary network obtained
of branches that are too small (e.g. those shorter than the radius r of the geo-
metric graph).

3.3 The Density Level Estimator

Thanks to all the concepts and tools defined above, we are now able to provide
an estimator of density levels. Let P ∈ [0; 1] be the proportion of ‘classified’
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points (lying in one of the great components). The associated radius is

rP = inf

{
r | | V ertices

(G|(X , r)
) |

| V ertices(G(X , r)) | ≥ P

}
.

At radius rP , the connected components of G(X , rP ) of size ≥
PercolThreshold represent a proportion P of the cloud point X . We have now
to find a volume of the space ΣP ⊂ R

d that fits best the classified points. An
intuitive solution, inspired by percolation theory (Boolean model), would be to
take the union of balls centred on these classified points:

ΣP :=
⋃

x∈Vertices(G|(X ,rP ))
B(x, R).

The radius R needs to be chosen. Usually, in continuum percolation theory,
we consider R = rP /2. But this radius is too small for our purpose: If we consider
the volume on the entire Boolean model at percolation stage:

Σ :=
⋃

x∈Vertices(G(X ,rc))

B(x, rc/2)

(also Σ ⊃ ΣP ), in R
2, Σ occupies only a proportion φc ≈ 0, 676 [27,34] of

the space. (φc is called the space coverage [17]). That is, Σ will not recover a
proportion 1 − φc of the space, equals by ergodicity to e−λcθd/2d (θd being the
volume of the unit ball in R

d). With a radius twice as large (our choice: R = rP ;
see on Fig. 2 an example), this un-recovered proportion of space is reduced to:
e−λcθ2 = (1 − φc)4 ≈ 0.01. Our experiments show that taking a larger radius
R (up to 1.5 × rP ) produces better results. Increasing R increases the Recall.
Taking R too large, however, can end up lowering Precision.

Fig. 2. Left: Density levels of f . Function support is a rectangle 24×17 subdivided into
sub-rectangles. A left high density ‘blob’(f ∝ 4); At the center, a thick ‘Filament’ (f ∝
3); Below a thinner one (f ∝ 2) and upper a very thin one (f ∝ 1). Between ‘Filaments’,
some ‘voids’ (f ∝ 1

2
). Right: 2000 IID points generated by f . The G(X , r ← 0.4) graph

edges and the density level volume associated Σr, with PercolThreshold ← 50.

The Density Level Map. The definition of the empirical density level map
1 − P̂ follows naturally: let x ∈ R

d, P̂(x) is the first P for which x lies in ΣP ,
i.e.

P̂(x) := inf {P ∈ [0; 1] | x ∈ ΣP } (with the convention inf(∅) = 0).
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On Fig. 4, the reader can see three examples of empirical density level maps
estimated on a cloud of points IID generated with density f (see Fig. 2).

4 Results

In this section, we first see an example of filament extractions on a synthetic 2D-
image of galaxies4 and compare visually with a stochastic method [29]. Second,
for a more quantified comparison, we compare density level estimators (ours,
Delaunay estimator, 10-Nearest Neighbours) on point cloud X generated by a
known density function f plotted on Fig. 2: A rectangular-shaped density map
(‘blob’ modelled by a large and high-density rectangle, ‘filament’ by a thin one).

Visual Comparison with Stochastic Method. Stochastic geometry meth-
ods have been proposed for extracting galaxy filaments [16,29,31]. A sheet of
Filament is represented by a rectangular box. Geometric priors are then intro-
duced on its shape, its density, its connectivity (or alignment) with the other
boxes, ... In the end, using techniques such as simulated annealing, the config-
uration that best fits the data is obtained. Figure 3 shows the result of such an
algorithm.

We apply Algorithm 1 (see below) to X with r varying from 0 to 5.2. As r
grows, components increase in size, merge, and Filaments grow with the radius.
In Fig. 3, the result (= Filaments drawn) for a very small stopping radius and
a larger one.

Note that, thanks to persistent ingredients, Filaments are robust to the
choice of stopping radius: once the majority of points appear in a large com-
ponent, few new centres are added. So the result is the same except for a few
‘connection-bridges’. As there is no ground truth, comparison is difficult. Our
filaments, which are drawn without geometric constraints, are more irregular.
However, they form a genuine network and are less prone to over-detection. Our
method is also much less computationally intensive. What is more, it can easily
be applied to three-dimensional images.

Comparison with Classical Density Estimators. In order to obtain quan-
tified results, let us now work on clouds of points IID generated according to a
density function f that we know (cf. Fig. 2 with a 2000-points cloud X scattered).

The results of the three density level estimators (ours, Delaunay [28] and
K-Nearest Neighbours [6] with K ← 10) can be seen in Fig. 4. Visually, ours is
more homogenous and less prone to local overestimates in low-density zone.

We are now numerically able to compare the estimated density level maps
(Fig. 4) with the original one (Fig. 2; density plateaus between two density lev-
els have been replaced by the half-sum). Table 1 shows an advantage for our
estimator.
4 Thanks to the authors of the article “Detection of cosmic filaments using the Candy

model” [29] for the generation of the data used herein. These data were kindly
supplied by Radu Stoica, Enn Saar and Vicent Mart́ınez.
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Fig. 3. Top Left: Mock cloud point X ⊂ R
2 generated by Stoica et al. [29]. Top

Right: Results of the stochastic ‘Candy Model’ algorithm [29]. Bottom: The persistent
extracted Filaments on X with PercolThreshold ← 50. Left, for r varying from 0 to
1. First Centres (blacks stars �) and Filaments appear. Right, 0 ≤ r ≤ 5.2.

Fig. 4. Top: Three density level maps estimated on the cloud point of Fig. 2. From
left to right: Our Percol-Graph estimator, the Delaunay estimator [28], the K-Nearest
Neighbours estimator [6] with K ← 10. Bottom: The cluster (white) associated to the
density level 1 − P̂ > 0.617. Theoretically, this cluster is the rectangle on the left.
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Table 1. Distance between the estimated density level map and the original one

Algorithm L1 :=
∑

x
1
N

|P̂(x) − P(x)| L2 :=

√
∑

x
1
N

(
P̂(x) − P(x)

)2

Graph-Percol 0.095 0.142

Delaunay 0.123 0.187

K-Nearest Neighbours 0.114 0.166

Let us take a closer look. Four levels are interesting, corresponding to the
successive appearance of the ‘filaments’: 1◦ 1 − P = 0.617 (highest-density
left rectangle). 2◦ 1 − P = 0.280 (middle thick filament). 3◦ 1 − P = 0.169
(bottom filament). 4◦ 1 − P = 0.140; (Only “voids” are not in this level). We
compute Precision and Recall for these levels. Results are listed in Table 2.

Table 2. Precision and Recall on density levels of filament apparitions.

Algorithme 1 − P̂ > 0.617 1 − P̂ > 0.280 1 − P̂ > 0.169 1 − P̂ > 0.140

Precision Recall Precision Recall Precision Recall Precision Recall

Graph-Percol 0.741 0.827 0.881 0.970 0.814 0.945 0.783 0.896

Delaunay 0.573 0.315 0.857 0.799 0.892 0.899 0.881 0.886

K-NN 0.600 0.528 0.899 0.864 0.861 0.945 0.802 0.893

Our estimator outperforms the other ones for the highest level of density,
i.e. for the correct detection of the high-density left rectangle. Percolation is in
fact a fast enough phenomenon to occur in this zone at density f ∝ 4 before
taking place in the medium filament with close density f ∝ 3. See Fig. 4: Almost
the entire cluster is detected and only one (small) connected component of the
thick filament appears. The other estimators have a density level much more
uniformly distributed over the main clusters of close densities.

5 Conclusion and Perspectives

In this paper we propose a new estimator of density levels based on geometric
graphs. Looking at what happens persistently allows us to observe percolation
phases. Since continuum percolation is a very fast phenomenon, our estimator
is able to identify two neighbouring levels of close density.

This estimator of density levels could find a natural application to the prob-
lem of identifying galaxy clusters, which are highly hierarchical. In addition, the
availability of a graph makes it fairly easy to extract galaxy filaments without
having to resort to methods such as calculating the median axis.

Compared with conventional density estimators for this type of problem, it
is already showing very good results, especially for high-density clusters.
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In the future, we will try to further improve these results focusing on four
principal research directions: 1◦ We mainly looked at one type of clusters, ‘fil-
aments’. Having an estimator of density levels allows us to look at other types,
such as ‘super-clusters’, ‘walls’ and ‘voids’. 2◦ A galaxy was represented only
by a point. Its mass (= its luminosity) could be taken into account using differ-
ent radii, depending on galaxies. 3◦ The question of ΣP for density levels was
briefly considered in this paper. There are certainly wiser choices to be made (e.g.
inspired by Penrose’s works [26]) to approach strong-consistency. 4◦ We worked
with graphs. We could look at other notions of connectivity (e.g. connectivity of
simplicial complexes).
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Abstract. We suggest an approach to the shape DNA of data based on
a number of metric invariants introduced by Grove and Markvorsen that
encode its essential global geometry of the given structure. First exper-
iments on real life networks and on natural images are given to demon-
strate the feasibility of this approach. Even this incipient test clearly
demonstrate the efficiency of the proposed invariants in the classification
and understanding of stochastic textures as opposed to man-made ones.

Keywords: metric invariants · packing radii · packers · excess ·
natural textures

1 Introduction

Shape recognition, even under deformations, represents a problem of deep and
continuing interest in Imaging, Graphics and, of course, Pattern Recognition.
However, even in this rather mild conditions, where, even if distorted and noisy,
the character/type of data – and, even more important – dimensionality – is
supposed to be known (usually perceived as a smooth surface/manifold repre-
sented/approximated by a polyhedral mesh), the quest for the so called shape
DNA is far from trivial and represents an open problem. The difficulty of the
proposed task is proportionally much higher when one deals with unstructured
(or weakly structured) data, such as clouds of points, where no manifold struc-
ture is supposed and certainly no smoothness assumptions are even remotely
realistic. Given, however, that the one has to deal with basically the same issue,
but in different settings – after all, in these fields one is supposed to infer the
shape of the given object from the sample points available – one should begin
where the Graphics/Imaging stops. Indeed, a quite general method was proposed
in the “classical” context, that is easily not just adaptable, but also extensible
to the more general context.

Motivated by the celebrated work of Gromov [1], metric methods, first pro-
posed in [2], have become main stream tools in Graphics and Imaging – see,
e.g. [3–5,7,7]. Such methods consist in isometric embeddings (usually into some
Euclidean space, but other ambient spaces have also been considered) and metric
curvatures (a natural connection existing between these two). Indeed, Gromov’s
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1143, pp. 397–408, 2024.
https://doi.org/10.1007/978-3-031-53472-0_33
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K-curvature classes [1] are similar in spirit to the metric curvature approach
mentioned above, as well as to the metric invariants we propose herein. How-
ever, there are serious problems, both theoretical as well as computational, in
applying these ideas in practice – see [7–9].

We propose therefore a series of other purely metric invariants for shape
recognition. These might complement, rather than supplement curvature and
other classical, basic invariants, and we suggest, as the best method of employ-
ing the new invariants we propose is by creating a “dictionary” of metric “fea-
ture invariants”, and filter, so to say, the shape through by all these invariants.
Another important feature that we emphasize is that some of the invariants
are local (a typical classical example being Gauss curvature), whereas others
are global (well known examples being diameter and volume). It is precisely
through the combination of local and global shape invariants that one can iden-
tify the shape DNA of the data. Note that, in its common usage in Manifold
Learning, the term “shape DNA” – see [10,11] – is not a geometric, but rather
a spectral/Laplacian based approach. Clearly, geometric invariants are better
described by this appellation and, moreover, they are far more intuitive and
easily to represent visually. Furthermore, eigenvalues are global invariants, thus
they cannot be used to understand the local (or even semi-local) structure of
data. Thus to understand data at all its scales, one should use local and global
invariants in tandem. In fact, a unifying approach to this problem, that allows
the natural exploration in parallel of both these types of invariants via For-
man’s Bochner-Laplacians and curvature measures was already proposed by the
authors in [12]. In Differential Geometry this problem was attacked in [13] (see
also [14] for a brief account of the problem and of the results). The basic idea
is to extend the basic idea of metric geometry, that is looking at pairs of points
(i.e. distances between points), to looking at triples (i.e. triangles), quadruples
(which are closely related to curvature – see [1]), etc.

The organization of the reminder of this paper is quite simple: In Sect. 2 we
introduce the proposed metric invariants; this being followed in Sect. 3 with some
first experimental results, which are further discussed in the overview Sect. 4.

2 The Invariants

The new geometric shape invariants considered therein – and that we propose
here for our own specific goals – are the following:

1. Extent We first bring the basic definition, namely

Definition 1. Let (X, d) be a compact metric space. The q-extent of X, xtqX,
is the maximal average distance between q-tuples of points in X:

xtqX =
1

(
q
2

) max
(x1,··· ,xq)∈Xq

∑
d(xi, xj).

A configuration of q points that realizes xtqX is called a q-extender. Moreover,
xtX = limq xtqX is called the extent of X.
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Obviously, xt2X is the diameter of X, xt2X = diamX, and Grove and
Markvorsen call the higher order extents similarly: xt3X is the triameter,
xt3X = triamX, xt4X is the quadrameter, etc.

The following inequalities hold:

xt2X ≥ xt3X ≥ . . . ≥ xtqX ≥ xtq+1X ≥ . . . xtX; (1)

where xtX = limq xtqX is the extent of X. Note also that 1
2diamX ≤ xtX ≤

diamX. An important feature of this family of invariants resides in the fact
that extents are sensitive to the asymmetries of X. They should be viewed,
therefore, as global shape invariants. Thus they complement very well with such
local invariants as the various metric curvatures.

2. Excess We begin with the following basic (and classical)

Definition 2. Given a (geodesic) triangle T = �(pxq) in a metric space (X, d),
the excess of T is defined as

exc(T ) = d(p, x) + d(x, q) − d(p, q).

Sometimes the excess is also denoted more concisely as e(T ). The excess of X
itself is a global version of the definition above: Given a metric space (X, d), the
excess of X is defined as

excX = min
(p,q)

max
x

(e(�(pxq)) .

We should also note that both global and local variations of this quantity have
been considered by Otsu [15].

A variation of this quantity has also been considered, namely the so called
(after [15]) global big excess:

E(X) = max
q

min
p

max
x

(e(�(pxq)) .

A local version of the notion of excess – introduced, it seems by Otsu [15] – also
exist, namely the local excess (or, more precisely, the local d-excess):

e(x) = max
p

max
x∈B(p,d)

min
q∈S(p,d)

(e(�(pxq)) ,

where d ≤ rad(X) = minp maxq d(p, q), (and where B(p, d), S(p, d) stand – as
they commonly do – for the ball and respectively sphere of center p and radius
d).

Obviously, one has the following inequalities: 0 ≤ excM ≤ diamM . More
importantly, there is a connection between the extent xtX and the excess excX
of X, more precisely small extent implies small excess. This statement can be
formulated in a precise, quantitative form, as follows:

Proposition 1 ([13], Proposition 1.12). Let X be a compact metric space.
Then, for any ε > 0, there exists δ > 0, such that excX < εdiamX, if xtX ≤
(12 + δ)diamX.
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While the reciprocal of the assertion above is not true, for odd q (and not
for even q’s), the following strong result holds: If xtqX is minimal, that is if
xtX = 1

2diamX, then excX (for details see [13]).
The geometric “content” of the notion of local excess is that, for any x ∈

B(p, d), there exists a (minimal) geodesic γ from p to S(p, d) such that γ is
close to x. Moreover, it is it is intuitively clear that (local) excess and curvature
are closely related concepts since the geometric “content” of the notion of local
excess resides in the fact that, for any x ∈ B(p, d), there exists a (minimal)
geodesic γ from p to S(p, d) such that γ is close to x. (See also [16] for a different
approach to metric curvature via a 3 points condition.) The type of curvature
specifically connected to excess is the so called Haantjes curvature or Finsler-
Haantjes curvature (which was introduced by Haantjes [17], who extended to
metric spaces an idea proposed by Finsler in his PhD Thesis.) As we shall see,
it represents a simple and direct alternative – at least for many applications –
of more involved and fashionable concepts.

Definition 3 (Haantjes curvature). Let (M,d) be a metric space and let
c : I = [0, 1] ∼→ c(I) ⊂ M be a homeomorphism, and let p, q, r ∈ c(I), q, r �= p.
Denote by q̂r the arc of c(I) between q and r, and by qr line segment from q to
r.

We say that c has Haantjes curvature κH(p) at the point p iff:

κ2
H(p) = 24 lim

q,r→p

l(q̂r) − d(q, r)
(
l(q̂r)

)3 ; (2)

where “l(q̂r)” denotes the length – in intrinsic metric induced by d – of q̂r.

Alternatively, since for points where Haantjes curvature exists, l(q̂r)
d(q,r) → 1,

as d(q, r) → 0 (see [17]), κH can be defined (see, e.g. [18]) by

κ2
H(p) = 24 lim

q,r→p

l(q̂r) − d(q, r)
(
d(q, r))

)3 ; (3)

In applications it is this alternative form of the definition of Haantjes curvature
that will prove to be more malleable, as we shall illustrate shortly.

In any of its versions, the intuition behind the notion of Haantjes curvature
is quite transparent: The longer is the arc as compared to the chord, the more
“curved” it is. (The longer the bow is in comparison to its string, the more
“bowed”, i.e. curved it is.) However, its complicated form is far less intuitive.
For now, let us observe that it is proportional to 1/l (or 1/d), which hints to the
radius of curvature (and to Menger curvature). Less transparent and definitely
more cumbersome is, however, the factor of “24” appearing in the definition.
However, the two are interrelated and that the “24” factor arises naturally, in
the course of the essential theorem below (due to Haantjes):

Theorem 1. Let γ ∈ C3 be smooth curve in R
3 and let p ∈ γ be a regular point.

Then the metric curvature κH(p) exists and equals the classical curvature of γ
at p.



Metric Invariants for Networks’ Classification 401

Simply put, for smooth curves in the Euclidean plane (or space), Haantjes curva-
ture coincides with the standard (differential) notion, proving that, it represents,
indeed, a proper generalization of the classical concept of curvature.

Due to its intuitive definition, as well as the simplicity of its computation,
Haantjes curvature has proven to be very malleable and useful in a variety of
tasks in networks’ practice, such as clustering for DNA microarray analysis [19],
wavelets intelligence and texture segmentation [20], financial markets under-
standing [21], deep learning [21], neural [23] and semantic [24] networks. How-
ever, as we have already observed above, while the idea behind Haantjes curva-
ture is quite simple, the notion itself appears somewhat cumbersome. Therefore,
it is only natural to try and simplify it – even at the price of discarding a dimen-
sionality condition – so long as the essential geometric motivation is preserved.
This motivation, as well as the expression of Haantjes curvature, brings us the
connect it to the notion of excess. More precisely, we have the following relation
between the two notions:

κ2
H(T ) =

e

d3
, (4)

where by the curvature of a triangle T = T (pxq) we mean the curvature of the
path p̂xq. Here and below we have used a simplified notation and discarded (for
sake of simplicity and clarity) the normalizing constant “24”. Thus Haantjes
curvature can be viewed as a scaled version of excess. Keeping this in mind,
one can define also a global version of this type of metric curvature, namely by
defining, for instance:

κ2
H(X) =

E(X)
diam3(X)

, (5)

or

κ2
H(X) =

e(X)
diam3(X)

, (6)

as preferred. To be sure, one can proceed in the opposite direction and express
the proper (i.e. point-wise) Haantjes curvature by means of the definition (2) of
local excess, as

κ2
H(x) = lim

d→0
e(x). (7)

3. Packing Radius Another useful family of (geo-)metric invariants is that of
packing radii:

Definition 4. The q-th packing radius of X, packqX, is the largest r for which
X contains q disjoint open balls of radius r, i.e.

packqX =
1
2

min
(x1,...,xq)

max
1≤i<j≤q

d(xi, xj), x1, . . . , xq ∈ Xq.

