
Structural Digital Twin of Concrete
Infrastructure Powered with Physics-Informed

Neural Networks

Soheil Heidarian Radbakhsh1, Mazdak Nik-Bakht1, and Kamyab Zandi2,3(B)

1 Concordia University, Montreal, Canada
soheil.heidarianradbakhsh@mail.concordia.ca,

mazdak.nikbakht@concordia.ca
2 Timezyx Inc, Vancouver, Canada

kamyab.zandi@timezyx.com, kzandi@30fe.com
3 30 Forensic Engineering, Toronto, Canada

Abstract. There are growing concerns for the remaining service life of concrete
infrastructure under normal service conditions and the structural resilience under
extreme climate events. Therefore, advanced and reliable computational tools are
required for the assessment of existing structures’ condition, and the estimation of
their serviceability. Traditionally, advanced structural simulations are conducted
using nonlinear Finite Element Analysis (FEA) that exhibits major drawbacks hin-
dering its application for large-scale simulations, particularly in real-time or nearly
real-time. Those drawbacks include high computational time/power, convergence
problems, and limitations in modelling the actual (than ideal or theoretical) con-
dition of the structure and, more importantly, model updating as the structure
deteriorates or undergoes changes. This paper proposes a closed-loop and compu-
tationally affordable cyber-physical solution for comprehensive structural health
monitoring. The proposed approach is based on real-time prediction of the struc-
tural response for a concrete structure by creating, updating, validating, and main-
taining a Structural Digital Twin founded on the framework of Physics-Informed
Neural Networks (PINNs). PINN-powered structural digital twins present a novel
simulation scheme that combines the physics-based models (represented by dif-
ferential equations governing the structural behavior) with data-driven models
(trained on the response data collected through sensors) into a robust computa-
tional model. The proposed method, implemented in a lab-scale case study, is
presented in detail, and future areas of research will be discussed.

Keywords: Structural Digital Twin · Physics Informed Neural Networks ·
Structural Health Monitoring · Climate Change · Infrastructure Resilience ·
Bridge Structures

1 Introduction

Despite significant advances in Structural Health Monitoring (SHM), over the past five
decades, bridge condition assessment still largely consists of intrusive, time-consuming,
and in some cases, subjective measures that may compromise road accessibility and
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safety for passengers and inspectors. Corrosion of steel reinforcement and subsequent
cracking are the most common cause of deterioration and failure in reinforced concrete
structure (B. Bell, 2004).Wang et al. analyzed the impacts of climate change and showed
that the deterioration of concrete structures is expected to become evenworse than today,
and extreme climatic events are to be expected more often and with more severity (Wang
et al., 2010). In addition, the demand for load-carrying capacity often increases over
time, e.g., due to the use of heavier lorries for timber transportation in BC, Canada.
Thus, there is a growing need for reliable methods to assess the load-carrying capacity
and remaining service life of existing structures as well as the structural resilience of
the transport network under extreme climate conditions accounting for different climate
change scenarios. This has been addressed in a number ofmultinational research projects;
e.g. (Duracrete, 2000), Sustainable Bridges (Skanska Sverige, 2007), and Contecvet
(Rodriguez & Andrade, 2001).

Today, the anticipated environmental and economic cost of replacing the aging infras-
tructure stock is immense and defies true quantification. In the case of bridge infrastruc-
ture, the best estimates for the replacement of the 50,000 bridges in Canada, the 600,000
bridges in the US, and the one million bridges in Europe aree10B,e300B, ande400B,
respectively. National budget priorities across the continents do not allow this level of
funding; consequently, many bridges will be left structurally deficient and vulnerable
to extreme climatic events if not properly maintained. The decision on which bridges
to repair and the time frame thereof requires frequent inspections and analyses that can
provide an accurate assessment of the current condition. Despite the technological devel-
opments and SHM advancements in recent years, this process is still costly, prone to
human errors, and at times exhibits inconsistent assessments across multiple agencies.
For example, in the case of the I-5 bridge collapse inMount Vernon,WA, the failing span
had not been listed by the state as “structurally deficient”, nonetheless it was encountered
as “functionally obsolete” by another National Bridge Inventory database (Associated
Press & KING 5 News, 2013). This contradictory verdict is evidence of the lack of
systematic and consistent assessment and performance prediction of aging bridges. This
is significant since as of 2019, more than 12% of all bridges in Canada are classified as
structurally poor and/or very poor (Federation of Canadian Municipalities, 2019).

