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Preface

Dear Colleagues, Participants, and Readers,
We present the 12th Complex Networks Conference proceedings with great pleasure

and enthusiasm. Like its predecessors, this edition proves complex network research’s
ever-growing significance and interdisciplinary nature. As we navigate the intricate web
of connections that define our world, understanding complex systems, their emergent
properties, and the underlying structures that govern them has become increasingly
crucial.

The Complex Networks Conference has established itself as a pivotal platform for
researchers, scholars, and experts from various fields to converge, exchange ideas, and
push the boundaries of knowledge in this captivating domain. Over the past twelve years,
we havewitnessed remarkable progress, breakthroughs, and paradigm shifts highlighting
the dynamic and complex tapestry of networks surrounding us, from biological systems
and social interactions to technological infrastructures and economic networks.

This year’s conference brought together an exceptional cohort of experts, including
our keynote speakers:

• Michael Bronstein, University of Oxford, UK, enlightened us on “Physics-inspired
Graph Neural Networks”

• Kathleen Carley, Carnegie Mellon University, USA, explored “Coupling in High
Dimensional Networks”

• Manlio De Domenico, University of Padua, Italy, introduced “An Emerging Frame-
work for the Functional Analysis of Complex Interconnected Systems”

• Danai Koutra, University of Michigan, USA, shared insights on “Advances in Graph
Neural Networks: Heterophily and Beyond”

• Romualdo Pastor-Satorras, UPC, Spain, discussed “Opinion Depolarization in
Interdependent Topics and the Effects of Heterogeneous Social Interactions”

• Tao Zhou, USTC, China, engaged us in “Recent Debates in Link Prediction”

These renowned experts addressed a spectrumof critical topics and the latestmethod-
ological advances, underscoring the continued expansion of this field into ever more
domains.

We were also fortunate to benefit from the expertise of our tutorial speakers on
November 27, 2023:

• Tiago de Paula Peixoto, CEU Vienna, Austria, guided “Network Inference and
Reconstruction”

• Maria Liakata, QueenMary University of London, UK, led us through “Longitudinal
language processing from user-generated content”

We want to express our deepest gratitude to all the authors, presenters, reviewers,
and attendees who have dedicated their time, expertise, and enthusiasm to make this
event successful. The peer-review process, a cornerstone of scientific quality, ensures
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that the papers in these proceedings have undergone rigorous evaluation, resulting in
high-quality contributions.

We encourage you to explore the rich tapestry of knowledge and ideas as we dive
into these four proceedings volumes. The papers presented here represent not only the
diverse areas of research but also the collaborative and interdisciplinary spirit that defines
the complex networks community.

In closing,we extendour heartfelt thanks to the organizing committees andvolunteers
who have worked tirelessly to make this conference a reality. We hope these proceed-
ings inspire future research, innovation, and collaboration, ultimately helping us better
understand the world’s networks and their profound impacts on science, technology, and
society.

We hope that the pleasure you have reading these papers matches our enthusiasm
for organizing the conference and assembling this collection of articles.

Hocine Cherifi
Luis M. Rocha
Chantal Cherifi

Murat Donduran
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Abstract. Graph Neural Network (GNN) research has produced strate-
gies to modify a graph’s edges using gradients from a trained GNN, with
the goal of network design. However, the factors which govern gradient-
based editing are understudied, obscuring why edges are chosen and if
edits are grounded in an edge’s importance. Thus, we begin by analyzing
the gradient computation in previous works, elucidating the factors that
influence edits and highlighting the potential over-reliance on structural
properties. Specifically, we find that edges can achieve high gradients due
to structural biases, rather than importance, leading to erroneous edits
when the factors are unrelated to the design task. To improve editing,
we propose ORE, an iterative editing method that (a) edits the highest
scoring edges and (b) re-embeds the edited graph to refresh gradients,
leading to less biased edge choices. We empirically study ORE through
a set of proposed design tasks, each with an external validation method,
demonstrating that ORE improves upon previous methods by up to 50%.

Keywords: Graph Neural Network · Network Design · Graph Editing

1 Introduction

Learning over graphs has become paramount in machine learning applications
where the data possesses a connective structure, such as social networks [7],
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chemistry [8], and finance [25]. Fortunately, the field of graph mining has pro-
vided methods to extract useful information from graphs, albeit often need-
ing heavy domain guidance [18]. The advent of graph neural networks (GNNs),
a neural network generalized to learn over graph structured data, has helped
alleviate some of these requirements by learning representations that synthe-
size both node and structure information [8,9,13]. Complimentary to inference,
recent work has proposed methods that edit and design network structures using
gradients from a trained GNN [11,17,19], enabling the efficient optimization of
downstream learning tasks [31] in cyber security [5,15], urban planning [4], drug
discovery [12], and more [3,14,16]. However, as gradient-based editing is applied
more broadly, scrutinizing the conditions that allow for successful editing is crit-
ical. For instance, discerning the factors which influence gradient computation
is still unknown, making it unclear when proposed edits can be trusted. In addi-
tion, it is unknown if gradient quality is dependent on graph structure and GNN
architecture, causing further concern for practical applications.

Focusing strictly on gradient-based edit quality, we analyze the common mask
learning paradigm [11,19,20,29], where a continuous scoring mask is learned over
the edges in a graph. Specifically, we elucidate how structural factors, such as
degree, neighborhood label composition, and edge-to-node distance (i.e., how far
an edge is from a node) can influence the mask through the gradient. When these
factors are not beneficial to the learning task, e.g. edge-to-node distance for a
de-noising task when noise is uniformly-distributed across the graph, the learned
mask can lead to erroneous edits. We additionally highlight how editing methods
that rely on thresholding are more susceptible to such structural biases due to
smoothing of the ground truth signal at the extreme values of the distribution.
To improve editing, we propose a more fine-tuned sequential editing process,
ORE, with two steps: (1) We Order the edge scores and edit the top-k edges
to prioritize high quality edges, and (2) we Re-embed the modified graph after
the top-k edges have been Edited. These properties help prevent choosing edges
near the expected mask value, and thus more likely to be based on irrelevant
structural properties, as well as encourage edits that consider the influence of
other removed edges with higher scores. We highlight the practical benefit of
ORE by designing a systematic study that probes editing quality across a variety
of common GNN tasks, graph structures, and architectures, demonstrating up
to a 50% performance improvement for ORE over previous editing methods.

2 Related Work

Early network design solutions choose edits based on fixed heuristics, such as
centrality scores [16] or triangle closing properties [14]. However, fixed heuris-
tics generally require significant domain guidance and may not generalize to
broader classes of networks and tasks. Reinforcement learning (RL) has enabled
the ability to learn more flexible heuristics, such as in chemistry [30] and social
networks [23]; however, RL can be prohibitively expensive due to data and com-
putation requirements. To fulfill the need for efficient and flexible editing meth-
ods, gradient-based optimization has subsequently been applied to edge editing,
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facilitated through trained GNNs. Although computing gradients for edges can
be infeasible given the discrete nature of the input network, previous methods
have adopted a continuous relaxation of the edge set, operating on a soft edge
scoring mask that can be binarized to recover the hard edge set [11,19,20,24,29].
In its simplest form, the gradient of an edge is approximated as the gradient of
the score associated with that edge, with respect to a loss objective [29]. As
this is dependent on the initialization of the scoring mask, GNNExplainer pro-
poses to leverage multiple rounds of gradient descent over the mask to arrive
at a final score, rather than use the gradient directly [29]. CF-GNNExplainer
extends GNNExplainer by generating counterfactual instances and measuring
the change in the downstream objective [19]. Both of these methods convert
the soft mask to a hard mask through fixed thresholding, which, when incor-
rectly chosen, can introduce noisy edits. Moreover, as mask learning is usually
used to support broader objectives, such as robustness or explainability, studies
fail to consider what conditions can inhibit the mask learning sub-component,
instead focusing simply on the downstream objective. Our work provides a direct
analysis of mask quality through a systematic study across a wide array of tasks,
GNNs, and topologies. We highlight that current mask-based editing methods can
become susceptible to bias within the mask scores, prompting the development of
ORE as a means of improving gradient-based edge editing.

3 Notation

Let G = (V,E,X,Y) be a simple graph with nodes V , edges E, feature matrix
X ∈ R

|V |×d with d node features, and label matrix Y. Y ∈ {0, 1}|V |×c with c
classes for node classification, Y ∈ R

|V | for node regression, and Y ∈ {0, 1}c for
graph classification. A ∈ {0, 1}|V |×|V | is the adjacency matrix of G, where Ai,j =
1 denotes an edge between nodes i and j in G, otherwise Ai,j = 0. While E and
A represent similar information, E is used when discussing edge sets and A is for
matrix computations. Additionally, a k -hop neighborhood of a node i ∈ V , Nk(i),
denotes the nodes and edges that are reachable within k-steps of i. For simplicity,
k is dropped when referring to the 1-hop neighborhood. Additionally, we denote
||B||1 as the L1-norm of a matrix B, G−ei as the removal of an edge from G, and
G− i as the removal of a node from G. For a k-layer GNN, learning is facilitated
through message passing over k-hop neighborhoods of a graph [8]. A node i’s
representations are updated by iteratively aggregating the features of nodes in
i’s 1-hop neighborhood, denoted AGGR, and embedding the aggregated features
with i’s features, usually through a non-linear transformation parameterized by
a weight matrix W, denoted ENC. The update for node i is expressed as r(l)i =
ENC(r(l−1)

i ,AGGR(r(l−1)
u , u ∈ N(i))) for l ∈ {1, 2, ..., k}, where r

(0)
i = xi. The

update function is applied k times, resulting in node representations that can be
used to compute predictions. For graph-level tasks, a readout function aggregates
the final representation of all nodes into a single graph-level representation.
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4 Optimization for Network Editing

The network design objective is given in Eq. 1, where we want to find a new
adjacency matrix, A∗, that improves a function f , parameterized by a GNN,

min
A∗

||A − A∗||1
s.t. f(X,A∗) − f(X,A) ≥ 0.

(1)

As A is discrete and f introduces non-linear and non-convex constraints, it is
difficult to find an exact solution. Thus, we soften the constraints and focus on
increasing f while maintaining the size of A, as shown in Eq. 2,

min
A∗

− f(X,A∗) + λ||A − A∗||1. (2)

where λ trades off the objective and the size of the remaining edge set. The
negative term incentivizes the optimizer to improve f . As the optimization is
still over a discrete adjacency matrix, we re-parameterize A, as done in [10,29],
and introduce a continuous mask M ∈ R

n×n. M is introduced into a GNN’s
aggregation function as AGGR(mu,v · r(i−1)

u , u ∈ N(v))), where mu,v is the mask
value on the edge that connects nodes u and v. By introducing M into AGGR,
it is possible to directly compute partial derivatives over M, enabling gradient-
based optimization over the mask values. As the aggregation function is model-
agnostic, we can easily inject the mask into any model that follows this paradigm.

4.1 Graph Properties that Influence Edge Scores

We aim to study the gradient of the scoring mask M for a graph G. We assume
access to a trained, 2-layer GNN with structure (A + I)2XW, where I is the
identity matrix. We analyze a node classification setting, where a node i’s feature
vector is xi = yi + N (μ,Σ), and yi is the one-hot encoding of class yi. After
two layers of propagation, the feature vector for node i becomes,

r(2)i = xi +
∑

j∈N(i)

Mi,jxj +
∑

j∈N(i)

Mi,j(xj +
∑

k∈N(j)

Mj,kxk). (3)

Then, the class prediction for i is argmax
zi

, where zi = r(2)i W . As M is com-

monly learned through gradient ascent, and only r(2)i depends on M, we focus
on the partial derivative of r(2)i with respect to a mask value Mu,v, where u, v
are nodes in G. As the GNN has two layers, the edges must be within two-hops
of i to have a non-zero partial derivative. The partial derivative for the one- and
two-hop scenarios are the first and second cases of Eq. 4, respectively,

∂r
(2)
i

∂Mu,v
=

⎧
⎪⎪⎨

⎪⎪⎩

2(yj +Mi,jyi + (Mi,j + 1)N (μ, Σ))
+

∑

k∈N(j)−i

Mj,k(yk + N (μ, Σ)), u = i, v = j ∈ N(i)

Mi,j(yk + N (μ, Σ)), u = j ∈ N(i), v = k ∈ N(j)

(4)
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To understand the gradient ascent process, we consider when yi = 0, without
loss of generality, and simplify Eq. 4. This leads to four scenarios, yj ∈ {0, 1}
where j ∈ N(i) and yk ∈ {0, 1} where k ∈ N2(i); however, yj only impacts case
1 and yk only impacts case 2, thus we can analyze each in isolation. To elucidate
possible biases, we show the difference in gradients by subtracting each possible
scenario (for similarly initialized Mi,j), denoted as Δ∂r(2)i,0 , in Eq. 5,

Δ∂r(2)i,0 =

⎧
⎪⎪⎨

⎪⎪⎩

(Mi,j + 2)N (μ + 1, Σ), yj = 0, yk = 0
Mi,j + (Mi,j + 2)N (μ,Σ), yj = 1, yk = 0
2(Mi,j + 1) + (Mi,j + 2)N (μ,Σ), yj = 0, yk = 1
2Mi,j + (Mi,j + 2)N (μ,Σ), yj = 1, yk = 1

+
∑

k∈N(j)−i,yk=yj

Mj,kN (μ + 1, Σ) +
∑

k∈N(j)−i,yk �=yj

Mj,kN (μ,Σ). (5)

First, all cases in Eq. 5 tend to be greater than 0, leading to higher scores for
edges closer to i. Additionally, if elements of M ∼ U(−1, 1) as in [19,29], the last
two summation terms in Eq. 5 scale as hj(dj−1) and (1−hj)(dj−1), respectively,
where hj and dj represent the homophily and degree properties of the node
j. Thus, high degree and high homophily can additionally bias edge selection,
similar to the heuristic designed by [26] where they use hjdj to optimize network
navigation. Each of the above structural factors can either coincide with the true
edge importance, or negatively influence edits when such structural properties
are uninformative to the network design task.

4.2 ORE: Improved Edge Editing

Previous mask learning methods [11,19,29] have focused on fixed thresholding to
generate an edge set. As shown above, it is possible that the gradients are biased
towards unrelated structural properties, and thus thresholding near the expected
mask value can introduce incorrect edits. To improve the mask, we introduce
ORE, which operates by sorting the learned mask values, editing only a fixed
budget of the highest scoring edges, and then re-embedding the edited graph to
obtain an updated mask. Ordering the mask values and only operating on the
extreme ends of the mask value distribution allows ORE to choose edges that are
likely to be governed by the mask learning procedure, rather than edges with high
scores due to structural biases. Additionally, as seen in Eq. 5, the gradient for
an edge is dependent on downstream edges aggregated during message passing,
motivating our re-embedding step to account for interactions between edits. The
total editing budget is denoted as b, where b/s edges are removed for s steps. If
a task requires the solution to contain a single connected component, edges that
would disconnect the graph are preserved, their gradients are deactivated, and
their mask values are set to one.
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5 Experimental Setup

5.1 Network Editing Process

We study four GNN architectures: GCN [13], GraphSage [9], GCN-II [22], and
Hyperbolic GCN [2]. As attention weights have been shown to be unreliable for
edge scoring [29], we leave them out of this study. After training, each model’s
weights are frozen and the edge mask variables are optimized to modify the
output prediction. We train three independent models on different train-val-test
(50-25-25) splits for each task and the validation set is used to choose the best
hyperparameters over a grid search. Then, editing is performed over 50 random
data points sampled from the test set. For regression tasks, we directly optimize
the output of the GNN, and for classification tasks, we optimize the cross entropy
loss between the prediction and class label. For ORE, s = b so that one edge
is edited per step. Additionally, b is set such that roughly 10% (or less) of the
edges of a graph (or computational neighborhood) are edited. The exact budget
is specified for each task. All hyperparameters and implementation details for
both the GNN training and mask learning are outlined in an anonymous repo1.

Algorithm 1. ORE Algorithm
Input: GNN model f , Features X, Adj. Matrix A, Steps s, Epochs e, Budget b, λ
Result: Edited Adjacency Matrix A
Initialize mask matrix M over edges in G
for 1 to s do

for 1 to e do
P = f(X,A,M) ; // Forward pass for prediction

L = −P − λ|M| ; // Loss on P (can modify objective)

M ← M − α dL
dM

; // Update mask

end

O = argsort(M)
I = O[: (b/s)] ; // Get top indices to edit

A[I] = 0 ; // Remove edges from G

end
Return A

Editing Baselines: We utilize two fixed heuristics for editing: iterative edge
removal through random sampling and edge centrality scores [1]. We also study
CF-GNNExplainer [19], though we extend the algorithm to allow for learning
objectives outside of counterfactuals and variable thresholds that cause b edits
to fairly compare across methods. These changes do not hurt performance and
are simple generalizations. Note that while we focus on CF-GNNExplainer, as
they are the only previous mask learning work to consider editing, their mask
generation is highly similar to other previous non-editing methods, allowing us
to indirectly compare to thresholding-based methods in general [20,24,29].
1 https://anonymous.4open.science/r/ORE-93CC/GNN details.md.

https://anonymous.4open.science/r/ORE-93CC/GNN_details.md
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5.2 Learning Tasks

In this section we detail the proposed tasks. For each, the generation process,
parameters, and resultant dataset stats are provided in an anonymous repo2.

Improving Motif Detection: We begin with node classification tasks similar
to [19,20,29] with a goal of differentiating nodes from two different generative
models. Tree-grid and tree-cycle are generated by attaching either a 3× 3 grid or
a 6 node cycle motif to random nodes in a 8-level balanced binary tree. We train
the GNNs using cross entropy, and then train the mask to maximize a node’s
class prediction. As the generation process is known, we extrinsically verify if
an edit was correct by determining if it corresponds to an edge inside or outside
of the motifs. The editing budget is set to the size of the motifs, i.e. b = 6 for
tree-cycle and b = 12 for tree-grid. Each model is trained to an accuracy of 85%.

Increasing Shortest Paths (SP): The proposed task is to delete edges to
increase the SP between two nodes in a graph. This task has roots in adversarial
attacks [21] and network interdiction [27] with the goal of force specific traffic
routes. The task is performed on three synthetic graphs: Barabási-Albert (BA),
Stochastic Block Model (SBM), and Erdős-Rényi (ER). The parameters are set
to enforce each graph has an average SP length of 8. The GNN is trained through
MSE of SP lengths, where the SP is estimated by learning embedding for each
node and then computing the L2 distance between each node embedding for
nodes in the training set. The GNN is then used to increase the SP for pairs of
nodes in the test set, which is externally verified through NetworkX. The editing
budget b = 30 given the larger graphs. Each model is trained to an RMSE of 2.

Decreasing the Number of Triangles: The proposed task is to delete edges
to decrease the number of triangles in a graph. Since triangles are often associ-
ated with influence, this task can support applications that control the spread of
a process in a network, such disease or misinformation [6]. We consider the same
graphs as in the SP task, BA, SBM, and ER, but instead generate 100000 differ-
ent graphs each with 100 nodes. Each generation method produces graphs that,
on average, have between 20 and 25 triangles, as computed by NetworkX’s tri-
angle counter. The GNNs are trained using MSE and then used to minimize the
number of triangles in the graph, which is externally verified through NetworkX.
The editing budget b = 20. Each GNN is trained to an RMSE of 6.

Improving Graph-Level Predictions: MUTAG is a common dataset of
molecular graphs used to evaluate graph classification algorithms. The proposed
task is to turn mutagenic molecules into non-mutagenic molecules by deleting
mutagenic functional groups [20,29]. We first train the GNN models to suf-
ficiently predict whether a molecule is mutagenic, then edit the molecules to
reduce the probability of mutagenicity. We only edit mutagenic molecules that
possess mutagenic functional groups, as in [20]. The editing budget b = 5. Each
GNN is trained to an accuracy above 75%. To focus on edit quality, we do

2 https://anonymous.4open.science/r/ORE-93CC/Dataset details stats.md.

https://anonymous.4open.science/r/ORE-93CC/Dataset_details_stats.md
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not include chemistry-based feasibility checks, however it is possible to incor-
porate constraints into ORE either through the mask learning objective, when
the constraint is differentiable, or by rejecting edits when the constraint is not
differentiable.

6 Results

We present the empirical results for each task, beginning with an in-depth anal-
ysis on motif detection. Then, we collectively analyze the shortest path, triangle
counting, and mutag tasks, noting trends in editing method and GNN design.

6.1 Motif Detection

In Fig. 1 we show the percent change metrics for the tree-grid and tree-cycle
datasets across the GNN models. Better performance is indicated by a higher
percentage of edges removed outside the motif, and a lower percentage of edges
removed from inside the motif. We include performance for ORE and CF-
GNNExplainer with different GNN backbones. On both datasets, the Pareto
front is comprised primarily by variants of ORE, highlighting that ORE is gen-
erally better at maintaining in motif edges while removing out of motif edges.

Fig. 1. Performance on tree-grid and tree-cycle across GNNs (shapes) and editing
methods (colors). The axis show the percent change in edges outside and inside the
motifs. Error bars indicate standard deviation in experiments. Performance improves
towards the bottom right, as the goal is to remove edges outside the motif and retain
edges inside the motif, as shown by the gray Pareto front.

How do Editing Methods Vary Across GNNs? In Fig. 1, ORE with GCNII
yields the best performance; however, nearly every ORE and GNN combination
outperforms the CF-GNNExplainer variant with the same GNN, demonstrat-
ing the intrinsic benefit of ORE, as well as the dependence on GNN model. To
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probe how performance varies across GNNs, we stratify performance by struc-
tural factors, as motivated by our analysis in Eq. 5. In Fig. 2, we focus on the
edge-to-node distance, showing that GCN is more susceptible than GCNII to
this bias as the correlation between mask score and distance is higher. This
result suggests that GCNII is able to suppress the use of factors unrelated to
the editing task and better leverage the true importance of the edited edges.
We hypothesize that GCNII’s ability to retain distinct node representations by
combatting oversmoothing can enable more salient gradients, however further
theoretical analysis is required to confirm this behavior.

Fig. 2. Mask score distribution stratified by distance to ego-node for GCN and
GCNII. Yellow denotes Tree-Grid, green denotes Tree-Cycle. For GCN, the closer
an edge is to the ego-node, the higher the scores, leading to bias within the editing.
GCNII minimizes bias for this unrelated property, improving editing.

How Does ORE Improve Performance? In Fig. 3a, granular performance
metrics are presented in a 2D histogram for ORE and CF-GNNExplainer with
GCNII, demonstrating the percent change of inside and outside motif edges for
tree-grid. Result trends are similar for tree-cycle. ORE is shown to drop sig-
nificantly less edges inside the motifs, denoted by the dark red boxes in the
bottom right, indicating stronger performance. While both editing methods per-
form well at removing edges outside the motifs, CF-GNNExplainer tends to
additionally remove inside edges, indicating a poorer trade-off between outside
and inside motif edges. We further analyze how this arises in Fig. 3b, where the
percent change metrics are presented across edit iterations (CF-GNNExplainer
is not iterative and thus constant). For ORE, we see that the rates of change for
inside and outside edges are significantly different – ORE more rapidly removes
outside edges while maintaining inside edges, improving the final edit solution.
In addition, ORE achieves similar outside edge removal to CF-GNNExplainer,
while achieving a 10% increase in inside edges, supporting our hypothesis that
knowledge of earlier edits allows ORE to adjust mask scores, improving editing.
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6.2 Shortest Path, Triangle Counting, and Graph Classification

In Table 1, we outline the performance metrics for the SP, triangle counting,
and mutag tasks. For each task, we measure the average percent change in their
associated metric. In the SP experiments, all GNNs improve over the baselines,
demonstrating the learned masked values extracted from the GNNs can outper-
form crafted heuristics, such as centrality, which leverages shortest path informa-
tion in its computation. Given that ORE with GCN performs well on this task,
it is possible that the structural biases identified previously, such as reliance on
degree, could coincide with the SP task and improve mask scores. In the triangle
counting task, edge centrality is a strong baseline for BA graphs, likely due to
centrality directly editing the hub nodes that close a large number of triangles.
Across the ER and SBM graphs, which do not possess a hub structure, we find
that ORE with a GCNII backbone performs significantly better than both the
baselines and other GNN models. Mutag reinforces these findings where GCNII
removes nearly all of the mutagenic bonds for the mutagenic molecules. Notably,
the Hyperbolic GCN performs poorly across experiments, possible explained by
most tasks possessing Euclidean geometry, e.g. 82% of the molecules in the muta-
genic dataset are roughly Euclidean as computed by the Gromov hyperbolicity
metric [28]. Comparing editing methods, ORE with GCN and GCNII signifi-
cantly outperforms CF-GNNExplainer with GCN across all three downstream
tasks, highlighting the value of refined and iteratively optimized edge masks.

Fig. 3. Analysis on GCNII and Tree-Grid. (a) Histograms where the axes denote the
percent change in edges inside and outside of the motif, boxes capture the counts. ORE
outperforms CF-GNNExplainer, as shown by the darker boxes in the bottom right. (b)
Performance across edit iterations. Blue denotes ORE, red denotes CF-GNNExplainer,
dashed lines denote out motif change, and solid lines denote in motif change. ORE
rapidly removes edges outside the motifs while maintaining edges inside the motif,
improving upon CF-GNNExplainer.
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Table 1. Results for SP, triangle counting, and mutag tasks. CF-GNNExplainer lever-
ages a GCN, often one of the better performers in motif analysis. All metrics are
average percent change, where higher is better. Error is the standard deviation across
each model. The highlighted boxes indicate best performaners.

Shortest Path Triangle Counting Mutag

BA ER SBM BA ER SBM —

Random 0.0 ± 0.0 0.0 ± 0.0 0.0 ± 0.0 0.36 ± 0.02 0.29 ± 0.01 0.38 ± 0.0 0.48 ± 0.04

Centrality 0.04 ± 0.01 0.08 ± 0.02 0.13 ± 0.0 0.59 ± 0.02 0.07 ± 0.0 0.09 ± 0.01 0.70 ± 0.07

CF-GNNEx 0.26 ± 0.05 0.31 ± 0.04 0.23 ± 0.03 0.42 ± 0.04 0.24 ± 0.09 0.32 ± 0.06 0.72 ± 0.04

ORE-GCN 0.52 ± 0.06 0.89 ± 0.05 0.33 ± 0.06 0.57 ± 0.05 0.33 ± 0.04 0.36 ± 0.06 0.66 ± 0.08

ORE-SAGE 0.36 ± 0.11 0.74 ± 0.07 0.17 ± 0.07 0.37 ± 0.05 0.29 ± 0.04 0.37 ± 0.06 0.42 ± 0.17

ORE-GCNII 0.24 ± 0.04 0.47 ± 0.11 0.29 ± 0.06 0.64 ± 0.05 0.41 ± 0.04 0.52 ± 0.05 0.89 ± 0.04

ORE-HGCN 0.38 ± 0.06 0.73 ± 0.06 0.18 ± 0.05 0.36 ± 0.08 0.40 ± 0.04 0.45 ± 0.07 0.47 ± 0.16

7 Conclusion

In this work, we focused on studying network design though gradient-based edge
editing. We began by identifying structural factors that influence the common
mask-based learning paradigm, and empirically demonstrated how these factors
can impact performance across complex models and tasks. To improve editing,
we introduced a sequential editing framework, ORE, that allowed for (a) the
identification of higher quality edges near the extremes of the mask distribu-
tion and (b) mask scores to reflect updates from higher scoring edges. As net-
work design evaluation has limited datasets, we proposed a set of editing tasks
with external validation mechanisms, and studied both ORE and a strong edit-
ing baseline, CF-GNNExplainer, with different GNN backbones. We found that
ORE outperformed CF-GNNExplainer across all experiments, while additionally
demonstrated the impact of GNN architecture on the success of editing.
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2. Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural
networks. In: NeurIPS, vol. 32 (2019)

3. Chan, H., Akoglu, L.: Optimizing network robustness by edge rewiring: a general
framework. Data Min. Knowl. Discov. 30(5), 1395–1425 (2016)

4. Domingo, M., Thibaud, R., Claramunt, C.: A graph-based approach for the struc-
tural analysis of road and building layouts. Geo-spatial Inf. Sci. 22(1), 59–72 (2019)

5. Enoch, S., Mendonça, J., Hong, J., Ge, M., Kim, D.S.: An integrated security hard-
ening optimization for dynamic networks using security and availability modeling
with multi-objective algorithm. Comp. Netw. 208, 108864 (2022)

6. Erd, F., Vignatti, A., da Silva, M.V.G.: The generalized influence blocking maxi-
mization problem. Soc. Netw. Anal. Mining (2021)

7. Fan, W., et al.: Graph neural networks for social recommendation. In: WWW, pp.
417–426 (2019)



14 D. Loveland and R. Caceres

8. Gilmer, J., Schoenholz, S.S., Riley, P.F., Vinyals, O., Dahl, G.E.: Neural message
passing for quantum chemistry. CoRR (2017)

9. Hamilton, W.L., Ying, R., Leskovec, J.: Inductive representation learning on large
graphs. CoRR (2017)

10. Jang, E., Gu, S., Poole, B.: Categorical reparameterization with gumbel-softmax
(2017)

11. Jin, W., Ma, Y., Liu, X., Tang, X., Wang, S., Tang, J.: Graph structure learning
for robust graph neural networks. In: SIGKDD (2020)

12. Jin, W., Barzilay, R., Jaakkola, T.: Junction tree variational autoencoder for molec-
ular graph generation. In: ICML, PMLR (2018)

13. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

14. Kun, J., Caceres, R.S., Carter, K.M.: Locally boosted graph aggregation for com-
munity detection. arXiv preprint arXiv:1405.3210 (2014)
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Abstract. In recent years, Graph Neural Networks (GNNs) have under-
gone rapid development and have become an essential tool for building
representations of complex relational data. Large real-world graphs, char-
acterised by sparsity in relations and features, necessitate dedicated tools
that existing dense tensor-centred approaches cannot easily provide. To
address this need, we introduce a GNNs module in Scikit-network, a
Python package for graph analysis, leveraging sparse matrices for both
graph structures and features. Our contribution enhances GNNs effi-
ciency without requiring access to significant computational resources,
unifies graph analysis algorithms and GNNs in the same framework, and
prioritises user-friendliness.

Keywords: Graph Neural Networks · Sparse Matrices · Python

1 Introduction

Graph Neural Networks (GNNs) are an extension of traditional deep learning
(DL) methods for relational data structured as graphs [4]. In the past few years,
GNN-based methods have gained increasing attention thanks to their impressive
performance on a wide range of machine learning tasks, such as node classifica-
tion, graph classification, or link prediction [16,19,25,28]. GNNs derive internal
graph element representations using entity relationships and associated features,
making them highly valuable for real-world data, where information frequently
spans across multiple dimensions.

Real-world graphs, exemplified by large social networks or web collections
with millions or billions of elements, each potentially having numerous attributes,
pose substantial challenges for GNNs training [12,13]. Tremendous efforts have
been made to tackle this challenge and scale up GNNs [6–8,16,29,30]. Several
existing approaches rely on parallelisation or approximation techniques such as
sampling or batch training, to reduce memory consumption. Few take the sparse
nature of real-world graphs into account: in a graph with n nodes, the number
of edges m is much lower than the number of possible edges, of order n2. This
sparsity can be exploited in data representation and algorithms to reduce the
memory footprint and the computation times.

Numerous Python packages already provide GNN implementations, includ-
ing PyTorch Geometric [11], Deep Graph Library [27], Spektral [14], Stellar
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1141, pp. 16–24, 2024.
https://doi.org/10.1007/978-3-031-53468-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-53468-3_2&domain=pdf
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Graph [10] or Dive Into Graphs library [20]. But to allow natural integration
with existing DL frameworks, such as PyTorch [23] or TensorFlow [1], and bene-
fit from differentiable operators, these libraries rely upon a dense tensor-centred
paradigm which does not align with graph sparsity. This dramatically hinders
the use of such libraries on large real-world graphs, by requiring access to servers
with large quantities of RAM.

To address this gap, we propose a GNNs module implementation relying
on sparse matrices for both graph adjacency and features. Our implementation
aligns seamlessly with Scikit-network1 [3], a Python package inspired by Scikit-
learn [5] for graph analysis. Scikit-network leverages the sparse formats provided
by SciPy [26] for encoding graphs. It already provides various state-of-the-art
graph algorithms, including ranking, clustering, and embedding algorithms, with
a high computational efficiency, comparable to that of other tools like graph-
tool [24] or IGraph [9], and generally much higher than that of the popular
NetworkX library [15]. By only relying on NumPy [17] and SciPy [26], the devel-
opment of a GNN module in Scikit-network stays true to the core principles of
the package: performance and ease of use.

To summarise, our contributions encompass three key aspects. Firstly, we
introduce an efficient GNN module within Scikit-network, harnessing the power
of sparse matrices for both graph and features to address the characteristics of
real-world graphs. Secondly, our package bridges the gap between traditional
graph analysis methods and GNNs, offering a unified platform that operates
within the same sparse graph representation. Lastly, we prioritise simplicity by
designing our package to rely solely on foundational Python libraries, specifically
NumPy and SciPy, sparing users the complexity associated with larger tensor-
based DL frameworks.

The rest of the paper is organised as follows. We start by reviewing the
existing related work in Sect. 2. Then, we formulate the computation of the
GNNs message passing scheme using sparse matrices in Sect. 3. In Sect. 4 we
briefly describe our GNNs module design and we show its performance compared
to other GNNs libraries in Sect. 5.

2 Related Work

Several Python packages already exist to help with the development and usage
of GNNs. Pytorch Geometric (PyG) [11] proposes a general message passing
interface with all recent GNN-based aggregation schemes. In order to reduce the
computation time when running on large complex networks, several processing
tools such as sampling or batch training are proposed. Spektral [14] is built
upon the same gather-scatter paradigm as PyG, but implements GNNs on top
of the user-friendly API Keras. Stellar Graph [10] is also based on Keras but uses
its own graph representation. Deep Graph Library [27] involves a combination
of user-configurable message passing functions and sparse-dense matrix multi-
plications to provide the user with a GNNs framework. However, in all these
1 https://github.com/sknetwork-team/scikit-network.

https://github.com/sknetwork-team/scikit-network
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libraries, the implementation design is driven by the necessity to integrate with
existing deep learning frameworks, namely PyTorch [23] or TensorFlow [1], that
provide differentiable operators. This implies the use of dense tensors for the
encoding of graph elements, which comes at the expense of the sparse nature of
real-world graphs. Our work differs from these approaches in the sense that we
leverage sparse format representations for both the structure of the graph and
the features of the nodes, and we only rely on Python fundamental libraries.

Other libraries, such as Dive Into Graphs library [20] offer a high-level tool-
box for deep learning on graphs. However, its goal is slightly different from
the previous libraries; it goes beyond the implementation of elementary tasks
and includes advanced research-oriented methods such as benchmarks, graph
generation or 3D graphs. In Scikit-network, we mainly focus on efficiency and
ease-of-use rather than extensive features for the users.

3 Message Passing with Sparse Matrices

3.1 Message Passing Overview

Traditional GNNs models rely on an architecture that propagates the signal
(or features) information across the network, through a serie of iterations (or
layers). At each layer l, this architecture involves two steps for computing the
representation of a node u, hl

u; (i) the aggregation of this node’s neighbourhood
information into a message and (ii) the update of the node’s representation using
this aggregated information and the previous embedding of the node. These two
steps can be written as follows:

hl
N (u) = φ({hl−1

v ,∀v ∈ N (u)}) (1)

hl
u = ψ

(
hl−1
u , hl

N (u)

)
(2)

where N (u) denotes the neighbourhood of node u, φ is an aggregation function
and ψ is an update function.

3.2 Using Sparse Matrices in Scikit-Network

In Scikit-network, we represent a node attributed graph G = (V,E,X) by its
adjacency matrix A and its node-feature matrix X, both encoded in SciPy’s
Compressed Sparse Row format (CSR). This format uses three arrays to repre-
sent a matrix: two arrays of size m, where m is the number of non-zero elements
in the matrix, and one array of size n + 1, where n is the number of rows of
the matrix. Among various SciPy sparse formats (such as COO, DOD, etc.), the
CSR format was initially chosen for Scikit-network as it is the most memory-
efficient for common algebraic operations like listing neighbours and performing
matrix-vector product [21].
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The concept of message passing scheme within a graph convolutional layer,
as seen in GCN [19], involves the gathering and scattering of information from a
node’s neighbourhood to compute the node’s updated representation. In scikit-
network, these operations are executed using the following layer-wise propagation
rule:

H l+1 = σ(ÃH lW l + bl) (3)

where Ã is the (normalised) adjacency matrix of the graph (with or without
self-loops), H l denotes the matrix of node representations at layer l, with H0 =
X, W l and bl represent trainable weight matrix and bias vector, and σ is a
non-linear activation function. In our Scikit-network implementation, we employ
sparse matrix multiplication (SpMSpM) to compute the term ÃH l when l =
0. Subsequently, for l ≥ 1 and thus when the dimension of the H l matrix is
significantly reduced to the hidden-layer dimension, we use sparse-dense matrix
multiplications (SpMM). In the same manner, the backward propagation only
requires SpMM multiplications between reduced-sized matrices.

4 Scikit-Network GNN Design

As illustrated in Fig. 1, initialising a GNN model in Scikit-network is straight-
forward. Like other graph analysis algorithms in the package, GNN training is
built upon the .fit predict() method. This method hides forward and back-
ward propagation’s complexity to the user, providing them directly with the
final predictions. Additional training details, like loss, accuracy and temporary
layer outputs, are easily accessible using the history parameter.

5 Performance

To evaluate Scikit-network’s GNN implementation, we compare (i) the achieved
accuracy level, which should be similar to that of other implementations, and
(ii) the training time required for the model to learn representations. In both
cases, we use a GCN [19] model for a node classification task and compare with
the two most widely used libraries: PyG and DGL2. The computer used to run
all the experiments is a Mac with OS 12.6.8, equipped with a M1 Pro processor
and 16 GB of RAM. For fair comparison, all experiments are run on a CPU
device.

2 We rely on the number of forks associated with each package on GitHub as a metric
to gauge library usage. Please note that this metric provides only a partial view of
actual project usage.
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Fig. 1. Graph methods using Scikit-network. On the left, node classification using a
GNN model. On the right, Louvain clustering [2] and PageRank scoring [22]. Traditional
graph algorithms and deep learning based models use the same API.

5.1 Datasets

We use three real-world datasets of varying sizes considering their structure and
attributes. The datasets include Wikipedia-based networks3, Wikivitals and
Wikivitals+. Nodes in these datasets represent Wikipedia articles, and there is
a link between two nodes if the corresponding articles are referencing each other
(in either direction) through hypertext links on Wikipedia. Additionally, each
article comes with a feature vector, corresponding to the number of occurrences
of each word (or token) in its summary. OGBN-arxiv [18] models a citation
network among Computer Science papers from arXiv. For this dataset, we use
node connections as the feature matrix. We detail the dataset characteristics in
Table 1.

Table 1. Dataset statistics. Adjacency matrix A is summarised with its number of
nodes |V |, edges |E| and density δA. d refers to the number of unique attributes. The
node-attribute matrix X is summarized using its number of non-zero elements m and
its density δX . For dataset marked with �, we use the adjacency matrix as features.

Dataset |V | |E| δA d m δX

Wikivitals 1.00 × 104 8.24 × 105 1.64 × 10−2 3.78 × 104 1.363 × 106 3.59 × 10−3

Wikivitals+ 4.51 × 104 3.94 × 106 3.86 × 10−3 8.55 × 104 4.78 × 106 1.24 × 10−3

OGBN-arxiv � 1.69 × 105 1.66 × 106 8.13 × 10−5 1.69 × 105 1.66 × 106 8.13 × 10−5

3 https://netset.telecom-paris.fr/.

https://netset.telecom-paris.fr/
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5.2 Performances and Running Time

Tables 2 and 3 respectively display the running time of the training process and
the corresponding accuracy scores for the different GNNs implementations. For
DGL and PyG, the dense feature matrix format hinders training models on
large graphs without additional tricks, e.g., sampling or batch training (which
we did not use for fair comparison). Therefore, these implementations trigger an
out-of-memory (OOM) error when used on the OGBN-arxiv dataset. In contrast,
Scikit-network does not require these extra steps to achieve good performance on
this dataset within a reasonable computation time. Furthermore, we can observe
the benefits of using Scikit-network regarding the characteristics of the graph:
the sparser the graph, the more efficient the computation.

Table 2. Average computation times and standard deviations (3 runs) for 100 epochs
model training on 3 real-world datasets.

Package Wikivitals Wikivitals+ OGBN-arxiv

DGL 76.6 ± 4.2 2396.1 ± 36.5 OOM

PyG 28.7 ± 0.1 1242.8 ± 28.6 OOM

Sknetwork 139.5 ± 0.6 632.9 ± 7.9 60.1 ± 0.4

Table 3. Average accuracy on test set and standard deviations (3 runs) for 100 epochs
model training on 3 real-world datasets.

Package Wikivitals Wikivitals+ OGBN-arxiv

DGL 78.5 ± 1.7 80.1 ± 0.2 OOM

PyG 78.1 ± 0.3 79.7 ± 0.5 OOM

Sknetwork 78.4 ± 1.6 80.2 ± 0.2 83.3 ± 0.5

5.3 Impact of Graph Characteristics

Graph Density. We further validate this observation in Fig. 2, where we ini-
tialise a random graph (Erdos-Rényi) with a fixed number of nodes |V | = 1×104

and varying density. In this setup, node connections are used as features. We
can notice that for highly sparse graphs, i.e., low density, both DGL and PyG
implementations face challenges due to their reliance on dense matrices. On
the opposite, Scikit-network implementation shows great performance improve-
ments compared to these methods once below a density threshold (approximately
1 × 10−3).
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Fig. 2. Computation time for several GCN [19] implementations, according to adja-
cency and feature matrix densities. Notice the log-scale on both axis.

Number of Nodes. To evaluate the impact of the number of nodes on the
performance of our implementation, we fix the densities of graph matrix δA
and feature matrix δX , such as δA = δX = 5 × 10−4, and vary the number
of nodes in the random graphs generated. In Fig. 3 we show Scikit-network’s
benefits in terms of training model computation time, compared to DGL and
PyG implementations.

Fig. 3. Computation time for several GCN [19] implementations, according to the
number of nodes in the graph. Notice the log-scale on both axis.

6 Conclusion

We presented the Scikit-network Graph Neural Network module. Our implemen-
tation achieves great performance on real-world graphs both in terms of accuracy
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and running time, by making use of sparse encoding and operations in the learn-
ing process. Moreover, our design relies solely on foundational Python libraries,
NumPy and SciPy, and does not require the use of tensor-centred traditional
Deep Learning frameworks. With this module, Scikit-network offers a unified
platform gathering traditional graph analysis algorithms and deep learning-based
models. In the future, we plan to extend the current module by adding additional
state-of-the-art GNNs models and layers, as well as optimizers.
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Abstract. The use of Graph Neural Networks (GNNs) in time series
analysis is on the rise, yet the application of GNN Graph Classification
in this field remains in its early stages. In our research, we repurpose
GNN Graph Classification, traditionally rooted in disciplines like biol-
ogy and chemistry, to delve into the intricacies of time series datasets.
We demonstrate how graphs are constructed within individual time series
and across multiple datasets, highlighting the versatility of GNN tech-
niques beyond their standard applications. A key observation in our
study was the sensitivity of the GNN Graph Classification model to
graph topology. While initially seen as a potential concern for model
robustness, this sensitivity turned out to be beneficial for pinpointing
outliers. Our findings underscore the innovation of applying GNN Graph
Classification to time series analysis, unlocking new dimensions in data
interpretation. This research lays the groundwork for integrating these
methodologies, indicating vast potential for their wider application and
opening up promising avenues for future exploration.

Keywords: Graph Neural Network · Graph Classification · Graph
Topology · Electroencephalography · EEG · Climate · Time Series ·
Deep Learning

1 Introduction

In 2012, a significant breakthrough occurred in the fields of deep learning and
knowledge graphs. Convolutional Neural Network (CNN) image classification
was introduced through AlexNet [1], showcasing its superiority over previous
machine learning techniques in various domains [2]. Concurrently, Google intro-
duced knowledge graphs, enabling machines to understand relationships between
entities and revolutionizing data integration and management, enhancing prod-
ucts with intelligent and ‘magical’ capabilities [3].

The growth of deep learning and knowledge graphs occurred simultaneously
for years, with CNN excelling at grid-structured data tasks but struggling with
graph-structured ones. Conversely, graph techniques thrived on graph structured
data but lacked deep learning’s capability. In the late 2010s, Graph Neural Net-
works (GNN) emerged, combining deep learning and graph processing, and rev-
olutionizing how we handle graph-structured data [4].
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GNN models apply deep learning to graph-structured data, capturing entity
relationships and graph dynamics. They tackle tasks from Node Classification
and Regression to Link Prediction, emphasizing diverse graph analysis aspects.
Node Classification and Regression predict labels or values for individual nodes
based on their graph context. Link Prediction infers potential edges by assess-
ing the likelihood of connections between nodes. Distinctly, GNN Graph Clas-
sification operates at a holistic level, categorizing entire graphs based on their
overarching structures, rather than individual components. Our study centers
on this GNN Graph Classification, emphasizing its unique capability to analyze
and categorize entire graph entities.

Analytical thinking steers us from identifying a problem to selecting the
most fitting solution. In the spirit of repurposing tools beyond their conventional
use, we’ve taken GNN Graph Classification models, traditionally employed in
domains like chemistry and medicine, and applied them innovatively to extract
patterns from time series data. We are also exploring the potential of Graph
Classification in text analytics. Details of that study are reserved for now due
to an ongoing conference paper submission.

To explore the application of GNN Graph Classification models to time series,
we extend our previous research on climate data [5]. For this study we also exam-
ine application of Graph Classification models to electroencephalography (EEG)
signal data. The combination of these two domains highlights the versatility of
GNN Graph Classification models in addressing diverse real-world challenges.
Our experiments utilize two Kaggle datasets: the ‘EEG-Alcohol’ set, which pre-
dicts alcoholism through brain-reaction graphs [6], and climate dataset with 40
years of daily temperature data for the 1000 most populous cities worldwide [7].

GNN Graph Classification models are notably sensitive to graph topology.
This allows the model to detect changes and patterns swiftly, but also introduces
a risk of overfitting or misinterpreting noise. It’s essential to manage this aspect,
especially when dealing with data that has high variability, like climate data
with seasonal shifts. Nonetheless, this sensitivity can be an asset, helping detect
outliers and anomalies. We’ll discuss this further as we review results from the
EEG and climate datasets, emphasizing how outlier detection is crucial.

2 Related Work

In 2012, the introduction of AlexNet models and Knowledge Graphs marked it as
a breakthrough year for deep learning and knowledge graphs. AlexNet model[1],
along with the success of Convolutional Neural Networks in image classifica-
tion, outperformed previous state-of-the-art machine learning techniques across
various domains [2]. Concurrently, Google’s introduction of Knowledge Graphs
[8] enabled machines to understand entity relationships, driving a new era in
data integration and management that enhance product intelligence and user
experience [3]. In the late 2010s, Graph Neural Networks emerged as a fusion
of deep learning and knowledge graphs. GNN enable complex data analysis and
predictions by effectively capturing relationships between graph nodes [9,10].
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While GNNs have been employed across a myriad of disciplines, our study
zeroes in on the niche area of GNN Graph Classification. This methodology
proves invaluable in sectors like chemistry, medicine, and biology for delving into
intricate relationships within molecular structures, proteins, and biomolecules.
Utilizing graphs to represent these entities allows researchers to uncover novel
insights, potentially revolutionizing therapeutic or treatment avenues [11–13].

In the vast landscape of GNNs, our focus is sharply tuned to the potential
of GNN Graph Classification in time series data analysis. One salient feature of
these models is their nuanced sensitivity to graph topology. While this can com-
plicate handling noise and adapting to spatial-temporal variations, it emerges
as a strength when detecting outliers and anomalies. Upcoming sections will
further explore this intricate balance, showcasing moments where the model’s
discernment comes to the fore. Interestingly, our literature review suggests that
the application of GNN Graph Classification to time series data remains an
underexplored avenue. This observation underscores the novelty and value of
our current research direction.

With the evolution of technology, methods to analyze time series data have
also matured. While traditional approaches may falter at the intricacies and
spatial-temporal challenges inherent to this data, a comprehensive review by
[14] underscored GNNs’ promise. Notably absent, however, was a focus on GNN
graph classification within the time series context. Our study endeavors to fill
this void, illuminating the potential of GNN Graph Classification for in-depth
time series insights.

In this study, we examine the potential of GNN Graph Classification models
in the context of time series data, with a specific focus on healthcare and environ-
mental sectors. By transforming time series, prevalent across various domains,
into graphs, we aim to tap into their inherent relationships. Our primary goal
centers on classifying EEG signals and climate data, confronting the challenges
of graph-centric time series classification [13].

Recent research has leveraged CNN deep learning methods for atmospheric
imaging, particularly in the estimation of tropical cyclones [15]. However, surveys
suggest that the application of deep learning to climate data mining is still in
its early stages and continues to evolve [16,17]. In our study, we extend this
exploration by introducing the application of GNN Graph Classification models
to climate data, aiming to uncover nuanced patterns and insights from this
complex dataset.

Deep learning has reshaped EEG signal interpretation, especially in neural
engineering and biomedical fields [18–20]. In a prior study, we utilized CNN
image classification combined with graph mining to differentiate EEG patterns
between alcoholic and control subjects [21]. Here, we further explore the efficacy
of GNN Graph Classification models on EEG datasets.

3 Methods

The input for GNN Graph Classification models consists of a collection of small
labeled graphs representing objects in the dataset. These graphs are composed of
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nodes and edges, with associated features that describe attributes of the entities
and relationships between them.

The data flow diagram in Fig. 1 contrasts and compares the processes applied
to climate data and EEG data. In both cases, graph edges are established based
on pairs of vectors if their cosine similarity surpasses a set threshold. To ensure
connectivity within our graphs, we integrated a virtual node, linking it with
all existing nodes. This approach, as showcased in Fig. 2, effectively transforms
isolated graph segments into unified single connected components.

For both scenarios, we employ a Graph Convolutional Network Convolution
(GCNConv) model from the PyTorch Geometric Library (PyG) to perform GNN
Graph Classification [22].

Fig. 1. Data flow diagrams for EEG data and Climate data scenarios: common steps
and different steps.

3.1 Transform EEG Data to Graphs

For the EEG scenario, individual graphs are constructed for every combination
of brain and trial, with alcohol or control group indicators serving as classifica-
tion labels. Electrode locations function as nodes, and the EEG channel signals,
which represent electrical activity at these positions, act as node attributes.
This encapsulates the interplay between various electrode placements and their
related brain electrical responses. Subsequently, the GNN Graph Classification
model is trained on these graphs, aiming to distinguish between the alcohol and
control categories.

3.2 Cosines for Consecutive Years as Indicators

To identify long-term climate patterns, we’ll derive sequences of cosines from
daily temperature vectors spanning consecutive years. A declining trend in these
average cosine similarities might signal increasing day-to-day temperature vari-
ations, potentially alluding to climatic shifts. Conversely, a rising trend might
suggest a more consistent, stable climate.

3.3 Graph Construction from Climate Data

For our climate analysis, we construct city-centric graphs. Their labels, either
‘stable’ or ‘unstable’, hinge on the average cosine similarities observed between
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consecutive years. Within these graphs, each node corresponds to a spe-
cific combination of city and year, encapsulating daily temperature vectors
of that year as its features. This graphical representation aids our model in
distinguishing patterns characteristic of either stable or fluctuating climate
conditions.

Fig. 2. (a) A highly connected graph with high degree of connectivity representing sta-
ble climate patterns in Malaga, Spain. (b) A sparsely connected graph with low degree
of connectivity indicating unstable and unpredictable climate patterns in Orenburg,
Russia.

3.4 From Cosine Similarity Matrices to Graph Construction

Initially, we calculated cosine similarity matrices and identified vector pairs with
cosine values exceeding a set threshold to create graph adjacency matrices. By
adding a virtual node to every graph, we ensured the consolidation of discon-
nected parts into a single connected component, readying them for GNN Graph
Classification models.

3.5 Implementing the GNN Graph Classification Model

We employed the GCNConv model from the PyTorch Geometric Library (PyG)
[22] for our GNN Graph Classification tasks. This model harnesses convolutional
operations to extract graph features, leveraging edges, node attributes, and graph
labels during the process. For those interested in the data conversion to the PyG
format, details can be found in our technical blogs [23,24].

In our trials involving EEG and climate data, the model quickly demon-
strated outstanding performance, achieving a remarkable 100% accuracy in just
a few training epochs. Such early success prompted us to wonder about its fea-
sibility. Delving deeper, we attributed this to the model’s acute sensitivity to
nuances in graph topology. The implications and details of this heightened sen-
sitivity are further explored in the experiments section.
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4 Experiments

4.1 EEG Data Graph Classification

EEG Data Source. We utilized the ‘EEG-Alcohol’ Kaggle dataset [6], which
consists of EEG correlates from a study on genetic predisposition to alcoholism.
It includes data from 8 subjects, each exposed to different stimuli while their
brain electrical activity was recorded using 64 electrodes at a sampling rate of
256 Hz for 1 s. The total number of person-trial pairs was 61. Our data prepara-
tion process involved using some code from Ruslan Klymentiev’s Kaggle note-
book [25] and developing our own code to transform EEG channel data into time
series.

Prepare Input Data for Graph Classification Model. For the EEG data,
separate graphs were created for each person-trial, with labels indicating the
alcohol or control group. Electrode positions were used as nodes and EEG chan-
nel signals as node features. Cosine similarity matrices were calculated for each
graph to select node pairs with cosine similarities above a certain threshold, and
virtual nodes were added to all graphs to transform them into single connected
components. The challenge of a small training dataset (61 person-trial graphs)
was addressed by randomly varying threshold values within the range (0.75,
0.95), augmenting the input dataset to 1037 graphs and enhancing the GNN
Graph Classification model’s performance.

Train the Model. The study employed the GCNConv model from the PyG
library [22] for classifying EEG data into alcoholic and control groups. The
input dataset was randomly split into 15% testing data (155 graphs) and 85%
training data (882 graphs). The model achieved an accuracy of about 98.4%
on the training data and 98.1% on the testing data. The slight fluctuations in
accuracy can be attributed to the relatively small testing dataset.

Interpreting Model Results. In our model’s assessment, an interesting pat-
tern emerged. Out of the 17 discrepancies in predictions, every misclassified
graph pinpointed a distinct individual from the control group, yet was catego-
rized by the model as part of the alcohol group. The prediction probabilities for
these errors hovered between 0.45 and 0.55, highlighting the model’s degree of
uncertainty and its propensity to make close calls. This uniform misclassification
for one individual could hint at specific patterns in their EEG data resembling
those of alcohol subjects, suggesting potential latent alcohol-influenced markers.

In our current study, we noticed that all outlier graphs featured ‘single stim-
ulus’ trials, which the model frequently misinterpreted. This echoes findings
from our previous research [21], where we integrated CNN image classification
with graph mining for EEG analysis. A consistent theme across both stud-
ies is the striking similarity of the “single stimulus” patterns for both groups.
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Figure 3, adapted from our earlier work, underscores the difficulty in distinguish-
ing between the groups based solely on these trials, highlighting their limited
utility in precise group categorization.

Fig. 3. Graph visualization from our previous study [21] illustrates that reactions on
‘single stimulus’ trials are similar for persons from Alcohol and Control groups.

4.2 Climate Data Graph Classification

Climate Data Source. We utilized average daily temperature data from year
1980 to year 2019 for 1000 most populous cities worldwide from a Kaggle dataset
[7]. For the GNN Graph Classification model, we created separate graphs for all
cities, using city-year combinations as nodes, daily temperature vectors of cor-
responding years as node features, and cosine similarities higher than certain
thresholds as graph edges. Graph labels, indicating stable or unstable long-term
climate trends, were created by calculating average cosines between daily tem-
perature vectors of consecutive years.

Average Cosines Between Consecutive Years. We undertook the task of
computing average cosines between consecutive years for each city to understand
temporal temperature patterns. Our results, as presented in Table 1, show cities
closer to the equator having consistently warm temperatures throughout the
year, leading to higher average cosine similarities. In contrast, Table 2 lists cities
situated in areas such as Canada and Northern Europe, which face distinct
seasonal temperature changes and thus, have lower cosine similarities. These
computed average cosines served as the basis for labeling graphs in our GNN
graph classification as ‘stable’ or ‘unstable’.
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Table 1. Very high average cosine similarities indicate stable climate with less variance
in daily temperature patterns.

City Country Consecutive Year Score

Malabo Equatorial Guinea 0.999790

Hagta Guam 0.999726

Oranjestad Aruba 0.999724

Willemstad Curaçao 0.999723

Monrovia Liberia 0.999715

Table 2. A decrease in the average cosine similarity between consecutive years can
indicate an increase in the variance or difference in daily temperature patterns, which
could be a sign of climate change.

City Country Consecutive Year Score

Calgary Canada 0.739156

Edmonton Canada 0.778996

Reykjavik Iceland 0.809576

Krasnoyarsk Russia 0.815763

Yaroslavl’ Russia 0.827339

Graph Formulation for Climate Data in GNN Graph Classification. In
preparing input data for the GNN Graph Classification model, we constructed
unique graphs for each city based on their ‘stable’ or ‘unstable’ climate cate-
gorization. Edges within these graphs were drawn between pairs of nodes that
exhibited strong cosine similarities. To ensure each graph maintained a unified
structure, we integrated virtual nodes. The utility of these virtual nodes is illus-
trated in Fig. 2: a city with a stable climate, such as Malaga, Spain, presents a
dense web of connections, whereas a city with an unstable climate, like Orenburg,
Russia, has more isolated connections. This pronounced difference underscores
the value of virtual nodes in enhancing the model’s pattern recognition.

Model Training and Evaluation. In our study, we employed the GCNConv
model from the PyG library [22] to identify abnormal climate trends using graph
representations of daily temperature data. Guidance on data preparation and
format conversion for PyTorch Geometric is detailed in our technical blog [23].
The model’s performance, evaluated using PyG’s accuracy metrics, achieved
approximately 96% accuracy on the training data and 99% on the test data.
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Table 3. Cities with unstable temperature located in lower latitudes.

City Country Latitude Longitude

Nanning China 22.820 108.320

Yulin China 22.630 110.150

San Luis Potosi Mexico 22.170 −101.000

Table 4. Cities with stable temperature located in high latitudes.

City Country Latitude Longitude

Monaco Monaco 43.740 7.407

Nice France 43.715 7.265

Marseille France 43.290 5.375

Interpreting Model Results. Our GNN Graph Classification model adeptly
captured node interconnections within the graphs, offering predictions on tem-
perature pattern consistency over timeframes. Most of the graphs corresponding
to equatorial cities were identified as stable, while those from high-latitude cities
were largely deemed unstable. These outcomes align with insights drawn from
our evaluations using consecutive-year cosine values. However, there were dis-
crepancies in the model’s predictions for 36 out of the 1000 cities examined.

Applying the GNN Graph Classification model to climate data brought forth
some anomalies. For instance, cities in lower latitudes like China and Mexico
manifested unstable temperature patterns, diverging from typical climate expec-

Fig. 4. Results of our previous studies [26,27]: cities located near the Mediterranean
Sea have very stable and consistent temperature patterns.
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tations, as detailed in Table 3. In contrast, as observed in Table 4, certain cities
in higher European latitudes surprisingly showcased temperature stability.

In our previous research [26,27], where we utilized CNN models for time
series analysis, we introduced a novel approach using symmetry metrics. This
method hinged on transforming entity pair vectors into GAF images. Contrasting
with the traditional cosine similarity metrics, the symmetry metrics-based model
pinpointed cities on the Western Mediterranean Coast as notably stable, as
illustrated in Fig. 4 from that research. This finding aligns seamlessly with the
results presented in this paper.

Cities such as Monaco, Nice, and Marseille, highlighted in Table 4, emerged
as anomalies. Despite geographical indicators suggesting potential climate vari-
ability, they consistently exhibited stable temperature trends. Furthermore, their
corresponding graphs were categorized as unstable in the context of long-term
climate metrics. This divergence accentuates the nuanced sensitivity of our GNN
Graph Classification model. Such findings both corroborate our previous research
and deepen our understanding of the intricate intricacies of climate patterns.

5 Conclusions

In our pioneering work, we repurposed GNN Graph Classification models, tra-
ditionally used in fields like biology and chemistry, for time series analysis on
EEG and climate data. By introducing virtual nodes, we bridged fragmented
input graphs, deepening our data representation. For climate data, we uniquely
labeled graphs based on average cosine values between consecutive years, pro-
viding a fresh perspective on climate trends.

Our findings revealed a pronounced sensitivity in the model’s interpretation
of graph topology. While initially viewed as a possible shortcoming, this sensitiv-
ity proved to be a valuable strength. In the EEG data, anomalies were notably
centered around one individual from the control group. Additionally, the “single
stimulus” patterns consistently emerged as indistinguishable between the Alco-
holic and Control groups, echoing observations from our prior research.

In our climate analysis, cities such as Monaco, Nice, and Marseille in the
Mediterranean region defied expectations with their stable temperature patterns.
These observations align with our prior research, where we introduced an innova-
tive symmetry metric for time series analysis via CNN models, offering a distinct
perspective compared to the conventional cosine similarity measures. The con-
cordant findings from both the symmetry metrics and GNN Graph Classification
models underscore their collective strength in detecting and emphasizing outliers
within the dataset.

In closing, our study reinforces the versatility and promise of GNN Graph
Classification models, emphasizing their ability to discern intricate patterns,
anomalies, and relationships within data. The harmony between our current
findings and those from previous research speaks to the consistent strength of
our methodologies. We believe these insights pave the way for further exploration
and broader applications of GNN Graph Classification models in forthcoming
analytical pursuits.
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Abstract. Graph Neural Networks (GNNs) extend basic Neural Net-
works (NNs) by additionally making use of graph structure based on
the relational inductive bias (edge bias), rather than treating the nodes
as collections of independent and identically distributed (i.i.d.) samples.
Though GNNs are believed to outperform basic NNs in real-world tasks,
it is found that in some cases, GNNs have little performance gain or
even underperform graph-agnostic NNs. To identify these cases, based
on graph signal processing and statistical hypothesis testing, we propose
two measures which analyze the cases in which the edge bias in features
and labels does not provide advantages. Based on the measures, a thresh-
old value can be given to predict the potential performance advantages
of graph-aware models over graph-agnostic models.

1 Introduction

In the past decade, deep Neural Networks (NNs) [11] have revolutionized many
machine learning areas and one of their major strength is their capacity and
effectiveness of learning latent representation from Euclidean data. Recently,
the focus has been put on its applications on non-Euclidean data, e.g., relational
data or graphs. Combining with graph signal processing and convolutional neural
networks [12], numerous Graph Neural Networks (GNNs) have been proposed
[7,8,10,21,27] that empirically outperform traditional neural networks on graph-
based machine learning tasks, e.g., node classification, graph classification, link
prediction, graph generation, etc.

Nevertheless, growing evidence shows that GNNs do not always gain advan-
tages over traditional NNs on relational data [14,16,17,20,23,30]. In some cases,
even a simple Multi-Layer Perceptron (MLP) can outperform GNNs by a large
margin, e.g., as shown in Table 1, MLP outperform baseline GNNs on Cornell,
Wisconsin, Texas and Film and perform almost the same as baseline GNNs
on PubMed, Coauthor CS and Coauthor Phy. This makes us wonder when it is
appropriate to use GNNs. In this work, we explore an explanation and propose

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1141, pp. 37–48, 2024.
https://doi.org/10.1007/978-3-031-53468-3_4
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https://doi.org/10.1007/978-3-031-53468-3_4


38 S. Luan et al.

two proper measures to determine when to use GNNs for a node classification
task.

A common way to leverage graph structure is to apply graph filters in each
hidden layer of NNs to help feature extraction. Most existing graph filters can be
viewed as operators that aggregate node information from its direct neighbors.
Different graph filters yield different spectral or spatial GNNs. Among them, the
most commonly used is the renormalized affinity matrix [10], which corresponds
to a low-pass (LP) filter [24] mainly capturing the low-frequency components of
the input, i.e.the locally smooth features across the whole graph [28].

The use of LP graph filters relies on the assumption that nodes tend to share
attributes with their neighbors, a tendency called homophily [9,25] that is widely
exploited in node classification tasks. GNNs that are built on the homophily
assumption learn to assign similar labels to nodes that are closely connected
[29], which corresponds to an assumption of intrinsic smoothness on latent label
distribution. We call this kind of relational inductive bias [2] the edge bias. We
believe it is a key factor leading to GNNs’ superior performance over NNs’ in
many tasks.

Table 1. Accuracy (%) Comparison of Baseline GNNs and MLP

Datasets\Models
MLP GCN GAT GraphSAGE Baseline Diff(MLP, Edge

Acc Acc Acc Acc Average Baseline) Homophily

Cornell 85.14 60.81 59.19 82.97 67.66 17.48 0.3

Wisconsin 87.25 63.73 60.78 87.84 70.78 16.47 0.21

Texas 84.59 61.62 59.73 82.43 67.93 16.66 0.11

Film 36.08 30.98 29.71 35.28 31.99 4.09 0.22

Chameleon 46.21 61.34 61.95 47.32 56.87 −10.66 0.23

Squirrel 29.39 41.86 43.88 30.16 38.63 −9.24 0.22

Cora 74.81 87.32 88.07 85.98 87.12 −12.31 0.81

Citeseer 73.45 76.70 76.42 77.07 76.73 −3.28 0.74

Pubmed 87.86 88.24 87.81 88.59 88.21 −0.35 0.80

DBLP 77.39 85.87 85.89 81.19 84.32 −6.93 0.81

Coauthor CS 93.72 93.91 93.41 94.38 93.90 −0.18 0.81

Coauthor Phy 95.77 96.84 96.32 OOM 96.58 −0.81 0.93

AMZ Comp 83.89 87.03 89.74 83.70 86.82 −2.93 0.78

AMZ Photo 90.87 93.61 94.12 87.97 91.90 −1.03 0.83

However, the existing homophily metrics are not appropriate to display the
edge bias, e.g., as shown in Table 1, MLP does not necessarily outperform base-
line GNNs on some low homophily datasets (Chameleon and Squirrel) and does
not significantly underperform baseline GNNs on some high homophily datasets
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(PubMed,Coauthor CS,Coauthor Phy and AMZ Photo). Thus, a metric that is
able to indicate whether or not the graph-aware models can outperform graph-
agnostic models is needed.

Contributions. In this paper, we discover that graph-agnostic NNs are able to
outperform GNNs on a non-trivial set of graph datasets. To explain the perfor-
mance inconsistency, we propose the Normalized Total Variation (NTV) and
Normalized Smoothness Value (NSV) to measure the effect of edge bias on
features and labels of an attribute graph. NSV leads us to conduct statistical
hypothesis testings to examine how significant the effect of edge bias is. With
the measures and analyses on 14 real-world datasets, we are able to predict and
explain the expected performance of graph-agnostic MLPs and GNN models.

The rest of this paper is organized as follows: In Sect. 2, we introduce the
notations and the background; In Sect. 3, we propose two measures of the effect
of edge-bias and discuss their potential usage; In Sect. 4, we discuss the related
works.

2 Preliminaries

After stating the motivations, in this section, we will introduce the used notations
and formalize the idea. We use bold fonts for vectors (e.g., v). Suppose we
have an undirected connected graph G = (V, E , A) without bipartite component,
where V is the node set with |V| = N ; E is the edge set without self-loop;
A ∈ R

N×N is the symmetric adjacency matrix with Aij = 1 if and only if
eij ∈ E , otherwise Aij = 0; D is the diagonal degree matrix, i.e. Dii =

∑
j Aij

and Ni = {j : eij ∈ E} is the neighborhood set of node i. A graph signal is a
vector x ∈ R

N defined on V, where xi is defined on the node i. We also have
a feature matrix X ∈ R

N×F whose columns are graph signals and each node i
has a corresponding feature vector Xi: with dimension F , which is the i-th row
of X. We denote Z ∈ R

N×C as label encoding matrix, where Zi: is the one hot
encoding of the label of node i.

2.1 Graph Laplacian and Affinity Matrix

The (combinatorial) graph Laplacian is defined as L = D − A, which is a Sym-
metric Positive Semi-Definite (SPSD) matrix [4]. Its eigendecomposition gives
L = UΛUT , where the columns of U ∈ R

N×N are orthonormal eigenvectors,
namely the graph Fourier basis, Λ = diag(λ1, . . . , λN ) with λ1 ≤ · · · ≤ λN , and
these eigenvalues are also called frequencies. The graph Fourier transform of the
graph signal x is defined as xF = U−1x = UTx = [uT

1 x, . . . ,uT
Nx]T , where uT

i x
is the component of x in the direction of ui .

Finding the eigenvalues and eigenvectors of a graph Laplacian is equivalent
to solving a series of conditioned minimization problems relevant to function
smoothness defined on G. A smaller λi indicates that basis ui is a smoother
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function defined on G [6], which means any two elements of ui corresponding
to two connected nodes will be more similar. This property plays an important
role in our paper.

Some graph Laplacian variants are commonly used, e.g., the symmetric nor-
malized Laplacian Lsym = D−1/2LD−1/2 = I − D−1/2AD−1/2 and the random
walk normalized Laplacian Lrw = D−1L = I − D−1A. Lrw and Lsym share the
same eigenvalues that are in [0, 2), and their corresponding eigenvectors satisfy
ui
rw = D−1/2ui

sym.
The affinity (transition) matrices can be derived from the Laplacians, e.g.,

Arw = I − Lrw = D−1A, Asym = I − Lsym = D−1/2AD−1/2 and λi(Arw) =
λi(Asym) = 1 − λi(Asym) = 1 − λi(Arw) ∈ (−1, 1]. [10] introduced the renormal-
ized affinity and Laplacian matrices as Âsym = D̃−1/2ÃD̃−1/2, L̂sym = I −Âsym,
where Ã ≡ A + I, D̃ ≡ D + I. It essentially adds a self-loop and is widely used
in Graph Convolutional Network (GCN) as follows,

Y = softmax(Âsym ReLU(ÂsymXW0) W1) (1)

where W0 ∈ R
F×F1 and W1 ∈ R

F1×O are parameter matrices. GCN can learn
by minimizing the following cross entropy loss

L = −trace(ZT log Y ). (2)

The random walk renormalized matrices Ârw = D̃−1Ã can also be applied to
GCN and Ârw shares the same eigenvalues as Âsym. The corresponding Laplacian
is defined as L̂rw = I−Ârw. Specifically, the nature of random walk matrix makes
Ârw behaves as a mean aggregator (Ârwx)i =

∑
j∈{Ni∪i} xj/(Dii + 1) which is

applied in [8] and is important to bridge the gap between spatial- and spectral-
based graph convolution methods.

3 Measuring the Effect of Edge Bias

In this section, we will derive two measures for the effect of edge bias and conduct
hypothesis testing for the effect. We analyze the behaviors of these measures
and apply them on 14 real world datasets. The measurement results are used to
predict the potential performance differences between GNNs and MLPs.

3.1 Normalized Total Variation (NTV) and Normalized Smoothness
Value (NSV) for Measuring Edge Bias

NTV. Graph Total Variation (GTV) is a quantity to characterize how much
graph signal varies w.r.t. graph filters and is defined as follows [1,3],

GTV (x) =
∥
∥
∥x − Âx

∥
∥
∥
p

p
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where Â generally represents normalized or renormalized filters, the �p-norm can
be replaced by the Frobenius norm when we measure a matrix X. GTV generally
measures the utility of the edge bias by gauging the distance between node
features and its aggregated neighborhood features. To eliminate the influence of
the magnitude of x or X and make it comparable, we define Normalized Total
Variation (NTV) as follows,

NTV(x) =

∥
∥
∥x − Âx

∥
∥
∥
2

2

2 ‖x‖22
, NTV(X) =

∥
∥
∥X − ÂX

∥
∥
∥
2

F

2 ‖X‖2F
(3)

the division of factor 2 guarantees that 0 ≤ NTV ≤ 1. A small NTV value
implies x ≈ Âx or X ≈ ÂX.

NSV. Even when the features of the node resemble its aggregated neighbor-
hood, it does not necessarily mean that the average pairwise attribute distance
of connected nodes is smaller than that of unconnected nodes. Based on this
argument, we define Normalized Smoothness Value (NSV) as a measure of the
effect of the edge bias.

The total pairwise attribute distance of connected nodes is equivalent to the
Dirichlet energy of X on G as follows,

E
G
D(X) =

∑

i↔j

‖Xi: − Xj:‖2
2 =

∑

i↔j

(ei − ej )
T
XX

T
(ei − ej ) = tr

⎛

⎝
∑

i↔j

(ei − ej )
T
XX

T
(ei − ej )

⎞

⎠

= tr

⎛

⎝
∑

i↔j

(ei − ej )(ei − ej )
T
XX

T

⎞

⎠ = trace(X
T
LX).

The total pairwise distance of unconnected nodes can be derived from the Lapla-
cian LC of the complementary graph GC . To get LC , we introduce the adjacency
matrix of GC as AC = (11T − I)−A, its degree matrix DC = (N −1)I −D, and
LC = DC − AC = NI − 11T − L. Then, the total pairwise attribute distance of
unconnected nodes (Dirichlet energy of X on GC) is

EGC

D (X)=trace
(
XTLCX

)
=trace

(
XT (NI−11T )X

) − EG
D(X)

EG
D(X) and EGC

D (X), are non-negative and are closely related to sample covari-
ance matrix (see Appendix A for details) as follows,

EG
D(X) + EGC

D (X) = trace
(
XT (NI − 11T )X

)
= N(N − 1) · trace (Cov(X)) .

Since trace (Cov(X)) is the total variation in X, we can say that the total
sample variation can be decomposed in a certain way onto G and GC as EG

D(X)
and EGC

D (X). Then, the average pairwise distance (variation) of connected nodes
and unconnected nodes can be calculated by normalizing EG

D(X) and EGC
D (X),

EG
N(X) =

EG
D(X)
2 |E| , EGC

N (X) =
EGC

D (X)
N(N − 1) − 2 |E| (4)
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and the Normalized Smoothness Value (NSV) is defined as

NSVG(X) =
EG

N(X)

EG
N(X) + EGC

N (X)
. (5)

We can see that 0 ≤ NSVG(X) ≤ 1 and it can be used to interpret the edge
bias: (1) For labels Z, NSVG(Z) ≥ 0.5 means that the proportion of connected
nodes that share different labels is larger than that of unconnected nodes, which
implies that edge bias is harmful for Z and the homophily assumption is invalid;
(2) For features X, NSVG(X) ≥ 0.5 means that the average pairwise feature
distance of connected nodes is greater than that of unconnected nodes, which
suggests that the feature is non-smooth. On the contrary, small NSV(Z) and
NSV(X) indicates that the homophily assumption holds and the edge bias is
potentially beneficial.

The above analysis raises another question: how much does NSV deviating
from 0.5 or what is the exact NSV to indicate the edge bias is statistically bene-
ficial or harmful. In the following section, we study the problem from statistical
hypothesis testing perspective and provide thresholds by the p-values.

3.2 Hypothesis Testing for Edge Bias

Consider the following distributions of labels and features,
For labels Z:

– P1 = P
(
Zi: �= Zj:

∣
∣eij ∈ E)

= The proportion of connected nodes that share
different labels;

– P2 = P
(
Zi: �= Zj:

∣
∣eij �∈ E)

= The proportion of unconnected nodes that share
different labels.

For features X:

– D1 = ‖Xi: − Xj:‖22
∣
∣eij ∈ E = Distribution of pairwise feature distance of

connected nodes;
– D2 = ‖Xi: − Xj:‖22

∣
∣eij �∈ E = Distribution of pairwise feature distance of

unconnected nodes.

Suppose P1, P2,D1,D2 follow:

P1 ∼ Binom(n1, p1), P2 ∼ Binom(n2, p2); D1 ∼ N(d1, σ2
1), D2 ∼ N(d2, σ2

2).

Consider the hypotheses for labels

HL
0 : p1 = p2; HL

1 : p1 �= p2; HL
2 : p1 ≥ p2; HL

3 : p1 ≤ p2

and hypotheses for features

HF
0 : d1 = d2; HF

1 : d1 �= d2; HF
2 : d1 ≥ d2; HF

3 : d1 ≤ d2
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To conduct the hypothesis tests, we use Welch’s t-test for features and χ2 test
for labels. We can see EG

N(Z) and EGC

N (Z) are sample estimation of the mean p1

and p2 for label Z; EG
N(X) and EGC

N (X) are sample estimation of mean d1 and
d2 for X. Thus, the p-values of hypothesis tests can suggest if NSV statistically
deviates from 0.5. The smoothness of labels and features can be indicated as
follows,

For feature X:

– p-value(HF
0 vs HF

1 ): > 0.05, HF
0 holds, feature is non-smooth; ≤ 0.05, to be

determined.
– p-value(HF

0 vs HF
2 ): ≤ 0.05, feature is statistically significantly non-smooth.

– p-value(HF
0 vs HF

3 ): ≤ 0.05, feature is statistically significantly smooth.

For label Z:

– p-value(HL
0 vs HL

1 ): > 0.05, HL
0 holds, label is non-smooth; ≤ 0.05, to be

determined.
– p-value(HL

0 vs HL
2 ): ≤ 0.05, label is statistically significantly non-smooth.

– p-value(HL
0 vs HL

3 ): ≤ 0.05, label is statistically significantly smooth.

Results of hypothesis testing are summarized in Table 2. We can see that for the
datasets where baseline GNNs underperform MLP, Cornell, Texas and Wiscon-
sin has statistically significantly non-smooth labels and Film has non-smooth
labels. In these datasets, the edge bias will provide harmful information no mat-
ter the features are smooth or not. For other datasets, they have statistically
significantly smooth labels, which means the edge bias can statistically provide
benefits to the baseline GNNs and lead them to have superiority performance
over MLP.

3.3 Why NTV and NSV Work

We explain why and how NTV and NSV can be used to explain the performance
gain and loss of GNNs over graph-agnostic NNs. We simplify the explanation by
removing the non-linearity as [28]. Let Â denote a general filter with

∥
∥
∥Â

∥
∥
∥
2

= 1
in GNNs.

NTV. When the NTV of node features X and labels Z are are small, it implies

ÂX ≈ X, ÂZ ≈ Z. (6)

The loss function of GNNs and MLP can be written as follows,

GNNs: min
W

∥
∥
∥ÂXW − Z

∥
∥
∥
F

, MLP: min
W

‖XW − Z‖F , (7)
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Table 2. Statistics of Datasets and the Performance Differences

Datasets\Measures
Features Labels Baseline

Average
-

NTV NSV HF
0 vs

HF
1

HF
0 vs

HF
2

HF
0 vs

HF
3

NTV NSV HL
0 vs

HL
1

HL
0 vs

HL
2

HL
0 vs

HL
3

MLP

Cornell 0.33 0.48 0.00 1.00 0.00 0.33 0.53 0.0003 0.00 1.00 −17.48

Texas 0.33 0.48 0.00 1.00 0.00 0.42 0.60 0.00 0.00 1.00 −16.66

Wisconsin 0.38 0.51 0.72 0.36 0.64 0.40 0.55 0.00 0.00 1.00 −16.47

Film 0.39 0.50 0.19 0.90 0.10 0.37 0.50 0.05 0.97 0.03 −4.09

Coauthor CS 0.36 0.36 0.00 1.00 0.00 0.19 0.18 0.00 1.00 0.00 0.18

Pubmed 0.33 0.44 0.00 1.00 0.00 0.25 0.24 0.00 1.00 0.00 0.35

Coauthor Phy 0.35 0.36 0.00 1.00 0.00 0.16 0.09 0.00 1.00 0.00 0.81

AMZ Photo 0.41 0.39 0.00 1.00 0.00 0.23 0.17 0.00 1.00 0.00 1.03

AMZ Comp 0.41 0.38 0.00 1.00 0.00 0.25 0.22 0.00 1.00 0.00 2.93

Citeseer 0.35 0.45 0.00 1.00 0.00 0.22 0.24 0.00 1.00 0.00 3.28

DBLP 0.37 0.46 0.00 1.00 0.00 0.21 0.20 0.00 1.00 0.00 6.93

Squirrel 0.47 0.54 0.00 0.00 1.00 0.44 0.49 0.00 1.00 0.00 9.24

Chameleon 0.45 0.45 0.00 1.00 0.00 0.45 0.49 0.00 1.00 0.00 10.66

Cora 0.38 0.47 0.00 1.00 0.00 0.20 0.19 0.00 1.00 0.00 12.31

where W is the learnable parameter matrix. When ÂZ ≈ Z,

min
W

∥
∥
∥ÂXW − Z

∥
∥
∥
F

≈ min
W

∥
∥
∥ÂXW − ÂZ

∥
∥
∥
F

≤ min
W

∥
∥
∥Â

∥
∥
∥
2

‖XW − Z‖F = min
W

‖XW − Z‖F . (8)

This suggests that GNNs work more effectively than graph-agnostic methods
when NTVG(Z) is small. However, when labels are non-smooth on G, a projection
onto the column space of Â will hurt the expressive power of the model. In
a nutshell, GNNs potentially have stronger expressive power than NNs when
NTVG(Z) is small.

NSV. We first rewrite the softmax function as follows,

Y = softmax(ÂXW ) =
(
exp(Y ′)11T

)−1 
 exp(Y ′) (9)

where Y ′ = ÂXW, 1 ∈ R
C×1 and C is the output dimension. The loss function

(2) can be written as

L = −trace
(
ZT ÂXW

)
+ trace

(
1T log (exp(Y ′)1)

)
. (10)

We denote X̃ = XW and consider −trace
(
ZT ÂXW

)
, which plays the main

role in the above optimization problem.

−trace
(
ZT ÂXW

)
= −trace

(
ZT ÂX̃

)
= −

∑

i↔j

ÂijZi:X̃
T
j: . (11)
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To minimize L, if Âij �= 0, then X̃j: will learn to get closer to Zi: and this
means: (1) If Zi: = Zj:, X̃j: will learn to approach to the unseen ground truth
label Zj: which is beneficial; (2) If Zi: �= Zj:, X̃j: tends to learn a wrong label,
in which case the edge bias becomes harmful. Conventional NNs can be treated
as a special case with only Âii = 1, otherwise 0. So the edge bias has no effect
on conventional NNs.

To evaluate the effectiveness of edge bias, NSV makes a comparison to see if
the current edges in EG have significantly less probability of indicating different
pairwise labels than the rest edges. If NSV together with the p-value suggests
that the edge bias is statistically beneficial, we are able to say that GNNs will
obtain performance gain from edge bias; otherwise, the edge bias will have a
negative effect on GNNs. NTV, NSV, p-values and the performance comparison
of baseline models on 14 real-world datasets shown in Table 2 are consistent with
our analysis.

4 Related Works

Smoothness (Homophily). The idea of node homophily and its measures are
mentioned in [26] and defined as follows,

Hnode(G) =
1

|V|
∑

v∈V

∣
∣{u | u ∈ Nv, Zu,: = Zv,:}

∣
∣

dv

Or in [30], the edge homophily is defined as follows,

Hedge(G) =

∣
∣{euv | euv ∈ E , Zu,: = Zv,:}

∣
∣

|E|
To avoid sensitivity to imbalanced classes, the class homophily [15] is defined as

Hclass(G)=
1

C−1

C∑

k=1

[
hk−

∣∣{v |Zv,k=1}∣∣

N

]

+

, hk=

∑
v∈V

∣∣{u |Zv,k=1, u ∈ Nv , Zu,:=Zv,:}
∣∣

∑
v∈{v|Zv,k=1} dv

where [a]+ = max(a, 0); hk is the class-wise homophily metric. The above mea-
sures only consider the label consistency of connected nodes but ignore the
unconnected nodes. Stronger label consistency can potentially happen in uncon-
nected nodes, in which case the edge bias is not necessarily beneficial for GNNs.
Aggregation homophily [18,19] tries to capture the post-aggregation node simi-
larity and is proved to be better than the above homophily measures. But, it is
not able to give a clear threshold value to determine when GNNs can outperform
graph-agnostic NNs.
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Connections and Differences among Terminologies. We draw the connections
and differences among edge bias, homophily/heterophily and smoothness/non-
smoothness, which are frequently used in the literature that might cause con-
fusion. Edge bias or homophily/smoothness assumption is a major and strong
condition that is taken for granted when designing GNN models. When the
homophily/smooth assumption holds, edge bias will have positive effects for
training GNNs; On the contrary, when heterophily/non-smoothness assumption
holds, edge bias will cause negative effects. The fact that, the current measures
of homophily/heterophily do not consider unconnected nodes, poses chanllenges
to fully examine the effect of edge bias or if homophily/heterophily assumption
holds. The edge bias might cause some other problems, e.g., over-smoothing [13],
loss of rank [21] and training difficulty [5,22], but we mainly discuss homophi-
ly/heterophily problem in this paper.

5 Conclusion

In this paper, we developed two measures, Normalized Total Variation (NTV)
and Normalized Smoothness Value (NSV), which can predict and explain the
expected performance of graph-agnostic MLPs and GNN models on graphs.
These measures analyze the impact of edge bias on the features and labels of
an attribute graph, helping to determine when graph-aware models will outper-
form graph-agnostic models. By conducting statistical hypothesis testing based
on these measures, we are able to determine the threshold value for predict-
ing the potential performance advantages of GNNs over NNs. Overall, our work
contributes to a better understanding of the situations in which GNNs should
be used, providing insights into the performance of GNNs compared to NNs on
various real-world benchmark graph datasets.

A Details of NSV and Sample Covariance Matrix

The sample covariance matrix S is computed as follows

X =

⎡

⎢
⎣

x1:

...
xN :

⎤

⎥
⎦ , x̄ =

1
N

N∑

i=1

xi: =
1
N

1TX,

S =
1

N − 1
(X − 1x̄)
 (X − 1x̄)

(12)
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It is easy to verify that

S =
1

N − 1

(

X − 1
N

11TX

)
 (

X − 1
N

11TX

)

=
1

N − 1

(

XTX − 1
N

XT11TX

)

=
1

N(N − 1)
trace

(
XT (NI − 11T )X

)

=
1

N(N − 1)

(
EG

D(X) + EGC

D (X)
)

(13)
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6. Daković, M., Stanković, L., Sejdić, E.: Local smoothness of graph signals. Math.
Probl. Eng. 2019, 1–14 (2019)

7. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on
graphs with fast localized spectral filtering. Adv. Neural Inf. Process. Syst. 29
(2016)

8. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. Adv. Neural Inf. Process. Syst. 30 (2017)

9. Hamilton, W.L.: Graph representation learning. Synth. Lect. Artif. Intell. Mach.
Learn. 14(3), 1–159 (2020)

10. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. In: International Conference on Learning Representations (2016)

11. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436 (2015)
12. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning

applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)
13. Li, Q., Han, Z., Wu, X.-M.: Deeper insights into graph convolutional networks for

semi-supervised learning. Proc. AAAI Conf. Artif. Intell. 32 (2018)
14. Lim, D., et al.: Large scale learning on non-homophilous graphs: new benchmarks

and strong simple methods. Adv. Neural. Inf. Process. Syst. 34, 20887–20902
(2021)

15. Lim, D., Li, X., Hohne, F., Lim, S.-N.: New benchmarks for learning on non-
homophilous graphs. arXiv preprint arXiv:2104.01404 (2021)

16. Liu, M., Wang, Z., Ji, S.: Non-local graph neural networks. arXiv preprint
arXiv:2005.14612 (2020)

http://arxiv.org/abs/1806.01261
http://arxiv.org/abs/2104.01404
http://arxiv.org/abs/2005.14612


48 S. Luan et al.

17. Luan, S.: On addressing the limitations of graph neural networks. arXiv preprint
arXiv:2306.12640 (2023)

18. Luan, S., et al.: Is heterophily a real nightmare for graph neural networks to do
node classification? arXiv preprint arXiv:2109.05641 (2021)

19. Luan, S., et al.: Revisiting heterophily for graph neural networks. Adv. Neural. Inf.
Process. Syst. 35, 1362–1375 (2022)

20. Luan, S., et al.: When do graph neural networks help with node classification:
investigating the homophily principle on node distinguishability. Adv. Neural Inf.
Process. Syst. 36 (2023)

21. Luan, S., Zhao, M., Chang, X.-W., Precup, D.: Break the ceiling: stronger multi-
scale deep graph convolutional networks. Adv. Neural Inf. Process. Syst. 32 (2019)

22. Luan, S., Zhao, M., Chang, X.-W., Precup, D.: Training matters: unlock-
ing potentials of deeper graph convolutional neural networks. arXiv preprint
arXiv:2008.08838 (2020)

23. Luan, S., Zhao, M., Hua, C., Chang, X.-W., Precup, D.: Complete the missing
half: augmenting aggregation filtering with diversification for graph convolutional
networks. In: NeurIPS 2022 Workshop: New Frontiers in Graph Learning (2022)

24. Maehara, T.: Revisiting graph neural networks: all we have is low-pass filters. arXiv
preprint arXiv:1905.09550 (2019)

25. McPherson, M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in
social networks. Ann. Rev. Sociol. 27(1), 415–444 (2001)

26. Pei, H, Wei, B., Chang, K.C.-C., Lei, Y., Yang, B.: Geom-gcn: geometric graph
convolutional networks. In: International Conference on Learning Representations
(2020)

27. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. In: International Conference on Learning Representations
(2018)

28. Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., Weinberger, K.: Simplifying graph
convolutional networks. In: International Conference on Machine Learning, pp.
6861–6871. PMLR (2019)

29. Zhou, D., Bousquet, O., Lal, T.N., Weston, J., Schölkopf, B.: Learning with local
and global consistency. In: Advances in Neural Information Processing Systems,
pp. 321–328 (2004)

30. Zhu, J., Yan, Y., Zhao, L., Heimann, M., Akoglu, L., Koutra, D.: Generalizing
graph neural networks beyond homophily. arXiv preprint arXiv:2006.11468 (2020)

http://arxiv.org/abs/2306.12640
http://arxiv.org/abs/2109.05641
http://arxiv.org/abs/2008.08838
http://arxiv.org/abs/1905.09550
http://arxiv.org/abs/2006.11468


Training Matters: Unlocking Potentials
of Deeper Graph Convolutional Neural

Networks

Sitao Luan1,2(B), Mingde Zhao1,2, Xiao-Wen Chang1, and Doina Precup1,2,3

1 McGill University, Montreal, Canada
{sitao.luan,mingde.zhao}@mail.mcgill.ca, {chang,dprecup}@cs.mcgill.ca

2 Mila, Montreal, Canada
3 DeepMind, London, UK

Abstract. The performance limit of deep Graph Convolutional Net-
works (GCNs) are pervasively thought to be caused by the inherent lim-
itations of the GCN layers, such as their insufficient expressive power.
However, if this were true, modifying only the training procedure for a
given architecture would not likely to enhance performance. Contrary to
this belief, our paper demonstrates several ways to achieve such improve-
ments. We begin by highlighting the training challenges of GCNs from
the perspective of graph signal energy loss. More specifically, we find
that the loss of energy in the backward pass during training hinders the
learning of the layers closer to the input. To address this, we propose sev-
eral strategies to mitigate the training problem by slightly modifying the
GCN operator, from the energy perspective. After empirical validation,
we confirm that these changes of operator lead to significant decrease in
the training difficulties and notable performance boost, without chang-
ing the composition of parameters. With these, we conclude that the
root cause of the problem is more likely the training difficulty than the
others.

1 Introduction

As a structure that is capable of modeling relational information [7,10,14,16,28],
graph has inspired the emerge of Graph Neural Networks (GNNs), a machine
learning paradigm that achieve state-of-the-art performance on complex tasks
[2–4,7,16,19,20,22–25,27,32].

GCN [16], being arguably the most popular method of all GNNs, is applied
pervasively for being lightweight and having relatively capable performance.
However, the development of GCNs on more complicated tasks is hindered by
the fact that their performance is still relatively limited and cannot be easily
boosted: the capacity of GCN seems not scalable with the depth of the archi-
tectures, while the performance of typical deep learning architectures mostly
becomes better with the increment of the depth. Several investigations about
the possible cause of the problem have been carried out, including

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1141, pp. 49–60, 2024.
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– Oversmoothing Problem [18]: stacking aggregation operations in GNNs is
shown to make the representation of connected nodes to be more indistin-
guishable and therefore causes information loss;

– Loss of rank [26]: the numerical ranks of the outputs in hidden layers will
decrease with the increment of network depth.

– Inevitable convergence to some subspace [29]: the layer outputs get closer to
a fixed subspace with the increment of the network depth;

These analyses show that despite the increment of trainable parameters,
simply deepening GCNs is not helpful, therefore it is more promising to just
switch to alternate solutions. Following these, efforts have been made to propose
alternate GCN architectures to increase the expressive power with additional
computational expenses, e.g., augmenting architectures with layer concatenation
operations [15,26]. However, the computational costs introduced often outweigh
the performance boost, therefore no alternative is yet popular enough to replace
GCN.

The intractability of deep GCNs naturally leads to the belief that deeper
GCNs cannot be trained well and cannot have better performance without the
change of architectures. However, in this paper, we question such idea and argue
that the crucial factor limiting the performance of GCN architectures is more
likely to be the difficulty in training instead of insufficient expressive power.
First, from graph signal energy perspective, we prove that, during training, the
energy loss during backward pass makes the training of layers that are closer
to the input difficult. Then, we show both in theory and in experiments, it is
actually possible, in several ways, to significantly lower training difficulty and
gain notable performance boost by only changing slightly the training process of
deep GCN, without changing the expressive power. These observations lead us
to the discovery that the performance limit of GCN is more likely to be caused
by inappropriate training rather than GCNs being inherently incapable.

The methodologies we propose in this paper includes Topology Rescaling
(TR) for the graph operator (e.g., graph Laplacian), weight normalization,
energy normalization and weight initialization for enhancing the training of the
parameters in the layers, as well as skip (residual) connections that do not use
concatenation of layer outputs, i.e. no additional parameters.

The paper is organized as follows. In Sect. 2, we introduce backgrounds of
graph Laplacian, graph partition and graph signal energy. In Sect. 3, we analyze
from the perspective of energy and gradient, arguing that the energy loss of
the backward pass during training leads to training difficulty, which we will in
the end verify as the core factor limiting the performance of GNNs. In Sect. 4,
we propose 4 methodologies that addresses the training difficulty problem from
different perspectives. In Sect. 5, we validate the effectiveness of the methods in
lowering the training difficulty.

2 Preliminaries

We use bold fonts for vectors (e.g., v), block vectors (e.g., V ) and matrix blocks
(e.g., Vi). Suppose we have an undirected connected graph G = (V, E) without a
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bipartite component, where V is the node set with |V| = N , E is the edge set with
|E| = E. Let A ∈ R

N×N be the adjacency matrix of G, i.e. Aij = 1 for eij ∈ E and
Aij = 0 otherwise. The graph Laplacian is defined as L = D − A, where D is a
diagonal degree matrix with Dii =

∑
j Aij . The symmetric normalized Laplacian

is defined as Lsym = I − D−1/2AD−1/2 with eigenvalues λ(Lsym) ∈ [0, 2) and its
renormalized version is defined as

L̃sym = I − D̃−1/2ÃD̃−1/2, Ã = A + I, D̃ = diag(D̃ii), D̃ii =
∑

j Ãij (1)

and its eigenvalues λ(L̃sym) ∈ [0, 2) [5].
The eigendecomposition of L gives us L = UΛU−1, where U = [u1, . . . ,uN ] ∈

R
N×N is formed by the orthonormal eigenvectors, referred to as the graph

Fourier basis, and Λ = diag(λ1, . . . , λN ) is formed by the eigenvalues, which
are nonnegative and are referred to as frequencies. Traditionally, graph Fourier
basis is defined specifically by eigenvectors of L, but in this paper, graph Fourier
basis is formed by eigenvectors of the Laplacian we use. The smaller eigenvalue
λi indicates larger global smoothness of ui [6], which means any two elements
of ui corresponding to two directly connected nodes will have similar values.
Thus, ui with small λi tends to partition the graph into large communities.
This property is crucial for later analysis.

A graph signal is a vector x ∈ R
N defined on V, where xi is defined on

the node i. We also have a feature matrix (graph signals) X ∈ R
N×F whose

columns are graph signals and each node i has a feature vector Xi,:, which is
the i-th row of X. The graph Fourier transform of the graph signal x is defined
as xF = U−1x = UTx = [uT

1 x, . . . ,uT
Nx]T , where uT

i x is the component of x
in the direction of ui .

In addition to various graph Laplacians, various affinity matrices derived
from graph Laplacians have been adopted in GNNs. The most widely used one
is the renormalized affinity matrix

Â ≡ I − L̃sym = D̃−1/2ÃD̃−1/2

with λ(Â) = 1 − λ(L̃sym) ∈ (−1, 1], and it is used in GCN [16] as follows

Y = softmax(Â ReLU(ÂXW0) W1) (2)

where W0 ∈ R
F×F1 and W1 ∈ R

F1×O are parameter matrices.

Definition 1. (Energy of signal on graph [9,33]) For a signal x defined on graph
G, its energy is defined as ‖xF‖22, where xF is the graph Fourier transform of x.

The energy represents the intensity of a graph signal projected onto the
frequency domain. However, considering undirected graph G, the graph Lapla-
cian is symmetric and the graph Fourier basis matrix is orthogonal, leading to
‖xF‖22 = ‖x‖22 =

∑
i xi

2, which depends on only the signal itself.

Definition 2. (Energy-preserving operator [9] or isometric operator[11]) An
operator Φ defined on graph signal is energy-preserving if for any graph signal
x, it satisfies ‖(Φx)F‖22 = ‖xF‖22.
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The energy-preserving property means the operator does not change the
energy intensity in the frequency domain after being applied on graph signals.

3 Energy Loss During Back Propagation

In this section, we first show that ReLU(Â·) is an energy-losing operator. This
property is the natural explanation for the over-smoothing [18], loss of rank[26]
and loss of expressive power [29] phenomena, from which deep GCN will suffer
during feed-forward process. According to the above analysis, the top layers
will lose signal energy more serious than bottom layers. However, we will show
that, contrary to our empirical intuition, deep GCNs lose energy in bottom layers
instead of in top layers. Rather than investigating from feed-forward perspective,
we will explain this contradiction from backward view by analyzing the gradient
propagation in the following section.

3.1 Forward Pass Analyses: Difficult and Complicated

Theorem 1. 1 For any undirected connected graph G, ReLU(Â·) is an energy-
losing graph operator, i.e., for any graph signal x

∥
∥
∥
(
ReLU(Âx)

)

F

∥
∥
∥
2

2
≤ ‖xF‖22

The strict inequality holds for any x which is independent of [D̃1/2
11 , . . . , D̃

1/2
NN ]T ,

where D̃ii for i = 1, . . . , N are defined in (1)

Through the forward analysis of energy flow in deep GCN, we can see that
the energy of column features should reduce in top layers. But from Fig. 1(a)–(c)
yielded by a numerical test with 10-layer GCN, we can see that the energy of
column features in top layers (Fig. 1(c)) do not have significant changes, while
in bottom layers (Fig. 1(a), (b)) the energy of features shrinks during training.
The cause of this contradiction is that we either have neglected [18] or have put
too strong assumptions [26,29] on parameter matrices in forward analysis while
ignore how parameter matrices changes in backpropagation. In the following, we
will try to do gradient analysis from backward view and explain the energy loss
in bottom layers in deep GCN.

3.2 Backward Pass Analyses: Identifying the Core Problem

We first decompose the deep GCN architecture as follows

Y0 = X, Y ′
1 = ÂXW0, Y1 = ReLU(ÂXW0) = ReLU(Y ′

1 ) = 1R+(Y ′
1 ) � Y ′

1

Y ′
i+1 = ÂYiWi, Yi+1 = ReLU(Y ′

i+1) = 1R+(Y ′
i+1) � Y ′

i+1, i = 1, . . . , n

Y = softmax(ÂYnWn) ≡ softmax(Y ′), l = −trace(ZT logY )
(3)
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Fig. 1. Comparison of energy changes in hidden layers of GCN and TR-GCN (r = 1)
during training

where 1R+(·) and log(·) are pointwise indicator and log functions; � is the
Hadamard product; Z ∈ R

N×C is the ground truth matrix with one-hot label
vector Zi,: in each row, C is number of classes; l is the scalar loss. Then the
gradient propagates in the following way,

Output Layer ∂l
∂Y ′ = softmax(Y ′) − Z, ∂l

∂Wn
= Y T

n Â ∂l
∂Y ′ ,

∂l
∂Yn

= Â ∂l
∂Y ′ W

T
n

Hidden Layers ∂l
∂Y ′

i
= ∂l

∂Yi
� 1R+(Y ′

i ), ∂l
∂Wi−1

= Y T
i−1Â

∂l
∂Y ′

i
, ∂l

∂Yi−1
= Â ∂l

∂Y ′
i
WT

i−1

(4)
The gradient propagation of GCN differs from that of multi-layer perceptron
(MLP) by an extra multiplication of Â when the gradient signal flows through
Yi . Since

∣
∣
∣λi(Â)

∣
∣
∣ ≤ 1, this multiplication will cause energy loss of gradient signal

(see Fig. 2(c)). In addition, oversmoothing does not only happen in feed-forward
process, but also exists in backpropagation when we see ∂l

∂Yi−1
= Â ∂l

∂Y ′
i
WT

i−1 as
a backward view of hidden layers as (3). In forward view, parameter matrix Wi

is fixed and we update Yi; in backward view, Yi is fixed and we update Wi. And
the difference is in forward view, the input X is a fixed feature matrix, but in
backward view, the scale of the input ∂l

∂Y ′ = softmax(Y ′) − Z (the prediction
error) is getting smaller during training. Thus, the energy loss is more significant
in Wi (see Fig. 2(a)) from backward view and is more serious in bottom layers
instead of in top layers.

This energy losing phenomenon is not an expressive power problem but a
training issue. But this does not mean the training issue is the root cause of the
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Fig. 2. Comparison of weight and gradient norm in hidden layers of GCN and TR-GCN
(r = 1): the pairs have the same x- and y-ranges.

performance limit problem, which we will draw conclusion later. In the following
section, we propose method to alleviate the energy loss.