A configuration of q points that realizes packqX is called a q-packer.

We have the following sequence of inequalities, akin to (1):

1
2
diamX = pack2X ≥ pack3X ≥ . . . ≥ packqX ≥ ... ≥ lim

q
packqX = 0. (8)



402 E. Kronfeld and E. Saucan

While generally assuring just the recognition of the topology type of a space, in
certain instances all the invariants above provide a solution for the recognition
problem from the metric viewpoint as well. In particular, since these metric
invariants can be used to completely identify/characterize certain metric spaces,
e.g. spheres, [13,14], the closeness/departure of their counterparts would/could
be used, for instance, as a measure of closeness of networks to sphericity.

3 Experiments

We experiment with the main of the proposed invariants on real life complex
networks as they are discrete enough to represent good test-cases and, moreover,
they are convenient, easy storable, efficient and an increasingly popular way
of representing (as graphs) and storing of data sets that do encode complex
structures and phenomena. Moreover, they can be effectively analyzed with data
mining methods. Furthermore, networks represent the middle ground, in regard
of complexity and abstractiveness between the relatively tame meshes common
in Graphics and Imaging, and clouds of points, which are more difficult to handle
due, in part, to a lack of geometric intuitiveness (and which, to be dealt with in
practice, are in many cases transformed to graphs, for this very reason).

In addition, we experimented with the square grids that arise naturally in
Imaging. The reason we considered such simple graphs is that they retain much
of the geometric, visual content of the original image, thus they allow us the
better comprehend the intuition behind the considered invariants and thus better
estimate their effectiveness.

Remark 1. Note that we do not include here experiments with Haantjes curva-
ture, both because we explored it extensively elsewhere – see the previously cited
articles, and also due to its strong correlation with the notion of excess, which
is far more relevant to our present study, and which we shall also explore in a
sequel study.

3.1 The Data Sets

We applied our invariants to five small and four medium standard networks
whose source and further details can be found in [25].

We also considered square grids corresponding to 11 × 11 patches (Fig. 1,
above) from a natural image (Fig. 1, below). (The choice of the size of the patches
is a compromise between practicality and interest, as it lies, on the one hand, at
the upper end of neighborhoods dimensions that encode local, geometric proper-
ties of an image, rather than statistical ones, and our desire to consider networks
of at least medium size.) The width of the grid’s edges is proportional to the
length of the edge, i.e. the distance between the centers of the pixels in the
standard stick model [26].

We examined the efficiency of the q-extents in the understanding of the geom-
etry of networks by testing them, for q = 3 and q = 4, on the real life networks
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Table 1. The q-extents, q = 3, q = 4 and q = 5, of five small networks. Note that
xtqX increases with q and it is inverse proportional to the size of the network.

xtqX q = 3 q = 3 q = 5

Enzymes 3.42E − 03 5.42E − 03 0.007419354839

Ecological 3.69E − 04 0.0005536417323 0.0007381889764

Infections 3.95E − 04 6.32E − 04 0.0008691529709

Emails 0.0006894513937 0.001034177091 0.001378902787

Chemical 0.0002801120448 0.0004201680672 0.0005602240896

Table 2. The q-th packing radius, for q = 3, q = 4 and q = 5 of the same networks as
in Table 1. Note that, at least for these small sized networks, the packing radii convey
little information and, moreover, they are quite stationary in most cases.

packqX q = 3 q = 3 q = 5

Enzymes 0.75 2.25 4.25

Ecological 0.5 0.5 0.5

Infections 0.5 0.5 0.5

Emails 0.75 0.75 0.75

Chemical 0.5 0.5 0.5

in Table 1. We observe that xtqX increases as a function of q and, moreover,
that it is larger on smaller networks.

We also experimented with the q-extents and q-th packing radii, for the same
q-s as before, as well as for the extent, on the four 11 × 11 patches of natural
images in Fig. 2.

The results for a typical patch are systemized in Table 3, and they clearly
show how efficient the simple metric invariants proposed in the present paper
are in distinguishing stochastic textures from repetitive, man-made ones. Indeed,
both xt3 and xt4 equal the same number for all the stochastic textures consid-
ered, while for the (essentially) periodic one the values are different both from
the ones obtained for the other textures, as well as one from each other.

Table 3. The q-extents, q = 3 and q = 4, of four medium sized networks. Note that
xtqX increases with q and inverse proportionally to the size of the network.

xtqX q = 3 q = 3

Biological 4.95E − 06 7.43E − 06

Mouse brain 8.86E − 05 0.0001328727079

Dolphins 0.0001303471975 0.0002014456689

Economical 5.70E − 06 8.55E − 06
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Table 4. The q-th packing radius, for q = 3 and q = 4 of the medium sized networks
in Table 3. Note that, at least for these small sized networks, the packing radii convey
little information and, moreover, they are quite stationary in most cases.

packqX q = 3 q = 3

Biological 0.25 0.25

Mouse brain 0.5 0.5

Dolphins 1.25 1.25

Economical 0.074999973 0.074999973

The histograms of these invariants for exhaustion of these textures by 11×11
blocks also clearly demonstrate both the difference between the natural versus
man-made textures, as well as the capacity of the suggested metric invariants
to clearly distinguish between them. To wit the histogram of artificial texture
presents a “double hump” distribution, as opposed to the gaussian-type of the
natural ones, while, in contrast, in the case of the excess, the natural textures
display almost a δ-function distribution, in contrasted with the multiple peaks
for the artificial one.

Computation of the considered invariants is quite efficient. To wit, computing
them on one of the small networks (|V | = 125) necessitates, on a Intel i9-13900K,
32GB RAM machine, between 0.02s for xt3 and 0.06s for the excess, to 1.61s
for xt4. For a larger one (|V | = 636), times are, respectively 1.16 s, 4.3 s and
826.63s. However, it should be noted that, due to the fact that the computation
complexity of xtq and packq is O(|V |q) computing them for high q-s on large
networks might prove challenging.

The code residing behind the results above is accessible at the following
GitHub link: https://github.com/Eldadkro/ShapeOfData.

Table 5. The excX of the considered networks.

Network excX

Enzymes 62

Ecological 5

Infections 5

Emails 15

Chemical 3

Biological 19

Mouse brain 3

Dolphins 11

Economical 1.199999684

https://github.com/Eldadkro/ShapeOfData
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Fig. 1. The considered 11×11 patches (above) from natural images (below). From left
to right: Two patches of a natural landscape textures (grass and forest, respectively);
gravel; and a man made texture (bricks).

Table 6. The q-extents, q-th packing radii for q = 3 and q = 4, and excess, of the
considered textures. Note that for the stochastic textures the extents convey little
information and, moreover, they are quite stationary in most cases.

pack3 pack4 exc xt3 xt4

Grass 6.25 12.5 622 0.008333333333 0.008333333333

Forest 6 8.5 384 0.008333333333 0.008333333333

Gravel 2.5 3.5 298 0.008333333333 0.008333333333

Bricks 1.5 1.25 54 0.0002066115702 0.0003443526171

Fig. 2. The histograms of excess (above) and xt3 of the textures in Fig. 1. Note that
the histogram of artificial texture presents a “double hump” distribution, as opposed
to the gaussian-type of the natural ones. The difference between natural (stochastic)
and artificial textures is quite striking in the histograms of pack3.
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4 Conclusions and Future Study

The experiments presented above are clearly only incipient ones and meant to
function as capability proof. In particular, we concentrated only on three main
invariants and postponed the systematic exploration of the others, which we
discussed in another context previously, for later study. Therefore, the first and
foremost future task is to extend the experiments on larger and more divers data
sets, as well as including more invariants and using them jointly to understand
and classify data sets.

Another extension that naturally imposes itself is passing from the relatively
tame setting of networks to the even more intriguing, but harder to handle, set-
ting of clouds of points. However, a restriction in scope, rather than its expansion,
would represent yet another interesting direction of study. Namely, one should
apply the metric invariants proposed in this paper in the context of understand-
ing and classification of textures not just of natural images, but also in the more
important and challenging setting of 3D CT and MRI medical images. Indeed,
given the manifest efficiency of the suggested invariants in the understanding of
natural images, their use in the classification of 3D textures might prove as a
new useful tool in computer assisted diagnosis.

Furthermore, the estimation of the efficiency in geometric data analysis of
the new invariants should also be done by comparing their performance with
that of more established methods, such as various types of graph curvatures and
Persistent Homology.

Yet one more augmentation of the present study is by experimenting on
more of the suggested invariants, as well as by considering more involved ones,
first and foremost among those being Gromov’s filling radius and Urysohn’s
intermediate diameters (see [1] for the now classical exposition of these notions).
However, we have to admit that, at this stage, we are not capable of performing
meaningful experiments with these more difficult to handle, deep invariants,
and we must therefore satisfy ourselves to suggesting them and to postpone
experiments for a non-immediate future. For future research we also leave the
exploration of the connections between our approach based upon the works of
Grove and Markvorsen and the ideas in [28].
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Abstract. Defining accurate models for real-world social networks is
essential across various research fields including sociology, epidemiology,
and marketing. Such models serve as indispensable tools to capture the
dynamics of phenomena ranging from disease spread to rumor dissemi-
nation, encapsulating intricate patterns of interactions among individu-
als within a population. To this end, a latent geometry and/or hidden
degrees can be used to obtain networks that are small-world, highly clus-
tered, and have a scale-free degree distributions.

This study aims to integrate group mixing within the framework of
latent geometry models. Our approach is based on conceptualizing a
graph with a planted partition as the union of different mono- and bipar-
tite subgraphs, for intra- and inter-block edges, respectively. We highlight
that the hidden degree – the analogous of the radial coordinate in purely
geometric hyperbolic models – must be replaced by a hidden fitness, and
that all latent features must be assigned to the nodes once and for all,
rather than once for each subgraph.

Through extensive simulations, we show that the proposed model gen-
erates networks with a unique combination of features, that cannot be
obtained with standard geometric models nor with maximum entropy
degree-corrected block models.

1 Introduction

Accurate models for real-world social networks are decisive tools to capture the
dynamics of various phenomena across diverse research domains, ranging from
the spread of diseases to the dissemination of rumors, by enclosing complex
patterns of interactions among individuals within a population.

The deep impact of a network’s structure on dynamic processes is well-
documented [1]. Urban social networks, with their distinct topologies, sizes, and
demographic compositions, can significantly influence the transmission of dis-
eases [2] and other phenomena within urban environments [3]. As researchers
seek to gain deeper insights into the basic mechanisms governing real-world net-
work formation, a variety of network models have emerged, each aiming to reflect
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1143, pp. 409–419, 2024.
https://doi.org/10.1007/978-3-031-53472-0_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-53472-0_34&domain=pdf
https://doi.org/10.1007/978-3-031-53472-0_34


410 S. Guarino et al.

and potentially unfold specific observed features of complex networks [4]. In par-
ticular, three key properties are extensively encountered in real-world networks:
a heavy-tailed degree distribution, high transitivity and some meso-scale com-
munity structure. Formulating sound and general models that encompass all of
these characteristics turned out to be a formidable challenge.

Entropy maximization [5] and latent geometry [6] are two popular approaches
to random network modeling that allow to generate networks with desirable topo-
logical properties relying on an elegant formulation. However, both families of
models have limitations that have not been thoroughly addressed in the literature.
Maximum entropy models are generally used to understand whether other struc-
tural features emerge naturally from local constraints such as vertex degree [7].
This is not the case for high clustering, a property that must be explicitly imposed,
with constraints that significantly increase the complexity of the model. The S

1

model and its quasi-isomorphic H
2 model address this issue introducing a latent

similarity space [8–10]. Through this notion of vertex homophily, these models
allow to generate networks characterized by a high clustering coefficient and a
scale-free degree distribution [11], but they lack parameters to control the exis-
tence of blocks – or communities – with specific mixing patterns, another common
feature in real-world networks. Recent work highlighted that the dimensionality
of the latent space impacts on the meso-scale structural properties that can be
imposed to the network [12], yet no previous work ever clarified how arbitrary
mixing patterns could be enforced in latent geometric models.

In this paper, we make a step towards filling this gap by presenting the
Hidden-degree Geometric Block Model (HGBM), a generalization of the S

1

model for networks with a planted partition. The rationale of our model is split-
ting the graph into a set of mono- and bipartite subgraphs – for intra- and inter-
block edges, respectively – and separately modeling each of these subgraphs as
a S

1 network. We provide two main insights: (i) the concept of hidden degree
must be replaced with a hidden fitness, which is to be normalized based on the
connectivity of the pertaining block; (ii) the latent features of each node must
be extracted once and for all, so that the centrality and homophily patterns are
preserved across different subgraphs. Through extensive simulations, we show
that our HGBM can be used to obtain all three properties together – the desired
block mixing and degree distribution, and high clustering – differently from both
the maximum-entropy Fitness-Corrected Block-Model and the S

1 model.

1.1 Related Work

Various random graph models have been proposed in computational social sci-
ences to capture the key features of real-world social networks, such as heavy-
tailed degree distribution, high transitivity, positive degree and type assortativ-
ity, summarized in [13].

Many real-world social networks often display a form of group mixing, driven
by individuals’ natural inclination to socialize with others who share similar
interests or attributes, as highlighted by McPherson et al. [14]. This characteris-
tic can be effectively replicated using the Stochastic Block Model (SBM), which
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has gained prominence as a means of generating networks with predefined com-
munity structures [15,16]. In the original SBM formulation, nodes within the
same block are considered indistinguishable, resulting in a degree distribution
that tends to resemble a Poisson distribution for larger graphs [15]. To create net-
works that better capture real-world characteristics, such as heavy tailed degree
distributions, several model extensions have been suggested in the literature.
These extensions include the Degree-Corrected Block Model (DCBM) [15] and
its maximum-entropy variant [17]. In a way, these models can be considered as
the Stochastic Block Model’s counterparts to the widely recognized configura-
tion model. They are designed to simultaneously accommodate the desired group
mixing patterns and a specified degree sequence, either exactly or on average.
These models, however, struggle to replicate the high local connectivity, i.e. high
clustering, observed in real-world networks.

On the other hand latent space models offer a promising approach to generat-
ing random networks with a heavy-tailed degree distribution and high transitiv-
ity, drawing on the idea that network centrality and homophily can be captured
by hidden metric spaces. In [6] the authors show that clustering can naturally
emerge as a consequence of the triangular inequality within a hidden metric
space. They introduced the S

1 class of network models, embedding nodes in a
metric space and establishing connections based on a gravity-law-like probability
that balances node distance and degrees. This definition incorporates both sim-
ilarity distance and node significance, enabling the model to generate scale-free,
small-world, and clustered graphs resembling real complex networks. In a subse-
quent work [8], the theory of random geometric graphs in hyperbolic geometry
was presented. Remarkably, this formalism naturally produces scale-free graphs,
suggesting hyperbolic geometry as an ideal framework for modeling complex
networks. Incorporating group mixing in a hyperbolic setting is not straightfor-
ward due to the relationship between the rules for distributing vertices in the
hyperbolic space and the rules for connecting vertices based on their distance.

Finally, entropy-based models have been extensively used in the last 20 years
as null-models for – or randomized versions of – real complex networks [5]. One
fundamental paper in this area is that of Park and Newman [18], who interpreted
the general framework of Exponential Random Graphs (ERGs) [19] in terms
of maximum entropy models. The entropy-based model was later tailored on
observed networks [7,20]. This approach has been widely used to study structural
patterns in various systems, including financial and trade networks, biological
systems, and online social networks. The general framework can be extended
to different kinds of networks, including undirected, directed, weighted, directed
and weighted, bipartite, bipartite weighted, and degree corrected block models.

2 Methods

Let G be the ensemble of all simple graphs of N vertices. All graphs in G have ver-
tex set V = {vi}N−1

i=0 , which we assume to be partitioned into n blocks {BI}n−1
I=0 .

From here on, we shall use the lowercase indices (e.g., i, j) for vertices, and
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uppercase indices (e.g., I, J) for blocks. The size of block I is NI = |BI | and, for
each vi ∈ V , Ii denotes the index of the block to which vi belongs. For the sake
of simplicity, we will often refer a vertex/block by its index, e.g., i ∈ I means
vi ∈ BI .

Let A(G) = {aij(G)}N−1
i,j=0 be the adjacency matrix of G, i.e., aij(G) = 1 if

edge (i, j) ∈ E(G) and aij(G) = 0 otherwise. The degree of vertex vi in G is
degi(G) =

∑
j aij(G). The total degree of block I is degI(G) =

∑
i∈I degi(G)

and, for all I, J , LIJ (G) =
∑

i∈I

∑
j∈J aij(G) is the number of edges between BI

and BJ in G, or, if I = J , twice that number. Using the definitions, degI(G) =∑
J LIJ (G). For the sake of simplicity, the dependence of these quantities on the

specific graph G will be often omitted in the following.
A random model for networks of fixed size N > 0 can be thought of as

a probability distribution P over G, so that P (G) is the probability that the
model produces the graph G ∈ G. For given P , 〈·〉P denotes the expectation
with respect to P .

2.1 Hyperbolic Geometric Models

To obtain random networks that are scale-free, small-world, and clustered, the S1

model [6,10] assigns to each node both random angular coordinates in a metric
similarity space and a hidden degree. The edge probability takes the form of a
gravity law, with hidden degrees playing the role of masses. The clustering of
the graph is controlled by the temperature of the model – or, as often done in
the literature, by the inverse temperature β. For instance, when β → +∞, an
edge is drawn between vi and vj if and only if dij < μκiκj , where dij is their
distance on the circle, κi, κj are their hidden degrees, and μ controls the average
degree of the network. It can be proven that 〈degi〉S1 = κi, where the mean 〈·〉S1
is taken with respect to the choice of the coordinates of the nodes on the circle.

Network with similar desirable properties can also be generated with a purely
geometric model. In the H

2 model, the nodes are distributed within the Poincaré
disk and the dissimilarity between nodes is measured by their hyperbolic dis-
tance. In the limit β → +∞ – which, again, maximizes clustering – nodes are
connected by edges if their hyperbolic distances are less than a threshold that
depends on the network density. The properties of the hyperbolic space guaran-
tee that points near the disk center have a higher expected degree. In particular,
the H

2 model is quasi-isomorphic to the S
1 model with hidden degrees κi drawn

from a power-law distribution of exponent γ > 2 [8]. For the sake of simplicity,
the model proposed in this paper is based on the S

1 model, but it could be
(almost) equivalently reformulated in a hyperbolic geometry framework.