1.1 What is a Structural Digital Twin (SDT)

A Structural Digital Twin (SDT) is a living structural simulation that brings all the data
and models related to a building or an infrastructure together and updates itself, auto-
matically or semi-automatically, using multiple data and analysis sources to represent its
physical counterpart. The SDT, maintained throughout the life cycle of an asset and eas-
ily accessible at any time, can accordingly provide the infrastructure owner/users with
early insights into potential risks to mobility induced by climatic events, heavy vehicle
loads and even aging of transport infrastructure. While the Digital Twin is initially cre-
ated upon the geometrical specifications, material properties, and boundary conditions
(BC), it continuously updates itself using the sensor data collected from the physical
twin, thus creating a closed-loop cyber-physical system for comprehensive structural
health monitoring as conceptualized in Fig. 1.
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Physical Twin Digital Twin

Fig. 1. Schematic illustration of a closed-loop cyber-physical system between the physical and
digital twin.

1.2 Components of an SDT Solution

This repository of data and models for transport infrastructures, integral to a compre-
hensive Structural Health Monitoring (SHM) strategy, consists of a closed loop cyber-
physical system that is based on the optimized/customized integration of three technical
platforms as shown by Fig. 2.

(1) Autonomous Data Collection – Data is the backbone of SDT and includes two
main aspects; the physical asset’s geometrical, mechanical and physical properties; and
the external factors including service loads, environmental and climatic conditions, etc.
The autonomous inspection methods of collecting data include aerial/remote sensing
and terrestrial sensing to minimize intrusion on the transport flow; cover large inspec-
tion areas in a minimum of time; provide access to hard-to-reach areas; and minimize
exposure to safety hazards for both inspectors and users.

(2) Automated Data Interpretation – Collected data requires to be processed to pro-
vide insight about the physical asset. For bridge digital twins, themost important example
is vision-based analytics combined with Machine Learning, to detect and quantify geo-
metrical and visual anomalies in 3D both on the surface (cracking and spalling) and
sub-surface of reinforced concrete infrastructure.

(3) Advanced Structural Simulation –A bridge SDT is meant to provide a computa-
tional platform for monitoring and simulating structural behavior of the infrastructure.
Therefore, data analytics should support an ever-up-to-date mathematical model of the
structure having roots in its physics, which can reflect the actual (than theoretical) behav-
ior of the structure under various loading and environmental conditions. In this regard,
advanced nonlinear structural analysis combining physics-based principles and data-
driven analytics can provide a reliable prediction of the performance and the remaining
service life of infrastructure under normal service conditions and the structural resilience
under extreme climate events.

Over the recent years, significant progress has been made towards the first two com-
ponents, i.e., autonomous data collection and automated data interpretation platforms.
Given these advancements, condition assessment data of cracking and spalling from
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Fig. 2. Technical platforms in SDT framework for infrastructure assets.

existing structures are to be collected more accurately and more frequently than ever
before. Such a digital repository of 4D (3D + time) condition assessment data may
leverage updating leaps in structural digital twin models only if they are coupled with
advanced structural simulations. However, Advanced Structural Simulation has only
made marginal improvements over the past two decades. In particular, in the advent
of big data and Artificial Intelligence (AI), conventional methods of structural analysis
fail to incorporate data-driven techniques to better present the structural performance of
infrastructures.

Accordingly, in this paper, after a brief introduction of the advancements in the
first two components, we will focus on the techniques available to address structural
simulation through the big data collected from various SHM sources, as well as the
physics of the structural behavior.

2 Autonomous Data Collection and Interpretation

A wide range of technologies is available to capture the data of physical infrastructure.
They can be classified under categories; firstly the reality capturingmethods to extract the
geometry such as digital photogrammetry, LiDaR-based (Light Detection and Ranging)
point clouds, digital images, scan to BIM, etc.; secondly, condition assessment through
UAV (and UGV) based imaging, point clouds, Ground infrared (IR) cameras, Ground
Penetrating Radar (GPR), 3D laser scanning, acoustic and vibration-basedmethods, etc.;
thirdly, the SHM such as strain sensors, vibration sensors, tilt sensors, piezometers, etc.;
and fourthly, other external information such as traffic loads, climatic data, river flow
data, etc.