4 Methods to Alleviate BP Energy Loss

In this section, we propose 4 methodologies to handle the problem of BP energy
loss: spectra shift, weight initialization, normalization and skip (residual) con-
nection.

4.1 Spectra Shift and Topology Rescaling (TR)

From the analysis in Sect. 3 and theorem 1, we can that
∣
∣
∣λi(Â)

∣
∣
∣ ≤ 1 is one of

the main reasons of energy losing. To adjust
∣
∣
∣λi(Â)

∣
∣
∣ while maintaining certain

topological properties of the original graph associated with Â (e.g., the graph
Fourier basis, the gap between the frequencies), we shift the spectra of Â by
changing Â to Âr = rI + Â, where r is a real scalar.

Physical Meaning. Spectra shift is also a commonly used method in community
detection [1] to address the so-called “resolution limit” challenge [8,13,36], i.e.
it can only produce the modules at a certain characteristic scale [34] while is
unable to extract densely connected substructures with small sizes. Spectra shift
rescales the graph topology with a proper self-loop assignment through which
we can adjust the strength (degree) of each node [34] and r is named resolution
parameter. The translation of strengths has no impact on the original connection
of nodes, which are the building blocks of the topology. The shift only balance
the property of each node individually and in the same way for all of them.

Spectra shift essentially allows the graph operator to adjusts the scale of the
components of graph signal in graph frequency domain. To see this, suppose that
Â has the eigendecomposition Â = Û Λ̂ÛT , where Û is orthogonal. Then

x =
∑

i

ûi(ûT
i x), Âx =

∑

i

λ̂iûi(ûT
i x), Ârx =

∑

i

(λ̂i + r)ûi(ûT
i x) (5)
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Note that the components of x, Âx and Ârx in the direction ûi are ûT
i x, λ̂iû

T
i x,

and (λ̂i + r)ũT
i x, respectively. Thus applying the operator Â to x just scales the

component of x in the direction of ui by λ̂i for each i.
Tuning the resolution parameter r actually rescales those components in the

way that global information (high smoothness) will be increased with positive r,
and local information (low smoothness) will be enhanced with negative r. The
GCN with Âr is called topology rescaling GCN (TR-GCN).

Note that λi(Â) ∈ (−1, 1]. A shift which makes maxi

∣
∣
∣λi(Â) + r

∣
∣
∣ ≥ 1 is con-

sidered risky because it will cause gradient exploding and numerical instability
during training as stated in [16]. However, through our analysis, TR-GCN will
not only overcome the difficulty when training in deep architecture (see Fig. 1(d)–
(f) and Fig. 2(b), (d)), but also will not lose expressive power (see Table 1) by
setting a proper r (depends on the task and size of the network).

4.2 Weight Initialization

The gradient propagation does not only depends on Â but also depends on the
scale of Wi. An initialization with proper scale would make Wi get undiminished
gradient from the start of training and move to the correct direction with a
clearer signal [21]. Thus, we adjust the scale of each element in Wi initialized by
[12] with a tunable constant λinit as follows,

λinit × U(− 1
√

Fi+1

,
1

√
Fi+1

) or λinit × N(0,

√
2

Fi + Fi+1
) (6)

4.3 Normalization

Normalization is a natural method to control the energy flow. A direct method
would be to normalize the output matrix in each hidden layer with a constant
λE ; Or, an indirect method can also be used to normalize the weight matrix
[30] by a constant λW , which shares the same spirit of normalizing the largest
singular value of Wi [29].

Energy Normalization: Yi = λE · Yi/ ‖Yi‖2
Weight Normalization: Wi = λW · Wi/ ‖Wi‖2

(7)

4.4 Skip Connection

Skip (residual) connections [15] is a widely used technique in training deep neu-
ral networks and has achieved success in feature extraction. It helps with gradi-
ent propagation without introducing additional parameters. Skip connections, if
adapted in GCNs, will have the general form as follows:

Yi+1 = Yi + σ(ÂYiWi) (8)
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where σ is the activation function, Yi is the input of the i-th layer and Yi+1 is
the output of the i-th layer as well as the input of the (i + 1)-th layer.

It is shown that existing GCN models are difficult to train when they are
scaled with more than 7-layer-deep. This is possible due to the increase of the
effective context size of each node and overfitting issue as stated in [16]. There
exists one method ResGCN [17] that seeks also to address such problem via
residual connections, but it actually uses concatenation of the intermediate out-
puts of hidden layers, introducing excessive parameters. The effectiveness shown
in experiments are actually not only the result of the skip-connections but also
the expressive power of additional parameters. However, in experiments, we will
show that residual connections alone could accomplish the task.

5 Experiments

This section is crucial to the paper’s main hypothesis: can we boost the per-
formance of GNNs by just training them better? For this purpose, we patch
the most-popular baseline GCN with the ideas in previous section to form a
set of detailed comparative tests and fix the architecture to be 10-layers deep
throughout the entire section1. Particularly, we have selected the node classifica-
tion tasks on Cora, CiteSeer and PubMed, the three most popular datasets. We
use the most classic setting on training, which is identical to the one suggested in
[35]. The section features two sets of experiments, the first of which validates the
effectiveness of the proposed methods lowering the training difficulty while the
second demonstrates the potential performance boost when the patched meth-
ods are fine-tuned. For all experiments, we used Adam optimizer and ReLU as
the activation function (PyTorch implementation).

5.1 Training Difficulty and Generalization

Instead of demonstrating how good the performance of the patched method could
possibly be, the first set of experiments focuses on validating the effectiveness
of the proposed ideas aiming to lower the training difficulty with a detailed
ablation study. Also, we investigate the potential loss of generalization abilities,
i.e. whether these ideas lead to overfitting.

For fair comparison, we use the same base architecture for the baseline and
all the patched methods: 10 GCN layers each with width 16. Also, we utilize
the same set of basic hyperparameters: a learning rate of 0.001, weight decay of
5× 10−4, 0 dropout. We train all methods to the same extent by using the same
training procedures for all the methods: each method in each run is trained until
the validation loss is not improved for 200 epochs.

With these, we run each method on Cora dataset with public split (20 train-
ing data for each class) for 20 independent runs and obtain the final reported

1 The source code will be submitted within the supplementary materials for blind
review and open-source afterwards.
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classification accuracy together with the standard deviation of the accuracy.
The results also include the errors (losses) computed on the training set and the
test set. The results are reported in Table 1, together with the hyperparameters
included additionally by the patched methods. Note that these hyperparameters
are not fine-tuned. Also, since all methods are trained with the same base loss
(negative log-likelihood) and additional losses introduced by the patched meth-
ods only increase the total loss, the comparison of loss among the methods can
fairly tell that the patched methods’ ability of lowering the training difficulty if
their training losses are lower than the baseline.

Table 1. Ablation Tests for Training Difficulties on Cora

Train Loss Train Acc Test Loss Test Acc Change L Change All Change W, b

Mean Std Mean Std Mean Std Mean Std resolution skip weight norm energy norm weight init weight const

1.946 0.000 14.29% 0.00% 1.960 0.035 23.11% 8.80% N uniform

0.004 0.008 99.93% 0.21% 4.608 3.244 57.10% 7.85% 1.00 N uniform

0.106 0.101 98.07% 2.14% 1.806 0.485 67.45% 4.37% N normal 1.8

0.005 0.010 100.00% 0.00% 2.908 1.838 65.13% 4.53% 1.00 N normal 0.8

0.811 0.795 71.93% 28.03% 1.184 0.306 64.68% 9.94% N 7 uniform

0.011 0.011 100.00% 0.00% 1.088 0.105 69.72% 2.55% N 800 uniform

0.359 0.361 89.79% 16.61% 1.562 0.328 64.35% 4.65% 1.00 N 5 uniform

0.002 0.003 100.00% 0.00% 1.912 0.627 62.08% 2.95% 1.00 N 550 uniform

0.008 0.009 99.93% 0.21% 1.723 1.045 68.15% 5.29% 1.00 Y uniform

0.034 0.024 99.79% 0.46% 1.318 0.530 72.30% 2.59% Y normal 0.9

0.378 0.194 95.43% 2.77% 1.009 0.146 73.98% 2.68% Y 7 uniform

0.003 0.003 100.00% 0.00% 1.543 0.488 71.28% 2.95% Y 2900 uniform

0.001 0.001 100.00% 0.00% 1.969 0.811 67.58% 4.93% 1.00 Y uniform

0.005 0.003 100.00% 0.00% 1.447 0.498 69.32% 2.83% 1.00 Y normal 0.5

0.193 0.115 98.50% 1.08% 1.247 0.233 68.48% 3.72% 1.00 Y 3 uniform

0.080 0.041 100.00% 0.00% 2.074 0.218 70.52% 2.39% 1.00 Y 325 uniform

Each row represents a method. The first four columns are featured with color indicators: the greener the better result, the redder the worse. The changes applied unto the baseline are highlighted in the later columns. The first row has no colored changes and is therefore the baseline.

We use different highlight colors to indicate the change on the operators: blue for the changes on graph operator L, red for the changes on W and b and purple (blue + red) for the changes applied on all L, W and b .

From the results on the training set, we can observe significantly smaller
training loss (more than 50%) and significantly higher training accuracy (more
than 6 times), comparing those of the patched methods and the original baseline.
Considering that all of the compared methods have exactly the same parameter
composition, we can safely say that the proposed methods are indeed effective
lowering the training difficulties. However, we cannot conclude from the results
which single idea contributes the most to the training difficulty alleviation.

Comparing the results on the test set, we can see that the error and accuracy
on the test set ruled out the argument of overfitting: generally all the losses and
accuracy on the test set are improved significantly. With all the observations in
this set of experiments, the validation of the hypothesis is finished: we can make
GNNs perform better by training them better.

5.2 Finetuned Performance Boost

In this second set of experiments, we fine tune each method (including the
baseline) and compare their best reported performance. This shows how much
potential could be unlocked by better training procedures. The fine-tuning is
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conducted with Bayesian optimization [31] to the same extent2. Each result
reported in Table 2 is averaged from 20 independent runs together with the
standard deviation3.

Table 2. Fine-tuned Performance on Node Classification Tasks

Cora CiteSeer PubMed Change L Change All Change W, b

Mean Std Mean Std Mean Std resolution skip weight norm energy norm weight init

74.66% 1.37% 60.39% 2.67% 74.01% 1.40% uniform

82.06% 0.56% 71.54% 2.54% 78.48% 1.52% uniform

83.52% 0.91% 73.64% 0.75% 79.20% 1.16% uniform

83.10% 0.84% 73.74% 1.00% 78.92% 0.77% uniform

82.96% 1.21% 73.84% 0.82% 78.76% 0.91%

83.52% 0.51% 73.30% 1.33% 79.00% 0.67% uniform

82.92% 0.71% 72.98% 1.34% 78.78% 0.59% uniform

82.16% 0.88% 71.40% 1.35% 79.00% 1.05%

All the architectures are fixed with depth 10.

From the results in the table, we observe that the patched methods obtain
statistically significant performance boost. Therefore, together with the obser-
vations from the previous set of experiments, we conclude that the proposed
methods could indeed alleviate the performance limit problem by lowering the
training difficulty.

6 Conclusion

In this paper, we verify the hypothesis that the cause of the performance limit
problem of deep GCNs are more likely the training difficulty rather than insuffi-
cient capabilities. Out of the analyses on signal energy, we address the problem
by proposing several methodologies that seek to mitigate the training process.
The contribution enables lightweight GCN architectures to gain better perfor-
mance when stacked deeper.

Though the proposed methods show effectiveness in lowering the training loss
and improving the performance in practice, the methods introduce additional
hyperparameters that require tuning. In future works, we would investigate the
possibilities of a learnable resolution (self-loop) in the graph operator that is
optimized end-to-end together with the system, essentially turning meta-learning
2 All methods are fixed 10-layer deep. Methods share the same search range for the

base hyperparameters (learning rate in [10−6, 10−1], weight decay in [10−5, 10−1],
width in {100, 200, . . . , 5000}, dropout in (0, 1)). The hyperparameters unique to the
patched methods are also fixed for each patched method (resolution in [−1, 5], weight
constant in [0.1, 5], weight normalization coefficient in [1, 15], energy normalization
coefficient in [25, 2500]). The search stops if the performance is not improved for 64
candidates.

3 GCN is reproduced and performed fine-tuning upon.
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the self-loop that guides the representation learning on graphs. Also, we would
like to seek other possible theoretically-inspired approaches to alleviate training
difficulties.
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Abstract. A recommender system based on Graph Neural Networks
can effectively capture user-item interactions through the graph struc-
ture, leading to highly personalized and relevant recommendations.
However, existing works adapting Graph Neural Networks (GNN) to
recommendations struggle with the cold-start problem. Indeed, it is dif-
ficult to make accurate recommendations for new users or items with
little or no interaction data. Building on previous work, we introduce an
Enhanced Mutual Interaction Graph Attention Network (E-MIGAN) for
this purpose. It is based on self-supervised representation learning on a
large-scale bipartite graph. It is composed of three components: i) The
attention network module that learns attention weights for each node
and its neighbors, ii) The mutual interaction module computes a mutual
interaction matrix for each node and its neighbors on each item, which
encodes the pairwise interactions, and iii) A Content-Based Embedding
model, which overcomes the cold start issue. The empirical study on
real-world datasets proves that E-MIGAN achieves state-of-the-art per-
formance, demonstrating its effectiveness in capturing complex interac-
tions in graph-structured data.

Keywords: Hybrid recommender systems · mutual influence · Graph
Attention Network · Collaborative Filtering · Content Based Filtering ·
Graph Neural Networks (GNN)

1 Introduction

Hybrid models that combine multiple recommendation techniques have gained
popularity in recent years [1–7]. For instance, a hybrid model can combine collab-
orative and content-based filtering to address the cold-start problem. Addition-
ally, it can be extended to incorporate graph-based techniques such as GNNs.
Graph neural network (GNN) has become a new state-of-art approach for rec-
ommender systems. The central concept behind GNN is an information propaga-
tion mechanism, i.e., to iteratively aggregate feature information from neighbors
in graphs. The neighborhood aggregation mechanism enables GNN to model
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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the correlation among users, items, and related features [8]. Graph Convolu-
tional Matrix Completion (GCMC) [9] and Neural Graph Collaborative Filter-
ing (NGCF) [10] already address several issues in the world of recommendation.
However, they struggle with modeling higher-order feature interactions, relying
heavily on past user interactions for predictions. To address this limitation, we
developed a Mutual Interaction Graph Attention Network recommender model
[11] that allows mapping the original data to higher-order feature interactions.
It models the mutual influence relationship between aspect users and items. Fur-
thermore, MIGAN is designed to handle large-scale datasets efficiently. Despite
this, it also has limitations, which motivates the current proposed approach.

This work proposes an Enhancing Mutual Interaction Graph Attention Net-
work recommender model for the Item-wise cold-start problem. The main con-
tributions of the Enhancing-MIGAN recommended model can be described as
compared to the related works as follows:

– Like other collaborative filtering recommenders, MIGAN struggles with the
item-cold-start problem. Making accurate recommendations for new users
or items with little or no interaction data is difficult. The proposed hybrid
model combines the forces of content-based and collaborative filtering recom-
menders to achieve precise and relevant recommendations. The content-based
approach we suggest implementing here is a stacked recommender comprising
a set of regression models and a meta-learner.

– The stacked content-based recommender comprises a stack of machine learn-
ing (ML) models. This recommender creates a profile model for each user
and extracts valuable features from the item-based side information. Its con-
stituents allow for gaining predictive accuracy.

– The interactive graph neural attention network recommender exploits the
encoding ability of the interactive attention between users and items. It learns
the mutual influence generated by the contributions of items that carry col-
laborative signals on user decisions, helping to account for complex user-item
interactions. Therefore, it boosts the accuracy of recommender systems by
indicating which higher-order feature interactions are informative for the pre-
diction.

The remainder of this paper is organized as follows. Section 2 presents a litera-
ture review of relevant neural graph recommender approaches. Section 3 discusses
the proposed methodology. Section 4 reports the comparative analysis of the pro-
posed Content Enhanced-MIGAN with some recent state-of-the-art approaches
on real-world datasets. Finally, Sect. 5 presents the conclusion.

2 Related Work

Otunba et al. [12] stack a Generalized Matrix Factorization (GMF) and MLP
ensemble to propagate the prediction from constituent models to the final out-
put. Bao et al. [13] combine component recommendation engines, which are
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considered wrappers for a set of smaller, concrete pre-trained models. The wrap-
per then follows a well-defined strategy to aggregate its predictions into a final
one. Da et al. [14] proposed three ensemble approaches based on multimodal
interactions. Unlike previous works with stacked recommenders, the stacking
content-based recommender that we develop in this work creates a profile model
for each user. Its main advantage is the ability of the embedding representation
to integrate the side information in the hybrid architecture.

Many works on GNN-based recommendation systems have been proposed in
the last few years. The most obvious explanation is that GNN techniques are
effective at learning representations for graph data in various domains [15,16],
and most of the data in recommendation has a graph structure. Graph Con-
volutional Networks (GCN) is one of the popular GNN models. They operate
through a series of message-passing steps between nodes in the graph. At each
stage, each node aggregates information from its neighbors applies a neural net-
work layer to the aggregated information, and then sends the transformed data
to its neighbors. This process is repeated for a fixed number of steps or until
convergence is achieved [17]. Graph Attention Network (GAT) [18] uses a func-
tion called attention to selectively aggregate information from neighboring nodes
in the graph. Unlike GCN, GAT can learn different weights for each neighbor-
ing node, allowing them to capture complex patterns in the graph structure. It
makes GAT particularly useful for tasks where the relationships between nodes
are highly non-linear and require a more fine-grained approach to modeling.

Knowledge Graph Attention Network (KGAT) [19] is based on GAT. It creates a
heterogeneous graph with nodes comprising users, items, and attributes. It then
aggregates and updates each node’s embedding by iteratively propagating the
embeddings from its neighbors.

Neural Graph Collaborative Filtering (NGCF) [10] is a representative and state-
of-the-art GCN model for recommendation. It is used for Collaborative Filtering
by propagating the user and item embeddings over the user-item graph, captur-
ing connectivity between users and their neighbors. The authors in [20] report
studies of the embedding quality refined by GCN and implemented three simpli-
fied variants of NGCF to get a better result. Mutual-Interaction Graph Attention
Network for collaborative filtering recommendation (MIGAN) [11] model effi-
ciently the interaction characteristic. The key idea is that MIGAN determines
which weights best represent the users’ mutual effect on the item. Building on
MIGAN, the proposed model incorporates item content embeddings to graph-
based MIGAN while tweaking its recommendation mechanism to address the
item-wise cold start problem.

3 The Proposed Framework Enhanced-MIGAN

In general, the recommender system problem is centered around suggesting items
relevant to the user from a big data pool. Therefore, the problem relies on three
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principal components: a set of items I, a set of users U , and their interactions.
We define Bipartite Graphs: Let G = (U1, I1, E) be a bipartite graph. A bipartite
graph comprises two independent sets of vertices, U1 and I1. The edges connect
a vertex from one set U1 to one in I1.

As illustrated in Fig. 1, the proposed framework is an enhancement of
MIGAN framework, by incorporating content-based embeddings from the meta-
data available about the items and generating user profiles. This novel variant
of MIGAN takes another benefit from the potential of the content-based recom-
mender system. Hence, its strengths are:

1. Capturing complex relationships: This framework learns the most rel-
evant weights representing mutual influence on the item which can capture
more complex relationships between user and item embeddings. This can be
beneficial as the user-item interaction data exhibits more complex patterns.

2. Incorporating additional features: The content-based model orients the
hybrid to learn each user’s preferences concerning resources’ traits, including
but not limited to their type, genre, and content. This can help improve
the recommendation quality by leveraging more information about users and
items.

Fig. 1. The Architecture of the Content-Enhanced MIGAN. The content stacked rec-
ommender captures the side information to create a profile model for each user while
optimizing the stack’s learners’ objective function. The collaborative filtering MIGAN
recommender presents higher-order feature interactions.
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3.1 Mutual-Interaction Graph Attention Network Recommender

The proposed framework’s first component is a graph neural network design for
modeling complex interactions in graph-structured data. MIGAN representation
is based on the Bipartite Graph Neural Networks (BGNN) [21] to model the
dependencies between the nodes on a large scale. This representation is fed up
to a co-attention neural network recommender. Here, the developed co-attention
layer puts more emphasis not only on learning the complex relationship between
the target users (or items) and their neighbors but also it learning the most
relevant weights that represent the users’ mutual influence on the item. This
idea is illustrated in Fig. 2.

The first recommender consists of two main operations: an attention network
module and a mutual interaction module. The attention network module learns
attention weights for each node and its neighbors. The mutual interaction module
computes a mutual interaction matrix for each node and its neighbors on each
item, which encodes the pairwise interactions between them. Then, MIGAN uses
the mutual interaction matrix to compute a weighted sum of the node features.

Applying a co-attention mechanism in the context of collaborative filter-
ing recommendation allows for discriminating the items that are interesting for
users even those with no previous interaction, through deducing higher attention
weights. The first embedding layers eu and ei captures latent features of users
pu and items qi. Long-Short-Term-Memory (LSTM) layers follow them to enable
long-range learning. Each LSTM state includes two inputs: the current feature
vector and the output vector ht−1 from the previous state. Its output vector is
ht. Each node embedding layer is chained with an LSTM layer which allows prop-
agating without modification, updating, or resetting states using simple learned
gating functions. The LSTM representation is expressed as follows:

htu = g1(p) (1)

hti = g2(q) (2)

The learned representation is Hp and Hq, respectively, with d×n dimensions
for Hp and d × m for Hq. Users’ and items’ embedded inputs are projected into
a vector representation space using the attention technique. For the interactive
attention mechanism, we build an attention map to predict the distribution of
the items. For this purpose, we compute a matrix L = tanh(H�

p WpqHq), where
L ∈ R

n×m, and Wpq is a d × d a learnable parameters matrix. The features of
co-attention maps are defined as:

α∗
p = tanh(WpHp + (WqHq)L�)

α∗
q = tanh(WqHq + (WpHp)L) (3)

The interactive attention model uses a tangent function to model the mutual
interactions between users and items. Afterward, we compute the probability
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Fig. 2. Interaction between users and items with particular characteristics can reveal
the possibility that an item is interesting for similar users. In this example, we can see
that both user 1 and user 2 have watched the same movies, Avengers and Aquaman,
which means that they have similar tastes. So if user 2 watched another movie, for
example, John Wick, then there is a high probability that user 1 will like the same
movie, so the MIGAN recommender recommends it to him. It is a first-order inter-
action. Moreover, one can deduce a mutual influence based on interactive attention
weights at more than a first-order interaction level. For example, user 3 influences user
1, as user 1 shares similar preferences with user 2, generating a recommendation of the
Titanic movie based on user 3 preferences.

distribution over the embedding space. The softmax function is used to generate
the attention weights:

αu = Softmax(f(α∗
p)) (4)

αi = Softmax(f(α∗
q)) (5)

where f : is a multi-layer neural network.
Then, the high-order interaction latent space of users and items is given by:

f1 = [β′u ⊕ β′i] (6)

where βp and βq: are the derived attention weights.
As a result, the predicted matrix R̂ui is defined as:

R̂ui = f(f1) (7)

where f : is a dense layer using a sigmoid activation function. Finally, we train the
model to minimize the loss function which is the Mean Absolute Error (MAE):

L(Rui, R̂ui) =
1

|C|
∑

(u,i)∈C

|(Rui − R̂ui)| (8)
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3.2 Content-Based Embeddings

The content-based recommender system injects items’ attributes as a deciding
factor for recommendations. First, the recommender extracts “tags” from items’
descriptions or reviews and uses them to calculate each item’s embedding vec-
tor with the help of Stanford’s pre-trained GloVe vectors [22]. A trained model
is a user profile in a stacking ensemble learning technique for a content-based
recommender system. Thus, it generates a user profile for each user u in the
form of a learned model. The training procedure of this stacked content-based
recommender is summarized in Algorithm 1. Let S = {S1, S2, ..., Sl} be dif-
ferent regression models, and xtrain be the training dataset. U and emb are
independent variables, R is the dependent variable. The base regression models’
hyperparameters are ∀s ∈ S : θs.

Algorithm 1: Stacked content-based recommender
Input : U : list of user ids : size n

I: list of item ids: size m
Di: Description of item i
IU : All items a specific user has interacted with
θs: the model hyperparameters.

Output: R̂BL

1 begin
// Calculating embeddings for each item

2 foreach i ∈ I do
3 Tags(i) ← ExtractKeywords(i) ;
4 Embedding(i) ← GloVe(Tags(i))

5 end
// Generating user profiles

6 profiles = ∅ ;
7 foreach u ∈ U do
8 regressors = InitRegressors(θreg) ;
9 blender = InitBlender(θblender)

// Training the stack

10 features= Train(U, emb(i), R)
11 profile= Build.model(regressors, blender,features) ;

12 end
// Constructing predicted utility matrix

13 R̂BL = [] ;

14 foreach profile ∈ profiles do R̂BL ← profile.Predict() ;

15 return R̂BL

16 end

Each s ∈ S is trained separately with the same training dataset. Each model
provides predictions for the outcomes (R), which are then cast into a meta-
learner (blender). In other words, the S predictions of each regressor become
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features for the blender. The latter can be any model such as linear regression,
SVR, Decision Tree,...etc.

fblender(x) = fSTK(S1(x), S2(x), ..., Ss(x)) (9)

where a meta-learner learns the weight vector w. A blender model can then
be defined and tuned with its hyperparameters θblender. It is then trained on
the outputs of the stack S. It learns the mapping between the outcome of the
stacked predictors and the final ground-truth ratings. The expression of the final
prediction is as follows:

ˆRBL = φ(fblender(x), fSTK(S1(x), S2(x), ..., Ss(x))) (10)

Once the two recommenders needed for the task at hand are trained, we apply
an aggregation function to merge their outputs into a single utility matrix. The
Enhanced-MIGAN framework is summarized in Algorithm 2. It uses the simple
unweighted average aggregation function followed by a fully connected layer.
The final predicted utility matrix P̂ui is as follows.

P̂ui = fagg(R̂ui, R̂BL) (11)

Algorithm 2: Content-Enhanced Mutual-Interction Graph Attention Neu-
ral Network recommender system.
1 Input
2 Xu : User features list
3 Xi : Itemfeatures list
4 U : List of user : size = n
5 I : List of item : size = m
6 ϕ : interactive attentionneural network hyperparameters

R : Rating matrix
7 Output P̂ui : predictionmatrix
8 Begin
9 Phase 1 Preparing data to be passed to the BGNN

foreach u ∈ U, i ∈ V do Rj = minmax(R)
10 embu, embi = BGNN(Xu,Xi, Rj)
11 Phase 2 Build Mutual Interaction Graph Attention

Neural Network model
12 attu = Attention(LSTM(embu))
13 atti = Attention(LSTM(embi))
14 attui = CoAttention(LSTM(embu), LSTM(embi))

MutualInteractiveAttention =
BuildModel(concatenate(attu, atti, attui)) ;

15 MutualInteractiveAttention.trainModel(D);
R̂ui = MutualInteractiveAttention.predict(ϕ)

16 Phase 3 Aggregating the utility matrix of sub-recommenders
17 P̂ui = aggregation(R̂ui, R̂BL)
18 return P̂ui
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4 Experiments and Results

Our experiments are conducted on the MovieLens Dataset [23]. The MovieLens
dataset presents real, timestamped 5-star ratings, as given by users of the Movie-
Lens website on different films (number of Users = 6040, number of Movies =
3883, Sparsity = 95.5%). The machine used throughout the development and
evaluation phases is MacBook Pro, 2014. It has 2.2 GHz Intel Core i7. It has 16
GB of DDR3 RAM.

The dataset will be divided into 90% training data, 10% testing data in a
stratified manner, where the proportion of appearance of each user would be the
same both in training and test data. Furthermore, the training data is further
divided into 90% pure training, and 10% validation set, in a shuffling man-
ner. Enhanced-MIGAN will be evaluated using two widely used metrics for rec-
ommender systems evaluation. They are Mean Average Precision (MAP) and
Normalized Discounted Cumulative Gain (NDCG) [24]. Here, we depict the
hyperparameters analysis step, applied to the regression models and a meta-
learner. A grid search is performed over five algorithms (polynomial-kernel sup-
port vector machines (SVM poly), RBF-kernel support vector machines (SVM
rbf), decision trees (DT), automatic relevance detection regression (ARD) and
linear regression (LR)). Results will be evaluated using MAP@k and NDCG@k
for k ∈ 10, 30, 50 on the MovieLens dataset. Table 1 shows the changes in NDCG
and MAP scores following a combination of regression models that compose the
best stack. The structure of each stack is as follows:

– Stack 1: SVRpoly - LR - SVMrbf — Random Forest
– Stack 2: LR - SVRpoly - ARD — Random Forest
– Stack 3: LR - Random Forest - ARD — SVMpoly

– Stack 4: DT-LR-SVRpoly — Random Forest

Table 1. The best scoring of the stacked content-based recommender

Mean Average Precision Normalized DCG

Stack MAP@10 MAP@30 MAP@50 NDCG@10 NDCG@30 NDCG@50

Stack 1 0.74 0.66 0.69 0.65 0.70 0.68

Stack 2 0.80 0.78 0.79 0.69 0.76 0.76

Stack 3 0.72 0.68 0.70 0.64 0.69 0.71

Stack 4 0.78 0.76 0.74 0.67 0.70 0.72

The experiment enhances weak learners with strong learners. Therefore,
Stack 2 has the best score and it will be picked for further framework. After
that, a grid search algorithm over Random Forest is performed to identify its
hyperparameters. The best meta-learner hyperparameters are: nestimators =
300,maxdepth = 40,maxfeatures = 2,minsamplesLeaf = 4,minsamplesSplit = 2.
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Table 2. The best hyperparameter for MIGAN recommender system. Results are
evaluated based on MAP and NDCG metrics.

Hyperparameter Range Best settings

Dimensions of the embedding α ∈ [30, 100] α = 50

Number of dense layers after
the Interactive attention
block

θ ∈ [2, 20] θ = 3

Number of neurons per dense
layer

τ ∈ [30, 150] τ = 100

Activation function used in
the dense layers

σ ∈ selu, elu, relu σ = elu

Optimizer λ ∈ sgd, adam, adagrad λ = Adam

Getting the best performance from MIGAN recommender system leads to
tweaking the hyperparameters reported in Table 2. We compare the proposed
recommender framework Content Enhanced-MIGAN with the following base-
lines:

– Mutual Interaction Graph Attention Network “MIGAN” [11] a
state-of-the-art algorithm based on self-supervised representation learning on
a large-scale bipartite graph (BGNN).

– Neural Graph Collaborative Filtering (NGCF) [10]: a representative
and state-of-the-art GCN model for recommendation and is a Graph Neural
Network used for Collaborative Filtering by propagating the user and item
embeddings over the user- item graph, capturing connectivities between users
and their neighbors.

– Neural Collaborative Filtering (NCF) [25]: This recommender system
applies the multi-layer perceptron to learn the user-item interaction function.

– Light Graph Convolutional Network (LightGCN) [20] simplifies the
aggregation process by using a linear transformation of the user-item inter-
actions.

Figure 3 presents the MAP@k performance versus k-top items. It appears
that the content-enhanced MIGAN can recall the relevant items for the user
better than the other models with a significant margin, for example, it achieves
MAP@10 = 0.93 and MAP@30 = 0.92 which is higher than the baselines. Figure 4
shows that the proposed framework exhibits a high NDCG score on MovieLens
(NDGC@10 = 0.84 and NDCG@30 = 0.87). The more interested the users
are in an item, the more likely users with similar preferences will recommend
it. The content-enhanced MIGAN can deal with users with few user-item inter-
actions and items with no interactions, all with the help of a content-stacked
recommender.
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Fig. 3. Results of the comparison on MovieLens dataset. Evaluation of the performance
of Top-K recommended lists, in terms of MAP. The ranking position K ranges from 10
to 50.

Fig. 4. Results of the comparison on MovieLens dataset. Evaluation of the performance
of Top-K recommended lists, in terms of NDGC. The ranking position K ranges from
10 to 50.

5 Conclusion

We introduced a Content Enhanced MIGAN framework, a novel hybrid recom-
mender model that integrates content-based embeddings to adjust the recom-
mendation generation process. The stacked recommender effectively obtains the
user’s overall interest built by the stack’s learners. It captures the side informa-
tion to create a profile model for each user while optimizing the stack’s learners’
objective function. Furthermore, the mutual interaction graph attention neu-
ral network recommender carries relevant collaborative signals bringing up the
impact of the complex user-item interactions on user decisions. By incorporating
content-based embeddings into this collaborative filtering recommender, the pro-
posed framework results in more accurate and personalized recommendations.

The empirical study on real-world datasets proves that the content-enhanced-
MIGAN framework significantly outperforms the state-of-the-art methods in



72 A. Drif and H. Cherifi

recommendation performance. Future research avenues can include testing the
efficiency of our framework for the evolution of users’ preferences and item pop-
ularity over time.
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Abstract. Graph neural networks (GNNs) have shown promise in
addressing graph-related problems, including node classification. How-
ever, in real-world scenarios, data often exhibits an imbalanced, some-
times highly-skewed, distribution with dominant classes representing the
majority, where certain classes are severely underrepresented. This leads
to a suboptimal performance of standard GNNs on imbalanced graphs.
In this paper, we introduce a unique approach that tackles imbalanced
classification on graphs by considering graph heterophily. We investigate
the intricate relationship between class imbalance and graph heterophily,
revealing that minority classes not only exhibit a scarcity of samples
but also manifest lower levels of homophily, facilitating the propaga-
tion of erroneous information among neighboring nodes. Drawing upon
this insight, we propose an efficient method, called Fast Im-GBK, which
integrates an imbalance classification strategy with heterophily-aware
GNNs to effectively address the class imbalance problem while signif-
icantly reducing training time. Our experiments on real-world graphs
demonstrate our model’s superiority in classification performance and
efficiency for node classification tasks compared to existing baselines.

Keywords: Graph neural networks · Imbalanced classification ·
Heterophily

1 Introduction

GNNs have gained popularity for their accuracy in handling graph data. How-
ever, their accuracy, like other deep learning models, is highly dependent on data
quality. One major challenge is class imbalance, where some classes have far fewer
examples than others. This can lead to biased classification results, favoring the
majority class while neglecting the minority classes [5]. The issue of imbalanced
datasets commonly arises in classification and recognition tasks, where accurate
classification of minority classes is critical. Graph imbalance classification has
real-world applications, like identifying spammers in social networks [18] and
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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detecting fraud in financial networks [8]. In these cases, abnormal nodes are
rare, making graph imbalance classification very challenging. Finding effective
solutions to this problem is valuable for both research and practical applications.

The class-imbalanced problem has been extensively studied in machine learn-
ing and deep learning, as evident by prior research [6]. However, these methods
may not effectively handle imbalanced graph data due to the interconnected
nature of nodes within graphs. Graph nodes are characterized not only by their
own properties but also by the properties of their neighboring nodes, introducing
non-i.i.d. (independent and identically distributed) characteristics. Recent stud-
ies on graph imbalance classification have focused on data augmentation tech-
niques, such as GraphSMOTE [19] and GraphENS [12]. However, our observa-
tions indicate that class imbalance in graphs is often accompanied by heterophilic
connections of minority nodes, where minority nodes have more connections with
nodes of diverse labels than the majority class nodes. This finding suggests that
traditional techniques may be insufficient in the presence of heterophily.

To address this challenge, we propose incorporating a graph heterophily han-
dling strategy into graph imbalanced classification. Our approach builds upon
the bi-kernel design of GBK-GNN [2] to capture both homophily and heterophily
within the graph. Additionally, we introduce a class imbalance-aware loss func-
tion, such as logit adjusted loss, to appropriately reweight minority and majority
nodes. The complexity of GBK-GNN makes training computationally challeng-
ing. To overcome this, we propose an efficient version of the GBK-GNN that
achieves both efficacy and efficiency in training.

Our main contributions are as follows: (1) We provide comprehensive insights
into the imbalance classification problem in graphs from the perspective of graph
heterophily and investigate the relationship between class imbalance and het-
erophily. (2) We present a novel framework that integrates graph heterophily
and class-imbalance handling based on the insights and its fast implementation
that significantly reduces training time. (3) We conduct extensive experiments
on various real-world graphs to validate the effectiveness and efficiency of our
proposed framework in addressing imbalanced classification on graphs.

2 Related Work

Imbalanced Classification. Efforts to counter class imbalance in classification
entail developing unbiased classifiers that account for label distribution in train-
ing data. Existing strategies fall into three categories: loss modification, post-hoc
correction, and re-sampling techniques. Loss modification adjusts the objective
function by assigning greater weights [5] to minority classes. Post-hoc correction
methods [11] adapt logits during inference to rectify underrepresented minority
class predictions. Re-sampling employs techniques, such as sampling strategies
[13] or data generation [1], to augment minority class data. The widely uti-
lized Synthetic Minority Over-sampling Technique (SMOTE) [1] generates new
instances by merging minority class data with nearest neighbors.

To tackle class imbalance in graph-based classification, diverse approaches
harness graph structural information to mitigate the challenge. GraphSMOTE



76 Z. Liang et al.

[19] synthesizes minor nodes by interpolating existing minority nodes, with con-
nectivity guided by a pretrained edge predictor. The Topology-Aware Margin
(TAM) loss [16] considers each node’s local topology by comparing its connec-
tivity pattern to the class-averaged counterpart. When nearby nodes in the tar-
get class are denser, the margin for that class decreases. This change enhances
learning adaptability and effectiveness through comparison. GraphENS [12] is
another technique that generates an entire ego network for the minor class by
amalgamating distinct ego networks based on similarity. These methods effec-
tively combat class imbalance in graph-based classification, leveraging graph
structures and introducing inventive augmentation techniques.

Heterophily Problem. In graphs, homophily [10] suggests that nodes with
similar features tend to be connected, and heterophily suggests that nodes with
diverse features and class labels tend to be connected. Recent investigations
have analyzed the impact of heterophily on various tasks, emphasizing the sig-
nificance of accounting for attribute information and devising methods attuned
to heterophily [20]. Newly proposed models addressing heterophily can be clas-
sified into two categories: non-local neighbor extension and GNN architecture
refinement [20]. Methods grounded in non-local neighbor extension seek to alle-
viate this challenge through neighborhood exploration. The H2GCN method
[22], for instance, integrates insights from higher-order neighbors, revealing that
two-hop neighbors frequently encompass more nodes of the same class as the
central ego node. NLGNN [9] follows a pathway of employing attention mech-
anisms or pointer networks to prioritize prospective neighbor nodes based on
attention scores or their relevance to the ego node. Approaches enhancing GNN
architectures aspire to harness both local and non-local neighbor insights, boost-
ing model capacity by fostering distinct and discerning node representations. A
representative work is GBK-GNN (Gated Bi-Kernel Graph Neural Network) [2],
which employs dual kernels to encapsulate homophily and heterophily details
and introduces a gate to ascertain the kernel suitable for a given node pair.

3 Motivation

Node classification on graphs, such as one performed by the Graph Convolutional
Network (GCN), differs fundamentally from non-graph tasks due to the intercon-
nectivity of nodes. In imbalanced class distributions, minority nodes may have a
higher proportion of heterophilic edges in their local neighborhoods, which can
negatively impact classification performance.

To investigate the relationship between homophily and different classes, espe-
cially minorities, we conducted a small analysis on four datasets: Cora, CiteSeer,
Wiki, and Coauthor CS (details about datasets can be found in Sect. 5.1). Our
analysis involves computing the average homophily ratios and calculating node
numbers across different categories. In particular, the average homophily ratio
for nodes with label y is defined as:

h (y,GV) =
1

|Vy|
∑

i∈Vy

|Nis |
|Ni| (1)
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(a) Distribution of nodes in Cora. (b) Homophily Ratio in Cora.

Fig. 1. Category distributions (left) and average homophily ratios (right) of Cora.

where Vy represents a set of nodes with label y, N i is the set of neighbors of
node vi (excluding vi) in graph G, and Nis is the set of neighbors (excluding vi)
whose class is the same as vi.

Observations. The results for Cora datasets are shown in Fig. 1. It is evident that
the average homophily ratios of minority classes are relatively smallersuggest-
ing higher proportions of heterophilic edges in their local neighborhoods. This
could negatively affect classification performance when using existing imbalance
strategies like data augmentation and loss reweight. This finding highlights the
importance of considering the homophily and heterophily properties of nodes
when designing graph classification models. We propose a novel approach that
addresses imbalance issue effectively, considering node heterophily.

Problem Formulation. An attributed graph is denoted by G = (V, E ,X), where
V = {v1, . . . , vn} represents the set of n nodes in G, and E is the set of edges
with edge eij connecting nodes vi and vj . For simplicity, we consider undirected
graphs, but the argument could be generalized for directed graphs. The node
attribute matrix is represented by X =

[
x�
1 , . . . ,x�

n

] ∈ Rn×d, where xi indi-
cates the feature of node vi. Y denotes the label information for nodes in G and
each node vi is associated with a label yi ∈ Rn. During the training, only a
subset of the classes, denoted by YL, is available containing the labels for node
subset VL. Moreover, C = {c1, c2, . . . , cm} represents the set of m classes assigned
to each node, with |Ci| denoting the size of the i-th class, which indicates the
number of nodes with class ci. To quantify the degree of imbalance in the graph,
we use the imbalance ratio, defined as r = maxi(|Ci|)

mini(|Ci|) . For imbalanced graphs, the
imbalance ratio of YL is high (Table 1 of Sect. 5 shows that the first two datasets
have relatively balanced classes and the last two have imbalanced classes).

Imbalance Node Classification on Graphs. In the context of an imbalanced
graph G with a high imbalance ratio r, the aim is to develop a node classifier
f : f(V, E ,X) → Y that can work well for classifying nodes belonging to both
the majority and minority classes.
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4 Methodology

In this section, we present our solution to address class imbalance that incorpo-
rates heterophily handling and imbalance handling components (Sect. 4.1). We
also propose a fast version that effectively reduces training time (Sect. 4.2). The
main objective of our model is to minimize the loss of minority classes while
ensuring accurate information exchange during the message-passing process.

4.1 Im-GBK

Heterophily Handling. We build our model based on the GBK-GNN [2]
model, which is a good model for graph classification, though not able to handle
class imbalance. GBK-GNN is designed to address the lack of distinguishability
in GNN, which stems primarily from the incapability to adjust weights adap-
tively for various node types based on their distinct homophily properties. As
a consequence, a bi-kernel feature transformation method is employed to cap-
ture either homophily or heterophily information. In this work, we, therefore,
introduce a learnable kernel-based selection gate that aims to distinguish if a
pair of nodes are similar or not and then selectively choose appropriate ker-
nels, i.e., homophily or heterophily kernel. The formal expression for the input
transformation is presented below.

h(l)
i = σ

⎛

⎝Wfh
(l−1)
i +

1
|N (vi)|

∑

vj∈N (vi)

αijWsh
(l−1)
j + (1 − αij)Wdh

(l−1)
j

⎞

⎠

(2)

αij = Sigmoid
(
Wg

[
h
(l−1)
i ,h

(l−1)
j

])
(3)

L = L0 + λ
L∑
l

L(l)
g (4)

where Ws and Wd are the kernels for homophilic and heterophilic edges, respec-
tively. The value of αij is determined by Wg and the embedding layer of nodes
i and j. The loss function consists of two parts: L0, a cross-entropy loss for node
classification, and L(l)

g , a label consistency-based cross-entropy, i.e., to discrimi-
nate if labels of a pair of nodes are consistent for each layer l to guide the training
of the selection gate or not. A hyper-parameter λ is introduced to balance the
two losses. The original GBK-GNN method does not explicitly address the class
imbalance issue, which leads to the model being biased toward the majority class.
Our method employs a class-imbalance awareness for the GBK-GNN design, and
therefore it mitigates the bias.

Class-Imbalance Handling with Logit Adjusted Loss. When traditional
softmax is used on such imbalanced data, it can result in biases toward the
majority class. This is because the loss function used to train the model typ-
ically treats all classes equally, regardless of their frequency. As a result, the
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model tends to optimize for overall accuracy by prioritizing the majority classes
while performing poorly on the minority classes. This issue can be addressed by
adjusting the logits (i.e., the inputs to the softmax function) for each class to
be inversely proportional to their frequencies in the training data, which effec-
tively reduces the weight of the majority classes and increases the weight of the
minority classes [11]. In this study, we calculate logit-adjusted loss as follows:

Llogit−adjusted = − log
efy(x)+τ ·log πy

∑
y′∈[L] e

fy′ (x)+τ ·log πy′
(5)

where πy is the estimate of the class prior. In this approach, a label-dependent off-
set is added to each logit, which differs from the standard softmax cross-entropy
approach. Additionally, the class prior offset is enforced during the learning of
the logits rather than being applied post-hoc, as in other methods.

Class-Imbalance Handling with Balanced Softmax. Another approach
called balanced softmax [13] focuses on assigning larger weights to the minority
classes and smaller weights to the majority class, which encourages the model
to focus more on the underrepresented classes and improve their performance.
The traditional softmax function treats all classes equally, which can result in
a bias towards the majority class in imbalanced datasets. Balanced softmax,
on the other hand, adjusts the temperature parameter of the softmax function
to balance the importance of each class, effectively reducing the impact of the
majority class and increasing the impact of the minority classes. Formally, given
Nk, lv, yv, lv,yv

represent k-th of class N , logit and the label of node v, logit
associated with the true label yv for the input node v, respectively. In this study,
the balanced softmax is calculated as:

Lbalanced−softmax = − log
elv,yv+log Nyv

∑
k∈Y elv,k+log |Nk| . (6)

Loss Function. We design our loss function to combine these two components
that handle heterophily and class imbalance in the proposed Im-GBK model.
The learning objective of our model consists of (i) reducing the weight of the
majority classes and increasing the weight of the minority classes in the training
data, and (ii) improving the model’s ability to select the ideal gate. To achieve
this objective, we incorporate two loss components into the loss function:

L = Lim + λ

L∑

l

L(l)
g . (7)

The first component, from the class-imbalance handler, denoted as Lim,
applies either the logit adjusted loss Llogit−adjusted or the Balanced Softmax
Lbalanced−softmax approach to reduce the impact of the majority class and focus
on underrepresented classes. The second component, denoted as Lg(l), applies
cross-entropy loss to each layer l of the heterophily handler to improve the
model’s discriminative power and adaptively select gate to emphasize homophily
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or heterophily. The hyper-parameter λ balances the two losses in the overall loss
function.

4.2 Fast Im-GBK

The major limitation of Im-GBK lies in efficiency, as the additional time is
required to compute the gate result from the heterophily handling component.
The challenge arises from the need to label edges connecting unknown nodes,
which is typically addressed by learning an edge classifier. Specifically, in the
message-passing process, the gate acts as an edge classifier that predicts the
homophily level of a given edge. As a result, this process requires additional time
proportional to the number of edges in the graph, expressed as Textra = |E| ×
time(eij), where time(eij) represents the time to compute one edge. Therefore,
we propose to use a graph-level homophily ratio [21] instead of the pair-wise
edge classifier. This removes the kernel selection process before training and
significantly reduces training time. We use Eq. 2 to aggregate and update the
embedding layers similarly. The formal definition of the gate generator is:

H(G) =

∑
(vi,vj)∈E I (yi = yj)

|E| (8)

αij =

{
max((1 − ε)I(yi = yj), ε) yi,yj ∈ Vtrain

H(G) otherwise
(9)

LFast Im−GBK = Lim (10)

where the hyper-parameter ε will serve as the minimum similarity threshold, and
Lim is aforementioned Class-Imbalance Handling loss.

5 Experiments

We address four questions to enhance our understanding of the model:

RQ1: How do Im-GBK and fast-Im-GBK models perform in comparison to
baselines in node classification for an imbalanced scenario? RQ2: How is the per-
formance efficiency of fast-Im-GBK compared to other baseline models? RQ3:
What is the role of each component in our Im-GBK model, and do they positively
impact the classification performance?

5.1 Experiment Settings

Datasets. We conduct experiments on four datasets from PyTorch Geometric
[3], which are commonly used in graph neural network literature, to evaluate the
efficiency of our proposed models for the node classification task when classes
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Table 1. Statistics of the node classification datasets.

Hom.Ratio Imbalance Ratio Nodes Edges Features Classes

CiteSeer [14] 0.736 2.655 3327 9104 3703 6

Cora [14] 0.810 4.544 2708 10556 1433 7

Wiki [14] 0.712 45.111 2405 17981 4973 17

Coauthor CS [15] 0.808 35.051 18333 163788 6805 15

are imbalanced. Table 1 presents a summary of the datasets. In addition, using
CiteSeer and Cora datasets, we generate two extreme instances in which each
minority class with random selection has only five training examples.

Experiment Environment. For each dataset, we randomly select 60% of total
samples for training, 20% for validation, and the remaining 20% for testing. We
use Adam optimizer and set learning rate lr, weight decay as 0.001 and 5e−4,
respectively. All baselines follow the same setting except for the layer number of
128. We run each experiment on the same random seeds to ensure reproducibility.
Model training is done on NVIDIA GeForce RTX 3090 (24 GB) GPU with 90 GB
memory. The code depends on PyTorch 1.7.0 and PyG 2.0.4.
Evaluation Metric. The quality of classification is assessed by average accu-
racy, AUC-ROC, and F1 scores. Each experiment is repeated five times to avoid
randomness and compute the final value.
Baselines. We evaluate our approach with representative and state-of-the-
art approaches, including three classic GNN models (GCN [7], GAT [17],
GraphSage [4]) using three traditional imbalance techniques (Over-sampling,
Re-weight, SMOTE [1]), original GBK-GNN [2], GraphSMOTE [19], and
TAM [16] (we choose the combination of GCN+TAM+Balanced Softmax and
GCN+TAM+ENS, referred to as GCN-TAM-BS and GCN-TAM-ENS, respec-
tively).

5.2 Comparisons with Baselines (RQ1)

In this section, we analyze the performance of classic graph neural networks
(GNNs) and traditional imbalance learning approaches. As shown in the learn-
ing objective (Sect. 4.1), λ plays an important role in the tradeoff between clas-
sification error and consistency. Thus, we first explore the impact of hyperpa-
rameter λ on the performance. We set λ between 0 and 5 with an interval of
0.5 and the results are shown in Fig. 2. According to our analysis, the impact of
λ on the results is insignificant if it is not 0. Therefore, in the following exper-
iments, we always set λ = 1, considering the overall trends for both methods
on all datasets. We examine the performance of different models. The results
are reported in Table 2 and Table 3 on original datasets and extreme datasets,
respectively. From the results, it can be observed that:

– The experiment demonstrates that Im-GBK models, which use logit adjust
loss and balanced softmax (denoted as Im-GBK (LogitAdj) and Im-GBK
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Table 2. Comparison of different methods on original datasets.

Cora CiteSeer Wiki Coauthor-CS

ACC AUC F-1 ACC AUC F-1 ACC AUC F-1 ACC AUC F-1

GCN 0.853 0.981 0.847 0.719 0.905 0.687 0.664 0.875 0.592 0.935 0.995 0.914

GCN+SMOTE 0.855 0.980 0.848 0.709 0.904 0.673 0.649 0.865 0.605 0.939 0.996 0.921

GCN+Re-weight 0.848 0.981 0.840 0.712 0.905 0.683 0.672 0.873 0.631 0.935 0.996 0.915

GAT 0.853 0.969 0.846 0.730 0.896 0.702 0.243 0.643 0.191 0.889 0.975 0.822

GAT+SMOTE 0.839 0.970 0.822 0.716 0.876 0.687 0.281 0.691 0.250 0.370 0.721 0.185

GAT+Re-weight 0.827 0.965 0.821 0.703 0.888 0.677 0.125 0.580 0.111 0.913 0.987 0.891

GraphSAGE 0.805 0.968 0.780 0.697 0.895 0.676 0.691 0.877 0.578 0.905 0.988 0.829

GraphSAGE+SMOTE 0.798 0.971 0.776 0.724 0.902 0.702 0.693 0.884 0.688 0.633 0.947 0.397

GraphSAGE+Re-weight 0.794 0.966 0.769 0.703 0.888 0.677 0.668 0.884 0.563 0.898 0.986 0.816

GraphSMOTE 0.872 0.984 0.864 0.769 0.929 0.741 0.569 0.859 0.440 0.940 0.996 0.926

GCN-TAM 0.878 0.931 0.868 0.752 0.840 0.727 0.651 0.823 0.563 0.929 0.956 0.914

GBK-GNN-BS 0.876 0.974 0.866 0.730 0.915 0.707 0.681 0.881 0.611 0.936 0.997 0.918

Im-GBK (LogitAdj) 0.866 0.979 0.853 0.728 0.912 0.699 0.674 0.887 0.622 0.932 0.996 0.912

Im-GBK (BLSM) 0.861 0.979 0.846 0.721 0.909 0.700 0.677 0.888 0.615 0.933 0.996 0.914

Fast Im-GBK 0.876 0.988 0.863 0.766 0.926 0.738 0.723 0.911 0.655 0.951 0.997 0.939

(BLSM), respectively), achieve comparable or better results to state-of-the-
art methods in most original datasets. Specifically, in Cora and CiteSeer,
Im-GBK (LogitAdj) and Im-GBK (BLSM) are comparable to GraphSMOTE
and GCN-TAM, while they outperform it on Wiki. Furthermore, Fast Im-
GBK demonstrates superiority on Wiki and Coauthor-CS, and all proposed
methods performed better than the baselines in extremely imbalanced cases.

– The models designed specifically for imbalance problems perform better in the
extreme cases (Cora Extreme and CiteSeer Extreme); refer to Table 3. Our
models show superior performance in extreme circumstances, as indicated
by achieving the best performance consistently w.r.t the most of metrics,
whereas GCN-TAM and GraphSMOTE, as specifically designed models for
the imbalanced classification task, also exhibit their capabilities in differenti-
ating minority classes.

– Models designed to account for graph heterophily generally outperform clas-
sic GNNs and modified classic GNNs. This also empirically validates the
rationality of using heterophilic neighborhoods for imbalanced classification
to some extent.

Overall, the experiment demonstrates that the proposed methods are effective
in imbalanced node classification and offer better or comparable performance to
state-of-the-art. In extreme cases, our approaches outperform and show a better
capability in differentiating minority classes.

5.3 Comparison in Efficiency (RQ2)

Section 3 showed that the proposed Im-GBK model could be time-consuming
due to its second loss function component. To address this, we replace the ker-
nel selection process by using a graph-level homophily ratio. Table 5 presents
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Table 3. Comparison of different methods on extreme datasets.

Cora Extreme CiteSeer Extreme

ACC AUC F-1 ACC AUC F-1

GCN 0.746 0.929 0.647 0.697 0.877 0.607

GCN+SMOTE 0.745 0.930 0.648 0.699 0.877 0.610

GCN+Re-weight 0.756 0.934 0.667 0.700 0.878 0.612

GAT 0.679 0.878 0.532 0.694 0.880 0.605

GAT+SMOTE 0.653 0.861 0.427 0.677 0.847 0.593

GAT+Re-weight 0.689 0.869 0.516 0.681 0.873 0.596

GraphSAGE 0.657 0.873 0.498 0.682 0.866 0.596

GraphSAGE+SMOTE 0.671 0.884 0.494 0.680 0.871 0.593

GraphSAGE+Re-weight 0.674 0.878 0.509 0.687 0.873 0.598

GraphSMOTE 0.770 0.928 0.674 0.703 0.893 0.612

GCN-TAM-BS 0.829 0.888 0.797 0.718 0.801 0.649

GCN-TAM-ENS 0.790 0.884 0.769 0.680 0.797 0.659

GBK-GNN 0.692 0.905 0.521 0.696 0.892 0.607

Im-GBK (LogitAdj) 0.717 0.914 0.599 0.703 0.896 0.615

Im-GBK (BLSM) 0.800 0.931 0.761 0.705 0.897 0.655

Fast Im-GBK 0.727 0.941 0.570 0.737 0.899 0.641

Fig. 2. Experimental results on Cora (extreme)

training time comparisons, revealing that models using gate-selection mecha-
nisms, like GBK-GNN and Im-GBK, require significantly more training time.
For example, while most models could complete one epoch within 1 s, GBK-
GNN and Im-GBK took over 10 s and around 160 s to train one epoch on the
CS dataset. GraphSMOTE also requires more time than Fast Im-GBK because
it has to generate several synthetic nodes for each minority class. However, the
results demonstrate that our proposed Fast Im-GBK model shows a significant
reduction in training time compared to GBK-GNN and GraphSMOTE.
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Table 4. Ablation Experiment Results

Class-Imbalance Handling Loss Heterophily
Handling

ACC AUC F1

Logit adjusted loss Balanced Softmax

× × × 0.697 0.877 0.607

× × √
0.696 0.892 0.607

× √ × 0.710 0.871 0.618

× √ √
0.705 0.897 0.655√ × × 0.667 0.872 0.566√ × √
0.703 0.896 0.615

5.4 Ablation Analysis (RQ3)

Subsection 5.3 showed that the proposed method exhibits clear advantages in
performance compared to other baselines in differentiating minority classes for
extremely imbalanced graphs. To further investigate the fundamental factors
underlying the performance improvements of our proposed method in Im-GBK,
we conduct ablation analyses using one of the extreme cases, CiteSeer Extreme.
We show the effectiveness of the model handling class imbalance classifica-
tion by ablating the model Class-Imbalance Handler and Heterophily Handler,
respectively. In Table 4, ‘Class-Imbalance Handling Loss’ represents two Class-
Imbalance Handling losses introduced in Sect. 4.1. ‘Heterophily handling’ refers
to the method introduced in Sect. 4.1 to capture graph heterophily, and ‘×’
means this part is ablated. Considering all strategies, it can be observed from
Table 4 that either dropping ‘Class-Imbalance Handling Loss’ or ‘Heterophily
handling’ components will result in a decrease in performance.

6 Conclusion

Table 5. Average Execution
Time (s) per epoch on CS.

Time
GCN 0.0166
GAT 0.1419
GraphSage 0.0135
GraphSMOTE 5.309
Fast Im-GBK 0.5897
GBK-GNN 12.320
Im-GBK (LogitAdj) 11.594
Im-GBK (BLSM) 11.271

In this paper, we studied the problem of imbal-
anced classification on graphs from the perspec-
tive of graph heterophily. We observed that if
a model cannot handle heterophilic neighbor-
hoods in graphs, its ability to address imbal-
anced classification will be impaired. To address
the graph imbalance problem effectively, we
proposed a novel framework, Im-GBK, and
its faster version, Im-GBK, that simultane-
ously tackles heterophily and class imbalance.
Our framework overcomes the limitations of
previous techniques by achieving higher effi-
ciency while maintaining comparable perfor-
mance. Extensive experiments are conducted on various real-world datasets,
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demonstrating that our model outperforms most baselines. Furthermore, a com-
prehensive parameter analysis is performed to validate the efficacy of our app-
roach. In future research, we aim to explore alternative methods for modeling
graph heterophily and extend our approach to real-world applications, such as
fraud and spammer detection.
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Abstract. Time series forecasting lies at the core of important real-
world applications in many fields of science and engineering. The abun-
dance of large time series datasets that consist of complex patterns and
long-term dependencies has led to the development of various neural net-
work architectures. Graph neural network approaches, which jointly learn
a graph structure based on the correlation of raw values of multivariate
time series while forecasting, have recently seen great success. However,
such solutions are often costly to train and difficult to scale. In this paper,
we propose TimeGNN, a method that learns dynamic temporal graph
representations that can capture the evolution of inter-series patterns
along with the correlations of multiple series. TimeGNN achieves infer-
ence times 4 to 80 times faster than other state-of-the-art graph-based
methods while achieving comparable forecasting performance.

Keywords: Time Series Forecasting · Graph Structure Learning ·
GNNs

1 Introduction

From financial investment and market analysis [6] to traffic [21], electricity man-
agement, healthcare [4], and climate science, accurately predicting the future real
values of series based on available historical records forms a coveted task over
time in various scientific and industrial fields. There are a wide variety of meth-
ods employed for time series forecasting, ranging from statistical [2] to recent deep
learning approaches [22]. However, there are several major challenges present.
Real-world time series data are often subject to noisy and irregular observations,
missing values, repeated patterns of variable periodicities and very long-term
dependencies. While the time series are supposed to represent continuous phenom-
ena, the data is usually collected using sensors. Thus, observations are determined
by a sampling rate with potential information loss. On the other hand, standard
sequential neural networks, such as recurrent (RNNs) [27] and convolutional net-
works (CNNs) [20], are discrete and assume regular spacing between observations.
Several continuous analogues of such architectures that implicitly handle the time
information have been proposed to address irregularly sampled missing data [26].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1141, pp. 87–99, 2024.
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The variable periodicities and long-term dependencies present in the data make
models prone to shape and temporal distortions, overfitting and poor local min-
ima while training with standard loss functions (e. g., MSE). Variants of DTW
and MSE have been proposed to mitigate these phenomena and can increase the
forecasting quality of deep neural networks [16,19].

A novel perspective for boosting the robustness of neural networks for com-
plex time series is to extract representative embeddings for patterns after trans-
forming them to another representation domain, such as the spectral one. Spec-
tral approaches have seen much use in the text domain. Graph-based text mining
(i. e., Graph-of-Words) [25] can be used for capturing the relationships between
the terms and building document-level representations. It is natural, then, that
such approaches might be suitable for more general sequence modeling. Capital-
izing on the recent success of graph neural networks (GNNs) on graph structured
data, a new family of algorithms jointly learns a correlation graph between inter-
related time series while simultaneously performing forecasting [3,29,32]. The
nodes in the learnable graph structure represent each individual time series and
the links between them express their temporal similarities. However, since such
methods rely on series-to-series correlations, they do not explicitly represent the
inter-series temporal dynamics evolution. Some preliminary studies have pro-
posed simple computational methods for mapping time series to temporal graphs
where each node corresponds to a time step, such as the visibility graph [17] and
the recurrence network [7].

In this paper, we propose a novel neural network, TimeGNN, that extends
these previous approaches by jointly learning dynamic temporal graphs for time
series forecasting on raw data. TimeGNN (i) extracts temporal embeddings
from sliding windows of the input series using dilated convolutions of differ-
ent receptive sizes, (ii) constructs a learnable graph structure, which is forward
and directed, based on the similarity of the embedding vectors in each window
in a differentiable way, (iii) applies standard GNN architectures to learn embed-
dings for each node and produces forecasts based on the representation vector of
the last time step. We evaluate the proposed architecture on various real-world
datasets and compare it against several deep learning benchmarks, including
graph-based approaches. Our results indicate that TimeGNN is significantly less
costly in both inference and training while achieving comparable forecasting per-
formance. The code implementation for this paper is available at https://github.
com/xun468/Time-GNN.

2 Related Work

Time Series Forecasting Models. Time series forecasting has been a long-
studied challenge in several application domains. In terms of statistical methods,
linear models including the autoregressive integrated moving average (ARIMA)
[2] and its multivariate extension, the vector autoregressive model (VAR) [10]
constitute the most dominant approaches. The need for capturing non-linear
patterns and overcoming the strong assumptions for statistical methods, e. g.,
the stationarity assumption, has led to the application of deep neural networks,

https://github.com/xun468/Time-GNN
https://github.com/xun468/Time-GNN
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initially introduced in sequential modeling, to the time series forecasting setting.
Those models include recurrent neural networks (RNNs) [27] and their improved
variants for alleviating the vanishing gradient problem, namely the LSTM [12]
and the GRU [5]. An alternative method for extracting long-term dependencies
via large receptive fields can be achieved by leveraging stacked dilated convo-
lutions, as proposed along with the Temporal Convolution Network (TCN) [1].
Bridging CNNs and LSTMs to capture both short-term local dependency pat-
terns among variables and long-term patterns, the Long- and Short-term Time-
series network (LSTNet) [18] has been proposed. For univariate point forecasting,
the recently proposed N-BEATS model [24] introduces a deep neural architecture
based on a deep stack of fully-connected layers with basis expansion. Attention-
based approaches have also been employed for time-series forecasting, including
Transformer [30] and Informer [35]. Finally, for efficient long-term modeling, the
most recent Autoformer architecture [31] introduces an auto-correlation mecha-
nism in place of self-attention, which extracts and aggregates similar sub-series
based on the series periodicity.

Graph Neural Networks. Over the past few years, graph neural networks
(GNNs) have been applied with great success to machine learning problems on
graphs in various fields, including chemistry for drug screening [14] and biology
for predicting the functions of proteins modeled as graphs [9]. The field of GNNs
has been largely dominated by the so-called message passing neural networks
(MPNNs) [8], where each node updates its feature vector by aggregating the
feature vectors of its neighbors. In the case of time series data on arbitrary
known graphs, e. g., in traffic forecasting, several architectures that combine
sequential models with GNNs have been proposed [21,28,33,34].

Joint Graph Structure Learning and Forecasting. However, since spatial-
temporal forecasting requires an apriori topology which does not apply in the
case of most real-world time series datasets, graph structure learning has arisen
as a viable solution. Recent models perform joint graph learning and forecast-
ing for multivariate time series data using GNNs, intending to capture temporal
patterns and exploit the interdependency among time series while predicting the
series’ future values. The most dominant algorithms include NRI [15], MTGNN
[32] and GTS [29], in which the graph nodes represent the individual time series
and their edges represent their temporal evolution. MTGNN obtains the graph
adjacency from the as a degree-k structure from the pairwise scores of embed-
dings of each series in the multivariate collection, which might pose challenges
to end-to-end learning. On the other hand, NRI and GTS employ the Gumbel
softmax trick [13] to differentiably sample a discrete adjacency matrix from the
edge probabilities. Both models compute fixed-size representations of each node
based on the time series, with the former dynamically producing the representa-
tions per individual window and the latter extracting global representations from
the whole training series. MTGNN combines temporal convolution with graph
convolution layers, and GTS uses a Diffusion Convolutional Recurrent Neural
Network (DCRNN) [21], where the hidden representations of nodes are diffused
using graph convolutions at each step.
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Fig. 1. The proposed TimeGNN framework time series for graph learning from raw
time series and forecasting based on embeddings learned on the parameterized graph
structures.

3 Method

Let {Xi,1:T }m
i=1 be a multivariate time series that consists of m channels and

has a length equal to T . Then, Xt ∈ R
m represents the observed values at time

step t. Let also G denote the set of temporal dynamic graph structures that we
want to infer.

Given the observed values of τ previous time steps of the time series, i. e.,
Xt−τ , . . . ,Xt−1, the goal is to forecast the next h time steps (e. g., h = 1 for
1-step forecasting), i. e., X̂t, X̂t+1, . . . , X̂t+h−1. These values can be obtained
by the forecasting model F with parameters Φ and the graphs G as follows:

X̂t, X̂t+1, . . . , X̂t+h−1 = F(Xt−τ , . . . ,Xt−1;G;Φ) (1)

3.1 Time Series Feature Extraction

Unlike previous methods which extract one feature vector per variable in the
multivariate input, our method extracts one feature vector per time step in each
window k of length τ . Temporal sub-patterns are learned using stacked dilated
convolutions, similar to the main blocks of the inception architecture [23].

Given the sliding windows S = {Xt−τ+k−K , . . . ,Xt+k−K−1}K
k=1, we perform

the following convolutional operations to extract three feature maps fk
0 , fk

1 , fk
2 ,

per window Sk. Let fk
i ∈ R

τ×d for hidden dimension d of the convolutional
kernels, such that:

fk
0 = Sk ∗ C1,1

0 + b01

fk
1 = (Sk ∗ C1,1

1 + b11) ∗ C3,3
2 + b23

fk
2 = (Sk ∗ C1,1

2 + b21) ∗ C5,5
2 + b25

(2)

where ∗ the convolutional operator, C1,1
0 , C1,1

1 , C1,1
2 convolutional kernels of size

1 and dilation rate 1, C3,3
2 a convolutional kernel of size 3 and dilation rate 3, C5,5

2
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a convolutional kernel of size 5 and dilation rate 5, and b01,b11,b21,b23,b25 the
corresponding bias terms.

The final representations per window k are obtained using a fully connected
layer on the concatenated features fk

0 , fk
1 , fk

2 , i. e., zk = FC(fk
0 ‖fk

1 ‖fk
2 ), such that

zk ∈ R
τ×d. In the next sections, we refer to each time step of the hidden represen-

tation of the feature extraction module in each window k as zk
i ,∀ i ∈ {1, . . . τ}.

3.2 Graph Structure Learning

The set G = {Gk}, k ∈ N
∗ describes the collection of graph structures that are

parameterized for all individual sliding window of length τ of the series, where
K defines the total number of windows. The goal of the graph learning module
is to learn each adjacency matrix Ak ∈ {0, 1}τ×τ for a temporal window of
observations Sk. Following the works of [15,29], we use the Gumbel softmax
trick to sample a discrete adjacency matrix as described below.

For the Gumbel softmax trick, let Ak refer to a random variable of the matrix
Bernoulli distribution parameterized by θk ∈ [0, 1]τ×τ , so that Ak

ij ∼ Ber(θk
ij)

is independent for pairs (i, j). By applying the Gumbel reparameterization trick
[13] for enabling differentiability in sampling, we can obtain the following:

Ak
ij = σ((log(θk

ij/(1 − θk
ij)) + (g1

i,j − g2
i,j))/s),

g1
i,j ,g

2
i,j ∼ Gumbel(0, 1),∀ i, j

(3)

where g1
i,j ,g

2
i,j are vectors of i.i.d samples drawn from Gumbel distribution, σ

is the sigmoid activation and s is a parameter that controls the smoothness of
samples, so that the distribution converges to categorical values as s −→ 0.

The link predictor takes each pair of extracted features (zk
i , zk

j ) of window
k and maps their similarity to a θk

ij ∈ [0, 1] by applying fully connected layers.
Then the Gumbel reparameterization trick is used to approximate a sigmoid
activation function while retaining differentiability:

θk
ij = σ

(
FC

(
FC(zk

i ‖zk
j )

))
(4)

In order to obtain directed and forward (i. e., no look-back in previous time steps
in the history) graph structures G we only learn the upper triangular part of the
adjacency matrices.

3.3 Graph Neural Network for Forecasting

Once the collection G of learnable graph structures per sliding window k are
sampled, standard GNN architectures can be applied for capturing the node-to-
node relations, i. e., the temporal graph dynamics. GraphSAGE [11] was chosen
as the basic building GNN block of the node embedding learning architecture
as it can effectively generalize across different graphs with the same attributes.
GraphSAGE is an inductive framework that exploits node feature information
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and generates node embeddings (i. e., hu for node u) via a learnable function,
by sampling and aggregating features from a node’s local neighborhood (i. e.,
N (u)).

Let (Vk, Ek) correspond to the set of nodes and edges of the learnable
graph structure for each Gk. The node embedding update process for each
p ∈ {1, . . . , P} aggregation steps, employs the mean-based aggregator, namely
convolutional, by calculating the element-wise mean of the vectors in {hp−1

u ,∀u ∈
N (u)}, such that:

hp
u ←− σ(W · MEAN({hp−1

u } ∪ {hp−1
u ∀u ∈ N (u)})) (5)

where W trainable weights. The final normalized (i. e., h̃p
u) representation of

the last node (i. e., time step) in each forward and directed graph denoted as
zuT

= h̃p
uT

is passed to the output module. The output module consists of two
fully connected layers which reduce the vector into the final output dimension, so
as to correspond to the forecasts X̂t, X̂t+1, . . . , X̂t+h−1. Figure 1 demonstrates
the feature extraction, graph learning, GNN and output modules of the proposed
TimeGNN architecture.

3.4 Training and Inference

To train the parameters of Eq. (1) for the time series point forecasting task,
we use the mean absolute error loss (MAE). Let X̂(i), i ∈ {1, ...,K} denote the
predicted vector values for K samples, then the MAE loss is defined as:

L =
1
K

K∑
i=1

‖X̂(i) − X(i)‖

The optimized weights for the feature extraction, graph structure learning,
GNN and output modules are selected based on the minimum validation loss dur-
ing training, which is evaluated as described in the experimental setup (Sect. 4.3)

4 Experimental Evaluation

We next describe the experimental setup, including the datasets and baselines
used for comparisons. We also demonstrate and analyze the results obtained by
the proposed TimeGNN architecture and the baseline models.

4.1 Datasets

This work was evaluated on the following multivariate time series datasets:

Exchange-Rate which consists of the daily exchange rates of 8 countries from
1990 to 2016, following the preprocessing of [18].
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Fig. 2. Computation costs of TimeGNN, TimeMTGNN and baseline models. (a) The
inference and epoch training time per epoch between datasets. (b) The inference and
epoch times with varying window sizes on the weather dataset

Weather that contains hourly observations of 12 climatological features over a
period of four years1, preprocessed as in [35].

Electricity-Load is based on the UCI Electricity Consuming Load dataset2

that records the electricity consumption of 370 Portuguese clients from 2011 to
2014. As in [35], the recordings are binned into hourly intervals over the period
of 2012 to 2014 and incomplete clients are removed.

Solar-Energy contains the solar power production records in 2006, sampled
every 10 minutes from 137 PV plants in Alabama State3.

Traffic is a collection of 48 months, between 2015 and 2016, of hourly data
from the California Department of Transportation4. The data describes the road
occupancy rates (between 0 and 1) measured by different sensors.

4.2 Baselines

We consider five baseline models for comparison with our TimeGNN proposed
architecture. We chose two graph-based methods, MTGNN [32] and GTS [29],
and three non graph-based methods, LSTNet [18], LSTM [12], and TCN [1].
Also, we evaluate the performance of TimeMTGNN, a variant of MTGNN that
includes our proposed graph learning module. LSTM and TCN follow the size
of the hidden dimension and number of layers of TimeGNN. Those were fixed
to three layers with hidden dimensions of 32, 64 for the Exchange-Rate and

1 https://www.ncei.noaa.gov/data/local-climatological-data/.
2 https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014.
3 http://www.nrel.gov/grid/solar-power-data.html.
4 http://pems.dot.ca.gov.

https://www.ncei.noaa.gov/data/local-climatological-data/
https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams20112014
http://www.nrel.gov/grid/solar-power-data.html
http://pems.dot.ca.gov
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Weather datasets and 128 for Electricity, Solar-Energy and Traffic. In the case
of MTGNN, GTS, and LSTNet, parameters were kept as close as possible to the
ones mentioned in their experimental setups.

4.3 Experimental Setup

Each model is trained for two runs for 50 epochs and the average mean squared
error (MSE) and mean absolute error (MAE) score on the test set are recorded.
The model chosen for evaluation is the one that performs the best on the val-
idation set during training. The same dataloader is used for all models where
the train, validation, and test splits are 0.7, 0.1, and 0.2 respectively. The data
is split first and each split is scaled using the standard scalar. The dataloader
uses windows of length 96 and batch size 16. The forecasting horizons tested
are 1, 3, 6, and 9 time steps into the future, where the exact value of the time
step is dependent on the dataset (e. g., 3 time steps would correspond to 3 h into
the future for the weather dataset and 3 days into the future for the Exchange
dataset). In this paper, we use single-step forecasting for ease of comparison
with other baseline methods. For training, we use the Adam optimizer with
a learning rate of 0.001. Experiments for the Weather and Exchange datasets
were conducted on an NVIDIA T4 and Electricity-Load, Solar, and Traffic on
an NVIDIA A40.

4.4 Results

Scalability. We compare the inference and training times of the graph-based
models TimeGNN, MTGNN, GTS in Fig. 2. These figures also include record-
ings from the ablation study of the TimeMTGNN variant, which is described in
the relevant paragraph below. Figure 2(a) shows the computational costs on each
dataset. Among the baseline models, GTS is the most costly in both inference
and training time due to the use of the entire training dataset for graph con-
struction. In contrast, MTGNN learns static node features and is subsequently
more efficient. In inference time, as the number of variables increases there is a
noticeable increase in inference time for MTGNN and GTS as their graph sizes
also increase. TimeGNN’s graph does not increase in size with the number of
variables and consequently, the inference time scales well across datasets. The
training epoch times follow the observations in inference time.

Since the size of the graphs used by TimeGNN is based on window size, the
cost of increasing the window size on the weather dataset is shown in Fig. 2(b).
As the window size increases, so does the cost of inference and training for all
models. As the graph learning modules for MTGNN and GTS do not inter-
act with the window size, the increase in cost can primarily be attributed to
their forecasting modules. MTGNN’s inference times do not increase as dramat-
ically as GTS’s, implying a more robust forecasting module. As the window size
increases, TimeGNN’s inference and training cost growth is slower than the other
methods and remains the fastest of the GNN methods. The time-based graph
learning module does not become overly cumbersome as window sizes increase.



TimeGNN: Temporal Dynamic Graph Learning for Time Series Forecasting 95

Table 1. Forecasting performance for all multivariate datasets and baselines for dif-
ferent horizons h - best in bold, second best underlined.

Exchange-Rate

Metric LSTM TCN LSTN GTS MTGNN TimeGNN TimeMTGNN

h = 1 mse 0.328 ± 0.007 0.094 ± 0.118 0.004 ± 0.000 0.005 ± 0.001 0.006 ± 0.002 0.129 ± 0.012 0.004 ± 0.001

mae 0.475 ± 0.033 0.191 ± 0.163 0.033 ± 0.000 0.041 ± 0.004 0.048 ± 0.011 0.294 ± 0.029 0.034 ± 0.005

h = 3 mse 0.611 ± 0.001 0.063 ± 0.035 0.013 ± 0.003 0.009 ± 0.000 0.012 ± 0.000 0.368 ± 0.059 0.008 ± 0.001

mae 0.631 ± 0.031 0.190 ± 0.041 0.078 ± 0.012 0.063 ± 0.000 0.078 ± 0.000 0.501 ± 0.045 0.061 ± 0.003

h = 6 mse 0.877 ± 0.105 0.189 ± 0.221 0.033 ± 0.005 0.014 ± 0.001 0.024 ± 0.001 0.354 ± 0.031 0.019 ± 0.004

mae 0.775 ± 0.032 0.290 ± 0.214 0.139 ± 0.008 0.081 ± 0.005 0.111 ± 0.000 0.453 ± 0.052 0.099 ± 0.016

h = 9 mse 0.823 ± 0.118 0.123 ± 0.030 0.030 ± 0.006 0.020 ± 0.001 0.035 ± 0.003 0.453 ± 0.149 0.034 ± 0.002

mae 0.743 ± 0.080 0.277 ± 0.037 0.124 ± 0.011 0.096 ± 0.001 0.140 ± 0.008 0.543 ± 0.084 0.139 ± 0.010

Weather

Metric LSTM TCN LSTN GTS MTGNN TimeGNN TimeMTGNN

h = 1 mse 0.162 ± 0.001 0.176 ± 0.006 0.193 ± 0.001 0.209 ± 0.003 0.232 ± 0.008 0.178 ± 0.001 0.182 ± 0.003

mae 0.202 ± 0.003 0.220 ± 0.011 0.236 ± 0.002 0.213 ± 0.004 0.230 ± 0.002 0.185 ± 0.000 0.186 ± 0.000

h = 3 mse 0.221 ± 0.000 0.232 ± 0.003 0.233 ± 0.001 0.320 ± 0.005 0.263 ± 0.003 0.234 ± 0.001 0.234 ± 0.002

mae 0.265 ± 0.000 0.275 ± 0.000 0.285 ± 0.000 0.320 ± 0.001 0.273 ± 0.000 0.249 ± 0.001 0.251 ± 0.001

h = 6 mse 0.268 ± 0.004 0.274 ± 0.002 0.266 ± 0.001 0.374 ± 0.003 0.301 ± 0.003 0.287 ± 0.002 0.282 ± 0.007

mae 0.320 ± 0.004 0.323 ± 0.001 0.321 ± 0.000 0.388 ± 0.002 0.311 ± 0.002 0.297 ± 0.001 0.300 ± 0.003

h = 9 mse 0.292 ± 0.007 0.307 ± 0.009 0.288 ± 0.000 0.399 ± 0.002 0.329 ± 0.001 0.316 ± 0.001 0.311 ± 0.002

mae 0.342 ± 0.003 0.350 ± 0.005 0.345 ± 0.003 0.420 ± 0.004 0.339 ± 0.004 0.331 ± 0.001 0.331 ± 0.001

Electricity-Load

Metric LSTM TCN LSTN GTS MTGNN TimeGNN TimeMTGNN

h = 1 mse 0.226 ± 0.002 0.267 ± 0.001 0.064 ± 0.001 0.135 ± 0.002 0.046 ± 0.000 0.211 ± 0.003 0.047 ± 0.000

mae 0.323 ± 0.000 0.375 ± 0.002 0.167 ± 0.001 0.246 ± 0.001 0.131 ± 0.000 0.309 ± 0.001 0.135 ± 0.000

h = 3 mse 0.255 ± 0.001 0.329 ± 0.015 0.065 ± 0.001 0.303 ± 0.019 0.079 ± 0.001 0.179 ± 0.003 0.077 ± 0.000

mae 0.339 ± 0.000 0.406 ± 0.013 0.163 ± 0.002 0.388 ± 0.019 0.171 ± 0.000 0.320 ± 0.002 0.173 ± 0.000

h = 6 mse 0.253 ± 0.005 0.331 ± 0.010 0.125 ± 0.006 0.334 ± 0.000 0.097 ± 0.000 0.246 ± 0.004 0.104 ± 0.015

mae 0.340 ± 0.006 0.408 ± 0.009 0.238 ± 0.005 0.413 ± 0.000 0.189 ± 0.001 0.332 ± 0.004 0.200 ± 0.016

h = 9 mse 0.271 ± 0.009 0.349 ± 0.022 0.144 ± 0.013 0.289 ± 0.021 0.108 ± 0.002 0.258 ± 0.010 0.104 ± 0.001

mae 0.351 ± 0.003 0.410 ± 0.019 0.251 ± 0.013 0.368 ± 0.020 0.198 ± 0.002 0.344 ± 0.007 0.196 ± 0.001

Solar-Energy

Metric LSTM TCN LSTN GTS MTGNN TimeGNN TimeMTGNN

h = 1 mse 0.019 ± 0.000 0.012 ± 0.000 0.007 ± 0.000 0.012 ± 0.001 0.006 ± 0.000 0.022 ± 0.000 0.006 ± 0.000

mae 0.064 ± 0.000 0.055 ± 0.001 0.035 ± 0.000 0.046 ± 0.003 0.026 ± 0.000 0.059 ± 0.000 0.026 ± 0.000

h = 3 mse 0.031 ± 0.000 0.030 ± 0.001 0.026 ± 0.000 0.044 ± 0.001 0.022 ± 0.002 0.030 ± 0.000 0.022 ± 0.000

mae 0.086 ± 0.002 0.087 ± 0.004 0.080 ± 0.000 0.098 ± 0.003 0.058 ± 0.002 0.071 ± 0.000 0.058 ± 0.000

h = 6 mse 0.046 ± 0.001 0.050 ± 0.000 0.049 ± 0.004 0.103 ± 0.001 0.042 ± 0.000 0.044 ± 0.000 0.043 ± 0.002

mae 0.108 ± 0.005 0.121 ± 0.005 0.125 ± 0.013 0.163 ± 0.001 0.086 ± 0.001 0.090 ± 0.000 0.088 ± 0.004

h = 9 mse 0.067 ± 0.003 0.073 ± 0.001 0.068 ± 0.000 0.167 ± 0.003 0.055 ± 0.001 0.060 ± 0.002 0.060 ± 0.000

mae 0.138 ± 0.009 0.150 ± 0.005 0.154 ± 0.004 0.218 ± 0.006 0.101 ± 0.001 0.109 ± 0.001 0.110 ± 0.000

Traffic

Metric LSTM TCN LSTN GTS MTGNN TimeGNN TimeMTGNN

h = 1 mse 0.558 ± 0.007 0.594 ± 0.091 0.246 ± 0.002 0.520 ± 0.010 0.233 ± 0.003 0.567 ± 0.002 0.293 ± 0.026

mae 0.296 ± 0.005 0.352 ± 0.025 0.203 ± 0.002 0.319 ± 0.013 0.157 ± 0.002 0.281 ± 0.000 0.162 ± 0.001

h = 3 mse 0.595 ± 0.014 0.615 ± 0.002 0.447 ± 0.010 0.970 ± 0.027 0.438 ± 0.001 0.622 ± 0.006 0.465 ± 0.012

mae 0.318 ± 0.007 0.363 ± 0.003 0.286 ± 0.009 0.456 ± 0.010 0.205 ± 0.000 0.306 ± 0.002 0.218 ± 0.007

h = 6 mse 0.603 ± 0.001 0.680 ± 0.021 0.465 ± 0.005 0.938 ± 0.048 0.450 ± 0.009 0.623 ± 0.004 0.495 ± 0.012

mae 0.321 ± 0.003 0.403 ± 0.013 0.288 ± 0.002 0.461 ± 0.023 0.213 ± 0.003 0.311 ± 0.007 0.239 ± 0.001

h = 9 mse 0.614 ± 0.011 0.655 ± 0.017 0.467 ± 0.010 0.909 ± 0.024 0.471 ± 0.000 0.622 ± 0.002 0.494 ± 0.000

mae 0.329 ± 0.010 0.382 ± 0.014 0.290 ± 0.006 0.453 ± 0.016 0.220 ± 0.002 0.313 ± 0.002 0.236 ± 0.005

Forecasting Quality. Table 1 summarizes the forecasting performance of the
baseline models and TimeGNN for different horizons h ∈ {1, 3, 6, 9}.

In general, GTS has the best forecasting performance on the smaller
Exchange-Rate dataset. The use of the training data during graph construction
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may give GTS an advantage over the other methods on this dataset. TimeGNN
however shows signs of overfitting during training and is unable to match the
other two GNNs. On the Weather dataset, the purely recurrent methods per-
form the best in MSE score across all horizons. TimeGNN is competitive with
the recurrent methods on these metrics and surpasses the recurrent models on
MAE. This suggests TimeGNN is producing more significant outlier predictions
than the recurrent methods and TimeGNN is the best performing GNN method.

On the larger Electricity-Load, Solar-Energy, and Traffic datasets, in general,
MTGNN is the top performer with LSTNet close behind. However, for larger
horizons, TimeGNN performs better than GTS and competitively with LSTNet
and the other recurrent models. This shows that time-domain graphs can suc-
cessfully capture long-term dependencies within a dataset although TimeGNN
struggles more with short-term predictions. This could also be attributed to the
simplicity of TimeGNN’s forecasting module compared to the other graph-based
approaches.

Ablation Study. To empirically examine the effects of the forecasting mod-
ule and the representation power of the proposed graph construction module
in TimeGNN, we conducted an ablation study where we replaced MTGNN’s
graph construction module with our own, so-called TimeMTGNN baseline. The
remaining modules and the hyperparameters in TimeMTGNN are kept as sim-
ilar as possible to MTGNN. TimeMTGNN shows comparable forecasting per-
formance to MTGNN on the larger Electricity-Load, Solar-Energy, and Traffic
datasets and higher performance on the smaller Exchange-Rate and Weather
datasets. This shows the TimeGNN graph construction module is capable of
learning meaningful graph representations that do not impede and in some cases
improve forecasting quality. As seen in Fig. 2, the computational performance of
TimeMTGNN suffers in comparison to MTGNN. A major contributing factor
is the number of graphs produced. MTGNN learns a single graph for a dataset
while TimeGNN produces one graph per window, accordingly, the number of
GNN operations is greatly increased. However, the focus of this experiment
was to confirm that the proposed temporal graph-learning module preserves
or improves accuracy over static ones rather than to optimize efficiency.

5 Conclusion

We have presented a novel method of representing and dynamically generat-
ing graphs from raw time series. While conventional methods construct graphs
based on the variables, we instead construct graphs such that each time step is
a node. We use this method in TimeGNN, a model consisting of a graph con-
struction module and a simple GNN-based forecasting module, and examine its
performance against state-of-the-art neural networks. While TimeGNN’s rela-
tive performance differs between datasets, this representation is clearly able to
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capture and learn the underlying properties of time series. Additionally, it is far
faster and more scalable than existing graph methods as both the number of
variables and the window size increase.
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Abstract. Graph Neural Networks (GNNs) have demonstrated state-
of-the-art performance in various graph representation learning tasks.
Recently, studies revealed their vulnerability to adversarial attacks.
While the available attack strategies are based on applying perturbations
on existing graphs within a specific budget, proposed defense mechanisms
successfully guard against this type of attack. This paper proposes a new
perspective founded on unrestricted adversarial examples. We propose
to produce adversarial attacks by generating completely new data points
instead of perturbing existing ones. We introduce a framework, so-called
UnboundAttack, leveraging the advancements in graph generation to
produce graphs preserving the semantics of the available training data
while misleading the targeted classifier. Importantly, our method does
not assume any knowledge about the underlying architecture. Finally,
we validate the effectiveness of our proposed method in a realistic set-
ting related to molecular graphs.

Keywords: Adversarial Attacks · Graph Neural Networks

1 Introduction

In recent years, Graph Neural Networks (GNNs) emerged as an effective app-
roach to learning powerful graph representations. These neural network-based
models, for instance Graph Convolution Networks (GCNs) [11], have shown to be
highly effective in a number of graph-based applications such as drug design [10].
However, recent literature has shown that these architectures can be attacked
by injecting small perturbations into the input [2,22]. These attacks, referred to
as adversarial attacks in the literature, are highly critical, and this vulnerability
has raised tremendous concerns about applying them in safety-critical applica-
tions such as financial and healthcare applications. For example, a malicious user
could exploit this limitations by adding some inaccurate information to social
networks. As a result, several studies focus on developing methods to mitigate
the possible perturbation effects in parallel to these attacks. The proposed meth-
ods include adversarial training [5], enhancing the robustness of an input GNN
through edge pruning [25], and recently proposing robustness certificates [15].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1141, pp. 100–111, 2024.
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The currently available attacks are mainly based to applying small pertur-
bations on either the structure or the node features of the graph [23,26]. Given
that most of the proposed defense strategies enhance the robustness of the classi-
fiers to small perturbations [9], they have shown some success in detecting these
attacks and in limiting their effect. Moreover, most existing approaches formu-
late the problem of generating adversarial attacks as a search or constrained
optimization problem. While the available constrained optimization tools are
easily applicable in continuous input domains (i. e., images), adapting them to
discrete domains such as graphs represents a significant challenge. Furthermore,
in contrast to images, changing the graph structure by adding/deleting an edge
may be infeasible and easily detectable in many settings. For instance, given a
molecular graph where the edges represent chemical bonds, by deleting/adding
an edge, the emerging graph may not represent a realistic molecule anymore.

To tackle the aforementioned limitations, in this paper, we introduce Unboun-
dAttack, a more general and realistic attack mechanism which creates new adver-
sarial examples from scratch instead of just applying perturbations to an input
graph. The approach capitalizes on recent advancements in the field of Gener-
ative Adversarial Networks (GANs) to generate a set of legitimate graphs that
share similar properties with the input graphs. These properties include degree
distribution, diameter and subgraph structures among others. This approach of
producing artificially generated graphs that do not emerge directly from input
samples and which can mislead a targeted victim model is known as unbounded
adversarial attacks. The term “unbounded” in this setting refers to the idea that
these attacks are not directly linked to a specific existing graph but rather to a
more general view of the dataset to be attacked. We validate in an experimental
setting that these attacks can actually mislead the victim classifier but not some
oracle function, thus presenting a major threat for real-world applications. The
proposed framework is general and can operate on top of any GNN. Our main
contributions are summarized as follows:

– We propose UnboundAttack, a generative framework for crafting from scratch
adversarial attacks to pretrained GNNs. The proposed framework assumes no
knowledge about the underlying architecture of the attacked model and may
be applied to an ensemble of available models.

– We designed a realistic experimental setting using molecular data in which
our model is evaluated and we show its effectiveness and ability to generate
realistic and relevant attacks.

2 Related Work

Given the discrete nature of graphs, applying attack methods from other domains
is very challenging. Similarly to the image domain attacks, most available meth-
ods formulate the task as a search problem. The objective of the task is to find
the closest adversarial perturbation to a given input data point. This approach
has led to several proposed attack strategies. For example, Nettack [26] intro-
duced a targeted attack on both the graph structure and nodes features based
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on a greedy optimization algorithm of an attack loss to a surrogate model. In
addition, [27] formulate the problem as a bi-level optimization task and lever-
ages meta-gradients to solve it. [23] expanded this work by proposing a black-box
gradient attack algorithm to overcome several limitations of the original work.
From another perspective, [3] propose to use Reinforcement Learning to solve
the search problem and hence generate adversarial attacks. In the same con-
text, the work [17] proposed to inject fake nodes into the graph and leveraged
Reinforcement Learning to manipulate the labels and links of the injected nodes
without changing the connectivity and other metrics between existing node.
While the majority of the work is focusing on node classification, very few meth-
ods were proposed for the graph classification task. For instance, [18] proposed a
new optimization-based approach to tackle the adversarial attack in a black-box
setting. Moreover, [13] formulated the adversarial attack problem as an optimiza-
tion problem and proposed an efficient solution based on a searching algorithm
and query-efficient gradient. Finally, [24] designed an attack strategy based on
learning a scoring function to rank nodes based on the attacker’s expectation.

Formulating adversarial attacks as an optimal search problem has important
limitations. For example, the search/optimization process should be performed
for each attack input, which generally leads to a limited set of non-diverse pertur-
bations. The attacks are therefore easily detectable by defense mechanisms such
edge pruning [25]. In this perspective, unconstrained optimization approaches
have lately been proposed to tackle these limitations. While the unconstrained
approach has been investigated in other domains, such as images, to our knowl-
edge, it has not been studied for graphs. For instance, [16] proposed synthesizing
unrestricted adversarial images entirely from scratch using a conditional genera-
tive model and [1] proposed to semantically manipulate images to attack models.

3 Preliminaries

Before continuing with our contribution, we begin by introducing the graph
classification problem and some key notation.

3.1 Graph Neural Networks

Let G = (V,E) be a graph where V is its set of vertices and E its set of edges.
We will denote by n = |V | and m = |E| the number of vertices and number of
edges, respectively. Let N (v) denote the set of neighbors of a node v ∈ V , i. e.,
N (v) = {u : (v, u) ∈ E}. The degree of a node is equal to its number of neighbors,
i. e., equal to |N (v)| for a node v ∈ V . A graph is commonly represented by its
adjacency matrix A ∈ R

n×n where the (i, j)-th element of this matrix is equal
to the weight of the edge between the i-th and j-th node of the graph and a
weight of 0 in case the edge does not exist. In some settings, the nodes of a
graph might be annotated with feature vectors. We use X ∈ R

n×K to denote
the node features where K is the feature dimensionality.

A GNN model consists of a series of neighborhood aggregation layers which
use the graph structure and the nodes’ feature vectors from the previous layer
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to generate new representations for the nodes. Specifically, GNNs update nodes’
feature vectors by aggregating local neighborhood information. Suppose we have
a GNN model that contains T neighborhood aggregation layers. Let also h(0)

v

denote the initial feature vector of node v, i. e., the row of matrix X that corre-
sponds to node v. At each iteration (t > 0), the hidden state h(t)

v of a node v is
updated as follows:

a(t)
v = AGGREGATE(t)

({
h(t−1)
u : u ∈ N (v)

})
;h(t)

v = COMBINE(t)
(
h(t−1)
v ,a(t)

v

)

(1)
where AGGREGATE is a permutation invariant function that maps the feature
vectors of the neighbors of a node v to an aggregated vector. This aggregated
vector is passed along with the previous representation of v (i. e., h(t−1)

v ) to the
COMBINE function which combines those two vectors and produces the new
representation of v. After T iterations of neighborhood aggregation, to produce
a graph-level representation, GNNs apply a permutation invariant readout func-
tion, e. g., the sum or mean operator, to nodes feature vectors as follows:

hG = READOUT
({

h(T )
v : v ∈ V

})
(2)

3.2 Adversarial Attacks

Given a classifier f , an input data point G ∈ G and its corresponding label y ∈ Y
where f(G) = y, the goal of an adversarial attack is to produce a perturbed
graph G̃ slightly different from the original graph with its predicted class being
different from the predicted class of G. This could be formulated as finding a G̃
with f(G̃) = ỹ �= y subject to d(G, G̃) < ε with d being some distance function
between the original and perturbed graphs. For instance, d can be a matrix norm
of the difference of the aligned adjacency matrices || A − Ã || (e. g., l∞, l2).

4 Proposed Method: UnboundAttack

4.1 Unbounded Adversarial Attacks

We begin by formally defining what in what follows will be referred to as
unbounded adversarial attacks. Given the set of graphs under consideration G,
let o : O ⊂ G → {1, 2, ..,K} be the oracle from which the true labels of the
graphs Y have been extracted. For instance, this oracle may be a human expert
that uses domain knowledge to determine the category/class of a graph. As pre-
viously mentioned, a classifier denoted as f : G → Y = {1, 2, .., Y } (e. g., a GNN
in our setting) is trained by minimizing a loss function (e. g., cross-entropy loss)
in order to approach and estimate this oracle function. The model f is an esti-
mator of the oracle o and therefore we assume that f �= o. Given a graph G ∈ G,
an adversarial attack consists of finding a graph G̃ = (Ṽ , Ẽ) slightly different
from the original graph with its predicted class being different from the predicted
class of G. In practice, the main objective is to generate a graph G̃ that shares
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Fig. 1. Illustration of the proposed framework UnboundAttack for generating
unbounded adversarial attacks. The framework consists of three main components:
(1) A targeted GNN model; (2) A generator consisting of two MLPs taking a sampled
vector as input. (3) A classifier distinguishing between generated and real graphs.

similar properties with the graphs of the training set (e. g., similar degree distri-
bution, same motifs, etc.) as the graphs in the training set, and which can fool
the classifier but not the oracle. We next define unbounded adversarial attacks.

Definition. (Unbounded adversarial attacks) Given a small constant ε > 0 and
a graph comparison metric d, we define an unbounded adversarial example as a
generated graph G̃ such as f(G̃) �= o(G̃) and ∀G ∈ G, d(G, G̃) < ε.

Notice that this definition can be seen as a generalization of the previous work
on perturbation-based approaches since the generated graph needs to be similar
to all graphs of the dataset. Note that d can be any function that measures
distance of graphs, such as norm of the difference of their aligned adjacency
matrices minP∈Π || A − PÃP� || where Π is the set of permutation matrices.

4.2 Architecture Overview

As discussed, we seek to generate a graph with same characteristics as the graphs
in the training set, for which the model’s prediction differs from the class pro-
vided by the oracle. Our objective can be divided into two parts. The first part
concerns generating realistic graphs with the same proprieties and semantics as
our training set while the second part ensures reaching our adversarial aim.

Recurrent neural networks (RNNs) [21] or other likelihood-based generative
models such as variational auto-encoders (VAEs) [12] may be suitable candi-
dates to tackle this task. However, in practice, we choose to use a likelihood-
free implicit generative approach; the generative adversarial network (GAN) [6],
with a similar approach to prior work of [4]. We highlight that the primary
contribution of our work is to provide a new adversarial perspective based on
unbounded attacks. Consequently, while we have based our architecture on the
GAN framework, other generative approaches could be used according to the
targeted downstream task. The flow of our adversarial framework is summarized
in Fig. 1, we describe the different components in more details in what follows:

(1) Classifier. The victim classifier f : G → [0, 1]Y is an instance of a GNN
model following the general framework presented in Subsect. 3.1. We treat the
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model as a gray-box. Thus, the model is supposed to be trained and fixed,
and no assumptions are made about its internal architecture during the attack
phase. Depending on the attack strategy, the attacker can chose to operate our
framework as a white-box setting by directly using the victim classifier or as a
gray-box setting by training a surrogate model.

(2) Generator. The generator gθ learns to map a sampled D-dimensional vector
from a normal distribution z ∼ N (0, I) into an adjacency matrix Ã and a feature
matrix X̃ representing a graph G̃. Given a previously chosen fixed graph size, we
use two multi-layer perceptrons to process the input sampled vector. The output
from each MLP is post-processed using a discretization strategy.

(3) Discriminator. The discriminator dφ learns to distinguish between the
generated and the real graphs. The model receives a synthetic graph and has to
classify whether it is sampled from the true data distribution or generated by
the generator gθ. It should be noted that the discriminator needs to be invariant
to the ordering of the nodes, and thus we employ a GCN [11].

4.3 Training and Loss Function

Generation Loss. The main objective of the training phase is to generate real-
istic graphs with the same semantics as those of the training set. The training
consists, therefore, of learning a relevant discriminator and generator. At each
training step, the discriminator enhances its ability to distinguish between real
graphs and generated ones, while the generator improves its capacity to gener-
ate graphs that mislead the discriminator. The process can be seen as a game
between two active players (generator/discriminator) and a third static player
(victim classifier) that should converge into an equilibrium. This equilibrium
game is regulated by the classical GAN min-max equation:

min
gθ

max
dφ

Ex∼pdata(x)[log dφ(x)] + Ez∼pz(z)[log(1 − dφ(gθ(z)))] (3)

To ensure stability during training, we employ the Wasserstein GAN + GP
(WGAN-GP) [7] that uses gradient norm penalty to achieve Lipschitz continuity.

Adversarial Loss. Given our objective of generating unbounded adversarial
attacks, by choosing a target attack class c, our model is trained to generate
graphs that would be classified to the true class from the oracle (i. e., o(G̃) =
c) and to some other class from the classifier (i. e., f(G̃) �= c). This is mainly
reflected in the generator modeling the conditional data distribution P (· | y = c).
In practice, during training, the discriminator is only given the set of real graphs
whose training labels are equal to c, which is defined as: Gc = {Gi | Gi ∈ G, yi =
c}. Furthermore, the output of the generator is evaluated at each iteration by
querying the attacked classifier. We strengthen the adversarial ability of the
model by including an additional term in the loss function of the generator:

L(θ) = LWGAN + βLAdv (4)
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where β ∈ [0, 1] is a trade-off parameter reflecting our desire to produce valid
graphs and mislead the classifier. The second term of the loss function leads the
output of the generator to be different from the target class. Specifically, LAdv

may be a reward function taking the generated graph as input and attributing
a value based on the prediction probability formulated as LAdv : G̃θ → R. For a
single generated graph, we apply the following penalization term:

LAdv(θ; z) = ReLU
(
0.5 − max

i�=c
(f(gθ(z))i

)
(5)

where z refers to the i-th vector sampled from the normal distribution and
given to the generator. Additionally, the maxi�=c(f(gθ(z))i refers the maximum
component (different from the c-th one) of the predicted probabilities vector of
predicted probabilities. At each training step, we evaluate all the graphs pro-
duced by the generator given the sampled vectors from the normal distribution
N (0, I). By minimizing this quantity, we maximize the other classes’ (different
from c) probabilities, therefore reaching our adversarial target.