In the S
1 model, the only way to generate assortative communities is placing

the nodes of the same group close to each other on the circle, and farther away
from the other groups [12]. With communities defined by their position on the
circle, in fact, edges occur mainly within groups or between “consecutive” groups
in a linear ordering. This limitation can be addressed using a higher-dimensional
latent space [12], but, to the best of our knowledge, there is no known general-
ization of the S

1 model that allows enforcing arbitrary community structures.
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2.2 The HGBM Model

Say that we want to generate random networks with the following properties:

〈LIJ 〉P = KIJ for all I, J (1)
〈degi〉P = κi for all i (2)

In words, (1) specifies the network’s expected block mixing patterns, while (2)
specifies the network’s expected degree distribution. Conditions (1) and (2) are
only consistent if

∑
J KIJ =

∑
i∈I κi for all I, which is false in general if the

KIJ are given (e.g., data-driven), while the hidden degrees κi are drawn from a
probability distribution (e.g., a power-law).

A way to guarantee the internal consistency of the model is drawing a vertex-
intrinsic fitness fi rather than directly drawing the hidden degree κi. We then
set

κi =
fi∑

h∈I fh

∑

J

KIJ (3)

where fi says how well connected vi is with respect to the other nodes in its block.
If the fi’s are drawn from a power-law distribution with exponent γ, then the tail
of the distribution of the κi’s approximately follows the same distribution [21].

Now, let us consider the decomposition of G into the subgraphs GIJ =
(VIJ , EIJ ), such that VIJ = BI ∪ BJ and EIJ = {(i, j) ∈ E : i ∈ I, j ∈ J}.
Our HGBM model works by generating each GIJ separately, to then merge
them together to obtain G. Using (3), (1) and (2) can be rewritten as

2〈EII〉P = KII (4)

〈degi(GII)〉P =
fi∑

h∈I fh
KII for all i ∈ I (5)

for all I, and

〈EIJ 〉P = KIJ (6)

〈degi(GIJ )〉P =
fi∑

h∈I fh
KIJ for all i ∈ I (7)

〈degj(GIJ )〉P =
fj∑

h∈J fh
KIJ for all j ∈ J (8)

for all I �= J . Conditions (4) and (5) can be used to generate GII with the
standard S

1 model, while conditions (6), (7) and (8) can be used to generate
GIJ with the bipartite version of S1 introduced in [22].

It is worth noting that both the fitness fi and the angular coordinate θi ∼
U(0, 2π) are drawn just once and for all – i.e., not re-drawn for each subgraph.
The fact that vi has the same fi in all subgraphs guarantees that (3) holds and
that G has, in good approximation, the desired degree distribution. On the other
hand, the fact that vi has the same θi in all subgraphs preserves the transitivity
of the vertex similarity across different subgraphs, so as to guarantees the desired
high clustering for the entire graph.
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3 Simulation-Based Analysis

In this section, we experimentally evaluate the main properties of the HGBM
model. To do so, we compare our model with two benchmark models:

– the Fitness-Corrected Block-Model [21], defined as the maximum-entropy
model satisfying (1) and (2), with κi given by (3);

– the S
1 model, with random angular coordinates but with the hidden degrees

given by (3).

For the experiments, we considered all 16 combinations of the parameter
values reported in Table 1. In words: we fixed the number of blocks to n = 5,
the power-law exponent to γ = 2.5 and the inverse temperature of the model
to β = 10; we let vary the size of the network (N = 10K and N = 100K),
the density of the network (μ = 10 and μ = 100), the size of the 5 blocks
(perfectly balanced and very unbalanced), and the mixing matrix (relatively
balanced and very unbalanced). In the following, however, we will only report the
results obtained for specific configurations. All other configurations are analogous
and are omitted due to space limitations.

Table 1. The parameters used in the experimental analysis.

N μ n Nα/N K/〈E〉 γ β

10000
or

100000

10
or
100

5 or or 2.5 10

N is the network size; μ is the network average degree; n is the number of blocks;
Nα/N is the relative size of each block; K/〈E〉 is the normalized mixing matrix; γ is the
power-law exponent; β is the inverse temperature of the model.
We consider all 16 combinations of the above values.

We compare the obtained graphs focusing in particular on three aspects: (i)
their ability to reproduce the desired block mixing patterns; (ii) their ability to
reproduce the desired degree distribution; (iii) the clustering (i.e., transitivity)
of the resulting graph. All reported values are averaged over 20 graph instances
per model. In Table 2 we summarize our findings. While all three models guar-
antee the desired degree distribution, graphs produced with the FCBM show
low clustering, and graphs produced with the S

1 model fail to reproduce the
imposed block-mixing patterns. Our HGBM is the only model that provides all
three properties at once.
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Table 2. Summary of the simulation-based analysis.

HGBM FCBM S
1

〈εIJ〉 [−0.044, 0.006] [−0.025, 0.028] [−0.664, 5.667]

α [2.56, 2.61] [2.38, 2.61] [2.54, 2.57]

〈cloc〉 [0.659, 0.682] [0.066, 0.073] [0.722, 0.744]

〈εIJ〉 is the average relative error of entry IJ of the block
mixing matrix, as defined in (9); α is the exponent of
the best possible powerlaw fit of the degree distribution;
〈cloc〉 is the average local clustering coefficient.
For each quantity, the reported values are the minimum
and maximum value observed in the simulations.

3.1 Block Mixing

In Fig. 1, we show the relative error of the block-mixing matrix obtained in the
experiments with respect to the expected one. The relative error for entry IJ
is defined as the difference between KIJ and the average of LIJ over the 20
simulated network, divided by KIJ :

εIJ =
KIJ − ∑20

t=1 L
(t)
IJ/20

KIJ
(9)

While the errors in the simulated block-mixing matrix are always less than 4%
for both HGBM and FCBM , the S

1 model fails to reconstruct the desired
block-mixing matrix. This is unsurprising, as the block-matrix is not imposed in
the S

1 model in any way.

(a) Relative error matrix for
the HGBM.

(b) Relative error matrix
for the FCBM.

(c) Relative error matrix for
the S

1 model.

Fig. 1. Comparison of the relative error matrix, as defined in (9), for networks with
N = 10K, μ = 10, balanced groups and balanced mixing. The results show that the
HGBM preserves the imposed mixing, as the FCBM, while the S

1 model does not.
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3.2 Degree Distribution

In Fig. 2, we show the degree distribution of the simulated graphs, together with
a power-law fit obtained using the powerlaw Python package [23]. Regardless
of how balanced are the blocks and their mixing patterns, the HGBM preserves
the imposed degree sequence comparably to the FCBM and S

1 model: all models
succeed at creating networks with the desired power-law degree distribution.

(a) Balanced blocks and
balanced mixing matrix.

(b) Balanced blocks and un-
balanced mixing matrix.

(c) Unbalanced blocks and
unbalanced mixing matrix.

Fig. 2. Comparison of the degree distribution for networks with N = 10K, μ = 10,
and with different combinations of blocks and mixing matrices. The plot includes the
exponent of the best power-law fit – whereas the hidden degrees were drawn from a
power-law with exponent γ = 2.5. The results show that the HGBM preserves the
imposed degree sequence comparably to the FCBM and S

1 model.

3.3 Local Clustering Distribution

In Fig. 3, we show the distribution of the local clustering coefficient for the
simulated graphs. Regardless of how balanced are the blocks and their mix-
ing patterns, the HGBM guarantees high clustering, comparable to the one
obtained with the S

1 model, and significantly larger than the one obtained with
the FCBM. The FCBM, in facts, lacks any element of vertex homophily, which is
key to obtain high transitivity. Let us underline that the fluctuations in Fig. 3 are
due to the plots showing the entire distribution of the local clustering over the
20 simulated graphs. Even in the HGBM and the S1 model, in fact, a few periph-
eral vertices may exist having near-zero clustering. Yet, as shown in Table 2, the
average local clustering in these networks is one order of magnitude larger than
in the FCBM.
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(a) Balanced blocks and
balanced mixing matrix.

(b) Balanced blocks and un-
balanced mixing matrix.

(c) Unbalanced blocks and
unbalanced mixing matrix.

Fig. 3. Comparison of the distribution of the local clustering coefficient for networks
with N = 10K, μ = 10, and with different combinations of blocks and mixing matrices.
The results show that the HGBM generates networks with high clustering, comparable
to the S

1 model and much higher than the one obtained with the FCBM.

4 Conclusions

In this paper, we introduced the Hidden-degree Geometric Block Model
(HGBM), an extension of the S

1 model that effectively incorporates group mix-
ing. The HGBM builds on the intuition that any partition of the vertex set
into blocks induces a partition of the graph into a set of mono- and bipartite
subgraphs, corresponding to intra- and inter- block edges, respectively. These
subgraphs can be individually modeled as S

1 networks, provided that all latent
features are extracted once and for all, so that the centrality and homophily
patterns are preserved across different subgraphs. We showed that this requires
replacing the hidden degree used in the S

1 model with a hidden fitness, thus
leading to a formulation that resembles that of the recent Fitness-Corrected
Block-Model [21]. In a sense, then, our HGBM can be interpreted as a way to
introduce a latent geometry into the framework of maximum-entropy degree-
corrected block models.

To verify that the HGBM serves the purpose it was designed for, we per-
formed a comparative analysis between our model, the S

1 model and the FCBM.
By conducting a series of simulations, we showed that the HGBM is the only
one of these three models that generates synthetic networks that concurrently
exhibit three main features often found in real-world networks: a specific group
mixing, a heavy-tailed degree distribution, and a high transitivity.

We believe that our work paves the way to the integration of hyperbolic latent
spaces into data-driven network models, offering the potential to generate more
realistic social networks while preserving data-driven and empirical features,
such as age-based and distance-based mixing. From a more theoretical point of
view, we envisage at least two relevant directions for future work. First, we aim
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to study latent geometric models in higher dimensions, to understand whether
a more elegant formulation exists that encodes the block-mixing patterns into
geometric properties of the network. Second, we aim to investigate whether our
or other existing models reproduce additional properties of real-world social
networks, such as degree assortativity – and, if not, how the models can be
modified to achieve that goal.

A Python implementation of the HGBM, as well as all software used for our
experimental analysis, is freely available as open-source under the GPLv3.
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Abstract. The emergence of a complex economic system is an interest-
ing issue that has been addressed by many economists. This paper sug-
gests that the processes that develop network formation within economic
agents could be assimilated with the same procedures used by neurons
in the human brain. Furthermore, the present paper presents a heuris-
tic proof that suggests that the previous assumption is possible since
the complex economic system, as a biological one, is a self-organization
that has the same properties as any ergodic random dynamical chaoti-
cally system. In particular, it has been found that both systems possess
a Markov Blanket or a Markov Decision Process, economically speak-
ing. Furthermore, the demonstration in the present paper is restricted to
how coupled dynamical systems organize themselves over time. In con-
clusion, the present work focuses on a simple but key aspect of complex
economic system self-organization, providing a behavior metaphor in a
different time-scale.

Keywords: Network formation · complex economic system · coupled
random system · bifurcation · Lorenz system

1 Introduction

Physics of non-equilibrium systems or systems far from equilibrium represents
one of the most interesting and ongoing theoretical research question for physi-
cist, biologists and economists. For this reason, nowadays, economic science is
making extensive use of mechanical models based on statistical inference, and in
particular network theory and its assumptions, as the key tool able to describe
the relationship and the interaction among individuals within different compo-
nents of the economy and the following consequences of their interaction on the
system. In conclusion, the aim of the present research is to focus on if the net-
work formation process between economic agents could follow the same steps as
neurons do in the brain. This will show that network models can introduce com-
plex phenomena in economic systems by allowing for the endogenous evolution of
networks. Thus, to shed a light on this aspect, the present paper is structured as
follows. Section 2 and Sect. 3 presents in details how complex economic system
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possesses features typical of physical systems, the Lorenz systems specifically,
which represent the basis of random dynamical chaotic systems. Section 4 then
provides further remarks and discusses possible future challenges.

2 Economic System as Random Dynamic Chaotic One

From what affirmed in the Introduction, the interaction within the system
assumption could be summarized in the following question: is a complex eco-
nomic system similar to a biological one? A possible answer, according to [19],
is throughout the reformulation of the second law of thermodynamics.1

So, what is the link between thermodynamics, complex systems, and evolu-
tion and, consequently, the common characteristics of these systems? According
to previous works, such as [18] and [1], both biological and economic systems
could never be considered near-classic thermodynamic equilibrium systems due
to the existence of the self-organization feature. In particular, this feature shapes
the structure of the system through the use of free energy which can resist the
thermodynamic gradient and the structural development. Consequently, what
emerges are complex structures through the creation of endogenous feedback
processes to solve their energy problems2 affirming that they constitute channels
enabling transitions from one meta-stable state to another meta-stable higher
entropy state (see [11] and [23]).3 Consequently, adding energy cost to the objec-
tive function leads to the emergence of computational properties like stochastic
and heterogeneity of the representative agent of the complex systems, such as
the economic agent and neurons. Therefore, having shed light on how both sys-
tems are equipped with a dissipate structures feature, the next section will show
that, by possessing this property, the complex economic system goes through
a stochastic pathway, which represents one of the key attributes of a random
complex system, such as a Lorenz-system.

As stated in the previous part of the section, both complex economic and
biological systems have dissipative structures which provides a powerful account
1 In particular, this reformulation is used to conceptualize the relationship between

evolution, complexity and ecosystem (for more details see [21]). Moreover, this prin-
ciple offers the possibility of formalizing economic evolution in terms of structural
complexity development or, in other words, the available environmental energy trans-
formation into the adverse degradation gradients.

2 With this last assumption, complex systems, such as the biological and economic
ones, could be considered a sub-class of dissipate structures, since their formation
is statistically favored by the generalization of the second law of thermodynamics.
So, this happens because these structures do not enable the dissipation of accessible
reservoirs of free energy. Furthermore, they facility, at the same time, the irreversible
relaxation of the associated disequilibrium.

3 It is important to stress that this line of thinking is based on the two works of [14] and
[15], who tried to link natural selection to a physical principle of maximum energy
transformation. Thus, to minimize the created dissipate heat during the extraction
work process, the system must develop an efficient and predictive representation of
the driving environment dynamics.



Interactions Within Complex Economic System 425

of how highly ordered non-equilibrium systems could emerge from essential ther-
modynamic principles or, in other words, from fluctuations present in stochastic
thermodynamic chaotic processes. Having said that, this section will be divided
into two parts: the first part provides mathematical proof of how these two sys-
tems possess stochastic chaotic processes, considered one of the key features of
random dynamic chaotic systems. as in Lorenz-systems. Continuing this line of
research, the second part will demonstrate in more detail how a complex eco-
nomic system could be assimilated with a Lorenz-system through the existence
of specific conditions and parameterization of the economic system itself–the
bifurcation phenomenon that arises when heterogeneous economic agents with
rational and behavioral expectations interact.

2.1 Complex Economic Systems as Lorenz-System

This sub-section will describe how complex economic and biological systems
possess a stochastic chaotic process using Lorenz-systems [13], considered the
foundation of random complex dynamical systems able to exhibit stochastic
chaotic processes. This happens because Lorenz-systems posses pullback attrac-
tors which, according to [5]), are themselves random variables or, in other words,
exhibit a probability density over the states referred to in this research context as
non-equilibrium steady-state densities (or conservative components of the flow
which, according to [12]), underwrite stochastic chaos). Consequently, what fol-
lows is the mathematical proof of the former statement. In particular, this proof
will show the application of the Helmholtz decomposition as a solution of the
Fokker Plank equation, which represents the density dynamics of any random
complex system. Here what is important to stress out is the use of the Helmholtz
decomposition enable us to, according to [22] and [2], to represent the expected
flow information as the product of a flow operator and the gradient of a scalar
field which corresponds on one side to the self-information (information theory)
and on the other to the potential fluctuation (stochastic dynamics theory).

To achieve the previous, it is necessary to express the flow of a Lorenz-
systems by the generalization of the Helmholtz decomposition into dissipative
and conservative components, as follows:

ṗ(x) = 0 ⇐⇒ (1)
f(x) = Q∇�(x) − Γ∇�(x) − Λ(x) = Ω∇�(x) − Λ(x)

�(x) = − ln p(x)
Ω = Q − Γ (x)

Q(x) = −Q(x)T =⇒ ∇ · Q∇�(x)

Λ(x)i =
∑

j
∂Ωij

∂xj

where �(x) = − ln p(x) represents the self-information of any given state or
potential function, Δ(x) is the correction term or, in other words, the house-
keeping term able to activate changes within the flow operator Ω(x) over the
state-space (i.e., changing the amplitude of random fluctuations). Furthermore,
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the next step requires solving the density dynamical part of the problem in terms
of time-dependent surprisal through the application of the reformulated Fokker-
Planck equation derived in terms of time-dependent potential, �(x) = − ln pτ

(Eq. 2).

ṗτ = ∇ · Γ∇pτ − pτ · f(x) − f(x) · ∇pτ (2)
�̇τ = (∇ − ∇�τ ) · Γ∇�τ + ∇ · f(x) − f(x) · ∇�τ

ṗτ = −pτ �̇τ , ∇pτ = −pτ ∇�τ , ∇2pτ =

−pτ ∇2�τ + pτ ∇�τ ∇�τ

but, being the flow at each point in the state-space time-invariant, it is possible to
express the above time-dependent surprisal in terms of the steady-state potential
of any Laplacian system as follows:

f(x) = (x, q, h) = (Q − Γ )∇� − Λ =⇒ (3)
�̇τ = (∇ − ∇�τ ) · Γ − ∇(�τ − �) −

+∇�τ · Q∇� + ∇(�τ − �) · Λ

Consequently, when �τ − � is equal to no fluctuation changes in the surprisal,
the density converges to steady-state, which exactly corresponds to the flow
in a Lorenz-system where the non-equilibrium steady-state possesses a simple
dependency structure.

2.2 Lorenz-Systems as Economic Bifurcation

This section shows that as nonlinear systems with a dimension larger than 1,
the physical Lorenz-systems could be assimilated with the notion of economic
bifurcation and, in particular, with strange attractors when in the presence of
two-dimensional (2-D) systems.

Let us consider a 2-D discrete dynamical system:

(xt+1, yt+1) = Fλ(xt, yt) (4)

where Fλ is a nonlinear 2-D differentiable map and [equation] its parameter.
Furthermore, it is possible to define an orbit with an initial state (x0, y0) as
follows:

{(x0, y0), (x1, y1), (x2, y2) . . . } = {(x0, y0), Fλ(x0, y0), F 2
λ(x0, y0)} (5)

or in other words, a countable set in x − y plane. Furthermore, [9] introduced
the following simple 2-D quadratic map:

xt+1 = 1 − ax2
t + yt (6)

yt+1 = byt
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where a and b are parameters. Thus, it is possible to further represent this map
as the following differential equation:

(xt+1, yt+1) = Ha,b(xt, yt) (7)

where Ha,b is equal to Ha,b = (1 − ax2 + y, bx). In this system, an important
characteristic is present: the attractor. It could be defined as a set of points
xt+1 = F (xt) representing the long-term dynamical behavior of the system with
the following characteristics:

1. Set A is invariant.
2. There exists an open neighborhood U of A such that all initial states x0 ∈ U

converge to the attractor.
3. There exists an internal state x0 ∈ A for which the orbit is dense in A.

t is important to stress that this generic attractor definition is valid for a steady-
state. Although, what is necessary here is what happens when we are in the
presence of nonlinear systems. In this condition, the above type of attractor is
called a stranger attractor, defined as follows:

Proposition 1. An attractor A is called a stranger attractor of the N-
dimensional dynamical system xt+1 = F (xt) if the map F has sensitive depen-
dence with the set of the internal states that converge to A.

