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Abstract. Time series forecasting lies at the core of important real-
world applications in many fields of science and engineering. The abun-
dance of large time series datasets that consist of complex patterns and
long-term dependencies has led to the development of various neural net-
work architectures. Graph neural network approaches, which jointly learn
a graph structure based on the correlation of raw values of multivariate
time series while forecasting, have recently seen great success. However,
such solutions are often costly to train and difficult to scale. In this paper,
we propose TimeGNN, a method that learns dynamic temporal graph
representations that can capture the evolution of inter-series patterns
along with the correlations of multiple series. TimeGNN achieves infer-
ence times 4 to 80 times faster than other state-of-the-art graph-based
methods while achieving comparable forecasting performance.

Keywords: Time Series Forecasting · Graph Structure Learning ·
GNNs

1 Introduction

From financial investment and market analysis [6] to traffic [21], electricity man-
agement, healthcare [4], and climate science, accurately predicting the future real
values of series based on available historical records forms a coveted task over
time in various scientific and industrial fields. There are a wide variety of meth-
ods employed for time series forecasting, ranging from statistical [2] to recent deep
learning approaches [22]. However, there are several major challenges present.
Real-world time series data are often subject to noisy and irregular observations,
missing values, repeated patterns of variable periodicities and very long-term
dependencies. While the time series are supposed to represent continuous phenom-
ena, the data is usually collected using sensors. Thus, observations are determined
by a sampling rate with potential information loss. On the other hand, standard
sequential neural networks, such as recurrent (RNNs) [27] and convolutional net-
works (CNNs) [20], are discrete and assume regular spacing between observations.
Several continuous analogues of such architectures that implicitly handle the time
information have been proposed to address irregularly sampled missing data [26].
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The variable periodicities and long-term dependencies present in the data make
models prone to shape and temporal distortions, overfitting and poor local min-
ima while training with standard loss functions (e. g., MSE). Variants of DTW
and MSE have been proposed to mitigate these phenomena and can increase the
forecasting quality of deep neural networks [16,19].

A novel perspective for boosting the robustness of neural networks for com-
plex time series is to extract representative embeddings for patterns after trans-
forming them to another representation domain, such as the spectral one. Spec-
tral approaches have seen much use in the text domain. Graph-based text mining
(i. e., Graph-of-Words) [25] can be used for capturing the relationships between
the terms and building document-level representations. It is natural, then, that
such approaches might be suitable for more general sequence modeling. Capital-
izing on the recent success of graph neural networks (GNNs) on graph structured
data, a new family of algorithms jointly learns a correlation graph between inter-
related time series while simultaneously performing forecasting [3,29,32]. The
nodes in the learnable graph structure represent each individual time series and
the links between them express their temporal similarities. However, since such
methods rely on series-to-series correlations, they do not explicitly represent the
inter-series temporal dynamics evolution. Some preliminary studies have pro-
posed simple computational methods for mapping time series to temporal graphs
where each node corresponds to a time step, such as the visibility graph [17] and
the recurrence network [7].

In this paper, we propose a novel neural network, TimeGNN, that extends
these previous approaches by jointly learning dynamic temporal graphs for time
series forecasting on raw data. TimeGNN (i) extracts temporal embeddings
from sliding windows of the input series using dilated convolutions of differ-
ent receptive sizes, (ii) constructs a learnable graph structure, which is forward
and directed, based on the similarity of the embedding vectors in each window
in a differentiable way, (iii) applies standard GNN architectures to learn embed-
dings for each node and produces forecasts based on the representation vector of
the last time step. We evaluate the proposed architecture on various real-world
datasets and compare it against several deep learning benchmarks, including
graph-based approaches. Our results indicate that TimeGNN is significantly less
costly in both inference and training while achieving comparable forecasting per-
formance. The code implementation for this paper is available at https://github.
com/xun468/Time-GNN.