Attacks Generation. After several training epochs, we expect the min-max
game between the three players (i. e., generator, discriminator, and victim clas-
sifier) to converge to an equilibrium. Furthermore, we consider that by achieving
this equilibrium, the generator can produce realistic graphs that are both adver-
sarial and preserve the training set’s main properties. Therefore, we directly
leverage this trained generator during the testing phase to produce a set of
adversarial graphs without querying the victim classifier or the discriminator.

5 Experimental Evaluation

In this section, we investigate the ability of the UnboundAttack framework to
produce adversarial examples in a realistic experimental setting. We first describe
the experimental setup, and then report the results and provide examples of
generated graphs. More specifically, we address two main points: (Q1) Validity
of attacks and (Q2) Adversarial aspect of these attacks.

5.1 Experimental Setting

While experimenting with classical adversarial mechanisms is straightforward,
evaluating our proposed approach is related to finding an accessible oracle capa-
ble of providing the labels of the generated graphs. In this experiment, we
focus on chemical compounds using metrics available in the open-source chemo-
informatics Python package RDKit. These metrics serve as our oracle from which
we can derive the labels. We used the QM9 dataset [14] containing small organic
molecules. Each of these available molecules is represented by an undirected
graph G where nodes represent atoms and two atoms are connected by an edge
if an atomic bond exists between them. Each node and edge in the graph is
annotated with an one-hot vector indicating the type of the atom and atomic
bond. We choose the following chemical-related metrics to be used as an oracle:
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Table 1. Classification accuracy (± standard deviation) of the victim models on the
Qm9 dataset on clean and attacked models. The lower the accuracy the better.

Attack strategy Metric 1 - LogP Metric 2 - SaS

GCN GIN GCN GIN

Clean 97.8 % ± 0.7 % 97.1 % ± 0.2 % 91.4 % ± 0.3 % 89.8 % ± 0.2 %

Random 67.3 % ± 5.7 % 64.7 % ± 4.7 % 62.3 % ± 6.3 % 65.8 % ± 4.2 %

Gradient-based (PGD) 53.2 % ± 1.6 % 54.8 % ± 3.2 % 47.6 % ± 1.7 % 53.1 % ± 1.9 %

GradArgmax 48.5 % ± 2.7 % 51.7 % ± 2.3 % 45.3 % ± 2.4 % 54.9 % ± 3.6 %

Projective Ranking 47.8 % ± 2.3 % 58.3% ± 1.4 % 49.0 % ± 3.1 % 54.7 % ± 1.0 %

UnboundAttack 45.9 % ± 2.1 % 47.3 % ± 2.9 % 27.1 % ± 5.4 % 31.2 % ± 4.3 %

Attack strategy Metric 3 - Density Metric 4 - Weight

GCN GIN GCN GIN

Clean 83.9 % ± 0.5 % 80.2 % ± 0.9 % 97.5 % ± 0.2 % 95.6 % ± 0.1 %

Random 58.3 % ± 4.9 % 67.3 % ± 5.2 % 59.4 % ± 4.2 % 63.7 % ± 5.7 %

Gradient-based (PGD) 49.5 % ± 1.7 % 54.2 % ± 2.7 % 54.0 % ± 2.9 % 51.5 % ± 2.2 %

GradArgmax 46.7 % ± 3.2 % 52.9 % ± 4.6 % 52.5 % ± 6.1 % 53.7 % ± 1.4 %

Projective Ranking 47.8 % ± 2.5 % 55.2 % ± 2.4 % 45.0 % ± 3.3 % 58.8 % ± 1.3 %

UnboundAttack 43.2 % ± 8.3 % 49.7 % ± 7.1 % 30.3 % ± 6.8 % 40.7 % ± 9.8 %

– The logP or Octanol-water partition coefficient is the partition coefficient
representing the magnitude of the ratio of the concentration in Octanol.

– The Synthetic Accessibility score is a metric reflecting molecules’ ease of
synthesis (synthetic accessibility).

– The average molecular weight of the molecule and the molecule’s density

Using RDKit, a score for each of the available graphs is calculated for the above
metrics. By using a threshold (mean value), we convert each problem into a binary
classification task. We used two 3-layers Multilayer Perceptron (MLP) models for
the generator and a GCN as our discriminator. We arranged the number of message
passing layers and hidden dimensions to be different from the victim model (espe-
cially in the GCN case) to assume no knowledge about the underlying architecture
of the victim classifier. For our experimental evaluation, we used a discretization
strategy based on the Gumbel-Softmax [8]. We demonstrate the UnboundAttack
framework on two popular GNNs: (1) GCN [11]; and (2) GIN [20]. We used the sum
operator as the readout function for both our victim model and the discriminator
to produce graph-level representations. Furthermore, we used the cross-entropy
loss with the Adam optimizer. We compare the proposed approach to other avail-
able methods, which are mainly based on constrained optimization, with respect
to the accuracy of the attacker using a separate test set. We performed each exper-
iment 3 times in a 3-fold cross-validation setting to estimate each attack’s gener-
alization performance (Table 2).

5.2 Performance Analysis

We first compare the method against the model’s initial accuracy on test set
(clean) before the attack. We additionally compare the proposed method against
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Table 2. Results from the MMD and other metrics (± standard deviation) of the
generated samples on the QM9 dataset for LogP metric.

Metric MMD Metric Other metrics

Deg. Clus. Novelty Uniqueness

Gradient-based (PGD) 0.06 ± 0.01 0.03 ± 0.01 74.6 ± 1.2 66.3 ± 0.9

GradArgmax 0.08 ± 0.02 0.05 ± 0.02 68.6 ± 0.8 62.4 ± 1.1

Projective ranking 0.11 ± 0.01 0.03 ± 0.01 83.5 ± 1.8 82.7 ± 2.3

UnboundedAttack 0.14 ± 0.02 0.05 ± 0.04 89.7 ± 0.4 88.4 ± 0.6

different adversarial attack methods. The first comparison is against a random
search method based on randomly adding/deleting edges. The second attack,
adapted from [19], is a white-box gradient-based method that either adds/deletes
edges by approaching the adversarial attack as an optimization method. The
approach aims to find a set of perturbations that minimizes an attack loss given
a finite budget of edge perturbations. We consider a specific budget Δ represent-
ing the maximum possible magnitude of the perturbations for both approaches
and we used the Proximal Gradient descent as an optimization tool. Since this
method is highly dependent on the chosen step-size ε, we tried different param-
eters and we reported the best result for each metric. We additionally compared
our method to GradArgmax [2] which is based on a gradient-greedy method to
select the optimal edge. After identifying the edges, removing or adding the edge
depends on the sign of the gradient. We finally evaluate our method against Pro-
jectiveRanking [24]. We note that the attack assumes access to the embedding
representations of all nodes from the targeted classifier. Similar to their imple-
mentation, we used a 2-layers MLP to serve as the scoring module. We should
mention that once the training phase of our method is completed, we can gener-
ate an unlimited number of adversarial attacks. In order to make the assessment
fair, we set the number of generated points to be similar to the cardinality of the
test set of other methods. Furthermore, we validate the quality of our generated
attacks using two key perspectives. The first perspective, related to evaluating
the quality of the generated graphs, is based on different graph metrics. We use
the Maximum Mean Discrepancy (MMD) measures, as presented in [21], using
the RBF kernel and for both the degree and clustering coefficient distributions.
The second perspective is related to the biochemical validity of the generated
samples and we used a Novelty and Uniqueness scores (similar to [4]) computed
through RDKit. The classification performance of the GCN and GIN target
models for all the metrics using different methods is reported in Table 1 and real
examples are provided in Fig. 2.

The results demonstrate the effectiveness of the proposed UnboundAttack
strategy. The approach achieves the best attack performance on all datasets and
the difference in performance between the proposed approach and the other base-
lines is significant. In addition, the comparison metrics shows that our method
is capable of generating both valid and unique graphs. The obtained results thus



UnboundAttack - Unbounded Adversarial Attacks to GNNs 109

Fig. 2. Examples of graphs from the QM9 dataset (left). Examples of generated attacks
(right). These examples have succeeded in misleading the classifier (i. e., o(G) �= f(G)).

answer Q1 and demonstrate our generator’s ability to provide pertinent adver-
sarial attacks from scratch. While it may be argued that the computational cost
of our method is higher, we should note that the validity of the output in terms
of adversarial attacks is much more reliable. Moreover, in contrast with other
methods, such as gradient-based methods, where a specific process is performed
for each example, our training is only performed once. We would also like to men-
tion our proposed method’s ability to generate diverse valid adversarial attacks.
Finally, contrary to the perturbation-based methods, our approach is not limited
to the test set to be attacked but can generate a wide range of examples.

6 Conclusion

This work explores a new perspective on adversarial attacks on GNNs. Instead
of performing perturbations on a graph by adding/removing edges or editing
the nodes’ feature vectors, we propose to learn a new graph from scratch using
graph generative models. The produced graph has similar semantics to those of
the graphs of the training set, and hence may be an effective tool to mislead
a victim model. The proposed approach does not assume any knowledge about
the architecture of the targeted model. Experiments show that the method per-
forms better or comparable to other methods in degrading the performance of
the victim model. This work can be extended to other graph setting such as
node classification and edge classification. Furthermore, we anticipate that the
proposed architecture may support the development of new defense strategies
that could limit the potential negative impact of adversarial attacks, enhancing
the ability to deploy GNNs in real practical settings.
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certificates: exploiting interdependence in graph neural networks. In: International
Conference on Learning Representations (2021). https://openreview.net/forum?
id=ULQdiUTHe3y

16. Song, Y., Shu, R., Kushman, N., Ermon, S.: Constructing unrestricted adversarial
examples with generative models (2018). https://doi.org/10.48550/ARXIV.1805.
07894, https://arxiv.org/abs/1805.07894

17. Sun, Y., Wang, S., Tang, X., Hsieh, T.Y., Honavar, V.: Adversarial attacks on
graph neural networks via node injections: a hierarchical reinforcement learning
approach. In: Proceedings of The Web Conference 2020, WWW 2020, pp. 673–
683. Association for Computing Machinery, New York, NY, USA (2020). https://
doi.org/10.1145/3366423.3380149

https://doi.org/10.48550/ARXIV.1904.06347
https://doi.org/10.48550/ARXIV.1904.06347
https://arxiv.org/abs/1904.06347
https://doi.org/10.48550/ARXIV.1806.02371
https://doi.org/10.48550/ARXIV.1806.02371
https://arxiv.org/abs/1806.02371
https://doi.org/10.48550/ARXIV.1805.11973
https://arxiv.org/abs/1805.11973
https://arxiv.org/abs/1805.11973
https://doi.org/10.48550/ARXIV.1902.08226
https://doi.org/10.48550/ARXIV.1902.08226
https://arxiv.org/abs/1902.08226
https://doi.org/10.48550/ARXIV.1406.2661
https://doi.org/10.48550/ARXIV.1406.2661
https://arxiv.org/abs/1406.2661
https://doi.org/10.48550/ARXIV.1704.00028
https://doi.org/10.48550/ARXIV.1704.00028
https://arxiv.org/abs/1704.00028
https://doi.org/10.48550/ARXIV.1611.01144
https://arxiv.org/abs/1611.01144
https://arxiv.org/abs/1611.01144
https://doi.org/10.48550/ARXIV.2003.00653
https://arxiv.org/abs/2003.00653
https://arxiv.org/abs/2003.00653
https://doi.org/10.48550/ARXIV.1609.02907
https://arxiv.org/abs/1609.02907
https://arxiv.org/abs/1609.02907
https://doi.org/10.48550/ARXIV.1611.07308
https://doi.org/10.48550/ARXIV.1611.07308
https://arxiv.org/abs/1611.07308
https://doi.org/10.48550/ARXIV.2108.09513
https://doi.org/10.48550/ARXIV.2108.09513
https://arxiv.org/abs/2108.09513
https://openreview.net/forum?id=ULQdiUTHe3y
https://openreview.net/forum?id=ULQdiUTHe3y
https://doi.org/10.48550/ARXIV.1805.07894
https://doi.org/10.48550/ARXIV.1805.07894
https://arxiv.org/abs/1805.07894
https://doi.org/10.1145/3366423.3380149
https://doi.org/10.1145/3366423.3380149


UnboundAttack - Unbounded Adversarial Attacks to GNNs 111

18. Wan, X., Kenlay, H., Ru, B., Blaas, A., Osborne, M.A., Dong, X.: Adversarial
attacks on graph classification via Bayesian optimisation (2021). https://doi.org/
10.48550/ARXIV.2111.02842, https://arxiv.org/abs/2111.02842

19. Xu, K., et al.: Topology attack and defense for graph neural networks: an optimiza-
tion perspective (2019). https://doi.org/10.48550/ARXIV.1906.04214, https://
arxiv.org/abs/1906.04214

20. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
In: 7th International Conference on Learning Representations (2019)

21. You, J., Ying, R., Ren, X., Hamilton, W.L., Leskovec, J.: GraphRNN: generating
realistic graphs with deep auto-regressive models (2018). https://doi.org/10.48550/
ARXIV.1802.08773, https://arxiv.org/abs/1802.08773
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Abstract. Graph Neural Networks (GNNs) have improved unsuper-
vised community detection of clustered nodes due to their ability to
encode the dual dimensionality of the connectivity and feature infor-
mation spaces of graphs. Identifying the latent communities has many
practical applications from social networks to genomics. Current bench-
marks of real world performance are confusing due to the variety of
decisions influencing the evaluation of GNNs at this task. To address
this, we propose a framework to establish a common evaluation proto-
col. We motivate and justify it by demonstrating the differences with
and without the protocol. The W Randomness Coefficient is a metric
proposed for assessing the consistency of algorithm rankings to quantify
the reliability of results under the presence of randomness. We find that
by ensuring the same evaluation criteria is followed, there may be signif-
icant differences from the reported performance of methods at this task,
but a more complete evaluation and comparison of methods is possible.

Keywords: Graph Neural Networks · Community Detection ·
Hyperparameter Optimisation · Node Clustering · Representation
Learning

1 Introduction

GNNs are a popular neural network based approach for processing graph-
structured data due to their ability to combine two sources of information by
propagating and aggregating node feature encodings along the network’s con-
nectivity [14]. Nodes in a network can be grouped into communities based on
similarity in associated features and/or edge density [28]. Analysing the struc-
ture to find clusters, or communities, of nodes provides useful information for
real world problems such as misinformation detection [21], genomic feature dis-
covery [3], social network or research recommendation [38]. As an unsupervised
task, clusters of nodes are identified based on the latent patterns within the
dataset, rather than “ground-truth” labels. Assessing performance at the dis-
covery of unknown information is useful to applications where label access is
prohibited. Some applications of graphs deal with millions of nodes and there is
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1141, pp. 112–123, 2024.
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a low labelling rate with datasets that mimic realistic scenarios [11]. In addition,
clustering is particularity relevant for new applications where there is not yet
associated ground truth.

However, there is no widely accepted or followed way of evaluating algorithms
that is done consistently across the field, despite benchmarks being widely con-
sidered as important. Biased benchmarks, or evaluation procedures, can mis-
lead the narrative of research which distorts understanding of the research field.
Inconclusive results that may be valuable for understanding or building upon
go unpublished, which wastes resources, money, time and energy that is spent
on training models. In fields where research findings inform policy decisions or
medical practices, publication bias can lead to decisions based on incomplete or
biased evidence, potentially causing harm or inefficiency. To accurately reflect
the real-world capabilities of research, it would beneficial to use a common frame-
work for evaluating proposed methods.

The framework detailed herein is a motivation and justification for this posi-
tion. To demonstrate the need for this, we measure the difference between using
the default parameters given by the original implementations to those optimised
for under this framework. A metric is proposed for evaluating consistency of
algorithm rankings over different random seeds which quantifies the robustness
of results. This work will help guide practitioners to better model selection and
evaluation within the field of GNN community detection.

Contributions. In this paper, we make the following key contributions: 1)
We demonstrate that despite benchmarks being accepted as important, many
experiments in the field follow different, often unclear, benchmarking procedures
to report performance 2) We propose a framework for improving and producing
fairer comparisons of GNNs at the task of clustering. For enablement, we open
source the code1 and encourage model developers to submit their methods for
inclusion. 3) We quantify the extent to which a hyperparameter optimisation
and ranking procedure affects performance using the proposed W Randomness
Coefficient, demonstrating that model selection requires use of the framework
for accurate comparisons.

2 Related Work

There is awareness of need for rigour in frameworks evaluating machine learn-
ing algorithms [25]. Several frameworks for the evaluation of supervised GNNs
performing node classification, link prediction and graph classification exist
[5,6,22,24]. We are interested in unsupervised community detection which is
harder to train and evaluate. Current reviews of community detection provide
an overview but do not evaluate and the lack of a consistent evaluation at this
task has been discussed for non-neural methods [12,16] but this doesn’t currently
include GNNs.

1 https://github.com/willleeney/ugle.

https://github.com/willleeney/ugle
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There are various frameworks for assessing performance and the procedure
used for evaluation changes the performance of all algorithms [42]. Under con-
sistent conditions, it has been show that simple models can perform better with
a thorough exploration of the hyperparameter space [29]. This can be because
performance is subject to random initialisations [6]. Lifting results from papers
without carrying out the same hyperparameter optimisation over all models is
not consistent and is a misleading benchmark. Biased selection of random seeds
that skew performance is not fair. Not training over the same number of epochs
or not implementing model selection based on the validation set results in unfair
comparisons with inaccurate conclusions about model effectiveness. Hence, there
is no sufficient empirical evaluation of GNN methods for community detection
as presented in this work.

3 Methodology

This section details the procedure for evaluation; the problem that is aimed
to solve; the hyperparameter optimisation and the resources allocated to this
investigation; the algorithms that are being tested; the metrics of performance
and datasets used. At the highest level, the framework coefficient calculation is
summarised by Algorithm 1.

Algorithm 1 Overview of the evaluation framework. train() is the function
to train a model; optimise() encompasses the hyperparameter optimisation and
uses the model, training function, resources allocated and the current evaluation
test; evaluate() returns the performance of a model and ranking-coefficient()
calculates the rankings and coefficient of agreement across the randomness over
all tests.
Require: tests, models, resources, train(), optimise() evaluate(), ranking-coefficient()

for test in tests do:
for model in models do:

optimise (model, resources, test, train() )
results += evaluate (model, resources, test)

end for
end for
W = ranking-coefficient (results)

The current approach to evaluation of algorithms suffer from several short-
comings that hinder the fairness and reliability of model comparisons. A con-
sistent framework establishes a clear and objective basis for comparing models.
A common benchmark practice promotes transparency by comprehensively doc-
umenting what affects performance, encouraging researchers to compare fairly.
Only if the exact same evaluation procedure is followed can results be lifted from
previous research, which saves the time and energy of all practitioners. A con-
sistent practise must be established as there is current no reason for confidence
in claims of performance. Trustworthy results builds understanding and allows
progression of the field.

To evaluate the consistency and quality of the results obtained by this frame-
work, two metrics are proposed. No algorithm evaluated is deterministic as all
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require randomness to initialise the network. Therefore, the consistency of a
framework can be considered as the average amount that the performance rank-
ings change when different randomness is present over all tests in the framework.
The tests of a framework are the performance of a metric on a specific dataset,
the ranking is where an algorithm places relative to the other algorithms. Here,
the different randomness means that each random seed that the algorithms are
evaluated on.

Kendall’s W coefficient of concordance [7] is used as the basis for the consis-
tency metric. This is a statistical measure used to assess the level of agreement
among multiple judges or raters who rank or rate a set of items. It quantifies
the degree of agreement among the judges’ rankings. The coefficient ranges from
0 to 1, where higher values indicate greater concordance or agreement among
the rankings. The formula for calculating Kendall’s W involves comparing pairs
of items for each judge and computing the proportion of concordant pairs. We
adapt the coefficient to quantify how consistent the ranking of the algorithms
under this framework and refer to it as the W Randomness Coefficient. This can
be calculated with a number of algorithms a, and random seeds n, along with
tests of performance that create rankings of algorithms. For each test of perfor-
mance, Kendall’s W coefficient of concordance is calculated for the consistency
of rankings across the random seed. The sum of squared deviations S is calcu-
lated for all algorithms, and calculated using the deviation from mean rank due
for each random seed. This is averaged over all metrics and datasets that make
up the suite of tests T to give the W Randomness Coefficient defined as Eq. 1.
Using the one minus means that if the W is high then randomness has affected
the rankings, whereas a consistent ranking procedure results in a lower number.
By detailing the consistency of a framework across the randomness evaluated,
the robustness of the framework can be maintained, allowing researchers to trust
results and maintain credibility of their publications.

W = 1 − 1
|T |

∑

t∈T

12S
n2(a3 − a)

(1)

The second metric is used to compare whether the performance is better
under the hyperparameters or default reported by original implementations. The
different parameter sets are given a rank by comparing the performance on every
test. This is then averaged across every test, to give the framework compari-
son rank. Demonstrating that failing to optimize hyperparameters properly can
result in sub-optimal performance means that models that could have performed
better with proper tuning may appear inferior. This affects decision-making and
potentially leading to the adoption of sub-optimal solutions. In the real world,
this can have costly and damaging consequences, and is especially critical in
domains where model predictions impact decisions, such as healthcare, finance,
and autonomous vehicles.

3.1 Problem Definition

The problem definition of community detection on attributed graphs is defined as
follows. The graph, where N is the number of nodes in the graph, is represented
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asG = (A,X), with the relational information of nodes modelled by the adjacency
matrixA ∈ R

N×N . Given a set of nodes V and a set of edgesE, let ei,j = (vi, vj) ∈
E denote the edge that points from vj to vi. The graph is considered weighted
so, the adjacency matrix 0 < Ai,j ≤ 1 if ei,j ∈ E and Ai,j = 0 if ei,j /∈ E.
Also given is a set of node features X ∈ R

N×d, where d represents the number
of different node attributes (or feature dimensions). The objective is to partition
the graph G into k clusters such that nodes in each partition, or cluster, generally
have similar structure and feature values. The only information typically given to
the algorithms at training time is the number of clusters k to partition the graph
into. Hard clustering is assumed, where each community detection algorithm must
assign each node a single community to which it belongs, such that P ∈ R

N and
we evaluate the clusters associated with each node using the labels given with each
dataset such that L ∈ R

N .

3.2 Hyperparameter Optimisation Procedure

There are sweet spots of architecture combinations that are best for each dataset
[1] and the effects of not selecting hyperparameters (HPs) have been well doc-
umented. Choosing too wide of a HP interval or including uninformative HPs
in the search space can have an adverse effect on tuning outcomes in the given
budget [39]. Thus, a HPO is performed under feasible constraints in order to val-
idate the hypothesis that HPO affects the comparison of methods. It has been
shown that grid search is not suited for searching for HPs on a new dataset and
that Bayesian approaches perform better than random [1]. There are a variety
of Bayesian methods that can be used for hyperparameter selection. One such is
the Tree Parzen-Estimator (TPE) [2] that can retain the conditionality of vari-
ables [39] and has been shown to be a good estimator given limited resources
[40]. The multi-objective version of the TPE [23] is used to explore the multiple

Table 1. Resources are allocated an investigation, those detailed are shared across all
investigations. Algorithms that are designed to benefit from a small number of HPs
should perform better as they can search more of the space within the given budget.
All models are trained with 1x 2080 Ti GPU on a server with 12GB of RAM, and a
16core Xeon CPU.

resource associated allocation

optimiser Adam

learning rate {0.05, 0.01, 0.005, 0.001, 0.0005, 0.0001}
weight decay {0.05, 0.005, 0.0005, 0.0}
max epochs 5000

patience {25, 100, 500, 1000}
max hyperparameter trials 300

seeds {42, 24, 976, 12345, 98765, 7, 856, 90, 672, 785}
training/validation split 0.8

train/testing split 0.8
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metrics of performance investigated. Given a limited budget, the TPE is optimal
as it allows the efficient exploration of parameters (Table 1).

In this framework, a modification to the nested cross validation procedure is
used to match reasonable computational budgets, which is to optimise hyper-
parameters on the first seed tested on and use those hyperparameters on the
other seeds. Additionally, it beneficial to establish a common resource allocation
such as number of epochs allowed for in training or number of hyperparameter
trials. Ensuring the same resources are used in all investigations means that the
relatively underfunded researchers can participate in the field, democratising the
access to contribution. Conversely, this also means that highly funded researchers
cannot bias their results by exploiting the resources they have available.

3.3 Suite of Tests

A test of an algorithm in this framework is the performance under a metric
on a dataset. Algorithms are ranked on each test on every random seed used.
For evaluation purposes, some metrics require the ground truth, and others do
not, although regardless, this knowledge is not used during the training itself.
Macro F1-score (F1) is calculated to ensure that evaluations are not biased by
the label distribution, as communities sizes are often imbalanced. Normalised
mutual information (NMI) is also used, which is the amount of information that
can extract from one distribution with respect to a second.

For unsupervised metrics, modularity and conductance are selected. Modu-
larity quantifies the deviation of the clustering from what would be observed in
expectation under a random graph. Conductance is the proportion of total edge
volume that points outside the cluster. These two metrics are unsupervised as
they are calculated using the predicted cluster label and the adjacency matrix,
without using any ground truth. Many metrics are used in the framework as
they align with specific objectives and ensures that evaluations reflect a clear
and understandable assessment of performance.

Generalisation of performance on one dataset can often not be statistically
valid and lead to overfitting on a particular benchmark [27], hence multiple are
used in this investigation. To fairly compare different GNN architectures, a range
of graph topologies are used to fairly represent potential applications. Each dataset
can be summarised by commonly used graph statistics: the average clustering coef-
ficient [37] and closeness centrality [36]. The former is the proportion of all the
connections that exist in a nodes neighbourhood compared to a fully connected
neighbourhood, averaged across all nodes. The latter is the reciprocal of the mean
shortest path distance from all other nodes in the graph. All datasets are publicly
available2, and have been used previously in GNN research [17].

Using many datasets for evaluation means that dataset bias is mitigated,
which means that the framework is better at assessing the generalisation
capability of models to different datasets. These datasets are detailed in Table 2,

2 https://github.com/yueliu1999/Awesome-Deep-Graph-Clustering.

https://github.com/yueliu1999/Awesome-Deep-Graph-Clustering
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the following is a brief summary: Cora [19], CiteSeer [8], DBLP [30] are graphs
of academic publications from various sources with the features coming from
words in publications and connectivity from citations. AMAC and AMAP are
extracted from the Amazon co-purchase graph [10]. Texas, Wisc and Cornell are
extracted from web pages from computer science departments of various univer-
sities [4]. UAT, EAT and BAT contain airport activity data collected from the
National Civil Aviation Agency, Statistical Office of the European Union and
Bureau of Transportation Statistics [17].

Table 2. The datasets and associated statistics.

Datasets Nodes Edges Features Classes Average Clustering Coefficient Mean Closeness Centrality

amac [10] 13752 13752 80062 10 0.157 0.264

amap [10] 7650 7650 119081 8 0.404 0.242

bat [17] 131 131 1038 4 0.636 0.469

citeseer [8] 3327 3327 4552 6 0.141 0.045

cora [19] 2708 2708 5278 7 0.241 0.137

dblp [30] 4057 4057 3528 4 0.177 0.026

eat [17] 399 399 5994 4 0.539 0.441

uat [17] 1190 1190 13599 4 0.501 0.332

texas [4] 183 183 162 5 0.198 0.344

wisc [4] 251 251 257 5 0.208 0.32

cornell [4] 183 183 149 5 0.167 0.326

3.4 Models

We consider a representative suite of GNNs, selected based on factors such as
code availability and re-implementation time. In addition to explicit community
detection algorithms, we also consider those that can learn an unsupervised
representation of data as there is previous research that applies vector-based
clustering algorithms to the representations [20].

Deep Attentional Embedded Graph Clustering (DAEGC) uses a k-means tar-
get to self-supervise the clustering module to iteratively refine the clustering of
node embeddings [34]. Deep Modularity Networks (DMoN) uses GCNs to max-
imises a modularity based clustering objective to optimise cluster assignments by
a spectral relaxation of the problem [32]. Neighborhood Contrast Framework for
Attributed Graph Clustering (CAGC) [35] is designed for attributed graph clus-
tering with contrastive self-expression loss that selects positive/negative pairs
from the data and contrasts representations with its k-nearest neighbours. Deep
Graph Infomax (DGI) maximises mutual information between patch represen-
tations of sub-graphs and the corresponding high-level summaries [33]. GRAph
Contrastive rEpresentation learning (GRACE) generates a corrupted view of the
graph by removing edges and learns node representations by maximising agree-
ment across two views [41]. Contrastive Multi-View Representation Learning
on Graphs (MVGRL) argues that the best employment of contrastive methods
for graphs is achieved by contrasting encodings’ from first-order neighbours and
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a general graph diffusion [9]. Bootstrapped Graph Latents (BGRL) [31] uses
a self-supervised bootstrap procedure by maintaining two graph encoders; the
online one learns to predict the representations of the target encoder, which in
itself is updated by an exponential moving average of the online encoder. Self-
GNN [13] also uses this principal but uses augmentations of the feature space
to train the network. Towards Unsupervised Deep Graph Structure Learning
(SUBLIME) [18] an encoder with the bootstrapping principle applied over the
feature space as well as a contrastive scheme between the nearest neighbours.
Variational Graph AutoEncoder Reconstruction (VGAER) [26] reconstructs a
modularity distribution using a cross entropy based decoder from the encoding
of a VGAE [15].

4 Evaluation and Discussion

The Framework Comparison Rank is the average rank when comparing perfor-
mance of the parameters found through hyperparameter optimisation versus the
default values. From Table 3 it can be seen that Framework Comparison Rank
indicates that the hyperparameters that are optimised on average perform better.
This validates the hypothesis that the hyperparameter optimisation significantly
impacts the evaluation of GNN based approaches to community detection. The
W Randomness Coefficient quantifies the consistency of rankings over the dif-
ferent random seeds tested on, averaged over the suite of tests in the framework.
With less deviation of prediction under the presence of randomness, an eval-
uation finds a more confident assessment of the best algorithm. A higher W
value using the optimised hyperparameters indicates that the default parame-
ters are marginally more consistent over randomness however this does deviate
more across all tests. By using and optimising for the W Randomness Coefficient
with future extensions to this framework, we can reduce the impact of biased
evaluation procedures. With this coefficient, researchers can quantify how trust-
worthy their results are, and therefore the usability in real-world applications.
It is likely that there is little difference in the coefficients in this scenario as the
default parameters have been evaluated with a consistent approach to model
selection and constant resource allocation to training time. This sets the base-
line for consistency in evaluation procedure and allows better understanding of
relative method performance.

Table 3. Here is the quantification of intra framework consistency using the W Ran-
domness Coefficient and inter framework disparity using the Framework Comparison
Rank. Low values for the Framework Comparison Rank and W Randomness Coefficient
are preferred.

Results Default HPO

W Randomness Coefficient 0.476 ± 0.200 0.489 ± 0.144

Framework Comparison Rank 1.772 ± 0.249 1.228 ± 0.249
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Fig. 1. The average performance and standard deviation of each metric averaged over
every seed tested on for all methods on all datasets. The hyperparameter investigation
under our framework is shown in colour compared with the default hyperparameters in
dashed boxes. The lower the value for Conductance is better. Out Of Memory (OOM)
occurrences on happened on the amac dataset with the following algorithms during
HPO: daegc, sublime, dgi, cagc, vgaer and cagc under the default HPs.
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The results of the hyperparameter optimisation and the default parameters
is visualised in Fig. 1. From this, we can see the difference in performance under
both sets of hyperparameters. On some datasets the default parameters work
better than those optimised, which means that under the reasonable budget
assumed in this framework they are not reproducible. This adds strength to the
claim that using the default parameters is not credible. Without validation that
these parameters can be recovered, results cannot be trusted and mistakes are
harder to identify. On the other side of this, often the hyperparameter opti-
misation performs better than the default values. Algorithms were published
knowing these parameters can be tuned to better performance. Using a reason-
able resources, the performance can be increased, which means that without the
optimisation procedure, inaccurate or misleading comparisons are propagated.
Reproducible findings are the solid foundation that allows us to build on previous
work and is a necessity for scientific validity.

Given different computational resources performance rankings will vary.
Future iterations of the framework should experiment with the number of trials
and impact of over-reliance on specific seeds or extending the hyperparameter
options to a continuous distribution. Additionally, finding the best general algo-
rithm will have to include a wide range of different topologies or sizes of graphs
that are not looked at, neither do we explore other feature space landscapes or
class distributions.

5 Conclusion

In this work we demonstrate flaws with how GNN based community detection
methods are currently evaluated, leading to potentially misleading and confusing
conclusions. To address this, an evaluation framework is detailed for evaluating
GNNs at community detection that provides a more consistent and fair evalua-
tion, and can be easily extended. We provide further insight that consistent HPO
is key at this task by quantifying the difference in performance from HPO to
reported values. Finally, a metric is proposed for the assessing the consistency of
rankings that empirically states the trust researchers can have in the robustness
of results.
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Abstract. It is common to use the projection of a bipartite network
to measure a unipartite network of interest. For example, scientific col-
laboration networks are often measured using a co-authorship network,
which is the projection of a bipartite author-paper network. Caution is
required when interpreting the edge weights that appear in such projec-
tions. However, backbone models offer a solution by providing a formal
statistical method for evaluating when an edge in a projection is sta-
tistically significantly strong. In this paper, we propose an extension to
the existing Stochastic Degree Sequence Model (SDSM) that allows the
null model to include edge constraints (EC) such as prohibited edges.
We demonstrate the new SDSM-EC in toy data and empirical data on
young children’s’ play interactions, illustrating how it correctly omits
noisy edges from the backbone.

Keywords: backbone · bipartite · null model · projection · social
network

1 Introduction

It is common to use the projection of a bipartite network to measure a unipar-
tite network of interest. For example, scientific collaboration networks are often
measured using a co-authorship network, which is the projection of a bipartite
author-paper network [12]. Similarly, corporate networks are often measured
using a board co-membership or ‘interlocking directorate’ network, which is the
projection of a bipartite executive-board network [1]. The edges in a bipartite
projection are weighted (e.g., number of co-authored papers, number of shared
boards), but these weights do not provide an unbiased indicator the strength of
the connection between vertices [5,9]. To overcome this bias, backbone extrac-
tion identifies the edges that are stronger than expected under a relevant null
model, retaining only these edges to yield a simpler unweighted network (i.e.,
the backbone) that is more suitable for visualization and analysis.

Many null models exist for extracting the backbone of bipartite networks,
with each model specifying different constraints on the random networks against
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1141, pp. 127–136, 2024.
https://doi.org/10.1007/978-3-031-53468-3_11
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which an observed network is compared. However, none of the existing models
permit constraints on specific edges. In this paper, we extend the fastest and
most robust existing backbone model – the stochastic degree sequence model
(SDSM) [11] – to accommodate one type of edge constraint: prohibited edges.
Prohibited edges are edges that in principle cannot occur in the network, and
can arise in many contexts. For example, in a bipartite author-paper network,
an author cannot write a paper before their birth, and in a bipartite executive-
board network, anti-trust laws prevent executives from serving on the boards of
competitors. We illustrate the new stochastic degree sequence model with edge
constraints (SDSM-EC) first in toy data, then in empirical data recording young
childrens’ membership in play groups.

1.1 Preliminaries

A bipartite network’s vertices can be partitioned into two sets such that edges
exist between, but not within, sets. In this work, we focus on a special case
of a bipartite network – a two-mode network – where the two sets of vertices
represent distinctly different entities that we call ‘agents’ and ‘artifacts’ (e.g.
authors and papers, or executives and corporate boards).

To facilitate notation, we represent networks as matrices. First, we represent
a bipartite network containing r ‘agents’ and c ‘artifacts’ as an r × c binary
incidence matrix B, where Bik = 1 if agent i is connected to artifact k (e.g.,
author i wrote paper k), and otherwise is 0. The row sums R = r1...rc of B
contain the degree sequence of the agents (e.g., the number of papers written by
each author), while the column sums C = c1...cr of B contain the degree sequence
of the artifacts (e.g., the number of authors on each paper). A prohibited edge
in a bipartite network is represented by constraining a cell to equal zero, and
therefore is sometimes called a ‘structural zero’ [13]. Second, we represent the
projection of a bipartite network as an r × r weighted adjacency matrix P =
BBT , where BT represents the transpose of B. In P, Pij equals the number of
artifacts k that are adjacent to both agent i and agent j (e.g., the number of
papers co-authored by authors i and j). Finally, we represent the backbone of
a projection P′ as an r × r binary adjacency matrix, where P ′

ij = 1 if agent i is
connected to agent j in the backbone, and otherwise is 0.

Let B be an ensemble of r × c binary incidence matrices, which can be con-
strained to have certain features present in B. Let P ∗

ij be a random variable equal
to (B∗B∗T )ij for B∗ ∈ B. Decisions about which edges appear in a backbone
extracted at the statistical significance level α are made by comparing Pij to
P ∗

ij :

P ′
ij =

{
1 if Pr(P ∗

ij ≥ Pij) < α
2 ,

0 otherwise.

This test includes edge P ′
ij in the backbone if its weight in the observed projection

Pij is uncommonly large compared to its weight in projections of members of
the ensemble P ∗

ij .
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2 Backbone Models

2.1 The Stochastic Degree Sequence Model (SDSM)

Models for extracting the backbone of bipartite projections differ in the con-
straints they impose on B. The most stringent model – the Fixed Degree
Sequence Model (FDSM) [17] – relies on a microcanonical ensemble that con-
strains each member of B to have exactly the same row and column sums as B.
Computing P ∗

ij under the FDSM is slow because it requires approximation via
computationally intensive Monte Carlo simulation. Despite recent advances in
the efficiency of these simulations [2], it is often more practical to use the less
stringent Stochastic Degree Sequence Model (SDSM) [9]. The SDSM relies on a
canonical ensemble that constrains each member of B to have the same row and
column sums as B on average. SDSM is fast and exact, and comparisons with
FDSM reveal that it yields similar backbones [11].

Under the SDSM, P ∗
ij follows a Poisson-binomial distribution whose param-

eters can be computed from the entries of probability matrix Q, where Qik =
Pr(B∗

ik = 1) for B∗ ∈ a microcanonical B. That is, Qik is the probability that
B∗

ik contains a 1 in the space of all matrices with given row and column sums.
Most implementations of SDSM approximate Q using the fast and precise Bipar-
tite Configuration Model (BiCM) [14,15]. However, it can also be computed with
minimal loss of speed and precision [11] using a logistic regression [9], which offers
more flexibility. This method estimates the β coefficients in

Bik = β0 + β1ri + β2ck + ε

using maximum likelihood, then defines Qik as the predicted probability that
Bik = 1.

2.2 The Stochastic Degree Sequence Model with Edge Constraints
(SDSM-EC)

The constraints that SDSM imposes on B are determined by the way that Q is
defined. In the conventional SDSM, Q is defined such that Qik is the probability
that B∗

ik contains a 1 in the space of all matrices with given row and column sums,
which only imposes constraints on the row and column sums of members of B.
To accommodate edge constraints, we define Q′ such that Q′

ik is the probability
that B∗

ik contains a 1 in the space of all matrices with given row and column
sums and no 1s in prohibited cells.

The BiCM method cannot be used to approximate Q′, however the logistic
regression method can be adapted to approximate it. If Bik is a prohibited
edge, then Qik = 0 by definition. If Bik is not a prohibited edge, then Qik

is the predicted probability that Bik = 1 based on a fitted logistic regression.
Importantly, however, whereas the logistic regression used to estimate Q is fitted
over all Bik, the logistic regression used to estimate Q′ is fitted only over Bik

that are not prohibited edges.
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3 Results

3.1 Estimating Q′

In general the true values of Qik are unknown. However, for small matrices they
can be computed from a complete enumeration of the space. To evaluate the
precision of Qik estimated using the SDSM-EC method described above, we
first enumerated all 4 × 4 incidence matrices with row sums {1, 1, 2, 2} and
column sums {1, 1, 2, 2}; there are 211. Next, we constrained this space to
matrices in which a randomly selected one or two cells always contain a zero
(i.e. bipartite networks with one or two prohibited edges). Finally, we computed
the true value of each Qik for all cells and all spaces, estimated each Qik using
the logistic regression method, and computed the absolute deviation between
the two.

Figure 1A illustrates that, compared to the cardinality of the unconstrained
space (|B| = 211), the cardinalities of the spaces constrained by one or two
prohibited edges are much lower (|B| = 2 − 29, gray bars). That is, while the
SDSM evaluates whether a given edge’s weight is significant by comparing its
value to a large number of possible worlds, the SDSM-EC compares its value to
a much smaller number of possible worlds. Figure 1B illustrates the deviations
between the true value of Qik and the value estimated using the logistic regres-
sion method. It demonstrates that although SDSM-EC requires approximating
Qik, these approximations tend to be close to the true values.

Fig. 1. (A) The cardinality of the space of matrices with row sums {1, 1, 2, 2} and
column sums {1, 1, 2, 2} and one or two cells constrained to zero is small compared to
the cardinality of the space without constrained cells. (B) The deviation between the
true and estimated Qik for all such constrained spaces tends to be small.

3.2 Toy Illustration

We offer a toy example to illustrate the impact of imposing edge constraints in
backbone extraction. Figure 2A illustrates a bipartite network that contains two
types of agents (open and filled circles) and two types of artifacts (open and
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filled squares), such that agents are only connected to artifacts of the same type.
Such a network might arise in the context of university students joining clubs.
For example, suppose Harvard students (open circles) only join Harvard clubs
(open squares), while Yale students (filled circles) only join Yale clubs (filled
squares).

Fig. 2. (A) A bipartite network containing two groups of agents and two groups of
artifacts, such that agents are connected only to their own group’s artifacts. (B) The
SDSM backbone of a projection of this bipartite graph, which assumes that an agent
could be connected to another group’s artifact, suggests within-group cohesion among
agents. (C) The SDSM-EC projection, which assumes that an agent could not be
connected to another group’s artifact, suggests none of the edges in the projection are
significant.

Figure 2B illustrates the backbone extracted from a projection of this bipar-
tite network using the SDSM. Using the SDSM implies that there are no con-
straints on edges in the null model. In the context of student clubs, this means
that in the null model it is possible for a Harvard student to join a Yale club,
and vice versa, and that the pattern of segregation that appears in the bipartite
network is chosen (i.e. homophily). The SDSM backbone displays a high level
of within-group cohesion (i.e. homophily). This occurs for two reasons. First,
agents from the same group share many artifacts (e.g., two Harvard students
belong to many of the same clubs). Second, if agents were connected to artifacts
randomly (e.g., Harvard students joined both Harvard and Yale clubs), as the
SDSM null model assumes, then agents from the same group would have shared
fewer artifacts. The presence of within-group connections in the SDSM backbone
reflects the fact that it is noteworthy that pairs of Harvard students, or pairs of
Yale students, are members of many of the same clubs because they could have
chosen otherwise.

Figure 2C illustrates the backbone extracted using the SDSM-EC, where we
specify that edges are prohibited between an agent and artifact of a different
type. In the context of student clubs, this means that in the null model it is
not possible for a Harvard student to join a Yale club, and vice versa, and that
the pattern of segregation is enforced by university regulations. The SDSM-
EC backbone is empty. This occurs because although agents from the same
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group share many artifacts, they also share many artifacts under the null model.
The absence of connections in the SDSM-EC backbone reflects the fact that
it is uninteresting that pairs of Harvard students, or pairs of Yale students,
are members of many of the same clubs because they could not have chosen
otherwise.

3.3 Empirical Illustration

We offer an empirical example of the application of SDSM-EC to illustrate its
practicality and impact. It can be difficult to directly measure social networks
among very young children. One alternative is to infer these networks from obser-
vations of their play groups using bipartite backbones [8]. However, considering
edge constraints can be important because the organization of the school can
mean that it may be impossible to observe certain children playing together.

These data were collected in Spring 2013 by observing the behaviors of 53
children in a preschool in the Midwestern United States [3,6–8]. A scan observa-
tion method was employed whereby a randomly selected child was observed for
a period of 10 s. After the 10 s period had elapsed, the trained observer coded
the child’s predominant behavior and, if applicable, the peers with whom they
were interacting [4]. Here, we focus only on social play behaviors because they
were the most common form of social behavior, and the most likely to involve
direct interaction with peers. A total of 1829 social play events were observed
during data collection. These data are organized as a bipartite network B where
Bik = 1 if child i was observed participating in a play group during observation
k. A projection of P = BBT , where Pij indicates the number of times children
i and j were observed playing together provides an indirect indicator of the
children’s’ social network, particularly when refined using backbone extraction
[8].

In this context, two types of prohibited edges exist in the bipartite network.
First, the school was organized into two age-based classrooms, a classroom of
3-year-olds and a classroom of 4-year-olds. Because these classrooms used differ-
ent spaces, it was not possible to observe a 3-year old and a 4-year-old together.
Therefore, edges from 3-year-olds to observations of 4-year-olds are prohibited,
and likewise edges from 4-year-olds to observations of 3-year-olds are prohibited.
Second, the children varied in their attendance status: some attended for the full
day, some attended only in the morning, and some attended only in the after-
noon. Because attendance status determines which children were present and
able to play together, it was not possible to observe an AM child and a PM child
together. Therefore, edges from AM children to observations conducted in the
afternoon are prohibited, and likewise edges from PM children to observations
conducted in the morning are prohibited.

Figure 3 illustrates two backbones extracted from these data, using shape to
represent classroom (circles = 3-year-olds, squares = 4-year-olds) and color to
represent attendance status (black = full day, gray = AM only, white = PM
only). Figure 3A was extracted using the SDSM and therefore does not consider
these edge constraints, while Fig. 3B was extracted using the SDSM-EC and
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Fig. 3. (A) Backbone extracted using SDSM and (B) SDSM-EC from 1829 observations
of 53 preschool childrens’ play groups. Vertex shape represents age-based classrooms:
circles = 3 year old classroom, squares = 4 year old classroom. Vertex color represents
attendance status: black = full day, gray = AM only, white = PM only.

does consider these edge constraints. There are some similarities between the
SDSM and SDSM-EC backbones that reflect characteristics of the setting: 3-
year-olds (circles) are never connected to 4-year-olds (squares), and AM children
(gray) are never connected to PM children (white), because it was not possible to
observe such children together. However, there are also differences that highlight
the impact of incorporating edge constraints using SDSM-EC. The SDSM-EC
backbone contains many fewer edges (E = 85) than the SDSM backbone (E =
153). This occurs for similar reasons to the loss of edges in the toy example
above, although is less extreme.

A hypothetical example serves to illustrate why the SDSM-EC backbone con-
tains fewer edges in this context. Consider the case of an AM child and a Full
Day child in the 3-year-old classroom who were observed to play together a few
times. The SDSM compares this observed co-occurrence to the expected number
of co-occurrences if these two children had played with other AM or Full Day
children and with others in the 3-year-old classroom (which is possible), but also
if they had played with PM children and children in the 4-year-old classroom
(which is not possible). Under such a broad null model that includes some impos-
sible play configurations, observing these two children playing together even just
a few times seems noteworthy, and therefore an edge between them is included in
the backbone. In contrast, the SDSM-EC compares this observed co-occurrence
to the expected number of co-occurrences if these two children had played with
other AM or Full Day children and with others in the 3-year-old classroom
only, recognizing that it was not possible for the AM child to play with PM
children or for either to play with children in the 4-year-old classroom. Under
this more constrained null model that excludes impossible play configurations,
observing these two children playing together just a few times is not particularly
noteworthy, and therefore an edge between them is omitted from the backbone.
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As this example illustrates, the SDSM-EC contains fewer edges because it cor-
rectly omits edges that might seem significantly strong when evaluated against a
null model that includes impossible configuration, but that are not significantly
strong when evaluated against a properly constrained null model that excludes
impossible configurations.

4 Conclusion

Although bipartite projections offer a promising way to indirectly measure uni-
partite networks of interest, caution is required when interpreting the edge
weights that appear in such projections. Backbone models offer a solution by
providing a formal statistical method for evaluating when an edge in a projec-
tion is statistically significantly strong by comparison to a bipartite null model.
However, extracting an accurate backbone using these methods requires that
the null model is properly constrained. In many cases the FDSM (slower) and
SDSM (faster) are appropriate and yield similar results [11], however these null
models only constrain the degree sequences, but cannot impose edge constraints
such as prohibited edges.

In this work, we have introduced the SDSM-EC, an extension of SDSM that
allows the user to specify edge constraints in the form of prohibited edges. Pro-
hibited edges arise in bipartite networks when a given agent cannot be connected
to a given artifact, for example, because the agent is not present or because such
a connection is legally prohibited. We have demonstrated in both a toy example
and an empirical example that the SDSM-EC performs as expected, correctly
omitting weaker edges in the backbone that are not significant when these con-
straints are considered, but that might have erroneously appeared significant
under the SDSM. Therefore, we recommend that SDSM-EC be used to extract
the backbones of bipartite projections when the bipartite network contains pro-
hibited edges. The SDSM-EC is implemented in the sdsm() function of the
backbone package for R [10].

We have focused on one common type of edge constraint: prohibited edges.
However, a second type of edge constraint is also possible: required edges.
Required edges arise in bipartite networks when a given agent must always be
connected to a given artifact, for example, because the agent is the initiator of
the artifact (e.g. a paper’s lead author, a club’s founder). It is trivial to extend
the SDSM-EC to also accommodate such constraints. When Q is estimated,
Qik = 0 for prohibited edges and Qik = 1 for required edges, then the remaining
Qik values are computed using the same logistic regression method described
above.

This work highlights the importance of using a properly constrained null
model when extracting the backbone of bipartite projections, and identifies sev-
eral avenues for future research. First, while Q under the SDSM can be esti-
mated quickly and precisely using the BiCM [14,15], Q under the SDSM-EC
must be estimated using logistic regression, which is slower and less precise [11].
Future work should investigate improved methods for estimating Q, which has
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the potential to benefit not only the SDSM-EC, but all variants of the SDSM.
Second, while a broad class of bipartite null models exist [16] and now include
edge constraints, future work should investigate the importance and feasibility
of incorporating other types of constraints.
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Abstract. We explore two questions related to sampling and minorities
in attributed networks with homophily. The first question is to investi-
gate sampling schemes which favor minority attribute nodes and which
give preference to “more popular” nodes having higher centrality mea-
sures in the network. A data study shows the efficiency of Page-rank and
walk-based network sampling schemes on a directed network model and
a real-world network with small minorities. The second question con-
cerns the effect of homophily and out-degrees of nodes on the relative
ranking of minorities compared to majorities in degree-based sampling.
Several synthetic network configurations are considered and the condi-
tions for minority nodes to have a higher relative rank are investigated
numerically. The results are also assessed with real-world networks.

Keywords: Random networks · attributes · homophily · sampling ·
minorities · ranking

1 Introduction

An attributed network can be defined as a graph in which nodes (and/or edges)
have features. In a social network, node attributes can refer to gender, age,
ethnicity, political ideologies. The attributes of nodes often co-vary and affect
the graph structure. One standard phenomenon in many real-world systems is
homophily [6], i.e., node pairs with similar attributes being more likely to be
connected than node pairs with discordant attributes. For instance, many social
networks show this property, which is the tendency of individuals to associate
with others who are similar to them; e.g., with respect to an attribute. Addi-
tionally, the distribution of user attributes over the network is usually uneven,
with coexisting groups of different sizes, e.g., one ethnic group (majority) may
dominate other (minority).
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Given that most real networks can only be observed indirectly, network sam-
pling, and its impact on the representation/learning of the true network, is an
activate area of research across multiple communities (see e.g. [2,3] and the ref-
erences therein). In this context, there has been significant interest in attributed
network sampling where there is a particular small minority of certain attribute
nodes. Here, we explore two related questions in this area, namely, (a) settings
where Page-rank and other exploration based sampling schemes favor sampling
small minorities, (b) effects of homophily and out-degrees on the relative rank-
ing of minorities compared to majorities in degree-based sampling. To this end,
we shall use an attributed network model that incorporates homophily [1]. We
employ the asymptotic theory developed in [1] to gain insight through data
studies of the various network sampling schemes and attribute representation
in concrete applications. The findings will also be assessed with real-world net-
works. More concretely, we investigate the following research problems:

(a) We consider the case where there is a particular small minority which
has higher propensity to connect within itself as opposed to majority nodes;
for substantial recent applications and impact of such questions, see [10,11,13].
In such setting, devising schemes where one gets a non-trivial representation of
minorities is challenging if the sample size is much smaller than the network
size. In this case, uniform sampling will clearly not be fair as the sampled nodes
will tend to be more often from the majority attribute. Additionally, uniform
sampling does not give preference to “more popular” minority nodes, i.e., higher
degree/Page-rank nodes. Therefore, it is desirable to explore the network locally
around the initial (uniformly sampled) random node and try to travel towards
the “centre”, thereby traversing edges along their natural direction. However, to
avoid high sampling costs, the explored set of nodes should not be too large. We
compare through a data study several sampling schemes derived from centrality
measures like degree and Page-rank and show that they increase the probability
of sampling a minority node and its “popularity”. This is investigated in several
network model configurations and in a real network dataset.

(b) We consider two degree-based sampling schemes and explore the effects
of homophily and out-degrees of the model parameters on the relative ranking of
minority compared to majority (in terms of proportion) in the samples. As in (a),
we again study minority representation, but focus on degree-based sampling and
are interested in dependence on structural network properties. The conditions
in a asymptotic regime (when the number of nodes goes to infinity) are known
for the minority nodes to rank higher (i.e. have larger proportions) than the
majority nodes (based on the tail distribution and sum of the degrees) [1]. For
three scenarios - heterophily, homogeneous homophily (homogenous mixing) and
asymmetric homophily - the results are numerically investigated for the minority
nodes to rank higher. The last two scenarios were briefly considered heuristically
in [7,9] using fluid limits. We show that the results for two real networks with
degree power-law distributions agree with those for the synthetic model.

The paper is organized as follows. A synthetic model with homophily is given
in Sec. 2. Network sampling in the presence of a small minority is studied in Sec.
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3. Relative ranking of minorities is investigated in Sec. 4. Sec. 5 concludes and
indicates future work.

2 Network Model with Attributes and Homophily

Fix an attribute space S = {1, 2}. The nodes with attribute 1 will be referred as
minority and attribute 2 as majority. While this paper only deals with these two
types, the setting below can be extended to more general attribute spaces. Fix
a probability mass function (π1, π2) on S and a possible asymmetric function
κ : S × S → R; this function measures propensities of pairs of nodes to connect,
based on their attributes. Fix a preferential attachment parameter α ∈ [0, 1] and
an out-degree function m : S → N which modulates the number of edges that a
node entering the system connects to, depending on its attribute type.

Nodes enter the system sequentially at discrete times n ≥ 1 starting with a
base connected graph G0 with n0 nodes at time n = 0 where every node has
an attribute in S. Write vn for the node that enters at time n and a(vn) for
the corresponding attribute; every node vn has attribute 1 with probability π1

and attribute 2 with probability π2. The dynamics of construction are recursively
defined as: for n ≥ 0 and v ∈ Gn, vn+1 attaches to the network via m(a(vn+1)) =
ma(vn+1) outgoing edges. Each edge independently chooses an existing node in
Gn to attach to, with probabilities (conditionally on Gn and a(vn+1)) given by

P (vn+1 � v |Gn, a(vn+1) = a�) :=
κ(a(v), a�)[deg(v, n)]α

∑
v′∈Gn

κ(a(v′), a)[deg(v′, n)]α
, (1)

where deg(v, n) denote the degree of v at time n (if G0 = v0, initialize
deg(v0, 0) = 1). A tree network is obtained if m1 = m2 = 1. The case κ(., .) = 1
and α = 1 corresponds to the well known linear preferential attachment model
while 0 < α < 1 to the sublinear case. When referring to a synthetic network
below, we shall always mean the model (1).

In measuring homophily, we extend the definition given for signed net-
works [12] to directed networks. Let V (resp. E) denote the set of nodes (resp.
edges) of a network; for a = 1, 2, let Va be the set of nodes with attribute
a, and for a �= a′, let Eaa′ be the set of edges between nodes of types a and
a′. Let p = |E|/(|V |(|V | − 1)) be the edge density. For a = 1, 2, dyadicity
Da = |Eaa|/(|Va|(|Va|−1)p) measures the contrast in edges within the cluster of
nodes a as compared to a setting where all edges are randomly distributed; thus
Da > 1 signals homophilic characteristics of type a nodes. Similarly, for a �= a′,
heterophilicity Haa′ = |Eaa′ |/(2|Va||Va′ |p) denotes propensity of type a nodes
to connect to type a′ nodes as contrasted with random placement of edges with
probability equal to the global edge density. If Haa′ < 1, nodes of type a do not
tend to be connected to nodes of type a′.

3 Network Sampling and Minority Representation

In this section, we compare attribute representation of minorities under sampling
schemes on synthetic and empirical networks.
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3.1 Sampling Methods

We consider several sampling schemes derived from various centrality measures
such as (in-)degree and Page-rank. All the methods have in common the following
exploration idea of the network. A node is picked uniformly at random followed
by a walk on the network with a fixed or random number of steps. The sampled
node is the last node visited by the walk.
Uniform sampling (U). We choose a node at random and the number of walk
steps is zero. This is equivalent to the classic uniform sampling method.
Sampling proportional to degree (D). We pick a node uniformly at random,
and one of its neighbors is chosen at random (one walk step).
Sampling proportional to in-degree (ID). For directed network, a node is
selected at random and one step is taken through an out-going edge chosen at
random. If the out-degree of the node is zero, the selected node is sampled.
Sampling proportional to Page-rank (PRc). After choosing an initial node
at random, the number of steps to traverse the directed network is a geometric
random variable (starting at zero) with parameter (1− c). If the walk gets stuck
in a node before the number of steps is reached, it returns this node as the
sampled node. The equivalence of this algorithm and sampling proportional to
Page-rank with damping factor c in the context of tree network models follows
from [5].
Fixed length walk sampling (FLM). We pick a node uniformly at random
and walk a fixed number M of steps through the out-going edges chosen at
random of the visited nodes. The same rule above applies if a node with zero
out-degree is reached.

3.2 Asymptotic Analysis: Sampling in Tree Networks

We consider an asymmetric homophily scenario. Majority nodes (type 2) have
equal propensity to connect to minority (type 1) or majority nodes. Minorities
have relatively higher propensity to connect to other minority nodes compared
to majority nodes.

Let κ11 = κ22 = κ12 = 1, κ21 = a and π1 = θ/(1 + θ). We analyze the
sampling schemes when a and θ go to zero in a dependent way by letting θ =
D

√
a, where D is a positive constant. Let v be a node sampled from the network

Gn and a(v) its attribute, under one of the sampling methods above. From
the analysis of the linear, tree model [1], as a → 0+, we have that P(a(v) =
1|Gn) behaves as D

√
a + O(a) under uniform sampling; 2D

√
a − (4D2 + 1

2 )a +
O(a3/2) under sampling proportional to degree; 3D

√
a + O(a) under sampling

proportional to in-degree; and as c → 1− and n → ∞, (2D2 − 1
2 + Δ)/(2D2 +

1
2 +Δ), where Δ =

√
(2D2 − 1/2)2 + 4D2 under sampling proportional to Page-

rank and fixed length walk sampling. The next sections investigate how these
results hold in a non-asymptotic regime in (sub-)linear, (non-)tree networks, as
well as in a real network.
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Table 1. Synthetic networks: structural properties.

|V | |E| D1 D2 H12 H21
|E11|

|E|
|E22|

|E|
|E12|

|E|
|E21|

|E|
|V1|
|V |

|V2|
|V |

Syn. 1 105 99999 18.74 0.961 0.015 0.861 0.050 0.864 0.002 0.085 0.052 0.948

Syn. 2 105 99999 7.155 0.988 0.068 0.541 0.108 0.760 0.015 0.117 0.123 0.877

Syn. 3 25,000 46907 3.722 1.078 0.042 0.488 0.057 0.828 0.009 0.106 0.124 0.876

Fig. 1. Synthetic networks with 500 nodes: (l.h.s.) linear, tree network (a = 0.003,
D = 1), (m.h.s.) sub-linear, tree network (α = 0.25, a = 0.02, D = 1), (r.h.s.) linear,
non-tree network (m1 = 1, m2 = 2, a = 0.02, D = 1). The red (green) circles represent
the minority (majority) nodes with sizes proportional to the degrees.

3.3 Synthetic Networks

We generate a linear (α = 1), tree network with |V | = 105 nodes, a = 0.003
(D = 1) where the probability that a node entering the network has attribute 1
(minority) is very small, π1 ≈ 0.052. The homophily and structural characteris-
tics of the network are given in Table 1 (Syn. 1). Note that D1 is large while D2

is close to 1, and H12 is smaller than H21 (< 1) corresponding to an asymmetric
homophily. A picture of a small network generated in this setting is shown in
Fig. 1 (l.h.s.). In the linear case, there are minority nodes with a large degree. For
each sampling method, we estimate the probability of sampling a minority node
through the proportion of minority nodes sampled over 104 runs. Additionally,
we also compute the average of the degree-ranks and Page-ranks of the minority
sampled nodes. The results are given in Table 2. Rank is expressed as percent in
Table 2, where higher rank corresponds to smaller top percent. The probability
of sampling a minority node under uniform sampling is close to the asymptotic
value

√
a ≈ 0.055 and does not give preference to “more popular” nodes (with

higher degree or Page-rank). Sampling proportional to degree approximately
doubles the chance to pick a minority node approaching 2

√
a − 9

2a ≈ 0.096 and
leads to a higher rank. The results improve with sampling proportional to in-
degree which agrees with the asymptotic analysis. For sampling proportion to
Page-rank (PRc) with c = m/(m + 1), m ∈ N, the mean number of walk steps
is m. The number of steps being random does not improve the results. If the
value of c is close to 0, PRc is akin to uniform sampling. On the other hand,
when c is large, the walk can hit the root. This can be explained by the diameter
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Table 2. Linear, tree network (Syn. 1): minority nodes representation

Sampling U D ID PR1/2 PR2/3 PR3/4 PR4/5 FL2 FL3 FL4

prob. 0.052 0.110 0.133 0.077 0.090 0.093 0.089 0.189 0.191 0.150

degree-rank (%) 46.147 6.883 3.628 23.702 16.220 12.199 10.805 1.032 0.330 0.155

Page-rank (%) 46.215 7.323 3.912 23.759 16.199 12.195 10.781 0.825 0.212 0.080

Table 3. Sub-linear, tree network (Syn. 2): minority nodes representation

Sampling U D ID PR2/3 PR3/4 PR4/5 PR5/6 FL4 FL5 FL6

prob. 0.125 0.176 0.226 0.199 0.220 0.226 0.223 0.387 0.401 0.381

degree-rank (%) 43.345 17.736 9.848 17.515 13.053 10.737 9.586 1.059 0.529 0.395

Page-rank (%) 43.037 18.954 10.417 17.284 12.783 10.553 9.358 0.617 0.384 0.143

Table 4. Linear, non-tree network (Syn. 3): minority nodes representation

Sampling U D ID PR1/2 PR2/3 PR3/4 FL2 FL3 FL4

prob. 0.1212 0.164 0.207 0.142 0.146 0.139 0.234 0.211 0.158

degree-rank (%) 69.045 17.184 9.443 46.636 35.758 29.978 3.211 1.283 0.609

Page-rank (%) 49.437 11.626 5.846 33.362 25.660 21.028 1.536 0.527 0.233

of the network which is 18 (in the tree case, it is O(log |V |)). These drawbacks
explain partly the good performance of fixed length walk sampling which also
has the higher rank of the minority sampled nodes. This sampling scheme gives
preference to nodes with a higher Page-rank as well.

We next consider the sub-linear, tree network with α = 0.25 and a = 0.02
(D = 1) which gives π1 ≈ 0.124. The characteristics of the generated network
are given in Table 1 (Syn. 2). An illustration of a small network with these char-
acteristics is shown in Fig. 1 (m.h.s.). We estimate the probability of sampling
a minority and its importance for each sampling scheme using 104 runs – see
Table 3. The qualitative comparison of the performance of the sampling schemes
is the same as in the linear case. However, the number of steps for sampling pro-
portional to Page-rank and fixed length walk sampling is larger. The diameter
of the generated network is 25.

Finally, we consider a linear, non-tree network with m1 = 1 and m2 = 2
and a = 0.02 (D = 1). The number of nodes is 25,000 which resulted in a
network diameter of 16. The network properties are shown in Table 2 (Syn. 3) –
see also Fig. 1 (r.h.s.) for a network generated with a smaller number of nodes.
As seen from the results (averaged over 104 runs) in Table 4, the probability of
sampling a minority node with fixed length walk sampling decreases compared
to the sub-linear case due to the non-tree network structure (however, it is still
approximately the double compared to uniform sampling).

3.4 Real Network

We inspect a social real-world network with a weak asymmetric homophily sce-
nario to assess the probability of sampling a minority node. Hate is a retweet
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Table 5. Empirical network: characteristics

|V | |E| D1 D2 H12 H21
|E11|

|E|
|E22|

|E|
|E12|

|E|
|E21|

|E|
|V1|
|V |

|V2|
|V |

Hate 2700 9709 9.976 0.579 0.408 0.529 0.333 0.386 0.122 0.158 0.183 0.817

Table 6. Hate network: minority nodes representation

Sampling U D ID PR1/2 PR2/3 PR3/4 FL2 FL3 FL4

prob. 0.179 0.199 0.205 0.194 0.204 0.205 0.214 0.224 0.222

degree-rank (%) 25.349 12.662 18.073 23.837 22.465 20.737 18.377 17.883 18.326

Page-Rank (%) 31.150 26.0812 15.363 27.259 23.328 20.579 13.911 13.272 14.227

network where nodes denote users, and edges represent retweets among them.
Users in the dataset are classified as either “hateful” (attribute 1) or “normal”
(attribute 2) depending on the sentiment of their tweets [7]. “Hateful” users rep-
resent the minority. We consider the largest connected component of the network
and remove loops and multiple edges for a comparison with the synthetic net-
works. Table 5 shows the key characteristics of interest of the directed network
(with diameter 24). The results (averaged over 104 runs) in Table 6 are in line
with the synthetic model, where fixed length walk sampling shows the higher
probability of sampling a minority node in addition to a higher rank compared
to uniform sampling. The smaller differences are due to the characteristics of
the network, where the proportions of edges from “normal” to “hateful” users
is only slightly higher than in the opposite direction. This can also be seen from
the homophily measures H21 and H12.

4 Relative Ranking of Minorities Under Sampling

The aim of this section is to quantify the relative ranking of nodes of type 1
compared to type 2 by observing the attribute type counts in a pre-specified
fraction γ ∈ (0, 1) of nodes selected under one of the following two sampling
schemes:

A: select γ fraction of nodes with the highest degrees (strictly speaking, this
sampling does not involve randomness at the sampling level);

B: sample without (or with, but not used in the scenarios below) replacement
γ fraction of nodes with probability proportional to degrees.

If an attribute type predominates the other attribute type in a given sampling
scheme, we call it the higher ranked attribute for that scheme. As in Sect. 3, we thus
consider the proportion of minority nodes in samples, but now focus on degree-
based sampling schemes A and B, dependence on γ (for small sample sizes), and
also on network structural properties such as homophily and out-degrees.

4.1 Synthetic Networks

For the synthetic network (1), we explore the questions above in terms of its
model parameters κ (the propensity matrix determining homophily) and m =
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Table 7. Heterophilic synthetic networks: proportion of minority nodes.

γ 0.01 0.02 0.03 0.04 0.05 0.1 0.15 0.20 0.3 0.4 0.5

Scheme A: m1 = 1, m2 = 1 0.868 0.810 0.733 0.673 0.626 0.514 0.467 0.417 0.407 0.355 0.325

m1 = 5, m2 = 1 0.372 0.458 0.515 0.560 0.576 0.660 0.679 0.701 0.732 0.754 0.513

Scheme B: m1 = 1, m2 = 1 0.442 0.432 0.433 0.422 0.422 0.397 0.384 0.371 0.355 0.343 0.334

m1 = 5, m2 = 1 0.535 0.5424 0.546 0.545 0.550 0.550 0.550 0.544 0.533 0.513 0.488
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Fig. 2. Heterophilic networks (l.h.s.) m1 = m2 = 1 (r.h.s.) m1 = 5, m2 = 1: degree
distribution.

(m1,m2) (the out-degree vector). We shall gain insight through the following
results and the quantities involved. From the analysis of the linear model [1], we
have: as n, k → ∞,

η̂m
a :=

∑
v∈V :a(v)=a deg(v, n)

2(n + n0)
→ ηm

a , pm ,a
n (k) ∼ k−(1+2/φm

a ), a = 1, 2, (2)

where ηm
a represents the limit of the normalized sum η̂m

a of degrees of attribute
type a and pm ,a

n (k) represents the proportion of nodes of type a with degree
k which follows a power law with exponent Φm

a := 2/φm
a in the limit. The

quantities ηm
a and φm

a are related to the relative ranking of minorities under the
two sampling schemes A and B above and can be precisely computed. (ηm

1 , ηm
2 )

is the minimizer of a suitable function [1, Eq. (4.1)], and

φm
a = 2 − maπa/ηm

a . (3)

If φm
1 > φm

2 , the tail of the minority degree distribution is heavier (see Eq.
(2)) and hence minorities are higher ranked in scheme A. On the other hand, if
ηm
1 > ηm

2 , the probability of sampling a minority node is higher in each draw
and hence the same conclusion holds in scheme B. We consider three different
network configurations as follows (for the proofs of the results (4)–(9) below,
see [1]).

Heterophilic Network. We first consider the scenario of a strongly heterophilic
network, such that κ11 = κ22 = 1 and κ12 = κ21 = K is large. In this case, node
pairs with different attributes are more likely to be connected than node pairs
with concordant attributes. As K increases, φm

1 and φm
2 behave as

φm
1 ≈ 2

(

1 − m1π1

m1π1 + m2π2

)

, φm
2 ≈ 2

(

1 − m2π2

m1π1 + m2π2

)

. (4)
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Table 8. Homogenous homophily networks (m1 = 5, m2 = 1; m1 = 5, m1 = 2) and
homogenous mixing network (m1 = 2, m2 = 1): proportion of minority nodes.

γ 0.01 0.02 0.03 0.04 0.05 0.1 0.15 0.20 0.3 0.4 0.5

scheme A: m1 = 5, m2 = 1 0.888 0.886 0.887 0.881 0.890 0.868 0.859 0.857 0.86 0.751 0.601

m1 = 5, m2 = 2 0.700 0.718 0.697 0.693 0.694 0.692 0.698 0.658 0.673 0.6556 0.614

m1 = 2, m2 = 1 0.552 0.598 0.601 0.594 0.593 0.589 0.589 0.576 0.586 0.547 0.580

Scheme B: m1 = 5, m2 = 1 0.684 0.690 0.682 0.676 8 0.677 0.659 0.6441 0.629 0.596 0.558 0.516

m1 = 5, m2 = 2 0.527 0.522 0.518 0.522 0.516 0.505 0.497 0.493 0.473 0.455 0.436

m1 = 2, m2 = 1 0.5056 0.505 0.503 0.507 0.502 0.499 0.493 0.487 0.477 0.465 0.451

1 2 5 10 20 50 100 200

1e
−
05

1e
−
04

1e
−
03

1e
−
02

1e
−
01

1e
+
00

degree

p.
m
.f.

Minority

Majority

1 2 5 10 20 50 100 200

1e
−
05

1e
−
04

1e
−
03

1e
−
02

1e
−
01

1e
+
00

degree

p.
m
.f.

Minority

Majority

1 2 5 10 20 50 100 200

1e
−
05

1e
−
04

1e
−
03

1e
−
02

1e
−
01

1e
+
00

degree

p.
m
.f.

Minority

Majority

Fig. 3. Homogenous homophily (l.h.s.) m1 = 5, m2 = 1 (m.h.s.) m1 = 5, m2 = 2 and
homogenous mixing: (r.h.s.) m1 = 2, m2 = 1: degree distribution.

Thus, the rank of minority nodes under scheme A depends on the relation
between m1π1 and m2π2. Table 7 shows the results for two linear networks with
25,000 nodes, K = 10 and π1 = 0.3. The out-degree vectors m are (1, 1) and
(5, 1). For m1 = 1, we have φm

1 ≈ 1.373 and φm
2 ≈ 0.659 (using (3)) which are

close, respectively, to 1.4 and 0.6 given by the approximations in (4). In this
case m1π1 < m2π2, and the minority nodes rank higher under scheme A due
to the fact that majority nodes tend to connect to minority nodes, increasing
their ranks. This holds for any tree network. For m1 = 5, we have φm

1 ≈ 0.688
and φm

2 ≈ 1.377 which are close, respectively, to 0.636 and 1.364 given by (4).
In this setting m1π > m2π2, the minority nodes increase the ranks of majority
nodes for small values of γ, by connecting to the majority with more output
edges. (Note that when γ = 1 the relative ranking is given by the proportion of
minority nodes in the network.) Figure 2 shows the degree distribution for each
attribute, where in (l.h.s.) the minority has a heavier tail (φm

1 > φm
2 ) and in

(r.h.s.) it is the majority (φm
1 < φm

2 ).
As K gets larger, ηm

1 and ηm
2 approach the same limit value

ηm
1 ≈ ηm

2 ≈ m1π1 + m2π2

2
, (5)

which implies that the differences between the relative rankings are smaller
between the two attributes for scheme B. Table 7 shows the relative ranking
of the minority for the networks described above under this scheme (the results
were averaged over a large number of runs). For m1 = 1, we have ηm

1 ≈ 0.478
and ηm

2 ≈ 0.522 which are close to 0.5 given by the approximation in (5). For
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Table 9. Asymmetric homophily: proportion of minority nodes.

γ 0.01 0.02 0.03 0.04 0.05 0.1 0.15 0.20 0.3 0.4 0.5

Scheme A: m1 = 1, m2 = 1 0.712 0.632 0.589 0.570 0.526 0.468 0.4565 0.397 0.384 0.345 0.323

m1 = 2, m2 = 1 0.980 0.938 0.911 0.890 0.866 0.769 0.725 0.702 0.597 0.601 0.596

Scheme B: m1 = 1, m2 = 1 0.423 0.411 0.396 0.392 0.390 0.370 0.363 0.357 0.342 0.334 0.327

m1 = 2, m2 = 1 0.591 0.585 0.568 0.567 0.559 0.539 0.520 0.501 0.4766 0.449 0.425
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Fig. 4. Asymmetric Homophily: (l.h.s.) m1 = m2 = 1 (r.h.s.) m1 = 2, m2 = 1: degree
distribution.

m1 = 5, we have ηm
1 ≈ 1.144, ηm

2 ≈ 1.056 which approach 1.1 in (5). However,
the higher value of ηm

1 makes the minority slightly more dominant for scheme B.

Homogenous Homophily and Homogenous Mixing. We consider the cases
of a strong homogeneous homophily with κ21 = κ21 = 1 and κ11 = κ22 = K
large and homogenous mixing with all the elements of the matrix κ equal to 1.
As K goes to infinity, the exponents of the tail degree distribution per attribute
are equal and behave as

φm
1 = φm

2 ≈ 1, (6)

which also holds in the case of homogenous mixing. However, we will see that
the relative ranking of the minority under scheme A will depend on the ratio
m1/m2. Table 8 depicts two homogenous homophily networks with 25,000 nodes,
K = 10, π1 = 0.3, and m vectors (5, 1) and (5, 2) which result in φm

1 ≈ 1.022,
φm
2 ≈ 0.948 and φm

1 ≈ 1.003, φm
2 ≈ 0.997, respectively. An homogenous mixing

network with 25,000 nodes, π1 = 0.35 and m = (2, 1) is also considered. Figure 3
shows the degree distributions per attribute. Despite the degree tail exponents
being similar from the plots, if m1 is larger than m2, the degrees of minority
nodes get a high initial boost. Additionally, from the works [4,8], for multi-
attributes, there is a “persistence phenomenon”, i.e., the maximal degree nodes
from any attribute type emerge from, with high probability, the oldest nodes
of that type added to the network. Therefore, the results in Table 8 show that
minority nodes have a higher ranking under scheme A.

On the other hand, as K goes to infinity (homogeneous homophily) and also
for homogenous mixing,

ηm
1 ≈ m1π1, ηm

2 ≈ m2π2. (7)
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Table 10. Empirical networks: proportion of minority nodes.

γ 0.01 0.02 0.03 0.04 0.05 0.1 0.15 0.20 0.3 0.4 0.5

Scheme A: Hate 0.778 0.778 0.716 0.704 0.689 0.637 0.588 0.533 0.430 0.356 0.304

APS 0.154 0.115 0.132 0.157 0.203 0.211 0.250 0.266 0.297 0.289 0.300

Scheme B: Hate 0.472 0.460 0.460 0.460 0.451 0.427 0.413 0.404 0.386 0.311 0.282

APS 0.269 0.294 0.277 0.278 0.302 0.291 0.284 0.283 0.300 0.298 0.305

For the networks considered with m = (5, 1) and m = (5, 2), the exact values
(resp. approximations in (7)) are ηm

1 ≈ 1.534, ηm
2 ≈ 0.666 (resp. 1.5 and 0.7),

and ηm
1 ≈ 1.504 , ηm

2 ≈ 1.396 (resp. 1.5 and 1.4). For m = (2, 1), the true value
and approximation match with ηm

1 ≈ 0.7, ηm
2 ≈ 0.65. Thus, if m1π1 > m2π2,

the minority nodes rank higher under scheme B – see Table 8.
In both types of networks, minority nodes can increase their popularity via

schemes A and B through a higher ratio m1/m2. In the context of social net-
works, it means minorities increasing their social interaction.
Asymmetric Homophily. The last scenario is the case of a strong asymmetric
homophily network (slightly different from Sec. 3), where κ11 = K is large, and
κ22 = κ12 = κ21 = 1. As K tends to infinity,

φm
1 ≈ 2m1π1 + 3m2π2

2m1π1 + 2m2π2
, φm

2 ≈ m2π2

m1π1 + m2π2
(8)

and

ηm
1 ≈ 2m1π1(m1π1 + m2π2)

2m1π1 + m2π2
, ηm

2 ≈ m2π2(m1π1 + m2π2)
2m1π1 + m2π2

. (9)

Two networks are considered with 25,000 nodes, K = 10 and m vectors
(1, 1) and (2, 1) in Table 9. In both networks, φm

1 > φm
2 and the minorities rank

higher under scheme A. The exact values are φm
1 ≈ 1.31, φm

2 ≈ 0.761 (m1 = 1)
and φm

1 ≈ 1.247, φm
2 ≈ 0.609 (m1 = 2) which are close to the approximations

in (8). This also agrees with the degree tail exponents in Fig. 4 with the degree
distribution of the minority being more heavy-tailed (higher φm

1 ).
Under scheme B, minorities rank higher with m1 = 2 since 2m1π1 > m2π2

in (9) (also ηm
1 ≈ 0.821, ηm

2 ≈ 0.479). This means that in a social network, if the
arriving majority nodes have almost a neutral attribute preference attachment
(κ12 = κ22), the minorities can increase their popularity through the number of
outgoing edges that connect to other minority nodes.

4.2 Real Networks

We consider two real-world networks with power-law degree distributions to
assess the ranking of the minorities under schemes A and B. For the Hate net-
work in Sect. 3.4, the exponents of the fitted degree distributions (Φ̂m

a ) are 2.776
and 3.338; and the normalized sums of the degrees (η̂m

a ) are 3.223 and 3.617
for the minority and majority, respectively. Table 10 shows that under scheme
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A, the minorities rank higher. APS is a scientific network from the American
Physical Society where nodes represent articles from two subfields and edges
represent citations with homogeneous homophily. Some networks statistics are:
1281 (nodes), 3064 (edges). The minority rank is lower in both schemes where
the exponents and normalized sums of the degrees are 3.947 and 3.292, and 1.332
and 3.452 respectively, for subfields 1 (minority) and 2 (majority). For these two
real networks, the results on relative ranking of the minority are in line with
those for the synthetic networks.

5 Conclusions and Future Work

This paper explored settings where Page-rank and walk-based network sampling
schemes favor small minority attribute nodes compared to uniform sampling.
We also investigated the conditions for the minority nodes to rank higher in
degree-based sampling. To this end, we used an attributed network model with
homophily under several network configurations which provided insight into real-
world networks.

In follow-up work, we plan to compare and contrast the performance of var-
ious centrality measures, including degree and Page-rank centrality, for ranking
and attribute reconstruction tasks in the semi-supervised setting, where one has
partial information on the attributes and wants to reconstruct it for the rest of
the network. In the setting of dynamic and evolving networks, contrary to static
networks, preliminary results in [1] seem to suggest starkly different behavior
between degree vs Page-rank centrality in such settings.
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Abstract. This paper proposes a novel framework for empirically
assessing the effect of network characteristics on the performance of pre-
trained link prediction models. In link prediction, the task is to predict
missing or future links in a given network dataset. We focus on the
pretrained setting, in which such a predictive model is trained on one
dataset, and employed on another dataset. The framework allows one
to overcome a number of nontrivial challenges in adequately testing the
performance of such a pretrained model in a proper cross-validated set-
ting. Experiments are performed on a corpus of 49 structurally diverse
real-world complex network datasets from various domains with up to
hundreds of thousands of nodes and edges. Overall results indicate that
the extent to which a network is clustered is strongly related to whether
this network is a suitable candidate to create a pretrained model on.
Moreover, we systematically assessed the relationship between topolog-
ical similarity and performance difference of pretrained models and a
model trained on the same data. We find that similar network pairs in
terms of clustering coefficient, and to a lesser extent degree assortativity
and gini coefficient, yield minimal performance difference. The findings
presented in this work pave the way for automated model selection based
on topological similarity of the networks, as well as larger-scale deploy-
ment of pretrained link prediction models for transfer learning.

Keywords: Link Prediction · Transfer Learning · Pretrained Models

1 Introduction

In recent years, researchers have studied complex networks to understand and
analyze the intricate relationships that underlie various real-world systems. Com-
plex networks, characterized by their non-trivial topological structures, have
applications in diverse fields such as the social sciences, biology, transportation,
and information technology [6]. Understanding the dynamics of these different
types of networks and predicting the formation of new or missing connections,
also known as “link prediction”, is a well-known and well-studied problem in the
field [17]. Link prediction aims to uncover hidden or potential interactions in a
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1141, pp. 150–161, 2024.
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network; for example, to predict who might connect to whom in a social network
or which proteins are likely to interact in a biological network. Furthermore,
link prediction is also used in various other applications and tasks, including
recommender systems, anomaly detection, privacy control, network routing, and
understanding the underlying mechanisms that govern network evolution [9–
11,14].

In literature, different types of methods for link prediction have been pro-
posed. Initial methods focused on node pair similarities, such as the Jaccard coef-
ficient, Adamic-Adar index, and resource-allocation index [1,17]. Node pair simi-
larity relies on the notion that if a given pair of nodes has a similarity score higher
than some threshold, then this pair is more likely to be connected [11]. Later,
researchers proposed other types of methods, including (i) maximum likelihood-
based methods that work on maximizing the likelihood of the observed structure
so that any missing link can be calculated using the identified rules and param-
eter [22], (ii) probabilistic models based methods that focus on modeling the
underlying network structure and then use the learned model to predict the miss-
ing links [24], (iii) machine learning-based methods that train a machine learning
model based on node pair features for existing and non-existing links [2,5], and
(iv) network embedding-based methods that create a low dimensional represen-
tation of the network using word2vec models or matrix-factorization, and then
train a machine learning model using these vector representation of nodes to
predict missing links [8,16,23]. In literature, it has been shown that the third
category, machine learning based methods, outperforms other types of methods
and has lately become the focus of link prediction research [12]. An additional
advantage is that the use of topological features of the node pairs ensures the
interpretability and explainability of resulting models through the analysis of
feature importance. However, one limitation of these methods is that a link pre-
diction model must be trained for each new network dataset.

To solve this problem, people have used transfer learning, i.e., a machine
learning technique where a model developed for a particular task is reused or
adapted as the starting point for a model on a second task [20]. Instead of training
a new model from scratch, transfer learning leverages the knowledge gained from
solving one problem and applies it to a different but related problem. By using a
pretrained model as a starting point, one can save time and resources compared
to training a new model from the ground up. In this work, we investigate the
feasibility of transfer learning for link prediction in real-world complex networks.

In the remainder of this work, we analyze the characteristics and topology
of 49 networks to understand how they affect the ability to train and predict
links across networks. Specifically, we first propose a framework to perform cross-
validation across multiple datasets, to efficiently test and compare the transfer
learning performance of pretrained models for link prediction. Working towards
automated pretrained model selection, we subsequently investigate what kind of
topological network properties are important for selecting a well-performing pre-
trained model. Finally, we analyze what topological network similarities between
training and testing networks, yield good transfer learning performance. In doing
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so, we aim to understand to what extent transfer learning can be applied to pre-
dict unseen links in real-world networks by employing pretrained models.

The structure of the remainder of this paper is as follows. In Sect. 2, we
discuss the approach followed to train our link prediction model, as well as the
framework to test transfer learning. Then, Sect. 3 describes the data, evaluation
criteria used, and the experimental setup developed, as well as the experimental
results. Finally, we draw conclusions and propose future directions of research
in Sect. 4.

2 Methodology

In this section, we first discuss the network features used to train predictive
models for link prediction. Then, we give an overview of machine learning algo-
rithms used to predict missing links and explain how we split the datasets for
training and testing.

2.1 Features

Working towards a machine learning model that takes node pairs as input, and
outputs whether this node pair is likely to be connected in the future, features
that describe these node pairs are required.

In this work, we employ features commonly used in link prediction models,
focusing on the work presented by Bors [3], to design a good link prediction
model and test transfer learning. The chosen features balance simplicity, speed,
and performance. We note that this study aims not to design the best link
prediction model with the most comprehensive set of features, but instead aims
to assess the feasibility of transfer learning in link prediction.

The selected set of features used throughout our experiments are as follows:
(i) total neighbors, i.e., the union of all neighbors of the source and target nodes;
(ii) common neighbors, i.e., the number of nodes connected to both the source
and target nodes; (iii) Jaccard Coefficient [17], i.e., the ratio between the common
and total neighbors; (iv) Adamic-Adar [1], which used to compute the closeness
of nodes based on their shared neighbors; (v) preferential attachment [17,19],
i.e., the multiplication of the number of neighbors of the source and target nodes;
(vi) degree of the source node (vii) degree of target nodes, (viii) ratio of degrees
of source and target node, (ix) triangle count for the source node, and (x) triangle
count for the target nodes, i.e., denoting the number of triangles they are involved
in.

2.2 Training and Testing Set Generation

To generate a training dataset from the network, the node pairs with existing
links are considered as positive cases, and node pairs with distance two are used
as negative cases. We consider only node pairs at a distance of at most two, as
links are more likely to be formed between already close nodes. This is reflected
in the chosen features, many of which are not applicable to nodes at a distance
larger than two. Moreover, it assists in reducing the class imbalance.
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2.3 Stacked Classifier

In this work, we use a supervised machine learning model for link prediction
classification. Based on the findings by Ghasemian et al. [7], we set up a stacked
classifier using Scikit-Learn [21], in which we use the most commonly used clas-
sifier models in the literature [7,15,18,23]: a random forest classifier, logistic
regression, naive-bayes, and quadratic discriminant analysis models. Together,
these models serve as base estimators. We then use Logistic Regression as meta-
model to combine (“stack”) these predictions to make a final prediction.

2.4 Cross-Validation Framework

Here we discuss the proposed framework for adequate cross-validation training.
We split the datasets into training and testing subsets to evaluate the perfor-
mance of the prediction model. The datasets are split using k-fold, and in this
work, we set k = 4, resulting in a random 75–25% split, to avoid bias in the sam-
ple. Additionally, due to the sparsity of networks, we down-sample the majority
class of the training dataset to account for class imbalance. We perform cross-
validation training as shown in Fig. 1 to validate a model’s results on different
data portions. Essentially, we train models for each fold per dataset and then
validate them on each split of the datasets. Note that in Fig. 1, we only train and
validate on the same split when testing on the same network. This is because,
within the same split, the data is disjoint, so we do not have the same observa-
tions in the train and validation sets. Otherwise, we would encounter the same
data in both the training and validation sets, which is not ideal for a machine
learning model since it adds bias to the model by predicting previously seen
data. Thus, we removed those cases from our testing set.

3 Experiments

This section covers the experimental setup and results. First, in Sect. 3.1, we
discuss the datasets and metrics used. Then, in Sect. 3.2, we determine the overall
feasibility of using transfer learning for link prediction by studying the AUC
(loss) matrix and distributions. Next, in Sect. 3.3, we discuss what the most
important topological features are that affect the performance of a pretrained
model. Finally, in Sect. 3.4, we determine which structural network similarities
yield good transfer learning performance.

3.1 Experimental Setup

Datasets. In order to test the capabilities of transfer learning, we analyze 49
network datasets from the KONECT Project [13]. The networks were chosen
such that they cover a variety of topological properties, sizes, and categories.
The datasets are presented in Table 1, along with their respective number of
nodes and edges. All networks are interpreted as undirected and unweighted.
Additionally, we only consider the largest connected component of each network.
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Fig. 1. Cross-validation training assignments. For each split, we generate a training set
with 75% of the data and a validation set with the remaining 25%. (Letters indicate
the dataset, numbers indicate the split.)

Metrics. Similarly to previous works [4,7], we measure the performance of the
classifier using the Area Under the Receiver Operating Characteristic Curve
(AUC). Additionally, we define AUC loss, which we use to measure the loss in
accuracy resulting from applying transfer learning between two different net-
works. We calculate loss Li,j as follows:

Li,j = AUCi,i − AUCi,j

Here, Li,j is the loss of training a model with network i and validating on network
j and AUCi,j is the performance score of training a model with network i and
validating on network j.

For all pairs of network datasets considered, the resulting AUC score of using
a model trained on network i to predict missing links on network j, can be
presented in a matrix as shown in Fig. 1. In other words, for each pair of networks,
we train on each fold of network i and test each trained model on each fold of
network j (provided i �= j), and then aggregate over all combinations of folds by
averaging the AUC scores.

3.2 Feasibility of Transfer Learning in Link Prediction

To test whether transfer learning is feasible for link prediction, we assess if it is
possible to pretrain a model on one network and test it on another with minimal
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Table 1. Datasets sourced from [13], along with the number of nodes and edges.

dolphins (62/159) residence (217/2,672) copperfield (112/425)

cora (23,166/91,500) karate (34/78) proteins (1,706/6,207)

dblp (12,590/49,759) adolescent (2,539/12,969) reactome (6,327/147,547)

hepph (34,546/421,578) blogs (1,224/19,025) yeast (1,870/2,277)

hepth (27,770/352,807) foldoc (13,356/125,207) asoif (796/32,629)

astroph (18,771/198,050) airtraffic (1,226/2,615) sistercities (14,274/20,573)

astrophysics (16,046/121,251) newyork (264,346/730,100) lesmis (77/254)

erdos (6,927/11,850) openflights (3,425/67,633) pgp (10,680/24,316)

networkscience (1,461/2,742) contiguous (49/107) wikipedia (7,118/103,675)

digg (30,398/87,627) euroroad (1,174/1,417) hamsters (2,426/16,631)

dnc (2,029/39,264) chess (7,301/65,053) twitter (23,370/33,101)

facebook (46,952/876,993) football (115/613) filmtrust (874/1,853)

slashdot (51,083/140,778) congress (219/764) florida dry (128/2,137)

uc irvine (1,899/59,835) bible (1,773/16,401) florida wet (128/2,106)

caida (26,475/53,381) eat (23,132/511,764) littlerocklake (183/2,494)

gnutella25 (22,687/54,705) wordnet (146,005/656,999) chesapeake (39/170)

routeviews (6,474/13,895)

AUC loss. Therefore, we applied the cross-validation training procedure detailed
in Sect. 2.4 to all 49 datasets. The distribution of the resulting AUC scores
and AUC loss are shown in Fig. 2. Since we use the same model and the same
features for all networks for link prediction, the AUC scores are, as expected,
not particularly high, with an average AUC score of 0.71. More importantly,
Fig. 2b shows that AUC loss is very low for many combinations of training and
testing networks. However, in many use cases, the average AUC loss of 0.14 can
still be considered too significant. This signals the important conclusion that
one can not simply choose a random network to pretrain and apply it to any
new network. Instead, an appropriate network should be selected to minimize
the AUC loss.

To investigate which (types of) networks make transfer learning in link pre-
diction more feasible, Fig. 3 shows the matrix of AUC loss for all pairs of training
and testing networks for all 49 networks under consideration. Rows in the matrix
depict the training performance of a single network, while columns represent the
ease of prediction for a single network. In Fig. 3, we can see that networks from
citation and co-authorship categories (i.e., cora, dblp, hpph, hepth, astroph
and astrophysics), as well as miscellaneous (asoif, sistercities, lesmis),
show favourable training performance with minimal AUC loss, suggesting they
are good baseline for pretrained models. Similarly, computer networks (caida,
gnutella25, and routeviews), infrastructure networks (airtraffic, newyork,
euroroad) and metabolic networks (proteins, yeast) display good validation
performance, meaning they are usually easy to predict regardless of the choice
of pretrained model. On the other hand, the bible network is the worst perform-
ing training network, with several very large AUC losses. Furthermore, some
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(a) AUC scores distribution. (b) AUC losses distribution.

Fig. 2. Distributions of the AUC scores and AUC loss across all networks. Alongside
the mean and median the quartiles are depicted with light grey lines. The blue line
approximates the trend.

human contact (residence, karate), human social (adolescent), lexical net-
works (bible, eat, wordnet) and trophic networks, i.e., relating to biological
interactions of species (commonly food chains), (florida dry, florida wet,
littlerocklake, chesapeake) show substandard validation performance, with
few to no pretrained models providing low AUC loss. As such, there are some
networks that often do well for training (pretrained) models and those for whom
many pretrained models work well, but there are also some for which no pre-
trained model appears to perform well. Thus, although transfer learning for
link prediction is feasible for most networks given the right choice of pretrained
model, it is not effective in all cases, i.e., there is no one-size-fits-all kind of
solution.

3.3 Topological Feature Importance for Pretraining Models

Next, we set to understand how a network’s topological features might affect a
model’s learning performance. For this, we train decision tree and random forest
algorithms by using the topological features of the networks to fit their average
AUC score as pretrained models aggregated over all testing networks. The top
splits, i.e., the top discriminating decisions, of the resulting trees are visualized
in Fig. 4. By studying the top discriminating decisions of these trees, we can
understand which are the most important topological features for good transfer
learning performance and how these features affect the performance.

The decision tree depicted in Fig. 4a suggests that a high normalized num-
ber of triangles (#triangles/edges) results in, on average, higher AUC scores.
Furthermore, for pretrained models from networks with a high maximum degree
and few triangles (per link), we observe that the transitivity is a great indicator
of either high or low resultant AUC scores, whereas, for lower maximum degree
models and few triangles (per link), the average degree can be a good indicator.

The decision tree obtained from the random forest algorithm in Fig. 4b sug-
gests that very low transitivity or relatively high transitivity with high mean
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Fig. 3. AUC loss matrix for all 49 datasets.

distance and clustering coefficients tend to result in higher AUC scores. On the
contrary, low-to-middle transitivity with higher clustering coefficients and high
transitivity with small mean distances or small clustering coefficients result in
low AUC scores. As such, only high transitivity or clustering coefficient are not
universally good or bad for the transfer learning link prediction performance of
a pretrained model. However, note that clustering coefficient and transitivity
are usually correlated, so a network with a high clustering coefficient will likely
not have low transitivity. Interestingly, our previous observation from Fig. 4b
indicates that high AUC scores are obtained when these topological features are
indeed correlated for a network, and low AUC scores are obtained when they
are not.
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(a) Decision tree.

(b) Random forest.

Fig. 4. Tree-based topological feature importance. Darker coloured nodes/leafs indicate
higher average AUC scores achieved by the pretrained models of included networks,
whereas lighter coloured leafs indicate lower average AUC scores. The average AUC
scores of the node/leaf are indicated by ‘value’. For each parent node the left child
includes the pretrained models from networks that adhere to the condition specified by
the parent node and the right child includes those that do not. For example, in figure
(a) the left child of the root node includes all pretrained models from networks with
a maximum degree ≤ 505.5 while the right child includes all those with a maximum
degree > 505.5.

In short, we find that some of the most important topological features influ-
encing the performance of pretrained models are the number of triangles (per
link), the transitivity, and the clustering coefficient. Notably, the level of corre-
lation between these features can be especially indicative of the resulting high
or low AUC scores of a pretrained model.
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3.4 Influence of Network Dissimilarity on Transfer Learning

Finally, we examine what structural network similarities between a training and
a testing network lead to good transfer learning performance. We do so by com-
paring the AUC loss (as defined in Sect. 3.1) to how dissimilar the topological
properties are between two networks. This allows us to understand if there is a
relationship between their similarity and the performance of the model. Figure 5
illustrates the relation of loss in performance when predicting missing links in
one network using a model trained on another, compared to the topological
dissimilarities of both networks. It is clear that there is a trend in almost all
topological features (except for maximum degree), and if two networks are more
different, there is more loss in the performance. Specifically, we observe that if
two networks are more similar in terms of clustering coefficient, it leads to the
lowest AUC loss, while the most dissimilar networks for this feature have the
second highest AUC loss. Furthermore, when it concerns degree assortativity,
gini coefficient, and transitivity, we note that highly similar networks also show
reasonably low AUC losses. Overall, our results indicate that considering the
similarity in terms of clustering coefficient, and to a lesser extent in terms of
degree assortativity, gini coefficient, and transitivity is especially important in
choosing a pretrained model for link prediction.

Fig. 5. AUC loss vs. network dissimilarity.

4 Conclusion

In this work, we studied the feasibility of using pretrained link prediction mod-
els in complex networks. Moreover, we studied the network characteristics that
impact model training, and how these can be used for selecting a well-performing
pretrained model. We conducted experimental analysis on a large corpus of struc-
turally diverse networks, including co-authorship, citation friendship, human
interaction, biological, and transportation networks. Through our experiments,
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we observed that transfer learning for link prediction is a feasible way to move
forward, and some network categories perform better as sources for training and
others to predict missing links on. Furthermore, we found that network features
based on local connectivity, such as clustering coefficient, number of triangles,
or transitivity, are important indicators when picking a network for training a
predictive model. Specifically, we found that when two networks show very dis-
similar topologies in terms of clustering coefficient, but also in terms of degree
assortativity, gini coefficient, and transitivity, it is likely that the performance
of transfer learning is hindered.

This work demonstrates the feasibility of using pretrained models in link pre-
diction. Future work could focus on designing better transfer learning methods
to achieve higher accuracy using topological properties of an unseen network and
the network used for pre-training. Additionally, this work opens an avenue to
use transfer learning for complex network problems, such as node classification,
role identification, and influence maximization.
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Abstract. For many natural language processing systems, the extraction of tem-
poral links and associations from clinical narratives has been a critical challenge.
To understand such processes, we must be aware of the occurrences of events and
their time or temporal aspect by constructing a chronology for the sequence of
events. The primary objective of temporal relation extraction is to identify rela-
tionships and correlations between entities, events, and expressions. We propose a
novel architecture leveraging Transformer based graph neural network by combin-
ing textual data with event graph embeddings for predicting temporal links across
events, entities, document creation time and expressions. We demonstrate our
preliminary findings on i2b2 temporal relations corpus for predicting BEFORE,
AFTERandOVERLAP linkswith event graph for correct set of relations. Compar-
ison with various Biomedical-BERT embedding types were benchmarked yield-
ing best performance on PubMed BERT with language model masking (LMM)
mechanism on our methodology. This illustrates the effectiveness of our proposed
strategy.

Keywords: Natural Language Processing · Information Extraction · Temporal
Relations Prediction · Clinical Narratives · Knowledge Graphs · Graph
Embeddings · Graph Neural Networks

1 Introduction

It is crucial to extract temporal information from clinical narratives about events, expres-
sions, and their occurrences to better comprehend the past and, to the best of our ability,
can predict the future. A clinical event is anything that is pertinent to the clinical timeline,
such as clinical concepts, entities, etc., and especially in the medical domain, there are a
vast number of texts almost ready to be exploited. The foundation for performing tem-
poral relationship tasks in NLP has traditionally been temporal events and expressions.
Temporal information, such as dates, time expressions, durations, and intervals, allows
for tracking disease progression, treatment timelines, and event sequencing. Events that
occur within a clinical context, such as diagnoses, treatments, procedures, or laboratory
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tests, have both temporal and spatial aspects. Clinical reports often contain explicit tem-
poral expressions such as dates, durations, time intervals and extracting these expressions
is the first step in identifying temporal information. For instance, identifying phrases like
“two weeks ago” or “since last year” as temporal expressions. Once temporal expres-
sions are identified, the next step is to establish relationships between different events or
findings mentioned in the clinical reports. This involves determining the order of events,
durations, or time intervals between them. For instance, determining whether a specific
treatment occurred before or after a diagnosis or the duration between two laboratory
test results.

Fig. 1. Sample Entity and Event Temporal Relation Annotation Sentence

In this study, we attempt to extract temporal ordering information by identifying
the chronological order or sequence of events or observations mentioned in the clinical
narratives. This involves determining whether one event occurs before, after, or concur-
rently with another event Fig. 1. For example, establishing the sequence of events such
as “diagnosis of pneumonia” preceding “administration of antibiotic therapy.” Time
expressions (TIMEXs) extracting temporal duration, document creation time or time
interval between two events or observations involves identifying expressions of time
duration, such as “three weeks,” “six months,” or “since last year” which provide details
about when, how long, or how frequently something occurred. In the clinical timeline,
temporal relations (such as “before,” “after,” or “overlap”) show how two EVENTS, two
TIMEXes, or an EVENT and a TIMEX are related to one another [1].We provide a novel
architecture for extracting temporal relations that combines data from a text document
with supplementary data found in the form of a knowledge graph.