From the previous definition, in each economic nonlinear system, according to
[10], we have to consider the existence of two-dimensional cobweb model with
rational versus naive expectations. Under mathematical point of view, let us
consider the notion of the stable manifold and the unstable manifold of the
steady-state defined as

WS(S) = {(x,m)| lim
x→∞ Fn

β (x,m) = S} (8)

Wu(S) = {(x,m)| lim
x→∞ Fn

β (x,m) = S}
Consequently, the stable manifold is the set of points which converge to the sad-
dle point steady state and on the other hand the unstable one represents the set
of points that move away from the steady state or in other words the set of points
converging to the steady state backward in time. It is proper this geometrical
explanation of the dynamical complexities of the evolutionary switching dynam-
ics, that drives a complex economic system toward the steady-state by a far from
equilibrium in order to stabilize force when most of the economic agents switch
to rational expectations (Fig. 1A and Fig. 1B). This section has shown that a
Lorenz-system and a complex economic system are equal to Lorenz-systems with
the Helmholtz decomposition, polynomial expansions, and the complex economy
system via the substantial equivalence between the Lorenz-systems and the bifur-
cation principle, since they both possess stochastic chaotic processes throughout.
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Fig. 1. Lorenz-systems and economic bifurcation. (A) Lorenz-systems in physics. (B)
Lorenz-systems in economics elaborated with E & F Chaos software.

3 Economic Network Formation Similar to Neuron
Formation

This section demonstrates how a complex economic system could be assimilated
with a brain. Furthermore, it discusses the possible existence of common char-
acteristics, which would affirm that the network formation between economic
agents would be substantially equal to what happens in neurons’ network devel-
opment. Let us start with the first step of the analysis.

As stated in Sect. 2, a complex economic system could be assimilated with
a Lorenz-system, which possesses a conditional independence structure able to
identify independent internal and external states, which themselves are condi-
tioned upon blanket states. Thus, this assumption leads to accepting the exis-
tence of a particular partitioned state which, according to [3] and [20], interprets
the generalized synchrony as a conditional expectation of the internal states. In
more depth, this last assumption means that it could be parameterized as proba-
bility or, in other words, as Bayesian beliefs about external states. Furthermore,
as will be seen in this section, this principle could be formalized as a notion of
the variational free energy functional [6] since it can be used to separate states
of a partition (i.e. internal and active states) from the remaining (i.e. external
states). In more detail, it is necessary to use a new version of the Helmholtz
decomposition seen in Sect. 3. This implies that the Jacobian matrix could be
expressed in terms of the Hessian:

f(x) = Ω∇� − Λ (9)

J = ΩH + ∇� · ∇� ∇Λ
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Juv =
∂fu

∂xv
=

∑

i

ΩuiHiv +
∑

i

∂Ωui

∂xv

∂�
∂xi

−
∑

i

∂2Ωui

∂xi∂xv

The previous equation is used to introduce and motivate the existence of sparse
coupling conjecture, defined as an absence of coupling between two states. Math-
ematically speaking, this means that the Jacobian coupling between states u and
v is rare (Eq. 10)

Juv =
∂fu

∂xv
=

∑

i

ΩuiHiv +
∑

i

∂Ωui

∂xv

∂�
∂xi

−
∑

i

∂2Ωui

∂xi∂xv
(10)

Fig. 2. Source [7]. Markov Blanket. Partition applied to six Lorenz-systems

So, this means that only two states are conditionally independent if one state
does not influence the other. From this, it follows that this conjecture is not based
on a Gaussian hypothesis for non-equilibrium steady-state density. Thus, being
independent means that it is possible to build a partition via the following three
rules (Fig. 2)

1 The Markov boundary a ⊂ X is a set of internal states μ ⊂ xthat represents
the minimal set of states such that exists a non-zero Hessian submatrix.

a Internal states are independent of the remaining states called active
states, and a combination of active and internal states is referred to as
autonomous states

2 The Markov boundary s ⊂ X is a set of internal states is a set of autonomous
states and the minimal set of states such that exists a non-zero Hessian sub-
matrix.

a Autonomous states are independent of the remaining states called sensory
states, and a combination of active and sensor states originates the blanket
state b = {a, b}

3 The remaining states constitute the external states.

In other words, a Markov Decision Process could be considered a form of the gen-
erative model in a discrete state-space, since it was introduced into the Bayesian
network by [17]). Consequently, the existence of a Markov Blanket implies any
state is not coupled with another (see Fig. 3) Before moving on to the second
part of the section, it could be useful to summarize what has been discovered so
far with the following proposition.
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Fig. 3. Source [16]

Proposition 2. Any ergodic random dynamical system that possesses a Markov
Blanket will appear to actively maintain its structural and dynamical integrity,

which implies that:

1 A complex economic system is ergodic in the sense that the average of any
measure of their states converges over a sufficient time.

2 A complex economic system is equipped with a Markov Blanket. This implies
the existence of a partition of states into external and internal ones.

So, the last assumption affirms that a complex economic system could be
optimized by Bayesian Inference. As a consequence, a complex economic system
could be assimilated with the brain, since the latter is considered a statistical
organ or, in other words, an agent able to infer the causes of its sensorium by its
sensory and internal models provided by the continuous changes of the external
world.

Consequently, the key elements for developing an economic network follow the
same procedures as neurons do. Let us start the discussion on neurons with the
use of predictive coding. This schema can compare the conditioned expectations
with top-down predictors to elaborate the prediction error itself. Furthermore,
the same prediction error is forwarded to the below level that encodes the condi-
tional expectations (Fig. 4). So, the neural architecture optimizes the conditional
expectations of causes in its hierarchical model of sensory input. This structure
allows the link levels to be forwarded with reciprocal backward connections. Con-
sequently, as it has been shown in Sect. 3, it is possible to find the corresponding
network formation steps within a complex economic system: how knowledge, as
in neurons, is diffused and created within the network. According to [4], it is
necessary to assume that i the knowledge diffusion is useful only when the eco-
nomic agent itself broadcasts its knowledge to whomever is directly connected,
as happens between neurons of the same hierarchical level, and (ii) the creation
of knowledge is present only when an economic agent receives new knowledge.
Let us take vt

i,k in which the agent’s i knowledge related to k ∈ {1, . . . , K at
time t, j ∈ Γ (i) is the agent who receives the agent’s i knowledge. Thus, i and
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Fig. 4. Source [8]

j are connected by a non-directed graph such that their dissimilarity is not low
enough.

Δ(i, j) < 0 ∈ (0,∞) (11)

and in this context, the knowledge category can increase according to

vt+1
j,k = vt

i,k + α · max{0, vt
i,k − vt

j,k} (12)

where α represents how much knowledge will be transferred or diffused. At this
point, we are interested in what happens when N economic agents act in an
undirected graph. To discover their behavior [4] employed a heuristic approach.
As happens where we had shad a light on how message passes between neurons
during the network formation, also here in a economic context, it is necessary to
create a lattice and subsequently assigning a probability p in order to re-write
each edge of the graph, which represents a single economic agent or neuron.
Consequently, this network has the following structure:

G(I, n, p) (13)

where Irepresents the lattice on which the network is built, nexplains the number
of vertices of the graph or in economic term the economic agent, and p is the
degree of randomness p ∈ [0, 1]. So, with these assumptions, knowledge diffusion
and creation phenomena have the following determinants:

1 Agent’s i knowledge diffusion is wt
i = 1

K

∑
K wt

i,k.
2 The average knowledge level in a complex economic system at time t is wt =

1
N

∑
i∈I(w

t
i).
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3 Variations in the knowledge level are equal to 1
N

∑
i∈I(w

t
i)

2 − (wt)2.
4 The degree of the spatial local system to interconnect economic agents is

S = 1
σ2

∑
i∈I

∑
i�=j wi(wi − w)(wj − w), where wij =

1
d(i,j)∑

i∈I

∑
j �=j

1
d(i,j)

.

In conclusion of this section, it is possible to affirm that knowledge diffuses via
specific contacts between agents, as happens in neurons’ hierarchical structure
within the brain. This latter assumption affirms that the knowledge is easy to
spread within a small word or in mathematical terms in a locally connected
graph.

4 Conclusions

In conclusion, this paper has rehearsed, from a generic point of view, if steps
used to develop a network within a complex economic system could be assim-
ilated with the same procedures that neurons follow within their hierarchical
structure in the human brain. In other words, this paper’s aim is to shed a light
on the substantial equivalence between, from a mathematical point of view,
the message-passing mechanism in the brain and the knowledge creation and
diffusion between economic agents during network formation within a complex
economic system. This equivalence has been achieved by comparing and treat-
ing the complex economic system as a random dynamical chaotic system and,
in particular, as a Lorenz-system. During this comparison, the existence of con-
ditional independence at a non-equilibrium steady-state has been identified: the
Lorenz-system properties could be assimilated with the notion of bifurcation
in economics. Furthermore, this conditional independence has generated a par-
ticular partition of states where internal states are statistically secluded from
external ones using a blanket state, the so-called Markov Blanket. Consequently,
the complex economic system is subjected to a Markov Decision Process. It has
been discovered that it is possible to establish an equivalence between the com-
plex economic system and the human brain. In particular, this was accomplished
through a comparison between the message-passing phenomenon and the knowl-
edge creation and diffusion phenomena. Finally, it is possible to affirm that this
kind of comparison could represent the first mathematical basis for understand-
ing even more how some economic phenomena derive from autonomous or active
sensors in biology.
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Abstract. Using network analysis, this paper analyzes export surges
of commodities from U.S. states to examine their connectedness along
industrial and inter-state ties, and how they propagate through the trade
network along these ties. Our findings suggest that export surges tend
to be highly skewed towards particular goods, that these surges spread
according to higher-order structural dependencies in the supply chain,
and that increases of export surges were defined by preferential attach-
ment.

Keywords: supply chains · network analysis · shocks · trade

1 Introduction

The effects of the COVID-19 pandemic on global markets provide an opportunity
to more closely examine how the composition and structure of trade networks
either positively or negatively affected export rebound. During various stages of
the pandemic, the latter caused several important shifts in global trade as well
as in the terms of trade for many countries. These shifts resulted in shocks in
demand for intermediate and final products, which were experienced unequally
in different countries and regions [14]. During the early stages of the pandemic,
prices for intermediate inputs rapidly increased as demand outpaced the ability
of supply chains to adapt. The uncertainty regarding the scope and duration of
the pandemic also compounded upward pressure on prices. This paper analyzes
the export surges of commodities from U.S. states to examine how these surges
propagate through trade networks along industrial and inter-state ties.

During the recovery phase, and as some supply chains found new routes to
deliver goods, retail demand surged and was further fueled by stimulus poli-
cies enacted by some countries, while demand for services, particularly in the
restaurant and travel sectors, experienced a sharp decline. Seemingly paradoxi-
cally, global trade volume reached record levels as firms adapted to the changing
market conditions caused by the pandemic. We use network theory to explain
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1143, pp. 435–443, 2024.
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why exports for some goods surged in some states but not in others. We also
expand on the literature on bipartite trade networks, which has tended towards
product specificity. In contrast to that literature, we are the first to examine
the trade network in this manner and for all goods. Our analysis finds that the
export surges tend to be highly skewed towards particular goods, that these
surges spread according to higher-order structural dependencies in the supply
chain network, and that increase of export surges were defined by preferential
attachment.

2 Theory

Global trade dynamics underwent a significant transition from 2022 and 2023
as supply chains rebounded following the COVID-19 pandemic (United Nations
Conference on Trade and Development, 2023). World trade was already trend-
ing downwards prior to the pandemic as a result of tensions between major
economies. However, the 2020 pandemic brought a decline in trade volumes
even more profound than that experienced during the 2008 financial crisis.
Many factors, including widespread economic slowdowns, border closures, travel
restrictions, and supply chain disruptions, conspired to produce this precipitous
decline. Amid these challenges, the year 2021 inspired some hope as trade vol-
umes rebounded, soaring to a record USD$28.5 trillion of world trade in goods,
representing a 13% increase over pre-pandemic levels [19].

This resurgence, however, was characterized by uneven growth across coun-
tries and sectors. While trade in goods surged to unprecedented heights, recovery
in the service sector was notably more sluggish. Global trade surged even fur-
ther to reach an impressive $32 trillion by the end of 2022 [19] However, pent-up
demand for travel, services, retail goods, along with record-high savings drove
inflation to levels not experienced since the 1990s. We apply network analysis
methodology to explain why exports surged in some states and goods but not in
others. Previous literature has already established the usefulness of using net-
work analysis to examine the impact of the COVID-19 pandemic on global trade,
establishing that ties between states and industries lead to shared negative trade
shocks being clustered [8].

The relationship between exports, business performance, and economic
growth has long been a subject of interest for researchers in international trade
and industrial economics at both the micro and macro scales. The importance of
international trade to the economy has been very well established, as increased
export volumes have been shown to be important drivers for economic growth
[16]. Disruptions to international trade consequently pose a significant threat to
economic stability, as shocks experienced by industries are likely the primary
drivers of fluctuations in GDP, shaping overall economic performance [1]. Fur-
ther underscoring the importance of international trade, Bernard and Jensen [5]
showed that higher export volumes boost employment and wages in the U.S. in
the short term. Disruption of international trade, on the other hand, undermines
these benefits, as trade shocks can propagate and amplify, and ultimately cause
what Schumpeter called the ‘creative destruction’ of an economy [18].
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Carvalho and Tahbaz-Salehi [10] stressed that while production networks are
often analyzed at the industry level, accounting for firm-level influences pro-
duces richer theoretical and empirical insights. Indeed, given the importance of
international trade for economic growth and the threat posed by trade shocks
traveling along industry networks, decision making at the firm level is an impor-
tant factor in countering that threat. Firms enter markets to replace inefficient
firms and capture industry profits, creating a complex interplay between input-
output network effects and market dynamics[2]. Bernard and Jensen [4] found
that established exporting firms respond strongly to export shocks, underscoring
the role of sunk costs in shaping decision-making processes in exporting firms
based on their sensitivity to market conditions. Berthou et al. [7] investigated
the relationship between export and import expansion and firm productivity
and found that export and import expansion increased average firm productiv-
ity. However, export expansion also shifted activity towards more productive and
efficient firms. Import expansion operates in the opposite direction. In addition,
the heterogeneous nature of firms across industrial sectors and locations should
be emphasized, given its implications for evaluating trade gains [6].

These economic properties for firms often lead to preferential attachment
in the establishment of new economic ties, where firms with more connections
are more likely to form new connections as the network grows. Another study
on firm-level exports in Columbia found that firms that had already been well-
positioned in the network prior to the pandemic experienced greater increases
in export volume [9]. Furthermore, these economic properties are cyclically rein-
forcing, as more efficient firms export more, while increased exports make firms
more efficient. This should apply at the aggregated state-level as well, as past
work has shown that the power-law distribution that results from preferential
attachment applies to international trade networks at the product category level
at the country-level [17]. Therefore, we expect increased exports at the state-level
to follow the same preferential and skewed attachment pattern as the formation
of trade relationships at the country-level.

The importance of industry ties and the networks they form has also been
well established. Upstream and downstream factors often hold different levels of
importance for firm productivity, according to Bernard et al.’s production net-
work model [3]. In this model, larger, more efficient firms have more geographi-
cally dispersed ties. Indeed, it has been shown that the costs of firms that export
to more countries appear to be less affected by geographical distance [11]. If this
is true, then the presence of ties with one state are indicative of an advantage
that makes ties across multiple states more likely. Given that exporting firms are
generally the most efficient and the largest, commodity export surges will spread
along the geographically dispersed ties of these large, efficient firms. Given firm-
level economic ties between states and industries, we expect export networks to
be characterized by higher-order structural dependence. Furthermore, increases
in upstream and downstream demand lead to increased demand throughout the
supply chain and can have pronounced bull-whip patterns on increases; conse-
quently, we expect the structural dependence of the network to increase over time.
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Finally, given the expected combination of high levels of clustering and prefer-
ential attachment, we also expect to observe highly connected networks where
distinctions between communities decrease as export surges increase.

3 Data

Tintelnot et al. [13] stressed the importance of modeling domestic production
networks to better comprehend the behavior of different types of firms engaged
in international trade, but employing a single approach to elucidate the com-
plete economic repercussions of trade shocks remains a significant challenge [15].
Because of this, we employ a multi-pronged approach to network analysis to
build upon existing literature.

Monthly U.S. state-level commodity import and export data used were col-
lected by the U.S. Census using the U.S. Customs’ Automated Commercial Sys-
tem [20]. We collected data for 1,227 commodities for the period spanning from
December 2018 to November 2021. This time frame allows us to investigate
several important aspects of the export surges. First, it provides a baseline for
disruptions prior to the outbreak of the COVID-19 pandemic. Second, it allows
us to investigate longer trends as the shifts in demand resulting from the initial
shock of the pandemic persisted. Import and export data are reported in total
inflation-adjusted value, in 2020 U.S. Dollars. All 50 states and the District of
Columbia are included in the analysis.

4 Research Design

For the analysis, we construct a bipartite network, which consists of two different
types of nodes and where edges can only be shared between the two different
types. In this application we use states as the first mode and exports at the
four-digit level commodity code of the Harmonized System (HS-4) as the second
mode. The edges in the bipartite graph are a measure of export disruption,
comparing the export value of the current month to a three-month window
centered on the same month of the previous year. When the current month’s
value was more than 25% of the maximum value in the window for the previous
year, it was coded as a one for disruption. Beginning in 2021, however, we look
at the window for two years prior so that disruptions were based on values
preceding the COVID-19 pandemic.

Standard inferential models for bipartite networks, such as exponential ran-
dom graph models (ERGM), stochastic actor-oriented models (SAOM), or con-
ditional uniform graph (CUG) tests would ordinarily be preferred for testing
hypotheses about structural dependence. However, given our network’s size and
highly unbalanced structure, model convergence was impossible or computation-
ally prohibitive with the currently available methodology and software. There-
fore, we use three methods to analyze the structure of the network and the
manner in which ties spread.
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The first method compared bipartite networks with simulated random bipar-
tite networks of the same size and density. This follows the same intuition as
CUG tests but is not as computationally demanding as CUG tests for large net-
works. We use this method to compare the number of four- and six-cycles in
the network. Four-cycles are the bipartite equivalent of transitivity or clustering
in monopartite networks. Four-cycles are defined as two states sharing ties with
two different commodities and six-cycles are defined as three states sharing ties
with three different commodities.

The second method is ordinary least squares (OLS) to test for preferential
attachment both for states (activity) and HS-4 commodities (popularity). For
these models, we calculate the number of ties per node for a given mode and
use OLS to find the relationship between the number of ties a node has and
the number of new ties it forms in the next period. In order to take advantage
of time and unit fixed effects, while preserving statistical power and the ability
to examine change over time, we use a six-month moving window for the OLS
models. For example, the sample for the first model is December 2018-May 2019,
and the sample for the second model is January 2019-June 2019. The use of fixed
effects here is important, because the economies of the states vary along several
important variables such a location, size, policy, and economic complexity, and
thus some export a wider variety of commodities and have more opportunities
to experience export surges than others. The reported models that included unit
and time effects increased R-squared measures of the models from about ten
percent to over fifty percent. Given that 25% is a somewhat arbitrary definition
for disruption, we include a sensitivity check of the same process using a 50%
minimum value threshold to define a trade surge.