2 Related Work

Time Series Forecasting Models. Time series forecasting has been a long-
studied challenge in several application domains. In terms of statistical methods,
linear models including the autoregressive integrated moving average (ARIMA)
[2] and its multivariate extension, the vector autoregressive model (VAR) [10]
constitute the most dominant approaches. The need for capturing non-linear
patterns and overcoming the strong assumptions for statistical methods, e. g.,
the stationarity assumption, has led to the application of deep neural networks,

https://github.com/xun468/Time-GNN
https://github.com/xun468/Time-GNN


TimeGNN: Temporal Dynamic Graph Learning for Time Series Forecasting 89

initially introduced in sequential modeling, to the time series forecasting setting.
Those models include recurrent neural networks (RNNs) [27] and their improved
variants for alleviating the vanishing gradient problem, namely the LSTM [12]
and the GRU [5]. An alternative method for extracting long-term dependencies
via large receptive fields can be achieved by leveraging stacked dilated convo-
lutions, as proposed along with the Temporal Convolution Network (TCN) [1].
Bridging CNNs and LSTMs to capture both short-term local dependency pat-
terns among variables and long-term patterns, the Long- and Short-term Time-
series network (LSTNet) [18] has been proposed. For univariate point forecasting,
the recently proposed N-BEATS model [24] introduces a deep neural architecture
based on a deep stack of fully-connected layers with basis expansion. Attention-
based approaches have also been employed for time-series forecasting, including
Transformer [30] and Informer [35]. Finally, for efficient long-term modeling, the
most recent Autoformer architecture [31] introduces an auto-correlation mecha-
nism in place of self-attention, which extracts and aggregates similar sub-series
based on the series periodicity.

Graph Neural Networks. Over the past few years, graph neural networks
(GNNs) have been applied with great success to machine learning problems on
graphs in various fields, including chemistry for drug screening [14] and biology
for predicting the functions of proteins modeled as graphs [9]. The field of GNNs
has been largely dominated by the so-called message passing neural networks
(MPNNs) [8], where each node updates its feature vector by aggregating the
feature vectors of its neighbors. In the case of time series data on arbitrary
known graphs, e. g., in traffic forecasting, several architectures that combine
sequential models with GNNs have been proposed [21,28,33,34].

Joint Graph Structure Learning and Forecasting. However, since spatial-
temporal forecasting requires an apriori topology which does not apply in the
case of most real-world time series datasets, graph structure learning has arisen
as a viable solution. Recent models perform joint graph learning and forecast-
ing for multivariate time series data using GNNs, intending to capture temporal
patterns and exploit the interdependency among time series while predicting the
series’ future values. The most dominant algorithms include NRI [15], MTGNN
[32] and GTS [29], in which the graph nodes represent the individual time series
and their edges represent their temporal evolution. MTGNN obtains the graph
adjacency from the as a degree-k structure from the pairwise scores of embed-
dings of each series in the multivariate collection, which might pose challenges
to end-to-end learning. On the other hand, NRI and GTS employ the Gumbel
softmax trick [13] to differentiably sample a discrete adjacency matrix from the
edge probabilities. Both models compute fixed-size representations of each node
based on the time series, with the former dynamically producing the representa-
tions per individual window and the latter extracting global representations from
the whole training series. MTGNN combines temporal convolution with graph
convolution layers, and GTS uses a Diffusion Convolutional Recurrent Neural
Network (DCRNN) [21], where the hidden representations of nodes are diffused
using graph convolutions at each step.
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Fig. 1. The proposed TimeGNN framework time series for graph learning from raw
time series and forecasting based on embeddings learned on the parameterized graph
structures.

3 Method

Let {Xi,1:T }m
i=1 be a multivariate time series that consists of m channels and

has a length equal to T . Then, Xt ∈ R
m represents the observed values at time

step t. Let also G denote the set of temporal dynamic graph structures that we
want to infer.

Given the observed values of τ previous time steps of the time series, i. e.,
Xt−τ , . . . ,Xt−1, the goal is to forecast the next h time steps (e. g., h = 1 for
1-step forecasting), i. e., X̂t, X̂t+1, . . . , X̂t+h−1. These values can be obtained
by the forecasting model F with parameters Φ and the graphs G as follows:

X̂t, X̂t+1, . . . , X̂t+h−1 = F(Xt−τ , . . . ,Xt−1;G;Φ) (1)

3.1 Time Series Feature Extraction

Unlike previous methods which extract one feature vector per variable in the
multivariate input, our method extracts one feature vector per time step in each
window k of length τ . Temporal sub-patterns are learned using stacked dilated
convolutions, similar to the main blocks of the inception architecture [23].