Our approach introduces a unique architectural solution for temporal relation extrac-
tion by synergizing textual information fromdocumentswith complementary knowledge
graph data. This combination enriches the context and accuracy of temporal relations.
Directly translating text to a timeline in clinical records may not be preferred due to
the inherent complexity and ambiguity in clinical texts. Clinical documents often con-
tain intricate details, nuances, and domain-specific terminology that require contextual
understanding from a broader knowledge graph to accurately capture temporal relation-
ships. Our approach leverages this hybrid approach to enhance precision and contextual
relevance in temporal relation extraction from clinical records. In our study, we con-
centrate on extracting temporal relationships from medical papers since the automatic
recognition of the order of events might lead to a wide range of further applications. We
may use such a technique, for instance, to look for trends in the course of symptoms and
treatments and such sequences are helpful for tasks like predicting clinical dead ends
and identifying illness progression. We use the clinical discharge summaries from the
i2b2 2012 corpus to train and test our model [23] and were able to identify the before,
after, and overlap relations that the corpus has captured. Relationships are dealt with as
a three-class classification problem.
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The remainder of this manuscript is structured as follows.We discuss current models
for temporal relation extraction in Sect. 2. We present the suggested architecture for our
model in Sect. 3. Then, in Sect. 4, we discuss our early findings, which demonstrate
the potential of utilizing clinical narratives for temporal relation extraction. Section 5
concludes by summarizing our study and outlining the future directions for our work.

2 Related Work

Rule-based systems, conventional machine learning systems with specialized classifiers
and heuristics, and deep learning systems have all been stages in the evolution of tem-
poral relation extraction approaches [5]. Early attempts to address the clinical relation
extraction problem make use of traditional machine learning techniques like SVMs,
MaxEnt, and CRFs, and neural network-based methods [3, 4, 12, 13, 15, 24]. They
either necessitate expensive feature engineering or neglect to consider the dependencies
between temporal relations within a document. To model the dependencies, the problem
is formulated as a structured prediction problem [7, 18, 19]; however, these approaches
were unable to predict temporal relationships globally which is spanning the entire doc-
ument. The temporal relations at the document level can instead be inferred using our
method inspired from [10]. A notable work on time-line construction from the temporal
relations were employed [11], which is future scope for this work.

Recent methods use sophisticated deep neural network-based models that can learn
high-level representations for temporal relation extraction in the general domain. These
techniques can include sophisticated neural language models, such as BERT [27, 28]
as well as graph-based architectures that can extract relations at the document level and
capture the overall temporal structure of a text. Modern BERT models and variations of
this architecture serve as the foundation for state-of-the-art temporal relation extraction
systems in the clinical domain [6]. For instance, models proposed in [7, 18] included
temporal interactions and tense information, and other works presented in [22, 25] have
suggested using graph neural networks (GNNs) to encode dependency structures, which
are crucial for extracting temporal relations. Document-creation-time (DCT) is added
an attention layer to an R-GCN-based model [17] and further performance optimization
of the model was done by choosing the best sentences to feed into neural models using
a reinforcement learning framework [14].

Contextualized embeddings were learned using pretrained language models like
BERT [12] and the viability of using LLMs in temporal relation extraction has not yet
been studied, though. Recent methods, however, frequently lack flexibility and usability
because they tend to concentrate on a single task, like relation classification [8, 13,
29] and they are restricted to creating temporal relations from gold standard entities.
Some systems evaluated on the Direct Temporal Relations corpus only address explicit
intra-sentence temporal relations [9], for example, while others only address a smaller
subset of relations [2, 4]. The viability of using LLMs in temporal relation extraction
has not yet been studied, though. This work addresses the need for further development
of end-to-end strategies, leveraging various of language model variants for temporal
relation extraction tasks, which can also handle text, graph input, in document implicit,
and cross-sentence temporal relations with larger dependencies.
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3 Methodology

More common information is included and displayed as an event graph with already
discovered relationships between events as a categorization problem to enhance the
performance of temporal relation extraction. A graph structure known as an event graph
is one in which events are represented as nodes and temporal links as directed edges.
Then it is possible for us to connect the events in the text to be represented as a graph,
in which the existing relations are intended to be used as additional factors as they
record data regarding the relationships that are typical among various event types. A
pretrained language model and knowledge graph are leveraged to derive two sets of
relations based on the event embeddings of the input text. Thus, the model may learn
rules that apply to relations that are next to one another, such as transitivity. Following
that, the model creates a classifier based on each pair of event embeddings, and then it
combines both categories to create a single relation prediction. We utilize EntityBERT
[16] for text encoding due to its domain knowledge in the learning process by masking
entities as a whole and shows superior results on downstream clinical extraction tasks,
such as negation detection, document time relation classification, and temporal relation
extraction. The Deep Graph Library (DGL) guidelines were used in the construction of
our Temporal relations extractionmodel and are approached as a link prediction problem
by classifying whether two nodes are connected by an edge or not. We utilize Relational
GraphConvolutional Network (R-GCN) [22] for temporal relation prediction as it allows
representation of multiple relations along edges.

In our study, temporal relations are predicted as links using a parameterized score
function to reconstruct an edge using an autoencoder architecture. Our Temporal Rela-
tional Graph Convolutional Network (TR-GCN) aggregates incoming messages and
generates new node representations for each node, calculating outgoing messages for
each node using the node representation and an edge type-specific weight matrix. A
two-layered Temporal Relation Graph Convolutional Network (TR-GCN) allows the
representation of multiple relations along edges by encoding the graph input that is opti-
mized for distinguishing temporal links between events. The first TR-GCN layer served
as the input layer followed by projected features (BERT embeddings) into hidden space.
Negative sampling methodology is used to compare the scores of nodes connected by
edges to the scores of any two random pairs of nodes under the assumption that nodes
connected by edges will receive a higher score than nodes that are not connected. To
achieve this, a negative graph during the training loop is created, which contained ‘n’
negative examples of each positive edge and used a pairwise dot product predictor to
compute the dot product between the node embeddings and to calculate the relevance
score between edges. Nodes connected by an edge should have a higher score than nodes
that are not connected. In Fig. 2, we display the proposed event-driven knowledge graph
(KG) based TR-GCN architecture for temporal relationship extraction. A significant
benefit is that we were able to classify using just one type of input for instance, with
either text or knowledge graph our architecture still can capture and categorize temporal
relations.
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Fig. 2. Event-driven KG Based TR-GCN architecture for temporal relation extraction

3.1 KG Construction: Event Graph

We formulate it as a KG completion task by employing the event graph in the process
of temporal relation extraction. To enhance the performance of temporal relation extrac-
tion, we introduce domain knowledge into the classification task through the knowledge
presented in the form of an event graph that contains already-extracted links between
events. The event graph is a graph structure where the temporal interactions are repre-
sented as directed edges in the graph and the events are represented as nodes. We cata-
logue each event using its Unified Medical Language System (UMLS) meta-thesaurus
identification, allowing us to connect the events in the text with those present in the
graph. Existing relations are intended to be used as extra information since they cap-
ture information about the relationships that distinguish certain kinds of events from one
another. Thus, the existing relations enable the model to learn rules that are held between
neighboring relations, such as transitivity. The most significant events and relations for
these extracted relations are those that were taken from the same clinical record.

As a proof of concept, the event graphs are constructed from all relations present
in the clinical narrative except for the relations that we are extracting. Although it is
implausible for actual application, this type of knowledge graph replicates the ideal
situation in which we already have access to all other relations in the clinical document.
But in practice, the relations might be gathered by first predicting them with the text
model and then constructing the event graph and as a result, it is possible that some of the
relations in the event graph may contain inaccuracies, which will negatively impact the
outcomes. Nine different types of links between clinical EVENTs, temporal expressions
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(TIMEXs), and SECTIMEs (the patient’s arrival and departure times) are present in the
i2b2 dataset. We use the BEFORE, AFTER, and OVERLAP links from 310 discharge
summaries annotated with temporal information.

We used the Python library Deep Graph Library (DGL) [26] to convert each dis-
charge summary into a graph, where EVENTs, TIMEXs, and SECTIMEs serve as
the nodes and the BEFORE, AFTER, and OVERLAP links serve as the edges. The
SAME_SENTENCE relationship connected all the nodes that were in the same sen-
tence in the raw clinical narratives/discharge summaries. This fourth type of link, which
was not included in the i2b2,was added becausewe thought it would improve themodel’s
prediction accuracy. By doing this, we made sure that when making predictions, we had
a relationship that could be automatically added to fresh graphs that still lacked the
BEFORE, AFTER and OVERLAP relationships. Graph design is streamlined by giv-
ing each node a single type (an “entity”) and used node features to store information
about their actual types (EVENT, TIMEX, and SECTIME) in a one-hot-encoded vector.
Because our graph had three different types of edges in addition to only having one type
of node, it was heterogeneous. Then we added BERT contextual embeddings from each
token of the plain text reports to our nodes to preserve the contextual information from
the raw clinical discharge summary. For multi-token entities, the context is preserved
using the mean of the embeddings with the token’s components. Eventually, our nodes
attributes had 789 dimensions: 786 dimensions from the BERT embeddings vector and
3 dimensions from the one-hot-encoded vector, which represents the entity type.

3.2 Text and Graph Embeddings

We leverage EntityBERT for calculating token embeddings with designated unique
tokens in the beginning and end of each event in the text input. The model training
aims at identifying entities and events. The event embeddings are created by averaging
each token associated with an event as a single embedding which includes details about
the event and how it’s related to the text. Embedding of both events is integrated by
joining two vectors together as one, in which the resultant vector is sent via a graph
convolutional layer that categorizes the vector into one of 3 categories of temporal con-
nection. The temporal relation is categorized by using the KG constructed through a
graph neural network and graph embeddings are generated. Events and temporal links
around the events are constructed as part of KG as nodes and edges and begin each
event’s embedding with GloVe embedding by aggregating global token-to-token co-
occurrence [21]. Three-layer graph convolution is used to combine event embeddings
across temporal relations and each event thereafter comprises data about its associated
events and the pertinent relations. The observed events’ embeddings are combined and
then transmitted via two graph convolution layers to carry out the categorization.

3.3 Language Modelling with Masks (LMM) and Prediction

We wanted to see if the quality of the BERT embeddings used as attributes changed
after performing Language Model Masking (LMM) on the original models in addition
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to testing their effectiveness by contrasting the embeddings of sixmodels. The four mod-
els namely ClinicalBERT1, PubMedBERT2, BlueBERT3 and SciBERT4 were obtained
straight from Hugging Face Models Hub5 which were initially trained on PubMed arti-
cles, clinical narratives, MIMIC notes, and electronic health records. Unlike the Pub-
MedBERT (PMB) model, all other models use embedding with a dimension of 1024
rather than 789. The effectiveness of our strategy is demonstrated by conducting anLMM
on the PubMedBERT model. This led us to run the PubMedBERT_LMM on Google
Colaboratory Notebook (PMB-LMM-GC) and on our servers (PMB-LMM-Serv). We
masked 20% of the tokens in the i2b2 dataset for the LMM task and employed the
AdamW optimizer with a batch size of 64 and a learning rate of 5e−5. All the models
other than PubMedBERT showed decreased performance in the metrics after 2 epochs,
hence we only trained our models for PubMedBERT.

We divided our 310 graphs from i2b2 2012 into a train set (80%) and a test set
(10%) before training our model and the rest (10%) of the data as the validation set. The
model’s two primary components are built in such a way to predict the temporal relations
and categorize it for text and graph input. We initially concatenate the two prediction
vectors, after which we run them through two graph convolution layers that calculate
the combined prediction where the model learns to trust one portion of the model over
another. The model is trained in three stages. First, by simply using one portion of the
network to identify temporal connections, we independently train the text and graph
components of the model. This enables us to precisely adjust the training settings for
each component separately. We continue training the network using the complete model
when both network segments have been trained. A batch size of 20 graphs is batched
together to prevent memory issues during the training phase and each input graph is
treated as a separate and distinct component of the batched graph in DGL.

Iteratively the negative graph is built during the training loop and calculated the
margin loss. We also changed the original negative graph function so that each subgraph
only received negative examples from its own subgraph because the DGL guidelines
do not use batched graphs. The DGL allows us to predict one type of relationship at
a time, and hence we separately trained our model to predict BEFORE, AFTER, and
OVERLAP links. Our goal is to compare 6 different types of embeddings, and we have
set some hyperparameters to establish the baseline comparison. Five negative samples
are generated for each positive edge, and we used hidden and out dimensions of 1280
for BlueBERT, SciBERT, and ClinicalBERT models, and 1024 for the PubMedBERT
model. We trained the model in Google collaboratory notebook for 50 epochs with a
training batch size of 20 graphs and later optimized some of the hyperparameters for the
selected model where we presented the captured metrics in Table 3.

1 emilyalsentzer/Bio_ClinicalBERT.
2 microsoft/BiomedNLP-PubMedBERT-base-uncased-abstract-fulltext.
3 bionlp/bluebert_pubmed_uncased_L-24_H-1024_A-16.
4 allenai/scibert_scivocab_uncased.
5 Models - Hugging Face

https://huggingface.co/models
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4 Results and Discussion

We tested our proposed model with the above-mentioned train, test, and validation splits
on the i2b2 2012 temporal relations dataset and utilized the test split to assess themodel’s
performance. On the initial set of analyses in forecasting the temporal connections
through text modality and knowledge graph, we demonstrate the model’s performance
with and without knowledge graph input. This outcome informs us of the accuracy of
the relations as a problem of knowledge graph completion. Finally, we test the complete
model while simultaneously employing both modalities demonstrating the effectiveness
of combining them for more accurate and reliable prediction. We also compared the F1
metric of our methodology with some of the baseline models [20, 29].

We also used BERT model [29] with two variants one with single layer for classifi-
cation and another with soft logic regularizer as a baseline Comparison to our work in
which Table 1 shows the outcome of incorporating the event graph in addition to the text
alone greatly enhanced the model’s performance (14% improvement). Table 2 shows
the state-of-the-art performance and other models namely ELMo, BERT base and large,
BioALBERT and two other BERT variants were used to compare the effectiveness of
our proposed model on the i2b2 corpus for the temporal relation extraction task.

Table 1. Metrics for different input variants on our model for temporal relation extraction on i2b2
2012 test set

Input Scenario Precision Recall F-score

Text + KG 89.6 82.0 85.7

KG 84.0 80.3 82.1

Text 86.4 76.6 81.2

Nevertheless, it is crucial to underscore that the model’s achievement was contingent
upon utilizing an event graph encompassing all document relations except for the target
relations - a scenario that deviates from practical real-world applications. The model
would not typically have access to any relations from the observed document in real-
world applications. To support such a scenario, we first create the event graph using the
text model, and then utilize the created graph to conduct the relation extraction. The
obtained results hold promise for further investigation into the use of such temporal
event graphs to facilitate the extraction of temporal relations. And to predict the missing
links from new graphs, our method is based on training a GNN on the graphs created
from the i2b2 dataset.

To improve model performance during training, we used the model margin loss, and
this loss is the total number of incorrect predictions made during the training. We used
AUC (Area Under the ROC Curve) to assess how well our model performed on the
test set (which consisted of 10% of the graphs). AUC is appropriate for link prediction
tasks because it provides the likelihood that a positive example will receive a higher
score than a negative one. The loss of our six models decreased during training after 50
epochs of batch training, and the evaluation AUC for all three kinds of links gradually
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increased in the test set. For BEFORE, AFTER, and OVERLAP relations AUC reached
what we think are remarkable levels after 50 epochs. When comparing the two original
models, as shown in Table 3, all BERT language models’ loss decreased slightly while
achieving a slightly higher AUC than PubMedBERT. We believe that this is because
its embeddings are larger in size. Additionally, when comparing the performance of the
original PubMedBERT model with that of our LMM strategy, the latter two enhanced
both the train Loss and the eval AUC of the first one. Notably, out of the six models,
the one trained on our server (Nvidia RTX 3090 24 GB) achieved the best Loss and
AUC values for both types of relationships. Furthermore, only this final model exceeded
97%, 96%, and 87% of eval AUC for the BEFORE, AFTER and OVERLAP links,
respectively.

Table 2. Comparison of Baseline vs our model’s performance on i2b2 Clinical Narratives for
Temporal Relation Extraction

Models F1-Score

Ours

Text input-based temporal relation prediction model 81.2%

Graph input-based temporal relation prediction model 82.1%

Text + Graph based combined prediction model 85.7%

Baseline models

SOTA [7] 73.7%

ELMo [7] 71.2%

BERT (base) [7] 76.4%

BERT (large) [7] 73.9%

BioALBERT [7] 76.86%

BERT-Linear layer classifier [8] 78.6%

BERT-Linear layer with soft logic regularizer [8] 80.2%

We believe that the findings presented in the preceding section demonstrate both of
our hypotheses. First and foremost, it has been demonstrated thatGraphNeuralNetworks
andBERT embeddings workwell together and produce impressive results when it comes
to the prediction of temporal relationships in the clinical domain, which opens numerous
avenues for further research in this area. Second, after performing a Masked Language
Modelling on the original models, the performance of BERT embeddings improved.
Since the OVERLAP relationship continues to present one of the greatest challenges in
predicting temporal relationships today, it is a much more laborious prediction than the
BEFORE and AFTER relationship, which is obviously more related to the linear nature
of time in the text and therefore easier to predict. This seems to be the reasoning behind
the significant difference between the results of BEFORE, AFTER, and OVERLAP.

The main issue with our analysis is that, for two main reasons, we are unable to
draw a direct comparison with earlier work on the prediction of temporal relationships
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from the i2b2 dataset. First, since it was a preliminary study, we only looked at three of
the eight relationships identified in the dataset because we thought they were the most
fundamental and a goodplace to start. Second, because themajority of edges in graphdata
are negative, metrics used in earlier studies of temporal link prediction (accuracy, recall,
and F-score) may include noise when predicting links, so DGL suggests using AUC to
assess these models. Despite this, we believe that the model’s performance, both during
training and evaluation, is exceptional. We chose two of eight relationship types for our
research due to their fundamental significance and manageable scope. Additionally, the
use of AUC as an evaluationmetric aligns with the dataset’s predominant negative edges.

Table 3. Training Loss and Evaluation AUC

Temporal Relations Before After Overlap

Model\Metrics Train
loss

Eval
AUC

Train
loss

Eval
AUC

Train
loss

Eval
AUC

PubMedBERT 1.00 0.967 1.19 0.949 2.28 0.860

MaskedLM_PubMedBERT_GC 1.03 0.969 1.18 0.951 2.28 0.861

MaskedLM_PubMedBERT_Serv 0.83 0.969 1.09 0.962 2.19 0.872

ClinicalBERT 1.67 0.960 1.20 0.936 2.30 0.846

BlueBERT 1.13 0.965 1.00 0.942 2.11 0.852

SciBERT 1.24 0.963 1.08 0.944 2.23 0.849

We are optimistic about the possibilities for the future because the model’s contin-
uous improvement during the training loop and the impressive results in the evaluation
graphs provide a great area for further research. This model uses embeddings from Pub-
MedBERTafter performing anLMMon the i2b2 dataset in our server.We intend to select
the most effective model, currently appearing to be the PubMedBERT_LMM_Serv one
to continue optimising it and combine it with our own medical NER system as a first
step to creating the timeline from any given clinical record.

5 Conclusion

We introduce a novel architecture by extrapolating temporal relationships from text, util-
ising the nature of graphs, and further leverage the power of BERT embeddings adapted
to the clinical domainwhich offer a great potentialwhenworkingwith temporal relations.
Our preliminary experiments show that the proposed architecture greatly outperforms
the baseline models which is because we use information present in text and information
about other relations captured in a knowledge graph. The current limitation of the pro-
posed approach is that it relies on a knowledge graph to contain correct relations between
events. In real-world scenarios, the relations would likely contain errors, as they would
come from previously extracted information. When addressing longevity, this earlier
examination of clinical narratives’ temporality can be incredibly helpful. Our future
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scope is to improve the real-world usability of the proposed architecture and assessed
in more scenarios as part of our ongoing study. A patient’s medical record can be used
to create a timeline of their history, which can be used to predict both their future and
their past. When discussing multiple patients, this benefit becomes more apparent, and
having a large collection of clinical texts with their corresponding illnesses, cures, and
side effects all temporally ordered can aid in forecasting and, consequently, encourage
the survival of new patients.
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Abstract. Healthcare professionals are required to adhere to strict precautions.
Thus, continuous monitoring, compliance with safety standards, and prompt care
are essential. Hospitals employ variousmethods and devices to ensure the patient’s
well-being.However,many of these efforts are compromisedwhen the observation
is neglected. This paper presents an effective approach to enable doctors (or)
supervisors to track and forecast the patient’s health condition during the treatment.
The approach leverages the concept of Internet of Things (IoT) for seamless data
acquisition, data analytics for visualization, and machine learning (ML) to train
models with the acquired data for future prediction of similar conditions. For
monitoring, sensors are used to collect data such as the ambient state and the
location to verify that the patient (or) person under observation is within the
expected range using range detection techniques supported by Bluetooth master-
slave communication. Computations are performed in the backend such that the
alerts are notified based on the conditions assigned to the respective patients. In
case of emergency, we can reliably predict the condition of a patient with improved
accuracy. Moreover, the stored data is fed to an ML framework for data training
andMLmodeling. Therefore, this design can serve as an optimal model to address
the much-needed advancement in healthcare.

Keywords: IoT ·Machine Learning ·Wireless Communication · Bluetooth ·
Range Detection

1 Introduction

Patients are subjected to adverse conditions due to insufficient/inefficient observation
methods in hospitals, which may cause their treatment to deteriorate or even endanger
their lives. Medical negligence is one of the most alarming causes of patient death. A
survey byNursingTimes found that one in five nurses “rarely” or “never”monitored their
wards [1, 2]. Human errors lead to about 5.2million deaths in India every year. In the US,
about 44,000 to 98,000 people are affected. This is not due to the lack of medical skill
or knowledge of doctors, but rather the lack of team coordination, observation strategies
and communication [3]. Based on this problem statement, we identify three cases and
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propose a solution. The solution is motivated by observing the multiple challenges faced
by patients. First, due to inadequate observation by doctors, nurses or workers, there is
a delay in checking each patient, which poses a serious risk to their lives in hospitals. In
domestic scenarios, e.g. at home, elderly people and infants need regular supervision.
Second, in recent years, we notice many patients disappearing from hospitals when
they are under treatment, due to the misunderstanding of their disease or condition. On
the other hand, special and constant care is required for mentally unstable patients, as
they tend to escape from their wards [4]. Also, in hospitals, we witness infants being
kidnapped, and this trend is consistent [5]. Moreover, studies show that there is a huge
impact due to the lack of pre-analysis of health by patients and doctors. Therefore, this
paper proposes an efficient way to overcome the limitations of the current approach by
developing a connected smart system for children, senior citizens, especially differently-
abled individuals, or anyone who needs supervision, such that the concerned person is
notified regularly without any service interruption and the patient data is processed and
real-time prediction is performed. A unique feature of this proposal is the range detection
technique, where the patient is given a limit for movement and beyond which the system
makes an alert call. This is achieved by a bluetooth master-slave system to warn the
concerned person if the person under observation crosses a specified boundary. The
solution is based on the field of IoT, Data Analytics, andMachine Learning and the scope
is feasible in the domain of smart home automation, security and data analytics. This
paper is structured as follows. The introduction section is followed by a brief overview
of the related research works in Sect. 2. Categorical approach for classification of cases
and design methodology in Sect. 3. Complete hardware implementations in Sect. 4,
followed by software implementation in Sect. 5. Section 6 discusses the mechanism
for ML model and data analysis, which covers various models used for training and
prediction. Section 7 illustrates the entire workflow explained in the proposal, followed
by system deployment & testing in Sect. 8 and Conclusion in Sect. 9.

2 Literature Study and Related Work

The field of remote patient monitoring is rapidly evolving with various applications
and methods emerging in domains such as healthcare [6], education [7], agriculture
[8, 9], wearable industry [10], etc. Several studies focus on the analysis of chronic
diseases [11, 12], which requires continuous observation. Zanaj, E. et al. [13] suggested
a method that uses Wireless Sensor Networks (WSNs) to transfer various biometric data
such as heart rate, body temperature, SpO2, respiration, ECG for distant monitoring
and classification. Wang, P. [14] developed a real-time monitoring system for cardiac
in-patients using zigbee as data acquisition device that sends the collected data to a
database and evaluates the patient by fuzzy reasoning and this proposal is a distance
bound mechanism. Siddik, A.B. et al. [15] demonstrated the use of cloud computing
with visualization of the collected data and incorporated a GSMmodule for notifying the
relevant person. Mansfield, S et al. [16] proposed an IoT based system for autonomous
patient monitoring focused on pressure injury monitoring and prevention. A Kavak,
A. and ˙Inner [17] proposed end to end remote patient monitoring using a framework
for data collection and visualization focused on diabetic patients with doctor centric
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decision support mechanism. Feng, M et al. [18] proposed an integrated and intelligent
system, iSyNCC, to monitor patients and facilitate clinical decision making in Neuro
Intensive/Critical Care Units (NICUs). Anifah, L [19] designed a framework that stores
data from hardware to backend through MQTT protocol where the data is published
and subscribed. Aditya, T.R., et al. [20] proposed a model that uses image processing
technique to predict the status of a patient remotely where the system compares, captures
and generates alert messages usingGSMmodule while monitoring the body temperature
for any anomaly. Sharma, G.K. and Mahesh [21] provided analysis on ESP32 based IoT
system for medical monitoring purpose [23] that integrates software and hardware and
uses the internet for data transmission and further presented the analysis of percentage
of error.

3 Design and Methodology

Our study divides patients into two groups based on their mental and physical state. The
first group consists of immobile patients(i) and the second group comprises mobile and
mentally unstable patients(ii). The monitoring design provides essential services such as
SpO2 (peripheral capillary oxygen saturation) and heart rate monitoring, accelerometer
data collection for motion capture, temperature and humidity sensor data collection for
monitoring room condition for both groups of patients. Range detection feature is spe-
cially provided for mobile and mentally unstable patients(ii), who are likely to exhibit
unexpected behaviour. The hardware design has three segments. The prototype with the
patient under observation (α) is used for data acquisition using ESP32/Raspberry Pi,
The prototype is placed by the doctor within the boundary (near the patient) for range
detection and motion capture (β), A monitoring device which will be PC/iOS/Android
application (γ). The wearable prototype has SpO2 and Heart rate sensor for health data
collection. Bluetooth in prototype (α) and (β) are connected. This pairs module (β) with
(α) module for data transfer. Accelerometer module for motion capture, temperature and
humidity sensor for monitoring room condition and bluetooth are connected with (β)
module. Both the split prototypes are connected to the internet and the information is
seamlessly received by the user (γ). The working happens by receiving data collected by
the sensors and is sent to database pipeline processing and for alerting doctors/concerned
observers. For boundary surveillance, we use bluetooth signals as a key by measuring
the distance between the two modules prototype (α) and (β) with signal strength as
parameter of analysis [22]. As shown in Fig. 1, random bits are generated in both ends
of the device and transmitted with a regular time interval. When these two prototypes
separate from each other by a large distance, the communication fails as it starts receiv-
ing erroneous bits on one prototype. If erroneous bits are received, the algorithm triggers
the alter mechanism and the user is notified of the emergency. Thus, prediction of prox-
imity/location comes under surveillance. The flow of communication is as follows: the
master bluetooth generates 8 bytes randomly and transmits them to the slave device, If
the data is successfully received the receiver sends the acknowledgment message with
the copy of the received data as a checksum to the transmitter (master), The master ver-
ifies the received checksum and sends data, if these data match, there is a confirmation
that no data is lost between communication so positive acknowledgment is received by
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the user and no alert is needed. If the received sum mismatch occurs, it indicates that
data is lost in communication so negative acknowledgment is received by the user, and
as a loop the master then initiates the next data transmission.

Fig. 1. Flow Chart: Range Detection Mechanism

4 Hardware Design of the System

Fig. 2. Prototype with patient (A) Schematic (B) Hardware Implementation

The design in Fig. 2 shows the prototype (α) that is attached to the wrist of the
patient/Person under supervision, this records the data for essential health data collection
and observation. This serves as the master and is linked with the slave device i.e., the
Prototype placed by the supervisor (β) in Fig. 3.
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Fig. 3. Prototype placed by supervisor (A) Schematic (B) Hardware Implementation

The schematic and hardware implementation of prototype is placed by the Doctor (β)
is shown in Fig. 3. This device gathers the data for Ambience and movement prediction
and sends confirmation to the master. Two parts are connected to the internet so that the
data is stored for monitoring, alerting, and processing.

5 Software and Mobile Application Design

5.1 Mobile Application

The application has three features as shown in Fig. 4, Main service consists of proximity,
SpO2, and heart rate. The second showsward conditions which gives the real-timeRoom
Humidity in g-m3 and Room Temperature in Celsius (°C) and Fahrenheit(F). Third
feature has the parameters to track the movement of patients with axes X, Y, and Z in
relation to gravity constant (g).

Fig. 4. Application User Interface (UI)
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5.2 Software and Backend Host

The IoT backend is hosted on firebase. As shown in Fig. 5, The data from the sensors are
sent to Real-time Database for receiving and transmitting data and updates to application
and ML training and deployment.

Fig. 5. Real-Time Data Base (RTDB)

6 Data Analysis Framework and Machine Learning Prediction

The patients’ data is stored in real-time database, (SQL/Firebase) for analysis and sent
to ML containers for post-processing. Data wired to ML Engine/Amazon sage maker
where the container is hostedwith serverless templates and the process is shown in Fig. 6.
Amazon Lambda ProductionMLContainer is a cost-effective, scalable, and reliable way
for data scientists to deploy CPU-based machine learning models for inference. The
data collected from the database is moved to ML container for training via REST API.
The predictions for the wired data are trained, tested and presented to doctors using 3
models, Linear Regression (LR),Decision Tree (DT) andK-NN (K-Nearest Neighbours)
Algorithm.

Fig. 6. Post processing scheme (A) ML Model Deployment (B) Node Structure
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6.1 Linear Regression (LR)

LR is used in this approach for prediction as this model is extensively used in practical
applications which rely linearly on their unknown parameters and are simpler to fit than
models which are non-linearly related to their parameters. Also, because of the resulting
estimators, the statistical properties are easier to determine. The equation takes the form

yi = β0 + β1xi1 + · · · + βpxip + εi = xTi β + εi, i = 1, . . . , n

The relationship between the dependent variable y and the vector of regressors x is
linear. So, the equation can be simplified as follows,

y = Xβ+ε,
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where T denotes the transpose, so that xiTβ is the inner product between vectors xi
and β. Generally, This relationship is modeled with a disturbance term or error variable
ε, an unobserved random variable that adds “noise” to the linear relationship between
the dependent variable and regressors.

Fig. 7. Linear Regression Prediction [Front-End]

With training accuracy of 88% and the test accuracy of 81%, This provides a prelimi-
nary level of understanding of patient’s condition. The graphical analysis of realtime and
predicted data using Linear Regression displayed in front-end UI of theWeb application
is shown in Fig. 7.
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6.2 Decision Tree Classifier (DT)

Decision trees essentially uses multiple algorithms to decide splitting a node into more
sub-node. Increased homogeneity of resulting sub-nodes can be seen with creation of
child nodes. The purity of the node increases with the target variable. The decision tree
splits the nodes on all available variables and then selects the split which results in
most homogeneous sub-nodes which yields the result with maximum score for given
objective. The algorithm selection is based on the type of target variables which we
focus on. It can be of two types: Continuous Variable Decision Tree: DT that has a
continuous target variable, Categorical Variable Decision Tree: DT that has categorical
target variable. Here, we use Continuous variable Decision Tree to generate analysis as
shown in Fig. 8, This yields training accuracy of 93% and the test accuracy of 85%.

Fig. 8. Decision Tree Prediction

6.3 K-Nearest Neighbour Prediction (KNN)

The KNN algorithm essentially decays down to a majority vote between the K most
similar instances to a proposed unseen observation. This is similarity defined according
to a distance metric which is between two data points. A popular one is the Euclidean
distance metric which is currently used, where xi, yi are coordinates in a given plane.

d(x, y) =
√∑n

i=1
(xi − yi)2

Figure 9 depicts the option for K-NN trained model deployed on Web application
which when applied to the collected data generates a trendline which tracks the subse-
quent status of a patient. With training accuracy of 95% and the test accuracy of 89%,
This approach helps satisfy the objective to optimum level. Overall, this expedites the
preventive actions that are to be undertaken by doctors. So, in future, Models developed
from the collected data can be used to forecast similar condition/ailments, the health
condition in the process of receiving treatment, and the survival rate can be obtained
which could be used for further research and data modelling.



Efficient Approach for Patient Monitoring 185

Fig. 9. K-NN Prediction

7 Work Flow

Figure 10 shows the overall workflow of the system. First, data is captured by hardware
devices that use bluetooth to measure distance and one device that communicates with
the database. The data is then accessed by two clients:MLFramework andMobile&Web

Fig. 10. Flow Chart: Operating Mechanism
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Application. The Application monitors the data and sends alerts. The ML framework
pre-processes the data for training. The user can also manually examine the data. The
Automated mechanism selects the train and test data in a 4:1 ratio for each sample set.
The user can choose different algorithms to analyze the data depending on the situation.
Doctors are provided with accuracy scores to help them make informed decisions. The
graphical data with accuracy is then displayed on the mobile and web application, which
offers ML-Integrated data analysis and Real-Time data monitoring.

8 System Deployment and Testing

The prototype was deployed in a domestic environment to evaluate the systems’ func-
tionality. The prototype performed remarkably during the deployment and testing phase,
obtaining real-time data reliably and transmitting data smoothly with alerts for range
monitoring. Moreover, the ML framework supported the overall effort with its accurate
prediction, which was demonstrated to be a useful aid in the observation process.

9 Conclusions and Future Research

This paper presented a novel approach to designing and implementing a connected smart
system that enables professionals to monitor patients remotely and effectively, using an
IoT device with smart real-time predictions based on ML. This system outperforms the
existing solutions in terms of accuracy, efficiency, and user-friendliness. As connected
smart systems become more prevalent and sophisticated, they offer great potential to
address critical problems in various domains, such as healthcare, home automation, and
automotive. However, this approach also has some limitations, such as the need for
reliable internet connectivity, data security, and user privacy. Therefore, future research
should explore how to overcome these challenges and enhance the performance and
applicability of the system.
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Abstract. This paper presents findings from the “Estimating the Eco-
nomic and Health Burdens of HIV in Semi-Urban and Rural Illinois”
survey conducted in downstate Illinois, USA. The survey targeted hid-
den and hard-to-reach communities of HIV-positive individuals and
their partners. The study utilizes network science techniques, includ-
ing community detection and visualization, to analyze the social, med-
ical, and economic forces influencing three underserved communities:
African Americans, HIV-positive individuals, and those facing worsened
economic situations due to COVID-19. The analysis reveals disparities
in healthcare access, discrimination, and economic challenges faced by
these communities. The paper highlights the value of network analysis
in interpreting smaller datasets and calls for further collaborations and
research using the freely available survey data and analysis materials.

Keywords: graph inference · clustering · machine learning · HIV ·
COVID

1 Introduction

The “Estimating the Economic and Health Burdens of HIV in Semi-Urban and
Rural Illinois” survey (BOH) encompassed over 200 questions and targeted hid-
den and hard-to-reach communities in the St. Louis Metro East area of downstate
Illinois, USA. While many studies of disease response are conducted in urban
areas, the St. Louis Metro East offers an opportunity to examine individual
responses to HIV and COVID-19 in a semi-urban and rural context. The sample
consisted of 22 respondents, primarily comprising HIV-positive MSM African
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Americans, but also including black cisgender women, Hispanics, and transgen-
der participants. The survey encompassed a range of age groups from 18 to 60,
providing valuable insights into the health, economic, and community environ-
ments experienced by underserved populations in a post-COVID-19 world.

While statistical analysis poses challenges with small datasets, network anal-
ysis has demonstrated successful applications even with limited samples [1]. In
this study, we employ network science techniques, including community detection
and visualization, to perform a preliminary analysis of how social, medical, and
economic forces have influenced three underserved and hard-to-reach commu-
nities: African Americans, HIV-positive individuals, and those facing worsened
economic situations due to the COVID-19 epidemic.

The survey and this study were conducted under the supervision of the
Southern Illinois University Edwardsville Institutional Review Board. All sur-
vey results and analysis materials are freely available, and we encourage oth-
ers to collaborate using this data. Code used in the study can be accessed at
https://github.com/SIUEComplexNetworksLab/BOHComplexNetworks. Data
are available at https://www.openicpsr.org/openicpsr/project/192186/version/
V1/view.

2 Related Work

Network science has a rich history of application in studying various aspects
related to HIV, starting with the Potterat et al. [17] HIV transmission network
of Colorado Springs, CO, dating back to the early stages of the epidemic in
1985. Recent studies have explored HIV from different perspectives, including
investigating the interconnectivity between syphilis and HIV transmission net-
works [3], identifying intersections among different HIV-adjacent communities to
determine optimal locations for intervention efforts [4,7], and combining social
and genetic data to infer transmission networks more accurately [21].

Network analysis in the context of HIV is not limited to transmission net-
works. Adams and Light [2] used bibliographic coupling networks to study inter-
disciplinary research gaps in HIV/AIDS. Online social networks have also been
analyzed to explore support systems for people living with HIV [6] and to identify
undiagnosed communities for targeted outreach [10].

3 Methods

3.1 The Burden of HIV Dataset

The BOH survey was conducted from late 2021 to April 2023 by the Applied
Research Consultants group at Southern Illinois Carbondale and supervised by
Drs. Sinha and Matta. Survey questions covered domains including perceptions
of discrimination, and the impact of the COVID-19 pandemic on sexual practices,
living conditions, employment, and economic well-being. A dedicated section of
the survey addressed mental health and self-esteem, assessing factors such as

https://github.com/SIUEComplexNetworksLab/BOHComplexNetworks
https://www.openicpsr.org/openicpsr/project/192186/version/V1/view.
https://www.openicpsr.org/openicpsr/project/192186/version/V1/view.
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partner relationships, frequency of contact with family and friends, pride in gay
identity, and level of participation in community organizations.

In the context of this study, responses to individual questions are referred to
as “attributes,” “features,” or “variables.” Questions that serve as the primary
focus of analysis are referred to as “target” variables. The target variables con-
sidered in this study are African American race, HIV positive status, and those
with economic situations worsened by COVID-19.

3.2 Data Curation

To ensure data integrity, variables with fewer than 19 responses were removed
from the dataset. Multi-valued variables were transformed into binary choices
using one-hot encoding. For instance, a variable such as “What sources of
transportation discrimination have you experienced,” with responses including
“Discrimination based on race,” and“Discrimination based on sexual orienta-
tion,” would be transformed into two separate variables using one-hot encoding,
denoted as “TransportDiscrim:Race,” and “TransportDiscrim:SO.”

After data curation, the final survey dataset consisted of 274 variables. Par-
ticipants who did not finish the interview were removed, resulting in 19 sam-
ples. The Recursive Feature Elimination (RFE) class from Python’s SciKit
Learn library was utilized for feature selection. RFE identifies a fixed number
of attributes or attribute combinations that contribute the most to predicting
the target attribute. Based on previous studies demonstrating improved cluster-
ing results with a reduced number of attributes [11,14,18], feature selection was
performed to identify the most important sets of 15 and 30 attributes for each
target variable.

3.3 Graph Inference

Based on previous studies demonstrating the effectiveness of the k-Nearest
Neighbors (kNN) graph inference method in survey data analysis [11,14], the
curated dataset was transformed into kNN graphs. The kNN graph inference
approach involves calculating distances between each pair of nodes in the graph.
Subsequently, for a given number, k, an edge is created between each node and
its k nearest neighbors. Based on previous evidence [15] of the computational
superiority of sparse graphs, the number of neighbors parameter was 4 for each
sample. The top 15 or 30 features were fed into the kneighbors graph method
found in Python’s SciKit Learn Library. A compressed sparse row (CSR) matrix
was produced and converted to a graph using the NetworkX Python library.

3.4 Clustering

Community detection was performed using the Leiden algorithm [19]. This algo-
rithm optimizes modularity, a widely used measure for quantifying the quality of
communities. The Leiden algorithm allows control over the number of detected
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communities through a resolution parameter. This parameter facilitates the cap-
ture of both large-scale and fine-grained community structures. Given the small
size of the dataset, capturing fine-grained community structures was essential.

Table 1. Modularity quality scores computed for graphs created from either 15 or 30
features, for three target variables.

15 Features 30 Features

2 Clusters 3 Clusters 2 Clusters 3 Clusters

Race:Black 0.4059 0.1548 0.4185 0.3596

CovidFinance:Worse 0.4134 0.2076 0.4380 0.3380

HIV:Positive 0.4387 0.238 0.5116 0.1622

For each target variable, we constructed two graphs using the 15 and 30 most
important variables identified through feature selection. To choose which to ana-
lyze, we did a preliminary clustering, increasing the Leiden resolution parameter
until 2 and 3 clusters were produced. The modularity scores corresponding to
each clustering are presented in Table 1. In all but one case, the clusterings based
on 30 features exhibited higher scores. Therefore, we conduct in-depth analysis of
those clusterings. We did a third clustering on the 30-feature graphs, increasing
the resolution parameter until 4 clusters were obtained. This approach allowed
us to identify patterns that exist at varying levels of granularity.

To provide insight into the attribute values within the clusterings, Table 2
presents the percentages of each cluster that answered true for 40 separate vari-
ables. Due to space limitations, we only display results for the 3-cluster groups.
The clusterings are visually represented in Figs. 1, 2, and 3. The color at the top
of each column in Table 2 corresponds to the node color in the network visualiza-
tion. In selecting the variables for inclusion in Table 2, we prioritized attributes
that exhibited “interesting” characteristics, based on variations between clusters.
The intention of this analysis was to qualitatively identify attributes of interest
and to observe changes as the number of clusters increased.

4 Results

4.1 Selection Based on African American Race

The initial group consists of African American participants. It is important to
note that the overall survey sample size is small, and therefore, results should not
be considered representative of the entire African American community. They
only reflect interviews conducted within a limited region at a specific time.

The three stages of graph analysis for African American participants are visu-
alized in Fig. 1. Overall, the constructed graph for this group exhibits robustness
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Table 2. Cluster composition for 40 variables. Numbers represent the percentage of
cluster members exhibiting the described attribute.

Race HIV+ COVID

Variables / Cluster Number 0 1 2 0 1 2 0 1 2

Gender: Cis Men 100 25 75 50 60 67 20 67 75

Gender: Cis Women 0 50 25 50 20 0 60 17 0

Race: African American 100 100 100 83 80 67 60 67 75

Race: White 0 0 0 0 20 33 0 33 0

Race: Other 0 0 0 17 0 0 40 0 25

Sexuality: Gay/Lesbian 60 0 100 83 60 67 60 50 50

Sexuality: Straight 0 100 0 17 40 0 20 17 0

Income: < 10K 60 25 25 50 40 0 40 17 50

Income: 10-14k 40 0 25 17 20 67 40 50 0

Income: 15-25k 0 50 25 33 40 0 20 17 50

On Income Support 100 50 75 67 100 67 60 83 100

Education: HS 40 0 25 50 0 33 60 33 0

Education: Some College 40 75 0 17 80 33 20 50 25

Transportation: Own Car 40 25 50 33 20 67 0 66 25

Transportation: Bus 40 25 25 17 80 0 40 17 50

Employment: Full Time 0 0 25 0 0 33 0 0 0

Employment: Part Time 20 25 50 67 0 33 40 33 50

Employment: Self-Employed 40 0 0 0 20 33 0 17 25

Employment: Seasonal 20 0 0 17 0 0 20 0 25

Employment: Disabled 0 0 0 0 20 0 0 0 0

Employment: Unemployed 20 75 25 17 60 0 40 50 0

HIV+: Case Manager 80 75 25 50 100 67 20 100 67

HIV+: Meds 60 50 50 33 80 100 20 80 67

Checkup 100 75 50 33 100 100 20 83 100

Treatment: Doctor in Last Year 80 50 50 17 100 100 0 67 100

Covid: Sought Care 80 0 50 17 40 100 0 50 100

Covid: Number with Full Vaccine 40 50 50 17 80 67 0 66 75

Covid: No Vaccine 40 0 50 50 0 33 80 17 25

Covid: Reduced Sex 60 50 75 100 20 0 100 33 100

Covid: Lost Work or Fired 80 75 50 83 60 67 80 66 100

Discrimination: Healthcare(Race) 80 25 50 66 40 33 60 33 50

Discrimination: Education(Race) 40 0 50 33 20 67 40 33 0

Discrimination: Job(race) 100 25 75 67 40 67 60 50 50

Communication w/ Family: Weekly/Monthly 50 75 25 50 60 0 40 33 25

Communication w/ Family: Yearly/Never 20 0 50 50 0 33 40 17 75

Family Abuse: Sometimes/Mostly 40 0 100 83 20 67 60 33 75

Family Abuse: Never 60 0 0 0 40 33 0 33 25

LGBTQ: Feels Part of Community 40 0 0 0 40 0 0 17 25

Understands Them: Weekly/Monthly 20 25 50 50 20 33 60 33 0

Understands Them: Yearly/Never 60 25 50 50 20 33 40 33 100



194 J. Matta et al.

(a) 2-Cluster Results for African Americans.

(b) 3-Cluster Results for African American Cohort.

(c) 4-Cluster Results for African American Cohort.

Fig. 1. Clustering Progression for African American Cohort from 2 to 4 Clusters
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and coherence. For example, in the 4-cluster graph shown in Fig. 1c, the clusters
are clearly defined, with the blue and green clusters forming cliques, and the red
cluster displaying a high level of cohesion.

In the initial 2-cluster partition displayed in Fig. 1a, the red cluster primarily
comprises participants who identify as gay (71%) and male (86%), whereas the
blue cluster consists of 50% women and 67% heterosexuals. The red cluster faces
significant economic and social challenges, with 100% of its members growing up
in financially difficult circumstances and 57% reporting an annual income below
$10,000. In contrast, 50% of the blue cluster grew up financially comfortable.
Discrimination is more prevalent among the red cluster, with 71% experiencing
healthcare discrimination based on race compared to 33% in blue, and 86%
experiencing employment discrimination based on race compared to 50% in blue.
The red cluster also exhibits more strained family relationships, as 43% of its
members communicate with their family only rarely, whereas all members of the
blue cluster maintain monthly contact with their families.

Partitioning into 3 clusters (shown in Fig. 1b), gives additional noteworthy
attributes. The blue cluster becomes entirely heterosexual, and has a low preva-
lence of smoking and alcohol use. Additionally, the blue cluster reports lower
levels of name-calling and family abuse, with none experiencing it frequently,
unlike the “mostly” or “sometimes” reported cases in other clusters. The newly
formed green cluster has 100% exposure to some form of education and health-
care discrimination, in contrast to reduced exposure in the other clusters.

Upon repartitioning into 4 clusters (Fig. 1c), the additional cluster consists
of a single node. This individual reports experiencing various forms of discrim-
ination, including educational, transportation, housing (based on credit score),
healthcare, job, social and community. Furthermore, this person is unemployed
and relies on disability benefits, exacerbating their challenging circumstances.

4.2 Selection Based on HIV Positive Status

The HIV-positive respondents were predominantly male, Black, and identified as
gay, which is reflected in the clusters depicted in Fig. 2. In the 2-cluster partition
(Fig. 2a), the red cluster exhibited fewer medical interactions. Specifically, red
individuals were less likely to take HIV medications (43% vs. 86%), have an
HIV case worker (43% vs. 100%), receive a checkup in the last year (43% vs.
86%), and receive treatment from a doctor in the past year (29% vs. 100%). The
red cluster also reported a greater sense of estrangement, experiencing higher
levels of race-based healthcare discrimination (71% vs. 29%), with all members
of the red cluster having encountered some form of healthcare discrimination.
In contrast, 57% of the blue cluster reported no experience with healthcare
discrimination. Moreover, the red cluster had a weaker support network. None
of its members felt a sense of belonging to their local LGBT+ community (0% vs.
29% in the blue cluster). Additionally, 86% of the red cluster experienced verbal
abuse from their family either frequently or occasionally, compared to 43% in
the blue cluster who reported never experiencing abuse from their families.
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(a) 2-Cluster Results for HIV Positive Status.

(b) 3-Cluster Results for HIV Positive Status.

(c) 4-Cluster Results for HIV Positive Status.

Fig. 2. Clustering Progression for HIV Positive Cohort from 2 to 4 Clusters
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When considering 3 clusters, as depicted in Fig. 2b, the new green cluster
is notable for its absence of straight members (67% gay and 33% bisexual).
All members of this cluster prioritize their health, and they are all employed.
Interestingly, this group reported the highest number of sexual encounters in the
past year, with an average of 46 partners.

Introducing a fourth cluster, shown in Fig. 2c, reveals that all individuals
in this cluster are gay (100%), and 67% of them have no insurance, while all
members of other clusters possess some form of insurance. This new cluster
faces significant challenges related to lack of support, as 100% of its members
communicate with their families on a yearly or infrequent basis, none feel a sense
of belonging to the local LGBT+ community, and 100% experience verbal abuse
from their families at least occasionally.

4.3 Selection Based on COVID-19 Influence on Finances

The third group is respondents whose financial situations were adversely affected
by COVID-19, as depicted in Fig. 3. In the 2-cluster partition illustrated in
Fig. 3a, the red cluster demonstrates reduced engagement with healthcare.
Notably, red individuals exhibited lower vaccination rates for COVID-19, with
55% remaining unvaccinated, while 83% of the blue individuals were partially
or fully vaccinated. Moreover, the red cluster reports lingering brain fog and
fatigue (22% vs. 0%), increased interference of COVID-19 with job retention
(44% vs. 0%), and higher rates of job loss due to the pandemic (89% vs. 66%).
Respondents in the red cluster also reported higher expenditures on alcohol and
tobacco.

The three-cluster partition is shown in Fig. 3b. Compared to the new red
cluster, green cluster members were more likely to have had a checkup in the
past year (100% vs. 20%), sought medical care related to COVID-19 (100% vs.
0%), and have full vaccination for COVID-19 (75% vs. 0%). Green individuals
also displayed higher employment rates compared to red (100% vs. 60%). Inter-
estingly, respondents in the green cluster were more likely to receive some form
of income support than those in the red cluster (100% vs. 40%).

The 4-cluster partition is depicted in Fig. 3c. The orange cluster and the
new blue cluster have both lost work due to COVID-19 (67% in both clusters).
These clusters also exhibit notable differences. The orange cluster experienced
less discrimination than blue, with no orange members reporting education or
transportation discrimination, while 100% of the blue members reported experi-
encing both forms of discrimination. Individuals in the orange cluster were less
likely to have experienced worsened living situations due to COVID-19 (33% vs.
100%). Respondents in the blue cluster were more likely to seek medical care
related to COVID-19 (100% vs. 0%).
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(a) 2-Cluster Results for COVID-19 Finance Worse Status.

(b) 3-Cluster Results for COVID-19 Finance Worse Status.

(c) 4-Cluster Results for COVID-19 Finance Worse Status.

Fig. 3. Clustering Progression for COVID-19 Finance Worse Cohort from 2 to 4 Clus-
ters
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5 Discussion and Conclusion

Network science provides a valuable approach for analyzing small datasets like
the Burden of HIV survey. Our analysis focused on the structure of the data,
utilizing successive clustering into 2, 3, and 4 clusters. The extensive range of
survey questions enabled us to identify and examine three distinct subgroups,
resulting in meaningful clusters that offer insights for further investigations.

Within the African American community, disparities exist in coping with
HIV and COVID-19. Sexual minority men who are Black and living with HIV
face obstacles including stigma and discrimination. Research has highlighted
the detrimental effects of such attitudes on mental health and self-care among
affected individuals [8]. These inequities and discriminatory practices contribute
to disparities in HIV medical adherence. Consequently, interventions aimed at
addressing these issues must be explored, such as this study on behavioral inter-
vention components by Cluesman et al. involving 49 individuals [5]. The dis-
parities also existed with COVID-19, with our study finding a cluster with a
predominance of people of color with vaccine hesitancy (estimated at 41.6% in
one meta study [9]), and a cluster exhibiting 22% with symptoms of long COVID.

Healthcare discrimination was frequently reported in our study as a signif-
icant barrier to proper medical treatment. Research on race-based healthcare
disparities (e.g., [13]) is valuable in understanding these challenges, and our clus-
tering approach helps underscore the heterogeneity of needs within the African
American community. Additional investigation is warranted to improve the qual-
ity of care for subsets of the African American population, as demonstrated
by [16]. A focus-group study involving African Americans living with HIV and
another chronic disease revealed themes including negative interactions with
healthcare professionals, stigma due to prejudice, and bias from healthcare staff
[12]. These same issues are reported with regards to COVID [20].

From a network science perspective, our study successfully employed graph
inference, community detection, and visualization techniques in a qualitative
manner to uncover themes present in a small survey dataset. The analysis pri-
marily utilized straightforward tools such as recursive feature elimination, kNN
graph inference, and Leiden clustering. The results of this study are of signifi-
cance to public health workers and other stakeholders, providing a unique and
powerful method for analyzing smaller datasets.
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Abstract. Generative AI models, known for their capacity to generate
intricate and realistic data, have rapidly found applications across various
domains. Yet, doubts linger regarding the full scope of their hallucina-
tory capabilities and the reliability of their outcomes. These concerns
underscore the need for rigorous analysis and validation of generative
AI models. This study employs network analysis to explore the inher-
ent characteristics of generative AI models, focusing on their deviations
and disparities between generated and actual content. Using GPT3.5
and RoBERTa, we analyze tweets, vocabulary, and emotion networks
from their outputs. Although network comparison demonstrated halluci-
nation, non-classification, and instability patterns in GPT-3.5 compared
to RoBERTa as a baseline, both models exhibit promise and room for
improvement.

Keywords: Emotions · Hallucination · GPT · RoBERTa · Generative
AI

1 Introduction

In the realm of artificial intelligence, generative models have emerged as remark-
able tools capable of producing intricate and realistic data that mimics human
creativity and understanding. At the threshold of an impending AI-driven trans-
formation, it is essential to appreciate the ingenuity of generative AI models while
subjecting their outputs to meticulous examination.

Generative AI models have been used to generate training data for machine
learning models, such as those used for global warming prediction[9], in medical
responses [18], and in education [14]. These models have achieved high accuracy,
comparable to human-labeled models in various domains [17]. They also auto-
mate data labeling in customer service chatbots, enhancing response precision
[15]. However, some studies have found varying outcomes in producing data,
particularly in AI-generated figurative speech [33,37].

In this study, we delve into the classification prowess of generative AI, exam-
ining the extent of the variations between their outputs through the lens of
network analysis.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1141, pp. 202–214, 2024.
https://doi.org/10.1007/978-3-031-53468-3_17
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Emotions Detection and Classification. In a written context, emotions are
often figurative and preserve their uniqueness, but the computational power can-
not classify them because of overlapping components across multiple emotions.

From one viewpoint, emotions are perceived as distinct and guided by inde-
pendent mechanisms, leading to attribute identification for each emotion [24].
According to this outlook, emotions are estimated by examining their specific
associations [25]. Furthermore, some research suggests a consensus that all emo-
tions entail shared components with other emotions [32], implying that only a
limited number of components genuinely serve as indicators of specific emotions
[40]. These findings have fostered a widely embraced perspective that emotions
constitute distinct categories with somewhat ambiguous boundaries [12].

Entailing additional research endeavors, in more recent work, researchers con-
ceive emotions as networks comprised of interrelated components, where distinct
emotions share common elements and connections [20,35]. To explore this per-
spective, they introduce network analysis into emotion research, applying it to
reanalyze a dataset involving multiple positive emotions. They detail the process
of estimating networks and identifying overlapping communities of nodes within
these networks. This network-oriented approach carries implications for compre-
hending different emotions, their co-occurrence, and measurement methods.

Network Analysis on Emotions. Researchers have undertaken emotion net-
work analysis in various contexts. For instance, they have examined COVID-19
era quarantine data through mood networks [23]. Additionally, numerous stud-
ies have delved into emotion dynamics, aiming to gain insights into areas such
as interpersonal emotion dynamics [6], childhood traumas [16], post-traumatic
stress and anxiety disorders [21], emotion and brain correlations [28], motiva-
tional and emotional correlations [19], as well as emotion and sentiment analysis
[30]. It is worth noting that the pursuit of emotion and sentiment detection have
been ongoing endeavors in Natural Language Understanding(NLU) for decades,
involving contributions from fields such as psychiatry, psychology, sociology, lin-
guistics, and computer science. However, it is essential to recognize that this
work continues, particularly as figurative speech evolves alongside spoken and
written language.

Generative AI and Hallucination. On different aspects, Generative AI mod-
els exhibit hallucinations when they convincingly generate content that deviates
from reality [3]. Such deviations can be attributed to incomplete or inaccurate
training data [5]. Additionally, when tasked with generating content about unfa-
miliar topics, the model resorts to imaginative elements to fill gaps [29]. These
models, designed for creativity and diversity in content generation, may produce
non-factual outputs. Furthermore, inherent biases or misinformation within the
model can be magnified in its generated content.

In recent work, we investigated the effectiveness of emotion detection in large
language models (LLMs) [39]. Although one model excels in producing coherent
and contextually relevant responses, it faces difficulties in precisely classifying
emotions due to its generative nature. In contrast, another model fine-tuned on
emotion classification achieves greater accuracy in emotion predictions.



204 M. Goodarzi et al.

Amidst these issues, in this paper, we ponder the extent to which emotions
manifest in the outputs of generative AI models. Is there a more feasible approach
for untangling hallucinations from reality by examining emotional variations and
shared components through network analysis? In pursuit of this objective, we
present the hallucination networks derived from tweets collected between March
and April 2023 for the September 16–29, 2022 time frame. Our focus centers on
the Zhina Mahsa Amini case in Iran, a context rich in written emotions. The
labels for these emotions are provided by generative AI models, namely GPT3.5
and RoBERTa, and are subsequently transformed into a network of emotions
incorporating diverse vocabulary perspectives.

2 Methodology

2.1 Dataset

In this paper, we used snscraper [1] to gather data from X [13], formerly Twit-
ter, just before API changes [7]. For our case study, we focused on Zhina Mahsa
Amini’s case, a 22-year-old Kurdish woman who died in police custody in Tehran,
Iran, on September 16, 2022. This incident prompted protests and activism for
women’s rights in Iran, especially on X against the government, encouraging
many to speak out. We searched using popular event hashtags [4] and filtered
tweets under 120 characters with memes, images, or videos. From over 6 mil-
lion tweets in all languages, we randomly selected 5,000 due to the high cost
associated with running GPT-3.5.

2.2 Models

The paper “Attention is All You Need,” by Vaswani et al. in 2017 [38], intro-
duced the transformative “Transformer” neural network architecture, which has
become the basis for state-of-the-art NLP models like GPT and BERT due to
its parallelization, scalability, and effective self-attention mechanisms. This study
employs two prominent large language models, RoBERTa-2023 and GPT-3.5, for
emotion identification.

RoBERTa model is built on BERT’s [2] encoder-only architecture [36]
trained on 154M tweets [22]. Compared to other post-BERT models, they signif-
icantly improve downstream Natural Language Processing (NLP) tasks [2]. The
Tweet classification version of RoBERTa fine-tuned on the TweetEval bench-
mark, initially included four major emotions: Anger, Joy, Optimism, and Sad-
ness in its training data. This RoBERTa-base model was updated in June 2023
[11] with TweetEval benchmark to include 11 emotions. In our analysis, we refer
to it as RoBERTa’23. As RoBERTa’23 is purpose-built for Tweet emotion clas-
sification, it serves as the baseline model in this paper.

The GPT-3.5 model represents a refined iteration of the GPT-3 (Generative
Pre-Trained Transformer) model. Introduced in January 2022, GPT-3.5 offers
three distinct variants, each characterized by parameter counts of 1.3 billion, 6
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billion, and 175 billion [26]. A notable feature of GPT-3.5 is its enhanced ability
to mitigate the generation of noxious content to a certain extent. In contrast to
RoBERTa’23, our approach to eliciting emotions from GPT-3.5 involved employ-
ing the zero-shot learning method with prompt engineering techniques [36] and
Parrot’s emotion binning to obtain ten emotion labels [27]. We have 3691 tweets
after processing GPT-3.5 outputs for reasonable consistency.

Please note that GPT’s zero-shot learning requires sample prompts for accu-
rate results. Prompt quality is crucial, and we have designed specific prompts
to enhance GPT’s emotion detection. Prompt design complexity yields diverse
outcomes, often amidst the haystack of possibilities. Hence, our study focuses
on LLMs’ emotion inference, not prompt quality or frameworks, while existing
research explores effective, prompt design [31].

3 Experimental Results

3.1 Consistency Analysis of Models

Our initial experiment explored generative AI models’ ability to identify emo-
tions when presented with nearly identical or closely resembling inputs. To do
this, we selected a subset of tweets from our dataset containing duplicates and
substantial similarity. We applied the cosine similarity metric to retain tweets
with similarity levels surpassing 90%. Notably, RoBERTa consistently assigned
the same emotion label to identical or similar tweets, while GPT-3.5 yielded up
to three different emotions. We removed the duplicates from our corpus for the
subsequent analysis after accounting for hashtags.

3.2 Distance Measures

In the realm of distance metrics, several methods are employed to quantify the
dissimilarity between pairs of networks. One such measure is the Euclidean dis-
tance, which computes the square root of the squared differences between the
coordinates of two objects. Another widely used metric is the Manhattan dis-
tance, also referred to as Manhattan length, which is determined by summing
the distances between the x and y coordinates. A variation of the Manhattan
distance is the Canberra distance, which introduces weighting factors into the
calculation. This weighted approach computes the distance between two points
by considering the differences between their corresponding components. These
distance metrics serve as valuable tools for quantifying dissimilarity and are
applied across various domains of analysis and problem-solving [34].

To this end, we transformed the vocabulary graphs, based on the frequency
of words, into adjacency matrices to assess the emotion networks derived from
the two models. Note that when the distance values approach zero, it signifies
that the nodes’ distances in the networks are also zero, essentially indicating
their degrees are equivalent in both graphs. As depicted in Table 1, all metrics
reveal substantial distance, confirming that the nodes in the networks produced
by RoBERTa’23 and GPT-3.5 exhibit significant dissimilarity.
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Table 1. Distance Measures between Two Networks

RoBERTa’23 vs GPT-3.5

Euclidean 834.31

Manhattan 40,130.00

Canberra 0.382

Fig. 1. Visualization of K-Means Clustering for Tweets classified by GPT-3.5 and
RoBERTa’23 colored based on its assigned emotion annotation.

3.3 Clustering Analysis

In this section, we investigated the patterns and grouping of tweets by the word
embeddings. To this end, we first created word embeddings, dense vector rep-
resentations of words of the tweets. Subsequently, we performed lemmatization
and stemming techniques [8], which aim to reduce words to their base form
and truncate words to their root form, respectively. Then, t-SNE (t-distributed
Stochastic Neighbor Embedding) was employed to decrease the dimensionality
of the data to facilitate visualization. Please note that t-SNE is often used to
visualize high-dimensional data in 2D or 3D space while preserving the pairwise
similarities between data points. Finally, we implemented k-means clustering,
an unsupervised machine learning algorithm, to cluster data points into groups
of clusters based on their similarities and labels, e.g., the emotions generated by
GPT-3.5 and RoBERTa’23.

In Fig. 1, we mark coordinates to represent single-tweet word embeddings.
Closer points suggest similar word embeddings. Despite showing distinct clus-
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ters (clstr-1,2, 3, 4, and 5), mixed emotions appear with various colors. This
validates prior research in psychology and psychiatry, indicating shared com-
ponents among emotions, namely vocabulary. However, from a Generative AI
perspective, tweets in the figure display different colors and emotions. Emotions
mix across clusters and even within them. Considering RoBERTa’23 as our base-
line model, we observe that the labels generated by GPT-3.5 are significantly
different, revealing its distinct hallucination patterns. It is essential to highlight
that out of the 3,691 tweets in this clustering analysis, only 1,266 tweets have
been assigned identical emotional labels by the GPT-3.5 and Roberta’23 models.

Fig. 2. Distribution of RoBERTa’23 and GPT-3.5 scaled scores for the same tweet in
different emotions

3.4 Confidence Level in Labeling

The discernible fact is that tweets can be categorized with distinct emotions.
Our interest is assessing the hallucination that occurs, specifically in GPT-3.5
and RoBERTa’23, in ascribing emotional labels and confidence score to tweets.
To this end, in Fig. 2, we present the tweets classified with the same emotion
by two models. To be able to compare the model scores, we normalized the
scores adding the total to 100%. For instance, in the Anger figure (upper-left),
there was a total of 459 tweets; both RoBERTa’23 and GPT-3.5 classified them
as Anger. Yet, RoBERTa’23 was supremely confident in tweets’ emotions being
Anger, with an average of 70%, whereas GPT-3.5 was about 30% confident in
tweets’ emotions being Anger. Similarly, in Fear, Joy, Optimism, and Sadness
figures, RoBERTa’23 was confident with averages of 63%, 63%, 58%, and 63%,
respectively, whereas GPT-3.5 averaged 37%, 37%, 42%, and 37%, respectively.
Interestingly, it was close to 50% for both RoBERTa’23 (54%) and GPT-3.5
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(46%) for Disgust. Overall, RoBERTa’23, being fine-tuned for emotion classi-
fication, exhibits higher confidence, while GPT-3.5 struggles. This asserts the
need for high quality task-specific fine-tuning of foundational models like GPT-
3.5 and their hallucination to provide a score not close to reality otherwise.

3.5 MultiGraph of Emotions Labeled by LLM Models

Figure 3 illustrates the network of tweets classified under seven emotions shared
between two models, RoBERTa’23 in blue and GPT-3.5 in orange. We observe
that 65.7% of tweets are labeled with two emotions (both blue and orange links
point to the same node). Moreover, a k-core of two degrees in the vocabulary
multigraph eliminates 429 (11.74%) words (not shown in the figure), indicating
that about 88.26% of words have been labeled with different emotions by the two
models (blue and orange links are connected to different emotions for each word).
Although Disgust and Anger emerge as the prevailing emotions in most tweets,
in instances where models exhibit uncertainty regarding a specific emotion, they
classify it as Fear, Sadness, Optimism, or Joy. It is noteworthy that Surprise
is an intriguing emotion observed in both models, often entangled with various
other emotions.

Fig. 3. Network of Tweets classified into seven emotions detected by RoBERTa’23
(shown in Blue edges) and GPT-3.5 (shown in Orange edges)

Similarly, in Fig. 4, we demonstrate the k-core networks of vocabulary clas-
sified under seven emotions by the two models, again in RoBERTa’23 in blue
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Fig. 4. K-core Vocabulary Network of emotions classified by RoBERTa’23 (in Blue)
and GPT-3.5 (in Orange).

and GPT-3.5 in orange. Please note that we thoroughly cleaned word embed-
dings during the preprocessing step. This process involved lemmatization and
stemming to extract the most valuable vocabulary for each tweet. As illustrated
in the figure, an increase in k results in a higher percentage of GPT-3.5 links.
This indicates that GPT-3.5 categorizes words into more classes than our base-
line model, RoBERTa’23. This observation proves GPT-3.5’s tendency to gen-
erate erroneous inferences based on written context and prompts. Additionally,
the largest observable k-core network within the vocabulary consists of thirteen
links. The thirteen-core sub-graph (not shown in the figure) reveals that the 230
words connected to all emotions have a higher weighted connection based on
frequency to GPT-3.5 (53.78%) than RoBERTa’23 (46.22%).

3.6 Communities Within Vocabulary Networks of LLMs

Figure 5 illustrates the vocabulary network annotated with emotions in two mod-
els, GPT-3.5 (on the left) and RoBERTa’23 (on the right). The colors of both
nodes and edges in these figures are determined by the community detection
algorithm, and modularity scores are computed using the Louvain method imple-
mented by Gephi [10].

The left figure presents GPT-3.5’s emotion vocabulary network with eleven
emotion classifications featuring six distinct communities. The largest commu-
nity comprises Anger and Disgust (30.23%), followed by Joy and Optimism
(18.45%), Fear and Trust in the same community (17.06%), Sadness and Pes-
simism (16.8%), Surprise and None Classified (15.7%), and finally, Love as the
smallest community (1.75%).

In the right figure, we showcase RoBERTa’23’s network, which detects eight
emotions and reveals five communities as identified by Gephi. Anger constitutes
a single dominant community (36.9%) in this model, whereas Disgust is paired
with Fear (19.89%). Meanwhile, Joy, Optimism, and Surprise form the second-
largest group (23.31%). Anticipation represents the smallest community (9.21%)
in this model.

Among the detected emotions, RoBERTa’23’s weakest classification is Sur-
prise, while GPT-3.5 exhibits a relatively weak detection of Love. Additionally,
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Fig. 5. The vocabulary networks annotated with emotions detected by GPT-3.5 (on
the left) and RoBERTa’23 (on the right), colored by Modularity

there are instances in the GPT-3.5 network where the Generative AI model could
not assign emotions to tweets and vocabulary items, denoted as “none-classified”
(NC) in the figure.

It is important to emphasize that this figure warrants further investigation
into the potential clustering of emotions into smaller communities and the dis-
tinctions in the vocabulary associated with Anticipation, Surprise, and None-
Classified. However, this aspect is reserved for future research, potentially involv-
ing collaboration with domain experts.

Regarding emotion detection, it is noteworthy that distinctions are observed
in the classification of emotions, particularly in the differentiation between Anger
and Fear. On the other hand, similarities exist in the classification of Joy and
Optimism, as they appear to share commonalities in their categorization. This
suggests that the models may exhibit variability in their interpretation and clas-
sification of emotions, with some emotions being more closely aligned than others
in the results.

3.7 Networks Metrics

Table 2 provides network metrics for the vocabulary networks shown in Fig. 5. As
explained in the previous section, the community detection algorithm provided
different hierarchical structures of the networks for the models.

The modularity metric for RoBERTa’23 being 0.261 and GPT-3.5 being 0.231
suggests that some groupings or communities within these networks are not
highly distinct or well-defined. The nature of vocabulary, where a word can have
multiple meanings, can cause this behavior.

Within the vocabulary networks, the assortativity metrics for GPT-3.5 and
RoBERTa’23, being -0.629 and -0.616, respectively, indicate a significant degree
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of disassortative mixing. This means that words within the networks, particularly
those with dissimilar linguistic or contextual characteristics, tend to form connec-
tions. In contrast to assortative networks where similar words cluster together,
a disassortative network suggests that antonyms, words with differing gram-
matical roles, or those used in dissimilar contexts are more likely to connect.
This behavior highlights language diversity and contrasting aspects within the
analyzed corpus. Additional evidence indicates that emotion detection models,
including the baseline model RoBERTA’23, still face significant challenges. It is
noteworthy that although RoBERTA’23 achieves a higher classification rate, it
also demonstrates the same disassortative mixing behavior, suggesting improve-
ments in emotion detection models are warranted.

Interestingly, while the assortativity metrics of networks are very low, the
average clustering coefficients for GPT-3.5 and RoBERTa’23 are 0.584 and 0.603,
respectively. The high clustering coefficients, along with a small average shortest
path, indicate that words within the network tend to form tight-knit clusters -yet
another small-world network- suggesting strong linguistic or contextual associ-
ations among words. Overall, the networks exhibit cohesive word clusters and
connections between words with differing characteristics, reflecting a diverse and
intricate structure encompassing semantic similarities and contrasts in language
usage.

Table 2. Network Metrics for Vocabulary Networks of LLM

Assortativity Avg. Shortest Path # of Cliques # of Communities Modularity Avg. Clustering
Coefficient

RoBERTa –0.616 2.919 12,799 5 0.261 0.603

GPT –0.629 3.023 14,493 6 0.231 0.584

We also observe a high number of cliques in both networks. In this context,
cliques represent tightly interconnected groups of words that share strong lin-
guistic or contextual relationships. Each clique encapsulates a distinct semantic
or contextual concept, with words within the clique exhibiting similarities in
meaning, grammatical roles, or frequent co-occurrence in text.

4 Conclusion

The development of Large Language Models signifies a notable stride toward
achieving human-like intelligence. Their capacity to grasp and classify figurative
speech is a testament to their growing capabilities. Moreover, as these models
continue to enhance their reliability levels, they are poised to play a pivotal role
in facilitating the accurate detection of emotions within textual content. This
not only expands our understanding of language but also opens up a wealth of
possibilities for applications across various domains, underlining the promising
future of LLMs in the realm of natural language processing and artificial intel-
ligence. Our research is a step in that direction to point out the issues from a
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network analysis standpoint, encouraging practitioners and organizations alike
to be critical when using LLMs for NLU tasks. Looking at texts filled with overly
negative emotion, the reliability of the fine-tuned model reiterates the notion of
fine-tuning LLMs for specific use cases to yield quality results.

In comparing GPT-3.5 with RoBERTa’23 as the baseline model, we dis-
covered significant differences between the outputs of the two models through
network analysis. K-means clustering for tweets’ word embedding and Confi-
dence level at the emotion labeling reveals hallucination patterns by GPT-3.5
that assigns emotions to tweets or score differently compared to RoBERTa’23.
Multigraphs of tweets and associated vocabularies confirmed GPT-3.5’s devia-
tion in visualizations and metrics. Less than half the tweets had identical emotion
labels, and more than 88% of vocabularies are labeled differently between the
models based on k-core subgraphs. The k-core graphlets of the multigraph of
vocabularies and shared emotions showcase higher numbers of connections in a
wider classification of emotions. This result confirms the statistically inaccurate
inference of GPT-3.5’s generated content. Despite GPT-3.5’s inability to detect
an emotion in some tweets, classification similarities exist between the two mod-
els. The hierarchical structures of the vocabulary networks are slightly in favor
of RoBERTa’23, but the resemblances in community formations provide insights
into the challenges of emotion detection and their potential for advancement.
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Abstract. Regressions trained to predict the future activity of social
media users need rich features for accurate predictions. Many advanced
models exist to generate such features; however, the time complexities
of their computations are often prohibitive when they run on enormous
data-sets. Some studies have shown that simple semantic network fea-
tures can be rich enough to use for regressions without requiring complex
computations. We propose a method for using semantic networks as user-
level features for machine learning tasks. We conducted an experiment
using a semantic network of 1037 Twitter hashtags from a corpus of 3.7
million tweets related to the 2022 French presidential election. A bipartite
graph is formed where hashtags are nodes and weighted edges connect
the hashtags reflecting the number of Twitter users that interacted with
both hashtags. The graph is then transformed into a maximum-spanning
tree with the most popular hashtag as its root node to construct a hierar-
chy amongst the hashtags. We then provide a vector feature for each user
based on this tree. To validate the usefulness of our semantic feature we
performed a regression experiment to predict the response rate of each
user with six emotions like anger, enjoyment, or disgust. Our semantic
feature performs well with the regression with most emotions having R2

above 0.5. These results suggest that our semantic feature could be con-
sidered for use in further experiments predicting social media response
on big data-sets.

Keywords: Computational social science · Social computing ·
Network science · 2022 French presidential election · Ukrainian war

1 Introduction

In recent years, social media data has been increasingly used to predict real-
world outcomes. Data from platforms like Twitter, Reddit, and Facebook has
been shown to be valuable in predicting public sentiment or response towards
many different topics. This information has been used across many different
fields like predicting stock market price changes or movie popularity [3,15].
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H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1141, pp. 215–224, 2024.
https://doi.org/10.1007/978-3-031-53468-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-53468-3_18&domain=pdf
https://doi.org/10.1007/978-3-031-53468-3_18


216 A. Mandviwalla et al.

Social media platforms have continued to get more popular over time. Due to
this, the size of social media datasets continues to increase. As the size of these
datasets gets bigger and bigger, computational time complexity of the algorithms
being used becomes a significant issue. Some of the most popular features used in
social media predictions like sentiment analysis become prohibitively expensive
when working with larger datasets [1,14].

In this paper we propose a method to generate features that can be used in
social media predictions on big datasets. We create a weighted semantic network
between Twitter hashtags from a corpus of 3.7 million tweets related to the 2022
French presidential election. A bipartite graph is formed where hashtags are
nodes and weighted edges connect the hashtags reflecting the number of Twitter
users that interacted with both hashtags. The graph is then transformed into a
maximum-spanning tree with the most popular hashtag designated as its root
node to construct a hierarchy amongst the hashtags. We then provide a vector
feature for each user where the columns represent each of the 1037 hashtags in
the filtered dataset and the value for each column is the normalized count of
interactions for the user with that hashtag and any children of the hashtag in
the tree.

To validate the usefulness of our semantic feature we performed a regres-
sion experiment to predict the response rate of each user with six emotions like
anger, enjoyment, or disgust. The emotion data was manually annotated by a
DARPA team created for the INCAS Program. We provide a baseline simple
feature representing the counts the number of times a user interacts with each
of the 1037 hashtags. Both the baseline and our semantic feature perform well
with the regression with most emotions having R2 above 0.5. The semantic fea-
ture statistically significantly outperforms the baseline feature on five out of six
emotions using an F-test with a p value of 0.05.

The rest of the paper is organized as follows. Section 2 details related
works. In Sect. 3, we present the dataset used for experimentation. Then, Sect. 4
describes the methodology used in our paper. The design of experiments and
their results are presented in Sect. 5, and the conclusions are discussed in Sect. 6.

2 Related Works

Analyzing Twitter using semantic networks has been done in the past with var-
ious methods to determine relationships between hashtags and their trends. For
example, [18] considered two hashtags to be semantically related if an individ-
ual tweet contained both hashtags in the text. Similarly, [9] created a semantic
network based on word co-occurrence within tweets. However, [17] presented an
approach using a bipartite network between users and hashtags where an edge
between a user node and a hashtag node was added if the user tweeted the hash-
tag at least once. This bipartite network was then projected into a monopartite
network of hashtags. This approach is more applicable to our purposes because it
captures the latent social network of the dataset. In addition, in [17] the authors
focus on a Twitter dataset taken from the 2018 Italian elections which is similar
to our 2022 French election dataset.
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Many studies have shown that semantic network features can be rich enough
to use for regressions in a multitude of situations. In the field of psychology,
semantic networks can be used to analyze a person’s vocabulary to gain insight
on cognitive states [4,7]. In terms of social media semantic networks, [10] used
semantic networks generated from sentences as features for a time series regres-
sion to capture the volatility of the stock market. In general, these approaches
involve creating a semantic network for each person or object in the study. The
alternative approach is to create large-scale, singular semantic networks that can
be used to describe all users. For example, [12] demonstrated a recommender sys-
tem which used a large-scale word co-occurrence semantic network created from
social media posts to recommend related social media posts to users. Such an
approach might be better for analyzing users since it can take advantage of the
nuanced relationships between different social media communities, which cannot
be done with an approach that only generates an individual semantic network
for each user.

3 Data

We applied these enrichments to a dataset provided by the DARPA INCAS
program team that comprised 3.7 million French language tweets from 2022.
This dataset was collected such that each tweet is relevant to the discussions that
arose during the 2022 French presidential election. After pruning, this dataset
contains 1037 hashtags and 389,187 users.

4 Methods

4.1 Semantic Network Generation

We performed several steps to prepare the Twitter data and create a semantic
network.

Preprocessing. The corpus of Tweets was first cleaned by removing URLs with
regular expression and French stop words using the NLTK Python library [5].
Each Tweet was tokenized by converting all words to lowercase, removing digit-
only words, and removing punctuation, except for hashtags. After extracting
a set of hashtags and corresponding occurrence counts, any hashtags with an
occurrence count below the mean were removed from the set to focus on trendy
hashtags.

Bipartite Graph Generation. Using this set of hashtags, a bipartite graph
was constructed between users and the hashtags where an edge indicates an
interaction between a user and a hashtag. Following the technique introduced
in [17], we implemented the bipartite graph as an adjacency list where a set of
interacted hashtags is stored with each user. A user is said to interact with a
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trendy hashtag if the user retweets, quote retweets, comments under, or posts
a tweet that contains the hashtag word with or without the hashtag symbol.
We chose this relaxed approach because we consider situations such as “france”
versus “#france” to be semantically identical. The resulting bipartite graph was
projected along the hashtags as a weighted semantic network where each node
represents a trendy Twitter hashtag, and the weighted edges represent the shared
audience of users between two trendy hashtags.

Edge Pruning. Next, the bipartite graph was then converted into a maximum
spanning tree (MST) to only consider the most important links between trendy
hashtags. We had conducted multiple experiments with and without edge prun-
ing and concluded that some form of edge pruning is essential for removing noisy
edges. We tested a flat cutoff approach for excluding edges with a weight below
a set cutoff, and the MST approach, achieving the best and most robust results
with the MST. All graph operations were performed with the NetworkX Python
library [11]. The implementation negates the weights of the edges and then fol-
lows Kruskal’s [13] algorithm to build a minimum spanning tree. A visualization
of the resulting MST can be seen in Fig. 1.

4.2 Semantic User Enrichment

Each user in the dataset u ∈ U is assigned a set containing the trendy hashtags
they had interacted with using the previously described interaction criteria. For
each user set Su, and for each trendy hashtag t ∈ Su where Su ⊂ V in the seman-
tic network graph G(V,E), each adjacency list corresponding to t is converted
into an adjacency vector at = (at1, . . . , atn) where n = |V |, and

ati =

⎧
⎪⎨

⎪⎩

w(t,m(i))
c(t) if e(t,m(i)) ∈ E

1 if m(i) = t

0 otherwise

where w : E → N is the weight of the edge e(u, v) ∈ E, m : [0, n] → V that maps
each index to a trendy hashtag, and c : V → N maps each trendy hashtag to the
number of users that have interacted with it. The set of vectors for each user is
then summed element-wise and then normalized by dividing by the L2 norm of
the summed vector. The result for each user is a vector representing this user’s
interests in a trendy hashtag and related trendy hashtags weighted by the latent
social network.

4.3 Baseline User Enrichment

To judge the utility of our semantic network enrichment, we devised a simpler
baseline enrichment for comparison. Each user u ∈ U is assigned a vector au =
(au1, . . . , aun) where n = |V |, and aui = k(u,m(i)) where

k(u, t) =

{
1 if u interacts with trendy hashtag t

0 otherwise
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Fig. 1. Maximum-Spanning Tree of trendy hashtags in the 2022 French Pres-
idential Election. Nodes represent trendy hashtags. Weighted edges between nodes
represent the number of users that interacted with both trendy hashtags. Node size
is based on weighted degree. Node color is based on modularity class after applying
Louvain community detection and provided to help distinguish groups of similar nodes
visually. From the root node #france, a hierarchy amongst trendy hashtags is formed,
with clear distinction between different presidential candidates.

Each vector is normalized by dividing by the sum of the vector elements.

4.4 Regression Experiment

To compare the enrichments, we conducted an experiment to test the perfor-
mance of the enrichments in a regression task. We decided to test if a user
enrichment could be used to predict the average “emotions” for each user. Each
tweet in the dataset was annotated by the DARPA team with an array of six
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distinct emotions and an “other” value (representing fear, anger, enjoyment, sad-
ness, disgust, surprise, and “none of the above” tag) where the sum of each array
equals 1. We split the data into a training and testing period where the testing
period is the final 2weeks of the data and the training period covers the first
10weeks. For every user’s tweets, for both the training and testing periods we
summed the emotion arrays, then divided the resulting array by its 1-norm, so
that each array element follows U(0, 1) and represents the probability of that user
interacting with each emotion. Each user array was split into a set of emotion
target variables, and each one was paired with the corresponding user enrich-
ment method as the input variable. Only users with ≥ 10 tweets in the training
period were included, resulting in 49,360 entries of input/target pairs for each
emotion. Since this experiment is only meant to compare the different methods
relative to each other with often minimal differences, we used the Scikit-learn
implementation of linear regression [16]. To measure the performance of each
regression we compute the R2 value between the predicted emotion of all the
users and the actual emotion of all the users.

5 Results

5.1 Experiment Results

Table 1. Regression experiment results. (*: semantic > baseline; p < 0.05)

Emotion Baseline R2 Semantic R2

Fear 0.222 0.229
Anger* 0.567 0.574
Enjoyment* 0.634 0.648
Sadness* 0.266 0.277
Disgust* 0.501 0.514
Surprise* 0.082 0.098
None 0.416 0.423

Overall, there is a clear pattern of improved performance when using the
semantic enrichment instead of the baseline as seen in Table 1. All specific emo-
tions, except fear and “none of the above” tag, statistically significantly improved
performance using the semantic method versus the baseline. Statistical signifi-
cance was calculated using an F-test between the two models. The fear and none
of the above regressions still had higher R2 values for the semantic enrichment
compared to the baseline enrichment but the increase was just not large enough
to pass the F-test.

Interestingly, the baseline linear regression performed poorly on surprise emo-
tion. The regression with the semantic enrichment performed significantly bet-
ter, but still was weakly correlated with the actual response with an R2 value
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close to zero. Intuitively, people would have various positive or negative views
towards certain political trendy hashtags, which would correlate with most of
the emotions. However, surprise cannot easily be categorized as on the positive
or negative binary spectrum, which could explain why the linear regression per-
formed poorly in those cases. Previous research on sentiment analysis has also
shown notably lower performance when predicting surprise [6,19]. A change to
our method to distinguish hashtags written in all uppercase or with exclamation
points at the end may improve performance on surprise.

Both enrichments had the best performance when being used to predict the
enjoyment emotion with R2 values of 0.634 and 0.648. Social media users are
likely to frequently repeatedly mention the topics that give them enjoyment,
so this result is not very surprising. Similar logic would apply to anger and
disgust emotions and those regressions also performed well with R2 values greater
than 0.5.

5.2 Semantic Analysis

To analyze which trendy hashtags are most associated with improvement with
the semantic enrichment, we decided to filter for the top 10% of users that saw
the most improvement in prediction accuracy between the baseline regression
and the semantic regression. This was determined by the mean absolute error in
emotion predictions versus the ground truth. Then we compared trendy hashtag
occurrence rates for the top 10% users with the hashtag occurrence rates for the
rest of the users. All hashtag occurrence rates were calculated based on direct
interactions, like the baseline enrichment. We then selected the top 10 trendy
hashtags that saw the largest increase in occurrence rate between the top 10%
of users and the rest of the users.

Since the presence of these trendy hashtags in Table 2 result in more accu-
rate emotion predictions with the semantic enrichment, this suggests that the
users engaging with these trendy hashtags tend to engage with other emotionally
salient trendy hashtags, which would be more useful when predicting emotion
levels. Given the severity of war, it would make sense that “Ukrainians” would
be strongly connected to other highly emotionally salient trendy hashtags. A
previous English language Twitter study about the Ukrainian war found that
“Ukrainians” is a significant buzzword, so it is not surprising that the word reap-
pears in French. In addition, that study identified the YouTube twitter account
that was frequently mentioned in relation to the war, which would explain why
it invokes strongly emotional trendy hashtags [20]. “Paris” on its own may not
seem like it would be emotionally charged. However, looking at the children of
this hashtag in the tree, “hidalgodemission”, “conseilparis”, and “saccageparis”,
they are each related to an emotionally-charged movement to remove the mayor
of Paris and rebuild some of the crumbling architecture in the city.
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Table 2. Trendy hashtags with the largest increase in occurrence rate between the
top 10% of users and the rest of users. Occurrence rate is the proportion of users that
directly interacted with that trendy hashtag. The top 10% of users is computed based
on the improvement in prediction accuracy between the baseline regression and the
semantic regression for those users.

Trendy hashtag Bottom 90% rate Top 10% rate

Paris 0.274 0.420
Youtube 0.328 0.470
Europe 0.458 0.600
Lci 0.227 0.348
Passe 0.250 0.370
Ukrainians 0.287 0.404
Jeunes 0.282 0.397
Liberté 0.371 0.485
Nucléaire 0.284 0.394
Immigration 0.248 0.357

6 Conclusions and Future Work

We have connected semantic networks to the area of machine learning, demon-
strating using a simple experiment that this can be used to consistently improve
results on real-world data. To the best of our knowledge, this is the first time a
semantic network feature for machine learning has been explored.

Future work can include specializing in such a framework to tackle specific
problems. It is worth noting that the semantic network method used in this
paper was designed with the constraints of the INCAS challenge in mind, which
might not necessarily be the best way to utilize semantic networks when describ-
ing users in other situations. We are reporting these results simply to show that
this method is a notable improvement over simpler approaches and it is worth
investigating other applications in future work. One of the main drawbacks of
this approach is the increased computational time associated with projecting
the bipartite graph into a monopartite semantic network. However, there are
distributed computing approaches to monopartite projection challenges, so this
can be scaled for large scale applications involving many trendy hashtags [2].
Additionally, this computational time scales with the number of hashtags rather
than the number of messages or users. Therefore, when the topic scope is kept
narrow, this approach should scale better than approaches that rely on the num-
ber of messages or users. Conversely, if the topic scope is broadened then our
approach may scale more poorly in comparison. In such situations we could
explore the possibility of constructing multiple separate topic graphs to break-
up the larger overall message-space.

During testing, we found that pruning small edges is important for removing
noise from the final enrichments. We used the most aggressive pruning approach,
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by using a maximum spanning tree to only retain the strongest edges. This has
the disadvantage of removing connections between different communities within
the graph. It is possible that using a more sophisticated pruning approach could
improve the quality of using semantic networks in this manner. Future work can
take inspiration from knowledge graph edge pruning methods, which can account
for domain information of the trendy hashtags [8].

Acknowledgements. This work was partially supported by the DARPA INCAS Pro-
gram under Agreement No. HR001121C0165 and by the NSF Grant No. BSE-2214216.

References

1. Almuayqil, S.N., Humayun, M., Jhanjhi, N.Z., Almufareh, M.F., Khan, N.A.:
Enhancing sentiment analysis via random majority under-sampling with reduced
time complexity for classifying tweet reviews. Electronics 11(21) (2022). https://
doi.org/10.3390/electronics11213624

2. Asadi, M., Ghadiri, N., Nikbakht, M.A.: A scalable method for one-mode projection
of bipartite networks based on hadoop platform. In: 2018 8th International Con-
ference on Computer and Knowledge Engineering (ICCKE), pp. 237–242 (2018).
https://doi.org/10.1109/ICCKE.2018.8566259

3. Asur, S., Huberman, B.A.: Predicting the future with social media. In: 2010
IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent
Agent Technology, vol. 1, pp. 492–499 (2010). https://doi.org/10.1109/WI-IAT.
2010.63

4. Beckage, N., Smith, L., Hills, T.: Semantic network connectivity is related to vocab-
ulary growth rate in children. In: Proceedings of the Annual Meeting of the Cog-
nitive Science Society, vol. 32 (2010)

5. Bird, S., Klein, E., Loper, E.: Natural language processing with Python: analyzing
text with the natural language toolkit. O’Reilly Media, Inc.’ (2009)

6. Buechel, S., Hahn, U.: Emotion analysis as a regression problem–dimensional mod-
els and their implications on emotion representation and metrical evaluation. In:
ECAI 2016, pp. 1114–1122. IOS Press (2016)

7. Chan, A.S., Salmon, D.P., Butters, N., Johnson, S.A.: Semantic network abnor-
mality predicts rate of cognitive decline in patients with probable Alzheimer’s
disease. J. Int. Neuropsychol. Soc. 1(3), 297–303 (1995). https://doi.org/10.1017/
S1355617700000291

8. Faralli, S., Finocchi, I., Ponzetto, S.P., Velardi, P.: Efficient pruning of large knowl-
edge graphs. In: Proceedings of the 27th International Joint Conference on Artifi-
cial Intelligence, IJCAI 2018, pp. 4055-4063. AAAI Press (2018)

9. Featherstone, J.D., Ruiz, J.B., Barnett, G.A., Millam, B.J.: Exploring childhood
vaccination themes and public opinions on Twitter: A semantic network analysis.
Telematics Inform. 54, 101,474 (2020). https://doi.org/10.1016/j.tele.2020.101474.
https://www.sciencedirect.com/science/article/pii/S0736585320301337

10. Fronzetti Colladon, A., Grassi, S., Ravazzolo, F., Violante, F.: Forecasting financial
markets with semantic network analysis in the COVID-19 crisis. J. Forecasting
(2020)

11. Hagberg, A.A., Schult, D.A., Swart, P.J.: Exploring network structure, dynamics,
and function using Network. In: Varoquaux, G., Vaught, T., Millman, J. (eds.)
Proceedings of the 7th Python in Science Conference, Pasadena, CA USA, pp. 11
– 15 (2008)

https://doi.org/10.3390/electronics11213624
https://doi.org/10.3390/electronics11213624
https://doi.org/10.1109/ICCKE.2018.8566259
https://doi.org/10.1109/WI-IAT.2010.63
https://doi.org/10.1109/WI-IAT.2010.63
https://doi.org/10.1017/S1355617700000291
https://doi.org/10.1017/S1355617700000291
https://doi.org/10.1016/j.tele.2020.101474
https://www.sciencedirect.com/science/article/pii/S0736585320301337


224 A. Mandviwalla et al.

12. He, Y., Tan, J.: Study on SINA micro-blog personalized recommenda-
tion based on semantic network. Expert Syst. Appli. 42(10), 4797–4804
(2015). https://doi.org/10.1016/j.eswa.2015.01.045, https://www.sciencedirect.
com/science/article/pii/S0957417415000603

13. Kruskal, J.B.: On the shortest spanning subtree of a graph and the traveling sales-
man problem. Proc. Am. Math. Soc. 7(1), 48–50 (1956)

14. Kumari, S.: Impact of big data and social media on society. Global J. Res. Anal.
5, 437–438 (2016)

15. Pagolu, V.S., Challa, K.N.R., Panda, G., Majhi, B.: Sentiment analysis of Twitter
data for predicting stock market movements. CoRR abs/ arXiv: 1610.09225 (2016)

16. Pedregosa, F., et al.: Scikit-learn: machine learning in python. J. Mach. Learn.
Res. 12, 2825–2830 (2011)

17. Radicioni, T., Saracco, F., Pavan, E., Squartini, T.: Analysing Twitter semantic
networks: the case of 2018 Italian elections. Sci. Rep. 11(1), 1–22 (2021)

18. Shi, W., Fu, H., Wang, P., Chen, C., Xiong, J.: #climatechange vs. #glob-
alwarming: Characterizing two competing climate discourses on Twitter with
Semantic Network and temporal analyses. Inter. J. Environ. Res. Public Health
17(3) (2020). https://doi.org/10.3390/ijerph17031062, https://www.mdpi.com/
1660-4601/17/3/1062

19. Tsakalidis, A., et al.: Building and evaluating resources for sentiment analysis in
the Greek language. Lang. Resour. Eval. 52, 1021–1044 (2018)

20. Vyas, P., Vyas, G., Dhiman, G.: RUemo-the classification framework for Russia-
Ukraine war-related societal emotions on Twitter through Machine Learning. Algo-
rithms 16(2) (2023). https://doi.org/10.3390/a16020069

https://doi.org/10.1016/j.eswa.2015.01.045
https://www.sciencedirect.com/science/article/pii/S0957417415000603
https://www.sciencedirect.com/science/article/pii/S0957417415000603
http://arxiv.org/abs/1610.09225
https://doi.org/10.3390/ijerph17031062
https://www.mdpi.com/1660-4601/17/3/1062
https://www.mdpi.com/1660-4601/17/3/1062
https://doi.org/10.3390/a16020069


Rewiring Networks for Graph Neural
Network Training Using Discrete

Geometry

Jakub Bober1, Anthea Monod1(B), Emil Saucan2, and Kevin N. Webster1,3

1 Imperial College London, London SW7 2AZ, UK
a.monod@imperial.ac.uk

2 ORT Braude College of Engineering, Karmiel, Israel
3 FeedForward Ltd., London, UK

Abstract. Information over-squashing occurs under inefficient informa-
tion propagation between distant nodes on networks, which can signifi-
cantly impact graph neural network (GNN) training. Rewiring is a pre-
processing procedure applied to the input network to mitigate this prob-
lem. In this paper, we investigate discrete analogues of various notions of
curvature to model information flow on networks and rewire them. We
show that classical notions of curvature achieve state-of-the-art perfor-
mance in GNN training accuracy on a wide variety of real-world datasets.
Moreover, these classical notions exhibit a clear advantage in computa-
tional runtime by several orders of magnitude.

Keywords: Discrete curvature · geometric deep learning · graph
neural networks · graph rewiring · information over-squashing

1 Introduction

Data captured by structures beyond vectors living in Euclidean space are becom-
ing increasingly abundant, thus, it is becoming increasingly important to develop
methods to analyze them. When such data lack a rigorous metric structure,
notions of shape and size of the data become useful to incorporate in their
analysis—this is the premise of geometric deep learning [3]. Networks are an
important example of non-Euclidean spaces lacking a natural metric structure,
which are the focus of this work.

In this paper, we study the problem of information over-squashing, associ-
ated with training graph neural networks (GNNs) [1,21], which occurs when
information does not flow efficiently between distant nodes on a graph. This
problem tends to occur when there is heavy traffic passing through particular
edges of a graph, known as the bottleneck. Graph rewiring is a common mitigating
approach, which adds or suppresses edges on the input network to alleviate bot-
tlenecks and improve information flow over a network. Recent pioneering work
models network information flow using a new notion of discrete curvature—the
balanced Forman curvature (BFC)—and uses it to rewire graphs prior to train-
ing GNNs, yielding the current state-of-the-art for GNN training in the presence
of bottlenecks [21].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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Discrete curvatures, as discretizations of classical notions from smooth geom-
etry, have been actively studied in recent decades (e.g., [12]) and have been shown
to be useful when applying geometric methods to statistics and machine learn-
ing tasks for data with discrete geometric structure, such as network learning by
sampling (e.g., [2,18]). We return to these original classical notions to study their
performance in graph rewiring as in [21], in place of the BFC. We systematically
test and compare several classical discrete curvature notions against the BFC
on many benchmarking datasets and find that these classical notions achieve
state-of-the-art performance in terms of accuracy for GNN training. Moreover,
computing these classical discrete curvatures is much quicker, running several
orders of magnitude faster than the state-of-the-art.

Related Work. Graph diffusion convolution (GDC) is an alternative graph
rewiring approach that uses a discretization of the gas diffusion equation to
model the propagation of information on a network [9]. There also exist other
non-rewiring bottleneck alleviation methods. Curvature GNNs (CGNNs), in par-
ticular, assign specific weights to graph edges as a measure of information flow
with weights determined by discrete curvature [10].

2 Background and Preliminaries

The main difference between the traditional deep neural networks and GNNs has
to do with the message passing algorithm [7]. In message passing, at each layer
and for each node, features from the neighboring nodes are aggregated before
updating the features of the target node. The principle concern of over-squashing
is that the influence of important node features may be too small and eventually
have minimal or no impact on features of distant nodes on the network when
message passing over the GNN. When propagating information from a node in
a source component to a node in the target component, over-squashing is likely
to happen as the information is crowded or “squashed” together with all other
node features from the source component, which happens on the edge connecting
the two components called a bottleneck.

Bottlenecks may be alleviated with graph rewiring, which better supports
the bottleneck and provides alternative access routes between components to
reduce the risk that features become crowded out (over-squashed); see Fig. 1.
Edges that have little impact on information flow in the graph can be deleted
to control the size of the graph.

2.1 Discrete Geometry and Curvature

The Ricci curvature quantifies how much a Riemannian manifold locally differs
from a Euclidean space. It determines whether two geodesics shot in parallel
from two nearby points on a given manifold converge, remain parallel, or diverge
along the manifold. The curvature is positive if the geodesics converge to a single
point; zero, if the geodesics remain parallel; and negative, if the geodesics diverge.
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(a) (b)

Fig. 1. Graph rewiring reduces over-squashing. (a): A graph with a bottleneck (blue
edge). (b): A rewiring that alleviates the bottleneck.

The quicker the convergence or divergence, the larger the Ricci curvature. Ricci
curvature can be used to smooth a manifold via the Ricci flow, described by a
partial differential equation (PDE) [4].

In the discrete setting of meshes or networks, the PDE describing Ricci flow
becomes an ordinary differential equation, thus the flow is reversible.

From Manifolds to Graphs. In some cases, there is a natural reduction of mani-
folds to graphs, e.g., images can be represented in a discrete manner by meshes,
which can be seen as 4-regular graphs.

For positive, zero, and negative curvature, there exist natural graph analogies.
For a positively curved sphere, a clique is a suitable representation: two parallel
geodesics shot from two nearby points on a sphere meet at the top of a sphere,
while two edges from two adjacent points in a clique can meet at a common
node to create a triangle. For a flat plane, a rectangular grid is an appropriate
graphical representation: parallel lines on a plane remain parallel forever. Finally,
a negatively curved hyperbolic manifold may be represented by a binary tree.

Discrete Curvature. There is no single established definition of discrete curva-
ture. Here, we outline the first and best-known discrete curvatures historically
proposed for networks. The driving motivation is that the bottlenecks will have
the lowest discrete curvature in the graph.

We work with undirected networks and list curvatures for undirected net-
works. We also work with unweighted networks, which allow for combinatorial
properties of graphs that lend computational benefits.

1D Forman Curvature. Perhaps the most basic and one of the first notions of
discrete curvature is the one proposed by Forman [6,19].

Definition 1. For two nodes v1, v2 in a graph and an edge e between them, the
general 1D Forman curvature of e is

Ffull(e) = we

⎛
⎝wv1

we
+

wv2

we
−

∑
ev1∼e,ev2∼e

[
wv1√

wewev1

+
wv2√

wewev2

]⎞
⎠ , (1)

where ev1 ∼ e and ev2 ∼ e denote the edges other than e that are adjacent to
nodes v1 and v2 respectively; we, wev1

, and wev2
denote the weights of edges e,
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ev1 and ev2 respectively; and wv1 and wv2 denote the weights of the nodes v1 and
v2 respectively.

For unweighted graphs, the weights of all nodes and edges are set to 1 and
(1) becomes simply

F (e) = 4 − (deg(v1) + deg(v2)), (2)

where deg(x) is the degree of node x. In our work, we compute the 1D Forman
curvature using (2) which is a very simple expression and extremely fast to
compute, and is concerned only by the degrees of the endpoints of the edge
under consideration.

The drawback of this simplicity is that it is not always very descriptive, since
under combinatorial weights, the 1D Forman curvature gives information only
about the number of edges directly connected to the edge under consideration. It
generally assigns lower curvature to clique-like components of the graph rather
than tree-like components, since an edge in a clique is connected directly to all of
the other edges in the clique, while in a binary tree it is only directly connected
to 3 other edges.