Advanced data analysis methods can then process the collected data into information
about the structure condition and most importantly, capture the changes (in mechanical
and/or structural conditions) as the structure proceeds into later phases of its lifecycle.
As an example, Waldäng instrumented a drone with a scanner operated by a tablet
mounted on the backside of the scanner. High-definition 2D images and 3D point cloud
data were extracted and used to develop crack detection methods through Machine
Learning (Waldäng, 2021). As shown in Fig. 3, Luo and Guo developed an AI-enhanced
crack detection capable of recognizing and extracting cracks from concrete structures’
photos (Luo & Guo, 2021). Their algorithm consists of classification and segmentation,
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achieved by two convolutional neural networks (CNNs). They trained their CNN with
30,000 training images and reached an accuracy of 97% and an F1 score of 0.96 on
test set images. The combination of the classification and segmentation neural networks
achieves an image-based crack detection method with high efficiency and accuracy.

(a) Raw image (b) Result of segmentation (c) Result of 

Fig. 3. AI-enhanced crack detection method proposed by (Luo & Guo, 2021)

Data extracted from the physical structure and processed through advanced data
mining methods result in detailed and ever-up-to-date information about the physical
asset. Such information must be then reflected back into the digital twin automatically
(or semi-automatically).

3 Advanced Structural Simulation

SDT uses data analytics to create a virtual model of the physical structure in real-time,
which enables monitoring, predicting, and controlling behavior and performance of
the physical asset during its lifecycle. Structural simulation involves creating a math-
ematical or computational representation of the physical structure. The most common
practice for structural modeling in SDT is Finite Element (FE) modeling. However, a
high-fidelity nonlinear FE model usually has high computational demands and needs
accurately known physical properties of the structure. Accordingly, the high computa-
tional needs, convergence problems, and limitations in modelling the actual (than ideal
or theoretical) condition of the structure, particularly as the structure deteriorates or
undergoes changes are among the main limitations of using FE models in SDTs. In
response to these gaps, different modeling techniques are investigated here, to offer a
proper foundation for a feasible structural simulation, applicable in the context of digital
twins.

3.1 Methods of Automated Model Updating

Structural modeling methods to be used in SDT can be broadly categorized as forward
and inverse modeling (E. S. Bell et al., 2007). Forward modeling is the process of
modeling a physical structure under specific loading or boundary conditions based on
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a mathematical model given a set of input parameters, such as material properties and
geometry. The output of the model can be compared with experimental data to evaluate
the accuracy of themodel. In contrast, the inversemethod involves startingwithmeasured
data and working backward to determine the unknown input parameters of a model.
Inverse modeling is particularly relevant in the context of SDT because it enables the
user to define and update the digital twin based on real-world data. Inverse modeling can
be considered essential for identifying and improving the properties and characteristics
of the physical entity. By collecting and analyzing real-time data from sensors and other
sources, the user can update the digital twin to reflect the current state of the physical
entity.

In the field of structural engineering, inverse modelingmethods can be classified into
two main categories: physics-based and data-driven methods. Physics-based methods
assume a model structure, either by a prior parameterized model or without any prior
model to create a mathematical interpretable model. Data-driven modeling methods,
however, use statistical and machine learning techniques to create models based on
available data.

For physics-based modeling, in the first approach, the parameters of a defined model
will be updated iteratively by minimizing the error between the model’s predictions and
the corresponding experimental data, to fully capture the behavior of the physical system
under consideration. This can be achieved through optimization or stochastic methods,
such as Bayesian updating (Ebrahimian et al., 2017). Kalman filter is another method
that is commonly used in this approach (Chatzi & Smyth, 2009; Lei et al., 2019; Yang
et al., 2006). These methods can be categorized as model updating techniques. Most of
these models use a modified Bouc-Wen equation as given in Eqs. (1–2) for considering
the nonlinear hysteresis behavior of the structure. Equation (1) is the equation of motion
of a dynamic system and Eq. (2) is the modified Bouc-Wen model exhibiting normal
softening, hardening, or quasilinear hysteresis loops (Wen, 1989).