The last method is community detection. In addition to our main network,
we also examine collapsed monopartite graphs to analyze higher level commu-
nity formation among states and commodities. In these graphs, shared trade
surges result in weighted edges between states or two-digit commodities. For the
bipartite network, we used the Leiden algorithm with a metric multidimensional
scaling layout, which helps to visually separate states from the commodities
while still showing clusters, unlike the standard bipartite layout with a fast-
greedy algorithm. The fast-greedy algorithm worked best for the monopartite
networks to capture dense clusters. It worked better than with the bipartite
network, given fewer nodes. We used a special layout for these networks, which
reduces overlap for a more meaningful visual representation of the communities.
All community detection and plotting were done using the igraph package for R
[12].

5 Results

In Fig. 1, graph a shows that the export surge network’s density drops at the
beginning of the pandemic, as demand for goods drops amid uncertainty due to
lay-offs and lock-downs, but then rapidly increases far above pre-pandemic levels
until it begins to plateau in mid-2021. We also see in graph b that the network
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(a (ytisneD) b) Skewness

(c) Four-Cycles (d) Six-Cycles

(e) Activity (f) Popularity

Fig. 1. Descriptive Statistics and Modified Statistical Tests. Line plots a and b are
statistics of the observed bipartite networks. Line plots c and d are cycle statistics
of the observed and simulated bipartite networks. The orange line is the observed
network and the black line is the simulated network. Rope ladder plots e and f are
OLS coefficients, with unit and time fixed effects. Circles are for models with 50%
increases and squares are for models with 25% increases.

is always positively skewed, with certain commodities having far more export
surges than the median. However, we see that this was especially pronounced
at the beginning of the pandemic and that even after dropping, the skewness
remained above pre-pandemic levels. This indicates a concentration of demand
in certain certain industries that drove export surges and that these industries
have continued to benefit from the pandemic-driven growth.
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(a) Bipartite: March 2019 (b) Bipartite: March 2020 (c) Bipartite: March 2021

(d) States: March 2019 (e) States: March 2020 (f) States: March 2021

(g) HS2: March 2019 (h) HS2: March 2020 (i) HS2: March 2021

Fig. 2. Community Detection Plots. Plots a:c are the full networks with node deter-
mined by degree (squares are states, circles are commodities), d:f are collapsed state
networks with fixed node size, and g:i are collapsed HS two-digit code networks with
fixed node size.

Graphs c and d show that cycles are more prominent in the observed net-
work than in a network of the same density with ties randomly assigned. This
supports our hypothesis. that industry and state ties form economic clusters
through which network ties spread. While six cycles occur less frequently, they
follow the same, albeit delayed, pattern as four cycles. This indicates that four-
cycles expanded to six-cycles over time, which in turn means that the structural
dependence was driving the formation of new ties.

Graphs e and f show that preferential attachment (i.e. the more ties a node
has, the more likely it is to obtain yet more ties) is statistically significant for
states and commodities. This effect is relatively consistent, apart from a small
drop at the beginning of the pandemic. The effect is slightly more pronounced
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for states, and coefficients for commodities have smaller confidence intervals,
which can be explained by the fact that there are only 50+1 states while there
are 1,227 four-digit commodities.

For the bipartite network (Fig. 2, graphs a:c), the most prominent observa-
tion over time is that the heterogeneity of degree distribution increases, with
certain states continuing to experience far more export surges than other states,
while the network itself becomes more connected and assigned communities of
nodes exhibit more overlap. This indicates that certain states benefited more
than others from the pandemic-driven export boom. However, all states and
industries reaped some benefits. This pattern of increasing community overlap
and increased median node centrality is also shown in graphs d:i. However, these
increases occur more quickly and are more prominent in the commodity network
than in the state network.

6 Conclusion

The COVID-19 pandemic laid bare insufficiencies in the global supply chains,
resulting in shortages of specific commodities and economic dislocation. As the
pandemic continued and governments worldwide formulated policy responses,
the global economy returned to a new normal that was characterized by surges as
a long period of social and economic disruption resulted in sudden and explosive
shifts in demand for specific commodities, causing new waves of disruptions as
industries struggled to cope with supply chains buckling under the pressure to
meet shifts in demand. The ability to track the spread of supply chain disruptions
occasioned by these surges in demand for specific goods will be an indispensable
tool in efforts to restore stability and predictability to global supply chains. It is
in this context that network analysis has become an invaluable tool, as it allows
precisely for the modeling of networks and movement within them.

Our novel approach to network analysis allowed us to avoid collapsing the
network into a monopartite configuration and retain all the information con-
tained in the bipartite model. This in turn allowed us to track not only the
spread of disruptions through industries, but also to determine more clearly
which states and commodities were affected and to model additional structural
dependencies through which disruptions spread. This deeper understanding of
disruption spread increases the predictive value of the models for determining
where surges will occur, and which goods will be affected. This should prove
invaluable to decision-makers in the affected industries as well as to policy mak-
ers, as it gives them the tools to see which critical goods are likely to become
the subject of export surges and to put measures in place to ensure the reliable
supply of critical and strategic goods.

Notes and Comments. All data used are from publicly available sources. For
replication code, please email the authors.
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Abstract. In economy, a major issue is the potential lack of liquidity for
settling the debts generated by payment delays among companies. Since
this lack may trigger cascading failures, we analyse the interconnection
of debts. Settling debts means lowering the systemic risks. We analyse
the data of a large economic network from an Italian invoice operator
on a one-year span. We compare different methods to detect structures
or communities that could be helpful for debt netting algorithms. The
structure of such networks is not currently well known. We give hints on
how to sort and identify the type of B2B invoice graphs. In particular, we
address the possibility to identify relevant communities in such networks.

Keywords: Graph analysis · community detection · B2B invoice
networks

1 Introduction

The intricate nature of debt arises from financial obligations, among companies
triggered by the payment system, fostering a web of interconnected relation-
ships [11]. As companies generally pay their invoices with a delay, debts accu-
mulate and intertwine. A potential chain reaction of defaults emerges, posing a
significant threat to the stability of the entire financial system. Debt settlement
emerges as a vital mechanism to uphold commitments, maintain credibility, and
bolster trust in the corporate world.

To address the challenges posed by trade debts, the concept of netting may
come into play [9]. Such treatment consists in reducing the global amount of
debts between the companies by using mutual compensations, thus lowering the
need for immediate liquidity. This liquidity saving mechanism could streamline
the debt settlement process, minimize credit risks, and enhance the efficiency and
resilience of the corporate ecosystem to ensure a smoother and more secure finan-
cial landscape. Different types of debt netting techniques exist, mainly focused
on partial [12] or complete [2] settlement. Partial netting is based on the possi-
bility to split invoices in order to partially settle the debt. On the opposite way,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1143, pp. 444–455, 2024.
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complete netting is restricted to cancel entire invoices. Today, research on this
type of netting is not well developed and this technique needs a finer knowledge
about the graphs structure. Globally, all those kinds of processes mainly exist
between banks [14,15] and our aim is to extend them to B2B exchanges.

However, in order to implement such a method in algorithmic form, it would
be useful to identify specific properties of invoice graphs between companies.
These networks are quite specific as they correspond to weighted, directed, multi-
edge and time-varying graphs. In Sect. 2, we determine the main characteristics
of exchange networks. Then, in Sect. 3, we try to identify particular structures
or communities. The aim is to split up our graphs in order to facilitate their
processing by netting algorithms. This work should be considered a preparatory
work before more research on netting algorithms. As a first step, we focus on
three methods to understand the structure of these graphs.

2 B2B Invoice Graphs: Definition and Properties

This study is based on a set of 27,445,353 invoices emitted by companies of North
Italy over the span of the 2019 year. This dataset was provided by Infocert, an
Italian electronic invoices operator. Each invoice is composed of the following
data:

– unique identifier to register the invoice;
– unique identifier of the debitor company;
– unique identifier of the creditor company;
– due debt in euros;
– date of the invoice emission.

It is worth noticing that this dataset is anonymized and obviously it is partial as
it includes only the invoices given to the operator by subscribers of its service.
However, although we have non-exhaustive information, we think that the size of
the dataset is in itself significant and could provide some hints on the structure
of the national activity.

We filtered the original dataset (removal of incomplete data) and divided it
into subsets of different sizes, according to the span of time considered (day,
week, month). In particular, studying different time granularities is useful to
determine which time span is best suited to the netting procedures [2].

We use weighted directed multi-edges graphs, often referred to as a
weighted directed multigraphs. This type of graphs is represented by a
tuple G = (V,E,w), where V is the set of nodes, E is the set of directed edges
and w is the weight function over the edges. The edge with index i is defined
as ei = (vj , vk), where vj and vk are distinct vertices in V . The weight function
returns a positive value for a given edge index.

The particularity of multigraphs is that the same couple of distinct nodes
may be in different edges. However, they are distinguished by the edge index.

In the economic context, we call our multigraphs invoice graphs. They are
oriented as follows: the source of an arc is the receiver (debtor) while the desti-
nation is the emitter (creditor).
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2.1 Comparative Study of Our Datasets

As mentioned above, we analyse our data on a monthly, weekly and daily basis
in order to identify specific properties according to time granularity.

Aggregation per Month. The monthly decomposition offers several advan-
tages. It is commonly used for financial reporting purposes, providing a concise
overview of companies’ revenue and expenses over time. Furthermore, it facili-
tates the evaluation of overall performance, offering a holistic view of revenues
and expenses by comparing the trends from month to month. This method
enables long-term decision-making, including activities like setting budgets or
identifying long-term growth trends when comparing year-on-year performance.
Particularly, if one possesses data spanning more than a year, these trends
become crucial for prioritization within a netting process.

When we compare each month, Fig. 1 shows that the start of year and the
month of August are lighter in terms of transactions. It seems quite logical as
the month of January is a month of slowdown for companies that allocate their
budget, plan their decision-making strategy and have a decline in sales after the
end of year rush. On the other hand, August registers a lower number of invoices
because it is the preferred month for companies’ Summer holiday in Italy. We
observe similar behaviours for nodes, edges and weights variations.

Fig. 1. Variations of nodes, edges and weights on monthly graphs. Colour tones depend
on the trimester.

Aggregation per Week. The advantages of making weekly cuts include the
ability to detect short-term trends. This approach is beneficial for reporting and
mid-term planning as it offers more detailed insights than broader monthly cuts.
Additionally, this type of cut smoothens the daily fluctuations and highlights
cyclical activity patterns. Indeed, weekly cuts allow for a closer view on the
working capital turnover.

Looking at the invoice distribution on a weekly basis, we can see in Fig. 2,
that companies operate mostly on a monthly billing cycle, sending their invoices
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grouped on the last week of each month. This highlights the need in terms of
efficiency for companies to send invoices in bulk. Also, it allows for payment
alignment with their clients’ schedule. From our perspective, it could be inter-
esting to tackle invoices by performing the netting algorithm twice a month.
According to the edge distribution over a month, half of the transactions hap-
pen on the first three weeks and the second half occurs during the last week. So,
it appears reasonable to apply the netting on the first three weeks separately
from the last one. As for monthly cuts, variations on each graph are similar.

Fig. 2. Variations of nodes, edges and weights on weekly graphs. Colour depends on
the trimester and the month of the first day of the week.

Aggregation per Day. From an economic point of view, cutting our data
by day provides a high level of granularity for a detailed view of transactions
and cash flow patterns. It is useful to identify short-term trends or irregularities
and for real-time monitoring, in order to promptly respond to issues of delayed
payments for example. Moreover, it gives an insight for operational decision-
making, improving the management of inventories and resources allocation of
the different companies.

From the graph analysis point of view, this aggregation gives us a fine-grain
decomposition into small sub-graphs that may be easier to process by a netting
algorithm. Figure 3 gives the total weights of incomes for each daily sub-graphs.
General periodic patterns can be observed for weeks and months with only one
exception in June with an extremely high concentration of volume on the last
day of each month. As before, the total number of nodes and edges are strongly
correlated to the weights, so we do not include them here.

2.2 Statistical Study on Monthly Graphs

We now focus on monthly cuts as they provide graphs that are less subject to
variations and they are more densely connected than weekly and daily cuts.
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Fig. 3. Total weights of daily graphs. Colours depend on the day of the week.

Table 1 gathers a set of statistics exhibiting particular behaviours. Concern-
ing the diameters, they are obtained after removing all nodes of degree one
(about a third of the nodes). Average path lengths are obtained by computing
shortest paths between ten thousand random pairs of nodes.

Looking at our data from a correlation point of view1, we see that the diame-
ter and the clustering coefficient do not seem to be especially correlated with the
size of our network and are quite stable from one month to another. The low val-
ues of clustering coefficient indicate that we are far from having a Small-World
network in which the clustering coefficient is much higher [10].

Also, we observe that the diameter and the average path length are quite
small compared to the number of nodes and strongly correlated.

For the month of January, only thirty nodes have a degree higher than a
thousand. These nodes can be considered as mega hubs in the network since
they interact with more than 0.1% of the rest of the nodes. Coupled with the
low diameter and average path length, it means that no node is far from a hub,
linking it to the rest of the graph.

2.3 Comparison with Well-Known Families of Graphs

We now compare B2B invoice networks with Small-World and Scale-Free net-
works as they are the most commonly used to analyse real world networks. Such
a comparison is relevant as in the case of similarities with a given family, we could
take advantage of the identified structure to design efficient netting algorithms.

Small-world graphs were famously described by social psychologists Milgram
and Travers in their “six degrees of separation” experiment [18], in which they
found that individuals are, on average, separated by only a few acquaintances.
This type of networks was formalized by Watts and Strogatz [19] and exhibits a
high clustering coefficient and a short average path length.

1 More information are available in an extended version on the French preprint server
HAL.

https://inria.hal.science/hal-04230839
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Table 1. Statistical values describing our twelve monthly and the annual graphs.
GWCC and GSCC respectively stand for Giant Weakly and Giant Strongly Connected
Component.

Month 01 02 03 04 05 06 07 08 09 10 11 12 Annual

Nodes (103) 623 657 707 699 723 691 721 566 740 754 729 767 2057

Edges (103) 1910 2120 2362 2311 2443 2296 2462 1723 2348 2496 2301 2364 27138

Mean Degree 3.07 3.23 3.34 3.31 3.38 3.22 3.42 3.05 3.17 3.31 3.16 3.08 13.19

Clustering
Coefficient

0.010 0.007 0.010 0.007 0.007 0.013 0.007 0.008 0.011 0.011 0.007 0.016 0.028

Diameter 29 29 28 28 31 25 27 32 28 33 31 27 34

Average Path
Length

9.57 9.14 9.26 9.52 9.34 9.51 9.24 10.25 9.64 9.31 9.20 9.42 9.37

Nodes GWCC
(%)

99.19 99.20 99.34 99.32 99.36 99.29 99.40 99.07 99.40 99.42 99.40 99.45 99.95

Edges GWCC
(%)

99.80 99.20 99.84 99.84 99.85 99.74 99.85 99.75 99.84 99.85 99.84 99.85 99.97

Nodes GSCC
(%)

7.70 8.58 9.09 8.88 9.35 9.15 9.50 7.01 8.69 9.26 8.77 8.99 11.83

Edges GSCC
(%)

34.87 34.75 36.86 36.42 38.08 36.53 37.87 32.07 33.64 37.14 36.18 36.1 47.34

Scale-free networks, characterized by hubs with many connections, resemble
many real-world systems like social networks and the internet [1], as highlighted
by Faloutsos and al. [6]. Their structure affects how information spreads. In these
graphs, edges’ growth is generally faster than nodes’ growth due to the property
of preferential attachment. The presence of hubs enhances communication effi-
ciency but also makes networks vulnerable to targeted attacks. Barabási et al.
showed the signature power-law degree distribution of these networks [3]. Their
main feature is the existence of power-law distributions with the conservation of
properties at different scales.

2.4 Distribution of Degrees and Weights

The link between nodes and edges suggests a power-law relationship (Table 1).
This suggests that our graphs follow the usual scale-free property of economic
networks which is the typical behaviour of scale-invariant graphs. The degree
distribution resembles a power-law but presents a large tail. Indeed, the plot of
degree distribution on log-log graphs shows good agreement with straight lines.
These lines are the mark of a power-law distribution but other distributions such
as the negative binomial distribution can be considered, as raised by Fricke and
Lux in their article on interbank networks [8].

In order to find the power-law coefficients that fit our graphs, the method of
the Maximum Likelihood Estimator (MLE) has been used on our entire dataset.
The different gamma values obtained with MLE are provided in Table 2. As
strong differences have been observed between In and Out degrees in our graphs,
it is better suited to distinguish their power-law analysis. Figure 4 provides the
different histograms as well as the overall degree rank plot. These plots are
made using density in order to make the comparison easier visually and to have
normalized data.



450 J. Guichon et al.

To judge the fitting quality of those power-law, the generalized r2 proposed
by Cox and Snell [5] was used for each month on the whole data interval. For
the In degree fitting, the minimal value found was r2 = 0.95 in December which
means that a power-law fits quite well with the In degree distribution. The
results for Out degree laws are lower with the best being r2 = 0.72, meaning
that this distribution does not precisely correspond to a power-law. Concerning
the rank plot, its global linear aspect tends to empower the idea of a construction
following power-laws. It is an open problem to understand this law asymmetry
between In and Out degrees.

Fig. 4. Distibution of degrees for the month of January

Table 2. Values of our different gammas found by MLE. SD is the Standard Deviation
between months.

Month 01 02 03 04 05 06 07 08 09 10 11 12 Mean SD

γGeneral 2.27 2.25 2.21 2.22 2.23 2.22 2.22 2.19 2.23 2.21 2.23 2.23 2.23 0.02

γOut 2.60 2.62 2.61 2.59 2.54 2.55 2.52 2.51 2.58 2.53 2.55 2.61 2.57 0.04

γIn 2.08 2.06 2.08 2.05 2.05 2.04 2.05 2.01 2.04 2.04 2.05 2.05 2.05 0.02

We also compare the gamma obtained for different intervals on the month of
January since the tail of our data can be not representative because of variations.



Properties and Communities of B2B Invoice Graphs 451

We also cut the nodes of degree one in our intervals since they may be strongly
biased by our dataset that is limited to Infocert clients’ invoices. The results in
Table 3 show the variability of the gamma depending on the data considered. The
interval that fits best all type of degree is the [2−50] range with a r2 of 0.91 for In
Degree distribution, 0.87 for general degree and 0.86 for Out degree. When taking
all the data into account, a reason we don’t observe a high value of r2 for the Out
degree distribution probably comes from the fact that statistically speaking, the
Out degree is smaller than the In degree, which generates a narrower distribution
of Out degree and less reliable statistical results.

Table 3. Values of our different gammas found by MLE for the month of January
depending on the range for data.

Range Global [2-50] [2-100] [2-500] [2-1000] [2-10000] [2-∞[

γGeneral 2.27 2.60 2.51 2.43 2.42 2.41 2.41

γOut 2.60 2.80 2.71 2.67 2.66 2.66 2.66

γIn 2.08 2.40 2.31 2.22 2.20 2.19 2.18

As stated before, our aim in finding a classic graph family close to monthly
cut graphs is to use their specific properties to improve netting algorithms. As
seen above, our networks present potentially two distinct laws on the In and Out
degree distributions. These laws allow us to consider the possibility of efficient
graphs partitioning to apply netting algorithms.