Augmented Forman Curvature. The augmented Forman curvature [15] aims to
mitigate the drawbacks of 1D Forman curvature.

Definition 2. For two nodes v1, v2 in a graph and an edge e between them, the
augmented Forman curvature or 2D Forman curvature is given by:
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wv√
we · wê
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(3)
where a ‖ b denotes that a is parallel to b, i.e., a and b have a common higher
or lower dimensional graph face; a < b denotes that a is a graph face of b; and
the rest of the notation is as in Definition 1 (here the faces are also weighted).

Following [15], we may consider solely 3-cycles and again, under combinato-
rial weights, (3) reduces to

F#(e) = F (e) + 3t, (4)

where t = |N(v1) ∩ N(v2)| is the number of triangles containing the edge e =
(v1, v2) under consideration.

The idea is that the curvature F# (4) increases in relation to F if an edge is
contained in some triangles. More precisely, the 3 factor of t in (4) guarantees that
edges creating a triangle together with e contribute positively to the curvature.
If an edge is not a member a triangle with e, it contributes negatively to the
augmented Forman curvature by decreasing it by 1, just as in the 1D version.
Hence, the augmented version maintains a balance between the growth of degrees
of endpoints and creation of 3-cycles.
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Haantjes Curvature. Less common than the Forman curvatures, the Haantjes
curvature [8] has the simplest and most intuitive definition.

Definition 3. Consider a graph where all weights are set to 1 (i.e., the combi-
natorial case). For two nodes v1, v2 in a graph and an edge e between them, the
Haantjes curvature is given by κ2

H(e) = t, where t is as in (4).

The Haantjes curvature is a metric curvature, thus in the network case it
takes into account solely edge weights. Definition 3 is commonly used in graphics
settings and simply counts the triangles adjacent to a given edge. The Haantjes
curvature is typically higher for clique-like components of a graph than for tree-
like components. It is trivially nonnegative, which is also in contrast with 1D
Forman, where the majority of edges usually have negative curvature. The aug-
mented Forman curvature can be thought of as a balance between 1D Forman
and Haantjes curvatures.

Balanced Forman Curvature. The BFC proposed by [21] aims to balance between
computational complexity and the richness of structural information associated
with neighboring edges. It takes into account 3- and 4-cycles, as well as “loose”
neighboring edges, i.e., those that do not create 3- or 4-cycles.

3 Methods and Experimental Design

In this section, we outline the algorithm that we will use to identify network
bottlenecks and perform graph rewiring based on discrete curvature; the datasets
we will study; and our experimental setup.

3.1 Stochastic Discrete Ricci Flow

Algorithm 1. Stochastic Discrete Ricci Flow (SDRF)
Input: graph G, temperature τ > 0, max number of iterations, discrete curvature

Curv, optional Curv upper-bound C+

repeat
for edge i ∼ j with minimal discrete curvature Curv(i, j) do

Calcukate vector x where xkl = Curvkl(i, j)−Curv(i, j), the improvement to
Curv(i, j) from adding edge k ∼ l where k ∈ N(i) ∪ {i}, l ∈ N(j) ∪ {j};

Sample index k, l with probability softmax(τx)kl and add edge k ∼ l to G.
end for
Remove edge i ∼ j with maximal discrete curvature Curv(i, j) if Curv(i, j) > C+.

until convergence or max iterations reached

The stochastic discrete Ricci flow (SDRF) algorithm [21] is a discretization of
Ricci flow that is a graph rewiring algorithm and will be implemented in our
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experimental work. It operates in the same spirit as Ricci flow, where regions of
negative or low curvature are identified and compensated by an opposite effect
depending on the negativity in order to smooth the manifold. Additionally, it
incorporates a mechanism to prevent a blow-up on the graph size. The algorithm
intakes a graph and produces another graph where the regions of the most neg-
atively curved edges of the input graph are augmented with additional edges to
increase the curvature at those regions.

At each iteration, the algorithm chooses the edge with the lowest curvature;
candidate edges to add to support the lowest curvature edge; and the edge to
add from candidates with softmax probability (regulated with a temperature
parameter τ) to increase curvature, where this latter value is calculated as the
difference between curvature of the lowest curvature edge before and after adding
the support edge. The algorithm then chooses the edge with the highest curvature
and, if this curvature value surpasses a certain threshold, removes this edge from
the graph, ensuring a bound on the size of the graph. The process repeats until
either the convergence is reached (no additional candidates and no edges to
remove) or the maximum number of iterations is reached.

3.2 Datasets

We studied the following 12 benchmarking datasets in our experimental study in
a supervised learning task of node classification, whose details are summarized
in Table 1: Cora [11] and Citeseer [16], which are large citations datasets con-
taining information about the presence of specific words in publications; Pubmed
[13], a large citations dataset containing information about diabetes of patients
classified into one of three classes; Cornell, Texas, and Wisconson [5], which
are small datasets containing information about webpages collected from com-
puter science departments of corresponding universities; Chameleon, Squirrel
[14], and Actor [20], which are large datasets based on the Wikipedia networks;
Computers and Photo [17], which are large e-commerce (Amazon) datasets; and
finally, Coauthor CS [10], which is a large citation dataset with papers in com-
puter science. The last 3 datasets were not evaluated by [21].

Table 1. Characteristics of datasets studied.

Cora Citeseer Pubmed Cornell Texas Wisconsin

Nodes 2485 2120 19717 140 135 184

Edges 5069 7358 44324 219 251 362

Features 1433 778 500 1703 1703 1703

Classes 7 6 3 5 5 5

Chameleon Squirrel Actor Computers Photo Coauthor CS

Nodes 832 2186 4388 13381 7487 18333

Edges 12355 65224 21907 245778 119043 81894

Features 2323 2089 931 767 745 6805

Classes 5 5 5 10 8 15
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3.3 Experimental Setup

We tested the performances of no curvature (i.e., no rewiring); 1D Forman curva-
ture; augmented Forman curvature; Haantjes curvature; and balanced Forman
curvature in the SDRF algorithm for graph rewiring. The implementation of
the SDRF algorithm was taken from the repository associated with [21]. Other
design parameters such as data loading, selection of largest connected compo-
nent, network type, hyperparameters, and seeds have been set following [21].

4 Results: GNN Training with Graph Rewiring

In this section, we report the results of GNN training with graph rewiring per-
formed with the various discrete curvatures discussed previously in Sect. 2 as
well as the BFC proposed by [21] as a comparative benchmark. We discuss per-
formance in terms of accuracy and computational runtime in seconds.

4.1 Accuracy

Each experiment was run for 100 seeds; we report 95% confidence intervals of
mean accuracies using a z-score of 1.96. For reference and performance compari-
son, the 95% confidence intervals for the SDRF-rewiring using BFC reported by
[21] are also given for those relevant datasets.

The best two results are highlighted for each dataset in each accuracy table:
the best one in red bold, the second best in black bold (excluding the reported
BFC results from [21] for reference). The None curvature row represents results
without any rewiring. OOM indicates that the out of memory error has occurred.
N/A in the reference BFC row for Computers, Photo, and Coauthor CS datasets
indicates that there are no reference results for these datasets as these datasets
were not studied by [21].

We see that SDRF rewiring generally improves training performance. In par-
ticular, we note that performance for the classical curvatures is generally better
than the performance without any rewiring, and often better than performance
of BFC. For some results in Table 2, the simplest form of curvature—the 1D For-
man curvature—tends to give the best results. This indicates that edges with
large sums of degrees are the graph bottlenecks and suffer from over-squashing.
The results for Haantjes curvature are the best for some of the other datasets,
which suggests that association with many 3-cycles helps an edge reduce over-
squashing. The augmented Forman curvature also yields best results for certain
experiments (with less frequency), which suggests that maintaining the balance
between the two metrics may reduce over-squashing most effectively.

Note, however, that the experiments upon rerunning yielded results that dif-
fer quite significantly, especially for small datasets (Cornell, Texas, Wisconsin).
For example, Table 2 shows that the Haantjes curvature seems to generally bring
the best results in the first run, while the augmented Forman curvature performs
best in the second run. More importantly, it is often the case that the correspond-
ing results (dataset–curvature pairs) for different rewirings for the two runs are
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often not within the respective 95% confidence intervals, indicating a lack of
robustness of the results. One explanation could be overfitting of the average
accuracy to one instance of the SDRF rewiring, which can significantly impact
the average performance. This is especially true for the small datasets, for which
the rewiring of multiple edges can have a greater impact on the graph structure
than for larger datasets. The results for these datasets also differ significantly
between each curvature type, and compared to no rewiring. Moreover, the BFC
results differ more significantly for these datasets than for others with respect
to the reference BFC results.

To further investigate the intuition that adding or deleting edges on smaller
graphs impact the overall graph structure more significantly, we re-ran exper-
iments for Cora, Citeseer, Cornell, Texas and Wisconsin datasets with
rewiring for each seed. These datasets were selected given that rewiring was the
fastest (as will be discussed further on in considering computational runtime).

Table 2. 95% confidence intervals of mean accuracies for given datasets and curvature
types given in percentages of two experimental runs (first two tables for the first run,
last two for the second).

Cora Citeseer Pubmed Cornell Texas Wisconsin

None 81.65 ± 0.25 72.14 ± 0.31 77.74 ± 0.40 48.50 ± 0.60 59.19 ± 0.38 50.24 ± 0.54

1D 81.15 ± 0.24 72.17 ± 0.28 77.76 ± 0.37 52.75 ± 0.82 64.59 ± 1.11 52.70 ± 0.71

Augmented 81.56 ± 0.24 72.12 ± 0.30 77.70 ± 0.40 55.43 ± 0.62 65.48 ± 1.23 52.62 ± 0.74

Haantjes 81.55 ± 0.25 72.19 ± 0.30 77.75 ± 0.38 56.29 ± 0.50 63.33 ± 0.94 55.81 ± 0.77

BFC 81.38 ± 0.25 72.09 ± 0.28 OOM 58.39 ± 0.64 61.11 ± 0.68 48.86 ± 0.91

Reference BFC 82.76 ± 0.23 72.58 ± 0.20 79.10 ± 0.11 57.54 ± 0.34 70.35 ± 0.60 61.55 ± 0.86

Chameleon Squirrel Actor Computers Photo Coauthor CS

None 47.38 ± 0.45 38.16 ± 0.32 27.82 ± 0.24 41.74 ± 1.41 56.4 ± 2.85 90.89 ± 0.11

1D 44.88 ± 0.43 36.83 ± 0.27 29.41 ± 0.26 42.24 ± 1.58 54.93 ± 3.46 90.83 ± 0.11

Augmented 43.54 ± 0.88 36.75 ± 0.25 29.81 ± 0.30 42.93 ± 1.56 54.44 ± 3.01 90.89 ± 0.11

Haantjes 46.14 ± 0.55 36.59 ± 0.26 29.36 ± 0.24 42.95 ± 1.74 56.74 ± 3.12 90.86 ± 0.10

BFC 46.92 ± 0.73 37.82 ± 0.36 29.11 ± 0.25 41.55 ± 1.91 54.29 ± 3.13 OOM

Reference BFC 44.46 ± 0.17 37.67 ± 0.23 28.35 ± 0.06 N/A N/A N/A

Cora Citeseer Pubmed Cornell Texas Wisconsin

None 81.55 ± 0.23 72.21 ± 0.29 77.90 ± 0.36 48.11 ± 0.60 59.33 ± 0.40 49.95 ± 0.49

1D 81.10 ± 0.24 72.45 ± 0.29 77.90 ± 0.35 51.00 ± 0.88 68.07 ± 1.09 54.51 ± 0.84

Augmented 81.57 ± 0.25 72.22 ± 0.27 77.89 ± 0.38 53.89 ± 0.63 64.81 ± 1.20 56.49 ± 0.79

Haantjes 81.56 ± 0.24 72.10 ± 0.28 77.71 ± 0.41 57.18 ± 0.57 64.78 ± 1.15 55.86 ± 0.76

BFC 81.25 ± 0.25 72.04 ± 0.29 OOM 54.61 ± 0.50 58.37 ± 0.67 56.19 ± 0.84

Reference BFC 82.76 ± 0.23 72.58 ± 0.20 79.10 ± 0.11 57.54 ± 0.34 70.35 ± 0.60 61.55 ± 0.86

Chameleon Squirrel Actor Computers Photo Coauthor CS

None 46.86 ± 0.44 38.25 ± 0.33 27.69 ± 0.22 42.45 ± 1.55 53.39 ± 2.75 90.90 ± 0.10

1D 44.99 ± 0.40 36.49 ± 0.29 29.66 ± 0.26 41.11 ± 1.86 55.57 ± 3.14 90.82 ± 0.10

Augmented 42.69 ± 0.65 36.70 ± 0.26 29.98 ± 0.25 41.97 ± 1.71 56.19 ± 2.96 90.90 ± 0.12

Haantjes 45.97 ± 0.51 36.83 ± 0.24 29.52 ± 0.21 42.38 ± 1.60 55.34 ± 2.93 90.88 ± 0.11

BFC 46.62 ± 0.70 37.61 ± 0.34 29.34 ± 0.28 42.11 ± 1.65 54.51 ± 2.89 OOM

Reference BFC 44.46 ± 0.17 37.67 ± 0.23 28.35 ± 0.06 N/A N/A N/A

Table 3 presents results from two runs with rewiring for every seed, which are
shown to be significantly more robust. The sizes of the 95% confidence intervals
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are comparable to those reported previously in Table 2, but only two pairs of
corresponding runs are not contained in the 95% confidence intervals of one
another (Cornell–Haantjes and Texas–BFC). As there are 5 · 5 = 25 dataset–
curvature pairs for which the experiments were run, the mean results are indeed
robust and it is reasonable to consider the results as close to being independent
and identically distributed (i.i.d.): the probability that two or more out of 25
means of i.i.d. random variables are not within the corresponding 95% confidence
intervals is 1 − 25 · 0.05 · 0.9524 ≈ 0.635 = 63.5%, which is high.

Furthermore, the results of these additional experiments are significantly
worse than the reference BFC results. This is likely due to the accuracies for
differently rewired graphs having been averaged out, as opposed to using the
rewiring with the best validation accuracy for the benchmarking. In contrast,
the results in Table 2 are slightly better for some dataset–curvature pairs than
the reference BFC results, and sometimes slightly worse. When actually using
the framework in practice, for the best results, the training can be performed
for several different seeds and the model with the best validation accuracy can
be chosen with the most effective rewired graph structure.

Table 3. 95% confidence intervals of selected datasets with graph rewiring for each
seed given in percentages run twice.

Cora Citeseer Cornell Texas Wisconsin

None 81.63 ± 0.24 72.13 ± 0.29 48.04 ± 0.60 59.74 ± 0.36 50.11 ± 0.53

1D 81.15 ± 0.26 72.14 ± 0.31 53.39 ± 0.81 67.00 ± 1.28 55.54 ± 0.89

Augmented 81.64 ± 0.25 72.05 ± 0.29 54.93 ± 0.59 64.56 ± 1.15 55.49 ± 0.82

Haantjes 81.64 ± 0.24 72.19 ± 0.33 56.50 ± 0.60 62.96 ± 0.92 55.95 ± 0.72

BFC 81.18 ± 0.27 72.12 ± 0.29 53.07 ± 0.74 59.19 ± 0.69 54.24 ± 0.93

Reference BFC 82.76 ± 0.23 72.58 ± 0.20 57.54 ± 0.34 70.35 ± 0.60 61.55 ± 0.86

Cora Citeseer Cornell Texas Wisconsin

None 81.56 ± 0.23 72.24 ± 0.29 48.46 ± 0.56 59.48 ± 0.40 49.97 ± 0.52

1D 81.24 ± 0.23 72.30 ± 0.29 52.75 ± 0.80 67.74 ± 1.26 55.62 ± 0.79

Augmented 81.69 ± 0.22 72.23 ± 0.30 55.39 ± 0.68 64.93 ± 1.10 55.27 ± 0.79

Haantjes 81.49 ± 0.24 72.21 ± 0.27 55.61 ± 0.58 63.11 ± 1.05 56.08 ± 0.82

BFC 81.07 ± 0.25 72.01 ± 0.32 53.00 ± 0.73 60.30 ± 0.80 54.59 ± 0.88

Reference BFC 82.76 ± 0.23 72.58 ± 0.20 57.54 ± 0.34 70.35 ± 0.60 61.55 ± 0.86

We summarize the test results for rewiring instances and model parameters
pairs that achieved the best validation accuracy in the experiments reported
in the second run from Table 3 in Table 4. Only the second run is considered,
but this does not have a significantly negative impact on the robustness of the
results, since, as previously justified, the results in Table 3 are robust.

The main conclusion from these experiments is that there is no clear cur-
vature that has overall better mean performance across the multiple datasets,
but it is reasonable to deduce that using the classical curvatures for SDRF-based
rewiring can lead to significant performance improvement, often achieving better
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Table 4. Percentage accuracy for the best rewiring cases from Table 3.

Cora Citeseer Cornell Texas Wisconsin

None 82.34 74.19 50.0 51.85 51.35

1D 82.23 70.48 60.71 74.07 54.05

Augmented 83.35 74.19 57.14 74.07 59.46

Haantjes 83.55 73.23 53.57 66.67 59.46

BFC 82.84 74.03 56.94 62.96 54.05

Reference BFC 82.76 72.58 57.54 70.35 61.55

results than the BFC. For every dataset, performing the SDRF-based rewiring
almost always yields the best test accuracy when using one of the three classical
curvature types, compared to BFC, although no rewiring may also yield the best
results. Often, the best test accuracies were achieved using classical curvatures.

4.2 Computational Runtime

We measure the runtime for one rewiring process per curvature type and per
dataset; the measurements are given in Table 5. The runtimes here are reported
for only one instance for each dataset and each curvature type, in order to avoid
influences of spurious computational issues such as CPU and GPU occupancy
with other processes, which would become much more significant with repeated
iterations. Here, the interest is rather in the comparison between longer compu-
tation times which shows the difference in computational complexity at scale.

From these results, we see that all of the classical discrete curvatures studied
have a significantly shorter computation time than the BFC. The slowest among
the three classical curvatures is the augmented Forman curvature, at scale. This
is expected, as it essentially needs to do the same calculations as 1D Forman
and Haantjes curvatures combined (computation of degrees of endpoints and
adjacent triangles for each edge).

For the Computers and Photo datasets, however, the computation of the
augmented Forman curvature took longer than the computation of BFC. This
suggests that for some types of graphs, possibly for bigger or more dense graphs
(notice from Table 1 that the edges to nodes ratio is very high for these two
datasets), the BFC computation can outperform the augmented Forman curva-
ture computation in terms of computation time. Nevertheless, the 1D Forman
and Haantjes curvatures are still quicker to compute.
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Table 5. Computation times of the SDRF rewiring given in seconds.

Cora Citeseer Pubmed Cornell Texas Wisconsin

1D 5.86 5.31 53.57 0.34 0.41 0.61

Augmented 6.16 5.48 107.55 0.19 0.21 0.49

Haantjes 2.88 4.27 39.65 0.13 0.13 0.14

BFC 27.64 12.26 OOM 34.95 21.2 21.24

Chameleon Squirrel Actor Computers Photo Coauthor CS

1D 86.51 900 418.06 4369.07 853.52 47.15

Augmented 251.25 901.71 872.78 10504.34 2262.72 88.10

Haantjes 53.58 531.31 105.36 462.14 139.97 30.12

BFC 1627.61 2006.78 5121.31 6431.32 1274.44 OOM

5 Discussion

We systematically and comprehensively studied various classical and novel dis-
crete curvatures in mitigating the over-squashing problem in training GNNs.
Following [21], we adapted discretizations of Ricci curvature and Ricci flow to
model information flow and bottleneckness of a network, respectively. In [21],
the BFC was proposed as a discretization of Ricci curvature, while the SDRF
algorithm was proposed as a discretization of Ricci flow. We tested a wide range
of classical discrete curvatures against the BFC in implementing the SDRF algo-
rithm. We found that more classical curvatures were able to achieve performance
of the same order as the BFC in training accuracy and, at times, outperformed
the BFC. Moreover, they far outperformed it in computational runtime. We thus
found that the impact of the contribution by [21] lies in the SDRF algorithm,
rather than the BFC. We conclude that almost any of the more classical discrete
curvatures may be used over the BFC together with the SDRF algorithm for
more efficient computational runtimes.

Building on our study, future work may take into account directedness of the
graphs in the SDRF and other rewiring methods. Also, alternative non-rewiring,
discrete geometric approaches to mitigating over-squashing may be explored,
such as CGNNs [10]. Here, other computational geometric notions for networks
may be investigated, such as those arising from topological data analysis, where
persistent homology concurrently captures the topology of data as well as its
integral geometry. Such an approach would be particularly interesting when the
goal is to preserve the topology of a graph, as the CGNN does.
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Abstract. In scenarios where objects are characterized by a combina-
tion of rigid and flexible features, we consider the problem of identifying
a natural set of rigid clusters, along with a network model of flexible
states per cluster. Our approach proves effective within the Allais para-
dox context. Our algorithm, applied to data collected in an experiment,
identified personality clusters and emotion states within each cluster.
This model outperforms alternative clustering models in capturing infor-
mation regarding participants’ choices. Beyond the current scope, our
approach is applicable to other data-sets with combined rigid-flexible
attributes. Beyond prediction, a strategy that aims to achieve a result
by influencing a flexible state holds the promise of enhanced effectiveness
when it is tailored to a cluster.

Keywords: clustering · partition · community · modeling · state
model · machine learning · Symmetric Uncertainty · Allais paradox

1 Introduction

Predictive models hold significance across behavioral, operational, financial,
and various other domains. Machine Learning algorithms construct a predic-
tive model by utilizing a training dataset to identify meaningful relationships
between predicting features and a predicted label.

To illustrate, consider the realm of decision-making. Human choices are
influenced by various factors, including the decision-maker’s personality and
the expected emotional response to potential decision results. A conventional
approach to solving this decision prediction problem entails uncovering distinct
causal relationships and elucidating how personality leads to specific emotional
expectations, which subsequently influence a decision. Nevertheless, such an app-
roach tends to obscure the inquiry into how personality anticipates patterns of
emotional fluctuations and the resulting array of potential decisions.

Consider, for example, a decision-maker who confronts two job options-one
guarantees a fixed salary, while the other offers higher yet uncertain earnings.
The decision involves a mental analysis of how the decision-maker will feel
when earning a low salary, a high salary, or no salary. The expected emotions
influence their decision. It is challenging to predict decisions that are emotion-
related because the decision-maker expects different emotions to result from his
decision. Moreover, expected emotions are often mixed, and their precise effect
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1141, pp. 237–249, 2024.
https://doi.org/10.1007/978-3-031-53468-3_20
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on decision-making is unclear. Initially, modeling emotion-driven decisions may
seem daunting. We explore whether it is possible to identify an underlying struc-
ture in this seeming chaos.

The case of modeling the personality-emotion-decision process calls for the
use of personality traits to cluster individuals into distinct types, showcasing
diverse emotion-decision patterns-instead of showcasing a generalized emotion-
decision pattern for the whole population. The current research specifically
revolves around this concept, and its essence can be encapsulated by the expres-
sion ’model of models,’ which entails creating a clustering model, in which each
cluster illustrates how observations that are assigned into this cluster shift across
different states and how this arrangement impacts the labeling process.

Using a naive approach involving clustering based on rigid features and then
clustering each subgroup based on flexible features frequently leads to the neglect
of organic patterns of flexible states within distinct clusters. Instead, our algo-
rithm begins by identifying states and subsequently grouping them into clusters
based on rigid features.

Our proposed R&F algorithm assumes training data in which each data point
includes ’stable parameters’, ’fluctuating parameters’, and ‘label’. The algorithm
identifies a clustering model that ensures that objects within each cluster are not
merely similar but are grouped for the efficiency of subsequent modeling. The
algorithm uses ’stable parameters’ and identifies ’type clusters,’ each encompass-
ing a unique ’network of states.’ The states are defined in terms of the remaining
’fluctuating’ parameters.’

To illustrate the practicality of our proposed algorithm, we turn to the exam-
ple of the personality-emotion-decision problem discussed earlier, specifically
within the context of the Allais paradox. This paradox highlights the ’certainty
effect,’ where the presence of a certain outcome amplifies risk aversion. In such
dilemmas, individuals exhibit irrational choices, which prompts an exploration
of patterns connecting this bounded rationality with personality and emotions.

We conducted an experiment, gathering data in the context of the Allais-
like narrative, and presenting choices between hypothetical games with uncer-
tain results. In this context, participants were asked to report their preferences,
alongside their anticipated emotions for each potential outcome. Participants
also completed two psychological questionnaires assessing their personality using
the prominent Big Five model, as well as their Locus of Control (LoC), which is
a measure of how much individuals believe outcomes hinge on their decisions.

Within this framework, our algorithm demonstrates a significant outcome: It
produces a model of distinctive clusters of personality types, each characterized
by a unique network of emotional states when confronting the Allais-narrative
decisions. These cluster-related models shed light on the emotional states in
which the certainty effect is manifested as discussed in the paradox, and con-
versely, the states in which this effect is absent. Importantly, these insights differ
across personality types.

The remainder of the paper is structured as follows: In the Related Liter-
ature section, we briefly review the relevant literature. In Sect. 3, Methods, we
delineate the extended Allais paradox experimentation and data analysis. The
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Algorithm section outlines the proposed R&A algorithm for solving the clustering
into network models problem. In the Results section, we showcase the efficacy of
our algorithm in predicting decisions. We summarize our findings and conclude
in the Summary and Conclusions section.

2 Literature Review

The Clustering Problem. Our proposed methodology employs the R&F algo-
rithm, which commences by utilizing the Machine Learning algorithm Kmeans
[22] to cluster projects into states. This is followed by an application of the
Agglomerating Hierarchical algorithm [23] to aggregate the states into clusters.
Both algorithms address the clustering problem, which has deep roots in the
Machine Learning literature (for surveys see [31,35]). The primary objective of
clustering is to identify groups of objects, where objects within the same cluster
exhibit greater similarity to one another compared to those in different clusters,
based on specific similarity measures. In line with this definition, the solution
involves a function that maps each object to a cluster. Clustering techniques may
use various approaches, including the partitioning of networks [36] or graphs [13],
and hierarchical clustering [29], (refer to surveys such as [16,33]), each possess-
ing unique advantages and limitations [3]. These techniques find applications in
areas such as pattern recognition [16] and insight extraction [16], among others.

Symmetric Uncertainty. The intended application of the results (a model of
clusters of networks) is to predict a label, and the model’s performance depends
on how informative these networks are regarding the label value. To quantify
the information content of a network, we borrow a measure from the literature
of information theory [8,24]. Specifically, we compute the distribution of objects
among the states of the network. and the distribution of their choice; We then
use these distributions to compute Symmetric Uncertainty [10,27], a measure
of how much information is shared between two features relative to the entire
information content. The Symmetric Uncertainty of two random variables mea-
sures the degree to which knowing the value of either random variable reduces
uncertainty regarding the value of the other [26]. It is derived by normalizing the
information gain to the entropies of the random variables (see [30] for definitions
of these measures). Normalization induces values in the range [0,1] and assures
symmetry. A value of zero means that the two variables are independent. For
a formal definition of Symmetric Uncertainty, see [34]. In our analysis, a higher
(vs. lower) level of Symmetric Uncertainty represents that knowing the state of
an object is more (vs. less) informative for predicting its expected label.

Network of Networks. In the current article, we map each object to a cluster,
wherein we identify a network structure. Partitioning into clusters is designed to
achieve a set of network structures that are effective in predicting a predefined
label. Our ’clustering into networks’ approach draws parallels with techniques
found in the scientific literature concerning the development of ’networks of
networks,’ as evident from various reviews such as [14], and [15]. Our approach
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differs from the classical ’network of networks’ approach in two fundamental
aspects. The first is that we focus on identifying partitions into a set of state
models (vs. static sub-networks). This approach has been applied to diverse
areas including traffic [5], medicine [2], communication [6], and many others.
The second difference pertains to the model development methodology. Aligned
with the aforementioned motivation, rather than segmenting the objects into
parts and subdividing them, we segment the objects into states and subsequently
reassemble them into state models.

Allais Paradox. We demonstrate the applicability of our methodology to the
Allais paradox [1]. The paradox regards the violations of von Neumann & Morgen-
stern’s expected utility for the objective risk paradox. The paradox demonstrates
the ’certainty effect,’ whereby when a certain outcome is available, it enhances risk
aversion. The influence of personality and emotions is stronger when the required
judgment or decision is complex [11], and in such cases, people demonstrate irra-
tional choices. It is therefore interesting to identify patterns of how such bounded
rationality is associated with personality [20] and emotions [12].

Personality and Emotions. We conducted an experiment, gathering data
by requesting participants to describe their decisions in the extensively stud-
ied paradigm of the Allais Paradox. Participants also rated the intensity
of their anticipated emotions for each potential outcome, using six emotion
scales [28]: Anxiety-Confidence, Boredom-Fascination, Frustration-Euphoria,
Dispirited-Encouraged, Terror-Enchantment, and Humiliation-Pride. Finally,
participants completed two psychological questionnaires assessing their personal-
ity. The first questionnaire evaluated their personality in terms of the prominent
Big Five model [18]. This model is widely popular with cross-cultural applicabil-
ity [7], and is used extensively to simplify the description of individual personal-
ity. The second psychological test evaluated Locus of Control [32], which refers to
the degree to which people expect that an outcome is contingent on their behav-
ior or is simply unpredictable. The motivation for adding data about expected
emotions and personality is motivated by research showing that decisions are
influenced by the emotional state of the decision-maker [19], her personality
[9,17], or both [4].

3 Methods

We propose an algorithm that produces rigid clusters of flexible networks. The
algorithm is called ’Rigid & Flexible’ (R&F). It assumes the availability of
training data in which each data point includes ’stable parameters’ and ’flex-
ible parameters’ and uses Machine Learning techniques to identify a clustering
model that ensures that the objects in each cluster are not merely similar but
are grouped for the efficiency of modeling as a flexible model of states. Specifi-
cally, it uses Kmeans [21] to cluster participants into states, and a hierarchical
algorithm [23] to agglomerate the states into clusters.

We demonstrate the implementation of the R&F algorithm on the Allais
paradox [2], to show how producing rigid personality clusters of flexible emotion
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networks is efficient for predicting decision-makers’ tendency to demonstrate a
‘certainty effect’ in the Paradox scheme.

Fig. 1. Allais Experiment. In the first game, the choice was between a specific outcome
and a gamble, while in the second game, it was between two gambles with different
risks and outcomes.

3.1 Preliminary Definition of Demonstrating a Certainty Effect
(DCE)

We investigated the application of our methodology to the problem of predicting
’Who demonstrates a certainty effect?’ Our investigation starts with the defini-
tion of ’demonstrating a certainty effect’ in the context of the Allais paradox
experiment (see Fig. 1). The Allais paradox deals with the interesting obser-
vation that when presented with GAME1, most people choose GambleA, but
when presented with GAME2 most people choose GambleB. This phenomenon
is known as the ’certainty effect’ and it is paradoxical as it violates the indepen-
dence axiom.

The ’certainty effect’ induces the definition of a human property (that any
participant in the Allais paradox experiment may or may not have). The behavior
of participants in the Allais experiment is represented by the combination of their
two choices and thus classified into four types:

1. choosing 1A, and then 2A.
2. choosing 1A, and then 2B - ’demonstrating a certainty effect’.
3. choosing 1B, and then 2A.
4. choosing 1B, and then 2B.
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It is only the second type of behavior that is paradoxical for being inconsistent
with the expected utility theory (by which the participant should choose either
1A and 2A or 1B and 2B). This behavior is associated with the certainty effect
and leads to the following definition:

Definition
We say that a decision-maker is ’demonstrating a certainty effect’ and denote
it by DCE, if and only if he is ’choosing Gamble A in GAME1’ and ’choosing
Gamble B in GAME2.’

4 Algorithm

We present an algorithm that identifies ’type clusters,’ along with the ’network
of states’ in each cluster.

4.1 Experimentation

To collect data, we conducted an experiment through Prolific (www.prolific.
co), a crowd-working platform with high transparency and functionality, which
supports the recruitment and performance of online tasks and completion of
questionnaires [25]. We asked 200 participants (gender-biased) to report their
choice when facing the paradox (see Fig. 1), and their expected emotions in each
optional gamble.

Participants also completed two psychological questionnaires 2. The first
questionnaire evaluated their personality in terms of the prominent Big Five
model. The second psychological test evaluated their Locus of Control, which
refers to the degree to which people expect that an outcome of their behav-
ior is contingent on their behavior or is simply unpredictable. Each data point
represents a participant in the experiment and includes their:

1. 6 ‘stable parameters’: personality trait scores (locus of control, Big5: open-
ness, consensuses, extroversion, agreeability, stability.

2. 24 ‘flexible parameters’: 4 sets of the 6 reported levels of the
following emotions on a scale from 1 to 5: Anxiety-Confidence,
Boredom-Fascination, Frustration-Euphoria, Dispirited-Encouraged, Terror-
Enchantment, Humiliation-Pride. Each set refers to one of the 4 Allais Para-
dox gambles.

3. 1 ‘label’: a binary indicator of whether the participant is ‘demonstrating a
certainty effect’

www.prolific.co
www.prolific.co
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Algorithm 1. Rigid Flexible (R&F) Algorithm
Input: D D is a data-set with m data points.
Each point holds the values of nr rigid parameters, and n f flexible parameters.

Phase I (compute D∗): Identifying states. Building a clustering model (which serves
as a tool for the algorithm, rather than being the final outcome).

1. M = Kmeans(D)
M is a clustering model, built with Kmeans algorithm using data D.

2. Mnum

Mnum is the number of clusters in model M, each represents a ’state’.
3. G : D → [0, 1, · · · ,Mnum − 1]

G is a mapping function of each data point (in D) to state (cluster in model M).
4. D∗ = centroids(M)

D∗ is a data-set with the Mnum centroids (cluster centers) of M.

Phase II (compute N): Identifying the list of ’state networks’. Agglomerating states
into networks.

5. D∗

r = D∗

r [:, 0 : nr − 1]
D∗

r is a data-set with only the r ’rigid parameters’ of D∗.
6. N = Heirarchical(D∗

r )

N is a set of ’states networks’, built with Heirarchical algorithm using data D∗

r

Phase III (compute G∗∗): Identifying the clustering model of ’type clusters’.

7. Nnum is the number of clusters in model M
8. G∗ : D∗

→ [0, 1, · · · , Nnum − 1]
G∗ is the mapping function of each data point in D∗ (centroids of M ) to ’states
network’ (cluster in model N).

9. G∗∗ : D → [0, 1, · · · , Nnum − 1] = G∗

(G(p)), f orpinD
G∗∗ is the mapping function of each data point in D to ’states network’ (cluster in
model N).

Output: N and G∗∗

N is the set of ’networks of states’. Specifically for the ith network, the nodes are all
the states in D∗ that the mapping function G∗ assigns to the ith cluster. We emphasize
that a state is a centroid (center of a cluster) in model M and a node in model N.
G∗∗ assigns each point p to a ’type cluster’ which is one of the networks described
above.

4.2 Analysis

As a prior step, we standardized the data as a common practice for the follow-
ing analysis. Data analysis involves two phases: The first phase investigates the
application of the R&F algorithm to the personality-emotions data. For each
participant, the result is an assignment to a state model and to a state within
this model. The second phase examines the application of the results, utilizing
the set of state models to gain information on decisions. For each state model,
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we consider the participants assigned to the cluster of this model and compute 2
random variables. The first random variable represents the distribution among
the states, and the second random variable represents the distribution of the
decision property of either demonstrating a certainty effect or not. These two
random variables are used to compute Symmetric Uncertainty which measures
how much information is portaged between them. In our analysis, a higher (vs.
lower) level of Symmetric Uncertainty represents that knowing a participant’s
mapping onto a state (in the flexible emotion network) is more (vs. less) infor-
mative for knowing its label (demonstrating a certainty effect or not).

5 Results

The findings are divided into two sections, corresponding to the two phases of
the data analysis process discussed in Sect. 4.2.

5.1 Part I - R&F Algorithm Implementation

In this section, we present the results of the application of the R&F algorithm
(as referenced in Sect. 4) to the data-set gathered in our extended Allais Paradox
experiment (refer to Sect. 4.1). For each participant, the outcomes offer a dual
assignment: one to a cluster representing their personality type and the other to
a specific emotion state within the state model that is associated with the cluster.
The assignment to the Rigid Cluster is determined by the six rigid properties
representing the participant’s personality. On the other hand, the assignment to
the state is delineated by the 24 flexible attributes that capture the participant’s

Fig. 2. Rigid Clusters (of personality types): Application of the R&F algorithm to
the Allais experiment data identified 10 states and aggregated them into two clusters.
This figure demonstrates the average properties (personality traits) of the participants
assigned to each cluster (Cluster-A and Cluster-B).
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anticipated emotions. The analysis of this dual assignment provides insights
into the flexibility of emotions when facing a decision, and how the influence of
emotions is different for different personalities. The algorithm identifies 10 states
(State − 0, State − 1, to State − 9) and aggregates them into 2 Rigid Clusters:
Cluster − A and Cluster − B, each containing a Flexible Network of states. The
number of clusters was determined using the elbow curve and silhouette score.
Cluster- A comprises eight states, while Cluster- B consists of two states (State−2
and State−4). Refer to Fig. 2 for an illustration of participants’ personality traits
within each cluster. Additionally, Fig. 3 delves into Cluster-B, highlighting the
emotional characteristics across its states.

5.2 Part II - Model Application

This section illustrates the pragmatic implementation of the model generated in
the first part of the analysis. Following the Allais Paradox example that we used
in this article, we delve into the extent to which information is conveyed between
an individual’s emotional state and their propensity to exhibit the certainty
effect. We continue to focus on Cluster-B which was described in 3, and consider
participants who are assigned to Cluster-B. Table 1 demonstrates the counters
for their assignment to the states in Cluster-B and the property of their choice
(either DCE or not).

Table 1. States in Cluster-B and demonstrating a certainty Effect (DCE):
This table presents participants assigned to Cluster-B, displaying counters for their
assignment to Cluster-B states and the property of their choice (either demonstrating
a certainty Effect (DCE) or not demonstrating a certainty Effect (nonDCE)). Table
shows the difference between the distribution among DCE or nonDCE for participants
in State-2 vs. State-4. The difference indicates the potential information gained by
knowing participants’ emotion state for predicting their tendency to demonstrate a
certainty effect.

State-2 State-4

nonDCE 4 5
DCE 7 25

Symmetric Uncertainty and Evaluation of the Model
To evaluate the informativeness of an individual’s emotional state for predicting
their inclination to display a certainty effect, we define two random variables: The
first variable characterizes the distribution of participants across the states, and
the second variable represents the distribution of whether they demonstrate the
certainty effect or not. We utilized Python code from 2 to compute the Symmetric
Uncertainty for these two variables. The performance of our model is evaluated
against alternative data partitioning methods. Specifically, we assess the infor-
mativeness of an individual’s cluster assignment across three variations of the
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Fig. 3. Flexible States (of emotions) within Cluster-B: the R&F algorithm
implementation on the Allais experiment data, identified 10 states and aggregated
them into two clusters. This figure considers Cluster-B and demonstrates the aver-
age properties of the participants that are assigned to each of its states (State-2 and
State-4) in terms of their reported emotions.

Kmeans algorithm, which are based on rigid parameters (personality traits), flex-
ible parameters (reported emotions), or both. Additionally, we include a random
assignment of participants into two clusters. Similar to our model, we calcu-
late Symmetric Uncertainty for these benchmark models. 2 The results of this
analysis highlight the efficacy of our methodology in uncovering patterns rich
in informational value. Notably, our R&F algorithm efficiently identifies groups

Table 2. Symmetric Uncertainty: We evaluate our model’s performance against
various data partitioning techniques, including variations of the Kmeans algorithm
using rigid and flexible parameters, as well as random assignment. We quantify the
informativeness of an individual’s cluster assignment, calculating Symmetric Uncer-
tainty

R&F Kmeans(personality) Kmeans(emotions) Kmeans(all) random

Symmetric Uncertainty 0.063 0.014 0.016 0.07 0.02
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of individuals where knowledge of their emotional states proves exceptionally
informative.

6 Summary and Discussions

Our ‘Rigid & Flexible’ algorithm harnesses the power of both Machine Learning
and Network Analysis to carve out an effective model of flexible states within
rigid clusters. The Allais paradox serves as our experimental ground, highlighting
the efficacy of our approach for understanding how an individual’s characteris-
tics are associated with their inclination to exhibit the intriguing certainty effect.
Unlike traditional methods that mostly focus on either rigid or flexible character-
istics, we chose to decode the decision-making complexity by segmenting objects
into flexible states and then reconstructing them into rigid clusters. This shift in
perspective offers remarkable insights and links rigid personality traits to explain
the valuable predictive patterns of flexible emotional states. Looking beyond, our
methodology finds applications in diverse domains. Imagine classifying machines
into distinct functional categories, each operating within its unique state space.
This approach could also be used to categorize products based on satisfaction-
related or weather-related states, segment employees according to task-related
states, and more. By pioneering a clustering approach that truly captures shared
state spaces, we are opening doors to a new realm of predictive insights.
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Abstract. Social media platforms like Twitter revolutionized online
communication. But this new era of interaction has brought with it a
challenge—the widespread presence and influence of bot accounts. These
bots are rapidly evolving, making traditional detection methods increas-
ingly ineffective and allowing malicious actors to influence public dis-
course. While existing bot detection methods report high performance,
such results might actually be connected to shortcomings in dataset col-
lection and labeling practices, rather than reflecting their true ability
to detect bots, casting doubt on their true reliability. Our study intro-
duces higher-order behavior-based relations, including Co-Retweet, and
Co-Hashtag, derived from the TwiBot-22 dataset. By leveraging these
new relations in the BotRGCN architecture, we shift the emphasis from
isolated accounts to coordinated group dynamics, making it more chal-
lenging for bot developers to evade detection. This strategy not only
acknowledges the limitations and inherent biases presented in existing
bot detection techniques, but also presents a way to address them. Our
experiments support this approach as a promising way forward to tackle
challenges in bot detection.

Keywords: bot detection · graph neural network · relation
enhancement

1 Introduction

Social networks like Twitter — currently in the process of rebranding to X —
have become an integral part of our social lives. They revolutionized the way
we communicate online, shape public discourse, and provide access to the latest
news and opinions. One major issue within social networks is the prevalence of
bot accounts, which have been known to influence public opinion, especially in
critical areas like politics or financial markets [2]. It is notoriously hard to esti-
mate the true extent of the presense of bots on social media platforms, and plat-
forms may be incentivized to misrepresent them, as it could negatively impact
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1141, pp. 250–259, 2024.
https://doi.org/10.1007/978-3-031-53468-3_21
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revenue1. In 2017, Varol et al. estimated that bots may make up to 15% of all
Twitter accounts [13]. In another study, Cresci et al. analyzed Twitter dicussions
concerning the US stock market, and concluded that up to 71% of the engaged
users might be bots [4].

Furthermore, bots seem to become more sophisticated over time [2,6], a phe-
nomenon often referred to as bot evolution. This term describes the adversarial
cycle in which newer bots evade increasingly more sophisticated bot detection
measures, by becoming progressively indistinguishable from real humans. An
illustrative example of this effect are the results reported in early 2017 by Cresci
et al. [3]. In this experiment, the users were tasked to tell bots apart from legiti-
mate users, only being able to correctly identify newer bots with a 24% accuracy,
compared to 91% on older bots. Cresci [2] points out that bot detection methods
must be able to distinguish between genuine users and bots, who disguise as gen-
uine users through stolen profile pictures and neutral messages. This complexity
has been further intensified by the advancement of artificial intelligence, partic-
ularly generative AI, which makes it more difficult to separate individual bot
accounts from genuine users. The increasing difficulty in distinguishing between
human-written and AI-generated text underscores the complexity of the issue.
This is highlighted by OpenAI’s decision to disable their AI classifier as of July
2023 due to low rate of accuracy in distinguishing between AI-generated and
human-generated content.2

In response to these challenges with feature-based methods, graph-based
methods are emerging as an alternative, due to their proven effectiveness in rec-
ognizing coordinated, synchronized activities [6]. By leveraging these techniques
it is not only possible to study how users interact with content, but also how they
interact with other users. The rationale behind these approaches stems from the
assumption that human-guided and authentic activities typically display more
variability than their automated, inauthentic counterparts. This emphasizes the
need to move beyond analyzing individual accounts to focusing on patterns of
suspicious coordination within groups.

However, research by Elmas et al. [5] on retweet bots, utilizing data from
services previously purchased on black market sites, discovered discrepancies
in common assumptions about bot characteristics. This included, but was not
limited to, areas of volume of activity, diversity, following and followers and
temporality. They illustrated that bots may emerge from compromised accounts,
acting as bots only for certain period of time, and did not find a single case of one
bot following another one. Such insights should prompt researchers to critically
assess, whether the metrics used to evaluate the performance of bot detection
methods are in fact contributing to improving downstream applications. Hays et
al. [8] argued that this is currently not the case for Twitter bot detection tools,
attributing high performance to simplistic collection and labeling practices of the
datasets employed. Separately, Martini et al. [10] observed that different methods

1 https://storage.courtlistener.com/recap/gov.uscourts.cand.330648/gov.uscourts.
cand.330648.257.0.pdf.

2 https://openai.com/blog/new-ai-classifier-for-indicating-ai-written-text.

https://storage.courtlistener.com/recap/gov.uscourts.cand.330648/gov.uscourts.cand.330648.257.0.pdf
https://storage.courtlistener.com/recap/gov.uscourts.cand.330648/gov.uscourts.cand.330648.257.0.pdf
https://openai.com/blog/new-ai-classifier-for-indicating-ai-written-text
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yield remarkably different results in comparison. This implies that current tools
may not be ready for downstream usage and may result in the misclassification
of many users [11].

With the heightened difficulty in identifying individual bot accounts, we focus
our efforts on group activities and their coordinated behavior patterns. Our work
is in line with trends in recent research that focuses more on actions and behavior
of groups of accounts rather than on the classification of individual accounts [1].

We investigate the potential of new sets of relations that are challenging to
circumvent; any attempts to do so could drastically limit the functionality of
organized automated actions by restricting their common operational patterns.
The goal of our research is to determine the feasibility of utilizing coordination
patterns for the purpose of bot detection, with due consideration to both the
inherent complexities and data restrictions. By recognizing these challenges, we
contrast first-order behavior-based relations, such as retweets (a user sharing a
tweet), with higher-order relations like co-retweet (two users retweet the same
tweet) and co-hashtag (two users tweet the same hashtag more than a certain
number of times). The former highlights direct user behavior, while the latter
reveals shared interests or subjects, uncovering subtler collective actions. This
approach is set against the current conventional method of utilizing follow rela-
tions, which are more static. Utilizing the same dataset and graph neural network
architecture across our experiments, we conduct a comparative study between
the conventional follow relations and those centered around behavioral patterns
to assess their impact on bot detection, avoiding the introduction of new uncer-
tainties through algorithmic changes or dataset variations. Though our results
did not surpass the conventional approach, they remain competitive in terms of
accuracy and F1-score, demonstrating the viability of this approach. To the best
of our knowledge, this is the first work that integrates higher-order relations in
a behavior-based approach for bot detection.

2 Methodology

2.1 Dataset

We utilize the TwiBot-22 dataset for our experiments. Compared to previous
datasets, TwiBot-22 includes a broader and more diverse range of relations.
For an in-depth exploration of the dataset’s conceptual framework, we refer
the readers to the work of Feng at al. [6] that introduced TwiBot-22. Previous
bot detection methods were constrained to rely only on follower/following
relationships between user entities and an implicit relation between users and
their tweets. The TwiBot-22 dataset encompasses extensive 14 different kinds of
relations. In this work we leverage the follower (user a is followed by user b),
following (user a follows user b), retweet (tweet a retweets tweet b), post
(user a posts tweet b), and discuss (tweet a discusses hashtag b) relations.
We believe that this range of relations offers a lot of potential for future devel-
opment of more sophisticated and accurate bot detection methods. The acces-
sibility of these diverse relations not only enhances our analytical capabilities
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but also allows us to reveal hidden connections between users, cross-referencing
entities in ways previously unattainable. We refer the reader to Table 1 for an
overview of TwiBot-22, comprising both statistics as well as an exploration of
some of the characteristics that differentiate humans from bots. The left side of
the table provides a quantitative overview of the dataset. On the right side, a
more nuanced analysis of the variances in human and bot behavior. Key con-
trasts include variations in tweet and following/follower count3 as well as ratios
like hashtag-to-tweet, revealing discrepancies between the two types of accounts.
This comparative analysis offers valuable insight that guides the process of deriv-
ing new relations. We explore these aspects further and delve into more detail
in subsequent sections, specifically in Subsect. 2.3.

Table 1. Statistics (left) and in-depth analysis (right) of human and bot characteristics
in TwiBot-22. ∗users with at least 1 tweet. † with at least 1 follower / following.

Measurement Human Bot Total

Users (all) 860,057 139,943 1,000,000

Users (min. 1 tweet) 818,613 115,259 933,872

Tweet 81,250,102 6,967,355 88,217,457

Following 1,038,302 78,353 1,116,655

Followers 2,383,574 243,405 2,626,979

Retweet 1,482,911 97,732 1,580,643

Hashtags 56,353,776 9,646,857 66,000,633

Measurement Human Bot Diff.

Mean tweet count∗ 99.25 60.45 – 48.59%

Median tweet count∗ 56.00 40.00 – 33.33%

Mean following count† 200.22 170.21 – 16.20%

Mean follower count† 124.59 59.40 – 70.86%

Mean retweet count∗ 200.39 104.98 – 62.49%

Ratio: tweet / retweet 54.79 71.29 +26.17%

Ratio: hashtag / tweet 0.69 1.38 +66.66%

While TwiBot-22 is believed to contain high-quality labels, it is important
to recognize that we cannot entirely dismiss the possibility of underlying biases
towards older notions of bot characteristics. A potential bias could be introduced
by the use of non-transparent hand-crafted labeling functions and dependence
on existing bot detection methods. These methods are often trained on follow
relationships, an assumption we challenged in the introduction. This reliance
on possibly flawed assumptions may further deviate bot detection in the wrong
direction. In addition, recent evidence indicates that classifiers performing excep-
tionally within one dataset may significantly underperform when applied to oth-
ers, even when employing more sophisticated models [8]. This may be attributed
to the reliance on inherently unstable features present in the initial training
data. Therefore, although TwiBot-22’s expert-guide process signals a marked
improvement, the broader methodology might compromise the dataset’s overall
effectiveness. Nevertheless, we assume the labels in the data to be the ground
truth. This assumption is made due to the lack of better annotation methods
and inherent difficulty of this problem.

3 Somewhat counter-intuitively, the total following and follower counts do not match.
This is due to specifics of data collection, see [6] for insights into the process.
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2.2 BotRGCN

BotRGCN (Bot detection with Relational Graph Convolutional Networks) [7] is a
graph-based method for Twitter bot detection. The model first creates a multi-
modal encoding by jointly encoding multiple numerical and categorical user
properties, as well as encoding user tweets and descriptions using a pre-trained
RoBERTa model. These encodings serve to represent individual users, captur-
ing diverse aspects of their behavior and characteristics. A heterogeneous graph
is constructed by defining multiple relational neighborhoods for each Twitter
user. BotRGCN applies relational graph convolutional networks (RGCN), which
support a variable number of relations, allowing the model to capture complex
patterns of interactions between users. We chose to work with BotRGCN due to
its modular and well-designed architecture that allows for easy modification and
experimentation. The model was used with the initialization of hyperparameters
as found in the original implementation, available at the corresponding Github
repository.4 Adjustments were made to accommodate the specific number of cat-
egorical and numerical properties in TwiBot-22. The architecture and specific
components of BotRGCN are further detailed in Table 2.

Table 2. Architecture of the BotRGCN model. Variables: D: embedding size, Ds: descrip-
tion size, Ts: tweet size, Ns: numerical properties size, Cs: categorical properties size.
The input layers’ outputs are concatenated before processing through the hidden layers.
A dropout regularization technique is applied between the RGCN layers. The model
is used with the CrossEntropyLoss, which implicitly includes a Softmax activation on
the output.

BotRGCN Architecture

Input Layers Description Embedding Linear (RDs× D
4 ) + LeakyReLU

Tweet Embedding Linear (RTs× D
4 ) + LeakyReLU

Numerical Properties Embedding Linear (RNs× D
4 ) + LeakyReLU

Categorical Properties Embedding Linear (RCs× D
4 ) + LeakyReLU

Hidden Layers Input Transformation Linear (RD×D) + LeakyReLU

RGCN 1st Layer RGCN Convolution (RD×D)

RGCN 2nd Layer RGCN Convolution (RD×D)

Hidden Transformation Linear (RD×D)+ LeakyReLU

Output Layer Final Output Linear (RD×2)

2.3 Derived Relations

Elmas et al. [5] argue that a significant challenge in bot detection is the non-
intuitive nature of bot characteristics. For instance, their analysis revealed that
4 https://github.com/BunsenFeng/BotRGCN.

https://github.com/BunsenFeng/BotRGCN
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the majority of bot accounts in their dataset had more followers than accounts
they were following, and no two bots followed each other.

Moreover, the authors also observed different retweet behaviour for bots, both
temporal as well as quantitative. This insight, coupled with the observation of
bot evolution, led us to investigate the potential offered by new sets of relations.

Inspired by work from Vargas et al. [12], which builds upon coordination
patterns from [9] we introduce the following relations:

– Retweet: a user retweeted the tweet of another user.
– Co-Retweet: two users retweeted the same tweet.
– Co-Hashtag: two users tweet the same hashtag above a certain threshold.

These relations are behavior-based, which makes them harder to manipulate
than, e.g., follower and following relations. We believe that this approach
has the potential to reveal additional patterns of coordinated behavior among
users. However, none of these are readily usable for us out-of-the-box and require
some data transformation steps.

Retweet: Our analysis showed that bots tend to retweet disproportionately.
In order to take advantage of this, we first need to transform the existing
retweet relation from tweet→tweet to user→user. By cross-referencing the
given retweet relation with the post relation (user→tweet), we are able to
associate a user for each tweet and subsequently derive the retweet relation
in the form of user→user. This process is illustrated in Fig. 1.

Co-Retweet: We introduce this relation to emphasize instances where two
users retweeted the same tweet. To achieve this, we map a user to each tweet
that retweets another tweet, similar to the process laid out in retweet above.
Then, we group these users by their retweeted target tweet. From these groups,
we create all possible combinations of users (excluding pairs with the same user
twice) and export them as our new co-retweet relation.

Co-Hashtag: Using a similar grouping and pairing approach as with the Co-
Retweet relation, we focus on the discuss relation (tweet→hashtag). Prior to
the pairing step, we filter out hashtags with an unusually large number of users to
decrease computational demands and filter out those hashtags that do not offer
any reasonable insight. After this step, we create pairs of users who tweeted
the same hashtag a minimum of n times. The choice of n can be regarded as
a hyperparameter itself and is detailed further, in the subsequent experiments
section and Table 3.

3 Experiments

To determine the feasibility of utilizing coordination patterns for bot detection
we conducted sensitivity and ablation studies. We kept hyperparameters con-
stant across all experiments. The model is initialized with the same parameters
as mentioned in Subsect. 2.2. We further fixed the dropout rate at 0.3, the learn-
ing rate at 0.001, and weight decay at 0.005. Furthermore, we standardized the
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Fig. 1. Visualization of the process of deriving the new Co-Hashtag (co hashtag)
relation. Initially, the edge file is split into individual relations (not depicted). We
then join the post and discuss relation to associate user-ids with each hashtag in
the discuss table. In this example we assume a threshold amount value of 100, below
which co hashtag occurrences are discarded. We then create pairs of users with the
respective count of how often they share a hashtag. Lastly, we keep only those with at
least n shared hashtags and discard the amount column to get the expected format.

number of training epochs to 200 across all experimental runs. We reused the
train/test split that comes with TwiBot-22, for comparability with prior work.

First, we defined a threshold for the Co-Hashtag relation. The threshold
was set to three standard deviations above the mean, with values provided in
Table 3. Since the differences between the thresholds were minor, we chose the
one that achieved the highest F1-score, indicating the most reliable predictions.
Additional experimentation with the sets and quantities of relations can be ref-
erenced in Table 4. Notably, the follower relation yielded the best results, as
opposed to the common follower+following combination. It matches the
intuition that this relation can be a strong indicator. Our main interest, however,
was on the newly derived behavioral relations, with follow relationships serving
as a baseline for comparison.
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Table 3. Sensitivity study of the co-hashtag edge creation threshold. The Amount
column corresponds to the parameter n, representing the minimum number of times
pairs of users tweeted the same hashtag. We run each experiment five times and report
the average value as well as the standard deviation in parentheses.

Threshold Amount Accuracy F1-score

mean + 1 SD 467 76.02 (0.65) 42.64 (3.53)

mean + 2 SD 907 75.59 (0.23) 41.03 (1.85)

mean + 3 SD 1347 75.91 (0.39) 43.06 (2.15)

mean + 4 SD 1787 75.36 (0.60) 39.76 (3.52)

mean + 5 SD 2226 75.61 (0.45) 41.07 (2.19)

Our findings necessitate contextual interpretation, contrasting our approach
with the conventional use of follower+following relations. Instead, we
leverage the higher-order co-retweeted and co-hashtag relations to cap-
ture more complex user behaviors like mutual affinity for retweeting particular
content or using the same hashtags above a certain level. However, we do not
dismiss the Retweet relation and still consider it valuable for future explo-
ration. Though we did not outperform the conventional approach, our results
are closely competitive, with differences of less than 1.22 percent points lower in
accuracy and 3.78 percent points in F1-score.

Table 4. Sensitivity analysis of BotRGCN to different edge types in the graph. We
run each experiment five times and report the average value as well as the standard
deviation in parentheses.

Category Sensitivity Settings Accuracy F1-score

=single relation type follower 77.63 (0.47) 50.70 (2.03)

following 75.38 (0.59) 37.19 (3.76)

retweeted 75.78 (0.69) 41.75 (4.20)

co-retweeted 75.56 (0.80) 40.43 (4.63)

co-hashtag 75.91 (0.39) 43.06 (2.15)

=two relation types follower+following 76.99 (0.43) 46.06 (2.31)

retweeted+co-retweeted 75.43 (0.34) 39.70 (2.23)

co-retweeted+co-hashtag 75.77 (0.13) 42.28 (1.08)

=three relation types following+follower+retweeted 77.55 (0.57) 48.92 (3.24)

retweeted+co-retweeted+co-hashtag 75.81 (0.52) 41.51 (2.42)

five relation types all of the above 77.11 (0.32) 46.72 (1.63)

This gap, although initially discouraging, reveals upon closer examination
the capability to make predictions, avoiding biases that might have character-
ized previous approaches. Despite the notable perfomance of the single follower
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relation, there’s evident improvement when using three or five relations instead
of two. Our concerns regarding these biases are outlined in Subsect. 2.1 dedicated
to the dataset. This highlights the potential of a multi-rational approach, but it is
essential to note that inherent characteristics of the used dataset might influence
these observations. Such results are particularly significant, as bot developers
may find it challenging to avoid behavior-based detection without substantially
constraining their capabilities. Building on the findings from Feng et al. [7],
where it was confirmed that the optimal performance is achieved with 2 layers
of RGCN, we have carried out an ablation study of BotRGCN, utilizing the same
layer configuration. Our experiments, as detailed in Table 5, prove that the inte-
gration of all available modalities remains essential for robust bot detectors. The
challenge requires a multi-faceted approach, integrating various modalities. This
approach must then model the aggregation of these signals, aiming to ensure a
clear distinction between accounts involved in automated coordinated efforts and
those demonstrating authentic behavior, which may stem from social initiatives.

Table 5. Ablation Study of BotRGCN under different relation types using 2 layers of
RGCN. Abbreviations used: T = User Tweets; N = User Numerical Properties; C = User
Categorical Properties; D = User Descriptions. We run each experiment five times and
report the average value as well as the standard deviation in parentheses.

follower + following co-retweeted + co-hashtag

Ablation Setting Accuracy F1-score Accuracy F1-score

RGCN + T 70.51 (0.01) 1.34 (0.23) 70.54 (0.02) 0.89 (0.34)

RGCN + T, N 70.83 (0.18) 7.05 (2.69) 70.81 (0.28) 6.72 (3.90)

RGCN + T, N, C 73.07 (0.34) 25.67 (3.18) 72.70 (0.34) 20.79 (3.02)

RGCN + T,N,C,D (BotRGCN) 76.99 (0.43) 46.06 (2.31) 75.77 (0.13) 42.28 (1.08)

4 Conclusion

The complexity of bots continues to evolve, making the task of bot detection
a critical challenge. Our investigation into alternative higher-order, behavioral-
based relations emphasizes a different approach in detecting automated coordi-
nated group activities. Although not surpassing the conventional approach, the
competitiveness of our results suggest a reliable method without falling into sus-
pected biases of traditional techniques. Bot developers seeking to avoid detection
may find it increasingly difficult without limiting their capacities. TwiBot-22,
the dataset used in this study, has been instrumental in establishing these new
relations. Yet, as we look into further research, the incorporation of temporal
patterns into these newly established relations seems promising. This direction,
however, necessitates datasets that support this, a limitation we currently face.
We are optimistic that pursuits into this direction can foster the development of
more robust and reliable detection methods.
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Abstract. Network completion is more challenging than link predic-
tion, as it aims to infer both missing links and nodes. Although vari-
ous methods exist for this problem, few utilize structural information-
specifically, the similarity of local connection patterns. In this study, we
introduce a model called C-GIN, which captures local structural pat-
terns in the observed portions of a network using a Graph Auto-Encoder
equipped with a Graph Isomorphism Network. This model generalizes
these patterns to complete the entire graph. Experimental results on
both synthetic and real-world networks across diverse domains indicate
that C-GIN not only requires less information but also outperforms base-
line prediction models in most cases. Additionally, we propose a metric
known as “Reachable Clustering Coefficient (RCC)” based on network
structure. Experiments reveal that C-GIN performs better on networks
with higher Reachable CC values.

Keywords: Network Completion · Graph Auto-Encoder · Structural
Patterns

1 Introduction

Networks form the underlying structures of numerous systems and hold signifi-
cant implications in both scientific research and everyday life [1,2]. One approach
to understanding these complex systems involves studying the properties of the
networks that underlie them. However, obtaining a complete network structure
is often infeasible due to factors such as measurement errors, privacy concerns,
and other limitations [3–5]. For instance, while online social network data can
be readily collected, there are ’offline’ nodes that may exert significant influ-
ence at certain times but remain difficult to capture due to the unavailability
of offline data. Consequently, there is a pressing need for methodologies capa-
ble of inferring missing information in incomplete networks. The methodologies
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developed for network completion could thus have wide-ranging applications,
including identifying hidden nodes in networks [6], uncovering the property of
the whole network from partially observed structure [7] and discovering unob-
served variables [8] in causal inference [9].

While link prediction [10–12] has been extensively studied in the field of
network structural inference and serves as a basis for various downstream appli-
cations such as node classification [13–15] and graph dynamics learning [16,17],
it generally operates under the assumption that all nodes are observable, with
only some edges missing. In network completion tasks, the objective is not only
to infer missing links but also to identify missing nodes. This makes the task con-
siderably more challenging than link prediction, particularly due to the presence
of ’naked nodes’-nodes that are isolated from the rest of the network because
they lack any connecting links. Therefore, some methods commonly used in link
prediction tasks, such as those based on common neighbors [18,19] or mutual
information [20] cannot be directly applied in network completion tasks.

Previous works have used diverse strategies for network completion. For
instance, G-GCN [21] focuses on network growth, which isn’t applicable to all
networks, such as more static gene regulatory networks. Wei’s model [22] relies
on node attributes, limiting its use in scenarios without such data. Other high-
accuracy methods like Gumbel Graph Network [8] and DeepNC [23] require
extensive time-series data or similar graph sets, making them impractical for
many real-world applications. KronEM [24], to the best of our knowledge, is the
sole model specifically designed for network completion without extra node data.
It leverages self-similarity in many networks to infer a kernel from observed sec-
tions. However, self-similarity is not universal, and KronEM’s limited parameters
may not capture the complexity of diverse networks.

We introduce the Completion Graph Isomorphism Network (C-GIN) to solve
network completion without extra node data. C-GIN uses a Graph Auto-Encoder
to learn and apply local connection patterns from the known part of the adja-
cency matrix.

C-GIN has distinct advantages over existing models. Unlike G-GCN [21] and
GGN [8], which require node features and time-series data, C-GIN only needs
the visible adjacency matrix, widening its applicability. Unlike DeepNC [23],
which requires a dataset of similar, smaller networks, C-GIN exploits the local
structure of a single, larger network, making it ideal for incomplete networks.
Compared to KronEM [24], it captures complex local structures more effectively
due to the flexibility of graph neural networks. Tests confirm C-GIN outperforms
current models in network completion.

2 Results

2.1 The Network Completion Problem

Problem Definition. Suppose we have a undirected network G(V,E) with
an adjacency matrix A. This network cannot be fully observed, as information
about some nodes and their corresponding edges is missing. Instead, we can
only observe a sub-graph Go of G, which contains some observed vertices Vo and



262 Z. Zhang et al.

edges Eo between them. Assume we know the number of missing nodes Nm. Our
objective is to infer the missing part of the network, denoted as Gm = G − Go,
which includes the missing nodes Vm and the missing edges Em. We can reorder
the nodes such that the observable nodes are placed at the beginning of the
sequence. This allows us to divide the adjacency matrix into two sub-matrices:
one for the observable nodes (Ao) and another for the connections related to
unobserved nodes (Am). Thus, the task is to reconstruct the whole adjacency
matrix A = Ao + Am based on Ao, where Am is an inverted L-shaped matrix
describing the connections between Vo and Vm, as well as between Vm themselves,
as shown in Fig. 1.

Fig. 1. The illustration of the network completion problem. A network com-
pletion problem is to infer the potential nodes and links according to the observed
sub-graph. Left: suppose we can re-arrange all vertices such that the observed nodes
come first. Then the entire adjacency matrix A contains two areas: the squared sub-
matrix of the observed part Ao and the inverted L-shaped area Am with the blank
entries around Ao. Right: the complete adjacency matrix Â = Ao + Âm, where Âm is
inferred by the network completion algorithm.

Overview of the C-GIN Framework. The C-GIN model assumes that a net-
work’s different areas share common connection patterns. Using a Graph Auto-
Encoder, C-GIN captures these patterns from the partially observed subgraph to
fill in the missing network portions. The Graph Neural Network (GNN) within
the Auto-Encoder’s Encoder learns the formation of local structures around
nodes in two steps: first, by generating initial node embeddings from a linear
layer, and then by obtaining final embeddings through message-passing layers.
We selected the Graph Isomorphism Network (GIN) [25] for its superior expres-
sive power among various GNN models like GCN [13], GAT [26], and Graph-
SAGE [27].

To extend learned patterns to the unobserved area, the Graph Auto-Encoder
encodes the network structures into node embeddings. The observed part are
used to compute the loss function, thereby compelling the Graph Neural Network
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to assign appropriate embedding vectors to unobserved nodes, ensuring that the
represented network structure exhibits patterns consistent with the observed
parts. Figure 2 outlines our model’s workflow.

Fig. 2. The Overview of our C-GIN model: Our model employs GIN to learn the
local connection patterns of the network’s known portion and iteratively complete the
missing elements. Each iteration comprises an encoding stage and a decoding stage.
During the encoding stage, initial node features represented by one-hot vectors, along
with the inferred complete network from the previous iteration, are fed into GIN.
This results in updated node feature vectors as output. In the decoding stage, these
updated feature vectors are used to generate a matrix that represents the probabilities
of connections between each node pair. The observable portion of this probability
matrix is utilized to calculate the loss. The remainder of the matrix is rescaled by
multiplying it with a scaling factor γ. Finally, the adjacency matrix for the next epoch
is sampled according to these adjusted probabilities.

Next, we delve into the specific execution flow of the algorithm. According
to the problem definition, we have partial information about how the observed
nodes are connected, represented by Ao, which forms the upper-left quadrant
of the adjacency matrix. We also assume knowledge of the number of missing
nodes, Nm. In the initial stage, we populate the adjacency matrix of the unknown
part with zeros to obtain an N × N matrix, denoted as Â . We use one-hot
vectors as the initial features, X = I, for all nodes, allowing the neural network’s
linear layers to independently determine each node’s embedding vector. This
initialized matrix Â and feature vector X are then fed into the GIN encoder,
which is known to excel in learning local connection patterns.” [25], to update
the node feature vector H. The initial vector X = I remains unchanged during
the training process. The GIN gradually learns how to map from one-hot vectors
to appropriate node embedding vectors to represent the network structure. This
operation can be expressed by the Eq. 1:

H = GINθ(Â,X). (1)
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In this context, θ denotes the parameters of the GIN encoder. Once we have
the encoded node features, they are then fed into the decoder as described by
Eq. 2. This results in a decoded probability matrix PN×N . Each element Pi,j

represents the probability that nodes vi and vj are connected.

Pi,j =
1

1 + exp(−〈Hi,Hj〉) . (2)

Note that the probability matrix P is divided into two sections. The upper-
left subsection, a No × No matrix, represents the connection probabilities for
the observed part of the network. This subsection is used to calculate the loss
function. The loss function, in turn, helps to optimize the parameters θ within
the GIN encoder. The specific definition of the loss function is provided in Eq. 3.

L(θ) = −
No−2∑

i=0

No∑

j=i+1

Ai,j log(Pi,j) + (1 − Ai,j) log(1 − Pi,j). (3)

To ensure edge density consistency between the observed and unobserved
network parts, we introduce another training stage. In this stage, probabilities
in the “inverted L-shaped region” of matrix P are scaled using a factor γ. This
adjustment is crucial for controlling sparsity in the predicted adjacency matrix,
as high edge density can impact the graph auto-encoder’s performance. The
scaling factor γ is calculated using Eq. 4 and helps align edge densities across
the network.

γ =
N2 − N2

o

N2
o

×
∑

i<No,j<No
Ai,j∑

i<N,j<N Pi,j − ∑
i<No,j<No

Pi,j
. (4)

2.2 Experiments

Baselines Models. The baselines were chosen from three different types of
network completion algorithms for comparison:

Preferential Attachment and Random-De: Preferential Attachment (PA) serves
as a conventional baseline in the link prediction task. Intuitively, in this model
the unobserved nodes are more inclined to link with observed nodes that have
a greater number of neighbors. Random-De employs the same framework as our
proposed approach but it use randomly generated node embeddings of the same
dimensions as those input into the decoder. Thus serves essentially as a random
guess baseline.

G-GCN: As outlined in the Introduction, G-GCN tackles the network com-
pletion problem by considering network growth. The original G-GCN model
requires node feature information for its input. However, this does not align with
our problem definition. Therefore, we modify the input to use one-hot vectors,
making it consistent with our own model’s input. Experimental results indicate
that even without node feature information, the modified G-GCN model remains
competitive in certain tasks.
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KronEM: KronEM is an algorithm for network completion that leverages the
network’s self-similarity property. It employs the Kronecker graph model to char-
acterize the network and estimates its missing parts. The optimization of the
Kronecker model parameters is carried out using the Expectation Maximiza-
tion (EM) framework and a scalable Metropolized Gibbs sampling approach.
It’s worth noting that we do not evaluate this approach on real-world networks.
This is because the model requires that the number of nodes in the complete
graph be a power of the size of the Kronecker product kernel, thereby limiting
its applicability.

2.3 Metrics

We evaluate the effectiveness of our model and the baseline methods in net-
work completion tasks by treating the completion of the inverted L-shaped
region of the adjacency matrix as a binary classification problem. Performance
is assessed using the area under the Receiver Operating Characteristic (ROC)
curve (AUC). To ensure a balanced evaluation, we follow previous literature [21]
in randomly sampling an equal number of positive and negative edges. Specifi-
cally, we introduce two sets of these metrics-namely, AUCObserved−Unobserved and
AUCUnobserved−Unobserved to rigorously evaluate the accuracy of inferred connec-
tions between both observed and unobserved nodes, and exclusively unobserved
nodes, respectively.

To calculate AUC, it is necessary to compare the predicted connection prob-
ability matrix with a ground-truth adjacency matrix. However, a direct com-
parison is not feasible due to the alignment requirement for the inferred unob-
served nodes with the actual ones. Specifically, a permutation matrix is needed to
reorder the rows and columns corresponding to the unobserved nodes in the prob-
ability matrix generated by the network completion algorithm. This reordering
aims to make the rearranged probability matrix resemble the ground-truth adja-
cency matrix as closely as possible. Considering there are Nm! possible permuta-
tions, we opt for the best-performing permutation in the performance comparison
for fairness. This problem is known as sub-graph matching [28]. We employ the
Seeded Graph Matching [29] algorithm to address this challenge. According to
existing literature, this algorithm achieves a matching accuracy exceeding 90%
when the similarity between the two matrices in question is greater than 90%
and the number of nodes to be matched exceeds 15. Details can be referred
to [29].

Note that we did not use the Seeded Graph Matching method to reorder the
probability matrix returned by KronEM, because this algorithm cannot only
output the learned matrix of Am but also the node alignment.

Performances on Completing Synthetic Graphs. In this section we test
the performances on completing the synthetic networks which includes 4 types
of networks generated by well-known models, namely, Barabási-Albert(BA)
model, Watts-Strogatz(WS) model, Forest Fire(FF) model, and Kronecker
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graphs(Kron) model, respectively. In each network, the number of nodes is 1,024
to satisfy the requirement of KronEM algorithm. In BA network, each new node
is added to the network with two connections. In WS network, each node has
four neighbors, and the reconnection probability is 0.2. In FF network the prob-
ability of both forward and backword of an edge is 0.33. In Kron network, just
like the KronEM paper [24], we use the [[0.9, 0.7], [, 0.5, 0.2]] as the Kronecker
Kernel to generate the network. We randomly choose 25% of nodes and the rele-
vant edges to remove and we ran five repeated experiments to get the mean and
the standard deviation to fill the table. Results are shown in Table 1.

Table 1. AUC on unobserved part of synthetic networks: In this table we show
the experimental results of different methods on the synthetic networks. Listed in the
table is the overall AUC value of the unobserved region of the adjacency matrix.

Networks PA Random-De KronEM G-GCN C-GIN

BA 58.67 ± 1.5 59.33± 1.5 64.1± 0.6 74.67 ± 2.1 76.49 ± 1.8

WS 35.45 ± 0.5 35.91± 0.4 80.42 ± 1.2 81.20± 0.6 85.22 ± 0.3

Kron 71.60± 0.6 71.13± 1.1 83.9 ± 0.4 68.38 ± 1.1 71.55± 1.4

FF 79.33± 0.9 74.16± 0.7 62.1 ± 0.4 82.75± 0.7 80.17± 1.8

In Table 1, it’s evident that C-GIN model outperforms comparative models
in BA and WS cases. Specifically, the KronEM model excels only in networks
generated by the Kron network generator, which feature self-similar properties.
The G-GCN model achieves the highest scores on FF networks generated by
the forest fire model. Among these two datasets, the C-GIN model performs
second best. Interestingly, despite being generated by the preferential attach-
ment mechanism, the BA network is not well-complemented by this method.
This discrepancy arises because our experiments involve randomly deleting a
subset of nodes, rather than specifically eliminating the most recently added
ones. As a result, some high-degree nodes may be removed, which in turn alters
the connections to their smaller-degree counterparts.

Performances on Completing Empirical Graphs. In this section we test
the performances of C-GIN model on real-world networks. Different types of
real-world networks are selected, The basic information of them is listed below,
and their structural statistics are shown in Table 2. In all networks, we randomly
removed 20% of the nodes and the corresponding edges. Results are shown in
Table 3.

– Bio S and Bio D are two undirected and weighted networks of gene inter-
actions extracted from C. elegans. The nodes are genes and the edges are
Inferred links by genetic interactions. In which Bio S is more sparse and
Bio D is more dense. To create an unweighted network, we set all the weights
greater than zero to be one. Both of them were collected from Network Repos-
itory(NR) [30]
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– Co-Author network represents the co-authorship of researchers in network
theory & experiments, where a node is a researcher and an edge represents the
co-author relationship. If two authors both contribute to at least one paper,
a connection between them will be added in the network. The above data is
collected from [31].

– Cora is a dataset composed of machine learning papers. It is one of the most
popular data sets for graph deep learning in recent years, each paper in this
dataset has at least one citation. Cora was originally a directed graph. As
a conventional operation [13], we remove all link directions to make it an
undirected graph.

Table 2. The statistics of different empirical networks: In this table we show
the statistical properties of the networks, they are the number of nodes, the number of
edges, the density and the clustering coefficient.

Network Nodes Edges Density Clustering Coefficient

Bio S 924 3239 0.0076 0.6051

Bio D 636 3959 0.0196 0.4712

Cora 2708 5278 0.0014 0.2406

Co-Author 379 914 0.0128 0.7412

Table 3. AUC on unobserved part of real-world networks: In this table we
show the experiment result of different methods on real-world networks. In most cases
G-GIN model outperform other competetors.

Networks AUC Models

PA G-GCN C-GIN Random-De

Bio S All 72.89 ± 1.3 83.23± 1.8 88.71± 2.1 70.22± 0.7

Observed-Unobserved 73.5± 1.4 88.83± 1.7 90.16± 1.7 72.41± 0.9

Unobserved-Unobserved - 57.19± 3.3 74.05± 3.4 54.34± 2.2

Bio D All 75.18 ± 0.9 81.35± 1.0 85.79± 4.0 62.43± 1.6

Observed-Unobserved 77.01± 0.8 85.86± 1.0 88.48± 2.6 63.99± 1.8

Unobserved-Unobserved - 57.07± 1.1 66.71± 11.2 54.66± 2.7

Cora All 60.01 ± 0.9 86.02± 0.9 87.37± 0.3 78.28± 1.4

Observed-Unobserved 60.13 ± 0.6 92.07± 0.9 89.10± 0.8 81.28± 1.1

Unobserved-Unobserved - 55.58± 2.3 74.70± 2.2 53.78± 2.1

Co-Author All 58.88 ± 2.7 85.82± 1.7 91.61± 1.6 73.93± 1.5

Observed Uunobserved 59.07 ± 2.2 97.17± 1.1 93.78± 1.8 76.27± 1.6

Unobserved-Unobserved - 57.36± 7.0 75.29± 7.6 60.66± 4.1

In Table 1, it is evident that the C-GIN model outperforms all compet-
ing models in completing the ’unobserved-unobserved’ section of the adjacency
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matrix. This indicates that C-GIN model excels at modeling connections between
unobserved nodes. In the ’observed-unobserved’ section, C-GIN model also
attained the best results for two biological networks. However, G-GCN achieved
superior performance on the the citation network(Cora). This discrepancy may
stem from the inherent aptitude of G-GCN for modeling growing networks such
as citation network. To further investigate which types of networks C-GIN model
is most effective for, we will examine the relationship between model performance
and structural features in the following section.

Performance Vs. Reachable Clustering Coefficient. In our model’s encod-
ing stage, we employ the GIN model to aggregate neighbor information through
message passing, allowing for superior performance on networks with intricate
local connection patterns. We illustrate this by completing a small-world network
and examining how the reconnecting probability p, p influences model perfor-
mance and CC. When p = 0, the network has high CC; at p = 1, it has low CC.
Crucially, variations in p only affect local connection patterns, not network den-
sity or degree distribution. We measure performance using the AUC difference
between the C-GIN and a random baseline model.

Figure 3’s left and middle panel show a decline in the AUC difference as p
increases, reaching near-zero when p approaches 1, indicating that the C-GIN
model is not better than a random guess in this scenario. Similarly, CC also
decreases as p increases, confirming our model excels in networks with higher
CCs. This suggests our model captures the local connectivity pattern effectively,
outperforming random guesses for networks with higher CC.

Fig. 3. C-GIN Performance on W-S and Empirical Networks: The left 2 panel
are the experiments on W-S network. The x-axis is the reconnecting probability p of the
WS network. This figure has two y-axes, one is CC and the other is the AUC difference,
in which we replace the output of the GIN encoder with the randomly generated matrix
that has the same shape. The right panel is the model relation of model performance
and Reachable CC on several empirical networks.

While the Clustering Coefficient (CC) offers some insight into local connec-
tivity, it falls short in capturing more complex structures. For instance, in a
2D grid network, first-order neighbors are not interconnected, maintaining a CC
of zero despite complex local connections involving second-order neighbors. To
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address this, we introduce the Reachable CC metric. In our experiments, higher
Reachable CC scores correlate with better model performance.

To compute Reachable CC, we form a new network by connecting a node’s
higher-order neighbors and then calculate the clustering coefficient. The adja-
cency matrix of this new network, An, is derived from Eq. 5 and Eq. 6:

A(n) = sgn(
n∑

i=1

Ai) −
n−1∑

i=1

A(i), (5)

An =
n∑

i=1

A(i) ∗ (1 − λ)i−1, (6)

where A(1) = A. In Eq. 5, we get a matrix A(n) that represents the n-order
connection between nodes, specifically, if there is a path of length n between
node i and node j, then A

(n)
i,j = 1, otherwise A

(n)
i,j = 0. In Eq. 6, we get An by

weighted summation of A(i). where λ refers to the decay index, which can also
be understood as the reaching cost corresponding to the path length. If λ is 0,
it means that node i can reach node j at no cost. If λ is 1, it means that node
i cannot reach any second-order and above neighbors, and then An degenerates
into the original adjacency matrix A. We calculate the clustering coefficient on
the newly obtained An, resulting in Reachable CC.

In Fig. 3’s right panel, we demonstrate a positive correlation between edge
completion performance and Reachable CC across various networks, including
real, Grid, and Circulant networks. This trend can be understood through the
model’s mechanism: it learns local structure patterns from observed nodes and
extrapolates to unobserved nodes. With a high Reachable CC, higher-order
neighbors are more interconnected, making it easier for the GIN-based encoder
to learn the network’s structural pattern. As a result, C-GIN performs better in
networks with higher Reachable CC.

2.4 Discussion

In this study, we introduce C-GIN model to address the network completion
problem when certain nodes and their edges are unobserved. Utilizing a Graph
Auto-Encoder, C-GIN learns the local connectivity patterns within the observed
portions of the network and generalizes these patterns to unknown regions of the
adjacency matrix. Experimental results confirm that C-GIN outperforms bench-
mark models on both synthetic and real-world networks, particularly excelling
at completing edges between unobserved nodes. To delve deeper into the model’s
nature, we introduce the Reachable CC metric, which gauges the likelihood of
connecting edges between higher-order neighbors within a network. C-GIN per-
forms notably better on networks with higher Reachable CC values.

Despite its contributions, the model has limitations. For instance, it presup-
poses the number of unobserved nodes, a parameter often unknown in real-world
scenarios. Future research could focus on estimating this number. Moreover, cer-
tain networks, like Cora, offer node-specific features, while others, such as those
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modeling infectious diseases, present temporal dynamics. Incorporating these
features and dynamics into our network completion approach could be a promis-
ing direction for future studies.
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Abstract. The task of semi-supervised classification aims at assigning
labels to all nodes of a graph based on the labels known for a few nodes,
called the seeds. One of the most popular algorithms relies on the princi-
ple of heat diffusion, where the labels of the seeds are spread by thermo-
conductance and the temperature of each node at equilibrium is used as a
score function for each label. In this paper, we prove that this algorithm
is not consistent unless the temperatures of the nodes at equilibrium
are centered before scoring. This crucial step does not only make the
algorithm provably consistent on a block model but brings significant
performance gains on real graphs.

1 Introduction

The principle of heat diffusion has proved instrumental in graph mining [5].
It has been applied for many different tasks, including pattern matching [10],
ranking [7], embedding [4], clustering [11], classification [2,6,13,14] and feature
propagation [9]. In this paper, we focus on the task of semi-supervised node
classification: given labels known for a few nodes of the graph, referred to as the
seeds, how to infer the labels of the other nodes? A popular approach consists
in using diffusion in the graph, under boundary constraints, a problem known
in physics as the Dirichlet problem [14]. Specifically, one Dirichlet problem is
solved per label, setting at 1 the temperature of the seeds with this label and at
0 the temperature of the other seeds. Each node is then assigned the label with
the highest temperature over the different Dirichlet problems. In this paper, we
prove using a simple block model that this algorithm is actually not consistent,
unless the temperatures are centered before label assignment. This step of tem-
perature centering does not only make the algorithm consistent but also brings
substantial performance gains on real datasets. This is a crucial observation
given the popularity of the algorithm1.

The rest of this paper is organized as follows. In Sect. 2, we introduce the
Dirichlet problem on graphs. Section 3 describes our algorithm for node classifi-
cation. The analysis showing the consistency of our algorithm on a simple block
model is presented in Sect. 4. Section 5 presents some experimental results and
Sect. 6 concludes the paper.
1 The number of citations of the paper [14] exceeds 4 000 in 2023, according to Google

Scholar.
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2 Dirichlet Problem on Graphs

In this section, we introduce the Dirichlet problem on graphs and characterize
the solution, used later in the analysis.

2.1 Heat Equation

Consider an undirected graph G with n nodes indexed from 1 to n. Denote by
A its adjacency matrix. This is a symmetric matrix with non-negative entries.
Let d = A1 be the degree vector, which is assumed positive, and D = diag(d).
The Laplacian matrix is defined by:

L = D − A.

Now let S be some strict subset of {1, . . . , n} and assume that each node
i ∈ S is assigned some fixed temperature Ti. We are interested in the evolution
of the temperatures of the other nodes, we refer to as the free nodes. We assume
that heat exchanges occur through each edge of the graph proportionally to the
temperature difference between the corresponding nodes, so that:

∀i /∈ S,
dTi

dt
=

n∑

j=1

Aij(Tj − Ti),

that is,

∀i /∈ S,
dTi

dt
= −(LT )i,

where T is the vector of temperatures, of dimension n. This is the heat equation
in discrete space. At equilibrium, the vector T satisfies Laplace’s equation:

∀i /∈ S, (LT )i = 0. (1)

With the boundary constraint giving the temperature Ti for each node i ∈ S,
this defines a Dirichlet problem. Observe that Laplace’s equation (1) can be
written equivalently:

∀i /∈ S, Ti = (PT )i, (2)

where P = D−1A is the transition matrix of the random walk in the graph.

2.2 Solution to the Dirichlet Problem

We now characterize the solution to the Dirichlet problem (1). Without any loss
of generality, we assume that free nodes (i.e., not in S) are indexed from 1 to
n − s so that the vector of temperatures can be written

T =
[
X
Y

]
,
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where X is the vector of temperatures of free nodes at equilibrium, of dimension
n − s, and Y is the vector of temperatures of the seeds, of dimension s. Writing
the transition matrix in block form as

P =
[
Q R
· ·

]
,

it follows from (2) that:
X = QX + RY, (3)

so that:
X = (I − Q)−1RY. (4)

Note that the inverse of I − Q exists whenever the graph is connected [3]. The
solution to the Dirichlet problem exists and is unique.

3 Node Classification Algorithm

In this section, we introduce a node classification algorithm based on the Dirich-
let problem. The objective is to infer the labels of all nodes given the labels of a
few nodes called the seeds. Our algorithm is a simple modification of the popular
method proposed by [14]. Specifically, we propose to center temperatures before
label assignment.

3.1 Binary Classification

When there are only two different labels, say 0 and 1, the classification follows
from the solution of a single Dirichlet problem. The idea is to set at 0 the
temperature of seeds with label 0 and at 1 the temperature of seeds with label
1. The solution to this Dirichlet problem gives temperatures between 0 and 1 to
the free nodes, as illustrated by Fig. 1 for the Karate Club graph [12].

A natural decision rule is to use a threshold of 1/2 for classification: any free
node with temperature above 1/2 at equilibrium is assigned label 1, while any
other free node is assigned label 0. The analysis of Sect. 4 suggests that it is
preferable to set the threshold to the mean temperature at equilibrium,

T̄ =
1
n

n∑

i=1

Ti. (5)

Specifically, any free node with temperature above T̄ at equilibrium is assigned
label 1, while any other free node is assigned label 0. Equivalently, temperatures
are centered by their mean before classification: after centering, free nodes with
positive temperature are assigned label 1, the others are assigned label 0.

It is worth noting that the threshold (5) is the mean temperature of all
nodes at equilibrium, including seed nodes. Another option, suggested by the
class mass normalization step of [14] for instance, is to set the threshold at the
mean temperature of free nodes at equilibrium. This variant of the algorithm is
not provably consistent, however.
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(a) Ground truth (b) Solution to the Dirichlet problem

Fig. 1. Binary classification of the Karate Club graph with 2 seeds (indicated with a
black circle). Blue nodes have label 0, red nodes have label 1. (Color figure online)

3.2 Multi-class Classification

In the general case with K labels, we use a one-against-all strategy: the seeds
of each label alternately serve as hot sources (temperature 1) while all the other
seeds serve as cold sources (temperature 0). After centering the temperatures
(so that the mean temperature of each diffusion is equal to 0), each node is
assigned the label that maximizes its temperature. This algorithm, we refer to
as the Dirichlet classifier, is parameter-free.

Algorithm 1. Dirichlet classifier
Require: Seed set S and associated labels y ∈ {1, . . . , K}
1: for k in {1, . . . , K} do
2: T = 0
3: for i ∈ S do
4: if yi = k then
5: Ti = 1
6: end if
7: end for
8: T ← Dirichlet(S, T )
9: Δ(k) ← T − 1

n

∑n
i=1 Ti

10: end for
11: for i �∈ S do
12: ŷi = arg maxk=1,...,K(Δi(k))
13: end for
14: return ŷ, predicted labels of free nodes (outside S)

The solution to the Dirichlet problem (line 8 of the algorithm) can be
obtained either from (4) or from iterations of the fixed-point equation (3).
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4 Analysis

In this section, we prove the consistency of Algorithm 1 on a simple block model.
In particular, we highlight the importance of temperature centering (line 9 of
the algorithm) for the consistency of the algorithm.

4.1 Block Model

Consider a graph of n nodes consisting of K blocks of respective sizes n1, . . . , nK ,
forming a partition of the set of nodes. There are s1, . . . , sK seeds in these blocks,
which have labels 1, . . . , K, respectively. Intra-block edges have weight p and
inter-block edges have weight q. We expect the algorithm to assign label k to
all nodes of block k, for all k = 1, . . . , K, whenever p > q, i.e., the blocks are
assortative [8].

4.2 Dirichlet Problem

Consider the Dirichlet problem when the temperature of the s1 seeds of block 1
is set to 1 and the temperature of the other seeds is set to 0. We have an explicit
solution to this Dirichlet problem, given by Lemma 1. All proofs are deferred to
the appendix.

Lemma 1. Let Tk be the temperature of free nodes of block k at equilibrium.
We have:

(s1(p − q) + nq)T1 = s1(p − q) + nT̄ q,

(sk(p − q) + nq)Tk = nT̄ q k = 2, . . . , K,

where T̄ is the average temperature, given by:

T̄ =
1
n

n∑

i=1

Ti =
(

s1
n

n1(p − q) + nq

s1(p − q) + nq

)
/

(
1 −

K∑

k=1

(nk − sk)q
sk(p − q) + nq

)
.

4.3 Classification

We now state the main result of the paper: the Dirichlet classifier is a consistent
algorithm for the block model, in the sense that all nodes are correctly classified
whenever p > q.

Theorem 1. If p > q, then the predicted label of each free node i of block k is
ŷi = k, for any n1, . . . , nK (label distribution) and s1, . . . , sK (seed distribution).

Observe that the temperature centering is critical for consistency. In the
absence of centering, free nodes of block 1 are correctly classified if and only if
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their temperature is the highest in the Dirichlet problem associated with label
1. In view of Lemma 1, this means that for all k = 2, . . . , K,

s1q
n1(p − q) + nq

s1(p − q) + nq
+ s1(p − q)

⎛

⎝1 −
K∑

j=1

(nj − sj)q
sj(p − q) + nq

⎞

⎠

> skq
nk(p − q) + nq

sk(p − q) + nq
.

This condition might be violated even if p > q, depending on the parameters
n1, . . . , nK and s1, . . . , sK . In the simplest case of K = 2 blocks, with p = 10−1

and q = 10−2 for instance, the classification is incorrect in the following two
asymmetric cases:

Seed asymmetry (blocks of same size but different number of seeds):
n1 = n2 = 100; s1 = 10, s2 = 5,

Label asymmetry (blocks with the same number of seeds but different sizes):
n1 = 100, n2 = 10; s1 = s2 = 5.

This sensitivity of the algorithm to both forms of asymmetry will be confirmed
by the experiments. The step of temperature centering is crucial for consistency.

5 Experiments

In this section, we show the impact of temperature centering on the quality of
classification using both synthetic and real data. The Python code is available
as a Jupyter notebook in Python2, making the experiments fully reproducible.

5.1 Synthetic Data

We first use the stochastic block model [1] to generate graphs with an underlying
structure in clusters. This is the stochastic version of the block model used in
the analysis. There are K blocks of respective sizes n1, . . . , nK . Nodes of the
same block are connected with probability p while nodes in different blocks are
connected probability q. Nodes in block k have label k. We denote by sk the
number of seeds in block k and by s the total number of seeds.

We first compare the performance of the algorithms on a binary classification
task (K = 2) for a graph of n = 10 000 nodes with p = 10−2 and q = 10−3, in
two different settings:

Seed asymmetry (blocks of same size but different number of seeds):
n1 = n2 = 5000, s2 = 250, ratio s1/s2 ∈ {1, 2, . . . , 10}.
(5% of nodes in block 2 are seeds)

Label asymmetry (blocks with the same number of seeds but different sizes):
number of nodes n = 10 000, ratio n1/n2 ∈ {1, 2, . . . , 10}, s1 = s2 = 250.
(5% of all nodes are seeds)

2 https://perso.telecom-paris.fr/bonald/notebooks/diffusion.ipynb.

https://perso.telecom-paris.fr/bonald/notebooks/diffusion.ipynb
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Fig. 2. F1 scores on the stochastic block model (2 labels).

For each configuration, the experiment is repeated 100 times. Randomness
comes both from the generation of the graph and from the selection of the seeds.
We report the F1-scores in Fig. 2 (mean ± standard deviation). Observe that
the variability of the results is very low due to the relatively large size of the
graph. As expected, the centered version is much more robust to both forms of
asymmetry. The variant called partial centering, where the mean temperature is
computed over free nodes only, tends to be less robust to label asymmetry.

We show in Fig. 3 the same results for K = 5 blocks, still with n = 10 000
nodes, p = 10−2 and q = 10−3. Blocks 2, 3, 4, 5 have the same size and the same
number of seeds. For the experiments on seed asymmetry, each block has 2 000
nodes and 5% of nodes in blocks 2, 3, 4, 5 are seeds; we only vary the number
of seeds in block 1. For the experiments on label asymmetry, there is the same
number of seeds for each label, corresponding to an average proportion of 5%
of all nodes. The performance metric is the F1-score averaged over the 5 labels.
The conclusions are the same as with 2 labels.

Fig. 3. Macro F1-scores on the stochastic block model (5 labels).
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5.2 Real Data

We now focus on real datasets available from the SNAP collection3 and the
NetSet4 collection, restricting to graphs having ground-truth labels. All graphs
are considered undirected.

Table 1. Overview of the datasets.

Dataset #nodes #edges #classes

Cora 2 708 5 278 7

Citeseer 3 264 4 536 6

PubMed 19 717 44 325 3

Email 1 005 16 385 42

PolBlogs 1 490 16 716 2

WikiSchools 4 403 100 329 16

WikiVitals 10 011 654 502 11

WikiVitals+ 45 179 3 079 335 11

For each dataset, we select seeds uniformly at random. The process is
repeated 100 times. The macro-F1 scores (i.e., F1-scores averaged over all classes)
are shown in Table 2 for seeds representing 5%, 10% or 20% of the nodes. We
see that the centered version outperforms the standard version over all datasets.
The performance gains are substantial for the largest graphs, extracted from
Wikipedia. The variance is also lower in all cases, showing the robustness of the
algorithm. Additional results, not reported here, tend to show that the variant
selected for temperature centering (based on either all nodes or free nodes) has
a marginal impact on performance.

3 https://snap.stanford.edu/.
4 https://netset.telecom-paris.fr/.

https://snap.stanford.edu/
https://netset.telecom-paris.fr/


280 T. Bonald and N. De Lara

Table 2. Macro-F1 scores (mean ± standard deviation) without and with temperature
centering.

(a) 5% of seeds

Dataset No centering Centering Variation

Cora 0.69 ± 0.02 0.71 ± 0.02 +2%

Citeseer 0.48 ± 0.01 0.48 ± 0.01 0%

PubMed 0.76 ± 0.01 0.78 ± 0.01 +2%

Email 0.12 ± 0.04 0.22 ± 0.03 +85%

PolBlogs 0.82 ± 0.12 0.87 ± 0.01 +7%

WikiSchools 0.08 ± 0.06 0.44 ± 0.03 +472%

WikiVitals 0.29 ± 0.06 0.63 ± 0.02 +116%

WikiVitals+ 0.31 ± 0.03 0.65 ± 0.01 +112%

(b) 10% of seeds

Dataset No centering Centering Variation

Cora 0.74 ± 0.02 0.75 ± 0.01 +1%

Citeseer 0.52 ± 0.01 0.52 ± 0.01 0%

PubMed 0.78 ± 0.01 0.79 ± 0.00 +1%

Email 0.21 ± 0.04 0.31 ± 0.03 +43%

PolBlogs 0.86 ± 0.02 0.87 ± 0.01 +1%

WikiSchools 0.13 ± 0.04 0.50 ± 0.02 +295%

WikiVitals 0.43 ± 0.04 0.67 ± 0.01 +57%

WikiVitals+ 0.61 ± 0.01 0.68 ± 0.01 +12%

(c) 20% of seeds

Dataset No centering Centering Variation

Cora 0.78 ± 0.01 0.78 ± 0.01 0%

Citeseer 0.57 ± 0.01 0.57 ± 0.01 0%

PubMed 0.80 ± 0.00 0.80 ± 0.00 0%

Email 0.32 ± 0.03 0.40 ± 0.02 +24%

PolBlogs 0.87 ± 0.01 0.87 ± 0.01 0%

WikiSchools 0.27 ± 0.03 0.57 ± 0.02 +110%

WikiVitals 0.58 ± 0.02 0.70 ± 0.01 +22%

WikiVitals+ 0.65 ± 0.01 0.71 ± 0.00 +9%
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6 Conclusion

We have proposed a novel approach to node classification based on heat diffusion.
Specifically, our technique consists in centering the temperatures of each solution
to the Dirichlet problem before classification. We have proved the consistency
of this algorithm on a simple block model and shown that the temperature
centering brings significant performance gains on real datasets. This is a crucial
observation given the popularity of the algorithm.

The question of the consistency of the algorithm when the mean temperature
is computed over free nodes (instead of all nodes) remains open. Another inter-
esting research perspective is to extend our proof of consistency of the algorithm
to stochastic block models, where edges are drawn at random [1].

Appendix

A Proof of Lemma 1

Proof. In view of (2), we have:

(n1(p − q) + nq)T1 = s1p + (n1 − s1)pT1 +
∑

j �=1

(nj − sj)qTj ,

(nk(p − q) + nq)Tk = s1q + (nk − sk)pTk +
∑

j �=k

(nj − sj)qTj ,

for k = 2, . . . , K. We deduce:

(s1(p − q) + nq)T1 = s1p + Uq,

(sk(p − q) + nq)Tk = s1q + Uq ∀k = 2, . . . , K,

with

U =
K∑

j=1

(nj − sj)Tj .

The proof then follows from the fact that

nT̄ = s1 +
K∑

j=1

(nj − sj)Tj = s1 + U.

B Proof of Theorem 1

Proof. Let Δ
(1)
k = Tk − T̄ be the deviation of temperature of non-seed nodes of

block k for the Dirichlet problem associated with label 1. In view of Lemma 1,
we have:

(s1(p − q) + nq)Δ(1)
1 = s1(p − q)(1 − T̄ ),

(sk(p − q) + nq)Δ(1)
k = −sk(p − q)T̄ k = 2, . . . , K,
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For p > q, using the fact that T̄ ∈ (0, 1), we get Δ
(1)
1 > 0 and Δ

(1)
k < 0 for all

k = 2, . . . , K. By symmetry, for each label l = 1, . . . , K, Δ
(l)
l > 0 and Δ

(l)
k < 0

for all k �= l. We deduce that for each block k, ŷi = arg maxl Δ
(l)
k = k for each

free node i of block k.
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Abstract. Topological Data Analysis is a field of great interest in many
applications such as finance or neuroscience. The goal of the present
paper is to propose a novel approach to building simplicial complexes
that capture the multiway ordered interactions in the components of
high-dimensional time series using the theory of Signatures. Signatures
represent one of the most powerful transforms for extracting group-wise
structural features and we put them to work in the task of discover-
ing statistically meaningful simplices from a complex that we estimate
sequentially. Numerical experiments on an fMRI dataset illustrates the
efficiency and relevance of our approach.

Keywords: Topological Data Analysis · Signatures · simplicial
complex · multiway interactions · high-dimensional time series · fMRI
data analysis

1 Introduction

Topological Data Analysis (TDA) is a new field with a wide range of application
in fields such as finance, neuroscience, medicine, etc. TDA addresses the prob-
lem of accounting for groupwise interactions in the data and therefore opens
very promising prospects to better apprehend complex phenomena than models
relying on pairwise interactions only. Several tools from algebraic topology, such
as homology groups, homotopy groups, Betti numbers, etc. can be put to work
in building a set of relevant features that can capture the intricate nature of
dependencies.

The original version of the chapter has been revised. A correction to this chapter can
be found at https://doi.org/10.1007/978-3-031-53468-3 39

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024, corrected publication 2024

H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1141, pp. 283–294, 2024.

https://doi.org/10.1007/978-3-031-53468-3 24
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https://doi.org/10.1007/978-3-031-53468-3_39
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Some compelling examples of the benefits of using topological features appear
regularly in the literature. In [17] the homological features of brain functional
networks are shown to take different values in two states depending on the
absorption of some drug. More generally, it is shown in [21] that homological
cycles in structural brain networks finds connections between regions of early
and late evolutionary origin. TDA can also be efficiently used in dynamical set-
tings as well. One very intriguing example is change detection as illustrated in
the study of functional brain networks conditioned in different tasks [22]. In
[12] it is investigated how speech-related brain regions connectivity changes in
different scenarios of speech perception.