Given the sliding windows S = {Xt−τ+k−K , . . . ,Xt+k−K−1}K
k=1, we perform

the following convolutional operations to extract three feature maps fk
0 , fk

1 , fk
2 ,

per window Sk. Let fk
i ∈ R

τ×d for hidden dimension d of the convolutional
kernels, such that:

fk
0 = Sk ∗ C1,1

0 + b01

fk
1 = (Sk ∗ C1,1

1 + b11) ∗ C3,3
2 + b23

fk
2 = (Sk ∗ C1,1

2 + b21) ∗ C5,5
2 + b25

(2)

where ∗ the convolutional operator, C1,1
0 , C1,1

1 , C1,1
2 convolutional kernels of size

1 and dilation rate 1, C3,3
2 a convolutional kernel of size 3 and dilation rate 3, C5,5

2
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a convolutional kernel of size 5 and dilation rate 5, and b01,b11,b21,b23,b25 the
corresponding bias terms.

The final representations per window k are obtained using a fully connected
layer on the concatenated features fk

0 , fk
1 , fk

2 , i. e., zk = FC(fk
0 ‖fk

1 ‖fk
2 ), such that

zk ∈ R
τ×d. In the next sections, we refer to each time step of the hidden represen-

tation of the feature extraction module in each window k as zk
i ,∀ i ∈ {1, . . . τ}.

3.2 Graph Structure Learning

The set G = {Gk}, k ∈ N
∗ describes the collection of graph structures that are

parameterized for all individual sliding window of length τ of the series, where
K defines the total number of windows. The goal of the graph learning module
is to learn each adjacency matrix Ak ∈ {0, 1}τ×τ for a temporal window of
observations Sk. Following the works of [15,29], we use the Gumbel softmax
trick to sample a discrete adjacency matrix as described below.

For the Gumbel softmax trick, let Ak refer to a random variable of the matrix
Bernoulli distribution parameterized by θk ∈ [0, 1]τ×τ , so that Ak

ij ∼ Ber(θk
ij)

is independent for pairs (i, j). By applying the Gumbel reparameterization trick
[13] for enabling differentiability in sampling, we can obtain the following:

Ak
ij = σ((log(θk

ij/(1 − θk
ij)) + (g1

i,j − g2
i,j))/s),

g1
i,j ,g

2
i,j ∼ Gumbel(0, 1),∀ i, j

(3)

where g1
i,j ,g

2
i,j are vectors of i.i.d samples drawn from Gumbel distribution, σ

is the sigmoid activation and s is a parameter that controls the smoothness of
samples, so that the distribution converges to categorical values as s −→ 0.

The link predictor takes each pair of extracted features (zk
i , zk

j ) of window
k and maps their similarity to a θk

ij ∈ [0, 1] by applying fully connected layers.
Then the Gumbel reparameterization trick is used to approximate a sigmoid
activation function while retaining differentiability:

θk
ij = σ

(
FC

(
FC(zk

i ‖zk
j )

))
(4)

In order to obtain directed and forward (i. e., no look-back in previous time steps
in the history) graph structures G we only learn the upper triangular part of the
adjacency matrices.

3.3 Graph Neural Network for Forecasting

Once the collection G of learnable graph structures per sliding window k are
sampled, standard GNN architectures can be applied for capturing the node-to-
node relations, i. e., the temporal graph dynamics. GraphSAGE [11] was chosen
as the basic building GNN block of the node embedding learning architecture
as it can effectively generalize across different graphs with the same attributes.
GraphSAGE is an inductive framework that exploits node feature information
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and generates node embeddings (i. e., hu for node u) via a learnable function,
by sampling and aggregating features from a node’s local neighborhood (i. e.,
N (u)).

Let (Vk, Ek) correspond to the set of nodes and edges of the learnable
graph structure for each Gk. The node embedding update process for each
p ∈ {1, . . . , P} aggregation steps, employs the mean-based aggregator, namely
convolutional, by calculating the element-wise mean of the vectors in {hp−1

u ,∀u ∈
N (u)}, such that:

hp
u ←− σ(W · MEAN({hp−1

u } ∪ {hp−1
u ∀u ∈ N (u)})) (5)

where W trainable weights. The final normalized (i. e., h̃p
u) representation of

the last node (i. e., time step) in each forward and directed graph denoted as
zuT

= h̃p
uT

is passed to the output module. The output module consists of two
fully connected layers which reduce the vector into the final output dimension, so
as to correspond to the forecasts X̂t, X̂t+1, . . . , X̂t+h−1. Figure 1 demonstrates
the feature extraction, graph learning, GNN and output modules of the proposed
TimeGNN architecture.