3 Communities Detection in B2B Invoice Graphs

In this section we tackle the problem of detecting communities. As mentioned
before, this would be useful to apply a decomposition of the netting problem.
Indeed, since the netting problem we are interested in is NP-complete [2], this
divide-and-conquer approach allows us to apply our algorithms on large graphs
in reasonable time.

The main obstacle in community detection is the multiplicity of definitions of
what a community is. In particular, in economy there are many ways to define
communities, it could be actors of the same sector, of the same geographical
perimeter, etc. In our case it is more relevant to define communities as groups
of highly connected actors.

3.1 Two Direct Methods for Communities Detection

As a first step, we use two different approaches that are not the most popular
ones for communities detection nowadays. However, they are still used due to
their simplicity and acceptable results quality.
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Matrix Reordering Methods. In some cases, adjacency matrices can allow
one to visualize the structure of graphs. However, the difficulty is to find a
reordering of the nodes that spacially separates the communities inside the
matrix. Different methods exist and we applied some of those exposed by
Behrish et al. in their survey [4]. We were surprised to notice that none of these
approaches could reveal the presence of communities. After analysing the prob-
lem, we found out that it is not really surprising as even with strongly structured
graphs such as Caveman graphs, this method does not produce good results as
soon as some noise is added to the structuration of the graph (random links
between communities)2.

k-core Method. A simple idea to detect communities is described by Fortu-
nato [7] (see Sect. 4). The idea is to get rid of nodes that have less than a certain
degree, to update the degree of the other nodes and to repeat until there is
no change in the graph anymore. This method named k-cores (k is the degree
threshold) was first used by Seidman when working on social network graphs [17].
After trying this method, we found out that it often generates either one giant
component or a myriad of small communities with high degree nodes. As shown
in Table 4, each decomposition of the January graph presents a main weakly
connected component (WCC) that concentrates most of the nodes and edges.

The mean degree is not linearly correlated to the core number. This comes
from the fact that invoice graphs present some nodes of extremely high degree
heavily influencing the mean degree when the size of the graph decreases. Con-
cerning the diameter, we observe an expected decrease according to the increase
of k. However, it is interesting to see that the decrease is not strictly monotonous.
Finally, we can see that the strongly connected components are smaller than the
weakly connected ones and their evolution is not monotonous. But, the higher
the k, the higher the concentration inside the GWCC, highlighting our hyper-
connected parts of the main graph. Indeed, suppressing small degree nodes tends
to remove small connected components that are not highly connected making
the SCC ratios increase. However, the removal of higher degree nodes tend to
divide the SCCs so that their ratio decreases (which is not what we apply here).

These decompositions help us to find groups of extremely highly connected
components we could use as a starting point for netting algorithms.

3.2 Communities Detection Using Modularity

The most usual method in community detection on big networks is the graph
partitioning according to the measure of modularity. This parameter measures
the degree of segregation or clustering of nodes within a network compared to
what would be expected by chance (random network of the same size). It quanti-
fies the extent to which a network can be divided into distinct, densely connected
groups or communities. Readers that want more details about modularity can
refer to the survey of Newman [16]. The classic way to create communities using

2 Different visuals are available in an extended version on HAL.

https://inria.hal.science/hal-04230839
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Table 4. Statistical values describing different k-cores for the month of January

k-core Complete 3-core 5-core 10-core 20-core 50-core 100-core 200-core

Nodes 622 941 147 521 74 386 28 066 9 434 2 180 876 355

Edges (103) 1 910 1 334 1 092 803 567 367 282 217

Mean Degree 3.07 9.04 14.30 29.01 60.00 169.20 323.42 612.00

Diameter 24 21 20 17 14 10 9 9

Nodes
GWCC (%)

99.19 99.73 99.75 99.78 99.84 99.82 100.00 99.44

Edges GWCC
(%)

99.80 99.93 99.93 99.95 99.95 99.96 100.00 99.89

Nodes GSCC
(%)

7.70 27.32 37.25 47.09 57.01 73.30 78.88 82.25

Edges GSCC
(%)

34.87 48.55 54.98 62.95 72.24 81.72 85.56 87.04

modularity to is the Louvain method, described by Lambiotte et al. in their
article on communities for large networks [13].

This method takes a resolution parameter that guides the size of extracted
communities. It allows one either to create numerous small groups of weakly
connected nodes while providing good inter-connections between groups, or to
produce a set of larger groups with less inter-connections. Having little groups is
useful for computing algorithms but it may miss a part of the information con-
tained in the inter-connection. Moreover, although the number of communities
does not change much with the resolution, there is an increase of the number of
large communities (see Table 5). This means that the largest communities merge
and that the smaller ones stay on their own.

Table 5. Repartition of the nodes according to modularity

Resolution 0.5 1.0 1.5

Modularity 0.747 0.749 0.741

Number of communities 2170 2082 2058

Number of community with more than 5% of the nodes 4 6 9

Percentage of nodes in the biggest community 6.95 7.43 14.74

Percentage of edges in the biggest community 3.32 4.92 10.70

Percentage of inter-community edges 21.5 19.65 17.93

This method allows for the control of the sizes of the largest communities.
It is efficient to find well-connected nodes but it does not affect smaller groups.
These small groups are either in different connected components or not connected
enough to bigger ones.

Another limitation of this modularity approach as well as previous methods
is that they are based on grouping nodes and not on grouping edges. Contrary
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to classic approaches, the netting problem requires to group invoices by similar
amounts instead of grouping them with a node-based approach. Hence, an open
problem is the research of new algorithms that would group edges by similarities
rather than nodes.

4 Conclusion

We have proposed a two-fold study on B2B invoice graphs from Infocert. On the
one hand, we focused on identifying distinctive characteristics of such graphs.
On the other hand, we compared different methods to extract communities from
these graphs.

Concerning the first aspect, we observe that B2B graphs do not correspond
to small-world graphs, displaying lower clustering coefficients. They closely align
with scale-free graphs, demonstrated by power-law degree distributions. These
findings emphasize the presence of influential nodes in the network and global
robustness to random failures. This also tends to align with the study of other
real networks in economy that present a tendency to preferential attachment
and so power-laws. Although not a perfect fit, this study advances our under-
standing of invoice graphs and their properties, crucial for our application on
B2B networks.

Concerning the communities aspect, the different approaches for communi-
ties successfully identify densely connected node groups. Indeed, we observe the
presence of a giant strongly connected component in our network. However, the
obtained results show that further refinement is necessary to be fully suited for
edge-centric applications such as netting.

This research not only advances our understanding of invoice graphs but
also serves as a stepping stone for future work on B2B netting procedures. The
imbalance between In and Out degree may have to be taken into account when
working on debt netting algorithms.

Acknowledgement. The authors are grateful to Infocert for their trust and support.

References

1. Akella, A., Chawla, S., Kannan, A., Seshan, S.: Scaling properties of the Internet
graph. Association for Computing Machinery, New York, NY, USA, pp. 337–346
(2003). https://doi.org/10.1145/872035.872087

2. Amato, M., Fatès, N., Gobbi, L.: The economics and algorithmics of an integral
settlement procedure on B2B networks, 1 September 2021. http://dx.doi.org/10.
2139/ssrn.3915380

3. Barabasi, A.-L., Bonabeau, E: Scale-free networks. Sci. Am. 288(5), 60–69 (2003).
http://www.jstor.org/stable/26060284

4. Behrisch, M., Bach, B., Henry Riche, N., Schreck, T., Fekete, J.D.: Matrix reorder-
ing methods for table and network visualization. Comput. Graph. Forum 35, 24.
Wiley (2016). https://inria.hal.science/hal-01326759/document

https://doi.org/10.1145/872035.872087
http://dx.doi.org/10.2139/ssrn.3915380
http://dx.doi.org/10.2139/ssrn.3915380
http://www.jstor.org/stable/26060284
https://inria.hal.science/hal-01326759/document


Properties and Communities of B2B Invoice Graphs 455

5. Cox, D., Snell, E.: Special Logistic Analyses. Analysis of Binary Data, pp. 26–105,
2nd edn. Chapman and Hall, London (1989)

6. Faloutsos, M., Faloutsos, P., Faloutsos, C.: On power-law relationships of the Inter-
net topology. SIGCOMM Comput. Commun. Rev. 29(4), 251–262 (1999). https://
doi.org/10.1145/316194.316229

7. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3-5), 75–174 (2010).
ISSN 0370-1573, https://doi.org/10.1016/j.physrep.2009.11.002

8. Fricke, D., Lux, T.: On the Distribution of Links in the Interbank Network:
Evidence from the e-Mid Overnight Money Market, January 2013. https://
EconPapers.repec.org/RePEc:zbw:ifwkwp:1819

9. Gaffeo, E., Gobbi, L., Molinari, M.: The economics of netting in financial networks.
J. Econ. Interact. Coord. 14, 595–622 (2019). https://doi.org/10.1007/s11403-018-
0229-4

10. Gu, L., Huang, H.L., Zhang, X.D.: The clustering coefficient and the diameter of
small-world networks. Acta Math. Sin.-Engl. Ser. 29, 199–208 (2013). https://doi.
org/10.1007/s10114-012-0387-6

11. Iosifidis, G., Charette, Y., Airoldi, E.M., Littera, G., Tassiulas, L., Christakis,
N.A.: Cyclic motifs in the Sardex monetary network. Nat. Hum. Behav. 2, 822–
829 (2018). https://doi.org/10.1038/s41562-018-0450-0

12. Klein, M.: A primal method for minimal cost flows with applications to the assign-
ment and transportation problems. Manag. Sci. 14(3), 205–220 (1967). https://
www.jstor.org/stable/2627433

13. Lambiotte, R., Lefebvre, E., Blondel, V., Guillaume, J.L.: Fast unfolding of com-
munities in large networks, July 2008. https://doi.org/10.1088/1742-5468/2008/
10/P10008
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Abstract. Despite its unconventional origins, Bitcoin has emerged as
the predominant cryptocurrency in the modern era and has entered main-
stream discourse. Transactions in the Bitcoin ecosystem are different
from those of ordinary finance, because of the way in which the cryp-
tocurrency was designed. A proper structural understanding, and model,
of Bitcoin transaction flows has largely been lacking. In this paper, we
propose a model (based on directed acyclic graphs) that enables us to
conduct structural analysis of networked Bitcoin transaction flows. Our
model includes ‘activity’ measures, analogous to liquidity measures in
ordinary financial markets, that are inspired by intuitions from thermo-
dynamics. We apply the model and the activity measures to conduct
structural analysis on a large transaction dataset from the early days of
Bitcoin (first five years) when it was most in flux, and its future was still
uncertain. Among other findings, our structural analysis suggests that
the activity measure is correlated with major news events that affected
Bitcoin. Our model could potentially be used to study other cryptocur-
rencies for which transaction data is available, as well as more recent
Bitcoin transaction data.

Keywords: Bitcoin · transaction flows · directed acyclic graphs ·
economic complexity

1 Background and Motivation

Bitcoin was proposed in a white paper in 2008 [16], along with the underly-
ing concept of blockchain [22], and has since entered mainstream discourse [4].
This unique technology purports to address several shortcomings in the cur-
rent fiat monetary system through features such as decentralization, immutabil-
ity, transparency, limited supply, and global accessibility. Bitcoin depends on
an underlying blockchain, which serves as the ledger on which transactions are
recorded. Bitcoin ‘miners’ validate these transactions, which can be conducted
by any individual (or digital entity) with the required computational tools. This
mining process, also called proof-of-work, is crucial for realizing the decentral-
ization that is a cornerstone of Bitcoin. The miners are incentivized with block
rewards and transaction fees. While the transaction fee is not a necessity for
validating the transaction, it influences the speed at which the transaction gets
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1143, pp. 456–467, 2024.
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validated. The transactions utilize anonymous tokens to identify the owner, pro-
viding rigorous privacy. No overwrite is allowed once the transaction is recorded
on the blockchain, which provides transparency and data integrity. Bitcoin has
no denomination; in other words, it can be divided into any value with the
smallest amount to eight decimal places (the so-called satoshi).

We schematically illustrate the structure of typical Bitcoin transactions in
Fig. 1. Each color box with a solid outline represents a transaction. A trans-
action allows multiple inputs and multiple outputs. For example, transaction
TX3 has one input and two outputs; input3 (B10) is divided into output3 (B6)
and output4 (B4). The transaction input is referenced from the previous trans-
action outputs, i.e., TX3’s input3 is referenced from TX1’s output1, which is
(B10). The spendable Bitcoin is identical to the unspent transaction outputs
(UTXO). In this example, TX4 and TX6 are the UTXOs since they have yet to be
spent. Once UTXO is spent and validated by miners, the UTXO will no longer
be usable. The comprehensive explanations of Bitcoin and transaction details,
such as address, wallet, and UTXO unlocking, fall beyond the scope of this work
but we refer the interested reader to [1,3] (for introductory reading) and to [7]
for a more advanced and recent treatment, especially in the context of modern
finance.

As the figure and this description suggest, the set of Bitcoin transactions is
amenable to being modeled and studied as a complex system. Given the exten-
sive research into user activity and transaction anonymity [17,18,21], our pri-
mary goal in this paper is to conduct a study focusing on the characteristics of
transaction networks: first, by presenting a graph-based model for representing
networked Bitcoin transaction flows; second, by proposing ‘activity measures’ for
conducting structural analysis of networked transaction flows. In ordinary finan-
cial markets, like the stock market, an intuitive example of an activity measure
is ‘liquidity’ i.e., do proposed buy/sell trades ‘clear’ (or are completed) near-
instantaneously or is there a long lag and pricing friction? Liquidity is related
to, but not necessarily equivalent to, the volume of transactions and trades occur-
ring in unit time. In the Bitcoin ecosystem, developing an appropriate measure
of ‘liquidity’ is an important and under-studied problem. We propose a measure
that is inspired by thermodynamics, and use it to study the graphs that we
construct.

While this work is related to other work on economic complexity [5,6,9,
10,13], it is also different in that we are less interested in studying Bitcoin
‘users’ than transactions. Our work is more related to modeling attempts in other
domains, such as illicit finance and human trafficking, to gain deeper insights into
these phenomena using the tools of complex systems research [8,11,12,14,15].
There have been no studies, to our knowledge, at the intersection of Bitcoin and
economic complexity. One important caveat here is that we focus on the early
stages of Bitcoin, as we are interested in understanding Bitcoin transactions in
the earliest days of the cryptocurrency’s growth. There is an argument to be
made that current Bitcoin markets are large enough that ordinary principles
of economic theory and models can be applied to them. However, this was not
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Fig. 1. Example of Bitcoin transaction

necessarily true in the first five years when Bitcoin price was extremely volatile
(hence, it could not remotely be considered as a store of value), and since it
could not be used for useful physical transactions, its future was uncertain. We
posit that the methods of complex systems research are more appropriate for
studying such a system. Nevertheless, applying some of our methods to more
recent Bitcoin data is an important line of future work.

The rest of this paper is structured as follows. First, we describe a model
for understanding the structural properties of networked transaction flows by
constructing Directed Acyclic Graphs (DAGs). We then describe specific activity
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measures used for characterizing the transaction flows in this paper. We follow
this with materials and methods, including details on the dataset we use for
conducting the experiments. Next, we report the results of the study. Finally, we
conclude the paper with a brief summary and some guidance on future research
avenues.

2 Construction of Networked Transaction Flows
as Directed Acyclic Graphs (DAGs)

Bitcoin is characterized by the unique transaction mechanism described in
Sect. 1: it is sequential and cyclic, and each transaction is a one-time use. To
capture both the Bitcoin amount involved in the transaction and the direction-
ality of the trade, we propose Directed Acyclic Graphs (DAGs) as an appropriate
model. A DAG is constructed for transactions in a given time period T . Within
the DAG, the set of TXIDs is modeled as the node-set V . An edge is con-
structed to represent the actual Bitcoin flow between two TXIDs, which was
validated in T . Formally, the edge-set E contains elements of the form (s, r, w)
where s and r (representing the sending and receiving TXID) are both in V ; and
w is the (always positive) weight on the edge representing the number of Bit-
coins transacted. For example, s → r illustrates the directed edge and generates
chronologically from the existing TXID s to the new TXID r. Transitivity and
acyclicity are effectively encapsulated within the DAG structure.

Figure 2 shows an example of DAG construction; this is our constructed
model to describe the identical transaction scenario in Fig. 1. The symbolic table
on the left side includes five transaction records, with the constructed D visual-
ized on the right side. Note that the attribute Date corresponds to tx hash from;
it is not a time identifier for the edge. For example, in the third and fourth
records, both Date values represent the transaction date of TX3. We further
extract a portion of the whole D with limited T as DT . In this example, T
includes the three grey background records in the table, and the corresponding
DT is shown in the dashed outline box.

Importantly, the DAG is constructed by a given period T . We used a rule
of thumb for determining T ; namely, a verified transaction is considered as con-
firmed after six more transactions are added after the transaction. However,
the time interval between two transactions varies. Because we want T to be long
enough to illustrate and measure transitivity, we determine its value by randomly
sampling a date t in 2013, and building the corresponding DAG with T ranging
from 1 to 14 days, where T = 1 includes all the transactions in [t : (t + 1)).
This process was repeated ten times to mitigate the effect of the outlier. The
results are shown in Fig. 3; each data point denotes the average of the size ratio
( |Node(DT

lc)|
|Node(D)| , |Edge(DT

lc)|
|Edge(D)| ) between the largest connected component (LCC) and

all transactions in T . In both curves, the standard deviation gradually saturates
after T = 7, and it covers most of the transactions (>98%). Therefore, a value
of 7 is chosen for parameter T to characterize the transitivity of the system.
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Fig. 2. An illustration of the constructed DAG using sample Bitcoin transactions.

3 Activity Measures

This work considers the DAG as an ‘activated’ system, which can be analogized
to a thermodynamics process. In the first law of thermodynamics, the internal
energy can be described as ΔU = Q − W , where Q is the heat added to the
system, and W is the work done by the system. Similarly, we define activity (A)
as the Bitcoin amount difference between the in-flow and the out-flow in the
largest connected component of the DAG. Formally,

A =
∑

i

ui −
∑

j

vi

∀ui ∈ DT
lc, N−(ui) ∈ ∅

∀vj ∈ DT
lc, N+(vj) ∈ ∅
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Fig. 3. Ratio of node and edge sizes.

where DT
lc is the LCC in the DAG in a given period T . N+() and N−() is the

out-neighbor and in-neighbor function, respectively. The remaining connected
components are neglected due to the small volume (<2%) and lack of connec-
tivity. In Fig. 2, A = (v1 + v2) − (v1 + v3) = −1. A is not necessarily 0 since
we limited T ; the transactions’ inputs might not be contained in [t : (t + 7)),
leading to a negative A. In the previous example, TX5 have two inputs TX3
and TX2, where t2 < t; as a result, v2 < v3. We consider TX2 as an external
in-flow. In other words, the system needs additional in-flow (energy) outside the
T , indicating the system is less liquid. This quantity describes how much Bit-
coin activated during T remains in the system. A is also correlated to volatility,
bid-ask spread, and stability.