In the present paper, we focus on the analysis of dynamical high dimensional
phenomena and on the problem of constructing associated relevant topological
structures with the aim of proposing news computational tools for deepening
our understanding of the higher order structures hidden in time series data. Our
main contribution is a new approach to building statistically informed simplicial
complexes and possibly more general structures.

Our two main tools will be the basic objects of TDA and Signature theory.
Signatures were recently proposed as a very powerfull feature map for time series
and dynamical systems in [5,7,14]. The introduction of Signatures for building
topological structures for high dimensional dynamical phenomena is new and
appears as a key and very natural ingredient that can accurately account for
orientations of the various simplices in the complex at hand while capturing the
main shape features from the dynamics. Using Signature in a statistical/machine
learning context is an approach which is adopted in a growing number of appli-
cations nowadays [7] and our work is also intended to illustrate the relevance of
Signature theory combined with statistics/machine learning for building a higher
order interaction modelling framework.

In mathematical terms, our proposal is based on the assumption that k-
simplices are simply sets of k nodes with there time series attached to them,
with an orientation prescribed by the ordering of the nodes in computing their
associated k-Signature. Recall that the orientation encoded in the computation of
the associated signature carries potentially very interesting interpretation about
the causal dependencies of the times series [11]. In the next step, the relevance
of incorporating a simplex into our simplicial complex is assessed using a purely
statistical procedure: each oriented k-simplex is associated with a corresponding
k-Signature that is included into a set of multivariate features that is used to
predict the Signatures of all the other potential simplices. More precisely, our
construction is a generalisation of the approach developed by Meinshausen and
Bühlmann in [16] for Gaussian Graphical Models. Simplices that are selected
from the set of potential Simplices whose Signature can predict the Signature of
a target simplex in terms of confidently regressing or predicting1 the Signature
associated with this target are included as candidates for being considered as
adjacent to this target. Using this procedure, we obtain a construction of a sim-
plicial complex that accurately incorporates the statistical relationships between
all the simplices in terms of regression or prediction, while keeping track of the
inherent orientations of the simplices.

1 for time dependent Signatures.
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The plan of the paper is as follows. In Sect. 2, we recall the necessary back-
ground on topological data analysis and Signature theory. In Sect. 3, we present
our method for constructing the simplicial complex using the Signatures of the
simplices and the LASSO algorithm. In Sect. 4, we present our numerical exper-
iments on real datasets. A conclusion section completes the paper.

2 Background on Signatures and Topology

In this section, we summarise the mathematical prerequisites from topology and
the theory of Signatures.

2.1 Recalls on the Theory of Signatures

The theory of Signatures is a new topic of growing interest that emerged as
a sub-branch of the theory of rough paths [9,10,15] which has a long history
in mathematics and control that may have started with the work of Chen [4].
Rough paths provide a new framework for the analysis of stochastic processes and
permitted to resolve various open problems, including the existence of a solution
to the KPZ equation in mathematical physics, a result for which Martin Heirer
was awarded the Fields medal [6]. Recently, this theory developed as a new
tool for the analysis of signals in the area of Machine Learning [5,7,14] where
remarkable performance was achieved for a series of difficult practical problems
including the analysis of financial data, medical data and textual data [13,14].
Lately, an intriguing relationship with recurrent neural networks was exhibited
using the viewpoint of control theory [8].

Let us now turn to the definition and some interesting properties of Sig-
natures. Consider a d-dimensional path X = (X1,X2, ...,Xd) : R → Rd.
Then, the (truncated)2 signature of X on [a, b] is an object in T (Rd) =
Rd ⊕ Rd×d ⊕ Rd×d×d ⊕ . . . , defined, for j ∈ N∗ by

(S[a,b](X))i1,i2,...,ij := S
i1i2...ij
[a,b] (X)

=
∫

a≤s1≤s2≤···≤sj≤b

dXi1
s1dXi2

s2 . . . dX
ij
sj (1)

which lies in R

j
︷ ︸︸ ︷
d × d × · · · × d.

Chen’s identity is a very useful result that allows to compute the Signature
recursively based on linear interpolation of observed values of a trajectory.

Theorem 1 (Chen’s identity). Let X : [a, b] → Rd and Y : [b, c] → Rd.
Consider the concatenation of X and Y (noted X ∗ Y ) defined by:

(X ∗ Y ) : [a, c] → Rd

t �→
{

X(t) , t ∈ [a, b]
X(b) − Y (b) + Y (t) , t ∈ [b, c].

2 The k-truncated version of the signature is S(1)(X) ⊕ S(2)(X) ⊕ · · · ⊕ S(k)(X).
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Then:

S[a,c](X ∗ Y ) = S[a,b](X) ⊗ S[b,c](Y )

Augmentation of a Path. The Signature defines X uniquely on [a, b] close to
tree-like equivalence (i.e. there exist I, J ⊂ [a, b], such that X|I(t) = X|J (b− t)).

Proposition 1. S[a,b](X) define X uniquely on [a, b] if there exists 1 ≤ i ≤ d
such that Xi is strictly monotonic on [a, b].

This result leads to consider the time-augmented path X̃ associated with
X, defined as X̃ = (t,X1,X2, . . . , Xd) in order to ensure the unicity of S(X).
Another augmentation will be useful for our work, namely the Lead-Lag aug-
mentation.

Definition 1. Consider a d-dimensional path X with T +1 timesteps. The lead-
lag augmentation of X is a 2d-dimensional path Xlead,lag = (XLead,XLag)
with 2T + 1 time steps such that:

XLead = {X(0),X(1),X(1),X(2), . . . ,X(T ),X(T )}
XLag = {X(0),X(0),X(1),X(1), . . . ,X(T − 1),X(T )}

The Lead-Lag augmentation was found to play an important role in many
machine learning applications [7].

2.2 Recalls on Topology

We now turn to some useful definitions from topology. Consider a set of n vertices
V = {v1, . . . , vn}.

Definition 2. For k < n, a k-simplex σk of V is the collection of a subset Vk

of length k +1 and all its subsets. The geometric realization of a k-simplex is
the convex hull C of k + 1 points, such that dim(C) = k. A face (of dimension
l) σk is a collection of set in σk that form a l-simplex (l ≤ k).

Definition 3. A simplicial complex C on V is a collection of simplices (of
V ) such that for every σi ∈ C, there exists j with σi ∩ σj a sub-simplex of both
σi and σj.

Definition 4. The dimension of C is the dimension of the highest simplex in
C (i.e. the highest k such that there exist a k-simplex in C).

Definition 5. An orientation on C is a order of the vertices for every simpli-
cies in C. We use the notation [v1, v2, v3] to denote an oriented 3-simplex.

From a geometric point of view, C is constructed by attaching a group of
simplices to each other by binding them with a shared face.
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Definition 6. Let Δ be a simplicial complex and σ one of its k-sub-simplices.
The neighborhood of v in Δ is the set Lk(σ,Δ) of all the k-sub-simplices τ of
Δ such that:

– σ ∩ τ = ∅
– σ ∪ τ is a face of Δ.

Especially, the neighborhood of a vertex v is all the vertices vi such that the edge
{v, vi} ∈ Δ.

The goal of our work is to build a simplicial complex encoding the groupwise
interactions explaining the dependencies inside high dimensional time series. The
main ingredient in our approach is to make use of relevance measures in predict-
ing simplex indexed -groups of time series using other simplex indexed -groups of
time series as a criterion for selecting potential higher and higher dimensional
simplices for (or for the sake of mitigating the computational complexity, sequen-
tial greedy) aggregations. We turn to the description of our approach in the next
section.

3 Building Simplicial Complexes Between Time Series

3.1 Presentation of the Method

In the same spirit as for Gaussian graphical models [16], our goal is to infer a
higher order model from data using a model selection based numerical procedure.
One brute force method is to use sparse solutions of LASSO type estimators
that can be employed to predict all sub-groups of times series based on all other
groups of time series.

In the present paper, our goal is to propose a better structured solution to
the problem of capturing interesting structures in the dependency relationship
among the various components of high dimensional time series. Interesting types
of structure often come from Topological Data Analysis (TDA) as presented in
e.g. [3]. Inferring such structures is however extremely computationally extensive,
and even more so if we account for the necessity of using Cross-Validation types
of hyper parameter calibration procedures.
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Our proposal is to adopt a principled sequential approach to simplicial com-
plexes estimation. In our approach, the simplices that will be incorporated into
the simplicial complex are chosen among completions of existing simplices into
one order higher simplices, hence allowing to stratify the construction by the
complexity of the interactions. The selection is performed using the LASSO,
complemented by inspection of the R2 criterion. One key ingredient of our con-
struction is the use of the Signature transform as features for prediction. Signa-
tures bring an essential information to the construction of our simplicial com-
plex, namely orientation, since, Signatures encode the order in which the times
series are integrated in (1). Using the orientation can be instrumental for the
interpretation of the interactions among the various components of high dimen-
sional time series, and noticing any difference in the prediction capabilities of
two different orderings might be extremely useful in practice.

We now turn to the details of the implementation.

3.2 Our Greedy Order Stratified Algorithm:

Consider a group of d (augmented) time series G = {X1,X2, . . . , Xd} with T +1
timesteps each of the form Xi = [(0,Xi(0)), (t1,Xi(t1)), . . . , (tT ,Xi(tT ))].

In this section, we introduce our main contribution, namely the construction
of a simplicial complex that encodes the multiway dependencies of the various
dimensions in a high-dimensional time series. We also discuss a greedy algorithm
for sequentially building the sought for simplicial complex that mitigates the
computational complexity. As mentioned earlier in the introduction, the main
principle of the our algorithm is to build consistent simplices within groups of
time series using regression or prediction error measures. In our implementation,
we chose to present the Signature prediction version, consisting of predicting the
Signature at a simplex as a linear function of the signatures at other simplices
of various orders.

In order to keep control on the computational complexity of the method, we
now present a lighter greedy algorithm. For any t ∈ �0, T − L� with L to be
specified.

Closure of a simplicial complex.

In our framework, we need to introduce the following definition.

Definition 7. Let C denote a simplicial complex. We denote by C the simpli-
cial complex consisting in appending all k-simplices whose single incorporation
results in creating a simplex of order k +1 using the simplices already present in
C only.

The sequential algorithm.

We now define the steps of our sequential greedy method as follows.
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Data: Set � = 1 and set C(1) = {1, . . . , d}.
Result: The time series interaction simplicial complex
while No more simplex is selected do

Select an (augmented) k-subset of nodes CJ = {Xj1 , Xj2 , . . . , Xjk}, with
J = {j1, . . . , jk} in C(�), and compute S[t,t+L](C

J).;

For every (augmented) k′-combination CJ′
= {Xj′

1 , Xj′
2 , . . . , Xj′

k′ } with

J ′ = {j′
1, . . . , j

′
k′} in C(l), compute S[t,t+L](C

J′
);

Predict S[t,t+L](C
J) from

(
S[t,t+L](C

J)
)
(1≤j≤d−k−1

k+1 ) with LASSO;

if R2 > 0, 67 then
Select all non-zero βj LASSO coefficients

else
Set βj = 0 for all j.

end

end
Algorithm 1: Sequential construction of the simplicial complex

Each non-zero βj coefficient represents a k-simplex whose vertices are
{Xi,Xj1 ,Xj2 , . . . , Xjk+1}. This simplex comes with a natural weight w. As this k-
simplex can be produced multiple time (by predicting Xi with {Xj1 , . . . , Xjk+1}
or Xjl by {Xi,Xj1 , . . . , Xjk+1}k �=l), this weight is produced as the sum of all the
non-zero LASSO coefficients obtained.

By iterating the procedure for every possible simplices whose signature is
a statistically interesting quantity to predict, and every dimension of simplex
k ≤ K (for a chosen k), one can produce a simplicial complex among G.

Remarks

Let us now address some technical question that arise from the proposed con-
struction.

Time dependancy: The algorithm is applied to evolving time series for which
the computation of the Signatures is updated incrementally and prediction is
performed using these updated Signatures as time increases.

Orientation: This algorithm gives a natural orientation on every simplex, as
S(Xi,Xj) = S(Xj ,Xi) which is often of great potential use for interpretabil-
ity.

4 Numerical Experiments and Applications

Multivariate times series are omnipresent and high order correlation occurred
frequently in e.g. the domains of finance and neuroscience. We evaluated our
method on two public data sets analysed by [19] : the fMRI resting-state data
from the HCP https://www.humanconnectome.org/.

https://www.humanconnectome.org/
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4.1 Practical Choices and Hyper Parameters

We consider only simplices up to triangles k ≤ 2 for now. Due to the concerns
about complexity, the depth of signature is set to depth = 2 for the construction
of both 1-simplex and 2-simplex. More precisely, we use time-augmented path to
calculate 2-truncated signatures of 0-simplices, in order to construct 1-simplices.
As a design choice, for 2-simplices the predictors (1-simplices composed of two
times series) are not augmented when applying LASSO regression. Clearly, many
different choices could be imposed on how we model the dependencies between
subgroups of time series.

The regularisation term of LASSO is crucial for our method since it directly
controls the sparsity in prediction using the linear models on signature features.
Recall that the selected groups of time series will immediately be translated into
new simplices in our sequentially growing simplicial complex.

In the present numerical experiments, we show that coarsely selected values
for these hyperparameters already provide interesting results on a real dataset.
In practice, λ1−simplex and λ2−simplex have been empirically tuned to the values
λ1−simplex = 1000 and λ2−simplex = 3 for the fMRI dataset. More experiments
based on extensive comparisons over a refined grid will be tested in an extended
version of the present paper. The latest version of our implementation is available
on our GitHub page :

https://github.com/ben2022lo/conf-complex-network

4.2 Modelling Interactions in Functional MRI Datasets

Functional connectivity is a neuroscience approach aimed at understanding the
organization of the human brain based not solely on spatial proximity and struc-
tural factors, but rather on its functionality, i.e. its connectivity patterns between
different brain regions and networks. For instance, even seemingly routine tasks
such as paying attention during a lecture have been found to activate regions like
the pulvinar (within the thalamus), the superior colliculus (in the midbrain), and
the posterior parietal cortex [18]. In this perspective, and given that functional
brain imaging data can be regarded as time series, the theory of Signatures could
prove to be particularly useful.

In the absence of specific tasks or external stimulation (resting, meditating,
sleeping, etc.), the brain enters what is known as resting-state. The Default
Mode Network (DMN) becomes prominently active during this resting state.
This neural network includes key regions such as the medial prefrontal cortex
(mPFC), the posterior parietal lobe (PTL), the posterior cingulate cortex (PCC),
and the precuneus [2].

We tested our method on resting-state fMRI(rs-fMRI) data3 preprocessed
by the same pipeline in [19]. The dataset contains 100 cortical (Schaefer100
[20]) and 19 subcortical ROIs (Regions of Interest). In order to evaluate the
quality of identified interactions, we have selected a subset of 15 ROIs of which
3 HCP, http://www.humanconnectome.org/.

https://github.com/ben2022lo/conf-complex-network
http://www.humanconnectome.org/
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functional connectivities during resting-state are well known. We constructed
simplicial complex on all 1200 timesteps, and analysed the top 10 1-simplices
and 2-simplices that are the most persistent, i.e.that occurred on most time-
steps. Besides, we observed that the life duration distribution of 1-simplices
is centred and symmetric, whereas the distribution of 2-simplices is positively
skewed (Fig. 1).

Fig. 1. Histograms of the observed duration for the discovered 1 and 2-simplices

The 1-simplex representing the interaction between 7Networks LH Vis 9 and
7Networks LH SomMot 4 occurred on most occasions (865 time steps). The most
persistent 2-simplex (59 time steps) represents the interaction among LH Cont
Par 1, RH Default PFCdPFCm 2 and RH Default pCunPCC 2.

Most of the persistent 1-simplices involve the prefrontal cortex, the parietal
lobe and the precuneus, which is consistent with literature as all three regions
are active during resting-state [2]. The most persistent interaction include sub-
regions of the left hemisphere’s visual and somatomotor networks. Component
LH SomMot 4 has previously been associated with components of the left (LH
Default PFC ) and right (RH Default PFCv 2 ) PFC in a study proposing an age
prediction pipeline Ayu using rs-fMRI data [1]. In the same study, several visual
areas (RH Vis 1, 3 and 4 ) are linked to the PFC areas during rs-fMRI (LH
Default PFC 1, 2, and 3 ), although they are located in the right hemisphere.

The top 10 interactions that occurred the most include components from
the same three recurrent brain areas that are the PFC, parietal regions and the
precuneus, with the latter taking par in all 10 of them. This aligns with previous
work [2] as all three are indeed involved in the Default Mode Network which is
active during rs-fMRI.

The most persistent simplicies and matching ROIs are represented in Fig. 3.
In particular, the interactions discovered using our approach show excellent
coherence with well identified spatial activity zones (Fig. 2).

5 Discussion and Future Work

The qualification of high-order interaction of time series is a relatively new
research area. Previous work, such as [19], tried to estimate the higher
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Fig. 2. Simplicial complex constructed with persistent simplicies. 1-simplices are blue,
2-simplicies are defined by their orange 1-simplex faces. The gray signifies the coinci-
dence of a 1-simplex and one face of a 2-simplex. The selected ROI and numerated
0-simplices are matched by the following dictionary: 0 - LH Vis 9, 1 - LH SomMot 4, 2
- LH DorsAttn Post 4, 3 - Cont Par 1, 4 - LH Cont pCun 1, 5 - LH Default pCunPCC
1, 6 - LH Default pCunPCC 2, 7 - RH Cont Par 1, 8 - RH Cont PFCl 1, 9 - RH
Cont pCun 1, 10 - RH Default Par 1, 11 - RH Default PFCdPFCm 1, 12 - RH Default
PFCdPFCm 2, 13 - RH Default PFCdPFCm 3, 14 - RH Default pCunPCC 2.

Fig. 3. Anatomical representation of the 10 most persistent 1-simplices and 2-simplices
matched to their corresponding network in the 7-network parcellation by [23]. Only
parcels that are part of the most persistent simplices are colored. Each color corresponds
to a network as per the following color legend: yellow - Visual, red - Somatomor, purple
- Dorsal Attention, green - Control, blue - Default.

order interactions in high dimensional signals. Our method, based on the
theory of Signatures that captures higher dimensional interactions together with
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what can be encoded as a simplex orientations, is able to leverage much more
refined information about the mutual behaviour of the observed phenomena.

From a theoretical point of view, although the orientation of the various sim-
plices discovered in the sequential construction was not used proper, it could
be fruitfully exploited in the future. Secondly, the problem of dimension consis-
tency could be appropriately tackled using group LASSO types of techniques or
SLOPE-based approaches.

To conclude, we mention that the method we just presented could also be
handily put to work on nonstationary problems for e.g. change point detection
such as in early detection of epidemics, using human in the loop validation
steps. The simplicial complex could be sequentially updated as a function of
time as well, leading to a dynamical topological structure whose characteristics
and abrupt potential changes could help extract valuable information about the
emergence of certain interesting phenomena.
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Abstract. We examine the sensitivity of community-structured graph
spectra to graph size, block size and inter-block edge probability. We
use the Planted Partition Model because of its transparency. While this
generative model may seem simplistic, it allows us to isolate the effects of
graph and block size, edge probabilities and, consequently, vertex degree
distribution on spectra. These sensitivities to key graph characteristics
also generalize beyond Planted Partition Model graphs, because they
are based on graph structure. Notably, our results show that eigenvalues
converge to those of a complete graph, with increases in graph size or
inter-block edge probability. Such convergence severely limits the use of
spectral techniques.

Keywords: Spectral graph theory · eigengap · community detection

1 Introduction

Graphs have several matrix representations. The adjacency and the several
Laplacian matrices are instances of these representations. Spectral decompo-
sition of these matrices is used for many tasks in the study of graphs, especially
those with community structure (complex networks) [5]. For example, it is used
for vertex clustering [4,7,10,11,19,21,22] and in the “eigengap heuristic” [4,19].
In this short article, we identify the limitations of spectral decomposition of these
graph matrix representations. In doing so, we also compare results obtained by
decomposing the two most commonly used matrix representations, the adjacency
and the symmetric normalized Laplacian matrices.

Our empirical investigations reveal that normalized Laplacian eigenvalues
(eigenvectors) are extremely sensitive to noise and scale. This noise manifests
itself in the form of edge randomness. This randomness is a consequence of inter-
block edge probability or small block size. We find that increases in noise or graph
size lead to eigenvalue uniformity, which renders spectral methods of limited
use. Indeed, spectral techniques rely on eigenvalue differentiability. Obviously,
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1141, pp. 295–307, 2024.
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as eigenvalues move to uniformity, differentiability vanishes. Unfortunately, we
also find the adjacency matrix does not provide a viable alternative in cases
where Laplacian spectra are uninformative.

We investigate the behavior of the spectra of graphs displaying commu-
nity structure, in order to help target the application of spectral techniques
to instances where they are more likely be informative and to yield meaning-
ful results. The work in this article is focused on the link between a few key
graph properties and those of the corresponding symmetric normalized Lapla-
cian matrix. Although we focus our attention on the widely used normalized
symmetric Laplacian matrix, we also examine the eigenvalues of the adjacency
matrix, for the sake of completeness.

Of course, spectral techniques are also limited by computational constraints
(e.g., memory, precision, computation times, etc.). However, in this article, we
do not examine these computational issues. Nevertheless, we do note that the
limitations identified in this work are amplified by the various computational
and tractability constraints. For the sake of brevity, the scope of this article is
also restricted to simple graphs, unweighted undirected graphs with no self-loops
or multiple edges and graphs with only a single connected component.

2 Previous Work

As mentioned earlier, spectral techniques are widely used in the study of graphs.
The foundations of this area of study were laid by Chung [6] and later by Spiel-
man [24]. In this short work, we focus on three areas of the spectral graph analysis
literature. First, our experiments motivate us to examine past inquiries into the
convergence of eigenvalues, under the stochastic block model (SBM) [23]. Then,
in order to gain a better understanding of this convergence, we also survey stud-
ies in which authors have established a link between Laplacian eigenvalues and
vertex degree [5,27]. Finally, we are also motivated by authors who have high-
lighted the differences in the conclusions of analyses based on adjacency and
Laplacian matrix representations [18,21].

Asymptotic convergence of eigenvectors (and consequently eigenvalues) under
the SBM was identified by Rohe et al. [23]. These authors posit the existence of a
“population Laplacian” towards which the empirical Laplacian converges, as the
graph grows. While our results do not agree with these authors’ conclusions, we
also document convergence with increased graph size and noise in connectivity.

Under random graph models, like the SBM or the Erdös-Rényi-Gilbert
(ERG) model [9,13], edge probabilities are independent of each other and
only depend on the nodes they are connecting. These models have often been
described as too simplistic to represent real world networks [1,2,15,20,23]. In
particular, the degree uniformity yielded by these generative models, its lack of
skewness or heavy right tail, has been identified as a weakness as models of real
world networks.

Nevertheless, random graph models have been found to be adequate in many
empirical cases [10,11,16,20,22]. For example, Newman et al. [20] state that
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“in some cases random graphs with appropriate distributions of vertex degree
predict with surprising accuracy the behavior of the real world”. In closing, while
a detailed examination of this debate on realistic models of real world networks is
beyond the scope of our work, we do note that some authors claim that networks
with power-law degree distributions are rare (e.g., [3]). We also note that the
SBM is still used as a model of real world networks in the recent literature
(e.g., [12])

3 Mathematical Background

As discussed earlier, there are several matrix representations of graphs. The two
most commonly used are the adjacency matrix (A) and the symmetric normal-
ized Laplacian (L). Because of its symmetry and specific properties, we use the
symmetric normalized Laplacian, instead of the unnormalized or random walk
Laplacians, in this work.

In order to study the link between graph characteristics and spectra, we gen-
erate several synthetic random graphs with known structure. Indeed, by modi-
fying the parameters of random graph generative models, we are able to isolate
and unambiguously observe the sensitivities of the spectra. We use the Planted
Partition Model (PPM), a special case of the SBM, for its clarity. Using the
PPM also allows us to compare our conclusions to those reported in the litera-
ture (e.g., [23]). We use the Python NetworkX library [14,25,26] to generate our
graphs.

For the remainder of this article, we will use the following naming conven-
tions:
– N = |V | is the total number of vertices,
– nk is the number of vertices in block k,
– di is the degree of the i−th vertex and
– λ0 = 0 < λ1 ≤ . . . ≤ λN are the eigenvalues of the (N × N) normalized

symmetric matrix L,
– Because we only consider graphs with one connected component, only the

first eigenvalue is equal to 0, all others are strictly positive.

3.1 Matrices Under Consideration

As mentioned earlier, a graph can be represented by various matrices. In this
work, we focus on two, the adjacency matrix (A) and the normalized symmetric
Laplacian (L). The latter is a simple transformation of the former.

Adjacency Matrix. The adjacency matrix A for a graph with N vertices is
defined as

A
(N×N)

= [wij ]

with,
wij ∈ {0, 1} and
wii = 0, ∀i .
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Throughout this article, the matrix A is symmetric and all matrix elements (edge
weights wij) are binary (i.e., graphs are unweighted & undirected). Also, because
we only consider simple graphs, all diagonal elements are equal to zero (i.e., no
self-loops ⇔ Aii = wii = 0).

Normalized Symmetric Laplacian. The (un-normalized) Laplacian matrix
is defined as

L = D − A

where,

D =

⎡
⎢⎣

d1 0 . . .

0
. . . . . .

0 . . . dn

⎤
⎥⎦ .

Here, di is the degree of the i − th node. It is obtained by summing the i − th
row of the adjacency matrix:

di =
∑

j

Aij .

The corresponding symmetric normalized Laplacian L is defined as

L = D−1/2LD−1/2

= D−1/2(D − A)D−1/2

= I − D−1/2AD−1/2 .

(by convention, 1√
di

= 0, if di = 0)
The spectra of normalized symmetric Laplacian matrices have several appeal-

ing properties. Symmetry, which guarantees real-number eigenvalues, is the most
obvious. However, there are several other very informative features. In the next
section, we will review the most important of these properties.

3.2 Eigenvalues of Normalized Symmetric Laplacian Matrices

While the topic of spectral graph theory is very vast, here, we only review the
few properties of the eigenvalues which are used in this work. For a thorough
treatment of this topic, we refer the reader to Fan Chung’s seminal text “Spectral
graph theory” [6]. Here, we assume a graph with only one connected component.

– Naturally, all eigenvalues of the normalized symmetric Laplacian are real.
– The normalized symmetric Laplacian is positive semidefinite, all its eigenval-

ues are non-negative: λi ≥ 0, ∀i .
– Since all graphs considered in this work have only one connected component,

in this work the following properties hold:
� ∑

i λi = |V | = N ,
� λ0 = 0 < λ1 ≤ . . . ≤ 2 (i.e., only one zero eigenvalue).

– In a complete graph, λi = N/(N − 1) � 1, ∀i > 0 .
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3.3 Eigengap Heuristic

Very commonly, the spectra of normalized symmetric Laplacians are used to
obtain the so-called “eigengap heuristic” [4,19]. This heuristic provides a reli-
able estimate of the number of clusters (communities) in a graph. Many graph
clustering techniques that require the number of clusters as input rely on this
technique.

The eigengap heuristic consists of the following steps: (one connected com-
ponent case)

– compute eigenvalues of the normalized symmetric Laplacian matrix,
– sort the eigenvalues in ascending order, i.e., λ0 < λ1 ≤ . . . ≤ λN−1,
– the number of communities on the graph (K) is approximately equal to the

index at which the eigenvalues (of the Laplacian) display their first spike.

In other words, this heuristic tells us: if λi � λi+1 ⇒ K ≈ i (where, i ∈
{1, . . . , N − 1}) .

In our empirical experiments, we use PPM graphs with a known number of
blocks (i in the case above). To examine the sensitivities of the eigengap, we
compute the ratios

(
λi+1
λi

)
. (N.B.: in all our PPM graph examples, K = i is

known)

3.4 Graphs Under Consideration

While the ERG model is the prototypical random graph generative model, there
exist other models that yield less trivial structures. The Stochastic Block Model
(SBM) and a special case of it called the Planted Partition Model (PPM) [8,10,
11] are two such instances. These two models are often used to generate examples
of networks with community structure [10,11]. Indeed, such graphs are composed
of blocks (communities, clusters) of vertices that are densely connected while
only being sparsely connected to the remaining graph.

The PPM is a special case of the more general SBM. Under the SBM each
block of vertices has its own within-block edge probability, each block pair has
its own inter-block edge probability and blocks have varying numbers of vertices.
In the PPM, all blocks have the same number of nodes, while within-block and
between-block edge probabilities are fixed for all blocks and block pairs.

Vertex Degrees Under SBM. For an arbitrary vertex i belonging to a block
k containing nk nodes, the expected degree is

E(di) = Pk × (nk − 1)︸ ︷︷ ︸
expected intra-block edges

+
∑
m �=k

Pkm(nk × nm)

︸ ︷︷ ︸
expected inter-block edges

. (1)

Here, Pk denotes the probability that two arbitrary nodes in block k are con-
nected by an edge. Similarly, Pkm denotes the probability that an arbitrary
node in block k is connected to an arbitrary node in block m. (With, Pk > Pkm,
typically.)
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Vertex Degree Under PPM. For the remainder of this document, we will
use the following variable naming conventions to describe the PPM graphs:

– di = din
i + dout

i is the degree of a node i.
– di is the sum of connections to nodes within the same block (din

i ) and to
nodes in other blocks (dout

i ).
– Pin, Pout are the within/between-block edge probabilities,
– N is the total number of vertices,
– n is the number of vertices within any given block and, finally,
– K = N/n is the total number of blocks or partitions (under the PPM, all

blocks have the same number of nodes).

E(di) = Pin × (n − 1)︸ ︷︷ ︸
E(din

i )

+Pout × (N − n)︸ ︷︷ ︸
E(dout

i )

= Pin × (n − 1)︸ ︷︷ ︸
E(din

i )

+Pout × N

(
1 − 1

K

)

︸ ︷︷ ︸
E(dout

i )

(2)

In Eqs. 1 and 2, we clearly see how the (expected) degree of a vertex can be
partitioned. Degree can be understood as the cardinality of the union of a set
of connections to nodes within the same block and to nodes on the remaining
graph. We use this partition to examine the sensitivity of graph spectra to overall
degree, but also specific generative model parameters. Specifically, we examine
the relationships between spectra and graph size, block size and inter-block edge
probability. The analysis of these relationships is a useful tool in understanding
the applicability and limitations of spectral graph techniques. While we use the
PPM for its transparency, our conclusions reveal critical information about the
relationship between graph structures and spectra. This relationship transcends
generative models, because they study the links between graph structure (esp.
degree) and spectra.

4 Empirical Tests

To examine the sensitivity of graph spectra to graph size, block size and to
noise from increased inter-block edge probability, we conduct four sets of exper-
iments using the Planted Partition Model. In all experiments, we begin with a
graph with small block size, number of blocks or inter-block probability. We then
gradually increase these parameters and observe the effect on spectra. We stop
our sensitivity tests, when a pattern appears (or disappears, e.g., eigengap) in
the spectra. For completeness, we examine the spectra of both the symmetric
normalized Laplacian and adjacency matrices. While most studies of graph spec-
tra examine the normalized symmetric Laplacian (e.g., [6,19,24]), the adjacency
matrix remains the most basic matrix representation of a graph.
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In our experiments, growth in size occurs in two different ways. In the first
case, growth occurs in the sizes of blocks, while the number of blocks remains
constant. We start with a graph containing 50 blocks of five nodes each and
then expand to graphs with 50 blocks of 50 and 500 nodes. In the second case,
growth occurs in the numbers of blocks, while sizes of blocks remains constant.
We begin with a graph of five blocks of 50 nodes and expand to 50 blocks and
500 blocks of 50 nodes. These results are presented in Sect. 4.1. We also isolate
the effect of block size, within a fixed size graph. The goal of these numerical
experiments is to identify the (in)ability of spectra to detect the presence of
densely connected blocks of varying sizes, within a sparser graph with identical
characteristics (edge probability, number of blocks and overall size). These results
are presented in Sect. 4.2. In all the above-mentioned experiments, intra-/inter–
block edge probabilities are held constant (Pin = 0.9, Pout = 0.1).

Our last batch of experiments, is an examination sensitivity to edge prob-
ability. In these experiments, we generate PPM graphs with intra-block edge
probability of 0.9 but with varying inter-block edge probabilities. Here again, we
isolate the effect of block size. We begin by generating graphs with a relatively
large block size (n = 500) and relatively small number of blocks (K = 50).
We then repeat the same experiments with graphs containing a relatively large
number (K = 500) of relatively small (n = 50) blocks.

4.1 Sensitivity to Graph Size

In this first set of experiments, we vary graph size by increasing block size (n),
while keeping the number of blocks constant (K = 50). We compute the eigen-
values for the adjacency and normalized Laplacian matrices for graphs with:

– n = 5 ⇒ N = 5 × 50 = 250,
– n = 50 ⇒ N = 50 × 50 = 2, 500,
– n = 500 ⇒ N = 500 × 50 = 25, 000,
– Pin = 0.9, Pout = 0.1.

Results are shown in Fig. 1. The blue curve shows the (N − 1) non-zero eigen-
values, sorted in ascending order, for the graph with 250 nodes. The orange
curve shows the same, for the graph with 2, 500 nodes. Finally, the green curve
shows the eigenvalues of the graph with 25, 000 nodes. In order to focus on the
theoretical location of the eigengap, we adjust the x-axis accordingly.

In a separate set of experiments, we generate graphs with the same char-
acteristics as those in Fig. 1. We then record the range of eigenvalues and the
eigengap of the normalized Laplacian as the graph grows in size. Results are
reported in Table 1.

In our second set of experiments, we vary graph size by increasing the number
of blocks (K), while keeping the block size constant (n = 50). It has been argued
that this growth model is more realistic and consistent with real world networks
[17,23]. We compute the eigenvalues for the adjacency and normalized Laplacian
matrices for graphs with:
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(a) Adj mat (b) Lap mat

Fig. 1. Varying N , number of blocks is constant (K = 50) (blue 250 nodes, orange
2, 500 nodes, green 25, 000 nodes)

Table 1. Eigenvalue range, number of blocks is constant (K = 50)

N = 250 N = 2500 N = 25K

Min 0.66 0.83 0.86

Max 1.34 1.11 1.03

Eigengap (λi+1/λi) 1.00 1.05 1.12

– K = 5 ⇒ N = 5 × 50 = 250,
– K = 50 ⇒ N = 50 × 50 = 2, 500,
– K = 500 ⇒ N = 500 × 50 = 25, 000,
– Pin = 0.9, Pout = 0.1.

Results are shown in Fig. 2. Here too, in order to focus on the theoretical location
of the eigengap, we adjust the x-axis accordingly.

Once more, we also generate a new set of graphs with the same characteristics
as those in Fig. 2. We record the range of eigenvalues and the eigengap of the
normalized Laplacian as the graph grows in size. Results are reported in Table 2.

Table 2. Eigenvalue range, block size is constant (n = 50)

N = 250 N = 2500 N = 25K

Min 0.35 0.83 0.96

Max 1.16 1.11 1.04

Eigengap (λi+1/λi) 2.31 1.05 1.00

Results from all four experiments in this section highlight the relationships
between Laplacian eigenvalues and graph and block sizes. Our observations are
consistent with and extend prior work that has linked vertex degree and spectra
[5,27]. In particular, we isolate the effect of increases in graph and block sizes on
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(a) Adj mat, 250 nodes (b) Adj mat, 2500 nodes (c) Adj mat, 25K nodes

(d) Lap mat, 250 nodes (e) Lap mat, 2500 nodes (f) Lap mat, 25K nodes

Fig. 2. Varying N , number of blocks varies, block size constant (n = 50)

degree and, consequently, eigenvalues, as shown in Eqs. 1 and 2. Indeed, Fig. 1
and Table 1 reveal that while block size may remain a constant proportion of
graph size, blocks with a small number of nodes are undetectable. For example,
in the first column of Table 1 blocks have only five nodes. Meanwhile, in the third
column, blocks have 500 nodes. In the first column, no eigengap is detected, while
in the second and third columns, where blocks are larger in absolute terms,
a small eigengap is present. Nevertheless, we do note a significant monotonic
narrowing of the range of eigenvalues with increases in graph size.

The narrowing of the range of eigenvalues is marked even more in the case
of a graph with constant block size, as seen in Fig. 2 and Table 2. In these same
experiments, we also observe a vanishing eigengap with increases in graph sizes.
Here, it is important to note that these experiments follow a pattern of net-
work growth has been found to be more realistic and consistent with real world
networks [17,23]. Clearly, these results highlight the limitations of spectral tech-
niques in the case of large real world networks.

4.2 Sensitivity to Block Size

To further isolate the effect of block size, we keep the number of nodes constant
(N = 500), but vary block size (n ∈ {5, 10, 20}). Once again, we adjust the
x-axis to focus on the eigengap. Results are shown in Fig. 3.

Once again, we observe that smaller block sizes lead to increased unifor-
mity in eigenvalues. In fact, the eigengap is non-existent, except in the very last
experiment (n = 20).
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(a) Adj mat, n = 5 (b) Adj mat, n = 10 (c) Adj mat, n = 20

(d) Lap mat, n = 5 (e) Lap mat, n = 10 (f) Lap mat, n = 20

Fig. 3. Sensitivity to block size (n), graph size constant (N = 500)

4.3 Sensitivity to Inter-block Edge Probability

In this set of experiments, we keep the intra-block edge probability fixed
(Pin = 0.9). To simulate a noisy network, we vary inter-block edge probability
(Pout ∈ {0.1, 0.2, 0.3}). In the experiments shown in Fig. 4, the graphs contain
K = 50 blocks of n = 500 vertices. Meanwhile, for the ones in Fig. 5, the graphs
contain K = 500 blocks of n = 50 nodes. Arguably, this latter case is more rep-
resentative of real world networks, which typically have smaller blocks (clusters,
communities) [17,23]. In both figures, the blue curve represents the eigenvalues
of graph with Pout = 0.1, the orange curve is for a graph with Pout = 0.2 and the
green curve is for a graph with Pout = 0.3. Finally, as in Sect. 4.1, we also repro-
duce the experiments in our figures (Figs. 4 and 5) and record the eigenvalue
ranges and eigengap ratios. These results are shown is Tables 3 and 4.

Once again, these experiments highlight the link between degree and spec-
tra. Specifically, these experiments highlight the link between increases in Pout

(a) Adj mat (b) Lap mat

Fig. 4. Increasing inter-block edge probability (N = 25, 000, K = 50, n = 500) (blue
Pout = 0.1, orange Pout = 0.2, green Pout = 0.3)
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Table 3. Eigenvalue range, with increasing inter-block edge probability (N =
25, 000, K = 50, n = 500)

Pout = 0.1 Pout = 0.2 Pout = 0.3

Min 0.86 0.93 0.96

Max 1.03 1.02 1.02

Eigengap (λi+1/λi) 1.12 1.05 1.02

(a) Adj mat (b) Lap mat

Fig. 5. Increasing inter-block edge probability (N = 25, 000, K = 500, n = 50) (blue
Pout = 0.1, orange Pout = 0.2, green Pout = 0.3)

Table 4. Eigenvalue range, with increasing inter-block edge probability (N =
25, 000, K = 500, n = 50)

Pout = 0.1 Pout = 0.2 Pout = 0.3

Min 0.96 0.97 0.98

Max 1.04 1.03 1.02

Eigengap (λi+1/λi) 1.00 1.00 1.00

and consequently inter-block degree and spectra. In all experiments, we observe
narrowing eigenvalue ranges and vanishing eigengaps.

5 Conclusion and Future Work

In this article, we identify the limitations of spectral graph analysis. We show
that eigenvalues are sensitive to noise in connectivity and converge to uniformity
as graph size increases. This noise is a function of both block size and inter-
block edge probability. While we use the PPM to illustrate these sensitivities,
we argue that our conclusions extend to other generative models as well. Indeed,
vertex degree, edge probability and block (community) sizes are variables that
are present in all graphs with clustered structure, regardless of generative model.
Naturally, graphs with power law degree distributions are less sensitive to the
variations discussed in this paper. However, we reserve a detailed examination
of their spectra for future work.
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On the basis of our numerical experiments, we recommend against the use of
spectral techniques for large graphs or in cases where blocks (communities) are
expected to be small. Our future work will focus on identifying clear thresholds
for the applicability of spectral techniques.
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Abstract. Given the rising prevalence of disinformation and fake news
online, the detection of fake news in social media posts has become
an essential task in the field of social network analysis and NLP. In
this paper, we propose a fake detection model named, FakEDAMR
that encodes textual content using the Abstract Meaning Representation
(AMR) graph, a semantic representation of natural language that cap-
tures the underlying meaning of a sentence. The graphical representation
of textual content holds longer relation dependency in very few distances.
A new fake news dataset, FauxNSA, has been created using tweets from
the Twitter platform related to ‘Nupur Sharma’ and ‘Agniveer’ polit-
ical controversy. We embed each sentence of the tweet using an AMR
graph and then use this in combination with textual features to clas-
sify fake news. Experimental results on publicly and proposed datasets
with two different sets show that adding AMR graph features improves
F1-score and accuracy significantly. (Code and Dataset: https://github.
com/shubhamgpt007/FakedAMR)

Keywords: Fake News Detection · Machine Learning · AMR
Network · Network Embedding

1 Introduction

Social media became essential for communication and information sharing. How-
ever, news shared over social media platforms lacks cross-referencing, allowing
the spread of misinformation. Interestingly, it appears that the rate at which fake
news is shared on Twitter exceeds that of genuine news [18]. Figure 1 presents
some examples of fake news that spread through various media platforms, includ-
ing Twitter. Many ML/DL methods were proposed to identify fake news from
social media [7]. These existing methods focused on syntactic features and did
not investigate how semantic features of news content affect ML models. How-
ever, complex semantic features are seen to improve the performance of different
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1141, pp. 308–319, 2024.
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NLP tasks such as event detection [6], abstractive summarization [14], and ques-
tion answering [13] in machine learning. Considering this one may ask “Does
incorporating complex semantic features of sentences enhance the performance
of fake news detection models too?”

Fig. 1. Examples of false information related to topics ‘Nupur Sharma’ and ‘Agniveer’
controversy showcased in the images (Courtesy: Boomlive). The images depict various
misleading claims, including a) Russia, Netherlands, France and 34 other countries
are supporting India and Nupur Sharma. b) Nupur Sharma is arrested and in jail. c)
Oppressors are damaging the railway line in the protest of Aginveer scheme.

The present study proposed a fake news detection model, FakEDAMR, that
classifies tweets as genuine and fake information, by introducing graph-based
semantic features with syntactic and lexical features of the sentences. The main
contribution of our work is to use deep semantic representation from the features
of the Abstract Meaning Representation (AMR) graph. AMR helps to better
extract the relationships between entities far apart in the text with minimum
cost. This approach reduces the emphasis on syntactic features and collapses
certain elements of word category, such as verbs and nouns, as well as word
order and morphological variations. To the best of our knowledge, this research
rigorously investigates the semantic features of Abstract Meaning Representation
(AMR) graphs in comparison to other studies focused on identifying fake news.
We curated a fake news dataset, namely, FauxNSA, related to the well-known
controversies Nupur Sharma and Agniveer in India. Tweets with a list of curated
hastags (Table 1) on said topics are collected from the Twitter platform, in two
different languages - Hindi and English. We extracted AMR graphs from each
text document by using STOG model [24]. We encoded AMR graphs using graph
embedding and combined them with the syntactic features of the text used
in state-of-the-art model [22]. Finally, the resulting embedding vector, which
includes both semantic and syntactic features, is fed into a deep-learning model
to predict the probability of fake and real. We have experimented with our model
on two publicly available datasets (Covid19-FND[19], KFN[12]) and FauxNSA.
Our experiments demonstrated an improvement in accuracy of 2–3% over all
the datasets when the AMR graph features were included with existing textual
features in the model.

The rest of the paper is organized as follows: Sect. 2 reports the related
work. Section 3 and 4 describe the working methodology and experimental setup.
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Section 5 reports the results with comparative analysis. Ablation study is pre-
sented in Sect. 6. Finally, Sect. 7 concludes the research outcome.

2 Related Work

Fake news detection has been extensively studied recently using Natural Lan-
guage Processing. Oshikawa et al. [16] clarify the distinction between detect-
ing fake news and related concepts, including rumor detection, and provide an
overview of current data sets, features, and models. As mentioned in the intro-
duction, Castillo et al. [3] created a set of 68 features in the identification of
false information. They used a propagation tree over the feature set to identify
whether the news is false or not. An extension to the lexical-based analysis model
is used in [15] by incorporating speaker profile details into an attention-based
long short-term memory (LSTM) model. Zervopoulos et al. [23] created a set
of 37 handcrafted features that includes morphological (e.g., part of speech),
vocabulary (e.g., type-to-token ratio), semantic (e.g., text and emoji sentiment),
and lexical features (e.g., number of pronouns) to predict the false news using
traditional ML algorithms. Further, in 2022 [22], they have extended the research
to run different feature sets with complex deep learning models.

AMR is a graph-based representation of natural language that accurately
captures the complex semantics of a sentence in a way that is both language-
independent and computationally tractable. A growing number of researchers
are investigating how to use the information stored in the AMR graphs and its
representations to assist in the resolution of other NLP problems. AMR has been
successfully applied to more advanced semantic tasks such as entity linking [17],
question answering [13], and machine translation [10]. Garg et al. [5] were the first
to employ AMR representation for extracting interactions from biomedical text,
utilizing graph kernel methods to determine if a given AMR subgraph expresses
an interaction. Aguilar et al. [1] and Huang et al. [8] had conducted research and
indicated that the semantic structures of sentences, such as AMR introduced in
[2], encompass extensive and varied semantic and structural information concern-
ing events. AMR graphs in Fake News detection has been relatively unexplored,
however, considering its capability to determine the trigger words by extracting
complex semantic information, AMR graphs have the potential to improve the
efficiency of existing fake news detection methodologies. Recently, Zhang et al.
[25] extracted fact queries based on AMR to verify the factual information in
multimodality. Some evidence-based GNN fake news detection models [4,9,21]
are also proposed for misinformation detection.

3 Methodology

The methodology in this study is divided into two parts: 1) curation of the
proposed data set FauxNSA, and 2) fake news detection model FakEDAMR.
Figure 2 shows the methodology, and the description of each step is provided in
the following sections.
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Fig. 2. Structural outline of proposed fake news detection methodology.

Table 1. List of curated hashtags used to scrap tweets from Twitter platform.

Category Hashtags

Nupur Sharma Controversy #NupurSharmaControversy, #Jamamasjid,
#Nupur Sharma, #NupurSharma, #HinduRashtra,
#HindusUnderAttack, #SarTanSeJuda, #KanahiyaLal,
#NupurSharmaBJP, #IsupportNupurSharma

Agniveer Controversy #AgnipathRecruitmentScheme, #Agnipath, #Agniveer,
#AgnipathProtests

FauxNSA: Fake News Dataset on Nupur Sharma and Agniveer Dis-
pute

Fake news dataset The data set was gathered from the Twitter platform between
May and September 2022 using the Twitter Academic API’s full-archive search
over the political controversy ‘Nupur Sharama’ and ‘Agniveer’. This controversy
holds the data related to religion, political, and terrorist issues. The method-
ology to collect the tweets can be broken down as follows. First, a list of
curated hashtags mentioned in Table 1 related to the topics ‘Nupur Sharama’ and
‘Agniveer’ controversy is manually constructed. Tweets were captured through
Twitter API consisting of at least one hashtag from the list. Total 31,889 tweets
including 31 features such as account information (display name, # of follow-
ers), tweet information (text, hashtag, URLs), and network information (quote,
like, reply) are collected. We used popular fact-checking websites such as Boom-
Live1, NewsChecker2, AltNews3, etc. to annotate the data for fake news which
were then manually searched over various social media platforms and carefully
annotated by two human annotators. We have also collected tweets from the
42 verified fact-checker Twitter accounts (PIBFackCheck, ABCFactCheck, etc.)
from Twitter platform. Subsequently, this comprehensive approach ensures the

1 https://www.boomlive.in/.
2 https://newschecker.in/.
3 https://www.altnews.in/.

https://www.boomlive.in/
https://newschecker.in/
https://www.altnews.in/
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reliability and credibility of the data used in our study. After performing all the
filtering process, we have 4632 tweets that are fake news.

Real news dataset In the collection of real news, we have used the same approach
discussed in [22]. That is, we have considered journalists and news agency as
trustworthy source and collected tweets related to topics Nupur Sharama and
Agniveer controversy. Overall, the account of 34 news agencies4 and 82 account
of journalists5 with a global outreach are identified and gathered. Total 4657
tweets are collected and verified with the human annotators to make data set
for the real news. Figure 3 shows the word cloud of the collected true and fake
data for Hindi and English languages. We can observe from that all the keywords
are related to ‘Nupur Sharama’ and ‘Agniveer’ controversy only. After gathering
tweets from news agencies, journalists, and fake news sources, a comparison of
their characteristics was made to determine their similarities. Specifically, the
average number of hashtags per tweet was found to be 2.95 in the fake news
data set, 3.12 for tweets posted by journalists, and 2.7 for those posted by news
agencies. Additionally, the mean number of URLs per tweet was found to be
0.42 in the fake news data set, 0.55 for tweets posted by journalists, and 1.18
for those posted by news agencies. The statistics show that collected data from
all the sources shows almost similar properties. Finally, the data set consists of
9289 tweets with 4632 fake and 4657 real tweets.

Fig. 3. Frequency word clouds of a) fake and b) true tweets collected from Twitter
over ‘Nupur Sharama’ and ‘Agniveer’ controversy.

3.1 FakEDAMR: Fake nEws Detection Using Abstract Meaning
Representation

Proposed model, FakEDAMR, takes preprocessed text as input and predicts
whether the text document is real or fake. FakEDAMR comprises three primary
components:

Text Encoder. Research in the field of Natural Language Processing (NLP) has
long focused on effectively representing sequential data. In line with previous
studies, we have employed two different approaches to encode the sequence of

4 https://www.similarweb.com/top-websites/india/news-and-media/.
5 https://www.listofpopular.com/tv/top-journalist-of-india/.

https://www.similarweb.com/top-websites/india/news-and-media/
https://www.listofpopular.com/tv/top-journalist-of-india/


FakEDAMR 313

Fig. 4. Process flow of AMR Network Encoder: Text-to-Graph Conversion, RDF
Triplet Extraction, and Graph Embedding Generation.

tokens. The first approach involves the use of handcrafted features, consisting of
37 specific features outlined in [22]. The second approach utilizes GloVe embed-
ding [20], which is pre-trained using a Twitter-based corpus comprising 27 billion
tokens. This embedding maps each word to a d-dimensional vector. Mathemat-
ically, the cost function of the GloVe embedding for a word in a word sequence
(represented as w =< w1, ..., wk >) can be expressed as follows:

J =
V∑

p,q=1

f (Npq)
(
wT

p w̃q + bp + b̃q − logNpq

)2

(1)

Here, f (Npq) is a weighting function, wT
p is a context word vector and w̃q is

out of context word vector and bp, b̃q are bias terms. In Eq. 1, bias terms are
also learned along with weight vector. Finally, we get the text embedding vector
t = ([ti]

i=d
i=1; ti ∈ R

1×m), where d is the fixed dimension and m is the maximum
number of tokens.

AMR Encoder. It is important to understand the complex semantics of the sen-
tences which is not explored much in previous work on fake news. We use AMR
graphs for the same. AMR is a sembanking language that utilizes a rooted,
directed, labeled, and mostly acyclic graph structure to capture the complete
meanings of sentences. It employs multi-layer linguistic analysis techniques,
including PropBank frames, non-core semantic roles, co-reference, named entity
annotation, modality, and negation, to express the semantic structure of a sen-
tence. AMR graph is composed of nodes representing semantic concepts such
as entities, events, and attributes, and edges represent the relationships between
those concepts, labeled with semantic roles such as agent, patient, location, time,
and manner. Our approach involves several steps to generate an AMR graph
from each text document (Fig. 4) and extraction of RDF (Resource Description
Framework) triplets from the generated AMR graph. These triplets are repre-
sented in the form of (subject, relation, object). Subsequently, we create a final
graph using the extracted edges from the RDF triplets. Finally, we fed this con-
verted graph into the Graph2Vec model to obtain the AMR graph embedding.
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The AMR graph conversion process of each text in the document utilizes
STOG model [24]. STOG model breaks down the sequence-to-graph task into
two main components: node prediction and edge prediction.

In node prediction, the model takes an input sequence w =< w1, . . . , wk >,
where each word wa is part of the sentence. It sequentially decodes a list of nodes
v =< v1, . . . , vk > and assigns their indices i =< i1, . . . , ik > deterministically
using the equation:

P (v) =
k∏

a=1

P (va | v<a, i<a, w) (2)

For edge prediction, given an input sequence w, a list of nodes v, and indices
i, the model searches for the highest scoring parse tree y within the space Y of
valid trees over v, while adhering to the constraint of i. A parse tree y represents
a collection of directed head-modifier edges, depicted as:

y = {(va, vb)|1 ≤ a, b ≤ k} (3)

To efficiently find the highest scoring parse tree (i.e., maximum spanning
arborescence), the model utilizes a scoring mechanism used in [11].

parse(v) = arg max
y∈Y(v)

∑

(va,vb)∈y

score (va, vb) (4)

After obtaining the parse tree, the model proceeds with a merging operation
to reconstruct the standard Abstract Meaning Representation (AMR) graph
by combining nodes that share identical indices. Once we have the AMR tree
denoted as y, we extract the RDF triplets from it. These triplets are represented
as t = {(v1, r1, v2), . . . , (vk−1, rj , vk)}. Each triplet consists of a subject va, a
concept rk, and an object vb.

Using the extracted RDF triplets, we construct the final graph denoted as
g = (v, e, r). Here, v represents the set of vertices, specifically v = {v1, . . . , vk},
r corresponds to the set of concepts obtained from the RDF triplets, i.e., r =
{r1, . . . , rj}. Lastly, e represents the set of edges in the graph, which is defined
as e = {(va, rj , vb)|∃va, vb ∈ v andrj ∈ r}. In other words, the edges in e connect
the vertices va and vb using the relation rj . This process of extracting RDF
triplets and constructing the final graph enables the representation and analysis
of the AMR graph, capturing the semantic relationships between entities and
facilitating further processing and interpretation.

Afterward, a list of graph G, where each graph g ∈ G represents one text,
is passed as input to the Graph2Vec model, specifically the skip-gram model, to
obtain the final embedding. The Graph2Vec model processes the AMR graph and
generates embeddings by considering the graph structure and the relationships
between its elements. The resulting embedding is obtained from the last hidden
layer of the model, capturing the learned representation of the AMR graph in a
vector form. Finally, we get the graph embedding vector u = ([ui]

i=d
i=1; ui ∈ R

n×1),
where d is the fixed dimension and n is number of sentence in the document.
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Classification Layer. After getting the text embedding t(m×d) and graph embed-
ding u(n×d), we get final embedding x by Eq. 5, where | represents concatenation:

x = (t(m×d) | u(n×d))(m+n)×d
(5)

Finally, BiLSTM model is used as classification layer to identify tweets in
fake or real news using the prepared feature embedding x.

ft = sigmoid (Wfxxt + Wfhht−1 + bf ) (6)
it = sigmoid (Wixxt + Wihht−1 + bi) (7)
ct = ct−1 � ft + it � tanh (Wcxxt + Wchht−1 + bc) (8)
ot = sigmoid (Woxxt + Wohht−1 + bo) , ht = ot � tanh (ct) (9)

Where xt ∈ R
n×d is the input vector, W ∈ R

l×n, b ∈ R
v and the superscripts

n and l depict the dimension of the input vector and the number of words in the
dataset or vocabulary at any time t, respectively. For an input vector xt, ht−1

and ct−1 are previously hidden and cell state, whereas the current hidden and
cell state ht and ct. The above output represents the LSTM network. Finally,
output of the BiLSTM can be summarized by concatenating the forward and
backward state as ht =

[−→
h t,

←−
h t

]
. At the output layer, it employed binary cross-

entropy as the loss function to identify probability of true label p(yi) for real/fake
classification.

4 Experimental Setup

Dataset: Other than our dataset, we have also used two publicly available
datasets Covid-FND [19] and KFN [12] for our experiments. Covid-FND dataset
consists social media posts and articles related to COVID-19 and KFN dataset
includes 20,387 news items which spans the fields of politics, commerce, and
technology, contains an evenly distributed mix of real and fake news pieces.
Statistics of the data used in our experiments is given in the Table 2.

Table 2. Distribution of data for: a) Covid19-FND, b) KFN, and c) FauxNSA (ours)

Dataset Covid19-FND KFN FauxNSA

# Real 5100 10387 4657

# Fake 5600 10413 4632

# Total 10700 20800 9289

Implementation Details: We have developed and tested our code in Keras
(Python library). We partitioned each data set into training, validation, and
testing sets, following a 70:20:10 split. This approach maintains the proportional
representation of classes within both the train, validation, and test sets, enabling
a robust evaluation of the model performance across various data sets. We have
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used basic preprocessing, like removing URLs, stopwords, etc., on each text doc-
ument of the data set. We have incorporated AMR graph features on the feature
sets proposed by [22]. They used two feature sets: Feature-set 1 adopts a fea-
ture engineering approach, where the chosen features are hand-crafted, includ-
ing various categories such as morphological, vocabulary, and lexical features.
Feature-set 2 employs tokenization of each tweet’s text and conversion into word
embedding. GloVe embedding [20], pre-trained with a Twitter-based corpus of
27 billion tokens, is used to map each word to a 100-dimensional vector. Despite
each word being mapped to a fixed-size vector, tweet length still varies; to address
this issue, post-padding (i.e., padding at the end of a tweet) is used to match the
longest tweet (approximately 100 tokens). Therefore, a tweet in Feature-set 2 is
presented as a 100 × 100 matrix. Although the size of Graph2Vec can vary based
on the length of the AMR graph, we have fixed the dimension to 100, considering
the length of the tweet is fixed in the Twitter platform. We evaluated Feature-
set 1 on Naive Bayes, SVM, C4.5, random forests, and Feature-set 2 on CNN,
C-LSTM, and BiLSTM. For the purpose of training each model on the data sets,
we carried out three distinct trials with various seed values. The performance
metric was then generated using the test data set findings, taking into account
the best-performing trial. Four performance metrics, namely, Precision, Recall,
F1-score, and Accuracy are considered for comparative study. Model configura-
tion, such as the number of hyper-parameters and number of layers used in the
model, is kept the same as in the research [22].

Table 3. Comparison of the performance of different models on Feature-sets (FS) 1
and 2 for datasets Covid19-FND, KFN, and FauxNSA (ours).

Model Feature-set Covid19-FND KFN FauxNSA

Precision Recall F1 Accuracy Precision Recall F1 Accuracy Precision Recall F1 Accuracy

Naive Bayes FS1 76.06 67.81 71.67 71.55 67.25 79.90 73.03 69.42 82.19 80.85 81.51 80.11

FS1+AMR 78.83 66.93 72.39 72.58 67.46 79.59 73.10 70.13 84.41 82.06 83.21 80.81

SVM FS1 82.05 81.47 81.76 80.71 85.91 83.80 84.84 83.71 84.58 82.87 83.71 84.35

FS1+AMR 81.70 82.39 82.04 82.24 85.66 83.84 84.73 84.65 83.71 83.63 83.67 85.31

C4.5 FS1 81.94 79.57 80.74 79.85 80.81 79.56 80.18 80.28 86.08 83.16 84.59 83.32

FS1+AMR 82.70 80.04 81.34 80.03 81.42 80.87 81.14 81.67 87.64 83.47 85.50 86.04

Random Forest FS1 86.01 90.02 87.96 88.26 88.86 84.89 86.83 86.92 87.37 84.05 85.67 86.35

FS1+AMR 86.25 91.28 88.69 89.48 88.90 85.12 86.70 87.09 87.72 84.21 85.92 88.90

CNN FS2 91.16 91.30 91.20 91.21 91.74 91.27 91.50 91.52 89.25 84.35 86.34 89.64

FS2+AMR 92.65 92.75 92.69 92.71 92.42 92.18 92.29 92.11 90.14 89.99 90.06 92.10

C-LSTM FS2 91.49 91.46 91.47 91.51 91.58 91.58 91.57 91.57 91.61 86.13 88.34 91.11

FS2+AMR 92.87 92.93 92.90 92.95 93.38 93.28 93.23 93.24 91.85 88.68 90.23 91.89

BiLSTM FS2 91.55 91.71 91.54 91.55 92.44 92.40 92.41 92.36 90.60 86.83 88.45 91.12

FS2+AMR 93.43 93.08 93.20 93.26 93.55 93.54 93.52 93.52 92.25 91.67 91.96 93.96

5 Results

We evaluated the performance of AMR with different feature sets on different
ML/DL algorithms. Table 3 presents the comparison results of different models.
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It is evident that incorporating AMR semantic features into the feature sets sig-
nificantly improves the performance of the models. Among the models evaluated
using Feature-set 1, Random Forest with AMR-encoded feature sets achieves the
highest accuracy of 88.90% and an F1-score of 85.92% on the FauxNSA (pro-
posed) dataset. Furthermore, it also achieves the highest accuracy of 89.48% and
87.09%, along with F1-scores of 88.69% and 86.70%, on the publicly available
datasets Covid19-FND and KFN, respectively.

BiLSTM with AMR-encoded features outperforms other models in the case
of Feature-set 2. The model achieved an accuracy of 93.96% and an F1-score
of 91.96% on our data set. Similar performance is observed on the other two
publicly available data sets as well, where the accuracy and F1-scores of 93.26%
and 93.20% on Covid19-FND, and 93.52% and 93.52% on KFN, respectively, are
achieved.

6 Ablation Study: Effect of AMR Graph Features

We conducted an investigation to understand why AMR features enhance the
accuracy of the model. To provide evidence for our hypothesis, we visualized the
features of the concatenation layer in the model, which merges the AMR features
with textual features. In our experiment, we randomly selected three samples
each from three datasets that demonstrated improved prediction accuracy when
using both textual and AMR features compared to using only textual features
in the model. Figure 5 clearly illustrates the impact of AMR features on the
model’s performance. It shows that the AMR creates a distinct and decisive
boundary which helps the model to understand and create a boundary between
target classes.

Fig. 5. Comparative analysis of AMR and text features in three datasets: Covid19-
FND, KFN, and FauxNSA. Graph is plotted for three correct predicted samples by
model where x-axis represents the feature index and y-axis represents its corresponding
value.
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7 Conclusion

In this paper, we show that detecting fake news requires a more sophisticated
understanding of the semantic relationships between trigger words and entities
in the text. We demonstrated how Abstract Meaning Representation (AMR)
graph improves the fake news detection model and we concluded that semantic
features are just as important as linguistic and syntactic features for identifying
fake news in posts. In the future, we are exploring way to embed AMR graphs
with pre-trained transformer-based models such as Bert, XLM-Roberta, Electra,
etc. Also, we are interested in exploring more ways to encode AMR knowledge
in order to increase the performance of existing fake news models.
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Abstract. This paper addresses the critical task of evaluating the visual
quality of triangular mesh models. We introduce an innovative approach
that leverages weighted graphs for this purpose. Motivated by the grow-
ing need for accurate quality assessment in various fields, including com-
puter graphics and 3D modeling, our methodology begins by generating
saliency maps for each distorted mesh model. These models are sub-
sequently transformed into a network representation, where mesh ver-
tices are nodes and mesh edges are edges in the graph. The determina-
tion of vertex weights relies on the salience values. We then extract a
wide range of topological properties and compute statistical measures
to create a signature vector. To predict the quality score, we rigorously
evaluate the performance of three regression algorithms. Experiments
span four publicly available databases designed for mesh model qual-
ity assessment. Results demonstrate that the proposed approach excels
in this task, showcasing remarkable correlations with subjective evalu-
ations. This preliminary analysis paves the way for further research to
address potential limitations and explore additional applications of mesh
network representation.

Keywords: Weighted graph · topological properties · statistical
measures · quality assessment · triangular mesh · saliency

1 Introduction

Recently, the utilization of 3D models has expanded significantly across various
application domains, including virtual and mixed reality, computer-aided diag-
nosis, architecture, and cultural heritage preservation. However, processing these
3D models through operations like simplification and compression introduces the
potential for various distortions that can adversely affect the visual quality [1,2].
Addressing this issue, there is a growing demand for the development of robust
methods to assess perceived quality.

Traditionally, assessing distortion levels in 3D models has relied on human
observers, a time-consuming and resource-intensive endeavor. To streamline this
process, objective methods have emerged as a practical solution. These meth-
ods involve the implementation of automated metrics that aim to replicate the
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judgments of an ideal human observer [3]. These metrics generally fall into three
categories: full reference [4–7], reduced reference [8–10], and blind methods [11–
14]. Among these, blind methods, which do not rely on reference models, have
gained particular significance, especially in real-world applications.

3D meshes are very complex structures consisting of vertices, edges, and faces
that collectively shape a 3D model. Selecting an appropriate data structure to
represent this extensive volume of data and relationships is paramount. It’s worth
noting that the effectiveness of any quality assessment method greatly relies on
the chosen data structure.

Graphs stand out as remarkably versatile data structures, capable of intu-
itively representing 3D triangular meshes. The degree of connectivity between a
vertex and its neighboring vertices provides valuable insights into the perceptual
characteristics of a mesh. Additionally, the geometric structure of a mesh can be
effectively described in terms of the network’s topological properties. The appli-
cation of graph representations has yielded considerable success in addressing
various challenges in computer vision, including tasks like image segmentation
[15–17], classification [18–20] and denoising [1,21].

Nevertheless, it is noteworthy that the literature contains relatively few
studies that have delved into assessing 3D mesh quality using graph-based
approaches. Lin et al. proposed a novel method that relies on learning the graph
spectrum’s entropy and the mesh’s spatial characteristics, as described in [22].
Similarly, Abouelaziz et al. introduced the concept of convolutional graph net-
works to estimate mesh quality, as proposed in [23]. These two methods, although
distinct in their approaches, share a common limitation in that they separately
learn the geometric and perceptual attributes without integrating them into the
weighted graph construction process.

In this context, we present a novel approach in this paper to assess the
visual quality of 3D meshes. Our proposed approach relies on a weighted graph
constructed from the geometric coordinates and the saliency values of the mesh
vertices. Subsequently, the graph’s characteristics are trained with a machine
learning-based regression method to forecast the quality score.

The remainder of this paper is organized as follows. We present in Sect. 2
a description of the proposed method. Section 3 is devoted to the experimental
results. Finally, we present some concluding remarks and perspectives in Sect. 4.

2 Proposed Method

A common representation of a 3D mesh object uses polygonal or triangular
meshes. In the case of a triangular mesh denoted as M, it can be defined as a
triple M = (V, E , T ). Here, V = v1, ..., vk represents the set of vertices, E = eij

represents the set of edges, and T = t1, ..., tn represents the set of triangles.
Our approach primarily relies on extracting geometric and perceptual features
from fundamental mesh components, including vertices, edges, and triangles. We
start by computing the saliency map for each mesh. Next, we transform the 3D
mesh into a weighted graph. Then, we determine the topological characteristics
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Fig. 1. The overall scheme of the proposed method

of the graph. Based on these findings, we derive signatures for each mesh by
computing statistical parameters related to these properties. These resultant
signatures serve as inputs for the regression module, enabling us to predict the
quality score. In this study, we opted for three regression methods: Random
Forest, Support Vector Regression, and Generalized Regression Neural Networks
due to their proven utility and appropriateness for learning-based applications.

2.1 3D Mesh Saliency

Saliency is a perceptual concept that describes the attention of our HVS to
some regions due to its specificities (curvature, orientation and so on). This work
employs mesh visual saliency to compute the graph weights using the method
proposed in [24]. The first step to obtain the mesh saliency is to compute the
mean curvature at mesh vertices. After that, fine and coarse Gaussians filter the
mean curvatures. The saliency is obtained by computing the difference between
the filtered mean curvatures within different scales. Finally, a non-linear normal-
ization sum of all the multi-scale saliency maps is applied to compute the final
map.

2.2 Weighted Graph Representation of 3D Mesh

Weighted graphs can be derived from mesh descriptions for geometrical domains.
An enormous amount of literature exists on techniques for mesh generation and
manipulation. These structures find widespread use in computer graphics and
computer vision applications. The main concept here relies on graphs represent-
ing 3D triangular meshes, enabling us to leverage graph properties to develop a
model-based approach to evaluate visual quality without bias.

A graph, denoted as G = E, V , representing a triangular mesh, undergoes
a straightforward transformation. In this transformation, mesh vertices become
graph nodes (V ), and mesh edges become graph edges (E).

Additionally, we introduce the concept of weighted graphs. A weighted graph,
represented as G = E, V, ω, comprises a set of nodes (V ), a set of edges (E),
and a weight function (ω(e)) that assigns a positive weight to each edge (e =
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(u, v) ∈ E). The weight function is defined as follows:

ω(u, v) =

{
dist(u,v)+r2 ‖S(u)−S(v)‖

L

2r2 dist(u, v) ≤ E

0 otherwise
(1)

Here, dist(u, v) represents the Euclidean distance between vertices u and v at
a radial distance r from either u or v. L is the maximum value of saliency at a
radial distance r from either u and v. S(.) is the saliency value of a vertex.

Associated with the weighted graph G is its adjacency matrix A, defined as:

A(u, v) =

{
ω(u, v) ∀(u, v) ∈ E

0 otherwise
(2)

2.3 Graph Local Characteristics

The topological measures provide valuable insights into the structural properties
of a graph and can be used to analyze and understand the characteristics of
various types of networks. Here, we will focus on local topological measures of a
graph that characterize the properties of individual vertices.

For each mesh, we derive a topology-based features vector TF which is
expressed as:

TF = {d,dc, cc} (3)

where d, dc, and cc are the degree, centrality, and clustering coefficient vectors
for mesh mesh-weighted graph, respectively.

Degree: The fundamental and most basic metrics of graphs are the vertex
degree. In a weighted graph, the degree of an individual vertex, denoted as d(v),
is explicitly characterized as the summation of the weights associated with all
edges connected to it.

d(v) =
∑

u∈V \{v}
w(u, v) (4)

Where V \{v} denotes the neighboring set of the vertex v.

Degree Centrality: This metric assigns an importance score solely determined
by the count of links each node holds. In other words, it is the percentage of the
network that the particular node is connected to meaning being similar to.

dc(v) =

∑
u∈V \{v} w(u, v)∑
(i,j)∈E

w(i, j)
. (5)

That means that the higher the degree centrality of a node is, the more edges are
connected to the particular node and thus the more neighbor nodes this node
has.
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The Clustering Coefficient: This measure of a node is defined as the proba-
bility that two randomly selected similar nodes of are nodes with each other. It
is defined by:

cc(v) =
1

d(v)(d(v) − 1)
∑

u,h

w(u, v) + w(v, h)
2

∗
A(u, v)A(v, h)A(u, h)

(6)

As a result, the average clustering coefficient is the average of clustering coeffi-
cients of all the nodes. The closer the average clustering coefficient is, the more
complete the graph will be because there is just one giant component.

2.4 Statistical Parameters Estimation

The histogram is a precise and straightforward representation that imparts rel-
evant statistical insights into the network structure. Here, we propose using
a statistical distribution known as the Gamma distribution to infer statistical
parameters. This approach facilitates the reduction of extensive training datasets
into smaller subsets. As a result, we can readily use the estimated model param-
eters instead of the voluminous training data. The parameters are estimated
using the maximum likelihood (ML) method. A random variable x conforms to
the Gamma distribution with shape parameter α and scale parameter β if it
satisfies the following probability density equation:

p(x;α, β) =
β−αxα−1

Γ (α)
exp

(
−x

β

)
0 < x < ∞ (7)

Where Γ (.) denotes the Gamma function.
The estimated parameters are then employed as input feature vectors for

the regression module that will be used for the learning and the quality score
estimation. The final statistical measure vector SM is a concatenation of degree
statistics SMd, degree centrality statistics SMdc and clustering coefficient statis-
tics SMcc of the mesh network. For example, SMd is defined by:

SM = {α̂d, β̂d, α̂dc, β̂dc, α̂cc, β̂cc} (8)

where b̂d, θ̂d, b̂dc, θ̂dc, b̂cc, θ̂cc are the estimated Gamma parameters of the proba-
bility density function of the mesh network, respectively.

2.5 Feature Learning and Regression

In this work, we compare the performances of three machine learning-based
methods regression algorithms( Random Forest (RF), Support Vector Regres-
sion (SVR), and Generalized Regression Neural Network (GRNN)) to forecast
an intermediate quality score through leave-one-out cross-validation (LOOCV).
This entails constructing a training regression model using all 3D objects in
the repository, excluding one object and its distorted variants at a time. The
omitted subset is subsequently employed as the test set, using the established
regression model. This iterative procedure is performed for each 3D object within
the repository.
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3 Experimental Results

This section deals with our experimental methodology, including the studied
databases, the evaluation criteria, and a brief overview of the results obtained
through comparison with the latest state-of-the-art methods.

3.1 Datasets

The goal of mesh visual quality assessment is to provide quality predictions
correlated with the human observer’s opinions, named the mean opinion score
(MOS). Therefore, a dataset of distorted meshes graded by human observers is
needed to evaluate the algorithms. As the meshes’ geometric aspect significantly
influences the evaluation process, care must be taken when choosing the dataset.
It must contain meshes that reflect adequate diversity in their content, and
generated distortions should reflect a broad range of mesh degradation. The
experiments and tests are conducted on four datasets. These databases, specially
designed for quality metrics evaluation, are made of original and distorted mesh.
Figure 2 shows the reference objects of the four databases briefly described below.

Fig. 2. The reference models from: the LIRIS masking database (a) the general-purpose
database (b) and the UWB compression database (c) and the IEETA simplification
database (d).
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– LIRIS/EPFL General-Purpose database [25]: This database contains four
reference meshes and 84 distorted models (88 models in total). Two types of
distortion are applied on the reference mesh: smoothing and noise addition
either locally or globally.

– LIRIS Masking database [26]: This database comprises four reference meshes
and 24 distorted models with local noise addition. This database’s specific
objective is to test the ability of MVQA methods in capturing the visual
masking effect.

– UWB compression database [10] includes five reference models and 63 dis-
torted models. From Twelve to thirteen distorted versions, obtained by a
compression algorithm, are associated with each reference model.

– The IEETA simplification database [27] comprises 35 models: five reference
meshes and six simplified models for each reference mesh. The simplified
models are obtained using three simplification algorithms with two different
vertex reduction ratios.

3.2 Evaluation Criteria

To evaluate the obtained predicted MOS and the MOS provided by the database.
We used the following two criteria that are Pearson Linear Correlation Coef-
ficient (PLCC) to measure the prediction monotonicity and Spearman Rank-
Order Correlation Coefficient (SRCC) to measure the prediction accuracy. A
better correlation with human visual system perception a value close to one for
PLCC and SRCC. These measures are defined as follows:

PLCC =
∑n

i=1(Qsi − Q̄s)(MOSi − ¯MOS)√∑n
i=1(Qsi − Q̄s)2

√∑n
i=1(MOSi − ¯MOS)2

(9)

SRCC = 1 −
∑n

i=1(rank(MOSi) − rank(Qsi))2

n(n2 − 1)
(10)

where n denotes the number of distortions in a given database. The mean opinion
scores in the database are defined by MOSi, and Qsi is the objective quality score
obtained by a given method. MOS and Qs are the mean values of MOSi and
Qsi, respectively.

3.3 Effect of Weighting Graph

We begin our analysis by highlighting the influence of saliency on quality
score prediction, drawing a comparison between the proposed method and the
unweighted graph-based method. Then, we also assess the usefulness of regres-
sion techniques in predicting quality scores. To achieve this, we evaluate three
distinct regression algorithms: Support Vector Regression (SVR), Random For-
est (RF), and Generalized Regression Neural Network (GRNN).

Table 1 presents the PLCC and SRCC correlation coefficients achieved by
these algorithms on the four databases. Notably, our results demonstrate a sig-
nificant performance advantage for methods utilizing weighted graphs over those
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relying on unweighted graphs across all mesh types and entire datasets. Regard-
ing regression methods, we observe substantial disparities between RF as com-
pared to SVR, and GRNN. In summary, the most effective combination emerges
as the one employing the RF regression method within the framework of weighted
graphs.

3.4 Comparison with the State-of-the-art

Table 2 presents a comparative analysis of PLCC and SRCC scores achieved by
our proposed method against state-of-the-art alternatives. Due to the limited
literature options, we compare with only two graph-based no-reference meth-
ods in mesh graph assessment. The first, BMQA-GSES, leverages graph spectral
entropy and spatial features, while the second employs a graph convolutional
network in combination with spatial features. Our study also includes compar-
isons with other methods, categorizing them as Full-Reference (FR), Reduced-
Reference (RR), and No-Reference (NR). We introduce two NR methods, NR-
SVR and NR-GRNN, which we have previously proposed. To ensure fairness, we
directly source the scores for competing methods from their respective research
publications. Among the NR methods, MVQ-GCN consistently offers regular
performance across all four databases, primarily attributable to its robust train-
ing process. However, it is worth noting that MVQ-GCN relies on an unweighted
graph and formulates its prediction process as a node classification problem. In
addition, the meshes are trained in the graph convolutional networks without
any reduction which makes this method time-consuming. In contrast, BMQA-
GSES lags slightly behind our proposed method regarding quality scores. This
method’s drawback lies in its reliance on numerous spectral and spatial features,
while our approach primarily centers on the saliency component, considered a
powerful perceptual attribute. The recorded correlation coefficients show that
NR-SVR and NR-GRNN also yield respectable prediction scores. These meth-
ods rely on roughness measures, a pivotal perceptual feature in mesh processing.
The TPDM method achieves a relatively high score, as it is a full-reference app-
roach. In summary, our graph-based method, introduced in this study, outper-
forms many no-reference methods, and the resulting scores are highly promising,
often exceeding or closely approaching the 92% quality score rate.
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Table 1. Correlation coefficients SRCC (%) and PLCC (%) with weighted and
unweighted graphs on the four databases.

Regression Method Masking General Compression Simplification

SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

GRNN Unweighted Graph 70.6 63.2 63.8 61.4 64.5 60.0 59.4 65.5

Weighted Graph 82.8 81.2 83.8 80.1 82.0 79.0 78.3 80.4

SVR Unweighted Graph 74.2 62.4 63.9 65.0 63.1 61.4 62.2 67.8

Weighted Graph 87.6 86.3 89.4 82.5 87.2 82.6 80.9 83.1

RF Unweighted Graph 78.1 68.6 66.6 72.2 75.6 73.5 70.5 75.9

Weighted Graph 91.1 91.9 90.3 88.7 91.2 89.4 88.6 90.8

Table 2. Correlation coefficients SRCC (%) and PLCC (%) of different objective
methods on LIRIS masking database, LIRIS/EPFL general-purpose database and the
UWB compression database.

Type Method Masking General Compression Simplification

SRCC PLCC SRCC PLCC SRCC PLCC SRCC PLCC

FR HD [5] 26.6 20.2 13.8 11.4 24.5 14.0 49.4 25.5

RMS [4] 48.8 41.2 26.8 28.1 52.0 49.0 64.3 34.4

MSDM2 [6] 89.6 87.3 80.4 81.4 78.0 89.3 86.7 79.6

TPDM [7] 90.0 88.6 89.6 86.2 82.9 91.5 86.9 88.2

RR FMPD [9] 80.2 80.8 81.9 83.5 81.8 88.8 87.2 89.3

NR NR-SVR [28] 91.1 89.1 84.6 86.8 85.5 88.1 88.9 87.6

NR-GRNN [29] 90.2 82.4 86.2 88.7 86.3 86.7 87.7 88.0

BMQA-GSES [22] 91.3 84.1 87.9 90.5 87.3 87.4 89.1 89.6

MVQ-GCN [23] 91.7 90.9 89.3 88.6 90.5 87.7 89.9 89.4

Our method 91.1 91.9 90.3 88.7 91.2 89.4 88.6 90.8

4 Conclusion

In this paper, we introduced a novel approach for evaluating the visual quality of
meshes using graph feature learning methodology. Our method focused on ana-
lyzing 3D meshes, treating them as weighted graphs while considering topological
features and statistical characteristics. The construction of these graphs relied on
the saliency of vertices and their geometric coordinates. We compared the perfor-
mance of three distinct machine learning methods and found that the Random
Forest regression model excels in predicting quality scores, primarily attributed
to its suitability for handling graph-structured data. Compared to existing meth-
ods for assessing mesh visual quality, including full reference, reduced reference,
and no-reference methods, our proposed method exhibits robust correlations
with human visual perception. Remarkably, this high accuracy level is achieved
by using a straightforward machine learning algorithm. This pioneering explo-
ration into the application of graph representation for mesh quality assessment
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holds significant promise and paves the way for numerous future research open-
ings.
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Abstract. A fast and accurate stand-alone face recognition system is
crucial for surveillance purposes; however, it is also important to keep
the costs as low as possible. Herein, we address this issue by propos-
ing a preliminary analysis of embedded Machine Learning techniques by
using Erdős-Rényi sparse random networks. The idea is to develop a
compact and reliable ANN to conduct a multi-class classification of low-
resolution face images to simulate the scenario of having cheap security
cameras with an embedded ANN. The study considered two architec-
tures (ResNet, and AlexNet inspired CNNs) with a sparsity level var-
ied up to 90%. To achieve comparable results, the image resolution was
varied from 32 × 32 up to 96 × 96. The analyses unveiled that for low-
resolution images, the best trade-off between accuracy and sparsity level
has been achieved with ResNet architectures and a sparsity level of 70%
outperforming the benchmark (i.e., with no sparsity).

Keywords: Embedded Machine Learning · Sparse Artificial Neural
Networks · Complex Networks Compression

1 Introduction

Despite the first embedded system was born way back in the 60 s of the last cen-
tury [1] for NASA’s Apollo missions, there is nowadays an exponentially growing
interest for its application on IoT (i.e., Internet of Things) [2] that, thanks to
the easier and cheaper availability of small-sized sensors, allow a smoother inte-
gration of smart devices in our society. The applications of such technologies are
the most diverse: mobility, grids, domotics, environmental monitoring, industrial
processing, healthcare, and security, to cite a few [3].

This latter aspect was the application domain of the present work. Indeed, in
the context of security issues, it became crucial to develop smarter IoT devices
for cheap embedded lightweight CCTVs, and a few steps are already moved in
this direction in the state-of-art [4]. Lightweight cameras are a perfect example
of how Edge AI can revolutionise an established system architecture. By moving
the inference on the edge of the system’s network (i.e., the deployed devices), it is
possible to avoid data breaches and obtain an overall more secure architecture [5].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1141, pp. 331–338, 2024.
https://doi.org/10.1007/978-3-031-53468-3_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-53468-3_28&domain=pdf
https://doi.org/10.1007/978-3-031-53468-3_28
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However, we are prone to push further the compression of those technologies
to allow higher performances with strict hardware constraints. To do so, we con-
sider the concept of sparse random networks borrowed from the Graph Theory
and Network Science domains.

In Mocanu et al. [6], we unveiled that choosing an initial Erdős-Rényi sparse
random graph as ANN instead of having the classic fully-connected layers, there
was a quadratic reduction of the number of parameters, with no decrease in
accuracy; additionally, there was also significant optimisation both in terms of
storage space and computational complexity.

Despite there being plenty of studies about techniques able to compress the
models (e.g., knowledge distillation processes that transfer learned knowledge
from a larger model to a smaller one), our contribution differs from them. Our
aim is to make embedded devices learn and get trained autonomously; hence,
we want all the computation to be done in a ‘stand-alone’ environment as a
final goal. For this reason, we want to investigate to what extent it is possible to
compress ANNs for multi-class classification problems in the context of security.

To perform our analyses we have chosen a publicly available face images
dataset and we used eight classes based on three factors, which are: age (i.e.,
young/old), gender (i.e., male/female), and skin tone (i.e., pale/dark). We con-
sidered as of primary importance the fact that this dataset was the largest collec-
tion of muti-labelled face images. The high number of labelled features allowed
us to investigate different aspects of the human face by expanding the number
of classes for our algorithm.

Next, we utilised two Convolutional Neural Networks (CNNs) architectures,
namely ResNet and AlexNet, on which we varied both image resolution (from
the highest of 96 × 96 up to smaller images of 32 × 32) and sparsity level of the
ANNs (up to 90%). The trade-off was evaluated by the combined factors of high
accuracy and compact size of the models.

The most relevant outcome was that our analyses confirmed what was found
in our previous work on binary classification decease detection [7] that is that
a high sparsity configuration (i.e., equals to 70%) can both reduce significantly
the size of the models but also increasing the performances in terms of accuracy
compared with the classic dense topologies.

Due to the small size of the resulting models, it is possible to make them
fit within the strict requirements of low-cost embedded systems. This allows us
to bring AI features to contexts requiring either complex system architectures
or expensive hardware. Overall, this further study on the topic introduces the
possibility of adopting sparse neural networks for highly sensitive tasks such as
intrusion detection or personnel identification. Following this line, our aim in
terms of future steps is to apply this approach to more complex tasks such as
human detection and human identification.

The paper is organised as follows: in Sect. 2 the background materials on
the theoretical foundations on which our work is based, the experimental setup,
and the description of the selected evaluation metrics herein are summarised.
Section 3 displays the relevant results obtained from the proposed analyses and
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the impact that such an outcome will have on the future design of smaller embed-
ded ML in addressing security issues on lightweight devices.

2 Materials and Methods

This section introduces not only the theoretical background but also the exper-
imental setup, including the dataset used to conduct our simulations.

2.1 Background and Related Works

In this section, the relevant background and related works are provided.
Since our goal is to analyse to what extent the concept of sparsity in Artificial

Neural Networks (ANNs) could be pushed forward to define a trade-off between
compression and performance with the final goal to develop smarter IoT devices
for cheap embedded lightweight CCTVs, it is needed to start our discussion by
introducing the Sparse Evolutionary Training (SET) approach firstly defined in
the work of Mocanu et al. [6] that represents the starting point of the work
herein conducted.

The basic idea relies on the intuition that, although starting from a dense
ANN, it led to a sparse one at the end of the training. Hence, in the SET
algorithm, the ANN is first initialised as a sparse weighted Erdős-Rényi graph [8].
At the end of each epoch, furthermore, null-edges (i.e., intra-layer links having
weight equal to zero) are replaced with new non-zero random weights with the
aim to both reduce the loss on the training set still keeping the number of
connections constant.

In Cavallaro et al. [7], we investigated the sparsity potential on the classifi-
cation problems in the context of disease detection; hence, that work was based
on binary classifications.

Herein, instead, we focus on multi-class classification on security application
domains rather than medical purposes. We want to verify whether and to what
extent it is possible to combine lightweight devices, such as cheap CCTV, with
embedded ML by using sparse ANNs. We considered the same initial Keras-
based implementation of SET1 and we adapted it with the aim being able to
conduct a multi-class classification of facial images.

The complex networks under scrutiny are the ANNs and we analysed them
to achieve fast training of the architectures mentioned above, still keeping the
accuracy high. Hence, we want to highlight which is the threshold between com-
pressed ANNs and high accuracy.

2.2 Dataset

To perform our experiments, we used the CelebA dataset2 [9]. This is a pub-
lic large-scale face attributes dataset with more than 200.000 celebrity images,
1 https://github.com/dcmocanu/sparse-evolutionary-artificial-neural-networks/tree/

master/SET-MLP-Keras-Weights-Mask.
2 https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html.

https://github.com/dcmocanu/sparse-evolutionary-artificial-neural-networks/tree/master/SET-MLP-Keras-Weights-Mask
https://github.com/dcmocanu/sparse-evolutionary-artificial-neural-networks/tree/master/SET-MLP-Keras-Weights-Mask
https://mmlab.ie.cuhk.edu.hk/projects/CelebA.html
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and we chose it as it contains 40 attribute annotations and, hence, allowed a
wide range of customisation. The use of publicly available dataset also allows
the replicability of the simulations herein shown. Furthermore, we decided to
use one dataset in order to address a specific scenario and focus on the com-
pression performances rather than comparing different possible applications of
the compression method itself; nonetheless, future developments of the proposed
research will also include this latter aspect.

In terms of data pre-processing, the dataset was split into training, validation,
and testing, with 80% of the data used for training and validation purposes. The
images were, then, resized according to the desired resolutions which are 96×96,
48 × 48, and 32 × 32. We chose, among the available attributes, to consider 8
classes based on the permutations of three factors, that are: age (i.e., young/old),
gender (i.e., male/female), and skin tone (i.e., pale/dark) for a two-fold reason:
those are the most relevant facial features among the ones available and we also
wanted to keep the model as simple as possible.

2.3 Methodology

In this section, a description of the methodology followed after the pre-processing
step of the input images described in the previous section is shown.

For the implementation, we employed Keras and Tensorflow APIs to create
a training pipeline that allows the generation of ML models at different sparsity
levels.

We adopted the sparse training approach, which induces sparsity in the net-
work while training the model itself.

Our analysis is a trade-off among varying architecture, image resolution,
and sparsity levels. In detail, we used two inspired CNNs architectures, namely
Residual Neural Networks (i.e., ResNet) [10] and AlexNet [11]. We selected them
because our previous analysis [7], which was applied to disease detection, unveiled
that those two are the most promising architectures to achieve fast and reliable
results among the ones evaluated. Similarly to [7], we applied a binary weight
mask to induce sparsity at each epoch of the training process.

To detect the lowest, but yet accurate, resolution image, we considered three
different levels, namely 96 × 96, 48 × 48, and 32 × 32 contrary to our previous
work because of the different nature of the input images. Indeed, in the present
study, a higher resolution was required to distinguish facial features.

We recall that CNNs are a type of feed-forward neural network that is able
to extract features from input data with convolution structures (i.e., mathe-
matical operations that allow the merging of two sets of information) to filter
the information and generate a feature map. They are particularly suitable for
the use case as architectures make the implicit assumption that the input is
image-like [12].

The focus of our work relies on sparsity-level investigation. We varied the
network density from the benchmark (i.e., dense network with 0% sparsity) up
to 90%. To the sake of brevity, we reported only the three most relevant sparsity
levels, which are 50%, 70%, and 90%.
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3 Discussion and Conclusions

In this section, the relevant outcomes are discussed.
We recall that the idea is to develop a compact and reliable ANN to conduct

a multi-class classification of low-resolution face images to simulate the scenario
of having cheap security cameras with an embedded ANN. The study considered
two architectures (i.e., ResNet and AlexNet inspired CNNs), and the sparsity
level has been varied up to 90%.

Table 1 shows the results obtained in terms of accuracy and size of the ‘tensor
flow lite’ files (i.e., tflite) at the variations of the sparsity level of the networks
and the image resolutions.

Table 1. The table shows the accuracy and size outcomes of the simulations conducted
on AlexNet inspired and ResNet CNNs architectures at the variation of image resolu-
tion (i.e., 32 × 32, 48 × 48, and 96 × 96) and sparsity level (i.e., 50%, 70% and 90%
plus the 0% that is the dense network used as benchmark).

Architecture Resolution (pixel) Sparsity (%) Accuracy (%) Size (Kb)

AlexNet 32 × 32 0% 60.0% 159 Kb

AlexNet 32 × 32 50% 62.4% 105 Kb

AlexNet 32 × 32 70% 63.3% 73 Kb

AlexNet 32 × 32 90% 55.7% 37 Kb

AlexNet 48 × 48 0% 67.0% 322 Kb

AlexNet 48 × 48 50% 68.1% 209 Kb

AlexNet 48 × 48 70% 67.2% 149 Kb

AlexNet 48 × 48 90% 59.8% 73 Kb

AlexNet 96 × 96 0% 82.3% 1198 Kb

AlexNet 96 × 96 50% 83.9% 786 Kb

AlexNet 96 × 96 70% 84.3% 551 Kb

AlexNet 96 × 96 90% 77.7% 226 Kb

ResNet 32 × 32 0% 75.5% 297 Kb

ResNet 32 × 32 50% 76.5% 186 Kb

ResNet 32 × 32 70% 76.1% 131 Kb

ResNet 32 × 32 90% 61.3% 54 Kb

ResNet 48 × 48 0% 77.1% 297 Kb

ResNet 48 × 48 50% 78.0% 186 Kb

ResNet 48 × 48 70% 78.3% 131 Kb

ResNet 48 × 48 90% 64.8% 54 Kb

ResNet 96 × 96 0% 85.3% 297 Kb

ResNet 96 × 96 50% 85.9% 186 Kb

ResNet 96 × 96 70% 85.8% 131 Kb

ResNet 96 × 96 90% 79.3% 54 Kb
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As a general overview, the analyses display that both the architectures
under scrutiny exhibit higher accuracies for a sparsity level equal to 70%, which
achieved even higher performances than the one obtained from the benchmark
configuration (i.e., dense network). For larger sparsity, a significant drop in terms
of performances has been unveiled as shown in Fig. 1.

Fig. 1. The figure shows the accuracy percentage trend at the variation of the sparsity
level of the two architectures under scrutiny (i.e., AlexNet in light orange and ResNet
in dark orange). (Color figure online)

Table 1 also highlights that the resolution of the input image does not affect
the size of ResNet models. This feature allows the analysis of more detailed
frames and achieves better accuracy overall. Contrary to our previous work on
binary classifications of blood cells [7], in which we varied the resolution image
from 8× 8 up to 32× 32, we set herein higher resolutions as it was necessary to
identify the higher number of features that characterise a human face.

Hence, from higher (i.e., 96× 96) to medium resolutions (i.e., 48 × 48) with
a sparsity of 70% a significant drop of accuracy occurs (from 85.8% to 78.3%).
However, it is worth noticing that, when high resolutions are not an option,
such as if using cheap devices and having similar hardware constraints, there is
no significant performance degradation from medium to low resolutions (from
78.3% to 76.1%).

Since ResNet models maintained the same size, we can consider them as a
better solution compared to CNN models in this classification task.

The better performances of ResNet compared with AlexNet inspired CNNs
are also visible from Fig. 2. Indeed, the configurations having both lower size and
higher accuracy are all ResNets.
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Fig. 2. The figure shows the trade-off between the accuracy’s percentage and size of
the tensorflowlite files (in Kb) of the two architectures under scrutiny (i.e., AlexNet
in squares, and ResNet in circles).

In conclusion, the analyses confirmed the goodness of opting for an Erdős-
Rényi sparse random graph as ANN instead of having the classic fully-connected
layers topology. Furthermore, the paper herein proposed unveiled that for low-
resolution images, the best trade-off between accuracy and sparsity level has been
achieved with ResNet architectures and a sparsity level of 70% outperforming
also the benchmark (i.e., with no sparsity).

The results obtained are also consistent with our previous work on binary
classification of disease detection [7] in which we identified not only that ResNet
was a more suitable architecture for efficient image classification purposes, which
is also consistent with the literature, but also and most importantly that the use
of sparse Erdős-Rényi random graphs as initial configuration of ANNs play a
crucial role in improving the training performances in terms of achieving high
accuracy with strict space constraints. Such performances can be obtained with
a sparsity level equal to 70% before encountering the physiological degradation
of the network.

As future directions, it would be interesting to apply the intuitions unveiled
through our works conducted so far about the investigation of the opportunities
that sparsity offers on embedded prototypes with the final goal of developing
embedded, smart, and powerful lightweight devices for security object detection
purposes on cheap CCTVs.
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Abstract. Distance computation is a fundamental problem in algorith-
mic graph theory with broad applications across various fields. Distance
labeling is the method of assigning a label � to each node in a given graph
G such that the distance between any pair of nodes u, v can be efficiently
computed (or approximated) using only their labels �(u) and �(v). Min-
imizing the size of these labels is of crucial importance for performance.
In this paper, we address this challenge by introducing a novel learning-
based approach to distance labeling inspired by collaborative filtering.
This approach achieves superior performance compared to the theoreti-
cal baseline on label size with a trade-off in distance approximation error
on special graph classes such as cycles and trees. We also report promis-
ing experimental results on general graphs that obtain lower error than
cycles and trees.

Keywords: Graph Algorithms · Deep Learning · Shortest Paths ·
Distance Labels

1 Introduction

Computing and approximating distances between vertices in a graph is a funda-
mental challenge in algorithmic graph theory, with a myriad of practical appli-
cations including navigation, robotics, and social network analysis. Classical
algorithms for computing distances (and shortest paths) “from scratch”, like
Dijkstra’s algorithm [10] and A∗ algorithm [14], are known for many decades.
However, the running time of these algorithms is polynomial in the size of the
graph, and can quickly become too slow for practical applications as the graph
size grows.

In this work, we explore a theoretical problem of node labeling that is moti-
vated by the need to develop space-efficient data structures for computing dis-
tances in a graph. The problem is formally defined below, but roughly speaking,
the objective is to assign labels �(·) to the nodes of a graph in such a way that the
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1141, pp. 339–350, 2024.
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distance between two nodes u, v can instantly be computed (or approximated
to within a multiplicative factor of 1 + ε, for small ε) using the labels �(u), �(v)
of these two nodes. The goal is to generate a valid distance labeling which uses
as few labels as possible. Distance labeling was investigated from the theoretical
perspective for various types of graph classes, e.g., trees [2,5,11], planar graphs
[13], sparse graphs [3] and general graphs [6].

To address this issue, recent years have seen many works (e.g., see [1,9] and
the references within) aiming to preprocess an input graph into a (time- and
space-efficient) data structure that can answer distance queries very quickly,
without the need to run expensive computations in real-time. In addition to
these traditional algorithmic approaches, modern research has considered the
problem of approximate distance labeling, where some error is allowed in the
interest of time and space complexity. [15] focuses on road graphs where com-
puting the exact distance is not necessary. [8,15] use machine learning models
for approximate distance labels, with models based on computing embeddings
and capping their size, and simple multi-layer perceptrons. These had promising
results, but improvement can be made on space required for performance.

We propose a structured model to the approximate distance labeling problem
that is motivated by collaborative filtering, which is a technique typically used in
recommender systems. For graphs, the idea is that nodes that are connected will
have similar neighborhoods. When working on large graphs, it is computation-
ally impossible to extract all connectivity information for every node and some
filtering is required to combat that overwhelming amount of data. By focusing
on the general case of distance labeling in cycles, trees, and finally, arbitrary
graphs, we contribute to the theoretical understanding of the problem and show
how these theoretical bounds can be pushed experimentally with minor accu-
racy sacrifices. Our experimental results demonstrate the effectiveness of our
approach in comparison to existing methods and provide new insights into the
underlying structure of distance labeling in general graphs.

2 Theoretical Analysis

2.1 Problem Definition

Given an undirected arbitrary graph Gi with length i and any two nodes u, v in
Gi. Denote the distance between u, v in Gi by dGi

(u, v), the distance labelling
problem aims to find a labeling scheme �(·) and a function f such that

f(�(u), �(v)) = dGi
(u, v)

For Approximate Distance Labeling, denote the number of bits required to
store the label of each node by rl, the target is to find a labeling scheme �(·) and
a function f such that

minimize |f(�(u), �(v)) − dCi
(u, v)| subject to rl ≤ M

where M is some pre-defined positive value.
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2.2 Combinatorial Distance Labeling

Cycles. Denote the set of cycles in which the maximum length of cycle is n by
Cn. The goal is to assign the minimum number of labels to the vertices of all
cycles according to the following rules:

– Assume vertices x, y belong to a cycle C ∈ Cn and are labelled c1, c2.
– Assume vertices u, v belong to a cycle C ′ ∈ Cn (with either C = C ′ or C �= C ′)

and are also labelled c1, c2.
– The distance between x and y in the cycle C must equal to the distance

between u and v in the cycle C ′.

We then show the upper bound and lower bound on the number of labels by
providing the labelling scheme:

Upper bound on the number of labels: O(n3/2). Here is the labeling scheme.
Let Ck = (u1, u2, . . . , uk) be the cycle of length k. Represent the number k in
binary and denote its binary representation by bin(k). Let k1 be the first half of
the bits bin(k) and let k2 be the second half of the bits bin(k). In other words,
bin(k) = k1◦k2 where ◦ denotes the concatenation operator. Then k1, k2 contain
each log k

2 bits. We now describe the label of the vertex ui. If i < k/2 then we
set the label of ui to color(ui) =< i, k1, 0 >. Otherwise we set the label of ui to
< i, k2, 1 >.

Note that the label size is 3/2 log n+1, so we use only O(n3/2) labels. Given
two labels c1 =< i, k1, b1 > and c2 =< j, k2, b2 > such that b1 ≤ b2 if b1 = b2.
The distance of the corresponding vertices is |i − j|, otherwise we can recover
k = k1 ◦ k2 and then the distance is |k − |i − j||.

Lower bound on the number of labels: Ω(n4/3). We show that there are Ω(n4)
triples of vertices such that the concatenation of the labels of each triple must
be unique. This means that χ3 = Ω(n4) and thus χ = Ω(n4/3). We choose
the triples only from cycles of lengths n/2, n/2 + 1, . . . , n. We choose Triples =
{(vi, vj , v�)|vi, vj , v� ∈ Ck, n/2 ≤ k ≤ n, 1 ≤ i ≤ k/6, k/3 ≤ j ≤ k/2, 2k/3 ≤
� ≤ 5k/6}. Then the sum of distances dist(vi, vj)+ dist(vj , v�)+ dist(v�, vi) = k.

Lemma 1. Each triple (vi, vj , v�) ∈ Triples must be labelled uniquely.
Proof: Let (vi, vj , v�), (v′

i, v
′
j , v

′
�) ∈ Triples be two triples. If the two triples

belong to the same cycle, i.e., vi, vj , v�, v
′
i, v

′
j , v

′
� ∈ Ck then it is easy to prove

that
(�(vi), �(vj), �(v�)) �= (�(v′

i), �(v
′
j), �(v

′
�))

Assume the two triples belong to different cycles, i.e., vi, vj , v� ∈ Ck and
v′

i, v
′
j , v

′
� ∈ Ck′ such that k �= k′. Then the two triples must be colored differently

as the following equation holds.

k = dist(vi, vj) + dist(vj , v�) + dist(v�, vi)

k′ = dist(v′
i, v

′
j) + dist(v′

j , v
′
�) + dist(v′

�, v
′
i)

k �= k′
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Thus, we found Ω(n4) triples which must be labelled differently, and hence χ =
Ω(n4/3).