mẍ(t) + cẋ(t) + kz(t) = −mẍ0(t) (1)

ż = ẋ − β|ẋ||z|α−1z − γ ẋ|z|α (2)

While thesemethods havedemonstrated consistent results in past studies, they exhibit
two main disadvantages. First, most of these methods are associated with FE models
which still suffer from the drawbacks listed earlier. Second, model uncertainties are
not implicitly considered by these systems. Two types of nonlinear model uncertainties
raise from incorrect physical assumption (including actual boundary conditions, mate-
rial inhomogeneity, cracked sections, etc.) and physical model limitations (such as the
interaction between non-structural and structural components), which is not typically
included in a FE model.

The other method of physics-based modeling tries to find differential equations
governing the structural behavior of the system and integrate solving them into the
structural modeling. This is a comparatively new branch of inverse modeling, and their
techniques are referred to as governing equations discovery/approximation methods
(Brunton et al., 2016; Champion et al., 2019). The main problem with these methods
is that they are highly dependent on data and require big volumes of data to achieve
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convergence. Moreover, in the past experiments they did not exhibit proper result for
multi-degree of freedom problems and highly nonlinear domains (Lai et al., 2021).

Data-driven approach is another technique where a surrogate model is trained using
the SHM data. However, the effectiveness of data-driven modeling techniques is only
as good as the quantity and quality of the available data. Furthermore, the lack of gen-
eralizability can pose a challenge for real-world applications for such methods, as the
models may not perform well under new or unseen conditions. Additionally, data-driven
models, too, typically require a large amount of data for convergence (Sadeghi Eshkevari
et al., 2021).

Figure 4 summarizes different inverse methods and shows their input and output
characteristics.As seen in the figure, all thesemethods takemeasured data (acquired from
the sensory networks) as input and predict the structural responses as output. Physics-
based methods, however, are further capable of providing information on the system’s
structural properties. It is also worth adding that while non-parametrized physics-based
methods do not require theoretical apriori knowledge of the system, they are less robust
than the prior parametrized techniques as their single source of prediction is inferences
based on the observed data.

Fig. 4. Inverse methods of structural model updating along with their inputs and outputs

Physics-informed machine learning aims to overcome challenges of previous meth-
ods by integrating data-drivenmethodswith the knownphysics of the system that is being
modeled. This enhances the data-drivenmethods while leveraging the prior physic infor-
mation of domain. There is a significant amount of prior knowledge related to modeling
of physical phenomena that is being ignored in stand-alone machine learning methods.
Physics-informedmachine learning allows incorporating fundamental physical laws and
domain knowledge into machine learning techniques to enhance the performance of
the learning algorithm. Additionally, the use of physics-informed machine learning is
crucial in situations where there is not enough data available to solve complex prob-
lems or the data is noisy, but partial knowledge of the physic is known (Karniadakis
et al., 2021). Physics-Informed Neural Networks (PINNs) are also more efficient in
higher-dimensional settings compared to classical methods like FEM (Grossmann et al.,
2023).

Incorporating prior knowledge based on physics into machine learning algorithms is
a relatively new line of research. Owhadi (2015) introduced a novel approach for solving
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numerical homogenization problems by formulating them as Bayesian inference prob-
lems using a given partial differential equation (PDE). Later on, for inferring solutions of
time-dependent and nonlinear PDE, prior PDE of the problem was encoded into Gaus-
sian process regression (Maziar Raissi et al., 2018). The work was later extended to
the context of system identification and PDE discovery (Maziar Raissi & Karniadakis,
2018). However, these studies have a few limitations. First, due to the Bayesian nature
of Gaussian process, prior assumptions are necessary, which can cause robustness and
brittleness issues in nonlinear problems, which means the model will fail to generalize
to new and unseen data if the data distribution or characteristics differ from the training
data. Second, linearization is required for nonlinear terms in time, which can reduce
the accuracy in highly nonlinear problems and limit the applicability in the continuous
time domain. To overcome these limitations. M. Raissi et al., (2019) took the advan-
tage of artificial neural networks’ capabilities as a function approximator and introduced
physics-informed neural network (PINN). To better clarify the concepts behind PINNs
and to put them in a perspective versus FEM, Table 1 provides a comparison between
PINNs and FEM.