4 Materials and Methods

4.1 Data

In this work, we used the Bitcoin Transactions dataset [20] released publicly on
the IEEE DataPort platform in 2019. The dataset contains records from Bitcoin’s
inception (2009) until 2014 (but with 2014 only partially covered). However, the
first official Bitcoin transaction (in this dataset) occurred on May 22, 2010.
For our studies and subsequent modeling of transaction flows, we consider the
transaction data from 2011 till the end of 2013, as not all transactions in 2014
are reported in this dataset.



462 M.-H. Chiu and M. Kejriwal

The dataset is a structured table with four fields of interest for this work: two
transaction identifiers (TXIDs) that uniquely identify the initiated transaction
(tx hash from) and received (tx hash to) transaction, the tx hash from’s date,
and the number of Bitcoins involved between the two transactions. We found
that the transaction fee is not included in this dataset, i.e., in TX1 → TX2,
TX1’s Bitcoin ≥ TX2’s Bitcoin. This extends A’s upper bound and is positive
when T → ∞.

Some parts of the study also rely on historical market statistics that we
downloaded (as CSV-formatted daily data) from [2]. The data includes price,
open, close, high, low, volume, and percentage of change.

5 Experiments

5.1 Growing and Saturating Stages

The degree distribution from 2011 to 2013 is shown in Fig. 4a for investigating
structural differences in DAGs in the few years after Bitcoin launched. Each
color represents the degree distribution of the weekly DAG with a given starting
date. As shown therein, each weekly DAG exhibits similar scale-free behavior.
However, different stages are shown as the first half (purple) and the second half
(magenta) of 2013 overlap. α fitted to the power-law distribution was found to be
around 1.7 to 2.4, slightly smaller than that found in [19]. We suppose that the
variation is arising from distinct time periods, as [19] constructed DAGs with all
transactions spanning from 2009 to July 2011. The heavy-tailed structure closely
resembles that found in [18], which utilized a more similar time frame as ours
(2009–2013). The linear regression results on a log-log plot show the intercept
gradually increases from 106 (January 2011) to 1012.5 (June 2013) and again
decreases to 1011 (December 2013).

We define these two stages as the growing and saturating stages, which are
separated on June 11th, 2013 as the maximum intercept(1012.566) occurs on that
date. The variable |Node(Dlc)|

|Node(D)| is shown in Fig. 4b. The edge size ratio has the
similar trend as the node ratio, so we do not repeat the result for redundancy.
During the growing stage, the average |Node(Dlc)|

|Node(D)| of 2011, 2012, and 2013 is 0.811,

0.965, 0.988; and |Edge(Dlc)|
|Edge(D)| is 0.872, 0.983, and 0.995, respectively; eventually,

they saturate to 0.980 and 0.992 in the saturating stage. Both the small intercept
and |Dlc

D | in the growing stage indicate that the transactions remain relatively
sparse; the average number of transactions per month in 2011 was one-twelfth
of that in 2013 (saturating phase). This fact is also reflected in the price. The
average price in 2011, 2012, 2013 (growing), and 2013 (saturating) was $5.645,
$8.292, $73.420, and $298.785, respectively.
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(a) (b)

Fig. 4. (a) Degree distribution across various time intervals (b) variation in node sizes
across diverse time intervals

5.2 Analysis in 2013

We look closer at 2013 as it contains both the growing and the saturating stages.
The eight indicators are shown in Fig. 5: average price per week, average volume
per week, activity, number of nodes, number of edges, average degree, and aver-
age cluster coefficient. We also show four important events (denoted by the red
vertical lines) in the Bitcoin market in 2013. The first event was the blockchain
fork and split on March 12th, caused by software bugs. The second event was
the closing of the Bank of Cyprus on March 15th. The third event was the Silk
Road shutdown. Silk Road is the dark web market that uses Bitcoin as the pri-
mary currency of illegal transactions. The Federal Bureau of Investigation (FBI)
arrested the organizer Ross William Ulbricht and seized his laptop on October
1st. The final event was the banning of Bitcoin by China. The People’s Bank of
China prohibited any transaction related to Bitcoin on December 5st. The green
vertical line on June 11th in each subplot denotes the boundary between the
growing and saturating stages.

We first investigate general observations between the two stages. The price
shows to be relatively stable in the growing stage except for the minor rally in
April. However, the price surged after October. The stages are defined differently
regarding DAG’s degree distribution, but the daily rate of change (DROC) also
shows consistency. In the early growing stage, it remained at around 0.02%;
however, the DROC in the saturating stage oscillated about 0. The node and
edge numbers show invariance to stages and vary in the identical distribution the
whole time. However, distinctions were demonstrated in the other three higher-
level statistics. The activity (A) remained negative but gradually increased, with
a positive value shown in October, indicating the market is much more active
and liquid, leading to a price rise. The degree and cluster coefficient shows a
slightly lower value (on average) in the saturating stage, indicating the lower
density and connectivity in DAG.
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Fig. 5. Detailed analysis of Bitcoin market and activity variables in 2013.

The stable growth was disrupted with the occurrence of the blockchain fork
and split event, which raised concerns about this novel technology’s feasibility.
This event is immediately reflected on most indicators (except average degree).
However, the significant drop in node and edge numbers might also come from
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splitting the blockchain, making orphan blocks and transactions neglected in
this dataset. This drop lasted briefly as the second event (closing of the Bank
of Cyprus) happened in three days. The traditional banking system’s financial
collapse led to significant safety concerns. The novel and decentralized cryp-
tocurrency attracted people’s attention, leading to the first surging in 2013. The
DROC reached up to 10.985% on April 6th. However, the sharp drop on April
13th (DROC = –17.910%) followed in a week, accompanied by the highest vol-
ume (up to B300K) in 2013. This rapid price fluctuation highlighted Bitcoin’s
volatility and speculative nature. Interestingly, the activity A remains negative
in this bubble period.

In the early saturating state, the node and edge numbers slightly decreased.
Still, the average degree and clustering coefficient remained, which is consistent
with the degree distribution’s discovery. This status remained until the FBI shut
down Silk Road in October. The attention of regulatory and security agencies,
and possible legitimacy positively affected the Bitcoin price. This trend had
lasted about two months; it reached the highest price at $1144.62 on December
2nd the highest DROC up to 13.915% on November 15th. In the meantime, the
node numbers and edge numbers also reached the highest in 2013. Also, the activ-
ity started to rise above 0. However, the degree and the cluster coefficient show
opposite trends. The sparsity observed in the DAG may be associated with either
the accumulation or distribution of Bitcoin, a phenomenon also observed dur-
ing April. In cases of accumulation, where individuals are gathering Bitcoin, the
output degree tends to be 1. Conversely, during instances of large-scale Bitcoin
selling, the input degree tends to be 1. The bull market immediately turned into
a bear market due to the fourth event, China Bans Bitcoin. This news reduced
market enthusiasm, with the price halving. Intriguingly, the volume remained
stable when these two events occurred.

6 Conclusion

This paper proposed a model based on DAGs for modeling networked Bitcoin
transaction flows. We also proposed activity measures inspired by thermody-
namics for capturing a natural intuition of ‘liquidity’ in this complex system.
When applied to transaction data leading up to 2013, the model reveals some
interesting structural properties of the Bitcoin ecosystem. We also show that
the activity measure can allow us to reflect the effects of real world events on
Bitcoin metrics, although the correlation is not perfect or always directionally
predictable.

There are many avenues for future research. Bitcoin is still a relatively novel
ecosystem, and many questions still remain about its growth and dynamics.
Other cryptocurrencies have been even less studied. We believe that the frame-
work presented in this paper offers a valuable way to conduct such studies. Con-
ducting a study of the cryptocurrency market as a whole would be an ambitious
agenda but well worth considering given its growing imprint on the financial
markets.
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Abstract. Financial networks can be constructed using statistical
dependencies found within price series of speculative assets. Inference
generally involves multivariate predictive modelling to reveal causal
and correlational structures within the time series data, but difficul-
ties frequently arise due to the highly unstable nature of these markets.
The complex interplay of social and economic factors results in erratic
behaviour, producing data that rarely adheres to theoretical assump-
tions. It remains unclear if these violations impact the constructed net-
works, and if so, whether robust alternatives produce more informative
results. This study introduces the Rank-Vector-Autoregression model,
demonstrating its capacity to produce robust cryptocurrency networks
aligned with economic rationale. Our rank method achieves superior
classification compared to the standard approach for various types of
simulated data, particularly when including adversarial abnormalities.
When applied to a dataset of 261 cryptocurrency return series, our
method produces a network containing fewer, but more strongly market-
correlated links, and increased connectivity within the mean-reversion
subset. Applying our method to the squared deviations produces a com-
paratively dense volatility network, suggesting that significant price cou-
pling occurs in higher order moments. Our results demonstrate the use of
a robust and scalable technique for obtaining accurate causality networks
in finance.

Keywords: Vector Autoregression · Rank Regression · Causality
Networks · Financial Networks · Cryptocurrency

1 Introduction

Understanding the causes of price fluctuations in complex assets is beneficial.
It aids investors and policymakers in understanding risk structures or gener-
ating out-of-sample forecasts capable of yielding profitable trading strategies.
An important aspect of causal structure are networks that model the inter-
dependencies between assets. In this paper we apply forecasting methodologies
through an inferential lens, aiming to generate such causal networks.

The emergence of cryptocurrency markets offers a promising environment for
the application of these techniques. These digital assets have attracted substan-
tial attention due to their spectacular growth, but are mired in complexities: they
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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are highly volatile [14], arising from an intricate interplay of social and economic
factors [14] — including market sentiment, news events, technological advance-
ments, regulatory changes and the erratic behaviour of market participants. In
response to this complexity, the analysis and modelling of cryptocurrency prices
has emerged as a vital area of research. Here, we utilise causality networks to
reveal the interdependencies within the cryptocurrency market.

A common and widely-accepted approach for multivariate forecasting is the
Vector Autoregression (VAR) framework [24,25]. This methodology extends uni-
variate autoregression to account for the cross-dependencies among multiple time
series. In this paper we develop an extension to the standard VAR model, aim-
ing to increase the robustness of our estimation—a need that arises because the
conventional assumptions of VAR are often violated in cryptocurrency data. The
proposed model, Rank-VAR, employs a rank representation of the original series,
reducing the effects of outliers and highly-leveraged observations.

We validate our method through simulations that illustrate its advantages,
and then compare the standard and Rank-VAR methods on a dataset of 261
cryptocurrencies over a one-year period. We develop networks to represent both
the mean response dependency, as well as the dependence structure for the
volatility of returns. Our results indicate that robust techniques identify fewer
links than the standard methodology (1.57% vs 3.78%), but the corresponding
node degrees have stronger correlations to market capitalisation. We observe
a marked propensity towards negatively-signed self-dependence, with the rank
method finding an elevated number of these mean-reversion links (90% vs 85%).
When applied to volatility modelling, the rank method again finds fewer links
than the standard method, however both networks are substantially denser than
their mean response counterparts (8% and 4%).

The primary contributions of this paper are:

• A robust extension to the VAR model, exploring its theoretical connections
to copula modelling and framing its advantages through the lens of a multi-
variate extension to the Spearman correlation.

• A simulation study demonstrating the advantages of the Rank-VAR method
when modelling VAR processes with structural violations. The results show
a clear advantage in non-standard cases: in the best case, it improves the
Area-Under the Curve (AUC) from 0.562 to 0.707, while never significantly
underperforming the standard VAR method.

• An empirical application of Rank-VAR to one year of hourly return data
from 261 cryptocurrencies, yielding robust causality networks that further
our understanding of causality and risk in cryptocurrency markets.

Our analysis aims to not only provide more accurate networks, but also to deter-
mine the potential causes of dissimilarity between the robust and standard meth-
ods, which provides additional insight into the nature of causal structures in
cryptocurrency markets.
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2 Related Work

Networks based on correlational structures in financial asset time series data
have been explored in many papers. Often, researchers investigate simultane-
ous correlations between prices, seeking to model the joint structure of these
observations as a network [8]. Several studies analyze the temporal evolution of
these networks using ’sliding window’ methods [3,17], with others investigating
evolution by incrementally adding nodes based on their correlations, developing
what is known an “asset graph” [21].

Causal networks can be generated from cross-correlational effects. These
types of networks have been constructed before [7] and are frequently used to
model the joint causal dynamics of price and sentiment [5,23]. Cross-correlational
effects are typically modelled in a partial-effects framework to control for con-
founding variables. The VAR model is a common approach for this purpose, and
is equivalent to partial effects of the cross-correlation matrix. Variations to this
model have been developed to incorporate specific features, such as long range
dependency [16] and restrictions to acyclic graphs [1].

Cryptocurrency causality network research has generally focused on the inter-
actions between cryptocurrencies and other data (sentiment, traditional finan-
cial assets, etc.) [4–6,13,19]. While the incorporation of sentiment data has been
explored through a VAR model [2], most analyses of cryptocurrency networks
focus on bivariate analysis, rather than full partial-effects VAR models.

Various techniques have been developed for the robust estimation of VAR
models [9,12,20]; however these methods generally focus on enhancing forecast
performance while retaining interpretability and keeping coefficients within their
original scale. When the focus is solely on the network, detailed interpretability
of coefficients is not required. Our primary objective is to ascertain whether the
time series are interdependent, reducing the problem to a binary outcome. This
simplifies the technical elements and allows for less-complex robust estimators,
such as the Rank-VAR we introduce. This study demonstrates the application of
our robust technique to the development of cryptocurrency causality networks.

3 Methodology/Constructing Networks

The aim of causal network analysis is to construct a directed graph (digraph)
denoted by G = (V,E), where V is a set of nodes and E is a set of edges indicating
causal dependencies. Each edge eij ∈ E indicates that the next observation of
asset j depends on the previous values of i. The set of edges E may be represented
as an N × N adjacency matrix W (where N=|V | is the number of series under
study), with elements Wi,j = 1 if there is a link eij , and Wi,j = 0 otherwise.

The primary methodological choice when developing these networks from
empirical data is the selection of a suitable model to test the interrelations within
the time series, i.e., to infer E. This section provides an overview of the common
methodology for this estimation problem, as well our proposed extension.
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3.1 Pearson and Spearman Correlation

The Pearson correlation r(X,Y ) has many advantages: including intuitive sim-
plicity, straightforward calculation, and strong theoretical ties to L2 statistical
analyses. However, this metric is sensitive to the input distributions FX(·) and
FY (·). Because it is based on squared deviation terms, data that contains out-
liers or fat tails may distort r(X,Y ). This sensitivity is particularly relevant to
our causal analysis, as we establish links eij from a binary classification of test
statistics tied to these correlation values r. Significant bias or variance in the
metric will lower link accuracy in the causal network.

The Spearman rank correlation coefficient ρ(X,Y ) generalises r(X,Y ). It
measures the degree to which two series are monotonically related, and is defined
as the Pearson correlation of the variables after a rank transformation:

R(Xi) = |{Xj : Xj < Xi}| + 0.5|{Xj : Xj = Xi}| + 1 (1)

Spearman’s ρ is typically utilised as a robust alternative to the Pearson cor-
relation, with less sensitivity to data outliers and fewer assumptions about the
relational form. This is particularly valuable when analysing data with substan-
tial skewness or kurtosis. More generally, it’s emphasis on monotonicity assists
in identifying nonlinear relationships, proving beneficial in scenarios where the
co-linear assumptions of the Pearson coefficient are inappropriate. These features
make it particularly suitable for analyzing cryptocurrency data, whose complex
volatility means it varies significantly from traditional Gaussian behaviour [11].

3.2 Vector Autoregression

Vector autoregression (VAR) is a popular statistical model introduced by the
macroeconometrician Christopher Sims [22] to model the joint dynamics and
causal relations among a collection of time series. It is the natural multivariate
extension of the univariate autoregression (AR) model frequently used to analyse
the inter-temporal dependency of a sequence of observations. Under the VAR(p)
formulation the expectation of the data vector yt at the next observation is a
linear function of p previous observations. Equations 1 and 2 below show the
relationship for order-1 and -p lagged variants:

Order-1: yt = A1yt−1 + c + εt, (2)
Order-p: yt = A1yt−1 + A2yt−2 + ... + At−pyt−p + c + εt, (3)

where yt is a N × 1 vector of observations at time t, c is a constant vector,
the Ak are N × N coefficient matrices for lags k = 1, ..., p, and εt is a N × 1
vector of error terms with zero mean and covariance matrix Σε. The vector εt

usually originates from a Gaussian distribution. The VAR model assumes that
the current value of each variable depends on its past values as well as the past
values of all other variables in the system (full conditioning).

The estimation of a VAR model comprises estimating the coefficient matri-
ces Ak and the error covariance matrix Σε. As we are interested in the causal
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influence structure within our dataset, we primarily require estimates of Ak, as
they fully characterise the causal relations. This is often accomplished by the
multivariate least squares (MLS) approach under which estimating the VAR is
viewed as a general multivariate regression problem, with closed-form solutions
generated via orthogonal projection [18].

We may conduct hypothesis tests for the statistical significance of the ele-
ments of the coefficient matrices by noting that our estimates Âk are asymptop-
tically normally distributed under finite variance assumptions, i.e.,

√
N Vec(Âk − Ak) d−→ N (0, Γ−1 ⊗ Σε), (4)

where Γ = Y Y ′/N , ⊗ indicates the Kronecker product and Vec(·) denotes
casting a matrix into vector form. For the case of a VAR(1) model the term Y is
the matrix representation of our response data yt, implying that Γ is an estimate
of the covariance matrix of returns. For generalised VAR(p) the complexity of
this matrix increases, however Eq. 4 is still valid. To establish the existence of
link eij we construct t values associated with the null hypothesis Ak,i,j = 0 as
ti,j = Âk,i,j/ŝi,j , where ŝi,j is the relevant term from Γ−1⊗Σε. These t vales can
be used to generate a binary link classification with a false positive probability
α as eij = |tij | > Φ(1 − α/2), where Φ is the inverse normal CDF.

To streamline our discussion and estimation of causal networks, we limit
our analysis to VAR(1) processes and omit the index p from our discussion,
with A = A1 unless otherwise specified. For simulations, we note that VAR(p)
processes can be transformed into a VAR(1) form [18], implying that our VAR(1)
simulation results should generalise as the fitting routines remain unchanged. For
the empirical networks in Sect. 6.2 we operate under the assumption that any
causal link i → j will first manifest in order-1 effects, and that lag p > 1 effects
will not occur independently of a p = 1 dependence. This assumption is intuitive
and the scenarios where it doesn’t hold are expected to be relatively rare.