3.4 Training and Inference

To train the parameters of Eq. (1) for the time series point forecasting task,
we use the mean absolute error loss (MAE). Let X̂(i), i ∈ {1, ...,K} denote the
predicted vector values for K samples, then the MAE loss is defined as:

L =
1
K

K∑
i=1

‖X̂(i) − X(i)‖

The optimized weights for the feature extraction, graph structure learning,
GNN and output modules are selected based on the minimum validation loss dur-
ing training, which is evaluated as described in the experimental setup (Sect. 4.3)

4 Experimental Evaluation

We next describe the experimental setup, including the datasets and baselines
used for comparisons. We also demonstrate and analyze the results obtained by
the proposed TimeGNN architecture and the baseline models.

4.1 Datasets

This work was evaluated on the following multivariate time series datasets:

Exchange-Rate which consists of the daily exchange rates of 8 countries from
1990 to 2016, following the preprocessing of [18].
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Fig. 2. Computation costs of TimeGNN, TimeMTGNN and baseline models. (a) The
inference and epoch training time per epoch between datasets. (b) The inference and
epoch times with varying window sizes on the weather dataset

Weather that contains hourly observations of 12 climatological features over a
period of four years1, preprocessed as in [35].

Electricity-Load is based on the UCI Electricity Consuming Load dataset2

that records the electricity consumption of 370 Portuguese clients from 2011 to
2014. As in [35], the recordings are binned into hourly intervals over the period
of 2012 to 2014 and incomplete clients are removed.

Solar-Energy contains the solar power production records in 2006, sampled
every 10 minutes from 137 PV plants in Alabama State3.

Traffic is a collection of 48 months, between 2015 and 2016, of hourly data
from the California Department of Transportation4. The data describes the road
occupancy rates (between 0 and 1) measured by different sensors.

4.2 Baselines

We consider five baseline models for comparison with our TimeGNN proposed
architecture. We chose two graph-based methods, MTGNN [32] and GTS [29],
and three non graph-based methods, LSTNet [18], LSTM [12], and TCN [1].
Also, we evaluate the performance of TimeMTGNN, a variant of MTGNN that
includes our proposed graph learning module. LSTM and TCN follow the size
of the hidden dimension and number of layers of TimeGNN. Those were fixed
to three layers with hidden dimensions of 32, 64 for the Exchange-Rate and

1 https://www.ncei.noaa.gov/data/local-climatological-data/.
2 https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014.
3 http://www.nrel.gov/grid/solar-power-data.html.
4 http://pems.dot.ca.gov.

https://www.ncei.noaa.gov/data/local-climatological-data/
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
http://www.nrel.gov/grid/solar-power-data.html
http://pems.dot.ca.gov
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Weather datasets and 128 for Electricity, Solar-Energy and Traffic. In the case
of MTGNN, GTS, and LSTNet, parameters were kept as close as possible to the
ones mentioned in their experimental setups.

4.3 Experimental Setup

Each model is trained for two runs for 50 epochs and the average mean squared
error (MSE) and mean absolute error (MAE) score on the test set are recorded.
The model chosen for evaluation is the one that performs the best on the val-
idation set during training. The same dataloader is used for all models where
the train, validation, and test splits are 0.7, 0.1, and 0.2 respectively. The data
is split first and each split is scaled using the standard scalar. The dataloader
uses windows of length 96 and batch size 16. The forecasting horizons tested
are 1, 3, 6, and 9 time steps into the future, where the exact value of the time
step is dependent on the dataset (e. g., 3 time steps would correspond to 3 h into
the future for the weather dataset and 3 days into the future for the Exchange
dataset). In this paper, we use single-step forecasting for ease of comparison
with other baseline methods. For training, we use the Adam optimizer with
a learning rate of 0.001. Experiments for the Weather and Exchange datasets
were conducted on an NVIDIA T4 and Electricity-Load, Solar, and Traffic on
an NVIDIA A40.