Note that the upper bound uses log2(n3/2) + 1 = 3/2log2(n) + 1 bits and
the lower bound shows that at least log2(n4/3) = 4/3log2(n) bits are required
for exact distances. Our results for cycles are approximate distances, and the
number of bits we use approximately match the lower bound.

Trees. We consider distance labeling schemes for trees: given a tree with n
nodes, label the nodes with binary strings such that, given the labels of any two
nodes, one can determine, by looking only at the labels, the distance in the tree
between the two nodes. Alstrup et al. showed in [7] that 1

4 log2(n) bits are needed
for exact distances and that 1

2 log2(n) bits are sufficient. They also give a (1+ε)-
stretch labeling schemes using Θ(log n) bits for constant ε > 0. This result was
extended by Freedman et al. in [12], who showed that the recent labeling scheme
of [7] can be easily modified to obtain an O(log1/ε n) upper bound they also
proved a matching O(log1/ε n) lower bound. Our method achieves approximately
the theoretical bounds of 1 + ε approximate distances on trees with ε = 0.4.

2.3 Approximate Distance Labeling

Lemma 1. Let n > 4. An approximate distance-labeling scheme for the cycles
problem that reports 1 + ε-approximate distances with ε <

√
2 − 1 must have a

label size of at least log2(n) bits.

Proof. We prove that all the labels in a cycle must be different and thus one
must use log2(n) bits to represent the labels of the vertices in the largest cycle
whose length is n. Assume by contradiction that x,y are vertices in the same cycle
that are assigned with the same label and let z be the neighbor of y such that
d(x, z) ≥ 2 (since n ≥ 5, it is easy to verify that at least one of the neighbors of y
has this property). Then d(z, y)=1 (as y and z are neighbors) and d(z,x)≥2. As
x and y have the same label, then the labeling scheme outputs the same distance
D for d(z,x) and d(z,y). As the labeling plan is (1+ε) approximate, it must hold
that D<=1+ε so that D is a (1+ε)-approximation of d(z,y), and it also must
hold that D ≥ 2

1+ε so that D is a (1+ε)-approximation of d(z,y). However, these
two equations cannot hold when ε <

√
2 − 1, which is a contradiction (Fig. 1).

3 Approach

In this paper, we focus on developing a method that calculates the shortest dis-
tance between any two nodes in a graph quickly while simultaneously minimiz-
ing the size of the labels employed for distance computation. This dual objective
enhances the efficiency of our approach and significantly reduces storage require-
ments. Our model incorporates an embedding layer and a two-layer feed-forward
neural network for this purpose.
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Fig. 1. Architecture of the model

3.1 Training Data

We utilized synthetic datasets for cycles and trees, as well as real-world graphs
obtained from [16] for our experiments.

For cycles, we generated a dataset DN = {(u, v, d) : u, v ∈ Ci, 3 ≤ i ≤ L} for
experiments. Here, G =

⋃
i Ci represents a union of disjoint cycles, where Ci is

a cycle. VCi
is the set of all nodes that belong to Ci, then V =

⋃
i VCi

is the set
of nodes that exist in any cycle within G.

For trees, we followed a similar procedure to generate a dataset DN =
{(u, v, d) : u, v ∈ Ti, 3 ≤ i ≤ L} for experiments. Define G =

⋃
i Ti be a union

of disjoint random trees, VCi
be the set of all nodes that belong to Ci, then

V =
⋃

i VCi
is the set of nodes that exist in any tree that belongs to G. In both

the trees and cycles dataset, each node is assigned a unique integer id.
The real world graphs dataset comprises enzymes graphs obtained from [16]

which provides the graph edge lists. We processed the data to ensure that every
node in the entire set has a unique id and that there are no gaps between the
ids of any two nodes. The dataset DN = {(u, v, d) : u, v ∈ Gi, 3 ≤ i ≤ L} was
then created from this collection of real-world graphs, where Gi is a graph in the
collection. We specifically use the chem-ENZYMES-g1 and chem-ENZYMES-
g118 graphs.

3.2 Training

The training phase of our model utilizes a two-layer feed-forward neural network.
Our objective is to predict the distance between any pair of nodes from the same
cycle, tree, or graph. We employ the embedding layer to generate a vector of size i
(the number of bits) as the label for each node. These vectors are then quantized
to binary form by taking the sign of each individual element within the vector.

We initialize the feature of the node pairs as the concatenation of their respec-
tive quantized labels. After processing this feature through two layers of our
model, an output prediction Ŷ of the distance between two nodes is produced.
Each layer is followed by an activation function. Let n denote the number of
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samples; we have X = {(l(u), l(v)) : u, v ∈ Ci ∈ G}, X ⊆ Rn×2. The training
phase can be defined formally as:

Ŷ = σ((ReLU(XW1))W2)

where W1 ⊆ R2×d, W2 ⊆ Rd×1 are the weight matrices to be trained. The final
activation function σ is modified so that the prediction will be re-ranged to fit
the dataset’s distance range.

3.3 Label Quantization Strategies

In our work, we employed two distinct quantization strategies: training quanti-
zation and post-training quantization.

Training quantization is implemented concurrently with the learning process.
Once the labels are generated, we quantize them to further reduce their size. This
process takes place during the forward training pass, where we convert the node
embeddings into a binary form by taking the sign of each embedding value. The
size of each node’s embedding is determined by the quantization level, and by
manipulating the number of bits i, we can control the trade-off between the label
size and the accuracy of node pair distance computation. Despite its intuitive
appeal, this approach exhibited suboptimal performance on cycles and graphs,
while showing improved results for trees.

On the other hand, post-training quantization is applied after the training
phase. In this strategy, we first complete the training without any quantization.
Afterward, we quantize the resultant embeddings, reintroduce these quantized
labels into the model, and execute a forward pass to derive the predictions.
This method demonstrated superior efficacy for cycles and graphs, but was less
effective when applied to random trees.

We hypothesize that this disparity in performance is likely related to the
prevalence of cycles in the graph datasets, particularly the high frequency of
triangles. Thus, it is important selecting the appropriate quantization method
based on the characteristics of the graph structure.

4 Experiments

4.1 Dataset

We use synthetic datasets with N = 26 (or 64). This results in a total of (64−3)∗
(3 + 63)/2 = 2079 nodes each for both the cycle and tree datasets. To enhance
the performance of the model on node pairs with close proximity, we duplicate
pairs of cycle nodes with a distance less than 5. We use the entire dataset for
training purposes, while reserving 10% of the data as a validation set.

The cycles dataset consists of cycles of length 3 to 26.
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4.2 Evaluation Metrics

We use the Mean Squared Error(MSE) and Mean Relative Error(MRE) as our
metrics. Given the prediction Ŷ = {ŷi : 1 ≤ i ≤ N} and labels Y = {yi : 1 ≤ i ≤
N}, the MSE and MRE are computed as follows:

MSE(Ŷ , Y ) =
1
N

(Ŷ − Y )T (Ŷ − Y ) (1)

MRE(Ŷ , Y ) =
1
N

N∑

i=1

|ŷi − yi|
|yi| (2)

We define parameter α as a float that ranges from 0.0 to 1.0, the final loss l
is computed as the combination of MSE and MRE:

lα(Ŷ , Y ) = αMSE(Ŷ , Y ) + (1 − α)MRE(Ŷ , Y ) (3)

We found that an α value of 0.5 produces lower loss values.

5 Results

5.1 Cycles and Alpha Values

We evaluate the performance of our model, specifically trained on cycle struc-
tures, across various alpha values. This assessment is conducted using the post-
training quantization approach.

Table 1. Results with D6

α = 1 α = 0 α = 0.5

MSE MRE MSE MRE MSE MRE

1 149.175964 0.798590 525.602400 1.223840 97.190900 0.648095

2 63.960815 0.622632 90.706116 0.876957 57.236360 0.748088

3 32.998089 0.605301 30.461815 0.582474 21.510620 0.509291

4 12.950354 0.372077 17.285600 0.379353 9.796305 0.325589

5 6.635018 0.263844 13.536446 0.292693 6.938656 0.262967

6 4.4964622 0.227134 12.649083 0.259946 6.095809 0.241920

7 4.551461 0.215136 12.409961 0.249289 5.879529 0.235888

8 4.432967 0.212821 12.357460 0.246148 5.845781 0.234776

9 4.405716 0.211925 12.345035 0.244986 5.829654 0.234216

10 4.399604 0.211756 12.338661 0.244760 5.827143 0.234158

We report the results in Table 1. By comparing the whole table with previous
theoretical analysis, we have the following observations:
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(a) MSE using different number of bits (b) MRE using different number of bits

Fig. 2. Model’s performance on Cycles using different number of bits

– Our approach beat the standard combinatorial baseline. The combinatorial
baseline requires log2(n4/3) bits which is about 9 bits to predict the distance
accurately. With our approach, we only need 6 bits to achieve 0.22 MRE.
Consider the maximum length of all the cycles, our approach achieves satis-
fying predictions while using significantly less bits.

– Our approach close the gap toward the lower bound for approximate base-
line. The approximate baseline requires at least 6 bits to achieve (1+ε)-
approximation where ε >

√
2 − 1. With our approach, we only need 4 bits to

obtain MRE< 0.4, which is a huge improvement.

We also conduct study on the effect of different α. The results are shown in
Fig 2. From the figure, we observed that:

– Value of α significantly affects the number of bits needed. When α = 0.1 and
α = 0.7, using two bits, model’s performance is obviously better than when
alpha = 0.3 and α = 0.9. In other words, given more strict space requirement,
adjusting the value of alpha could significantly improve the performance.

– Value of α has less effect than number of bits. As the number of bits is
increasing, models’ performance converges. They are quite close when we are
using more than six bits.

To sum up, our approach demonstrate its effectiveness in learning labels for
distance approximation. By changing α, we could obtain descent approximation
even using very few bits.

Based on this result, we use an alpha value of 0.5 for the rest of our training.

5.2 Trees

Training Quantization Method. In the case of random tree graphs, our
model tends to yield better results when the training quantization strategy is uti-
lized, compared to the post-training quantization method. However, our model’s
efficacy does not extend as seamlessly to random trees as it does to cycles and
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general graphs. When applied to random trees, despite increasing the number of
bits to 30, the model records a relatively higher Mean Relative Error (MRE) loss
of approximately 0.41. This indicates a need for further optimization or a differ-
ent approach when dealing with trees. The detailed performance visualizations
can be found in Fig. 3.

(a) MSE using different number of bits (b) MRE using different number of bits

Fig. 3. Model’s performance on Trees using different number of bits with quantization
during training

The addition of bits does seem to trend error downwards with the training
quantization method, however the effect on error is less dramatic than the results
on cycles. Trees require a significantly higher number of bits to achieve an MRE
around .45.

Post-Training Quantization Method. Although the post-training quantiza-
tion strategy has proven to be more effective on cycles and general graphs, it
doesn’t reach the same level of performance on tree structures. Detailed results
can be found in Fig. 4. Further research could explore why this method isn’t as
effective with trees and how it could be optimized to better handle such data
structures.

Our method generates generally worse performance on trees compared to
cycles. The performance of the model on trees plateaus around 3 bits with post
train quantization, which is an improvement over the theoretical bound of 11,
but there is a not insignificant error of .6 MRE/32 MSE associated with this label
size. Allowing additional bits does not improve model performance significantly.

5.3 General Graphs

After fine-tuning our model on both tree and graph datasets, we proceed to
evaluate its performance on general graphs. Notably, employing the post-training
quantization methodology and setting α to 0.5 yields results superior to those
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(a) MSE using different number of bits (b) MRE using different number of bits

Fig. 4. Model’s performance on Trees using different number of bits with post-training
quantization

(a) MSE using different number of bits (b) MRE using different number of bits

Fig. 5. Model’s performance on General graphs using different number of bits

achieved on the cycle dataset. The detailed performance outcomes are depicted
in Fig. 5 below.

These results on general, real world graphs are the most promising and exper-
imentally demonstrate that this method has viability for real world applications
with large graphs.

6 Limitations

Despite the promising results, our model is not without its limitations. First and
foremost, our model exhibits an asymptotic limit in its training loss, implying
that past a certain point, increasing the number of bits used for the embedding
does not yield further improvements in accuracy. This bottleneck could poten-
tially be addressed by expanding the model size, thereby enabling it to better
capture the intricacies of the data structure.
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Any application that requires exact distance computation would be unable to
benefit from the distance labels produced by our method, as there is some expec-
tation of minor error. Additionally, pre-processing time in the form of training
the model is required in advance of distance querying.

7 Computation Specifications

The experimental computations were performed on a server equipped with an
Intel(R) Xeon(R) W-2145 CPU with 3.70 GHz and 130 GiB of system memory.
The machine was equipped with a single NVIDIA GeForce RTX 2080 Ti GPU,
using the driver version 525.105.17 and CUDA Version 12.0.

Each individual experimental run required approximately 30 min. Training
was done for 100 epochs for each model. The total compute across all experi-
mental runs included in this paper amounted to less than 1.5 h.

8 Relation to Prior Work

In [5], a distance labeling scheme with labels of length log3
2 n+o(n) and constant

decoding time is presented. Outperforming previous state-of-the-art, this work
focus on general graphs without going deep into specific graph types. [4] narrows
down the question on trees. They shows that 1

4 log2n bits are needed and that
1
2 log2n bits are sufficient.

Compared to exact labeling, [15] points out that the exact distance is not
always necessary. Focusing on road graphs, they apply a simple multi-layer per-
ceptron(MLP) on distance prediction which use less space than a lookup table.
However, the model suffer from a long training time. In [8], both simple MLP
and graph neural network models are proposed as the exploration of speeding
up path queries. However, the training difficulty and space consumption is sig-
nificantly increasing as the graph neural network gets more complex.

9 Conclusion

In this paper, we have presented a novel learning-based approach to the Dis-
tance Labeling problem, aiming to reduce the size of labels required. Our app-
roach demonstrates substantial improvements over existing combinatorial and
approximation baselines, offering increased efficiency and reduced storage needs.
Looking forward, an intriguing avenue for future research lies in extending our
methodology to accommodate larger and more complex graph structures, includ-
ing scenarios with node failures. Additionally, we are interested in exploring
online cases where cycles are presented sequentially. This direction promises to
further expand the applicability and impact of our approach in the field of algo-
rithmic graph theory.
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Abstract. This research demonstrates how recommendation algorithms
can shape public discourse and attitudes on morally charged topics. Our
study provides an in-depth analysis of the moral, emotional, and net-
work dimensions of Youtube’s recommended videos related to the China-
Uyghur issue. We investigated the spread of moral themes and whether
the algorithm favors videos with certain emotional feelings. Additionally,
we conducted a detailed network analysis to spot the most influential
videos and see how the themes change as the recommendations change.
We found that as the algorithm recommends more videos, the emotional
diversity of the recommendations tends to drift towards positive emo-
tions and away from negative ones. Likewise, there is a decreasing focus
on moral dilemmas as one moves through the recommended content.
In simple terms, our study shows how YouTube’s recommendations may
influence viewers’ feelings and beliefs. Our network analysis reveals which
videos are driving the shift in morality and emotion and how the main
discussion points change as more videos are suggested. Through this,
we hope to better understand the inherent biases in recommendation
engines, especially when they are dealing with emotionally charged and
morally complex topics.

Keywords: YouTube’s recommendation algorithm · drift analysis ·
emotion analysis · morality assessment · bias in recommender systems ·
network analysis

1 Introduction

Recommendation algorithms are frequently associated with biases such as selec-
tion bias [14], position bias [7,12], and popularity bias [15,16]. Popular recom-
mendation platforms have, in the past, been associated with patterns that lead
users to highly homogeneous content, resulting in certain phenomena such as
filter bubbles and echo chambers [11,30]. In such scenarios, users are isolated
from diverse content and are instead exposed to a narrower band of information.
This can pose the risk of reinforcing specific viewpoints [17,18].
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This study examines the emotion and morality bias present in YouTube’s
recommendation algorithm. By analyzing the evolution of emotion and morality
across recommended YouTube videos related to the China-Uyghur crisis narra-
tive, we aim to determine if YouTube’s recommendation algorithm favors videos
with certain emotions over others and to explore the distribution of moral con-
tent across YouTube’s recommendation algorithm. Also, this research studies
the network analysis and aims to find whether echo chambers and topic shifting
appear in the narratives by analyzing the eigenvector centrality of videos and
tracing the communities.

1.1 Background of Study

In this section, we discuss previous research related to our study, which includes
previous works on morality assessment, emotion detection [1,26], network analy-
sis [27,28], and bias analysis in recommender systems [25,30–32]. Recommenda-
tion bias has been researched extensively to understand its structure and effects,
especially in the areas of radicalization and the spread of misinformation and
disinformation [9]. These past works have studied the emergence of homophilic
communities within content, such as recommended videos, and they have stud-
ied the factors leading to the emergence of these communities. Insights from
these studies have been crucial in identifying the emergence of homogeneity,
the development of interconnected communities, and the potential bias in rec-
ommender systems. Drift is a technique that many researchers have used in
studying how content evolves. By studying content evolution, we determine if
the content remains the same or changes relative to a standard metric. O’ Hare
et al. [3] analyzed a sentiment-annotated corpus of textual data to determine
topic drift among documents. Liu et al. [2] developed an LDA (Latent Dirichlet
Allocation)-based method for topic drift detection in micro-blog posts. Akilaet
al. developed a framework to identify the mood of the nation of India by analyz-
ing real-time Twitter posts [20]. Results showed the trends of emotions. These
trends were visualized using line graphs and radar maps. Maharani et al. [29]
is used eigenvector centrality, a method to identify influential users, to better
understand how information spreads on Twitter.

In this research, we apply drift analysis techniques to assess emotion and
morality, to determine the pattern of bias in YouTube’s recommendation algo-
rithm. By combining both emotion and morality assessment, we take a more
holistic approach to understand the nature of and impact on videos recommen-
dations by YouTube’s recommendation algorithm. Similarly, by using network
analysis and focusing on influential users using eigenvector centrality, we aim
to better understand how content spreads and if certain topics dominate the
recommendations.

1.2 The China–Uyghur Crisis

The China–Uyghur crisis has garnered significant criticism from various organi-
zations across the globe. According to the Council on Foreign Relations [8], more
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than a million Uyghurs—a Muslim, Uyghur-speaking Asian ethnic group—have
been detained in China’s Xinjiang region since 2017. The United States and the
UN Human Rights Office have described these acts as crimes against humanity.
Despite reports from international journalists and researchers about the ongo-
ing systems of mass detention throughout the region, which have been backed
by satellite images and leaked Chinese government documents, individual tes-
timonies from Chinese officials insist that the rights of Uyghur Muslims have
not been violated. They assert that government crackdown measures, such as
re-education camps, have been discontinued since 2019 [4]. According to Sil-
verman, content-evoking polarization is propagates faster than non-polarizing
content [10]. In effect, since the emotions attached to our seed videos were nega-
tive, we also expected to see more negative emotions propagated through videos
across recommendation depths. We also worked toward exploring the moral con-
tent of these potentially negative emotions to study the moral nature of content
distributed by the recommendation algorithm. In addition, by using network
analysis and examining the most influential users through eigenvector centrality,
we aimed to identify which videos primarily drive the online conversation about
the China-Uyghur crisis.

2 Methodology

For this research, we introduce a drift analysis methodology that allowed us to
monitor changes in video characteristics and explore the patterns of the recom-
mendation algorithm. We apply the resulting approach to our dataset, which
consists of a collection of videos recommended through various methodologies.

2.1 Collection of Data

Video recommendations on YouTube are heavily influenced by the user’s watch
history, meaning that the algorithm personalizes the videos recommended to
a user. To eliminate this personalization bias and control our experiment, we
employed the following precautionary steps:

1. Video collection script prevented account login for each watch session.
2. A new browser instance was started for each level or depth of recommenda-

tion.
3. Cookies from each previous recommendation depth were cleared to enable a

fresh search for videos at the next depth of recommendation.

The data used in this research was composed of YouTube’s ‘watch-next’ videos
which are found in the watch-next panel of the platform. These videos were
collected using techniques employed in [9]. To begin our data collection process,
we first conducted a series of workshops with subject matter experts to generate
a list of relevant keywords related to the China-Uyghur conflict. These keywords
were used as search queries on YouTube’s search engine to generate the 40 seed
videos. Video recommendations were gathered for each seed video using custom-
made crawlers over levels or “depths” of recommended videos. Each of the 40
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seed videos generated a first depth of recommendations, with subsequent depths
serving as parent videos for generating further layers of recommended videos.
This process continued until recommendations for four depths were generated,
resulting in a total of 15,307 unique videos. In our data collection process, we
extracted the video titles and video descriptions. For this research we chose to
analyze the videos based on video text data (i.e., titles, descriptions), as these
levels of detail will provide information on the content of the videos. The dataset
was split by the depth and studied for if and how video characteristics such
as emotion and morality changed (or drifted) as the algorithm recommended
videos to the user. In our network analysis, we investigated the communities
and identified the influencer nodes by looking at each depth. Next, we describe
the methodologies used to address the research questions posed in this study.

2.2 Emotion Analysis

We analyzed the emotions embedded in the video text data (i.e., title and descrip-
tion), focusing on seven emotions: anger, disgust, fear, joy, neutral, sadness, and
surprise. We used emotional drift to identify emotional bias across various depths
of recommendations. The diversity of emotions resulting from the content was
illustrated on a line graph, with each point on the depth axis representing a
traversed depth of video recommendations. We utilized a fine-tuned version of
transfer learning [5], Emotion-English-DistilRoberta-base [19], for Natural Lan-
guage Processing (NLP) tasks to ensure the accuracy of results. Transfer learn-
ing aims to increase the accuracy and efficiency of the model training process by
preserving information from prior models and applying it to related tasks.

2.3 Morality Assessment

Morality assessment is an effective social computing technique used to extract
moral intuition from textual data. For our morality assessment analysis, the
extended Moral Foundations Dictionary (eMFD), a dictionary-based tool for
extracting moral content from textual corpora, was used. This package was con-
structed from text annotations generated by a large sample of human coders [24].
Using the Moral Foundations Theory [13], we worked on analyzing the moral con-
tent of our narrative and visualized the drift in morality within our dataset across
five moral foundations: harm (involving intuitions of sympathy, compassion, and
nurturance), cheating (including notions of rights and justice), betrayal (support-
ing moral obligations of patriotism and “us versus them” thinking), subversion
(including concerns about traditions and maintaining social order), and degra-
dation (including moral disgust and spiritual concerns related to the body) [6].
The resulting morality diversity in content was also illustrated on a line graph,
with each depth representing a traversed depth of video recommendations.

2.4 Network Analysis

Network analysis gives a perspective through which to view and understand the
complex web of recommendation systems and how they influence consumers.
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More than just viewing connections, it allows us to identify important patterns,
key influencers, and any shifts or drifts that might occur in the network. This
kind of visualization is crucial for understanding how different videos relate to
each other, and how certain nodes might have a stronger influence on recom-
mendations than others. Eigenvector centrality is our chosen tool to zoom in
on these influential nodes. The mathematical details and the definition of this
technique are provided below.

For a given graph G:=(V,E) with |V | vertices, let A = ( avt) be the adjacency
matrix, i.e., (avt) = 1 if vertex v is linked to vertex t, and (avt) = 0 otherwise.
The relative centrality score, Xv of vertex v can be defined as:

Xv =
1
λ

ΣtεM(v)Xt =
1
λ

ΣtεvavtXt (1)

where M(v) is the set of neighbors of v and λ is a constant. With a small rear-
rangement, this can be rewritten in vector notation as the eigenvector equation.

Ax = λx (2)

3 Results

3.1 Emotion Analysis

The goal of emotional drift analysis is to determine how emotions across the
seven categories (anger, surprise, fear, joy, neutral, disgust, and sadness) evolve
or drift across recommendation depths. To determine emotional drift, we com-
puted and visualized the predominant emotions at each depth of recommen-
dation, from seed to depth 4, on a line graph. In our analysis, we considered
video text data at two different places: video titles and video descriptions. This
process allowed us to effectively apply emotion analysis and visualize emotional
drift across different levels of video details. The neutral emotion effectively iso-
lates text data with no identifiable emotion embedded. As a result, the neutral
emotion in the line graph was not considered in our result analysis. From the
graph below in Fig. 1(a), we observe that on emotional drift analysis of the video
titles, there was a significant presence of fear, anger, and disgust emotions at the
seed level (depth 0), and a reduced presence of joy and surprise emotions. As we
moved from seed videos to depth 4 through the recommendations made by the
algorithm, we observed an increase in the proportion of joy and surprise emo-
tions. This trend was accompanied by a decrease in the previously heightened
fear, anger, and disgust emotions as we approached depth 4. This trend of the
emergence of positive emotions and decline of negative emotions across recom-
mendations was also seen in the emotional drift analysis of video descriptions in
Fig. 1(b) but with a clear level of distinction. On analyzing video descriptions,
we saw a more distinct pattern of emergence and decline; this is most likely due
to the higher level of content and information in video descriptions as compared
to video titles.
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Fig. 1. Line graph showing the distribution of emotions across recommendations of
videos using (a) video titles (b) video descriptions.

3.2 Morality Assessment

While emotion analysis is a text analytics tool which has been used to determine
the emotional expression in text data [21–23], morality assessment is another
form of text analytic technique that has been used to discover ethical reasoning,
moral concepts, and decision-making in text data [13]. With the application of
morality assessment, we can extract the underlying moral content in text data.
This enables us to understand the influence of moral judgments, especially in
the areas of information dissemination. The morality drift analysis aimed to gain
a more comprehensive understanding of the drift in embedded moral opinions
across recommendations and to comprehend the moral implications of the bias in
YouTube’s recommendation algorithm. As was done in the emotional drift anal-
ysis phase, the predominant morality at each depth of recommendation from
seed to depth 4 was computed and visualized on a line graph. Given the com-
prehensive nature of the morality assessment phase, the analysis was conducted
across video titles and descriptions. The Morality Vice Assessment computed
the distribution of moral vices, such as harm, cheating, betrayal, subversion,
and degradation, across recommendations.

Morality Vice Assessment on Video Titles and Description. From
Fig. 2(a), which illustrates the morality drift analysis of video titles, we observed
a significant presence of all vices (harm, cheating, betrayal, subversion, and
degradation) at depth 0, representing our seed videos. Harm appears as the
most prevalent moral vice. As we move from the seed videos to depth 4, there is
a significant decline in all moral vices, with a plateau observed from depth 3 to
4. This declining trend in the presence of moral vices across recommendations is
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also evident in the video descriptions analysis depicted in Fig. 2(b). However, the
decline appears to occur at a slower pace compared to that in the video titles.

Fig. 2. Line graph showing the distribution of vice morality across recommendations
of videos using (a) video titles (b) video descriptions

3.3 Network Analysis

Network analysis was performed on each depth of recommended videos using a
recommendation network. For each depth, every video was ranked using its eigen-
vector centrality measure to determine its influence in the network. Nodes are
sized by eigenvector centrality in the graph in Fig. 3. To find the most influential
videos, we isolated and analyzed the top five videos with the highest eigenvector
centrality score per depth. The mean eigenvector centrality score for the top five
videos per depth was found and videos which had an eigenvector centrality score
above the resulting mean were filtered out and categorized as ‘above-average’
influential videos. We infer from the analysis that these ‘above-average’ influ-
ential videos were responsible for driving the recommendations of videos across
depths and determined how the conversation across depths evolved.

To ascertain the content divergence of’above-average’ videos from our initial
seed videos (depth 0), we conducted a content analysis on the most influential
videos post-depth 0. This helped us identify latent topics within the recommen-
dations, and each video was subsequently tagged with its respective topic. To
visualize the content of these’above-average’ influential videos and monitor the
progression of dominant topic communities across recommendations, we manu-
ally examined the content of the high-influence videos on YouTube (see Table 1.)

In depth 1, the China-Uyghur issue is addressed through the video “Story
of the Uyghurs in the City of Kashgar.” However, the presence of unrelated
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content, like the “Learn Hebrew Alphabet” video, suggests initial diversification
in recommendations. In depth 2 and 3, recommendations drift notably from the
China-Uyghur topic. The focus shifts to financial transactions and the figure
“Ida Dayek”. This aligns with the research’s observation about changing themes
in deeper recommendations. In depth 4, the absence of China-Uyghur-related
content continues, indicating further content diversification with topics like space
exploration and politics.

To sum up, the persistence of the “Strange transaction at Ministry of
Finance” video across depths is intriguing and might signal how recommen-
dation algorithms may persist on certain topics, potentially diverting users away
from the original search or interest. The Table 1 acts as empirical evidence for the
research’s primary claim: YouTube’s recommendation system potentially drifts
from morally complex and emotionally charged subjects, leading users down
diverging paths and potentially shaping their perceptions and beliefs in the pro-
cess. This makes us realize just how tricky and subtle these recommendation
algorithms can be, especially when we’re diving into sensitive or emotionally
intense topics. Knowing about these shifts helps us all be smarter and more
mindful viewers.

Fig. 3. Recommendation network across depths for China-Uyghur Crisis Dataset
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Table 1. Influential videos in each depth of the China-Uyghur narrative and their
respective topics.

Depth VideoID Eigen value Topic

1 UU6Fe7lqIo

8 1KhMtThfw

yYzOpTMpEFA

uOqi1t3fr8I

xvQgB8WZLO8

1

1

0.988

0.506

0.506

Learn Hebrew Alphabet

Chinese aircraft,ships near Taiwan

Story of the Uyghurs in the City of Kashgar

Finding middle ground in form of grand coalition

Strange transaction at Ministry of Finance

2 VP91uPPopac

bTbIdqiqY1k

fXcYStb4vog

kNLP4jKa4Js

rhSksgm9wPw

1

0.993

0.784

0.686

0.686

Hot Debate - Ida Dayek, alternative medicine

Phenomenon of Ida Dayak makes eyes widen

Suspicious Transactions Ministry of Finance

Explanation of Transactions of 349IDR Trillion

DPR Discuss Transactions of 349IDR Trillion

3 xvQgB8WZLO8

fXcYStb4vog

bTbIdqiqY1k

VP91uPPopac

rhSksgm9wPw

1

0.902

0.802

0.648

0.519

Strange transaction at Ministry of Finance

Suspicious Transactions Ministry of Finance

Phenomenon of Ida Dayak makes eyes widen

Hot Debate - Ida Dayek, alternative medicine

DPR Discuss Transactions of 349IDR Trillion

4 xvQgB8WZLO8

oJDctxlbRi8

dC1-qgR7YO0

tq-t1fH0pew

D-1OmpU5mkU

1

0.729

0.658

0.638

0.583

Strange transaction at Ministry of Finance

’Grift scandal’-Clarence Thomas US Justice

NASA’s James Webb Space Telescope

KPK Chairman Controversy,Docs leak To Wealth

Ferdy Sambo Freeing from the Death Penalty

4 Discussion and Conclusion

In this research, we collected videos from four recommendation stages, using
relevant seed videos related to the China-Uyghur crisis. On collection of our
data, emotional analysis and morality assessment were conducted to determine
the nature and impact of YouTube’s recommendation algorithm as it relates to
the China-Uyghur narrative.

Results from our emotional analysis showed that there was an emergence
of positive emotions and a decline of negative emotions as we progressed
through recommended videos. This emotion pattern of drift suggests that as
the algorithm encounters videos related to the China-Uyghur narrative, the
algorithm reduces the recommendation of videos expressing negative emotions
while increasing recommendations of videos with positive emotions. On assess-
ing the distribution of morality across recommendations, we see that morality
vice assessment of video titles and description showed that all vices were signif-
icantly expressed in our seed videos, but as more videos were recommended by
the algorithm, these vices continually reduced till they reached minimum lev-
els at depth 4. Our findings suggest that our seed videos had high amounts of
negative emotions and vices. As more videos are recommended by the algorithm
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from the China-Uyghur seed videos, we see an increase in positive emotions and
a decrease in moral vices.

Adding to this, our network analysis, utilizing eigenvector centrality, high-
lighted how influential videos, over time, changed direction from the China
Uyghur topic. This suggests the recommendation system might not just be
responding to content but possibly to other factors like popularity. This com-
bined drift, in emotion and content, offers insight into the workings of YouTube’s
recommendation system, illustrating its tendency to shift users towards broader
or more prevalent content themes.
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Abstract. Speech enhancement is a key component in voice communi-
cation technology as it serves as an important pre-processing step for
systems such as acoustic echo cancellation, speech separation, speech
conversions, etc. A low-latency speech enhancement algorithm is desir-
able since long latency means delaying the entire system’s response.
In STFT-based systems, reducing algorithmic latency by using smaller
STFT window sizes leads to significant degradation in speech quality.
By introducing a simple additional compensation window along with the
original short main window in the analysis step of STFT, we preserve
signal quality – comparable to that of the original high latency system
while reducing the algorithmic latency from 42 ms to 5 ms. Experiments
on the full-band VCD dataset and a large full-band Microsoft’s internal
dataset show the effectiveness of the proposed method.

Keywords: Speech enhancement · algorithmic latency · STFT ·
compensation window · asymmetric Hann

1 Introduction

Speech enhancement (SE) algorithms recover clean speech from a mixture of
speech and noise. It is a key component in audio communication technology
stacks, serving as a crucial pre-processing step for down-stream tasks such as
automatic speech recognition (ASR) [6,8], acoustic echo cancellation [16], etc.
Besides speech quality, low latency is among the most important desirable prop-
erties of a SE system, especially in real-time applications such as voice-video
teleconferencing or hearing aids [4,5].

Traditional SE algorithms include filter-bank and statistics-based models
such as filtering, spectral subtraction, and optimally log-spectral amplitude esti-
mator [14]. These methods, however, are prone to complex noise environments
and often inadequate for the current demand of SE. Recent advances in deep
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Fig. 1. Overview of our proposed method. E, ENH, D, HD denote the encoder,
enhancer, decoder, high-frequency decoder blocks, respectively. The triplet numbers
denote number of convolution filters, kernel sizes in temporal axis and frequency axis.
All encoder blocks except E0, E1 have stride (1,2). All decoder blocks except D0 has
PixelShuffle upsampling with factor (1,2).

learning [10,12,19] have made significant progress in the field and have been
preferable to classical SE methods.

Deep learning-based SE methods can be categorized into temporal-based and
spectral-based methods. The former operates directly on waveforms whereas
the latter takes a transformation of the original waveform (typically short-time
Fourier Transform - STFT) as input. Spectral-based methods require signifi-
cantly more time samples to obtain a balanced trade-off in time-frequency tiling.
As a result, spectral-based approaches produce better prediction accuracy at the
cost of higher latency compared to temporal-based approaches. Recent spectral-
based methods have latency in the regime of 40 ms [7,20,21], much higher than
the typical value on temporal methods. Our work focuses on improving the
latency of spectral-based methods while preserving their superior predictive per-
formance.

In spectral-based methods, algorithmic latency relies heavily on STFT win-
dows design (see Sect. 2.1). To modify these windows, certain perfect recon-
struction (PR) constraints [1] must be satisfied. Recent works have successfully



Speech Enhancement with Compensation STFT Window 365

reduced the algorithmic latency by modifying synthesis window and analysis
window focused on satisfying these constraints [15,18].

This work proposes a compensation windowing scheme to reduce the latency
of SE systems while preserving their prediction accuracy. To the best of our
knowledge, this is the first to reduce the latency of spectral-based methods in
supervised full-band, e.g., 48 kHz sampling rate, SE tasks. Furthermore, unlike
previous works that focus on designing complicated PR window pairs, we keep
the same main processing window pair short and simply add an additional longer
compensation window along with a proper deep neural network (DNN) archi-
tecture. Experimental results on the VoiceBank-DEMAND (VCD) [13] and a
Microsoft internal dataset show that our proposed approach achieves better SE
quality with lower latency compared with state-of-the-art methods.

2 Proposed Method

2.1 Spectral Methods: Pipeline and Algorithmic Latency

We use STFT/iSTFT as the analysis/synthesis transformation. The pipeline
includes analysis step, enhancement step and synthesis step. In analysis, an
STFT operation transforms an input signal x ∈ R

d to a T-F spectrogram
X ∈ R

T×F×2. In enhancement, a preprocessed X is then fed into a deep neural
network T to produce the enhanced spectrogram X̂ = T (X) ∈ R

T ′×F×2 (either
via means of predicting complex spectral mask or via direct spectral values).
Finally, in synthesis, iSTFT recovers the enhanced 1D signal x̂ from X̂. In the
synthesis process, neighboring frames will produce overlapping 1D signals, and
the signals will be summed over overlapping regions to form the final signals. This
algorithmic latency induced by the synthesis operation is equal to the duration
of the STFT window used in the iSTFT and is illustrated in Fig. 2.

2.2 Compensation Windows in Analysis

A straightforward approach to reduce the algorithmic latency is to shorten the
STFT window. However, this leads to a lower frequency resolution in the T-F
spectrogram and hampers the prediction accuracy. To overcome this shortcom-
ing, along with the main window in a typical single-analysis-single-synthesis-
window setup [15,18], we introduce a simple compensation window to compen-
sate for the loss of frequency resolution in the analysis step. In other words, we
utilize multiple windows to extract information temporally in the analysis phase
but still only employ one single conventional window for synthesizing the output.

More specifically, our compensation window does not require any extra look
ahead compared to the main window. Formally, the main STFT and compensa-
tion STFT can be computed as follows:

Xm(t) = DFT(x[t − Fm/2 : t + Fm/2] ∗ wm),
Xc(t) = DFT(x[t − Fc/2 − Δ : t + Fc/2 − Δ] ∗ wc),
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(a) Algorithmic latency induced by overlap-add

(b) Main and compensation window setup in analysis STFT

Fig. 2. Example of algorithmic latency for STFT with window size of 4 ms and hop
size of 1 ms and illustration of main and compensation window. (a). At time t, the
information for the beginning of the 4th block is available (gray signal) but to produce
the corresponding output wave (black signal), the algorithm will need to wait until
receiving complete the 7th block for overlap-add. (b) Compensation window (green)
looks further into the past when compared to the main window (red) depicted with
their Hann windowing functions.

where {Xm, Fm, wm} and {Xc, Fc, wc} are the STFT frame, the window size
and the windowing function of the main window and the compensation window,
respectively. Also, Δ = Fc−Fm

2 . Intuitively, Xc is the transformation of the right-
shifted version, by an amount of Δ, of x. The compensation hop size is always
set equal to the main hop size. The set (Xm,Xc) is used as the input of the
enhancement algorithm.

The benefits of our proposal are threefold. First, as the main analysis-
synthesis window pair is kept intact, PR is always guaranteed without com-
plicated window designing schemes as in previous works [18] [15]. Second, the
compensation window thus can ignore PR constraints, allowing downstream fea-
ture learning to focus more on learning useful representations for the prediction
task. Finally, the transformation for the compensation window is versatile: one
can replace STFT with equivalent transformations.

2.3 Choice of Windowing Function

Following previous works [18] on designing an asymmetric pair of analysis-
synthesis windows, we use the asymmetric Hann window (the green curve in
Fig. 2) as a compensation STFT windowing function. Mathematically, this asym-
metric Hann window is parameterized by Fc and Fw and can be expressed as
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wc[n] =

⎧
⎪⎨

⎪⎩

√
H2(Fc−Fm)[n] if n ∈ [0, Fc − Fm),

√
H2Fm

[n − (Fc − 2Fm)] if n ∈ [Fc − Fm, Fc),
0 otherwise.

Our experimental results show that the asymmetric Hann window function
produces better results than the regular Hann window. Since PR is satisfied
as we keep the regular pair of analysis/synthetic windows, our choice for the
compensation window is agnostic of windowing functions or transformation, thus
any windowing designs (Square, Turkey, etc.) can be applied. Therefore, we
choose the asymmetric Hann window and focus on studying the compensation
scheme. We refer the readers to previous work [15,18] for a detailed study of
different window types.

2.4 Multi Encoder Deep Neural Network for Low Latency Deep
Noise Suppression

We use a UNet-based model with causal convolution and the network directly
regresses enhanced spectrogram given two input spectrograms: one from the
main window and another from the compensation window. The DNN has three
main components: encoder, and enhancer, and decoder. The encoder comprises
two different encoder heads corresponding to the main window and the compen-
sation window. The outputs of these heads are fused by 1× 1 convolution before
being fed into several shared encoder blocks. The enhancer includes 4 enhance-
ment blocks, each comprises 4 sequential ResNet blocks. The decoder consists
of two separate branches, both of which can process the same output of the
enhancer to produce the lower and higher frequency parts of the output, respec-
tively. The output of the decoders is concatenated to form an enhanced spectro-
gram. Each encoder-decoder block includes a convolution layer, a LeakyRELU
layer with negative slope of 0.2 and a Batch Norm layer. Such architecture is
depicted in Fig. 1.

Let φ(.) : C
T×(F

2 +1) → C
T×(F

2 +1) be a preprocessing function defined as
φ(X) = (|X| 1

3 /|X|)X. Let Xc ∈ R
T×Fc/4×2,Xm ∈ R

T×Fm/4×2 be the processed
spectrograms of the main and compensation window after applying φ, removing
half of higher frequency bins and concatenate real and imaginary parts to form
a third dimension. The network produces X̂ ∈ R

T ′×Fm/2×2 spectrogram.
For the loss function L, we employ the consistency projection loss as in [17]

[2]. Let X, X̂ be the ground truth and enhanced spectrogram (unprocessed by
φ). Let γw,l(.) be the STFT transformation parameterized by window size w and
hop size l. Then,

L(X, X̂) = Lspectral + Lmagnitude

= |||φ(γFL,HL
(γ−1

Fm,Hm
(X̂))) − φ(γFL,HL

(γ−1
Fm,Hm

(X)))|||

+ |||φ(γFL,HL
(γ−1

Fm,Hm
(X̂)))| − |φ(γFL,HL

(γ−1
Fm,Hm

(X)))|||.
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3 Experiments

3.1 Datasets and Metrics

We train and test the networks using two datasets including VCD and the
Microsoft dataset derived from the DNS challenge [4] dataset. Both are full-
band 48 kHz. Both are speech datasets that are often used for benchmarking
noise suppression systems.

The VCD dataset includes 11572 noisy-clean pairs for training and 824 pairs
for testing. We pre-process the audio samples by zero-padding at the beginning
of the signals so that the minimum duration is 4 s.

The Microsoft dataset is derived from [4] by data augmentation. This dataset
includes 1000 h, 360,000 noisy-clean pairs for training. Each noisy or clean sample
is 10 s long. The test set includes 560 noisy-clean multilingual pairs for testing,
each last 17–21 s.

For evaluation, we ignore the first 3 s of each audio (since convergence time is
2.2 s) and evaluate the rest. Since PESQ score only operates on signals under 16
kHz [9], we downsample the enhanced outputs to 16 kHz and compute the PESQ
score for each output given the corresponding target signal. We also employ STOI
[11], and DNSMOS [3] includes background (BAK), signal (SIG) and overal
(OVL) scores.

3.2 Training and Model Configurations

We use step-wise Adam Optimizer with an initial learning rate of 1e−4, which
decays by 10 at epochs 10 and 30 for a total of 80 epochs for the Microsoft
dataset and epochs 50 and 150 for a total of 200 epochs for VCD. We loop
through the entire dataset 4 times per epoch to ensure enough coverage of the
training data. The training time for each experiment is 15 h and 70 h for VCD
and Microsoft data, respectively, on 3 NVIDIA TITAN RTX GPUs.

Since we have multiple different input shapes throughout different latency,
the number of encoders and decoders also needs to change accordingly. We main-
tain the number of encoders/decoders so that the frequency dimension of the
last encoder’s output is 8. The model is trained on 16-bit precision. We set up
T = 226, T ′ = 66, FL = 2048,HL = 480. Fm,Hm and Fc,Hc are the sizes/hop
sizes of the main and compensation windows, respectively. When computing Ls,
we only process the first 256 frequency bins and ignore the rest as they provide
little information for speech.

3.3 Comparison of Different Windowing Strategies Under Different
Latency

We measure the speech enhancement quality under different latency and anal-
ysis window setups. We consider four different latency values: 42 ms, 21 ms,
10 ms, and 5 ms. In all experiments, the compensation window size is 2048.
Table 1 and Table 5 show the results for the VCD and Microsoft datasets. The
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results support our aforementioned insights and claims. First and most impor-
tant, even if shrinking the window size reduces the latency and sacrifices speech
enhancement quality (e.g. line 6 compares to line 1), the usage of compensation
window makes the speech quality still comparable to those produced by high
latency setting (e.g. line 5, 8, 11 compares to line 1). Second, using the com-
pensation window only significantly outperforms the baseline that uses the main
short window. Third, utilizing an asymmetric Hann window for compensation
yields better prediction than the regular Hann window. Finally, combining both
the main window and the compensation window produces the best prediction
quality (line 5, line 8). We also observe that in the 5 ms case, using both the
main window and compensation window does not give best results in all metrics
(line 10,11), we believe the reason is when the main window becomes too small,
it may not offer significant useful information, hence a better design is needed
for under 5 ms systems.

Table 1. Performance on VCD test set. W, H, M, C, Lat, (R) denotes main window
size, hop size, main window used, compensation window used, latency, and regular
Hann window (symmetric), respectively.

# W H M C STOI PESQ BAK SIG OVL Lat (ms)

1 2048 512 ✓ 0.9640 2.9251 3.8769 3.3360 2.9866 42

2 1024 512 ✓ 0.9628 2.9129 3.8774 3.3518 3.0007 21

3 1024 512 ✓ ✓(R) 0.9633 2.9915 3.8824 3.3453 2.9965 21

4 1024 512 ✓ 0.9643 2.8759 3.8837 3.3584 3.0094 21

5 1024 512 ✓ ✓ 0.9632 2.9945 3.8926 3.3568 3.0110 21

6 512 256 ✓ 0.9620 2.8823 3.8588 3.3444 2.9872 10

7 512 256 ✓ 0.9633 2.9267 3.8765 3.3564 3.0055 10

8 512 256 ✓ ✓ 0.9637 2.9543 3.8798 3.3579 3.0076 10

9 256 128 ✓ 0.9573 2.7233 3.8623 3.3138 2.9633 5

10 256 128 ✓ 0.9621 2.8581 3.8737 3.3562 3.0041 5

11 256 128 ✓ ✓ 0.9628 2.8263 3.8744 3.3554 3.0035 5

4 Ablation Study

We conduct ablation study to better understand the impact of the compensation
window. Table 2 shows the SE quality for several compensation window sizes. We
keep the baseline main window size as 512 and vary the compensation window
sizes from 512 to 4096 and observe that the 2048 window size achieves the best
performance. Note that a too long window (4096) degrades the signal quality,
as it includes unrelated information from the past and also increases network
complexity.

Table 3 shows how increasing the number of compensation windows in addi-
tion to the main window influences the enhancement performance. For the two
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Table 2. Comparison of different compensation window length on VCD dataset. ‖C‖
denotes the length of compensation windows.

# W H M ‖C‖ STOI PESQ BAK SIG OVL Lat (ms)

1 512 256 ✓ 0.9620 2.8823 3.8588 3.3444 2.9872 10

2 512 256 ✓ 512 0.9588 2.8296 3.8709 3.3197 2.9734 10

3 512 256 ✓ 1024 0.9595 2.8291 3.8584 3.3246 2.9703 10

4 512 256 ✓ 2048 0.9637 2.9543 3.8798 3.3579 3.0076 10

5 512 256 ✓ 4096 0.9591 2.8064 3.8567 3.3177 2.9640 10

Table 3. Comparison on number of compensation windows. #C denotes number of
compensation windows on VCD dataset. ‖C‖ denotes the length of compensation win-
dows.

# W H #C ‖C‖ STOI PESQ BAK SIG OVL Lat (ms)

1 512 256 0 0.9620 2.8823 3.8588 3.3444 2.9872 10

2 512 256 1 2048 0.9637 2.9543 3.8798 3.3579 3.0076 10

3 512 256 2 1024, 2048 0.9640 2.9641 3.8878 3.3569 3.0102 10

Table 4. Comparison of different fusion types on VCD dataset.

# W H Type STOI PESQ BAK SIG OVL Lat (ms)

1 512 256 Proposed 0.9637 2.9543 3.8798 3.3579 3.0076 10

2 512 256 1 Encoder 0.9617 2.8785 3.8791 3.3542 3.0047 10

3 512 256 2 Encoder 0.9627 2.9543 3.8663 3.3466 2.9925 10

compensation window configuration, we simply add another encoder branch cor-
responding to that window. We observe that using more windows improves the
performance. This suggests that at the cost of increasing network complexity,
increasing different number of signal representations in encoder improves the
denoising quality and hence the compensation windows provide useful informa-
tion.

In Table 4, we justify the network design choice to fuse the main and compen-
sation window by comparing the proposed design to the alternatives: namely, to
use only one encoder to process both features from the main window and com-
pensation window after concatenated together (line 2) and use two encoders but
fuse the features at an earlier stage (line 3). Through this experiment, we con-
jecture that by leaving a separate and strong enough feature representation for
itself, the compensation window/branch is able to focus on the representation it
needs to excel in the SE task.
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Table 5. Performance on Microsoft test set.

# Window size Hop size Main window Compensation
window

PESQ Lat (ms)

0 2048 512 ✓ 2.4132 42

1 2048 1024 ✓ 2.3539 42

2 1024 512 ✓ 2.3242 21

3 1024 512 ✓ 2.3555 21

4 1024 512 ✓ ✓ 2.3570 21

5 512 256 ✓ 2.1906 10

6 512 256 ✓ 2.2153 10

7 512 256 ✓ ✓ 2.2250 10

8 256 128 ✓ 2.1222 5

9 256 128 ✓ 2.1614 5

10 256 128 ✓ ✓ 2.1676 5

Lastly, we test the performance of the proposed duel window strategies on a
larger dataset in Table 5. Due to certain time constraints, we are able to evaluate
PESQ scores on our experiments. The result confirms the proposed approach
consistently improves speech quality in low latency settings (line 4,7,10).

5 Conclusions

In this work, we propose a simple approach to enhance the speech enhancement
quality for a low-latency speech SE system. Through various experiments on two
different datasets, we observe that by simply adding an additional compensation
window along with the main window analysis helps improve the speech quality
while lowering the latency, possibly pushing it down to 5 ms. Future possible
directions include exploring specific window/filter designs for this compensation
window and taking advantage of other forms of feature representation in this
compensation window.
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Abstract. With SINr, we introduced a way to design graph and word
embeddings based on community detection. Contrary to deep learn-
ing approaches, this approach does not require much compute and was
proven to be at the state-of-the-art for interpretability in the context of
word embeddings. In this paper, we investigate how filtering communities
detected on word co-occurrence networks can improve performances of
the approach. Community detection algorithms tend to uncover commu-
nities whose size follows a power-law distribution. Naturally, the number
of activations per dimensions in SINr follows a power-law: a few dimen-
sions are activated by many words, and many dimensions are activated
by a few words. By filtering this distribution, removing part of its head
and tail, we show improvement on intrinsic evaluation of the embedding
while dividing their dimensionality by five. In addition, we show that
these results are stable through several runs, thus defining a subset of
distinctive features to describe a given corpus.

Keywords: Word co-occurrence networks · community detection ·
word embedding · linguistics · interpretability

1 Introduction

In the field of Natural Language Processing (NLP), one of the main challenges
is to represent the meaning of words into vectors, these vectors then being used
as input to classification systems in order to solve various tasks such as part-of-
speech tagging, named entity recognition, machine translation, etc. Vectors that
represent words are commonly designated as word embeddings: the meaning of
words is embedded in a small latent space with dense vectors. Approaches to
train such vectors are based on the distributional hypothesis. Harris defines this
hypothesis, writing that “linguistic items with similar distributions have similar
meanings”. To train word embedding, one thus need to estimate these distribu-
tions using word co-occurrences from large corpora. The seminal approaches to
train word embeddings are actually based on word co-occurrences matrix factor-
ization [16,19,20]. Other popular approaches such as Word2vec [18] use neural
networks to build lexical representations, thus approximating matrix factoriza-
tion methods [15]. Finally, transformer-based approaches [17] and large language
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1141, pp. 377–388, 2024.
https://doi.org/10.1007/978-3-031-53468-3_32
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models based on these architectures [14] have demonstrated impressive perfor-
mances, being able to contextualize word representations according to words’
occurrences.

SINr (Sparse Interpretable Node Representations), the approach we intro-
duced in Prouteau et al. [21] is based on those recent progresses in NLP. How-
ever, it pursues an alternative path. Instead of focusing on performance, the
method aims to train interpretable word vectors frugally. To do so, it leverages
the distributional hypothesis in a rather direct manner, using word co-occurrence
networks. Communities are then detected and considered as dimensions of the
latent space. The word vector is finally extracted using the connectivity of its
representing nodes to the communities extracted, in line with Harris’ claim: we
consider that words with similar distributions of links through communities have
similar meanings. The model has proven its low compute requirement, it is indeed
based on the Louvain algorithm [5]. Furthermore, it was shown that dimensions
of this model are mostly interpretable, the model being on-par with SPINE [23], a
competing state-of-the-art approach for interpretability [22]. Indeed, dimensions
are not abstract as in conventional approaches: they are the communities uncov-
ered, tangible groups of words [22]. Even though SINr does not focus strictly on
performance, it is still an important goal. On the similarity task, the approach
is on-par with SPINE, but slightly under-performs when compared to Word2vec.

In this paper, we show how to foster community filtering to significantly
improve performances of SINr, allowing to catch up with Word2vec while pre-
serving its interpretability and low compute properties, even lowering its memory
footprint. We first describe SINr in more details Sect. 2. In Sect. 3, we analyze
dimensions’ activations and how they seem related to the distribution of com-
munity sizes. Using this analysis, we propose our community filtering method
based on dimension activation to improve the model. Then, in Sect. 4, we detail
the textual corpora used to train the word embedding approaches considered,
and the similarity task that we use to evaluate model performances. We finally
detail the results by showing that filtering communities by removing part of
the head and tail of the dimensions activations distribution allows a significant
improvement in results while reducing models’ memory footprint.

2 SINr: Interpretable Word Vectors Based
on Communities

In this section, we first detail the SINr approach as we introduced it in [21]. As
far as we know, it is the first graph-based approach to train word embeddings,
but like other approaches, it is based on the distributional hypothesis, adjusting
Harris’ formula by claiming that words with similar distributions of links through
communities have similar meanings.

We start with an undirected weighted network, the word co-occurrence
network, where words are vertices, and edges between nodes represent co-
occurrences of words inside a sentence, and at a distance at most of w. Textual
corpora were preprocessed to keep only meaningful words (see Fig. 1a). Weights
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are associated to edges and represent the number of co-occurrences. We then
filter our word co-occurrence network by setting to 0 the edges weights whose co-
occurrence is not significant, according to the PMI (the ratio of the probability of
nodes u and v co-occurring together divided by their probability of occurrence).
This is very similar to the construction of a co-occurrence matrix, showing that
SINr is related to the matrix factorization approaches such as [16,19]. In matrix
factorization, the next step is to factorize the matrix to reduce dimensionality
and get dense vectors. In SINr, we use community detection with the Louvain
algorithm to group words together and get the interpretable dimensions of our
latent space (see Fig. 1b). We use the multiscale γ parameter [13] and set it
to 60 in this paper: it allows uncovering small, thus consistent communities.
We eventually calculate the distribution of the weighted degrees of each node
through communities to get word embeddings, such as described in Fig. 1c,1d.
This distribution is computed according to the Node Recall introduced in [9] and
defined as follows. Given a vertex u, a partition of the vertices C = {C0, . . . , Cj},
and Ci the ith community so that 1 ≤ i ≤ j, the node recall of u considering the
ith community is : NRi(u) = dCi

(u)

d(u) with dCi
(u) =

∑
v∈Ci

Wuv. To refine these
vectors, we show in [10] that we can keep, for each vector, the 50 highest values,
improving interpretability and lightening up the model.

(a) Text corpus.

cat
eats

mouse owl
flies

crow eagle

slower

2

(b) A graph G = (V,E,W ) parti-
tioned in two communities.

C0 C1

cat eats mouse owl flies crow slower eagle

1 1 1 0.66 0.33 0.33 0.66 1 11

(c) Bipartite projection of G into graph G =
( ,⊥, E,W ) along the communities. Weight on the
edges is based on NR, the proportion of the weighted
degree of each node related to the community.

C0 C1
cat 1 0
eats 1 0

mouse 1 0
owl 0.66 0.33
flies 0.33 0.66
crow 0 1
eagle 0 1
slower 0 1

(d) Adjacency matrix of G , each
row is a SINr embedding.

Corpus before preprocessing: My cat eats mice. Your
owl eats mice. This owl flies. A crow flies slower
than an eagle.
After preprocessing: cat eats mouse. owl eats mouse.
owl flies. crow flies slower eagle.

Fig. 1. SINr: words are represented based on the communities they are linked to.
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3 SINr-filtered: Sampling Communities Using Activations

First, community sizes tend to follow a power-law distribution [8]. We use the
γ multiscale resolution parameter [13] to uncover small consistent communities,
but there are still a few communities bigger than the rest as shown in Fig. 2. In
this figure, we applied SINr to two corpora, BNC and UkWac which are described
in details in Sect. 4.

Fig. 2. Distribution of community sizes on BNC (left) and UkWac (right) corpora. The
ordinate axis is in logarithmic scale.

Furthermore, linguists have studied the distribution of words occurrences and
co-occurrences in corpora. It has been shown that it follows Zipf’s law [3], which
is consistent with a power-law [1], commonly observed in complex networks. It
means that some words would co-occur far more than others with the rest of
the vocabulary, and a lot of them may co-occur very few with the rest of the
vocabulary. Because communities are made of words following this power-law,
and because communities sizes also follow a power-law, some communities may
be much more connected with the rest of the graph than others, and some of
them may be quite isolated. Let us recall that dimensions of our SINr model
correspond to these communities. Thus, if we say that a dimension is activated
by a word if this dimension’s value is greater than 0 for this word vector, we
expect the activation of dimensions by the word vectors to follow a power-law.

As we can see in Fig. 3, the number of activations (non-zero values) follows
a distribution that looks like a power-law. This is critical to understand how
the model works and how we can improve its performances while reducing its
memory footprint.

As stated by Subramanian et al. [23], having dimensions activated by a large
part of the vocabulary is not compatible with interpretability, which is a focus
of our work: a dimension is interpretable if the set of words that activate it
is consistent. Such heavily activated dimensions may be based on communities
gathering very frequent words that appear in very different contexts, thus being
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Fig. 3. Distribution of the number of activations per dimension on BNC (left) and UkWac

(right) corpora. The ordinate axis is in logarithmic scale.

not consistent topically. We thus propose to remove these dimensions from the
model, and we will see in Sect. 4 that it improves model performances.

We can also see that many dimensions are actually activated by only a few
words. While these dimensions may be useful for very specific topics, they may
not be useful for most of the vocabulary. They may also be noisy dimensions that
penalize performances. We also propose to remove these dimensions from the
models, and we will demonstrate in Sect. 4 that it notably reduces the memory
footprint of the model (dividing the number of dimensions by 5) while preserving
performances.

4 Experiments and Results

4.1 Experimental Setup

Task and Baseline. We consider an intrinsic task to evaluate the performance of
embeddings: the similarity task. In this task, we consider five datasets to evalu-
ate our models: WS353 [2], MEN [6], SCWS [12] and SimLex [11] split in SimLex999
and SimLex665. Each dataset is made up of pairs of words associated with a sim-
ilarity score that is a mean of ratings given by humans. The first three datasets
comprise pairs of words, both representing word similarity (approximately syn-
onymy, or at least substitutability, like “cat” and “feline”) and word relatedness
(much broader, encompasses pairs like “cup” and “coffee”). However, datasets
differ regarding the parts of speech they include: WS353 only includes nouns,
while MEN and SCWS include nouns, verbs and adjectives. Lastly, SCWS is designed
to evaluate contextual representations, scores representing word similarity in
different contexts: “bank” can be scored high with both “river” and “money”
depending on the phrastic context presented to annotators. SimLex, on the other
hand, is a dataset specialized on word similarity, which is more restrictive regard-
ing the substitutability criterion, and allows for hyperonym-hyponym pairs to
be closer than co-hyponyms. For example, in this dataset “father” and “parent”
are rated at 7.07 on a scale of 10 regarding similarity, while “dad” and “mother”
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are at 3.55. Furthermore, SimLex does not rely on frequency information from
a reference corpus to select its word pairs, it thus includes rarer words than
WS353, MEN or SCWS. This dataset is of particular interest due to its difficulty,
and its split with regard to parts of speech : SimLex999 being the whole dataset
with noun-noun, adjective-adjective and verb-verb pairs, and SimLex665 being
the noun subset. This split allows us to determine the validity of our model-
ing on different word categories, which probably follow different distributions of
contexts.

Similarities in embedding spaces using cosine similarity are supposed to be
correlated with human similarities, as shown in Fig. 4. Correlation is computed
with Spearman’s definition: the closer to 1, the better. In order to assess the
performances of our model, we also consider Word2vec, one of the most popular
approaches to train word embeddings. We do not consider more recent state-of-
the-art approaches that allow to get better performances because our approach
focuses on interpretability and low compute. Eventually, it may be used in more
complex architectures, such as transformers,

w1 w2 human rating cosine sim(w1, w2)
tiger cat 7.35

Spearman
Correlation

×

0.73
plane car 6.31 0.65
drink mother 2.85 0.20
forest graveyard 1.85 0.12

Fig. 4. Example of word similarity rating from the MEN dataset and cosine similarity
between vectors.

Corpora. We perform our evaluation on two text corpora:

– the written part of BNC [7], a collection of journalistic, academic and fictional
texts totaling 100 million tokens;

– UkWac [4], a cleaned crawled corpus from the .uk internet domain with over
2 billion tokens.

Both of these corpora are classic for the similarity tasks. Their size, their con-
tent, and the way they are constituted is very different. By reproducing the
experiments on such different corpora, we aim to show that the results may be
generalized to any collection.

Preprocessing and Models Parameters. The text corpora are preprocessed with
spaCy to improve the quality of cooccurrence information and reduce the vocab-
ulary to be covered by the models. The text is tokenized and lemmatized,
named entities are chunked, words shorter than three characters, punctuation
and numerical characters are deleted. The minimum frequency to represent a
type is set at 20 for BNC and 50 for UkWac. All models use a cooccurrence win-
dow of 5 words to the left and to the right of a target within sentence boundaries.
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Furthermore, as stated in Sect. 2, the multiscale resolution parameter γ is set at
60 for Louvain’s community detection in SINr.

SINr -Filtered Approach. We first compute our SINr approach as described in
Sect. 2. Then, by considering the distribution of activations per dimension, we
explore the removal of the few very activated dimensions, and of the dimen-
sions forming the long tail of this distribution. We explore the similarity per-
formances regarding these removals and, in particular, the threshold used for
these removals. The choice of thresholds is guided by performances on the word
similarity evaluation task (see Figs. 5, 6).

4.2 Results

Baseline. In order to assess the performance of SINr-filtered, we also provide
results for Word2vec, a reference approach which is not interpretable, and SINr,
the original approach without filters on the communities. Results are averaged
over 10 runs for the whole section. Table 1 show that SINr-filtered is always
better than the original version, and that it catches up with Word2vec, even
outperforming this baseline on MEN and WS353.

Table 1. Summary of the results of competing models and of SINr and its filtered
version, SINr-filtered, introduced in this paper.

MEN WS353 SCWS SimLex999 SimLex665

BNC UkWac BNC UkWac BNC UkWac BNC UkWac BNC UkWac

W2V .73 .75 .64 .66 .61 .64 .28 .34 .34 .37

SINr .67 .70 .63 .68 .56 .56 .20 .23 .28 .30

SINr-filtered .72 .75 .65 .70 .58 .59 .25 .25 .30 .33

We then show the effects of filtering using the distribution of activations on
the SINr performance regarding the similarity evaluation.

Filtering the Distribution’s Head. As one can see in Fig. 5, model performances
varies a lot with regard to the filter threshold. On the right, when the threshold is
set to 12 000, there is actually no filtering. Filtering more and more, moving the
threshold to the left until the best threshold 4000, allows to gradually increase
performances of models for both UkWac and BNC. Between 4000 and 2000, results
are rather plateauing. After 2000, significant information is removed, leading
to a decrease in performance. Using the 4000 threshold allows catching up with
Word2vec’s performances, our reference. Indeed, the 4000 filter allows a gain of 5
points in performance for the MEN dataset (from 0.67 to 0.72 for BNC and from 0.70
to 0.75 for UkWac), and a slight gain of 2 points for the WS353 dataset (from 0.63
to 0.65 for BNC, from 0.68 to 0.70 on UkWac) and the SCWS dataset (from 0.56 to
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Fig. 5. Similarity on BNC (left) and UkWac (right) corpora. Dimensions often activated
are removed according to the threshold in abscissa.

0.58 for BNC, from 0.56 to 0.59 for UkWac). Such gains are statistically significant,
and they are particularly interesting because they result from a simplification of
the model, even if only 95 (resp. 90) dimensions are removed in average on the
BNC (resp. UkWac) model using this filter. The SimLex dataset is much harder than
the three others, for SINr but also for the reference model Word2vec. However,
as one can see, filtering allows significant gain for SimLex also, especially for
SimLex999 on BNC (from 0.20 to 0.25), and the results are better between 2000
and 4000 thresholds like for the other datasets.

Fig. 6. Similarity on BNC (left) and UkWac (right) corpora. Dimensions scarcely acti-
vated are removed according to the threshold in abscissa.
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Filtering the Distribution’s Long Tail. The effect of filtering the long tail of
the distribution of activations is quite different, as one can see in Fig. 6. At
left, no filter is applied, and increasing the filter does not lead to any gain in
performances. Still, it is interesting to notice that filtering dimensions with less
than 500 activations does not lead to any significant loss in information, on the
five similarity datasets used for evaluation. Indeed, it actually divides by 5 the
number of dimensions of the model, reducing its number of dimensions from
roughly 6600 to 1200 on average for BNC, and from 5700 to 1100 for UkWac, thus
allowing to drastically improve its memory footprint!

Is Filtering Dimensions the Same as Filtering Communities? As one can see
in Fig. 7, filters (more than 500 and less than 4000) applied using the number
of dimensions have an expected effect on community distributions. Here, we
assume that when a dimension is removed from the model, its community is also
removed. We can see that removing dimensions with more than 4000 activations
mostly removes big communities. This is especially the case for UkWac where
the larger communities, those accounting for more than 150 words, are removed.
For BNC, removed communities are not the largest, their size ranges from 60 to
80 words mostly. Similarly, removing dimensions with less than 500 activations
tend to remove small communities. Still, most of the smallest communities are
kept in the model while some larger are removed. These observations show that,
even if the number of activations of a dimension and the size of its commu-
nity are related, using the distribution of activations is different from using the
distribution of the community sizes, showing the relevance of our approach.

Fig. 7. Filtering effects on the community sizes distribution for BNC (left) and UkWac

(right).
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Singling out the Subset of Distinctive Contexts. One may wonder if from one
run of SINr to another, by filtering dimensions with more than 500 and less
than 4000 activations, the vocabulary that forms communities that are kept is
the same. It is surprising to notice that it is mostly the case: roughly 80% of the
vocabulary kept is actually the same over ten runs when considering BNC and
UkWac separately. However, this set is not the same from one corpus to another,
only 35% of the vocabulary kept is actually common to BNC and UkWac. It seems
to mean that these respective subsets of the vocabulary are essential to describe
the meaning of words in these respective corpora. Those results, combined to
the similarity improvements, point towards the notion that our filtering approach
discriminates a subset of the dimensions that is the best fit to describe a given
corpus. However, the evaluation results solely give insight on the subset of the
lexicon covered by the similarity datasets, a subset that is heavily biased toward
nouns, and especially frequent concrete nouns.

5 Conclusion

SINr is a graph-based approach to train word embedding which requires low
compute and whose results are interpretable. In this paper, we show that we can
significantly improve model performances and reduce its memory footprint by
filtering its dimensions. Indeed, filtering the most activated dimensions allows
gaining a few points on the similarity task for each dataset considered, showing
that these dimensions are actually the bearer of noise into the model. This gain
allows SINr performing on-par with Word2vec. Furthermore, filtering-out dimen-
sions that are the least activated allows dividing the number of dimensions by 5
while preserving performances. We show that these filters relying on activations
of the dimensions are somehow correlated with community sizes, but not com-
pletely, showing their relevance. Finally, we demonstrate that the vocabulary
of communities that correspond to dimensions that are not filtered remains the
same from one run of SINr to the other. We plan to experiment on other corpora
but also on downstream tasks to confirm the ability of these results to generalize
in a variety of contexts. Furthermore, it would be particularly interesting to test
the ability of these filtered embeddings to model the meaning of very specialized
vocabulary, to evaluate if removing dimensions affects the representation of these
words.

Acknowledgments. The work has been funded by the ANR project DIGING (ANR-
21-CE23-0010).
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22. Prouteau, T., Dugué, N., Camelin, N., Meignier, S.: Are embedding spaces inter-
pretable? Results of an intrusion detection evaluation on a large French corpus. In:
LREC (2022)

23. Subramanian, A., Pruthi, D., Jhamtani, H., Berg-Kirkpatrick, T., Hovy, E.: Spine:
SParse interpretable neural embeddings. In: AAAI (2018)



DFI-DGCF: A Graph-Based
Recommendation Approach
for Drug-Food Interactions

Sofia Bourhim(B)

ENSIAS, Mohammed V University, Rabat, Morocco

sofia.bourhim@um5s.net.ma

Abstract. Drug discovery focuses on understanding different types of
interactions from drug-drug interactions (DDIs) to drug-food interac-
tions (DFIs). The main purpose of DFI is to discover how a particular
food affects drug absorption, side effects and its effectiveness. The study
of drug-food interactions (DFIs) can provide valuable insight into opti-
mizing patient care, adjusting dosages, and improving patient safety.

In this work, we propose a novel workflow where we aim to use a
community-based recommender system to infer and identify novel DFIs
while incorporating the concept of community profiling and leveraging
the power of Graph Neural Networks. We conduct experiments on the
DrugBank dataset and use FooDB dataset to learn more about food con-
stituents. Our experiments reveal significant improvements over a number
of the latest approaches designed for DFI identification. The findings sub-
stantiate that the utilization of multiple graphs to leverage diverse forms
of relationships holds the potential to yield better recommendations by
extracting complex relationships through the community structure.

Keywords: Drug discovery · Drug-Food Interactions · Graph Neural
Networks · Recommender systems · Community profiling

1 Introduction

Drug-food interaction (DFI) refers to the alteration of a drug’s pharmacological
effect by a food component. DFIs can occur through a variety of mechanisms,
including changes in the absorption, distribution, metabolism, and excretion of
the drug. DFIs can exert a substantial influence on the safety and effectiveness of
drug therapy. In certain instances, DFIs may even result in severe adverse drug
reactions. It can occur through a variety of mechanisms that include changes in
absorption where food components can interfere with the absorption of drugs
from the gut, leading to lower blood levels of the drug. For instance, grapefruit
juice can inhibit the absorption of the cholesterol-lowering drug atorvastatin. It
also includes the change in distribution where the food components can bind to
drugs in the bloodstream, preventing them from reaching their target tissues. For
example, calcium can bind to the antibiotic tetracycline, making it less effective
against bacteria.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
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Over the past few years, there has been a surge in interest towards developing
predictive models for DFIs. These models serve the purpose of detecting potential
DFIs, evaluating the associated risks, and devising effective strategies to mitigate
such risks. There are a variety of models for predicting DFIs including: In silico
models where it uses computer simulations to predict the interactions between
drugs and food components, Statistical models, and deep learning models.

Lately, deep learning models applied to DFIs showed interesting results and
can learn complex relationships between drug molecules and food components,
which allows them to predict new drug-food interactions that would not be
detected by other methods. Traditionally, the identification of DFIs has been
a difficult task due to the limited availability of data and the complexity of
the interactions between drugs and food. However, recent advances in machine
learning have made it possible to develop more effective methods for identifying
DFIs.

Graphs are a powerful data structure for modeling biomedical systems. They
can be used to represent the relationships between different entities, such as
drugs, food compounds, and proteins. This makes them well-suited for modeling
DFIs, which are interactions between drugs and food compounds. In recent years,
there has been a growing interest in using graph embedding methods to predict
DFIs. Graph embedding methods learn a low-dimensional representation of each
node in a graph while maximally preserving the structural information of the
graph. This allows the relationships between nodes to be preserved, even when
the nodes are represented in a low-dimensional space. One of the most popular
graph embedding methods for DFI prediction is DeepDDI [3]. DeepDDI uses a
deep neural network to learn the representations of drugs and food compounds.
The model is trained on a dataset of known DFIs, and it can then be used to
predict new DFIs.

Contribution. In this paper, we propose a novel workflow for prediction drug-
food interactions using a graph-based approach. It entails the creation of the
networks and the construction of a full profile of a community’ based on the
community profiling. In summary, our contributions can be summarized as fol-
lows:

– To address the lack of DFI resources, we build a DFI dataset using the Drug-
Bank and FooDB datasets.

– We adapted our previous work on DGCF recsys model to extract better
embeddings for drugs and food by capturing different signals in the graph:
behavioral similarity and proximity similarity.

– The evaluation results demonstrate that this novel workflow performs better
for the DFI prediction task than the current approaches.

Paper Organization. The paper starts by delving into Sect. 2 where it intro-
duces the novel workflow for recommending novel Drug-Food interactions. The
results of applying a graph-based community approach are shown and discussed
in Sect. 3. Finally, we review possible directions for future investigation.
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2 Methodology

We propose a workflow for inferring novel DFIs, set as a link prediction problem.
The workflow consist of three main steps : (1) Data Preparation, (2) DFI Network
Construction, (3) DGCF Model Adaptation, and (4) DFIs prediction.

2.1 Data Preparation

We first collect DFI data from DrugBank database [1], which is a curated
database that provides detailed information about drugs, their chemical struc-
tures, pharmacological properties, and drug targets. DrugBank contains data on
a vast number of drugs, including both approved and experimental compounds.

We have downloaded the DrugBank dataset in XML format, which con-
tains comprehensive information on Drug-Food Interactions (DFIs). Through
parsing the XML document, we have extracted approximately 3000 sentences
that describe various aspects of DFIs. Subsequently, we have manually identi-
fied and extracted DFIs from these sentences, while also defining the nature of
the relationship between the food constituent and the drug, i.e., whether it is
an“increase” or “decrease” relationship.

Furthermore, we observe that the food constituent contains both the con-
stituent and the food. Given that drug-food interactions primarily occur between
drugs and food components, it becomes necessary to distinguish between the food
and its constituent. To address this, we enhanced the data using the FooDB
database [2] to obtain constituents of food.

FooDB provides detailed information about various food items, including
their composition, nutritional content, flavor profiles, potential bio-active com-
pounds, and even the mapping of food and its components. By leveraging this
database, we are able to obtain a clear understanding of the constituents present
in different foods, enabling a more accurate dataset of drug-food interactions. In
addition, we introduced a weight value that quantifies the impact of the inter-
action between the food and the drug. This weight value ranges between 0,
indicating no interaction between the drug and food pair, and 1, representing a
complete and significant interaction. By assigning this weight, we can effectively
capture and measure the extent of the interaction between the drug and food in
a more precise manner. This weight value was extracted using an adjustment of
DeepDDI [3] framework applied to DFIs.

As a result, we have a total of 2159 drugs, 274 food constituent, and 358, 995
DFIs.

2.2 DFI Network Construction

We, then extracted the DFI network, which is a bipartite graph containing two
types of nodes (drugs and food constituents) and the edge interaction that rep-
resent either the increasing or the decrease relationship.

Furthermore, we construct a drug-drug graph by computing the Jaccard simi-
larity on the drug-food interaction matrix, for both the decrease and the increase
relationship.
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2.3 DGCF Model Adaptation

In order the extract the embeddings for both drug and food, we used DGCF
framework [4] which is an extension of a classical graph approach for recom-
mender systems GCF [12,13]. The DGCF model has three layers: the Commu-
nity Encoding layer (CE), the Bipartite Graph Convolutional Networks encoder
(EB-GCN), and the Information Fusion layer (IF). This layer effectively cap-
tures the community profile of drugs, which is a measure of their similarity to
one another. The EB-GCN layer, on the other hand, generates representations
of drugs and foods and captures the collaborative signal in the drug-food inter-
action bipartite graph. By extracting the interactions between drugs and foods,
this layer enables the prediction of potential drug-food interactions. Finally, the
IF layer aggregates the embeddings from the CE and EB-GCN layers, thereby
fusing information from different perspectives to create a more comprehensive
representation of drugs and foods.

DGCF is a promising approach for identifying novel drug-food interactions.
It captures both the community profile of drugs and the collaborative signal
in drug-food interactions. This makes it a more comprehensive approach than
traditional methods that only consider one or the other. The DGCF Framework
is depicted in Fig. 1.

Fig. 1. The general architecture of DGCF.

Community Encoding Layer (CE). To identify community profiles, the ini-
tial step involves detecting communities. This is achieved through the utilization
of a Community Encoding layer (CE), which computes the sub-communities of
the homophily network based on the drug-drug graph. The CE layer combines
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GCN (Graph Convolutional Network) and the Bernoulli-Poisson model to gen-
erate an affiliation matrix.

The detection of overlapping communities is treated as a probabilistic infer-
ence task. It entails deducing the unobserved associations of drugs with commu-
nities from the drug-drug network G through the use of a GCN architecture. The
representation of drug affiliations with communities is denoted by F , while the
binary adjacency matrix of the undirected and unweighted graph G is indicated
by A, where N represents the count of drug nodes.

F := GCNθ(A) = ReLU(ÂReLU(ÂW (1))W (2)) (1)

In this context, the normalized adjacency matrix of graph G is represented
by Â = D−1/2ÃD−1/2, where D denotes the diagonal degree matrix of A and
Ã = A + IN is the adjacency matrix with self-loops. The weights W (1) and
W (2) are optimized using the GCN architecture. To ensure non-negativity of the
affiliation matrix F , the ReLU non-linearity is applied to the output layer.

The aim is to reduce the negative log-likelihood by identifying the optimal
parameters (weights) denoted by θ in the GCN model:

θ := argminθL(GCNθ(A)) (2)

The negative log-likelihood function, denoted as L(F ), is obtained through
the derivation of the Bernoulli-Poisson model:

θ := argminθL(GCNθ(A)) (3)

where L represents the negative log-likelihood of the Bernoulli-Poisson model.

L(F ) = −
∑

(u,v)/∈E

log(1 − exp(−FuFT
v )) +

∑

(u,v)/∈E

FuFT
v (4)

The row vector of community affiliation F for node u and node v are denoted
as Fu and Fv, respectively. The set of edges that connect nodes in the graph is
represented by E.

In order to optimize the F matrix, we update the parameters of the neural
network architecture by minimizing the negative log-likelihood. Our encoding
layer employs a 2-layer GCN with a hidden size of 128, and the final layer
outputs the number of communities to be detected. To prevent overfitting, we
incorporate batch normalization and dropout with a ratio of 0.5. Furthermore,
we leverage the unique relationships conveyed by the two graphs by merging the
outputs of the CE and EB-GCN layers, which correspond to the drug-food and
drug-drug graphs, respectively.

Bipartite Graph Convolutional Networks Encoder (EB-GCN). The
EB-GCN layer tackles the issue of data sparsity in collaborative filtering by
generating additional embeddings for drugs and food. The embedding vectors
for drug u and food i are represented as eu and ei, respectively, where d denotes



394 S. Bourhim

the embedding size. In this encoding layer, we input the drug-food bipartite
graph, which consists of nodes belonging to drugs and nodes belonging to food.
The main objective is to capture collaborative signals from various types of
interactions in the network and learn the final representations for both drugs and
food. To achieve this, we leverage the power of GNN algorithms applied to the
bipartite graph. The EB-GCN layer exploits the high-order connectivity present
in drug-food interactions (DFIs). It utilizes the message-passing mechanism of
GNNs to encode drug and food nodes by iteratively aggregating information
from neighboring drugs. The high-order propagation is achieved through stacking
multiple embedding layers. Each layer involves the construction and aggregation
of messages. The construction of the message for a drug-food pair (u, i) is defined
as mu←i:

mu←i = h(ei, eu, pui) (5)

The function denoted by h(·) encodes the message by utilizing the drug
embedding eu, the food embedding ei, and the coefficient pui as inputs. The
coefficient pui governs the decay factor for each propagation and edge (u, i).

The message encoding function h is defined as follows:

mu←i =
1√|Nu||Ni|

(W1ei + W2(ei � eu)) (6)

The trainable weights W1 and W2 ∈ R
d′×d are utilized to extract propa-

gated information, where d′ denotes the transformation size. The coefficient pui

is determined as the graph Laplacian norm 1/
√|Nu||Ni|, with Nu and Ni rep-

resenting the first-hop neighbors of drug u and food i, respectively.
Following the construction and obtaining of messages, we aggregate the prop-

agated messages from drug u’s neighborhood to enhance its representation. The
aggregation function is defined as:

e(1)u = LeakyReLU(mu←u +
∑

i∈Nu

mu←i) (7)

The first element in the aggregation function represents the information
retained by drug u, while the second element aggregates all the information gath-
ered from its neighborhood. Similarly, we propagate information from adjacent
nodes to derive the embedding representation e

(1)
i for food i. To learn the model

parameters, we optimize the pairwise Bayesian Personalized Ranking (BPR) loss,
widely used in recommender systems. The loss function is defined as:

Loss =
∑

(u,i,j)∈N

− ln(σ(ŷui − ŷuj)) + λ||θ|| (8)

Here, N denotes the set of pairwise training data with observed and unob-
served interactions. The EB-GCN layer generates two embeddings, one for drugs
and one for food.
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2.4 DFIs Prediction

The drug embedding EU , food embedding EI , and community affiliation matrix
F are obtained from the CE and EB-GCN layers. These layers produce outputs
EU ∈ R

n×d, EI ∈ R
k×d, and F ∈ R

n×c, where n, k, c, and d represent the num-
ber of drugs, food constituents, communities, and embedding size, respectively.
The information fusion (IF) layer combines these embeddings and defines the
fusion method.

To create the community profile CP , we utilize the outputs from the encoding
layers. The community profile is computed as follows:

CP = (F ᵀ · EU ) · EI (9)

To select the most relevant communities, we choose the top two affiliations
for each drug. The fusion formula captures the similarity between the drug u
and the food constituent i, taking into account the profile of the communities to
which the drug belongs.

3 Evaluation and Results

Baselines. In order to effectively assess the effectiveness of our model, we
explore and compare the model to various graph learning representations meth-
ods.

– GraRep [6]: is a method for learning representations of nodes in a graph
that captures global structural information. The approach utilizes higher-
order proximity to capture co-occurrence patterns between nodes, resulting
in a more comprehensive understanding of the graph’s topology. To achieve
this, GraRep constructs a sequence of k-step transition matrices, where each
matrix represents the probability of transitioning from one vertex to another
in k steps. These matrices are then used to train a skip-gram model, which
learns to predict the k-step neighbors of each vertex. The final representation
of each vertex is a concatenation of the k learned representations.

– LINE [7]: aims to preserve both local and global network properties in the
learned embeddings by optimizing an objective function based on first-order
and second-order proximities. The approach employs the notion of node prox-
imity to capture the local context of a node as well as its broader structural
role within the network. By leveraging both first-order proximity (i.e., node
co-occurrence) and second-order proximity (i.e., shared neighborhood), LINE
generates low-dimensional representations that effectively capture the net-
work’s structure.

– HOPE [10]: Higher-Order Proximity preserved Embedding method focuses
on learning embeddings by preserving the asymmetric transitivity informa-
tion. It capturer the higher-order proximity patterns in the graph, specifi-
cally the asymmetric transitivity property, which refers to the relationship
between nodes A and C through an intermediary node B. By considering
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the paths of different lengths in the graph, HOPE constructs a higher-order
proximity matrix that captures the co-occurrence patterns between nodes. It
then utilizes singular value decomposition (SVD) to generate low-dimensional
embeddings that preserve the asymmetric transitivity information.

– SDNE [8]: uses deep autoencoder architecture, it consists of of an encoder
network that maps nodes into low-dimensional latent representations and a
decoder network that reconstructs the original graph structure from the latent
space.

– GAE [9]: employs a variational approach, introducing a probabilistic encoder
that models the latent space as a probability distribution. This enables GAE
to capture the uncertainty in the latent representations and generate diverse
node embeddings. By optimizing the reconstruction loss and incorporating the
Kullback-Leibler divergence as a regularization term, GAE learns meaningful
and smooth representations that preserve the graph’s structural properties.

– DeepDDI [3]: is a deep learning framework for drug-drug interaction pre-
diction. It is composed of three main components: a feature extractor, a
deep neural network, and a post-processing module. The feature extractor
extracts features from the drug molecules, such as their molecular struc-
ture and physicochemical properties. The deep neural network learns the
relationships between the features and the drug-drug interactions. The post-
processing module filters out predictions with low confidence and generates
human-readable descriptions of the predicted interactions.

– DFinder [11]: starts by constructing a heterogeneous graph that incorporates
information about drugs, food items, and their interactions and then employs
a deep learning-based model to learn low-dimensional embeddings for both
drugs and food items, capturing their semantic and relational properties.

Evaluation Metrics. We assessed the accuracy of new drug-food interactions
by utilizing both the recall and the precision evaluation metrics.

– Recall: measures the completeness of positive predictions. It is calculated by
dividing the number of true positive predictions by the sum of true positive
and false negative predictions. In essence, it represents the proportion of all
positive DFIs interactions that were accurately identified.

recall =
true positives

true positives + false negatives
(10)

– Precision: is a metric that quantifies the accuracy of positive predictions. It
is calculated by dividing the number of true positive predictions by the sum
of true positive and false positive predictions. In essence, precision represents
the proportion of predicted DFIs that are deemed relevant.

precision =
true positives

true positives + false positives
(11)
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Parameter Settings. Our DGCF model was developed utilizing Pytorch. The
model boasts an embedding size of 64 and was trained using the Adam optimizer
with default parameters. The Xavier initializer was employed to initialize the
model parameters. The learning rate, L2 normalization coefficient, and dropout
ratio were set to 10−3, 10−5, and 0.5, respectively. Additionally, an early stopping
mechanism was implemented to prevent overfitting of the model.

Comparison with Baselines. The DGCF model performed better than the
older approaches on both recall and precision. However, it performed similarly
to DFinder on recall, but not on precision. DFinder has a recall of 87.33%, while
DGCF has a recall of 87.40%. This means that both models are very similar in
terms of their ability to correctly classify positive instances. However, DGCF has
a precision of 88.01%, which is higher than DFinder’s precision of 87.11%. This
means that DGCF is more accurate in its predictions of positive instances. This
is an important property for drug discovery, where it is important to avoid false
positives. In other words, DGCF is better at distinguishing between positive and
negative instances. This means that DGCF is more likely to correctly classify
a positive instance as positive, and it is also less likely to incorrectly classify a
negative instance as positive.

Overall, the DGCF model is a promising new approach for drug discovery.
It is more accurate than the older approaches, and it is particularly good at
avoiding false positives. This makes it a valuable tool for identifying potential
drug-food interactions (Table 1).

Table 1. The overall performance comparison for DFIs.

Method Recall Precision

GraRep [6] 0.2895 0.618

LINE [7] 0.2684 0.6

HOPE [10] 0.2921 0.5967

SDNE [8] 0.0001 0.0001

GAE [9] 0.229 0.4943

DeepDDI [3] 0.817 0.648

DFinder [11] 0.8733 0.8711

DGCF 0.8740 0.8801

To assess the relevance of incorporating a community encoding (CE) layer
within the DL architecture, we conducted a comparative analysis of our find-
ings against various deep learning models, with a primary focus on the NGCF
approach. NGCF, a deep learning-based method, calculates recommendations
using a user-item bipartite graph, generating embeddings for both item and
user nodes and using them for predictions. In contrast, our DGCF approach
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takes a step further by integrating information from the EB-GCN and CE lay-
ers. While NGCF primarily captures similarity signals based on user behavior
towards items, DGCF captures a broader range of signals, particularly the com-
munity behavioral signal, which reflects the influence of sub-communities. The
results presented in Table 2 demonstrate how the inclusion of the community
detection step enhances overall performance and validates our hypothesis regard-
ing the advantages of incorporating contextual and topological information.

Table 2. The overall comparison of quality metrics in detecting communities for the
DFI dataset.

Metrics Ground truth communities Predicted communities

Coverage 0.712 0.970

Conductance 0.402 0.211

Density 0.213 0.503

Clustering coefficient 0.040 0.604

DGCF highlights a limitation in using a GCN layer for bipartite graphs, as it
primarily captures signals related to similarity that extend beyond the inherent
properties of sub-groups within the graph. In essence, it overlooks the specific
characteristics of local communities during the learning process. Therefore, the
inclusion of the CE layer becomes essential, as it plays a pivotal role in extracting
more comprehensive information regarding the interactions between drugs and
food components. This significance arises from the observation that drugs and
food components sharing the same properties in the same community are more
prone to interacting with one another.

4 Conclusion

In this paper, we proposed a novel workflow that uses community profile concept
to infer and identify novel drug-food interactions. The workflow was evaluated
on the DrugBank dataset, and we showed that the DGCF model was able to
predict new drug-food interactions than the baseline models. We first prepare
the DFI dataset, then we create the DFI networks, and then apply the DGCF
model to predict the novel drug-food interactions.

We believe that the proposed workflow is a promising approach for identifying
novel drug-food interactions, and we plan to enhance the workflow in future work
by adding more features for the drugs and the food components. We also plan
to evaluate the workflow on a larger dataset of drug-food interactions.
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Abstract. For analysing real-world networks, graph representation
learning is a popular tool. These methods, such as a graph autoencoder
(GAE), typically rely on low-dimensional representations, also called
embeddings, which are obtained through minimising a loss function; these
embeddings are used with a decoder for downstream tasks such as node
classification and edge prediction. While GAEs tend to be fairly accurate,
they suffer from scalability issues. For improved speed, a Local2Global
approach, which combines graph patch embeddings based on eigenvector
synchronisation, was shown to be fast and achieve good accuracy. Here we
propose L2G2G, a Local2Global method which improves GAE accuracy
without sacrificing scalability. This improvement is achieved by dynam-
ically synchronising the latent node representations, while training the
GAEs. It also benefits from the decoder computing an only local patch
loss. Hence, aligning the local embeddings in each epoch utilises more
information from the graph than a single post-training alignment does,
while maintaining scalability. We illustrate on synthetic benchmarks, as
well as real-world examples, that L2G2G achieves higher accuracy than
the standard Local2Global approach and scales efficiently on the larger
data sets. We find that for large and dense networks, it even outperforms
the slow, but assumed more accurate, GAEs.

Keywords: Graph Autoencoder · Local2Global · Node Embedding ·
Group Synchronisation

1 Introduction

Graph representation learning has been a core component in graph based real
world applications, for an introduction see [13]. As graphs have become ubiqui-
tous in a wide array of applications, low-dimensional representations are needed
to tackle the curse of dimensionality inherited by the graph structure. In prac-
tice, low-dimensional node embeddings are used as efficient representations to
address tasks such as graph clustering [25], node classification [2], and link pre-
diction [27], or to protect private data in federated learning settings [14,20].
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1141, pp. 400–412, 2024.
https://doi.org/10.1007/978-3-031-53468-3_34
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Graph Autoencoders (GAEs) [19,23] emerged as a powerful Graph Neural
Network (GNN) [5] tool to produce such node representations. GAEs adapt
autoencoders and variational autoencoders [1,19] to graph structure data using
a Graph Convolutional Neural Network (GCN) [28] as the encoder and for node
embeddings. Although a GAE can achieve high accuracy in graph reconstruc-
tion, it suffers from a high computational cost. Several solutions for reducing
computational workload have been proposed. Linear models, like PPRGo [4] and
SGC [8], remove the non-linearities between layers. Layer-wise sampling meth-
ods such as GraphSage [12], FastGCN [6] and LADIES [29] sample a subset of
neighbors of the nodes in each layer, while subgraph-sampling based methods
such as GraphSaint [26] and Cluster-GCN [9] carry out message passing only
through a sampled subgraph.

In this paper, we use FastGAE [22] as a starting point, which computes
approximate reconstruction losses by evaluating their values only from suitably
selected random subgraphs of the original graph. While FastGAE reduces the
computational cost of a traditional GAE, its overall performance can be substan-
tially inferior to a GAE when the sample used to approximate the loss is not large
enough. For improved performance, the general Local2Global (L2G) framework
by [15] leverages the eigenvector synchronization of [10,11], to align indepen-
dently created embeddings in order to produce a globally consistent structure
(here we employ GAEs for embeddings and denote the resulting method by
GAE+L2G). However, this architecture is data inefficient and suffers from a
loss of performance in downstream tasks since it learns multiple separate GAEs.
Moreover aggregating the local embeddings after the training process might lead
to a loss of useful information learned during training.

Instead, we propose the Local to GAE to Global (L2G2G) model, which
optimizes the Local2Global aligned embeddings directly, reducing the amount
of information loss and allowing us to train a single global modified GAE. This
structure leverages the scalable approach of FastGAE by only considering small
sections of the graph when updating the weights. Figure 1 shows the model
pipeline. Our main contributions are:

1. We introduce L2G2G as a new fast network embedding method.
2. We provide a theoretical complexity analysis for GAE+L2G and an exper-

imental comparison of the runtimes showing that the runtime sacrifice for
performance in L2G2G is minimal.

3. We test L2G2G and the baseline methods on real and synthetic data sets,
demonstrating that L2G2G can boost the performance of GAE+L2G, espe-
cially on medium scale data sets, while achieving comparable training speed.

The paper is structured as follows. Section 2 introduces notation and discusses
GAEs and the Local2Global framework by [15], including GAE+L2G. Section 3
presents our method, L2G2G, as well as a time complexity analysis, comparing
it to GAE, FastGAE,and GAE+L2G. Section 4 provides experimental results
on synthetic and real data sets, on networks of up to about 700, 000 nodes. In
Sect. 5 we discuss the results and indicate directions for future work. The code
is available at https://github.com/tonyauyeung/Local2GAE2Global.

https://github.com/tonyauyeung/Local2GAE2Global


402 R. Ouyang et al.

Fig. 1. L2G2L pipeline for two patches. The two patches are in blue and yellow, the
overlapping nodes between them in green. Separate node embeddings for each patch are
obtained via a single GCN. The decoder aligns the embeddings using the Local2Global
synchronisation algorithm to yield a global embedding and then uses a standard sigmoid
function. The GCN is then iteratively optimised using the training loss.

2 Preliminaries

Notations: An undirected attributed graph G = (V,E,X) consists of a set of
nodes V of size N , a set of unweighted, undirected edges E of size M , and a
N × F matrix X of real-valued node attributes (features). The edge set is also
represented by the N × N adjacency matrix A. Moreover, based on the L2G
framework, we define a patch P to be a subgraph of G which is induced by a
subset of the node set V ; hence a patch Pi with the feature matrix corresponding
to its nodes is denoted as (V (i), E(i),X(i)) Node embeddings are denoted as a
N × e matrix Z, where e is the embedding size and σ is the sigmoid function.

Graph Autoencoders (GAEs): Given a graph G = (V,E,X), a GCN is used to
obtain an N×e embedding matrix Z = GCN(X,A), and a sparse approximation
of the adjacency matrix through Â = σ(ZZT ). The GAE obtains the embed-
ding through minimising the cross-entropy reconstruction loss, LGAE(Â, A) =
Loss(Â, A) := −∑N

i,j=1 Aij logÂij with respect to the parameters of the GCN;
this minimisation is also called training. Here a recursive method called mes-
sage passing is used. The decoder then computes an inner product between each
pair of node embeddings in the graph as proxy for the edge probabilities. Even
though GAEs outperform traditional node embedding methods, such as spectral
clustering [24] and DeepWalk [21], they usually scale poorly to large graphs.
This is due to having to visit all the neighbors of a node recursively during the
message passing phase in the encoding GCN, and the decoder scaling as O(N2)
in complexity. We highlight two approaches for improving scalability:

1. FastGAE [22]: This model addresses the scalability issues by reconstructing
the adjacency matrix of a sampled subgraph. This is achieved by evaluat-
ing an approximate reconstruction loss (Lossapprox) for every subgraph and
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aggregating them in one loss to be optimized by the model. This sampling
procedure reduces the computation complexity of decoding during each train-
ing epoch from O(N2) to O(N2

S), where NS is the number of nodes in the
subgraph.

2. Local2Global (L2G) [15]: This framework is a generic method to align
embeddings computed on different parts of the graph (potentially on dif-
ferent machines and by different entities with different privacy constraints)
into a single global embedding, regardless of the embedding method, as fol-
lows. Suppose that P1, ..., Pk are k patches, which pairwise overlap on at
least d nodes and at most l nodes. It is assumed that the graph union of
all patches gives the initial graph G. The pattern of overlapping patches is
captured in a so-called patch graph, denoted GP = (VP , EP ), whose node set
VP = {P1, . . . , Pk} denote the patches. An edge between two nodes in GP

indicates that there is an overlap of at least d nodes in the initial graph G
between those two patches. Then, for each patch Pi a node embedding matrix
Zi is computed using an embedding method of choice. When the embedding is
obtained through a GAE, we refer to the method as GAE+L2G. Local2Global
then leverages the overlap of the patches to compute an optimal alignment
based on a set of affine transforms which synchronizes all the local patch
embeddings into a single and globally consistent embedding, as follows. First,
we estimate rotation matrices Ŝj∈ R

F×F , j = 1, . . . , k, one for each patch.
With Mij =

∑
u∈Pi∩Pj

X
(i)
u (X(i)

u )T we first estimate the rotations between
each pair of overlapping patches (Pi, Pj) ∈ Ep by Rij = Mij(MT

ijMij)−1/2.

Next we build R̃ij = wijRij/
∑

j |V (Pi) ∩ V (Pj)| to approximately solve the
eigen problem S = R̃S, obtaining Ŝ = [Ŝ1, ...Ŝk]. We also find a transla-
tion matrix T̂ = [T̂1, . . . , T̂k] by solving T̂ = arg min

T∈Rk×F

||BT − C||22, where

B ∈ {−1, 1}|Ep|×k is the incidence matrix of the patch graph with entries
B(Pi,Pj),t = δit − δjt, δ is the Kronecker Delta, and C ∈ R

|Ep|×F has
entries C(Pi,Pj) =

∑
t∈Pi∩Pj

(
Ẑ

(i)
t − Ẑ

(j)
t

)
/|Pi ∩ Pj |. This solution yields the

estimated coordinates of all the nodes up to a global rigid transformation.
Next, we apply the appropriate rotation transform to each patch individu-
ally, Ẑ(j) = Z(j)ŜT

j , then apply the corresponding translation to each patch
(hence performing translation synchronisation), and finally average in order to
obtain the final aligned node embedding Z̄i =

∑
j(Ẑ

(j)
i + T̂j)/|{j : i ∈ Pj}|.

3 Methodology

Local-2-GAE-2-Global Combining Local2Global and GAEs produces a scalable
GAE extension for node embeddings using autoencoders; using separate GAEs
for each of the patches allows specialization to the unique structure in each of
the patches. Our Local-2-GAE-2-Global (L2G2G) framework leverages the same
divide-and-conquer technique Local2Global capitalises on, but is designed and
adapted to the traditional GAE pipeline to benefit from its accuracy. The core
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idea of L2G2G is to evaluate embeddings locally on the patches but synchronizing
the patch embeddings using the L2G framework while training a GAE. This leads
to k GCNs encoding the k patches: Zi = GCN(X(i), A(i)), for i = 1, . . . , k. To
account for the dynamic update during training and adapt to the local optimiza-
tion scheme, we modify the GAE decoder to adjust the embeddings using the
Local2Global framework; hence the patch-wise decoder in L2G2G estimates the
edge probabilities between nodes in patches i and j by σ((SiZi+Ti)T (SjZj+Tj)),
where Si =Si(Z) and Ti =Ti(Z) are the Local2Global transformations of each
of the patch embeddings.

In contrast to GAE+L2G, L2G2G synchronizes the embeddings before the
decoder step and also performs synchronizations during the model training, thus
taking full advantage of the patch graph structure during training. The cross-
entropy losses of each patch are aggregated to give a global loss function:

LL2G2G =
k∑

j=1

NjLGAE

(
Â(j), A(j)

)
/N.

Similarly to the FastGAE algorithm, L2G2G reduces computation by only con-
sidering local structure. However, rather than training the network using only
the local information, L2G2G aggregates the local embeddings to reconstruct
the global information, thus boosting performance.

A schematic diagram of L2G2G is shown in Fig. 1, and pseudo-code for
L2G2G is given in algorithm 1. As computing the alignment step can be costly,
assuming that the Local2Global alignment would not change too quickly during
training, we update the rotation and translation matrices only every 10 epochs.

Algorithm 1. Local-2-GAE-2-Global (L2G2G): An overview
Require: P1, ..., Pk, where Pj = (X(j), A(j))

for e in [1, ..., T ] do
for j in [1, ...k] do

Zj ← GCN(X(j), A(j))
end for
Ẑ1, ..., Ẑk ← Sync(Z1, ..., Zk)
L ← 0
for j in [1, ..., k] do

Âj ← σ(ẐjẐ
T
j )

L ← L +
Nj

N
LGAE(Â(j), A(j))

end for
Optimize encoder using L

end for

Complexity Analysis Following the computations in [7,15], we derive the com-
plexity of GAE, FastGAE, GAE+L2G and L2G2G. We assume that the number
of nodes, edges and features satisfy N,M,F ≥ 1, and, following [7], that the
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dimensions of the hidden layers in the GCN are all F . Then, the complexity of a
L-layer GCN scales like O(LNF 2+LMF ) and that of the inner product decoder
scales like O(N2F ). maybe add something here about full decoder? Thus, for as
shown in [7], for T epochs the time complexity of the decoder and the encoder
of a GAE scales like O(T (LNF 2 + LMF + N2F )). In contrast, as stated in
[22], the complexity of per-epoch of FastGAE with a

√
N down-sampling size

is O(LNF 2 + LMF + NF ), and hence for T epochs the FastGAE complexity
scales like O(T (LNF 2 + LMF + NF )).