Table 1. Comparison between FEM and PINNs (Lu et al., 2019)

FEM PINNs

Solution space Basic function (Piecewise
polynomial)

Neural network

Differential operators Discretization/Weak Form Automatic differentiation

Solver Linear/Nonlinear/Iterative Training (e.g., gradient decent)

Parameters Point values (e.g., displacement,
stress)

Weight and biases

Training points Mesh points (Nodes) Mesh-free

Evaluate Interpolation Inference

3.2 Physics-Informed Neural Network Formulation

PINN is a supervised machine learning that enhances its performance by incorporating
structured prior knowledge into its architecture. This knowledge is encoded into the
learning algorithm through a residual term added to the loss function, which acts as a
regularization agent to limit the range of possible solutions and improve accuracy. By
integrating the physical laws that govern the observed data such as partial differential
equation into the algorithm, the PINN can quickly converge to the correct solution. The
general form of the partial differential equation representing the physical behavior of
the system can be considered as:

L[u(t, x)]− ut(t, x) = 0 (3)
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where ut is a given function, u(t, x) is the solution andL[·] is a nonlinear differential oper-
ator. Given the limited measurements of the system’s behavior, the goal is to inference
a data-driven solution for this differential equation (Eq. 4). In other words, knowing the
model parameters, the neural network is being trained to find the solution of the system,
u(t, x). This simulation/solution scheme is integral to PINN-powered structural digital
twins.

The PINN model is then trained by minimizing the loss function of the algorithm
(MSE–Mean Square Error loss), i.e., the difference between predicted solution u

∧

and
true solution as read through the SHM sensory data, as well as the deviation from the
known physical laws incorporated into the neural network architecture as additional loss
terms. If we define f (t, x) as the differential equation with the estimated result u

∧

. Then,
the loss function, MSE, is defined as:

MSE = MSEu +MSEf (4)

where MSEu refers to training data for the Neural Network portion of the calculation
(see the left side network in Fig. 5) and is calculated as:

MSEu = 1

Nu

∑ ∣
∣u
∧

(tu, xu) − u
∣
∣2 (5)

and MSEf is a penalizing term that constrains the space of admissible solutions,
calculated as:

MSEf = 1

Nf

∑∣
∣f

(
tf , xf

)∣
∣2 (6)

Here, {tu, xu, u} denote the initial and boundary training data on u
∧

(t, x) and
{
tf , xf

}

specify the residual training points in the space-time domain for f (t, x) called collocation
points.

PINNs can be trained using data from sensors (such as accelerometers, deflectome-
ters, inclinometers, strain gauges, etc.)measuring the response of the structure to external
loads. PINNs serve as learners of the governing dynamics of the systems, rather than a
simple mapping between input and output relationship. It lends itself for reuse in pre-
diction given new initial conditions or new driving forces that are different to the ones
used for training. As a simple static model, using displacement data obtained from a
fibre-optic sensor network installed on experimental beam, the deflection of beam at
sensor and non-sensor location can be modeled.

4 PINN Implementation

To implementation PINN for a structural problem and to demonstration PINN-powered
solutions for structural digital Twin, a simply supported beam and a cantilever beam are
selected as examples, mostly to explain the details of the PINN solution. Nevertheless,
these beams are broadly used in various engineering applications such as railway tracks
and bridges. Static Euler-Bernoulli equation is used to model the beam’s deflection
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behavior along its length, which is a fourth order differential equation (Bauchau &
Craig, 2009; Gregory et al., 2019):

d2
(
E(x)I(x)

(
d2y(x)
dx2

))

dx2
= p(x) (7)

E and I are the elastic modules and second moment of inertia, respectively, which
are considered as constant for simplification. p(x) is the distributed load.

4.1 Model Development

Figure 5 depicts the PINN structure employed to solve the Euler-Bernoulli beam equa-
tion, with the neural network on the left side serving as a function approximator for
the differential equation solution. The right-hand side represents the residual of the dif-
ferential equation, which is obtained by applying the chain rule to the neural network,
through backpropagation, and incorporating the PDE into the algorithm’s architecture.