4.4 Results

Scalability. We compare the inference and training times of the graph-based
models TimeGNN, MTGNN, GTS in Fig. 2. These figures also include record-
ings from the ablation study of the TimeMTGNN variant, which is described in
the relevant paragraph below. Figure 2(a) shows the computational costs on each
dataset. Among the baseline models, GTS is the most costly in both inference
and training time due to the use of the entire training dataset for graph con-
struction. In contrast, MTGNN learns static node features and is subsequently
more efficient. In inference time, as the number of variables increases there is a
noticeable increase in inference time for MTGNN and GTS as their graph sizes
also increase. TimeGNN’s graph does not increase in size with the number of
variables and consequently, the inference time scales well across datasets. The
training epoch times follow the observations in inference time.

Since the size of the graphs used by TimeGNN is based on window size, the
cost of increasing the window size on the weather dataset is shown in Fig. 2(b).
As the window size increases, so does the cost of inference and training for all
models. As the graph learning modules for MTGNN and GTS do not inter-
act with the window size, the increase in cost can primarily be attributed to
their forecasting modules. MTGNN’s inference times do not increase as dramat-
ically as GTS’s, implying a more robust forecasting module. As the window size
increases, TimeGNN’s inference and training cost growth is slower than the other
methods and remains the fastest of the GNN methods. The time-based graph
learning module does not become overly cumbersome as window sizes increase.
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Table 1. Forecasting performance for all multivariate datasets and baselines for dif-
ferent horizons h - best in bold, second best underlined.

Exchange-Rate

Metric LSTM TCN LSTN GTS MTGNN TimeGNN TimeMTGNN

h = 1 mse 0.328 ± 0.007 0.094 ± 0.118 0.004 ± 0.000 0.005 ± 0.001 0.006 ± 0.002 0.129 ± 0.012 0.004 ± 0.001

mae 0.475 ± 0.033 0.191 ± 0.163 0.033 ± 0.000 0.041 ± 0.004 0.048 ± 0.011 0.294 ± 0.029 0.034 ± 0.005

h = 3 mse 0.611 ± 0.001 0.063 ± 0.035 0.013 ± 0.003 0.009 ± 0.000 0.012 ± 0.000 0.368 ± 0.059 0.008 ± 0.001

mae 0.631 ± 0.031 0.190 ± 0.041 0.078 ± 0.012 0.063 ± 0.000 0.078 ± 0.000 0.501 ± 0.045 0.061 ± 0.003

h = 6 mse 0.877 ± 0.105 0.189 ± 0.221 0.033 ± 0.005 0.014 ± 0.001 0.024 ± 0.001 0.354 ± 0.031 0.019 ± 0.004

mae 0.775 ± 0.032 0.290 ± 0.214 0.139 ± 0.008 0.081 ± 0.005 0.111 ± 0.000 0.453 ± 0.052 0.099 ± 0.016

h = 9 mse 0.823 ± 0.118 0.123 ± 0.030 0.030 ± 0.006 0.020 ± 0.001 0.035 ± 0.003 0.453 ± 0.149 0.034 ± 0.002

mae 0.743 ± 0.080 0.277 ± 0.037 0.124 ± 0.011 0.096 ± 0.001 0.140 ± 0.008 0.543 ± 0.084 0.139 ± 0.010

Weather

Metric LSTM TCN LSTN GTS MTGNN TimeGNN TimeMTGNN

h = 1 mse 0.162 ± 0.001 0.176 ± 0.006 0.193 ± 0.001 0.209 ± 0.003 0.232 ± 0.008 0.178 ± 0.001 0.182 ± 0.003

mae 0.202 ± 0.003 0.220 ± 0.011 0.236 ± 0.002 0.213 ± 0.004 0.230 ± 0.002 0.185 ± 0.000 0.186 ± 0.000

h = 3 mse 0.221 ± 0.000 0.232 ± 0.003 0.233 ± 0.001 0.320 ± 0.005 0.263 ± 0.003 0.234 ± 0.001 0.234 ± 0.002

mae 0.265 ± 0.000 0.275 ± 0.000 0.285 ± 0.000 0.320 ± 0.001 0.273 ± 0.000 0.249 ± 0.001 0.251 ± 0.001

h = 6 mse 0.268 ± 0.004 0.274 ± 0.002 0.266 ± 0.001 0.374 ± 0.003 0.301 ± 0.003 0.287 ± 0.002 0.282 ± 0.007

mae 0.320 ± 0.004 0.323 ± 0.001 0.321 ± 0.000 0.388 ± 0.002 0.311 ± 0.002 0.297 ± 0.001 0.300 ± 0.003

h = 9 mse 0.292 ± 0.007 0.307 ± 0.009 0.288 ± 0.000 0.399 ± 0.002 0.329 ± 0.001 0.316 ± 0.001 0.311 ± 0.002

mae 0.342 ± 0.003 0.350 ± 0.005 0.345 ± 0.003 0.420 ± 0.004 0.339 ± 0.004 0.331 ± 0.001 0.331 ± 0.001