3.3 Rank Vector Autoregression

Rank-VAR is an extension to the VAR model, with the model variables trans-
formed into their rank representation. This generates the multivariate time series
analogue of the Spearman rank correlation, which can be expressed as:

Order-1: R(yt) = A1R(yt−1) + c + εt, (5)
Order-p: R(yt) = A1R(yt−1) + ... + At−pR(yt−p) + c + εt, (6)

where the rank transform R(yt) is applied elementwise. The advantages of this
model are inherited from ρ, notably the heightened resilience to violations of
the baseline model assumptions. The primary drawback is a reduction in inter-
pretability, as coefficients are now related to ranks rather than precise values.
This shift is also expected to diminish forecast precision in the original scale.
However, the intended applications for Rank-VAR primarily encompass identi-
fication problems, particularly, deriving causal networks. For these binary out-
comes, parameter interpretability and forecasting precision is irrelevant. These
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concerns, however, do explain why this approach has not been adopted in the
broader time series literature, and why non-temporal rank regression approaches
have seen limited application beyond introductory studies [10,15]. Before delving
into simulations, it’s essential to elucidate the theoretical ties of our methodol-
ogy to other time series approaches. By noting that correlation/linear models are
invariant to scalar multiplication, we can view rank imputation as functionally
equivalent to a CDF transform. Specifically, the rank of an observation R(Xi)
simply counts how many X values are either equal to or less than Xi. Dividing
these ranks by N , the number of observation gives us an approximation to the
empirical distribution function:

F̂X(Xi) =
1
N

N∑

j=1

1Xj≤Xi
≈ R(Xi)

N
, (7)

with the differences arising from R(Xi) assigning only half a count to observa-
tions of an equal value (we take ‘mid ranks’). From this we identify parallels
between Rank-VAR and copula modelling. Using copulas, sets of series such as
{X,Y, ..., Z} have their values transformed by their marginal CDF functions:

{UX , UY , ..., UZ} = {FX(X), FY (Y ), ..., FZ(Z)},

where the Ui are uniformly distributed. The joint cumulative distribution func-
tion C(ux, uy, . . . , uz) = P (UX < ux, UY < uy, ..., UZ < uz) is then defined
as the copula of {X,Y, ..., Z}. This approach separates the contributions of the
marginal distributions and their copula dependence structures. Sklar’s theorem
underpins this approach: every multivariate joint distribution can be decomposed
into univariate marginals and a copula describing the dependencies.

Hence, by emphasizing ranks we are using a copula-like technique to isolate
the challenges of joint dependence identification and the characterisation of the
marginals. Yet, it’s important to note that these parallels are approximate. We
use empirical, rather than true marginal distributions, and our approach diverges
from traditional copula modelling as we asses joint dependencies via conditional
expectations, not direct modelling of the joint cumulative distribution function.

4 Simulation Methodology

4.1 Simulating VAR Processes

A VAR process is defined by the constant c, recurrence matrices, Ai, and the
distribution of the error process: FE(εt) (with expectation 0 by design). The com-
mon simplifying assumption is that εt is Gaussian, and hence the whole process
is characterised by the covariance matrix Σε. However, real data for complex
systems commonly exhibit non-Gaussian distributions. We therefore seek to test
VAR and Rank-VAR under such conditions, starting with the Gaussian case.

Generating Σε: The first step is the construction of a random covariance
matrix, whose validity requires both symmetry and positive definiteness. To
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achieve this, we randomly rotate a set of positive eigenvalues {λi}, which are
sampled as the absolute value of normal observations: {λi} ∼ |N (0, 1)| . Our
random rotation matrix is obtained by taking the Q term from a QR decom-
position of a randomly generated normal matrix. Our final covariance matrix is
then:

Σε = QD(λi)QT , (8)

where D(λi) is the diagonal matrix of our eigenvalues.

Generating A: The second step is to generate valid coefficient matrices, ensur-
ing the stationarity of the process. For this, the eigenvalues of Ai must lie within
the unit circle. If they occupy the perimeter (|λi| = 1), the process will drift,
while |λi| > 1 indicates a divergent process. Reusing the technique for generat-
ing Σt would result in non-sparse recurrence matrices, which poorly approximate
our intended causal identification. Instead, we create a sparse Erdős-Rényi graph
(with probability p that a link is selected) and assign Gaussian values to each
edge to obtain A∗. The final matrix is normalised by ∼ the absolute value of the
largest eigenvalue: A = A∗/max(|λi| × 1.05) in order to ensure that the process
is stationary (the 1.05 ensures sufficient distance from drift).

4.2 Variations on VAR Processes

Fat-Tailed Distribution: While drawing the error series εt from a fat-tailed
distribution is not explicitly a ‘violation’ of the VAR model, it is unconventional
because the typical (often implicit) assumptions of narrow tails facilitate the use
of L2 estimators, such as least squares projection. These estimators typically
struggle with outliers, meaning their application to high-kurtosis distributions
may result in large estimation errors. Various fat-tailed distributions exist, but
a commonly used form is the mixed normal distribution. Here, the desired vari-
able Z is conceptualised as a probabilistic mixture of two normal variables:
X ∼ N (0, σx) and Y ∼ N (0, σY ), each having distinct variances. To generate
observations of Z we draw from FX(x) with probability q or from FY (y) with
probability (1− q). Consequently, the cumulative density function for Z is then:

FZ(z) = qFX(x) + (1 − q)FY (y). (9)

For fat-tailed behaviour, the parameters q and σX are selected to induce kurtosis.
Typically, this is accomplished by taking a relatively small value for q, and
σX � σY . Given a fat-tailed error series εt, the production of a VAR simulation
remains unchanged. We simply apply the linear filter A to the now fat-tailed
error series, with the fat tails percolating through the system.

Post-Recurrence Spiking: We introduce a temporary, non-auto-regressive
error component st, which is sparse, but has a large’spike’ magnitude relative to
typical values of yt. The resulting 1st-order process is:

yt = A1(yt−1 − st−1) + c + εt + st, (10)
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Contextual examples of such phenomena could include measurement artifacts
or temporary economic shocks that are not expected to persist or propagate to
other variables in the system. Real-world datasets often include rare but large
artifacts that can distort analysis unduly. In simulations, we generate st using
the previously described mixture distribution, with σx � √

V ar(ε) � σy).

Conditional Heteroskedasticity (VARCH): Here we consider serial corre-
lation in the squared residual series ε2t . This can be modeled univariately using
the Generalised Autoregressive Conditional Heteroskedasticity (GARCH) frame-
work, where the variance of the residual series is a function of past squared
deviations, ε2t , and the preceding variances σ2

t i.e., in the univariate case:

σ2
t = w +

q∑

i=1

αiε
2
i−q +

q∑

i=1

βiσ
2
t−q (11)

for recurrence parameters αi and βi. The multivariate analogue to GARCH intro-
duces substantial complexity, stemming from the potential to model each covari-
ance σiσj as having autoregressive relations involving the autoregression of entire
matrices. We employ a simplified form where covariances respond solely to chang-
ing variances, without independent dynamic behaviour. This is referred to as
the constant conditional correlation form (CCC-GARCH). Here, the covariance
matrix of the residual series Σt can always be expressed in a diagonalised form,
paired with a time-invariant correlation matrix R, i.e., Σt = D(σt)RD(σt),
where only the σt term varies over time. The recurrent form of σ2

t then reuses
the VAR structure, with squared errors in place of the original values:

σ2
t = A1ε

2
t−1 + A2ε

2
t−2 + ... + Apε

2
t−p + c. (12)

This excludes the lagged σ2
t terms, implying that the volatility follows a VAR,

not VARMA process. Our simulations follow a simplified scenario with p = 1,
leading to short term volatility trends. We derive A as the elementwise absolute
value of a matrix generated according to Sect. 4.1. The process is then generated
by recursively forming σ2

t from (12) and diagonalising to obtain Σt.

Nonlinear Recurrence Functions: Another avenue for modification lies in
altering the nature of recurrence itself, by allowing a nonlinear recurrence func-
tion. Specifically, an elementwise monotonic activation of the recurrence input.
Instead of the recurrence in Eq. 2, we introduce the transformed recurrence:

yt = A1φ(yt−1) + c + εt, (13)

for some monotonic function φ(·), applied elementwise, with an added restriction
of sub-linearity to ensure stationarity of the resulting process. We select both
centered Sigmoid (logistic) and Rectified Linear Unit function (ReLU) functions:

Sig(x) =
1

1 + e−x
− 1

2
, and ReLU(x) = max(0, x). (14)



476 C. Cornell et al.

Scenarios exist where such relations are plausible. For instance, in the financial
domain, one may observe draw-down correlation, where returns are correlated in
the negative region, but remain largely independent for positive returns.

5 Simulation-Based Validation

Simulation results for 100 processes (10,000 links) of 1,000 observations with
parameters: N = 100, c = 0, σε = 1 (standard error), σfat ε = 10 and q=3%.
st has spike σx = 10, and non-spike σy = 0.1. These settings correspond to ∼3
years of daily data, featuring monthly spikes or fat-tailed events.

Fig. 1. ROC curves of VAR and Rank-Var for all combinations of noise model and
recurrence function. AUC indicates the ‘overall’ performance of each model.

5.1 ROC Analysis

A key advantage of simulation is that we know the true correlation structure.
This allows us to derive Receiver Operating Characteristic (ROC) curves, as
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shown in Fig. 1. We show results for each combination of noise model and linkage-
recurrence, with the exception of the standard error case, where the difference
in performance was negligible. In each scenario, |t| values for all potential links
are estimated and thresholded at increasing values to generate a curve that
demonstrates a model’s capacity to trade true positives for false positives. The
ROC curves in Fig. 1 and associated Area Under Curve (AUC) values show:

1. Rank-VAR is never significantly worse than standard VAR.
2. Rank-VAR performs much better in some cases, notably:

– in the post-recurrence spiking model (labelled “Spikes”), regardless of
recurrence linking function, and

– when there is a sigmoid recurrence linkage (though the improvement is
dampened in the GARCH case).

In the most detrimental cases (Sigmoid spike or VARCH models), VAR loses
almost all discriminative power, essentially choosing links at random. The most
extreme improvement, Sigmoid recurrence with Spiking, shows a 25.8% increase
in AUC, improving it from 0.562 to 0.707. The “Spike” plots show consistent
performance improvement for Rank-VAR, with an average AUC increase of 18%.
Understandably, this temporary spiking appears highly detrimental to standard
link identification: spikes contain no cross-asset correlations, but two random,
approximately contemporaneous spikes can easily pollute estimates.

5.2 Classification Analysis

To construct causal networks we create binary classifications for each potential
link eij , based on whether the associated tij exceeds the threshold t∗ corre-
sponding to our target false positive rate α. Here we evaluate both standard and
Rank-VAR using classification metrics on our simulated data.

Table 1a displays the binary classification results for simulated VAR pro-
cesses, targeting a false positive rate, α, of 1%. The results for the combined

(a) Out-degree CCDF. (b) In-degree CCDF.

Fig. 2. Degree distribution CCDF plots. Results show mean response and volatility
network curves for both standard and Rank-VAR.
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Table 1. Rank network Results. Figure 1a displays Rank (ρ), and standard VAR (r)
classification metrics for the simulation study, while Figs. 1 and 1c show the empirical
Network Metrics: mean, median, standard deviation σ, Spearman’s rank correlation
(ρ) with market capitalisation and associated p value for capitalisation independence.

Error Type α̂ Precision Recall F1

L
in
ea
r

φ

None
r 0.010 0.82 0.86 0.84

ρ 0.012 0.78 0.84 0.81

εt
r 0.015 0.75 0.86 0.81

ρ 0.013 0.78 0.86 0.82

st
r 0.032 0.51 0.62 0.56

ρ 0.018 0.69 0.80 0.74

VARCH
r 0.031 0.59 0.86 0.70

ρ 0.020 0.69 0.83 0.75

R
eL

U
φ

None
r 0.014 0.69 0.60 0.64

ρ 0.011 0.72 0.58 0.64

εt
r 0.022 0.60 0.66 0.63

ρ 0.013 0.73 0.68 0.70

st
r 0.025 0.31 0.21 0.25

ρ 0.015 0.66 0.54 0.60

VARCH
r 0.038 0.46 0.61 0.52

ρ 0.017 0.64 0.59 0.61

Si
gm

oi
d

φ

None
r 0.010 0.55 0.23 0.33

ρ 0.097 0.55 0.24 0.33

εt
r 0.022 0.15 0.075 0.10

ρ 0.010 0.58 0.26 0.36

st
r 0.021 0.078 0.035 0.048

ρ 0.097 0.51 0.20 0.29

VARCH
r 0.033 0.099 0.072 0.083

ρ 0.014 0.23 0.077 0.12

(a) Simluation Results

Attribute mean median σattribute ρ p

V
A
R

Out-Deg. 9.79 6 13.6 0.193 1.75e−3

In-Deg. 9.79 10 3.68 0.0896 0.140

Clust. 0.0972 0.0855 0.0603 0.129 0.0368

Central. 0.324 0.326 0.0964 0.207 7.53e−4

R
an

k-
V
A
R Out-Deg. 4.13 3 5.02 0.238 1.05e−4

In-Deg. 4.13 4 1.92 −0.216 4.31e−4

Clust. 0.0283 0.0064 0.0570 0.0109 0.862

Central. 0.0307 0.0106 0.0538 0.225 2.48e−4

(b) Mean response Neetwork

Attribute mean median σattribute ρ p

V
A
R

Out-Deg. 20.9 10 27.6 0.306 4.47e−7

In-Deg. 20.9 16 15.7 0.394 3.7e−11

Clust. 0.239 0.233 0.134 0.304 5.65e−7

Central. 0.0338 0.008 89 0.0519 0.296 1.09e−6

R
an

k
V
A
R Out-Deg. 12.19 7 20.2 −0.003 84 0.95

In-Deg. 12.19 12 3.97 0.214 5.08e−4

Clust. 0.146 0.141 0.060 0.093 0.135

Central. 0.0332 0.0173 0.0523 0.0159 0.799

(c) Volatility Network

metric (F1 score - The harmonic mean of precision and recall) are generally
commensurate with the AUC behaviour discussed previously:

1. Rank-VAR minutely underperforms the standard method for Linear and Relu
models with standard errors.

2. Rank-VAR substantially outperforms standard VAR for several scenarios:
– again in all post-recurrence spiking simulations,
– all scenarios involving the VARCH type errors, and
– in both nonlinear, fat-tailed ε scenarios.

All other scenarios displayed functionally equivalent performance.

The empirical false positive rate α̂ provides a potential explanation for the
differences in AUC and F1 performance. Since AUC is agnostic to the actual t
values (it only considers their ordering), the effect of elevated α̂ is only visible
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under binary classifications. The VARCH scenarios generate α̂ that are nearly
double their target for standard VAR, thereby diminishing its F1 score. This
discrepancy is most pronounced in the Linear VARCH, ReLU VARCH, and fat-
tailed ReLU simulations, where we observe near-identical ROC performance,
but superior classification for the rank-method. Here, Rank-VAR doesn’t offer a
meaningful advantage in distinguishing between true and false positives, rather,
it demonstrates more consistent parameter convergence, such that the asymp-
totic normality of tij is better realised.

6 Empirical Data Analysis

6.1 Data

Our dataset contains hourly prices from 261 cryptocurrencies from 1/1/2021 to
1/12022, and market capitalisation (June 2022 figures) for each cryptocurrency.
The selected currencies were derived from the 750 coins with highest capitaliza-
tion at time of collection (June 2022). However, a significant number of these,
mainly those with lower capitalization, had incomplete or missing price histories
and had to be excluded. The resulting data contains 79.6% (836B of 1.05T) of
the total capitalisation of the market. The returns yt are generated by taking
the logged ratio of subsequent observations in the original price series pt, quoted
in terms of the Coin/USD relation: i.e., yt = log (pt/pt−1). For comprehensive
details on this dataset see [11]. For our purposes, the key takeaway is that our
dataset shows high levels of capitalization dependent a-normality, which may
posit the use of robust methods such as Rank-VAR.

6.2 Empirical Networks

Using the data from Sect. 6.1, we construct causality networks with both VAR
and Rank-VAR methods (Mean-response networks). We also construct two
forms of volatility networks, by running the two aforementioned methods on
the squared-centered series (yt − ȳ)2. Note that these networks are not derived
from the residual series of the first networks, and hence correspond to assump-
tions of mean-response efficiency in the cryptocurrency market (i.e., a complete
absence of statistically significant mean-response causality).

We first examine several structural network attributes, such as node degrees
and their distributions. The node degree log-log complementary cumulative den-
sity functions (CCDFs) displayed in Figs. 2a and 2b show:

1. Out-degree distributions show less curvature compared to their In-degree
counterparts, suggesting that outgoing influence within the network is more
concentrated than incoming influence.

2. Both in-degree and out-degree distributions in the VAR volatility network
show significant curvature. This pattern is potentially indicative of a high
false positive rate, as a system dominated by noise would produce significantly
curved binomial distributions.
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We also explore the link between market capitalization and node attributes.
Key network statistics, along with Spearman rank coefficients and p values, are
in Table 1b. Standard VAR shows statistically significant correlations between
market capitalisation and out degree, clustering and centrality. While in degree
shows no significant correlation with market capitalisation, it does correlates
with out degree (ρ = 0.343, p = 1.29e−8). Rank-VAR exhibits similar correla-
tion between out degree and centrality against market capitalisation. However,
it lacks a significant correlation for clustering, and in degree is negatively cor-
related. Most strikingly, the Rank-VAR net contains an average of 4.13 (1.6%)
links per node, compared to the 9.79 (3.7%) found using standard VAR.

Table 1b displays corresponding information for the Volatility networks. We
observe a similar pattern for node degree counts, with the Rank network having
an average of 12.19 (4.66%) edges per node, compared to the 20.9 (8%) found
using standard VAR. The observed correlation structures differ significantly, with
the VAR network having all metrics being correlated against capitalisation. Com-
paratively, the Rank-VAR has statistically significant correlations only between
in degree and market capitalisation. Across both networks the overall edge count
is significantly higher for the Volatility networks, suggesting that a significant
proportion of the causal dependencies occur in the higher order moments.

The presence of self-edges indicates either autocorrelation of returns or self-
excitatory behavior. For the VAR network, 85.4% of potential self-edges are
statistically significant. In contrast to the previous section, Rank-VAR now
reports an elevated detection rate, with 90.0% being statistically significant. Of
these self-edges, 98.4% in VAR and 99.6% in Rank-VAR were negatively signed.
Despite the general sparsity of our networks, this reveals a densely connected
subset associated with the mean reversion of individual cryptocurrency prices.
Equivalent behaviour is observed in the volatility networks, with Rank-VAR
detecting 93.8% of self-links, compared to 88.8% for standard VAR. Once again
there is strong asymmetry in effect, with 100% and 97.4% of self links being
positively signed, indicating self-excitatory behaviour.

7 Conclusion

This study introduces a technique for robust link identification in multivari-
ate causality networks. The Rank-VAR model is validated on simulated data
featuring a range of recurrence and error abnormalities, achieving superior clas-
sification for the most detrimental variations. In our empirical study on 261
cryptocurrencies, the Rank-VAR network contained fewer but more meaningful
links (1.7% vs 3.7%), with increased correlation to market capitalisation. Rank-
VAR identified a marginally increased proportion of edges in the highly con-
nected, negatively signed self-dependence subset of links. Combined, these find-
ings suggest that the cryptocurrency market has relatively sparse cross-causality,
with a significant proportion of the identified causal elements relating to mean-
reversion of individual coin prices. When shifting our focus to volatility networks
we observed substantially denser connections (4% Rank-VAR vs 8% VAR), indi-
cating that asset cross-coupling may predominantly occur in higher-order or
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symmetric moments. This has implications for both investors and policymak-
ers, as it highlights that the relatively independent action of standard returns
may not imply isolated behaviour during extreme market conditions. This study
serves as a baseline for further research into robust financial causality networks,
particularly for exploring the role of higher-order moments in asset coupling.
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