Fig. 5. Schematic representation of PINN.

Twodifferent beams and loading conditions (distributed and point load) are examined
as depicted in Fig. 6. To simplify the analysis, the EI values, and the length for both
cases are assumed to be equal and are taken as 1 kN/m2 and 1 m, respectively. The load
applied uniformly along the beam is 0.1 kN/m, while the load applied at a single point is
1 kN. This simplification is only to explain the method and does not violate the validity
of the argument.

The python library ‘DeepXDE’ (Lu et al., 2019) is implemented for solving the
equation (Eq. 8). The modeling and training processes are identical for both problems.
First, the differential equation is defined using automatic differentiation by TensorFlow
library. Then boundary conditions and geometry of the problem are defined. A 20 × 3
layers neural network is defined to approximate the solution. At the end, the model is
trained using the Adam optimizer and a learning rate of 0.001, with 20,000 iterations.
In Fig. 7 the result is compared with actual solution for both beams.
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(a) Simply supported beam - Distributed load (b) Cantilever beam - Point load

Fig. 6. The PINN results for deflection of the beams. (B.C. stands for Boundary condition)

4.2 Results and Discussion

The results demonstrate the effectiveness of the proposed technique. While two simple
static examples are used to check the validity of the PINN and to capture the deflection
of beams, the model can also be generalised to more sophisticated cases, such as an
entire railway bridge in dynamic domain. Considering factors such as solution time and
computational cost, it is important to note that while PINNmay not outperform FEM for
simple problems, such as the ones used in this study, for more complex structures, FEM
can become prohibitively expensive. In such cases, upon the availability of the data,
PINN can offer a simulation-based, computationally efficient, and cost-effective alter-
native by effectively integrating incomplete or noisy information with existing physical
knowledge.

The use of PINN has shown promising results, with limited data as input. Unlike
traditional model updating approaches, PINN not only utilizes observed data to directly
improve the physics-based model but also leverages the model to guide the inferred pos-
terior from unmeasured regions of the structural domain. This is valuable as, typically,
only specific points on a structure are monitored to observe its behavior to avoid difficult
or expensive monitoring systems across the entire domain of the structure in real life
(Sazonov et al., 2004).More importantly, it shows the capability of PINN for implement-
ing the real boundary conditions (e.g. partial fixity or deteriorated structure/connections)
as an input and solve the problem for the entire domain. Also, PINN has demonstrated
strong performance in dealing with noisy data (M. Raissi et al., 2019), which is a com-
mon issue for problems that rely on experimental data obtained from sensors. In contrast,
FEM updating techniques heavily rely on the accuracy of input data.

5 Conclusions

This paper introduced the concept of Structural Digital Twins, with a specific empha-
sis on bridge infrastructure systems. While the introduced and applied methodology
are not new, the novelty of this study lies with introducing a framework a closed-loop



1112 S. H. Radbakhsh et al.

and computationally affordable cyber-physical framework in the context of SDT. Three
main components of SDT were identified as Autonomous Data Collection; Automated
Data Interpretation; and Advanced Structural Simulation. It was argued that advanced
structural simulation requires computational methods that not only have their roots in
the system’s physical behavior, but have the capacity of predicting the actual (than ideal
or theoretical) structural system’s responses, based on the data collected and interpreted
automatically. We discussed that the traditionally used methods for this purpose, i.e.,
Finite Element Analyses, have their limitations, and introduced Physics Informed Neu-
ral Networks as an alternative to overcome the limitations. Two simple examples were
presented to show how PINN can be trained based on limited number of inputs (from the
actual structure’s boundary condition) to predict the behavior of a beam with different
support and loading conditions. The method introduced simplifies the incorporation of
measured data obtained from structures into a physics-based model. In addition to its
application to elastic beams, this methodology holds promise for the analysis of more
complex structures, such as bridges, by accommodating nonlinearity, varying geome-
tries, load scenarios and so on. Future investigations will (a) study the influence of
“noise” in training data, (b) deploy real data collected from more complex structural
systems to train PINNs, and (c) compare PINN performance versus FEM solutions in a
systematic manner.
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