Electricity-Load

Metric LSTM TCN LSTN GTS MTGNN TimeGNN TimeMTGNN

h = 1 mse 0.226 ± 0.002 0.267 ± 0.001 0.064 ± 0.001 0.135 ± 0.002 0.046 ± 0.000 0.211 ± 0.003 0.047 ± 0.000

mae 0.323 ± 0.000 0.375 ± 0.002 0.167 ± 0.001 0.246 ± 0.001 0.131 ± 0.000 0.309 ± 0.001 0.135 ± 0.000

h = 3 mse 0.255 ± 0.001 0.329 ± 0.015 0.065 ± 0.001 0.303 ± 0.019 0.079 ± 0.001 0.179 ± 0.003 0.077 ± 0.000

mae 0.339 ± 0.000 0.406 ± 0.013 0.163 ± 0.002 0.388 ± 0.019 0.171 ± 0.000 0.320 ± 0.002 0.173 ± 0.000

h = 6 mse 0.253 ± 0.005 0.331 ± 0.010 0.125 ± 0.006 0.334 ± 0.000 0.097 ± 0.000 0.246 ± 0.004 0.104 ± 0.015

mae 0.340 ± 0.006 0.408 ± 0.009 0.238 ± 0.005 0.413 ± 0.000 0.189 ± 0.001 0.332 ± 0.004 0.200 ± 0.016

h = 9 mse 0.271 ± 0.009 0.349 ± 0.022 0.144 ± 0.013 0.289 ± 0.021 0.108 ± 0.002 0.258 ± 0.010 0.104 ± 0.001

mae 0.351 ± 0.003 0.410 ± 0.019 0.251 ± 0.013 0.368 ± 0.020 0.198 ± 0.002 0.344 ± 0.007 0.196 ± 0.001

Solar-Energy

Metric LSTM TCN LSTN GTS MTGNN TimeGNN TimeMTGNN

h = 1 mse 0.019 ± 0.000 0.012 ± 0.000 0.007 ± 0.000 0.012 ± 0.001 0.006 ± 0.000 0.022 ± 0.000 0.006 ± 0.000

mae 0.064 ± 0.000 0.055 ± 0.001 0.035 ± 0.000 0.046 ± 0.003 0.026 ± 0.000 0.059 ± 0.000 0.026 ± 0.000

h = 3 mse 0.031 ± 0.000 0.030 ± 0.001 0.026 ± 0.000 0.044 ± 0.001 0.022 ± 0.002 0.030 ± 0.000 0.022 ± 0.000

mae 0.086 ± 0.002 0.087 ± 0.004 0.080 ± 0.000 0.098 ± 0.003 0.058 ± 0.002 0.071 ± 0.000 0.058 ± 0.000

h = 6 mse 0.046 ± 0.001 0.050 ± 0.000 0.049 ± 0.004 0.103 ± 0.001 0.042 ± 0.000 0.044 ± 0.000 0.043 ± 0.002

mae 0.108 ± 0.005 0.121 ± 0.005 0.125 ± 0.013 0.163 ± 0.001 0.086 ± 0.001 0.090 ± 0.000 0.088 ± 0.004

h = 9 mse 0.067 ± 0.003 0.073 ± 0.001 0.068 ± 0.000 0.167 ± 0.003 0.055 ± 0.001 0.060 ± 0.002 0.060 ± 0.000

mae 0.138 ± 0.009 0.150 ± 0.005 0.154 ± 0.004 0.218 ± 0.006 0.101 ± 0.001 0.109 ± 0.001 0.110 ± 0.000