To simplify the complexity analysis of both Local2Global approaches we
assume that the overlap size of two overlapping patches in the patch graph
is fixed to d ∼ F . Following [15], finding the rotation matrix S scales like
O(|Ep|dF 2) = O(|Ep|F 3). The translation problem can be solved by a t-iteration
solver with a complexity per iteration of O(|Ep|F ), where t is fixed. To align the
local embeddings, one has to perform matrix multiplications, which requires
O(NjF

2) computations, where Nj is the number of nodes in the jth patch. The
complexity of finding the rotation matrix (O(|Ep|F 3)) dominates the complexity
of the computing the translation (O(|Ep|F )). Thus, the complexity of the L2G
algorithm with k patches is O

(|Ep|F 3 + F 2
∑k

j=1 Nj

)
.

The GAE+L2G algorithm uses a GAE for every patch, and for the jth patch,
for T training epochs the GAE scales like O(T (LNjF

2 + LMjF + N2
j F )), with

Mj number of edges in the jth patch. Summing over all patches and ignor-
ing the overlap between patches as lower order term, so that

∑
j Nj = O(N),

∑
j N2

j ≈ N2/k, and
∑

j Mj ≈ M, the GAE+L2G algorithm scales like
O

(
TF (LNF + LM + N/k) + kF 3

)
. For the complexity of L2G2G, as L2G2G

aligns the local embeddings in each epoch rather than after training, we
replace kF 3 + NF 2 with T (kF 3 + NF 2), and thus the algorithm scales like
O

(
T

(
LNF 2 + LMF + N2

k F + kF 3
))

. In the PyTorch implementation of Fast-
GAE, the reconstruction error is approximated by creating the induced subgraph
from sampling �√N	 proportional to degree, with an expected number of at least
O(M/N) edges between them. Then, the computation of the decoder is (at least)
O(M/N) instead of O(N2). Table 1 summarises the complexity results.

Table 1. Complexity comparison in the general and in the sparse case.

Model General Time Complexity PyTorch implementation

GAE O
(
TF (LNF + LM + N2)

)
O (TF (LNF + LM + M))

FastGAE ≥ O (TF (LNF + LM + N)) O (TF (LNF + LM + M/N))

GAE+L2G O
(
TF (L(NF + M) + N2

k
) + kF 3

)
O

(
TF (LNF + LM + M) + kF 3

)

L2G2G O
(
TF (L(NF + M) + N2

k
+ kF 3)

)
O

(
TF (LNF + LM + M + kF 3)

)

Thus, in the standard case, increasing the number of patches k reduces the
complexity of the computation of the GAE decoders. In the PyTorch implemen-
tation, if k scales linearly with N , the expression is linear in N . In contrast, when
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the number of nodes N is not very large, the number of features F becomes more
prominent, so that the training speed may not necessarily increase with increas-
ing number of patches. Table 1 shows that L2G2G sacrifices O

(
TkF 3

)
training

time to obtain better performance; with an increase in the number of patches,
the training speed gap between L2G2G and GAE+L2G increases linearly.

4 Experimental Evaluation

Datasets To measure the performance of our method, we compare the ability of
L2G2G to learn node embeddings for graph reconstruction against the following
benchmark datasets Cora ML, Cora [3], Reddit [26] and Yelp [26].

In addition, we tested the performance of L2G2G on four synthetic data sets,
generated using a Stochastic Block Model (SBM) which assigns nodes to blocks;
edges are placed independently between nodes in a block with probability pin
and between blocks with probability pout [17]. We encode the block membership
as node features; with L blocks, v being in block l is encoded as unit vector
el ∈ {0, 1}L. To test the performance across multiple scales we fix the number
of blocks at 100, and vary the block size, pin and pout, as follows:

1. ‘SBM-Small’ with block sizes 102 and (pin, pout) = (0.02, 10−4),
2. ‘SBM-Large-Sparse’ with block sizes 103 and (pin, pout) = (10−3, 10−4),
3. ‘SBM-Large’ with blocks of sizes 103 and (pin, pout) = (0.02, 10−4),
4. ‘SBM-Large-Dense’ with block sizes 103 and (pin, pout) = (0.1, 0.002).

Table 2 gives some summary statistics of these real and synthetic data sets.

Table 2. Network data statistics: N = no. nodes, M = no. edges, F =no. features

Stochastic block model Real Data

Small Large-Sparse Large Large-Dense Cora ML Cora Reddit Yelp

N 10,000 100,000 100,000 100,000 2,995 19,793 232,965 716,847

M 104,485 99,231 1,493,135 14,897,099 16,316 126,842 23,213,838 13,954,819

F 100 100 100 100 2,879 8,710 602 300

Experimental setup and Results To assess whether L2G2G is a scalable alterna-
tive for the use of a GAE without having to sacrifice accuracy in downstream
tasks, we compare it against the standard GAE [19], GAE+L2G [15] and Fast-
GAE [22]. We train the models on each data set for 200 epochs, with learning
rate 0.001 and the Adam optimizer [18], and two layers in the GCN. The dimen-
sion of the first hidden layer is 32 and the dimension of the last layer is 16. We
run each experiment 10 times with different random seeds for each model on
each data set. All the experiments were conducted on a V100 GPU. We then
compare the methods using the Area Under the Curve (AUC) and the Average
Precision (AP). Following [15], we test our algorithm with fixed patch size 10.
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Table 3 shows that L2G2G outperforms both FastGAE and GAE+L2G
on most experiments. Having established the theoretical training speed gain
of L2G2G, these results illustrate that L2G2G can perform better than the
GAE+L2G, as well as achieve comparable training speed. do we need to clarify
with new pytorch stuff? Furthermore, in contrast to FastGAE we observe that
the performance of L2G2G and of the GAE are very close to each other on the
medium and large-scale data sets, indicating that L2G2G does not lose much
performance compared to the much slower but assumed more accurate classic
GAE. Furthermore, L2G2G even outperforms the GAE when the data set is
large and dense, such as SBM-Large-dense and Reddit.

Table 3. Experiments on different data sets with patch size 10. Bold: the best among
the fast methods, underlined: the model outperforms the GAE.

Average Performance On Different Datasets (AUC in %)

GAE FastGAE GAE+L2G L2G2G

Cora ml 95.95 ± 0.42 83.90 ± 1.10 90.25 ± 0.19 92.58 ± 0.35

SBM-small 95.32 ± 0.18 76.34 ± 0.57 93.84 ± 0.14 95.39 ± 0.21

Cora 96.07 ± 0.09 81.78 ± 0.76 90.59 ± 0.11 94.96 ± 0.26

SBM-Large-sparse 94.88 ± 0.23 80.89 ± 0.84 94.73 ± 0.07 95.02 ± 0.23

SBM-Large 86.84 ± 0.11 70.90 ± 1.29 84.60 ± 0.10 86.62 ± 0.25

SBM-Large-dense 64.07 ± 0.12 65.20 ± 0.94 65.45 ± 0.05 65.88 ± 0.03

Reddit 88.69 ± 0.57 79.99 ± 1.31 88.50 ± 0.23 88.37 ± 0.39

Yelp 86.55 ± 0.28 73.79 ± 6.54 85.82 ± 0.17 84.01 ± 0.11

Average Performance On Different Datasets (AP in %)

GAE FastGAE GAE+L2G L2G2G

Cora ml 95.37 ± 0.57 83.90 ± 1.10 90.57 ± 0.19 92.41 ± 0.39

SBM-small 95.23 ± 0.12 76.34 ± 0.57 95.22 ± 0.11 95.71 ± 0.24

Cora 95.76 ± 0.14 81.78 ± 0.76 90.50 ± 0.15 94.67 ± 0.29

SBM-Large-sparse 95.26 ± 0.24 80.89 ± 0.84 95.88 ± 0.07 95.44 ± 0.26

SBM-Large 89.64 ± 0.21 70.90 ± 1.29 87.35 ± 0.11 89.34 ± 0.33

SBM-Large-dense 67.64 ± 0.30 65.20 ± 0.94 71.25 ± 0.06 72.08 ± 0.05

Reddit 88.16 ± 0.60 79.99 ± 1.31 88.40 ± 0.18 88.57 ± 0.40

Yelp 86.73 ± 0.29 73.79 ± 6.54 85.26 ± 0.12 83.56 ± 0.11

Figure 2 shows a comparison of the training time of the models, as well as
the changes of training speed as the data set size increases (on the log scale). It
is worth mentioning that we are not accounting for the run time of the graph
clustering. The results show that the training speed of L2G2G and GAE+L2G
are very close on both small and large scale datasets. Although the gap between
the training speed of L2G2G and that of GAE+L2G increases for large-scale
data sets, L2G2G still achieves high training speed, and is even not much slower
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that FastGAE while achieving much better performance. In almost all cases,
L2G2G is faster than the standard GAE, except for the two smaller datasets. Its
training time is around an order of magnitude smaller per epoch for the larger
models. As an aside, GAEs suffer from memory issues as they need to store
very large matrices during the decoding step.

Fig. 2. Training time of the baseline models(GAE, FastGAE and GAE+L2G) and
L2G2G on benchmark data sets (excluding partitioning time). Note that the y-axis is
on a log-scale, and thus the faster methods are at least an order of magnitude faster.

Cora ML Cora SBM-small

SBM-Large Reddit Yelp

Fig. 3. Lineplots of the ROC score and accuracy of L2G2G and GAE+L2G, trained on
each dataset, with different patch sizes. For each subplot, the blue lines represent the
metrics for L2G2G, while the orange ones represent those for GAE+L2G. The shadows
in each subplot indicate the standard deviations of each metric.
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Ablation Study Here we vary the number of patches, ranging from 2 to 10.
Figure 3 shows the performance changes with different number of patches for
each model on each data set. When the patch size increases, the performance
of L2G2G decreases less than GAE+L2G. This shows that updating the node
embeddings dynamically during the training and keeping the local information
with the agglomerating loss actually brings stability to L2G2G.

Moreover, we have explored the behaviour of training time for L2G2G when
patch size increases from 2 to 30, on both a small (Cora) and a large (Yelp)
dataset. Figure 4 shows that on the small-scale data set Cora, the gap in train-
ing speed between L2G2G and GAE+L2G remains almost unchanged, while on
Yelp, the gap between L2G2G and GAE+L2G becomes smaller. However, the
construction of the overlapping patches in the Local2Global library can create
patches that are much larger than N/k, potentially resulting in a large number
of nodes in each patch. Hence, the training time in our tests increases with the
number of patches.

UPGUPC

C
or
a

Y
el
p

Fig. 4. Training time (excluding partitioning) of L2G2G and GAE+L2G on Cora
(Top) and Yelp (Bottom), while varying patch size with CPU results presented on
the left and GPU results presented on the right. The x axis is shown in log scale.

Since all the computations in Local2Global library built by [15] are carried
out on the CPU, the GPU training can be slowed down by the memory swap
between CPU and GPU. Thus, to further explore the behaviour of our algorithm
when the number of patches increases, we ran the test on both CPU and GPU.
The results are given by Fig. 4. This plot illustrates that the GPU training
time of L2G2G increases moderately with increasing patch size, mimicking the
behaviour of GAE+L2G. In contrast, the CPU training time for the smaller data
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set (Cora) decreases with increasing patch size. The larger but much sparser Yelp
data set may not lend itself naturally to a partition into overlapping patches.
Summarising, L2G2G performs better than the baseline models across most
settings, while sacrificing a tolerable amount of training speed.

5 Conclusion and Future Work

In this paper, we have introduced L2G2G, a fast yet accurate method for obtain-
ing node embeddings for large-scale networks. In our experiments, L2G2G out-
performs FastGAE and GAE+L2G, while the amount of training speed sacrificed
is tolerable We also find that L2G2G is not as sensitive to patch size change as
GAE+L2G.

Future work will investigate embedding the synchronization step in the net-
work instead of performing the Local2Global algorithm to align the local embed-
dings. This change would potentially avoid matrix inversion, speeding up the
calculations. We shall also investigate the performance on stochastic block mod-
els with more heterogeneity. To improve accuracy, one could add a small num-
ber of between–patch losses into the L2G2G loss function, to account for edges
which do not fall within a patch. The additional complexity of this change would
be relatively limited when restricting the number of between–patches included.
Additionally, the Local2Global library from [16] is implemented on CPU, losing
speed due to moving memory between the CPU and the GPU.
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Abstract. This work delves into the dynamic landscape of Knowledge Graph-to-
text generation, where structured knowledge graphs are transformed into coher-
ent natural language text. Three key architectural paradigms are explored: Graph
Neural Networks (GNNs), Graph Transformers (GTs), and linearization with
sequence-to-sequence models. We discuss the advantages and limitations of these
architectures, and we do some experiments on these architectures. Performance
evaluations onWebNLGV.2 demonstrate the superiority of sequence-to-sequence
Transformer-based models, especially when enriched with structural information
from the graph. Despite being unsupervised, the CycleGTmodel also outperforms
GNNs and GTs. However, practical constraints, such as computational efficiency
and model validity, make sequence-to-sequence models the preferred choice for
real-time conversational agents. Future research directions include enhancing the
efficiency of GNNs and GTs, addressing scalability issues, handling multimodal
knowledge graphs, improving interpretability, and devising data labeling strate-
gies for domain-specific models. Cross-lingual and multilingual extensions can
further broaden the applicability of these models in diverse linguistic contexts. In
conclusion, the choice of architecture should align with specific task requirements
and application constraints, and the field offers promising prospects for continued
innovation and refinement.

Keywords: Conversational Agents · Knowledge Graphs · Natural Language
Generation · Graph Neural Networks · Graph Transformers ·
Sequence-to-Sequence Models

1 Introduction

Conversational agents, commonly known as chatbots, have emerged as sophisticated
computer programs that emulate human-like conversations with users [55]. These agents
find applications across various platforms, such as messaging services, mobile apps,
and websites, enabling instantaneous customer support and handling routine tasks like
answering queries and assisting with bookings. The ones incorporating knowledge
graphs (KG) [35] and [21] have emerged prominently within the broad spectrum of
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architectural options. These conversational agents, rooted in KG, leverage the organized
information within a knowledge graph to craft responses that closely mimic human lan-
guage. These agents can access and employ structured information during conversations
by utilizing the richly interconnected representation of entities and their relationships
within the knowledge graph, resulting in more accurate and comprehensive user interac-
tions. Incorporating knowledge graphs in conversational agents significantly augments
their capabilities, making interactions more informative and beneficial.

In natural language processing and knowledge representation, the survey on graph-
to-text generation architectures assumes a vital role. This review guides researchers,
practitioners, and decision-makers through this rapidly evolving landscape by present-
ing a comprehensive overview of current techniques. Its insights into emerging trends,
approach strengths, and limitations facilitate the design of effective systems for trans-
forming structured data into coherent human-readable narratives. Furthermore, the sur-
vey encourages collaboration, knowledge sharing, and innovation within the field, thus
advancing graph-to-text generation and bridging the gap between structured knowledge
and natural language expression.

Recently, neural approaches have demonstrated remarkable performance, surpass-
ing traditional methods in achieving linguistic coherence. However, challenges persist in
maintaining semantic consistency, particularly with long texts [41]. The inherent com-
plexity of neural approaches also poses limitations, as they need more parameterization
and control over the structure of the generated text. Consequently, while current neural
approaches tend to lag template-based methods regarding semantic consistency [42],
they outperform them significantly in terms of linguistic coherence. This distinction can
be attributed to the ability of large language models (LLM) to capture specific syntactic
and semantic properties of the language. Despite the advantages neural approaches offer
regarding linguistic consistency, their performance in maintaining semantic consistency
is still a work in progress.

Graph-to-text (G2T) generation is a natural language processing (NLP) task that
involves transforming structured data from a graph format into human-readable text.
This task converts a knowledge graph (structured data representation where entities are
nodes and relationships between entities are edges) into coherent sentences or paragraphs
in a natural language. Generating text from graphs necessitates sophisticated methods in
graph processing for extracting pertinent information and in natural language generation
to produce coherent and contextually fitting text. This is a demanding yet valuable
endeavor within the larger framework of content creation and communication driven by
data.

In the natural language generation (NLG), two criteria [13] are used to assess the
quality of the produced answers. The first criterion is semantic consistency (Semantic
Fidelity), which quantifies the fidelity of the data produced against the input data. The
most common indicators are 1/ Hallucination: It is manifested by the presence of infor-
mation (facts) in the generated text that is not present in the input data; 2/ Omission: It is
exemplified by the omission of one of the pieces of information (facts) in the generated
text; 3/ Redundancy: This is manifested by the repetition of information in the generated
text; 4/ Accuracy: The lack of accuracy is manifested by the modification of information
such as the inversion of the subject and the direct object complement in the generated
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text; 5/ Ordering: It occurs when the sequence of information is different from the input
data. The second criterion is linguistic coherence (Output Fluency) to evaluate the flu-
idity of the text and the linguistic constructions of the generated text, the segmentation
of the text into different sentences, the use of anaphoric pronouns to reference entities
and to have linguistically correct Sentences.

Our objective is to delve into the intricacies of deep neural network architectures
that harness the power of graphs, aiming to gain a comprehensive understanding of their
inherent strengths and limitations for optimal utilization in the context of conversational
agents.

This paper follows a structured progression to delve into the knowledge graph-
to-text (KG2T) generation landscape. Beginning with an in-depth review of advanced
KG2T approaches in Sect. 2, the paper examines the architectures and innovations in
Sect. 3. Section 4 explores the empirical aspects, encompassing model performance
assessment, datasets, metrics, and experiments. Section 5 then encapsulates the findings
and discussions, presenting the culmination of results. Finally, the paper concludes in
Sect. 6 by critically evaluating the implications of the discussed techniques within the
context of conversational agents.

2 Background

The goal of KG-to-text generation is to create comprehensible sentences in natural lan-
guage based on knowledge graphs (KGs), all while upholding semantic coherence with
the KG triplets (Fig. 1). The term “knowledge graph” has been in existence since 1972,
but its current definition can be attributed to Google’s introduction of its Knowledge
Graph in 2012 [5]. This marked the beginning of a trend, with numerous companies
like Airbnb, Amazon, eBay, Facebook, IBM, LinkedIn, Microsoft, and Uber also mak-
ing similar announcements. This collective push has led to widely adopting knowledge
graphs across various industries [21]. Consequently, academic research in this domain
has experienced a notable upsurge in recent years, resulting in many scholarly publi-
cations focused on knowledge graphs [21]. These graphs employ a data model based
on graphs to efficiently manage, integrate, and extract valuable insights from large and
diverse datasets [38].

The problem formulation is the following. Given the input KGG, which is composed
of {(h1, r1, t1), . . . , (hn, rn, tn)|h∗, t∗ ∈ E, r∗ ∈ R}, where E denotes the entity set and R
represents the relation set, The objective of the KG-to-text generation task is to produce
a coherent and logically sound sequence of text T =< t1, t2, . . . , tn >, tk ∈ V where V
denotes the vocabulary composed of n output tokens.

Unlike the conventional text generation task (Seq2Seq), generating text from a
knowledge graph adds the extra challenge of ensuring the accuracy of the words within
the generated sentences. The current methods can be classified into three distinct cat-
egories, as illustrated in (Fig. 1). We will later delve into these categories in more
comprehensive detail in the Sect. 3:

1. Linearization with Sequence-to-Sequence (Seq2Seq): This involves converting the
graph G into a sequence Glinear = <g1, g2, …, gm> consisting of m input tokens for
the sequence-to-sequence model.
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2. Graph Neural Networks (GNNs) [47]: These models encode the topological struc-
tures of a graph and learn entity representations by aggregating the features of entities
and their neighbors. GNNs are not standalone; they require a decoder to complete the
encoder-decoder architecture.

3. Graph Transformer (GT): This is an enhanced version of the original transformer
[52] model adapted to handle graph data.

Graph-to-Text (G2T) leverages graph embedding techniques and Pre-trained Lan-
guage Models (PLMs). Graph embeddings and PLMs are essential for distinct reasons,
playing crucial roles in G2T tasks. Graph embeddings allow us to capture subtle relation-
ships between entities and properties in a numerical format, facilitating the manipulation
of this data and the creation of generativemodels. Generating text and establishing align-
ments between source entities/relationships and target tokens is challenging for standard
language models due to limited parallel graph-text data availability. The following two
sections deal with these topics.

Fig. 1. The architecture of KG-to-text generation with the three categories of representation: a)
Linearization + Seq2Seq, b) GNNs with decoder (e.g., LSTM), and c) Graph Transformer (GT)

2.1 Graph Embeddings

Graph embeddings in Graph Neural Networks (GNNs) refer to low-dimensional vec
Graph embeddings in Graph Neural Networks (GNNs) involve creating concise node
representations through iterative information exchange [9]. These embeddings are cru-
cial forGNNperformance. TranslationalModels inKnowledgeGraph (KG) embeddings
like TransE [3] and TransH [56] use distance-based scoring functions. Message Passing
Neural Network (MPNN) [16] pioneered differentiable architectures for graphs [11],
updating node states through message passing. Methods like ERNIE [57] and Know-
BERT [40] employ techniques such as TransE [3] and Tucker [1] for link prediction,
offering a baseline for knowledge graph encoding.

2.2 Mainstream Architectures

Research focuses on developing pre-trained language models tailored for various
domains. The typical method involves converting input graphs into text sequences and
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fine-tuning pre-trained seq2seq models. These models leverage encoder-decoder archi-
tectures, with the encoder capturing input sequence context and transmitting it to the
decoder for generating output sequences. Encoders can employ diverse structures like
RNNs, LSTMs, GRUs, Transformers, etc.

Noteworthy models like BART [26], T5 [44], and GPT [33], rooted in KG-to-text
datasets, excel due to self-supervised pre-training on extensive unlabeled text corpora.
They outperform complex models in KG-to-text tasks [45], especially after fine-tuning.
Modifications include replacing traditional sequential encoders with structure-aware
graph encoders such as GCNs and graph-state LSTMs [24, 50], enhancing encoding
of input structural data. However, a challenge arises in aligning structured graph data
with linear text during decoding. Researchers address this by incorporating sophisticated
encoder structures, often utilizing GNNs and GTs to retain structural information from
linearized graph inputs [10, 15, 36]. [59] propose a central “planner” component which
organizes and generates coherent text from input KG, determining text order, style, and
structure. By bridging the gap between structured KG data and natural language text,
the planner contributes to fluent and coherent text generation.

Cycle training, encompassing both graph-to-text (G2T) and text-to-graph (T2G)
conversions, encounters a hurdle due to limited training data availability, particularly in
comparison to tasks like machine translation. To counter this, cycle training techniques
simultaneously learn conversions between G2T and T2G utilizing non-parallel graph-
to-text data [17, 18, 31], allowing for direct output-input comparison during evaluation.
However, traditional cycle-consistent training faces challenges with many-to-one or sur-
jective mappings, leading to errors. Innovative solutions include employing conditional
variational autoencoders (CVAEs) [18] to transform surjective mappings into implicit
bijections, enhancing diversity and minimizing errors. Another strategy involves Deep
ReAder-Writer (DRAW) networks [31], incorporating Reader, Writer, and Reviewer
modules. The Reader predicts new links in knowledge graphs (KGs) by considering
multi-hop neighborhoods, augmenting KGs, while the Writer encodes KGs using graph
neural networks (GNNs) to generate paragraphs. TheReviewermodule refines paragraph
quality, addressing issues like word repetition and enhancing output diversity. These
advancements pave the way for more effective and accurate KG-to-text generation.

3 Knowledge Graph-to-Text Generation Architectures

This section introduces three critical components in the KG-to-text generation task:
Graph Linearization (GL), Graph Neural Networks (GNNs), and Graph Transformers
(GTs). These elements collectively harness structured data within knowledge graphs.
We’ll discuss converting complex graphs into linear forms, GNNs’ ability to capture
relationships, and GTs’ specialized handling of graph-based data. This analysis sheds
light on their roles and significance across applications.

3.1 Graph Linearization

Graph linearization involves transforming intricate graph-based structures into linear
or sequential formats. This rearrangement orders nodes and relationships, creating a
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sequence suitable for algorithms, tasks, or models requiring linear input, such as many
methods in NLP. One approach involves linearizing the knowledge graph (KG) [15, 45]
and using PLMs like GPT, BART, or T5 for seq2seq generation. PLMs can generalize
for downstream NLG tasks [27], but most were trained on text data [26, 43], needing
more structured input.

Heuristic search algorithms like breadth-first search (BFS) or predefined rules
are standard for graph linearization. However, these methods often need more atten-
tion to structural information during KG encoding, as they don’t explicitly consider
relationships between input entities.

Researchers such as [19, 36, 59] introduce different neural planners to compute the
input triples order before linearization. [36] employ data-driven scoring for precise plans,
considering recommendations and user rules. Others use GCN-based neural planners
[59] (Graph Convolution Network), reordering graph nodes for sequential content plans
encoded by LSTM-based sequential encoders. Plan-and-pretrain techniques introduced
by [19] leverage text planners based on relational graph convolutional networks (R-
GCN) [59] and pretrained T5 Seq2Seq models. [23] proposed a joint graph-text learning
framework called JointGT.

To address the issue when the input is a sequence of RDF triplets, [10] introduces an
encoder model called GTR-LSTM. This model maintains the structure of RDF triplets
within a small knowledge graph, enabling it to capture relationships both within individ-
ual triplets (intra-triple relations) and between interconnected triplets (inter-triple rela-
tions). This approach improves sentence generation accuracy. Unlike TreeLSTM [51],
which lacks cycle handling, GTR-LSTMhandles cycles using a combination of topolog-
ical sorting and breadth-first traversal. An attentionmodel is employed to gather compre-
hensive global information from the knowledge graph. Additionally, unlikeGraphLSTM
[29], which only supports specific entity relations, all relations are incorporated into the
calculation of hidden states [10].

In efforts to preserve the graph’s topology, despite striving for maximum retention
using seq2seq methods, the Transformer-based seq2seq models come with significant
costs, particularly during the pretraining phase. Additionally, the computational expense
of linearization can become substantial when dealing with extensive knowledge graphs.
Therefore, to more effectively maintain the graph’s topology, the introduction of Graph
Neural Networks (GNNs) has been proposed, and their details will be explored in the
following section.

3.2 Graph Neural Networks (GNNs)

Various approaches employ different versions of Graph Neural Network (GNN) archi-
tectures for processing graph-structured data. GNNs, including Graph Convolutional
Networks (GCNs) [24], extended forms like Syn-GCNs [34] and DCGCNs [20], Graph
Attention Networks (GATs) [54], and Gated Graph Neural Networks (GGNNs) [6, 7,
28], are well-suited for modeling entity relationships within knowledge graphs to gen-
erate text. GNNs have demonstrated promise in knowledge graph-to-text generation by
effectively representing relationships between entities in a knowledge graph.
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GCNs, Syn-GCNs, and DCGCNs encode entity relationships into low-dimensional
representations. GATs dynamically assign weights to entities and relationships to influ-
ence text generation. GGNNs utilize gating mechanisms to control information flow
among graph nodes, aiding context incorporation. Some studies combine GNNs with
reinforcement learning to optimize text generation based on the knowledge graph [6].

Overall, using GNNs for knowledge graph-to-text generation is an active area of
research, with many recent studies exploring different architectures and training meth-
ods. The results suggest that GNNs can effectively capture the relationships between
entities in a knowledge graph and generate high-quality text based on that information.
The limitationofKG-to-Text generationwithGNNs is thatGNNscanbe computationally
expensive and may need help handling large knowledge graphs. Additionally, their per-
formancemay degrade for graphswith complex relationships or structures. Despite these
limitations, GNNs remain a promising direction for knowledge graph-to-text generation.

3.3 Graphs Transformers (GTs)

Recent works have proposed to adapt the Transformer architecture to benefit from the
power of models based on Transformer to model tree or graph-type data structures as
with GNNs and to overcome the limitations of local neighborhood aggregation while
avoiding strict structural inductive biases. As Graph Transformers are equipped with
self-attention mechanisms, they can capture global context information by applying
these mechanisms to the graph nodes.

According to [4], GT differs fromGNNs because it allows direct modeling of depen-
dencies between any pair of nodes regardless of their distance in the input graph. An
undesirable consequence is that it treats any graph as a fully connected graph, signifi-
cantly reducing the explicit structure of the graph. To maintain a structure-aware view
of the graph, their proposed model introduces an explicit relationship encoding and
integrates it into the pairwise attention score computation as a dynamic parameter.

From the GNNs pipeline, if we make several parallel heads of neighborhood aggre-
gation and replace the sum on the neighbors by the attentionmechanism, e.g., a weighted
sum,wewould get theGraphAttentionNetwork (GAT). Adding normalization andMLP
feed-forward, we have a Graph Transformer [22]. For the same reasons as Graph Trans-
former [32] presents the K-BERTmodel, they introduce four components to augment the
Transformer architecture and to be able to handle a graph as input. The first knowledge
layer component takes a sentence and a set of triplets as input and outputs the sentence
tree by expanding the sentence entities with their corresponding triplets. They also add
the Seeing Layer component to preserve the original sentence structure and model the
relationships of the triples by building a Visibility Matrix. Another component is the
Mask-Transformer, where they modify the self-attention layer to consider the visibility
matrix when calculating attention.

The use of Graph Transformers for Knowledge graph text generation has gained pop-
ularity in recent years [25, 48] due to their ability to effectively handle graph structures
and capture the relationships between nodes in the graph. Additionally, Graph Trans-
formers can handle large graphs and can model long-range dependencies between nodes
in the graph. Despite the advantages, the training of Graph Transformers can be com-
putationally expensive, and the interpretability of the model still needs to be improved.
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Overall, using Graph Transformers for Knowledge graph-to-text generation is a promis-
ing area of research and can lead to significant improvements in the text generation from
knowledge graphs.

4 Experiments on Some Models and Datasets

4.1 Datasets and Metrics

We turn our attention to the datasets utilized in the implementation of various models.
During the training and validation phases, the utilized datasets alignwith those employed
by each specific model [12, 15, 37, 49] (Table 1). However, when transitioning to the
testing and evaluation phase, a significant portion of the models is subjected to assess-
ment using the Webnlg v.2 dataset [49], thereby providing a standardized and consistent
benchmark for performance evaluation. Our evaluation approach needs to be revised
in light of the current challenges surrounding the availability of a Webnlg v.2 dataset
tailored for the CycleGT [17] model and P2 [19] model. Instead, we conduct the evalua-
tion of these models on the test dataset corresponding to the same version as the utilized
training and validation datasets. These approaches are necessitated by the absence of a
dedicated Webnlg v.2 dataset compatible with these models at this juncture.

Table 1. Datasets used in our experiments

Dataset Train Validation Test

WebNLG V.2 2018 [49] 34.3k 4.3k 4.2k

WebNLG 2017 [15] 18.1k 0.87k 1.8k

WebNLG 2020 [12] 35.4k 4.4k 5.1k

DART [37] 62.6k 6.9k 12.5k

In our conducted experiments, we employed a set of ngram-based metrics, namely
Rouge [30],Meteor [2], Bleu [39], andCider [53], to assess the effectiveness of our devel-
oped model. The selection of these four distinct metrics aims to analyze various aspects
of the evaluated text comprehensively. These metrics encompass precision (Bleu), recall
(Rouge), and F-score (Bleu and Rouge), as well as the consideration of term frequency-
inverse document frequency (TF-Idf) aspects (Cider). This approach comprehensively
evaluates our model’s performance across multiple linguistic dimensions.

4.2 Experiments

We empirically assessed several approaches executed on our local machines and eval-
uated them using the same test dataset. Our evaluation encompassed various types of
systems, including graph linearization [19, 23, 45], a model employing Graph Neural
Networks (GNNs) [46], and another using Graph Transformers (GTs) [48]. Addition-
ally, we implemented an unsupervised cycling model [17]. While preserving most of the
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original characteristics of these models, we occasionally adjusted hyperparameters for
resource limitations or faster training.

GraphLinearization Approaches. Here, we present models that use PLMs as seq2seq
models to do KG2T generation.

In the “JointGT” approach [23], T5 and BART served as foundational models. These
models underwent a pretraining phase on the KGTEXT dataset [8] and were further
refined through tasks involving text and graph reconstruction as well as alignment pre-
diction. This comprehensive process resulted in the creation two pretrained models
known as JointGT_T5 and JointGT_BART. In our implementation, we chose to work
with JointGT_T5, maintaining the original fine-tuning hyperparameters while making a
batch size adjustment to 16 during both training and prediction phases to accommodate
computational limitations.

The adaptation of BART and T5 for graph-to-text generation by adding<H>,<R>,
and <T> tokens to the models’ vocabulary [45] led to vocabulary extension for KG
datasets and fine-tuning on WebNLG 2017 and augmented dataset DART [37]. We
maintained their implementation with slight modifications, increasing the batch size to
32 for faster fine-tuning.

[19] employed the T5-Large model and the planner module using DGL, Pytorch,
and Transformers. Most hyperparameters were retained, with the batch size adjusted to
1 due to resource limitations.

GNNs Approaches. [46] implemented their models using PyTorch Geometric (PyG)
and OpenNMT-py, employing byte pair encoding (BPE) for entity word segmentation.
Our implementation maintained their hyperparameters, utilizing cge-lw (Parallel Graph
Encoder - layer-wise) as the graph encoder where global and local node representations
are concatenated layer-wise.

GTsApproaches. Graformer [48] introduced additional preprocessing steps, including
training a BPE vocabulary and incorporating specialized tags for entities and relations.
Their training implemented an Epoch curriculum strategy. Our implementation mirrored
their hyperparameters.

UnsupervisedCyclingApproaches TheunsupervisedCycleGTmodel [17] introduced
a non-parallel training and validation dataset by segregating text and graph data. In our
implementation, we adhered to CycleGT’s GitHub repository specifications.

Overall, our experiments provide comprehensive insights into the behaviors and
performance of these diverse approaches within the context of graph-to-text generation,
and we discuss the results (Table 1) in the next section.

5 Results and Discussion

Each architecture has advantages and disadvantages, and the choice of architecture will
depend on the specific requirements of the actual task.

In light of these elements, and with the constraint of the data labialization for specific
domains of KG2T generation, we choose to go further with seq2seq Transformer based
models (PLMs) in our Knowledge Graph-to-Text Generation.
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We see in Table 2 that all models using seq2seq Transformer-based models have
better results than GNNs and GTs models, and with a considerable margin when these
models have some additional processes before linearization to keep some information
about the structure of the graph like in JointGT [23] and P2 [19]. Even the CycleGT
model has better results than GNNs and GTs models, an unsupervised model that uses
a linearization phase on the graph.

As mentioned before, we evaluate our models onWebNLGV.2 [49], which has 1600
test instance (source KGs), except P2 and CycleGT, which are evaluated on the enriched
version of WebNLG V.2 [49] and which has 1860 test instance.

6 Conclusion and Perspectives

In this paper, we have explored and compared three distinct architectures for Knowledge
Graph-to-text generation: Graph Neural Networks (GNNs), Graph Transformers (GTs),
and linearization with seq2seq models, primarily Pre-trained LanguageModels (PLMs).
Each of these architectures has its unique advantages and limitations, making them
suitable for different scenarios and use cases.

GNNs offer a flexible and scalable approach to model graph structures and relation-
ships, but they may need help with efficiency when handling large and complex knowl-
edge graphs. GTs, on the other hand, provide a specialized solution for graph-based
tasks, offering a more direct and efficient way to process graph structures. However,
they may require extensive training data and computational resources.

Linearization with seq2seq models, especially those based on PLMs, simplifies
the process by converting knowledge graphs into linear sequences and generating text
from them. Despite its simplicity, this approach can lose some structural information
during linearization. However, as our experiments show, seq2seq Transformer-based
models consistently outperformed GNNs and GTs, especially when models incorporate
additional processes to retain graph structure information like JointGT and P2.

In the context of conversational agents, where factors like response time and correct-
ness are critical, the inference time and resource requirements of GNNs and GTs can
be limiting. Hence, for practical deployment, seq2seq Transformer-based models stand
out as a more feasible choice, given their superior performance and efficiency.

Looking ahead, the field of Knowledge Graph-to-text generation presents several
avenues for advancement. Firstly, there’s a pressing need to enhance the computational
efficiency of Graph Neural Networks (GNNs) and Graph Transformers (GTs) to make
them more suitable for real-time applications. This involves optimizing their architec-
tures, parallelizing computations, and harnessing hardware accelerators. Additionally,
as the scale and complexity of knowledge graphs continue to grow, developing strate-
gies to effectively handle large graphs while maintaining performance is a significant
challenge that warrants further exploration.

Moreover, extending these approaches to accommodate multimodal knowledge
graphs, which integrate textual, visual, and other data types, could open up new horizons
for comprehensive information retrieval and generation, especially with the use ofMeta-
transformers multi-modal approach [58]. Furthermore, ensuring the interpretability of
GNNs and GTs is crucial for building trust in generated text, particularly in domains
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like healthcare and law. Moreover, addressing the scarcity of labeled data for specific
knowledge domains through innovative data labeling and augmentation techniques can
enhance the training of domain-specific models. Lastly, the advancement of these mod-
els to handle multiple languages and facilitate cross-lingual knowledge transfer holds
promise for their broader applicability in diverse linguistic contexts.

In conclusion, the choice of architecture for Knowledge Graph-to-text generation
should be guided by the specific requirements of the task and the constraints of the
application. While GNNs and GTs offer valuable approaches for particular scenarios,
the efficiency and performance of seq2seq Transformer-based models make them a
compelling choice for many real-world applications. Future research should address the
challenges and opportunities presented by these diverse architectures to advance the field
further.

Table 2. The performance of the implemented models on WebNLG V.2 [49]

Metric BLEU METEOR ROUGE_L CIDEr

Model 1 2 3 4

Graph
Linearization

Supervised PLMs-G2T
(webnlg)
[45]

79.18 67.66 57.31 48.54 40.28 64.91 3.34

PLMs-G2T
(DART) [45]

83.45 72.77 63.22 55.03 43.20 68.95 3.82

P2_35 [19] 86.91 76.30 66.49 57.95 44.36 70.31 4.98

JointGT
[23]

90.35 81.82 73.60 66.14 47.32 75.96 4.59

Unsupervised CycleGT
[17]

74.79 62.88 53.68 46.16 36.21 68.26 3.20

GNNs KG2T_G&L
[46]

60.93 49.36 40.99 34.42 28.11 49.04 2.02

GTs Graformer
[48]

70.67 59.72 51.12 44.22 33.82 58.13 2.79
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Abstract. Networks provide a very understandable representation of
the data in which we get information about the relationships between
pairs of nodes. For this representation, we can use one of the power-
ful analytical tools, 2D visualization. In visualization, networks have an
alternative vector representation to which a wide range of machine learn-
ing methods can be applied. More generally, networks can be transformed
to a low-dimensional space by network embedding methods. In this
paper, we present a new embedding method that uses a non-symmetric
dependency to find the distance between nodes and applies an iterative
procedure to find a satisfactory distribution of nodes in space. Using
experiments with small networks and dimension 2, we show the effec-
tiveness of this method and discuss its properties.

Keywords: network embedding · non-symmetric dependency ·
dependency distance

1 Introduction

Finding an efficient representation of network data is crucial for efficient network
data processing, because traditional network data representations are computa-
tionally intensive, have low parallelizability, or, e.g., cannot use machine learning
methods [2]. Therefore, attention is now being paid to the development of new
methods for network embedding, which means transforming the original network
space into a low-dimensional vector space. The fundamental problem is to learn
a mapping function between these two spaces. In the network embedding space,
the relationships among the nodes is captured by the distances (or similarities)
between nodes in the vector space, and the structural characteristics of a node
are encoded into its embedding vector.

Network embedding supports network processing and analysis, such as com-
munity (cluster) detection, network visualization, or link prediction [17] and it
allow us to make general machine learning techniques applicable to networks. For
the embedding space there are two requirements for network embedding. First,
the original network can be reconstructed from the learned embedding space.
If there is an edge between two nodes, their distance in the embedding space
must be relatively small, as this preserves the relationships in the network well.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
H. Cherifi et al. (Eds.): COMPLEX NETWORKS 2023, SCI 1141, pp. 427–439, 2024.
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Second, the learned embedding space can effectively support network inference,
such as predicting unseen links or identifying important nodes [2].

In this paper, we present a new network embedding method based on calcu-
lating the distance between pairs of network nodes based on their structurally
non-symmetric relationship. We describe an iterative procedure that, using the
distance defined in this way, quickly reveals the community structure. We per-
form experiments with four well-known small networks and show the results of
the application of our method to dimension 2.

2 Related Work

Different models can be used to transform networks from the original network
space to the embedding one, working with different types of information or
addressing different goals. Commonly used models include matrix factorization,
where, e.g., Singular Value Decomposition is used due to its optimality for the
low-rank approximation of the adjacency matrix [15] and non-negative matrix
factorization is often used due to its advantages as an additive model [19].

Furthermore, random walk models, analogous to Word2Vector, are used to
generate random paths through the network. If a node is considered as a word,
the random path can be considered as a sentence, and the neighborhood of
the node can be identified using a measure of cooccurrence as in the case of
Word2Vector [12]. For example, the Node2Vec embedding method [6], similar
in design principle to the DeepWalk method [14], can be considered. However,
Node2Vec improves the random walk generation in DeepWalk and mirrors the
depth and breadth sampling properties to enhance the network embedding effect.

Finally, let us mention deep neural networks and their variants because they
are a suitable choice if we are looking for an efficient model for learning nonlinear
functions. Representative methods include SDNE [17] or, e.g., SiNE [18].

One of the important applications for network embedding is visualization of
a network in two-dimensional space. We can find a comparison of visualization
results with different embedding approaches in [10]. Classes of graph drawing
algorithms, including multi-level and dimensionality reduction-based techniques,
are described in detail in a review [5]. In network analysis fields, interpretation
and understanding of network structure may be based on calculating local or
global measures. Visual representation of network structure can help detect,
understand, and identify unexpected patterns or outliers in networks.

The layout and arrangement of nodes affect how the user perceives relation-
ships in the network. There is no one best way; the layout of a network depends
on which network features are important to us. These may be, for example, spe-
cific measures of centrality or important properties of nodes or edges. Criteria
for evaluating a network layout include the algorithm’s computational complex-
ity, the network’s size, the algorithm’s ability to follow certain layout rules or
aesthetics, clustering, etc.

Many of the methods used are based on the force-directed network paradigm,
a paradigm of modeling the network as a physical object system where nodes
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attract and repel according to some force. Other network drawing algorithms
are methods using multilevel and dimensionality reduction-based techniques.

There are two approaches to force-directed layouts: those based on spring
embedding and those that solve optimization problems. A very often used
method of this type is the method of Fruchterman and Reingold [4], the con-
nected nodes attract each other while all other nodes, modeled as electrical
charges, repel each other.

The second approach considers the layout problem as an optimization prob-
lem that minimizes an energy function designed concerning the properties of the
network being visualized. Important energy-based techniques are Noack’s LinLog
[13] and ForceAtlas [8] layouts. Noack’s edge repulsion model removes the bias
of the node model towards attraction by ensuring that nodes that are strongly
attracting are also strongly repelling, similarly for nodes with weak attraction.
Therefore, nodes with a high degree are less likely to be clustered in the center
of the network, and it is able to show any underlying clustering structure in the
network. ForceAtlas is strongly associated with Noack’s LinLog. Its advantage is
that all nodes are subject to at least some repulsive force, and poorly connected
nodes are thus approximated by well-connected nodes, reducing visual clutter.
The forces in the algorithm vary between Noack’s edge repulsion model and the
Fruchterman and Reingold distributions.

Multilevel algorithms are one of the options that can be used to streamline
force-directed techniques. Their idea is to find a sequence of coarser representa-
tions of the network, optimize the drawing in the coarsest representation, and
propagate this distribution back to the original network. The coarser representa-
tions are created by composing connected nodes whose edges become the union
of the edges of all the nodes [7].

Other options for drawing networks are dimension reduction techniques,
including multidimensional scaling, linear dimension reduction [1], or spectral
graph drawing approaches. The challenge is to preserve the information in a
high-dimensional space and capture it in a lower-dimensional representation.
Most dimension reduction techniques used for network layout use the graph-
theoretical distance between nodes, [3], as the information to be preserved.

As mentioned above, the most common use cases of node embedding are visu-
alization, clustering, and link prediction. The problem of visualizing networks in
2D, with its long history, and network drawing algorithms are probably the most
well-known embedding techniques commonly used to visualize networks in 2D
space. Data-driven network layouts, such as spring embedding, are unsupervised
methods of arranging nodes based on their connectivity and are de facto dimen-
sionality reduction techniques. Despite the great potential layouts are rarely the
basis of systematic network visualization.

Therefore, node embedding offers a powerful new paradigm for network visu-
alization: because nodes are mapped to real-valued vectors, researchers can easily
leverage general techniques for visualizing high-dimensional data. For example,
node embedding can be combined with well-known techniques such as t-SNE
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[11] to create 2D network visualizations [16] that can be useful for revealing
communities and other hidden structures.

3 Non-symmetric Structural Dependency

Structural dependency (hereafter referred to as dependency) is a non-symmetric
relationship between pairs of nodes that applies to both weighted and unweighted
networks [9]. In our experiments, we work with both types of networks; however,
these are always undirected. For this paper, we formulate the dependency in
a slightly different way. First, let us establish a way to determine the weight
w(A,B,X) of the relation between two nodes of the network A,B given their
common neighbor X. Let w(A,X) be the weight of the edge between nodes A,X
and similarly w(B,X) be the weight of the edge between nodes B,X. Then:

w(A,B,X) = w(B,A,X) = w(A,X) · w(B,X)
w(A,X) + w(B,X) . (1)

The weight defined in this way is half of the harmonic mean, i.e. if the values
w(A,X) and w(B,X) are balanced, then the weight w(A,B,X) is around half of
w(A,X) and w(B,X) respectively. If, on the other hand, they are not balanced
and at least one of the weights w(A,X), w(B,X) is close to zero, then the weight
w(A,B,X) is also close to zero.

Now, let us define the strength of the relation between the nodes A,B. If a
pair of nodes A,B has multiple common neighbors Xi, then the strength of the
relationship between them (the dependency of one on the other) is affected not
only by the weights of the edge between these nodes but also by the weights
w(A,B,Xi). Therefore, let us define the dependency D(A,B) of a node A on a
node B as follows:

D(A,B) =
w(A,B)+

∑
Xi∈Γ(A,B) w(A,B,Xi)

∑
Xj∈N(A) w(A,Xj)

, (2)

where Γ(A,B) is the set of common neighbors of nodes A,B and N(A) is the
neighborhood (set of all neighbors) of node A.

If there is an edge between nodes A,B, then w(A,B) is the weight of this edge;
otherwise, w(A,B) = 0. Thus the dependency is non-zero if and only if the node
A,B have an edge or at least one common neighbor. A dependency defined in
this way is non-symmetric, so D(A,B) = D(B,A) generally does not hold. While
the value of the numerator is the same in both directions of the dependency, the
value of the denominator may be different. Therefore, it may be true that the
dependencies between the nodes of A,B may be substantially different.

Informally speaking, dependency is high if a node is significantly connected to
its neighbor through common neighbors compared to the rest of its neighbors.
This property provides information about the network’s community structure
since nodes in a community should have stronger dependencies with each other
than with nodes outside the community.
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3.1 Distance Based on Non-symmetric Dependency

The unanswered question is, what distance should the two nodes of the network
be if we want to start from the exact dependencies Two situations can arise: (1)
nodes have zero dependencies and thus have neither an edge nor a common neigh-
bor, and (2) nodes have non-zero, potentially non-symmetric dependencies. In
the first case, we have no straightforward information to determine the distance.
In the second case, we have to convert the dependencies into the Euclidean space
that is, by definition, symmetric. For further considerations, let us start with a
simple interpretation of dependency, which can be described as a relation that
attracts two nodes together. To express this relation, let us define the mutual
dependency coefficient qS(A,B) as the product of the partial dependencies of
the nodes A,B with their arithmetic mean, i.e.:

qS(A,B) = D(A,B) · D(B,A) · D(A,B)+D(B,A)
2 (3)

The coefficient q takes into account both dependencies and, thanks to the
average, information about their balance. The coefficient qs can be further used
to determine the symmetric distance between nodes A,B. An alternative is to
work with the non-symmetric distance and leave the determination of the sym-
metric distance to the iterative procedure described in Sect. 4. In this case, the
assumed distance between the nodes may be non-symmetric at the input. For
this case, let us define the coefficient qN (A,B):

qN (A,B) = D(A,B)2 · D(B,A) (4)

The values of qS(A,B), qN (A,B) are from the interval [0, 1] and severely
penalize situations where at least one of the dependencies is very low. Our exper-
iments show that using both alternatives of the q coefficient provides the same
result; however, the non-symmetric version converges more quickly to a stable
result. Therefore, q(A,B) = qN (A,B) will hold for the following.

Now we can define the maximum distance maxDepDist between pairs of
network nodes, from which we derive the distance of node A from node B with
non-zero dependencies as follows:

DepDist(A,B) = (1 − q(A,B)) · maxDepDist. (5)

Note that we cannot determine this distance based on non-symmetric depen-
dency (DepDist for short) between absolutely independent nodes. In the follow-
ing, we show that we can still use such an incompletely formulated distance for
network embedding.

4 DepDist Contraction

As mentioned above, the essence of network embedding is to find a network rep-
resentation in low-dimensional space in which the relationships between network
nodes are highly preserved. We next present an iterative procedure based on a
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straightforward use of DepDist that provides such a representation. We refer
to this procedure as DepDist Contraction1, and this is because its essence is to
bring pairs of nodes closer together so that the result is close to the distance
based on their mutual dependencies.

Even though we are concerned with network embedding and the presented
procedure is independent of the chosen dimension, we focus our experiments
only on dimension 2. This allows us to visualize the DepDist Contraction result
and at least visually assess it.
Remark In the following, we will use the term node A to mean both a node of
the network and a point representing this node in n-dimensional space.

4.1 Algorithm

The first step of the algorithm to find the representation of the network in n-
dimensional space is to randomly distribute the points representing each network
node into a cube of dimension n with edge length a. Next, we set the value of
maxDepDist to be much smaller than the edge length a (so there is enough
space for contraction). We then iterate so that in one iteration, each node A
moves in space to some node B (we will return to the selection of node B later).
For the move, step length corresponds to the distance between A and B and
their coefficient q(A,B). The iterating terminates, as we show later, either after
a fixed number of steps or after the contraction stabilizes.

4.2 One Step of Iteration

Let us consider a node A, a node B selected for it, their coefficient q(A,B), and
their expected DepDist(A,B). By one iteration step, we mean moving node A
to node B so that their distance approaches DepDist(A,B). Let û be a unit
vector in the direction of the vector B − A. The new position A′ of node A is:

A′ = A + acc(A,B) · (‖ B − A ‖ −DepDist(A,B)) · û. (6)

The function acc(q(A,B)) changes the effect of the coefficient q(A,B) on the
length of the move. The function is designed to increase the move length signif-
icantly when the distance between nodes A,B is too large (above some defined
threshold), i.e., when ‖ B − A ‖ is significantly larger than DepDist(A,B). On
the other hand, the move length decreases with decreasing distance of nodes,
which gradually stabilizes node positions in space when node positions change
negligibly. Therefore, we define a maximum threshold distance for acceleration
maxAccDist > maxDepDist. Next, for each pair of nodes A,B, we determine
the threshold distance for acceleration:

accDist(A,B) = (1 − q(A,B)) · maxAccDist. (7)

1 Non-parallel Python implementation used for the experiments in this paper is at
https://github.com/emanueldopater/DepDistContraction/tree/conference.

https://github.com/emanueldopater/DepDistContraction/tree/conference
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Based on this threshold distance for acceleration, we then define the acceler-
ation coefficient accCoef to be equal to one for accDist(A,B) =‖ B − A ‖:

accCoef(A,B) = 0.5 + 0.5 · ‖B−A‖
accDist(A,B) . (8)

The acc function is then defined as:

acc(A,B) = q(A,B)
1

accCoef(A,B) . (9)

Thus, in general, pairs of nodes that are weakly dependent on each other are
farther apart than strongly dependent nodes, slowly converging to the expected
distances DepDist(A,B) and DepDist(B,A), respectively. Thus, for example,
two high-degree nodes that share a common edge but have very few common
neighbors compared to their other neighbors will hardly change position during
an iteration. This contrasts with, for example, nodes that are part of a large and
almost disjoint clique, which have strong dependencies and thus small distances
to neighbors that they move to very quickly.

More interesting is the situation when node A is strongly dependent on
node B, but the reverse is not true, i.e., when, for example, node B is a hub and
node A has degree 1. Using the non-symmetric alternative qN (A,B), node A will
approach node B very fast, and node B will slowly move towards node A.

4.3 Selecting Node to Move

In one iteration, for each node A, a different node B is selected, to which node
A is moved according to the procedure described above; it is, therefore, nec-
essary to determine how node B can be selected. As described above, non-zero
dependency can only be calculated for nodes with a common edge or at least one
common neighbor; therefore, this assumption limits the selection. For DepDist
Contraction, we use a strategy based on the assumption that the fewer neighbors
a node has, the less information we have about its neighborhood, and we should
“look further.” For node A, we therefore set the probability of random selection
of its neighbor B to be related to the degree of node A:

p(A) = 1 − 1
1+k(A) , (10)

where k(A) is the degree of node A; with complementary probability 1 − p(A),
a neighbor of the neighbors of A is then chosen at random. Thus, if a node has
a very high degree, its neighbor is chosen with near certainty, and conversely, if
a node has degree k(A) = 1, then its neighbor is chosen with probability 0.5.

4.4 When to Stop Iterating

The algorithm depends on only three parameters: (1) the edge length a of the n-
dimensional cube into which the nodes of the network are randomly distributed
at the beginning, (2) the maximum expected distance maxDepDist of the nodes
in the embedding from which the distances between each pair of nodes are
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derived, and (3) the maximum distance maxAccDist for the acceleration of
the move from which the distance above which the move accelerates and below
which it decreases is derived for each pair of nodes. Thus, from the perspec-
tive of the whole network, it is a contraction that results in a distribution of
nodes in a small part of the input n-dimensional cube in which the nodes almost
stop moving. Our experiments show that, regardless of the size of the network,
after 20 − 50 iterations, the community structure emerges (strongly dependent
node groups), and after 200−500 iterations, the distribution changes very little;
groups of strongly dependent nodes move (relatively) away from each other, and
the distribution stabilizes. Thus, the number of iterations needed is not much
affected by the network size because the algorithm efficiently separates locally
strongly connected sub-structures from the rest of the network. The strength of
the DepDist Contraction algorithm is, therefore, most evident when applied to
networks with significant community structure, and its discovery in embedding
is only a side effect of the DepDist.

Figure 1 visualizes the distribution of nodes after 50 iterations of the four
networks we used in our experiments; it is a 2D embedding, which is comple-
mented by the edges between the nodes and the sizes of the nodes corresponding
to their degree for better clarity. As can be seen, even after a relatively small
number of iterations, the community structure of the networks is obvious.

4.5 Scalability

Calculating the dependency of one node on another is similar to calculating
the clustering coefficient and has time complexity O(k2), where k is the aver-
age degree of the network (we can calculate the dependencies in both directions
simultaneously). However, the computations for each pair of nodes are inde-
pendent and can be computed in parallel as needed. Within a single iteration,
storing the current node positions at the beginning and computing the depen-
dencies including moving the nodes to their new positions in parallel is possible.
When the iteration ends, the current positions are swapped with the new ones.
Thus, during the algorithm, we work with two states of the network (current
and new node positions); therefore, the spatial complexity is O(N), where N is
the number of nodes in the network.

To estimate the time complexity, we assume a sparse network for which
the relationship between the number of edges and nodes is O(N). If we want
to optimize the computational complexity, we must continuously compute the
dependencies during the iterative procedure (i.e., only when necessary) and store
them for reuse. Thus, the estimate of the time complexity of computing all
dependencies is based on the dependency computation complexity and the total
number of node pairs for which the dependency must be computed. Given that
we compute dependencies for neighbors and neighbors of neighbors based on
random selection, we can estimate the time complexity of computing all required
dependencies to be O(Nk4); however, this is the worst case, where we assume
computing dependencies for all neighbors and neighbors of neighbors for all nodes
in the network. Moreover, for sparse networks in the case of stored dependencies,
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Fig. 1. 2D embedding for karate, lesmis, football, netscience (giant component) net-
works after 50 iterations.

the spatial complexity changes to O(Nk2). Here again, this is the worst case that
does not occur in practice since dependencies with neighbors of neighbors are
computed only rarely for nodes with a higher degree (see Sect. 4.3). In general,
for sparse networks, we can expect a time and space complexity of O(Nk3) and
O(Nk), respectively.

Random selection around the selected node depends on the representation of
the network. If we use an adjacency list, then neighbor selection has complexity
O(1). Therefore, for the total complexity, we only need to consider the number
of iterations r; the estimate of the total time complexity is then O(rN + Nk3)
for sparse networks.

5 Experiment

To present the effectiveness of the DepDist Contraction algorithm, we used four
small networks; for these small networks, the quality of the embedding can be
visually assessed in the form of a visualized network layout. We chose well-known
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networks from Mark E.J. Newman2: Zachary’s karate club (karate), Les Miser-
ables (lesmis), American College football (football), giant component of Coau-
thorships in network science (netscience). In Table 1, we can see that each
network has different properties (number of nodes and edges, average, minimum
and maximum degree, average clustering coefficient, Louvain modularity).

Table 1. Properties of the four experimental networks.

Network N M k min k max k CC Q

karate 34 78 4.588 1 17 0.588 0.415

lesmis 77 254 6.597 1 36 0.736 0.551

footbal 115 613 10.661 7 12 0.403 0.604

netscience 379 914 4.823 1 34 0.798 0.845

5.1 Results

In the experiment, we used dimension n = 2 for all four networks, the side
size of the square for the random initial nodes distribution a = 1, i.e., a
square with a diagonal [0, 0], [1, 1], the maximum expected dependency distance
maxDepDist = 0.002, and the maximum acceleration distance maxAccDist =
0.01. The result of applying the DepDist Contraction algorithm is shown for 50
and 500 iterations in Figs. 1 and 2; the difference between 200 and 500 iterations
is visually negligible, and there is virtually no further moving. Figure 3 shows
the changes in the positions of the network nodes expressed in terms of mean
squared error (MSE) between two consecutive iterations.

Even though our goal is embedding (i.e., in this case, transforming the net-
work to a vector representation of dimension 2), the result is comparable to
layout-oriented algorithms, which usually use balancing based on attractive and
repulsive forces between pairs of nodes. However, compared to the force-directed
layout in Fig. 4, one significant difference can be seen in the karate layout.
Namely, the dependency is much more related to the connectivity of the nodes
to the neighborhood than to the edge weights. Therefore, the distance between
pairs of nodes is small only when both dependencies are high. On the other hand,
if at least one dependency decreases to zero, the distance increases, regardless
of the edge weights. In Fig. 2, this property in the karate network highlights (1)
the separation of the three groups of nodes in the middle and at the boundaries
and (2) the relatively large distances between nodes weakly connected to their
neighborhood.

The figures show how embedding is affected by other properties of the indi-
vidual networks. Zachary’s karate club contains no larger cliques except triangles;
Les Miserables, on the other hand, contains well-separated cliques, near-clique
2 http://www-personal.umich.edu/∼mejn/netdata/.

http://www-personal.umich.edu/~mejn/netdata/
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Fig. 2. 2D embedding for karate, lesmis, football, netscience (giant component) net-
works after 500 iterations.

Fig. 3. Evolution of MSE between two consecutive iterations for karate, lesmis, footbal,
netscience (giant component) networks.is significantly larger.

Fig. 4. Force-directed layout of karate club network.
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and star-like sub-structures; American college football contains several near-
clique structures and no hubs; Coauthorships in network science contains many
small distinctly separated cliques clustered around variously sized hubs.

6 Conclusion and Future Work

The DepDist Contraction algorithm is very simple and as seen in experiments
with small networks, it gives surprisingly good results. In our experiments, we
also worked with networks with thousands to tens of thousands of nodes. How-
ever, the presentation of these experiments and their evaluation is beyond the
scope of this paper.

Three problems emerged that we will address in the future. The first is that
for both large and small networks, the initial random distribution of nodes some-
times has a negative effect on the result. It will be necessary to find a way to
quantify this effect on the resulting embedding and reduce this effect. At the
same time, we need to compare our approach with other network embedding
algorithms. The second problem is computing dependencies in large networks
with a high average degree (e.g., 100+). Despite the use of parallelism, the com-
putation is time-consuming in these cases. Here, it will be necessary to use an
estimate instead of an exact dependency calculation, which can be done using
sampling around the pair of nodes. The third task is to estimate the number
of iterations needed to stabilize the embedding. Experiments even with larger
networks show that at most low hundreds of iterations are sufficient for sta-
bilization. The estimation can be based on the assumption that stabilization is
characterized by the fact that the distances between nodes almost stop changing;
therefore, we assume that we will be able to describe the relationship between a
sufficiently stable embedding, its parameters (dimension n, cube edge length a,
maxDepDist) and the size of the network N .

Funding. This work is supported by SGS, VSB-Technical University of Ostrava,
under grant no. SP2023/076.
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Abstract. Network embedding, a technique that transforms the nodes
and edges of a network into low-dimensional vector representations while
preserving relevant structural and semantic information, has gained
prominence in recent years. Community structure is one of the most preva-
lent features of networks, and ensuring its preservation is crucial to rep-
resent the network in a lower-dimensional space accurately. While the
core objective of network embedding is to bring related nodes in the orig-
inal network close together in a lower-dimensional space, common clas-
sification metrics overlook community structure preservation. This work
addresses the need for a comprehensive analysis of network embedding
algorithms at the community level. On a set of synthetic networks that
span strong to weak community structure strengths, we showcase the vari-
ability in the performance of network embedding techniques across meso-
scopic metrics. Additionally, we highlight that the mesoscopic metrics
are not highly correlated with the classification metrics. The community
structure can further diminish the correlation as its strength weakens.

Keywords: Network Embedding · Community Structure · Evaluation
Metrics

1 Introduction

Networks often exhibit a modular structure, where nodes cluster into communi-
ties with shared characteristics or functions [1]. Understanding these community
structures is crucial for various applications, from recommendation systems to
the optimal spread of information and disease control [2–10]. With network sizes
increasingly increasing, generating lower order representation, known as network
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embedding, has gained significant attention in recent years [11]. This technique
transforms networks into low-dimensional vector representations.

While certain techniques are designed to explicitly maintain or enhance the
community structure through the embedding process, others may not consider
community structure preservation a primary objective. Nonetheless, one of the
fundamental goals of all network embedding techniques is to project the simi-
larity of the nodes of the original network onto the lower-dimensional space.

Further, network embedding techniques are commonly evaluated through
classification metrics [11]. Nonetheless, these metrics are agnostic about the
community structure: they do not indicate whether it is well preserved after
the embedding process. In other words, they offer information about the over-
all quality of results but do not reveal the fine-grained details of community
structure within a network.

Consequently, there is a need for a comprehensive comparative analysis of
network embedding algorithms from a modular perspective. This paper ana-
lyzes the performance of the most prominent network embedding algorithms on
controlled synthetic networks.

The rest of the paper is organized as follows. Section 2 overviews the funda-
mental concepts of network embedding and introduces the mesoscopic evaluation
metrics. Section 3 presents the synthetic modular network generation. It details
the experimental setup and evaluation metrics for comparing these algorithms
and the voting model used in ranking these algorithms. Section 4 presents the
results of our comparative analysis and discusses the findings and their implica-
tions. Finally, Sect. 5 concludes the paper.

2 Background

The landscape of network embedding algorithms is notably diverse. To ensure
that we encompass a spectrum of approaches, we include ten widely recog-
nized methods that span random walks, matrix factorization, and deep learning
[12]. This diversity should allow us to understand the challenges and opportu-
nities of different network embedding strategies. We briefly describe these algo-
rithms, highlighting their specificity. It is worth highlighting that the DeepWalk,
Node2Vec, Walklets, M-NMF, and M-GAE algorithms explicitly indicate main-
taining the community structure as they acquire node representations.

2.1 Random-Walk-Based Methods

– DeepWalk: applies techniques from deep learning to learn node embeddings
by treating network walks as sentences and using Skip-gram models to capture
the context of nodes. It uses random walks to explore the network and capture
local neighborhood information [13].

– Node2Vec: extends DeepWalk by introducing a biased random walk strat-
egy that explores both breadth-first and depth-first neighborhood structures.
It allows for fine-tuning exploration behavior, making it more versatile for
different network structures [14].
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– Diff2Vec: incorporates differential information from network snapshots over
time to capture evolving node embeddings. It is particularly suitable for
dynamic networks where nodes and their connections change over time [15].

– Walklets: is a variation of DeepWalk that leverages multiple lengths of ran-
dom walks to capture local and global network structures. It creates embed-
dings by considering various context sizes, effectively capturing hierarchical
relationships [16].

2.2 Matrix Factorization-Based Methods

– Modularity-Normalized Matrix Factorization (M-NMF): M-NMF
optimizes a modularity-based objective function to learn embeddings that pre-
serve community structure. It directly incorporates community information
into the embedding process, emphasizing preserving community properties [17].

– Laplacian Eigenmaps (LEM): is a spectral embedding method that uti-
lizes the eigenvalues and eigenvectors of the Laplacian matrix to map nodes
to a low-dimensional space. It emphasizes preserving the pairwise distances
between nodes, which can highlight the underlying geometric structure of the
network [18].

– Randomized Network Embedding (RandNE): employs randomized
matrix factorization to generate node embeddings while preserving global
and local network properties. It introduces randomness in the factorization
process, which can lead to more diverse embeddings [19].

– Boosted Network Embedding (BoostNE): leverages ensemble learning
techniques to combine multiple embeddings generated by different methods,
enhancing the overall performance. It focuses on improving embedding quality
through ensemble techniques and is versatile in incorporating various base
embedding methods [20].

– Network Matrix Factorization (NetMF): factorizes the network’s adja-
cency matrix to obtain embeddings that capture higher-order proximity pat-
terns. It emphasizes capturing different types of proximities in the network,
such as Katz similarity, which goes beyond traditional pairwise node relation-
ships [21].

2.3 Deep Learning-Based Method

– Modularity-Aware Graph Autoencoder (M-GAE): utilizes autoen-
coder architectures to learn embeddings by reconstructing the adjacency
matrix or other network-related properties. It introduces a novel regularizer
inspired by modularity and can adapt to various reconstruction objectives,
allowing it to capture different aspects of network structure [22].

2.4 Evaluation Metrics

The classification metrics used in the literature to evaluate the quality of the
embedding algorithms are mainly grounded in information theory and heavily
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used by the machine learning community, which include the adjusted mutual
information score (AMI), normalized mutual information score (NMI), adjusted
random score (ARI), Micro-F1 score, and Macro-F1 score, which are not neces-
sarily community-aware evaluators [23]. Here we propose a complementary set
of metrics to assess the quality of these algorithms. These below-described meso-
scopic metrics are used to evaluate the quality of the embedding techniques in
preserving the community structure. The latter, denoted by C, is defined as fol-
lows: for an undirected unweighted graph G(V,E), where V is the set of nodes
and E ⊆ V × V is the set of edges, C = {c1, c2, ..., cq, ..., c|C|} where cq is q-th
community, mcq and ncq are the total number of links and nodes inside com-
munity cq, respectively, and | C | is the total number of communities. A node i
in G has a total degree of ktot

i = kintra
i + kinter

i where kintra
i denotes its intra-

community links and kinter
i denotes its inter-community links. The mesoscopic

metrics are calculated for each community in the network and then averaged over
all the communities. We denote each evaluation metric for each community cq as
f(cq). In the context of this study, we employ a set of nine mesoscopic metrics,
where seven are defined within our work. The internal degree and community
size distributions are inherently self-explanatory through their nomenclature:

– Internal distance: is the average shortest distance of nodes inside a given
community f(cq):

f(cq) =
∑

i,j∈c

d(i, j)
ncq (ncq − 1)

where d(i, j) is the shortest path from node i to node j.
– Internal density: is the edge density inside a given community cq:

f(cq) =
2mcq

ncq (ncq − 1)

– Maximum-out degree fraction (Max-ODF): is based on the inter-
community links of a node that possesses the highest inter-community links
in its community cq:

f(cq) = max(i∈cq)
kinter
i

ktot
i

– Average-out degree fraction (Average-ODF): is based on the inter-
community links of all the nodes in the community cq they belong to:

f(cq) =
1

ncq

∑

i∈cq

kinter
i

ktot
i

– Flake-Out degree fraction (Flake-ODF): is based on the percentage of
nodes in community cq that have more inter-community links than intra-
community links:
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f(cq) =
∑

i∈cq

|fi|
ncq

where fi is the fraction of nodes having kinter
i ≥ kintra

i .
– Embeddedness: quantifies the intra-community links of a node. It is the

opposite of Average-ODF. It reaches a value of 1 if the nodes in a given
community cq only have intra-community links (i.e., all neighbors are in the
same community):

f(cq) =
1

ncq

∑

i∈cq

kintra
i

ktot
i

– Hub dominance: is based on the intra-community links of a node that has
the highest intra-community links in its community cq:

f(cq) = max(i∈cq)
kintra
i

ncq (ncq − 1)

3 Experimental Setup and Evaluation

This section describes the fundamental steps of the experimental setup employed
to evaluate the network embedding algorithms’ efficacy in maintaining the com-
munity structure.

3.1 Synthetic Network Generation

The ABCD generator offers the ability to change multiple parameters of the
network generation process, namely: number of nodes (N), power-law exponent
for degree distribution (τ1), minimum degree (dmin), maximum degree (dmax),
power-law exponent for community size distribution (τ2), minimum community
size (cmin), maximum community size (cmax) and the mixing parameter (μ) [24].
In what follows, we use it with the below choice for the parameters:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

N = 10000 τ1 = 2.7
dmin = 3 dmax = 150
τ2 = 2.7 cmin = 10
cmax = 1000 μ = [0.1 → 0.7]

(1)

For our experimental setup, we focus on μ as a control parameter and vary
it from 0.1 to 0.7 in increments of 0.1 and thus generate seven corresponding
graphs. μ controls the number of edges between clusters where 0 represents the
absence of inter-clusters edges and 1 is the other limit of high connectivity where
the clusters become highly mixed. ABCD generator provides labeling for each
node indicating which community it belongs to, which will be used as the ground
truth for the rest of this paper.
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3.2 Experimental Setup

Seven main steps are described below to evaluate the network embedding algo-
rithms. A bird’s-eye view of the experimental setup is illustrated in Fig. 1.

Fig. 1. Flowchart of the experimental setup to evaluate the performance of the network
embedding algorithms. Mesoscopic metrics are calculated individually for each of the
network’s communities.

– Embedding the graphs: We use ten different embedding algorithms for
each generated network to embed the network into a 128-dimensional space.
The algorithms under investigation are: Deepwalk, Node2Vec, Diff2Vec, Walk-
lets, M-NMF, Laplacian Eigenmaps, RandNE, BoostNE, NetMF, and M-
GAE1.

– Clustering the embeddings: Once we have the embeddings, we use the
K-means clustering algorithm to group them into clusters whose number is
defined by the ABCD as it as the number of clusters.

– Compute the distance between the distributions: We compute the
Kullback-Leibler (KL) divergence [25] between all the above-introduced meso-
scopic measures between the ground truth and after the embedding2, includ-
ing the internal degree distribution, community size distribution, internal

1 The embedding algorithms were run on the American University of Beirut (AUB)’s
high-performance computers using Intel Xeon E5-2665 CPUs in parallel. The
runtime of these algorithms is reported in https://github.com/JasonBarbour-2002/
ExploringNetworkEmbeddings in Fig. 1 of the supplementary material.

2 Since most methods rely on a stochastic process, we run each method 30 times and
take the average and standard deviation of the score for each measure.

https://github.com/JasonBarbour-2002/ExploringNetworkEmbeddings
https://github.com/JasonBarbour-2002/ExploringNetworkEmbeddings
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distance, internal density, Max-ODF, Average-ODF, Flake-ODF, embedded-
ness, and hub dominance for all communities.

– Compute the classification metrics: After clustering, classification met-
rics including AMI, NMI, ARI, Micro-F1 score, and Macro-F1 score are com-
puted.

– Ranking the embedding algorithms based on the mesoscopic met-
rics: Following the KL-divergence computation between the ground-truth dis-
tribution and the distribution of the embedding algorithms after the embed-
ding process, the embedding algorithms are ranked from the most performing
(i.e., lowest distance) and least performing (i.e., highest distance)

– Ranking the embedding algorithms based on the classification met-
rics: Following the computation of the classification metrics, the embedding
algorithms are ranked from the most performing (i.e., highest magnitude) and
least performing (i.e., lowest magnitude).

– Comparing the correlation of the ranks: When the ranks of the embed-
ding techniques for all metrics are obtained, the correlation between the meso-
scopic and classification metrics is computed.

3.3 Voting Model

Given the metrics used as performance evaluators, a ranking scheme to report
on the overall quality of the algorithms is needed. For this purpose, we used
Schulze’s voting model [26]. First, we compute the KL-divergence score of the
distributions of the mesoscopic metrics versus the ground truth ones, as well as
the classification metrics of the network embedding algorithms, which will be
the voters, while the candidates are the ranks of each algorithm for each metric.
Subsequently, the voting model orders them by comparing candidates in head-
to-head matchups, calculating how many voters prefer one candidate. It then
finds the candidate that outperforms all others by the largest margin, aiming to
identify a broadly preferred winner. In the end, the final ranks of the network
embedding algorithms represent a consensus between all the metrics.

4 Results and Discussion

In what follows, we present the performance of each embedding algorithm for
the above-listed mesoscopic measures by evaluating the KL divergence between
the ground truth distribution of the mesoscopic measure in question and the
recovered one.

In Fig. 2a, we follow the KL-divergence of the distribution of internal dis-
tance. Almost all algorithms consistently have a low KL divergence as μ grows.
Beyond μ = 0.4, the performances of Waklets and BoostNE drop significantly
as they exhibit an increase in their respective KL-divergences.

As for the Average-ODF, BoostNE stands out with the lowest performance
up to μ = 0.4. This is also accompanied by a drop in the performance of Waklets
as shown in Fig. 2b.
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Fig. 2. KL-divergence between the ground truth distributions of the mesoscopic metrics
and those recovered by the different algorithms.

Concerning Max-ODF, embeddedness and internal degree, over the full range
of μ, BoostNE is outperformed by the other algorithms as shown in Figs. 2c, 2d,
and 2g. Interestingly, it is joined by Walklets after the μ = 0.4 value. Hub
dominance in Fig. 2e follows this trend. However, in this case, the performance
of Walklets decreases considerably more than the value of BoostNE.

For internal density in Fig. 2f, BoostNE is performing the worst up to μ = 0.4,
which becomes similar to the rest of the algorithms. At that point, we see a big
decrease in the performance of RandNE.

As for Flake-ODF, all the algorithms seem to be following the same trend
where the value of the KL is high for low values of μ, then after the value of
μ = 0.4, we see a sharp decline.

In the case of community size distribution, all algorithms’ performance
decreases around μ = 0.4 as shown in Fig. 2h, except for NetMF which increases.

The results of the comparison of the ranks are rendered to a heatmap describ-
ing the correlation between the rankings of the classification metrics and the
mesoscopic ones for the values of μ = 0.1 and 0.7 are shown in Figs. 3 and 4,
respectively. We note that the performance of the different algorithms changes
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Fig. 3. Correlation between the ranking of the algorithms based on the classification
metrics and the mesoscopic metrics for µ = 0.1.

with the mixing parameter μ. Particularly, beyond the value of μ = 0.4, some
algorithms exhibit a significant drop in performance, which we report in Table 1.
In the latter table, we also report the ranking of the algorithms using the clas-
sification metrics.

Fig. 4. Correlation between the ranking of the algorithms based on the classification
metrics and the mesoscopic metrics for µ = 0.7.

Based on the mesoscopic metrics, denoted as Meso in the table, LEM ranks
first while M-GAE ranks second for μ ≤ 0.4, which is in total agreement with
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the performance assessment based on the classification metrics, denoted by CL
in the table. On the other hand, for Meso, when μ > 0.4, M-GAE takes the lead,
while NetMF ranks second. The latter remains true when the classification met-
rics. From the above it is obvious that the performance quality is μ-dependent,
revealing the effect of mixing. Though Table 1 seems to suggest that there is total
agreement between the measures, Figs. 3 and 4 shows the mismatch between the
mesoscopic and the classification metrics in which we report uncorrelation and
decorrelation between the measures.

Table 1. The ranking of the embedding algorithms based on Schulze’s method for
mesoscopic and classification metrics.

µV alue Metric Ranks

1st 2nd 3rd 4th 5th 6th 7th 8th 9th 10th

0.1 ≤ µ ≤ 0.4 Meso LEM M-GAE RandNE NetMF DeepWalk Node2Vec Diff2Vec Walklets M-NMF BoostNE

CL LEM M-GAE RandNE Walklets NetMF M-NMF Node2Vec DeepWalk Diff2Vec BoostNE

0.5 ≤ µ ≤ 0.7 Meso M-GAE NetMF RandNE LEM M-NMF DeepWalk Diff2Vec Node2Vec BoostNE Walklets

CL M-GAE NetMF M-NMF BoostNE LEM DeepWalk Node2Vec RandNE Diff2Vec Walklets

Total Meso LEM M-GAE RandNE NetMF DeepWalk Node2Vec Diff2Vec M-NMF Walklets BoostNE

CL M-GAE LEM NetMF M-NMF RandNE Node2Vec DeepWalk BoostNE Walklets Diff2Vec

It is also worth noting that RandNE, LEM, and NetMF are matrix factor-
ization methods that rely on a distance optimization scheme, while M-GAE is
a deep learning-based algorithm. This seems to suggest that the metrics have
inherent biases. More precisely, LEM, which relies on evaluating the Laplacian,
is expected to rank first for most mesoscopic measures. The reason is the Lapla-
cian’s properties, the difference between the degree and the adjacency matrices.
In that, it retains information about each node’s degree and neighborhood. More-
over, the number of degenerate eigenvectors corresponding to the eigenvalue 0
of the Laplacian represents the number of communities, equivalent to a distance
optimization problem [27]. In contrast, the mutual information measures tend
to rank M-GAE first. That could be explained by the fact that M-GAE is opti-
mizing on modularity which is related to the mutual information between two
nodes. Therefore, it seems like it is a self-looping metric that is optimizing for
itself.

In accordance with the outcomes presented here, upon crossing μ = 0.4, M-
GAE exhibits superior performance while it is second when μ ≤ 0.4 in both clas-
sification and mesoscopic metrics. Additionally, LEM ranks first when μ ≤ 0.4,
ranks fifth with μ > 0.4; NetMF, which ranks fourth and fifth with mesoscopic
metrics and classification metrics, respectively, now ranks second when μ > 0.4.

To summarize, LEM demonstrates outstanding performance within a robust
community structure, excelling in community-aware and classification met-
rics. However, as the community structure strength diminishes, its effective-
ness prominently declines with classification metrics. The opposite behavior is
seen with NetMF. In contrast, M-GAE maintains outperformance across both
community-aware and classification metrics regardless of the community struc-
ture strength, by ranking either first or second.
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5 Conclusion

Preserving network community structure is crucial, and network embedding tech-
niques offer a significant potential. However, the evaluation metrics commonly
used in the literature fail to capture this preservation effectively. This study
highlights the need for a comprehensive comparison of network embedding algo-
rithms from a modular perspective. Our work is limited to evaluating the effect
of the mixing parameter on the embedding quality. Our study specifically aims
to determine the adequacy of classification metrics employed in the literature
to comprehend the effectiveness of network embeddings. Results reveal that
these metrics do not comprehensively reflect the network’s community struc-
ture, exhibiting a low correlation with community-aware metrics. Furthermore,
the efficacy of certain embedding techniques, such as LEM, M-GAE, and NetMF,
is influenced by the strength of the community structure. These findings under-
score the need for a more attentive approach in evaluating embedding techniques
tailored to the specific application.
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for Advanced Mathematical Science (CAMS) at the American University of Beirut
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Abstract. Shortest path computation is one of the most fundamen-
tal and well-studied problems in algorithmic graph theory, though it
becomes more complex when graph components are susceptible to fail-
ure. This research utilizes a Distance Sensitivity Oracle (DSO) for effi-
ciently querying replacement paths in graphs with potential failures to
avoid inefficiently recomputing them after every outage with traditional
techniques. By leveraging technologies such as node2vec, graph atten-
tion networks, and multi-layer perceptrons, the study pioneers a method
to identify pivot nodes that lead to replacement paths closely resem-
bling optimal solutions with deep learning. Tests on real-world network
demonstrate replacement paths that are longer by merely a few percent-
ages compared to the optimal solution.

Keywords: GNNs · Graph Algorithms · Combinatorial Optimization ·
Shortest Paths · Distance Sensitivity Oracles · Learned Data-Structures

1 Introduction

The shortest path problem is frequently encountered in the real-world. In road
networks, users want to know how long it will take to get from one place to
another [17]. In biological networks, consisting of genes and their products, the
shortest paths are used to find clusters and identify core pathways [23]. In social
networks, the number of connections between users can be used for friend rec-
ommendation [26]. In web search, relevant web pages can be ranked by their
distances from queried terms [27].

For graphs in the real world, often consisting of millions of nodes, special data
structures called Distance Oracles (DO) are used to store information about dis-
tances of an input graph G = (V,E) with n vertices and m edges. Without
storing the entire graph, they can quickly retrieve important distance informa-
tion to answer the shortest path queries. These shift the computational burden
to the preprocessing step, so that queries can be answered quickly.
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However, in addition to being large in size, real-world networks are also fre-
quently susceptible to failures. For example, in road networks, a construction, a
traffic accident, or an event might temporarily block nodes. In social networks,
users might temporarily deactivate their accounts, resulting in a null node. And
on the internet, web servers may be temporarily down due to mechanical failures
or malicious attacks [4]. In these instances, we desire a method that can continue
answering shortest path queries without stalling or having to recompute shortest
paths on the entire graph again.

Distance Sensitivity Oracles (DSO) are a type of DO that can respond to
queries of the form (s, t, f), requesting the shortest path between nodes s and
t when a vertex f fails and is thus unavailable. Desirable DSOs should provide
reasonable trade-offs among space consumption, query time, and MRE (i.e.,
quality of the estimated distance). In this paper, we consider the simplest case,
in which there is only one failed node.

1.1 Contributions

We have tested our method on a variety of real-world networks and achieved
state-of-the-art performance on all of them, our accuracy even outperforms mod-
els for shortest paths without node failures. Our contributions mainly lie in three
aspects:

– In our theoretical analysis, we first present a simple proof for the existence
of an underlying combinatorial structure for replacement paths: specifically,
the existence of pivot nodes.

– We observe that one can use deep learning to find pivot nodes in distance
sensitivity oracles. In fact, to the best of our knowledge, we are the first to
use deep learning to build a distance sensitivity oracle.

– We empirically evaluate our method and compare it with related works to
demonstrate near-exact accuracy across a diverse range of real-world net-
works.

1.2 Related Work

Given we are the first to propose a deep learning approach to DSOs, we describe
previous works in both DSOs and deep learning in this section.

Distance-Sensitivity Oracles. The problem of constructing a DSO is well-
studied in the theoretical computer science community. Demetrescu et al. [13]
showed that given a graph G = (V,E), there is a DSO which occupies O(n2 log n)
space, and can answer a query in constant time. The preprocessing of this DSO,
that is the time it takes to construct this DSO, is O(mn2 + n3 log n).

Several theoretical results attempted to improve the preprocessing time
required by the DSO. Bernstein and Karger [3] improved this time bound to
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Õ(mn)1. Note that the All-Pairs Shortest Paths (APSP) problem, which only
asks the distances between each pair of vertices u, v, is conjectured to require
mn1−o(1) time to solve [20]. Since we can solve the APSP problem by using a
DSO, by querying it with (s, t, emptyset) for every s, t, the preprocessing time
Õ(mn) is theoretically asymptotically optimal in this sense, up to a polyloga-
rithmic factor (note that, in practice, such polylogarithmic factors may be very
large). Several additional results improved upon the theoretical preprocessing
time by using fast matrix multiplication [8,16,22].

With respect to the size of the oracle, Duan and Zhang [14] improved the
space complexity of [13] to O(n2), which is from a theoretical perspective asymp-
totically optimal for dense graphs (i.e.,m = Θ(n2)). To do so, Duan and Zhang
store multiple data-structures, which is reasonable for a theoretical work, how-
ever from a practical perspective the hidden constant is large. Therefore, it may
also be interesting to consider DSOs with smaller space, at the cost of an approx-
imate answer.

Here are several DSOs that provide tradeoffs between the size of DSO and
the stretch (the length reported divided by the actual length):

– The DSO described in [2], for every parameter ε > 0 and integer k ≥ 1 has
stretch (2k − 1)(1 + ε) and size O(k5n1+1/k log3 n/ε4).

– The DSO described in [9], for every integer parameter k ≥ 1 has stretch
(16k − 4) and size O(kn1+1/k log n).

Note that even though the size of the above two DSOs for k ≥ 2 is asymp-
totically smaller than O(n2), the stretch guarantee is at least 3 in [2] and at
least 28 in [9], which is far from the optimum and may not be practical in many
applications.

In this work, we construct the first DSO that is built using deep learning. Our
method uses deep learning to find pivot nodes (as described in Sect. 3), utilizing
a combintorial structural property we observe in Sect. 2, computing near optimal
paths as shown in Sect. 5.

Shortest Paths Using Deep Learning. Previous works towards answering
shortest path queries typically employ a two-stage solution: 1) representation
learning and 2) distance prediction.

In general, graph embeddings are used to generate low-dimensional repre-
sentations of nodes and edges which preserve properties of the original graph
[6]. Methods include matrix factorization, deep learning with and without ran-
dom walks, edge reconstruction, graph kernels, and generative models [6]. By
either optimizing embeddings for their specific task or using general embedding
techniques like node2vec, these graph embeddings may then be combined with
existing techniques to tackle tasks such as node classification, node clustering,
and link detection [11,30].

1 For a non-negative function f = f(n), we use Õ(f) to denote O(f · polylog(n)).
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Among the first to apply graph embeddings to the shortest paths problem
was Orion [29]. Inspired by the successes of virtual coordinate systems, a land-
mark labelling approach was employed, where positions of all nodes were chosen
based on their relative distances to a fixed number of landmarks. Using the Sim-
plex Downhill algorithm, representations were found in a Euclidean coordinate
space, allowing constant time distance calculations and producing mean relative
error (MRE) between 15% - 20% [29]. Other existing coordinate systems have
also been used. Building off of network routing schemes in hyperbolic spaces,
Rigel used a hyperbolic graph coordinate system to reduce the MRE to 9% and
found that the hyperbolic space performed empirically better across distortion
metrics than Euclidean and spherical coordinate systems [12,31]. In road net-
works, geographical coordinates have been utilized with a multi-layer perceptron
to predict distances between locations with 9% MRE [18].

In addition to these coordinate systems, general graph embedding techniques
have recently been employed to handle shortest path queries to great success.
In 2018, researchers from the University of Passau proposed node2vec-Sg[24].
To find the shortest path between nodes s and t, their Node2vec and Poincare
embeddings were combined through various binary operations and fed into a
feed-forward neural network, which was trained only on the distances between
l landmark nodes l << n and the rest of the graph. The model which took
concatenated Node2vec embeddings performed the best, with an MRE between
3% to 7% .

Researchers have also demonstrated the accuracy of graph embeddings
learned alongside distance predictors, to produce representations more specific
to the shortest path task. Vdist2vec directly learned vertex embeddings by pass-
ing the gradient from the distance predictor back to a N × k matrix, achieving
an MRE between 1% to 7% [21]. Huang et al. computed shortest path distances
on road networks using a hierarchical embedding model and achieved an MRE
of 0.7% [17]. Most recently, ndist2vec built upon the landmark learning, graph
embedding, and neural network aspects of all of these approaches, reporting an
MRE of 3.4% with a dataset on the order of O(n).

Current works for estimating the shortest path lengths between two nodes
are limited by the representations they learn. They rely on datasets which, even
using schemas like landmark labelling or hierarchical, are proportional to n, the
number of nodes in the network[10,17]. This presents a significant bottleneck for
larger graphs. Taking these lessons to the deep learning DSO task, we present
a model in Sect. 3, which extracts signal more efficiently thus requiring training
samples without sacrificing accuracy.

2 Theoretical Analysis

In this section we consider a combinatorial structural property of replacement
paths: such a path is a concatenation of a few original shortest paths. As we
previously described, later on our deep learning algorithm builds on this lemma.

Our research is motivated by the following lemma from Afek et al.
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Lemma 1. [1] After k edge failures in an unweighted graph, each new shortest
path is the concatenation of at most k + 1 original shortest paths.

In other words, the replacement path can be defined using so called pivot
nodes that specify at which nodes in the graph the shortest paths may be
stitched together. In this work we are interested in the failure of a single node,
which is equivalent to the failure of its incident edges. The number of concate-
nations (and with that the number of corresponding pivots) required to obtain
the replacement path then depends on the degree of the failed node. While in
real-world networks the average degree is often rather small, finding suitable piv-
ots remains a hard task. To overcome this problem, we consider an approximate
setting, where we allow for a slack in the quality of the obtained paths (they
may be longer than a shortest replacement path) but where only one pivot node
is used. From the theoretical perspective, the following lemma is a special case
of Lemma 1 for the case of a single edge failure.

Lemma 2. After an edge failure in an unweighted undirected graph, each new
shortest path is the concatenation of at most two original shortest paths.

Given (s, t, f), let P (s, t, f) be a shortest path from s to t in G−{f}. Accord-
ing to Lemma 2 it follows that P (s, t, f) is a concatenation of two original short-
est paths, or in other words, there exists a pivot vertex v such that P (s, t, f) is
the concatenation of the two shortest paths P (s, v) and P (v, t), where P (s, v)
is a shortest path from s to v in G and P (v, t) is a shortest path from v to t in
G. Motivated by this lemma, we will assume that it is sufficient to approximate
the replacement path of a node failure using a single pivot node. As mentioned
above, in the remainder of this paper we show that it is possible to use deep
learning to find such pivot nodes.

3 Method

By the above argumentation, we reduce the problem of finding the short-
est replacement path to finding pivot candidates. In the following section, we
describe how we use a graph convolutional network to encode relevant graph
information and a multi-layer perceptron to select pivot nodes.

3.1 Training Data

To generate our training data, we first generated training triplets (s, t, f), repre-
senting start, target, and failed nodes. s and t were rejected if not connected or if
direct neighbors. For each input triplet, we simulated the node failure, computed
replacement paths, and determined the pivot nodes.

min(105, n2) input triplets were randomly sampled for a graph with n nodes
(Sect. 1). An 80/10/10 split was used for training, validation, and testing sets.
Though previous works using landmark labelling selected l(n − l) samples to
improve the quality of their candidates, we found that capping our dataset by
a constant value was sufficient [17,24]. This value can be modified based on the
input graph if desired.
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Fig. 1. The overall neural network architecture. During back-propagation, the gra-
dient is passed through the MLP and to the relevant GAT parameters, so that the
representations learned to encode relevant task-specific attributes.

3.2 Representation Learning with Graph Convolutional Networks

In order to learn representations from not only the shortest path data but also the
network structure, we leverage the Graph Attention (GAT) layer. This attention-
based convolutional layer computes each nodes’ embeddings by implicitly learn-
ing different importance to different nodes within a neighborhood [28]. While
they have been used successfully for tasks like biological link prediction and text
classification, to the best of our knowledge, we are the first to apply the GAT
mechanism to shortest path problems.

Like previous deep learning for shortest paths works, we initialize our node
embeddings using node2vec [15,24]. We use 16 iterations, a walk length of 10,
num walks of 80, p = 1, q = 1, and window size of 10. Next, we use two GAT
layers to refine our embeddings towards our task. We introduce non-linearities
using a ReLU layer, and we speed up convergence using GraphNorm layers, a
normalization technique that was recently found to be more effective than similar
techniques for training graph neural networks [7]. We also use dropout (0.1) to
deal with overfitting.

3.3 Multi-layer Perceptron

Multiple pivot nodes are possible, so we frame the task of pivot selection as a
multi-layer classification task. As shown in Fig. 1, after the GAT component of
our model, we select the three embeddings corresponding the start, target, and
failing node triplet. These are flattened into a 384-sized vector, which serves as
the input for our feedforward neural network.

The multilayer perceptron consists of two linear layers and an output layer.
We use ReLU layers as an activation function between the first two layers to
introduce non-linearities. We also use BatchNorm layers to enable faster con-
vergence and introduce regularization. The output layer is a log-softmax layer
(commonly used for multi-label classification) that normalizes the vector values.
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Our final output is a n-sized vector, representing the log likelihoods of each node
in the network being a pivot node.

3.4 Summary

In total, our neural network consists of a representation learning module, based
both on characteristics of the network and our DSO task, and a pivot selection
module, a simple MLP (Fig. 1). Since multiple pivot nodes are possible, the
model was trained using BCELoss and the node with the highest likelihood was
selected as the output. We trained our neural network for 32 epochs using the
Adam optimizer [19]. Our learning rate is 1e-3, our betas are 0.9 and 0.999, and
our epsilon value is 1e-8.

4 Experiments

As mentioned previously, to the best of our knowledge, we are the first to pro-
pose a deep learning approach to the DSO problem. Thus, we will evaluate our
proposed method against the state-of-the-art deep learning approaches to the
shortest paths problem: namely, ndist2vec and node2vec-Sg [10,24].

We ran the authors’ implementations for all comparison models with their
recommended hyperparameter settings. All embeddings were 128-dimensional,
in line with previous shortest paths works [15,21,24].

All experiments were implemented in Python and run on a Quadro RTX
8000 and an Intel(R) Xeon(R) Silver 4214R CPU @ 2.40GHz.

4.1 Datasets

Table 1. Statistics of real-world networks.

Network Name Nodes Density Average Degree Dataset Size

chem-ENZYMES-g118 95 2.71E-02 2.547 9.03E+03

chem-ENZYMES-g296 125 1.82E-02 2.256 1.56E+04

infect-dublin 410 3.30E-02 13.488 1.00E+05

bio-celegans 453 1.98E-02 8.940 1.00E+05

bn-mouse-kasthuri-graph-v4 987 3.16E-03 3.112 1.00E+05

can-1072 1,072 1.18E-02 12.608 1.00E+05

scc retweet 1,150 9.98E-02 114.713 1.00E+05

power-bcspwr09 1,723 2.78E-03 4.779 1.00E+05

inf-openflights 2,905 3.71E-03 10.771 1.00E+05

inf-power 4,941 5.40E-04 2.669 1.00E+05

ca-Erdos992 4,991 5.97E-04 2.977 1.00E+05

power-bcspwr10 5,300 9.66E-04 5.121 1.00E+05

bio-grid-yeast 6,008 8.70E-03 52.245 1.00E+05

soc-gplus 23,613 1.41E-04 3.319 1.00E+05

ia-email-EU 32,430 1.03E-04 3.355 1.00E+05

ia-wiki-Talk 92,117 8.50E-05 7.833 1.00E+05

dbpedia-occupation 127,569 3.08E-05 3.934 1.00E+05

tech-RL-caida 190,914 3.33E-05 6.365 1.00E+05
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We test our method on a variety of undirected, unweighted networks from the
Network Repository [25], which covers a diverse set of areas, such as road net-
works, biological networks, and communication networks, all representing poten-
tial input for real-world applications. For a list of all considered networks, we
refer to Table 1.

The training schema of each comparison model was used, but the testing
dataset was standardized for the purposes of a fair comparison. Specifically,
min(105, n2)∗0.10 node pairs (a, b) were randomly sampled without replacement
from each network, such that a �= b.

4.2 Evaluation

In line with previous works computing shortest paths with deep learning, we
evaluate our method using the Mean Relative Error (MRE) metric. Let d̂i,j

denote the predicted distance and di,j denote the actual distance. The Relative
Error is then given by

RE =
|d̂i,j − di,j |

di,j

We note that, for evaluations of DSOs, d̂i,j and di,j denote the predicted and
actual distances on the graph after a node failure.

We also provide the representation factor, denoting the ratio of the MRE
obtained with random pivots and the one obtained using our method, as a metric
for evaluating the quality of our representations.

5 Results

We aimed to evaluate our deep learning approach across the following ques-
tions:

1. How much longer than the optimal paths are our replacement paths?
2. How does our deep learning model compare with previous state-of-the-art

shortest paths works?
3. Is the resulting performance an achievement of our approach or merely an

artifact of the structure of the input graph?

The motivation behind the first question is obvious. Computed replacement
paths are only suitable if they are not much longer than the actual short-
est paths in the graph. Table 2 lists the MRE values obtained on all consid-
ered networks. Except for bio-grid-yeast, ia-wiki-Talk, tech-RL-caida, and
dbpedia-occupation all MRE values are below 1%, with a mean value of 1.82%
and a median value of 0.32%. This means that the computed replacement paths
were almost as short as the optimal replacement paths. Interestingly, the net-
works with the highest MRE values were not those with the highest density or
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Table 2. Results of models across several real-life networks.

Network Name MRE (Ndist2vec) MRE (Rizi) MRE (Random Pivots) Representation Factor MRE (Our Method)

chem-ENZYMES-g118 100.00% 14.19% 215.96% 811.89 0.27%

chem-ENZYMES-g296 100.00% 7.85% 257.69% 530.22 0.49%

infect-dublin 38.33% 13.58% 191.02% 1,091.55 0.18%

bio-celegans 15.45% 9.84% 176.28% 4,299.51 0.04%

bn-mouse-kasthuri-graph-v4 17.15% 16.91% 204.20% 5,105.11 0.04%

can-1072 36.43% 11.23% 211.58% 573.40 0.37%

scc retweet 100.00% 10.78% 167.64% 3,287.11 0.05%

power-bcspwr09 42.75% 20.45% 237.46% 1,493.46 0.16%

inf-openflights 100.00% 16.32% 202.05% 280.63 0.72%

inf-power 59.08% 31.67% 228.67% 1,013.10 0.23%

ca-Erdos992 100.00% 18.93% 206.26% 630.77 0.33%

power-bcspwr10 37.02% 31.95% 232.83% 739.13 0.32%

bio-grid-yeast 14.67% 15.95% 173.80% 27.80 6.25%

soc-gplus 100.00% 55.99% 200.20% 654.61 0.31%

ia-email-EU 13.31% 119.61% 202.93% 216.11 0.94%

ia-wiki-Talk 20.83% 28.19% 203.29% 26.50 7.67%

dbpedia-occupation 28.41% 205.07% 31.56 6.50%

tech-RL-caida Did not finish 51.92% 206.02% 26.04 7.91%

average degree. For instance, our model obtained an MRE less than 1% soc-
gplus and ia-email-EU but struggled with the comparably smaller bio-grid-
yeast network at 6.25%. These insights suggest that other factors related to the
networks’ structures affected our models’ performance

Given the lack of DSOs using deep learning, the second question hopes to
understand how our model performs compared to methods finding the shortest
paths without node failures. Across all networks, we were able to match or
outperform the state-of-the-art shortest paths works, often by several degrees
of magnitude (Table 2). We did so with less training cases (numerically and
proportionally) and no special selection process. In doing so, we demonstrated
that deep learning can be used to effectively find the shortest replacement paths
as well.

We’d like to note that we used the authors’ implementation of ndist2vec
and confirmed its performance on the road network datasets presented in the
original paper [10]. Nonetheless, the model performed significantly worse on our
real-world networks and did not finish after a week of computation for the two
largest networks. We have two potential explanations. First, the authors suggest
that their landmark-labelling approach will not scale well to sparse, large net-
works, many of which were used in our experiments. Second, the model often
became stuck on local optima during training, producing a MRE value of 100%
corresponding to a constant ouput of 0, demonstrating a reliance on initial val-
ues. For a fair comparison, we depict the best MRE values after two runs in
Table 2.

Finally, we aimed to determine whether our model performed well because
of the model or because of the inherent structure of the networks. For example,
consider a graph that is almost a clique (almost all vertices are pairwise con-
nected). Then, all paths are short and after a failure (having almost no impact
on the graph structure) most replacement paths are short as well. In this setting
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almost any node can serve as a suitable pivot, yielding a replacement path with
a small stretch and one would expect that even randomly chosen pivots would
yield good results. While the networks considered in our experiments are not
as dense (see Table 2), other graph properties like a small diameter may make
finding good pivots easier.

Table 2 lists the MRE values we get when considering random pivots, which
we obtained by replacing the output of our pipeline with random noise. As can
be clearly seen, the MRE is much larger in this setting. For most networks the
MRE is larger than 200%, meaning the found paths are more than 3 times longer
than the shortest replacement paths. In order to compare our method with the
random approach, Table 2 also lists the representation factor. Except for bio-
grid-yeast, ia-wiki-Talk, and tech-RL-caida this factor is always larger than
200, meaning on most networks our approach is over 200 times better than the
random method, clearly indicating that the close to optimal performance is due
to the quality of our approach and not an artifact of properties of the considered
inputs.

6 Conclusion

We have shown that distance sensitivity oracles with close to optimal perfor-
mance can be obtained by utilizing the power of deep learning. Our method
builds on a combinatorial property that allows for finding replacement paths
based on pivot vertices. On a variety of real-world networks in the presence of
failures, we can reliably find suitable pivots where the lengths of the correspond-
ing replacement paths are very close to those of optimal paths. Moreover, our
experiments suggest that these results are not artifacts of the inherent structure
of the inputs, but are instead based on the fact that the different building blocks
of our pipeline successfully capture the relevant structural information about the
input graph.

As a consequence, it would be interesting to apply this method to related
tasks where similar structural information needs to be captured. One such exam-
ple is local routing, where the goal is to find short paths in a graph without the
use of a central data structure by greedily routing to nearby embeddings. Prior
work has shown that close to optimal greedy routing can be performed when
embedding networks into hyperbolic space [5]. However, the resulting embed-
dings were susceptible to numerical inaccuracies, and network failures decreased
routing performance a lot. It would thus be interesting to see whether our app-
roach can be extended to the greedy routing setting as well, in order to overcome
the previously observed issues.

Additionally, our approach has currently not been tested on larger networks
containing millions of nodes. By calculating the APSP information using a dis-
tance oracle and using an improved node2vec implementation, we plan to test
our networks’ scalability in the future.
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