Traffic

Metric LSTM TCN LSTN GTS MTGNN TimeGNN TimeMTGNN

h = 1 mse 0.558 ± 0.007 0.594 ± 0.091 0.246 ± 0.002 0.520 ± 0.010 0.233 ± 0.003 0.567 ± 0.002 0.293 ± 0.026

mae 0.296 ± 0.005 0.352 ± 0.025 0.203 ± 0.002 0.319 ± 0.013 0.157 ± 0.002 0.281 ± 0.000 0.162 ± 0.001

h = 3 mse 0.595 ± 0.014 0.615 ± 0.002 0.447 ± 0.010 0.970 ± 0.027 0.438 ± 0.001 0.622 ± 0.006 0.465 ± 0.012

mae 0.318 ± 0.007 0.363 ± 0.003 0.286 ± 0.009 0.456 ± 0.010 0.205 ± 0.000 0.306 ± 0.002 0.218 ± 0.007

h = 6 mse 0.603 ± 0.001 0.680 ± 0.021 0.465 ± 0.005 0.938 ± 0.048 0.450 ± 0.009 0.623 ± 0.004 0.495 ± 0.012

mae 0.321 ± 0.003 0.403 ± 0.013 0.288 ± 0.002 0.461 ± 0.023 0.213 ± 0.003 0.311 ± 0.007 0.239 ± 0.001

h = 9 mse 0.614 ± 0.011 0.655 ± 0.017 0.467 ± 0.010 0.909 ± 0.024 0.471 ± 0.000 0.622 ± 0.002 0.494 ± 0.000

mae 0.329 ± 0.010 0.382 ± 0.014 0.290 ± 0.006 0.453 ± 0.016 0.220 ± 0.002 0.313 ± 0.002 0.236 ± 0.005

Forecasting Quality. Table 1 summarizes the forecasting performance of the
baseline models and TimeGNN for different horizons h ∈ {1, 3, 6, 9}.

In general, GTS has the best forecasting performance on the smaller
Exchange-Rate dataset. The use of the training data during graph construction
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may give GTS an advantage over the other methods on this dataset. TimeGNN
however shows signs of overfitting during training and is unable to match the
other two GNNs. On the Weather dataset, the purely recurrent methods per-
form the best in MSE score across all horizons. TimeGNN is competitive with
the recurrent methods on these metrics and surpasses the recurrent models on
MAE. This suggests TimeGNN is producing more significant outlier predictions
than the recurrent methods and TimeGNN is the best performing GNN method.

On the larger Electricity-Load, Solar-Energy, and Traffic datasets, in general,
MTGNN is the top performer with LSTNet close behind. However, for larger
horizons, TimeGNN performs better than GTS and competitively with LSTNet
and the other recurrent models. This shows that time-domain graphs can suc-
cessfully capture long-term dependencies within a dataset although TimeGNN
struggles more with short-term predictions. This could also be attributed to the
simplicity of TimeGNN’s forecasting module compared to the other graph-based
approaches.

Ablation Study. To empirically examine the effects of the forecasting mod-
ule and the representation power of the proposed graph construction module
in TimeGNN, we conducted an ablation study where we replaced MTGNN’s
graph construction module with our own, so-called TimeMTGNN baseline. The
remaining modules and the hyperparameters in TimeMTGNN are kept as sim-
ilar as possible to MTGNN. TimeMTGNN shows comparable forecasting per-
formance to MTGNN on the larger Electricity-Load, Solar-Energy, and Traffic
datasets and higher performance on the smaller Exchange-Rate and Weather
datasets. This shows the TimeGNN graph construction module is capable of
learning meaningful graph representations that do not impede and in some cases
improve forecasting quality. As seen in Fig. 2, the computational performance of
TimeMTGNN suffers in comparison to MTGNN. A major contributing factor
is the number of graphs produced. MTGNN learns a single graph for a dataset
while TimeGNN produces one graph per window, accordingly, the number of
GNN operations is greatly increased. However, the focus of this experiment
was to confirm that the proposed temporal graph-learning module preserves
or improves accuracy over static ones rather than to optimize efficiency.

5 Conclusion

We have presented a novel method of representing and dynamically generat-
ing graphs from raw time series. While conventional methods construct graphs
based on the variables, we instead construct graphs such that each time step is
a node. We use this method in TimeGNN, a model consisting of a graph con-
struction module and a simple GNN-based forecasting module, and examine its
performance against state-of-the-art neural networks. While TimeGNN’s rela-
tive performance differs between datasets, this representation is clearly able to
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capture and learn the underlying properties of time series. Additionally, it is far
faster and more scalable than existing graph methods as both the number of
variables and the window size increase.
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