
Dynamic-Static Graph Convolutional
Network for Video-Based Facial

Expression Recognition

Fahong Wang1, Zhao Liu2, Jie Lei1(B), Zeyu Zou2, Wentao Han2, Juan Xu2,
Xuan Li2, Zunlei Feng3, and Ronghua Liang1

1 College of Computer Science, Zhejiang University of Technology, Hangzhou, China
{fhwang,jasonlei,rhliang}@zjut.edu.cn

2 Ping an Life Insurance of China, Ltd., Shanghai, China
{liuzhao556,zouzeyu313,xujuan635,lixuan208}@pingan.com.cn,

wthan@zjut.edu.cn
3 College of of Computer Science, Zhejiang University, Hangzhou, China

zunleifeng@zju.edu.cn

Abstract. Most of the current methods for video-based facial expres-
sion recognition (FER) in the wild are based on deep neural networks
with attention mechanism to capture the relationships between frames.
However, these methods suffer from the large variations of expression
patterns and data uncertainties. This paper proposes a Dynamic-Static
Graph Convolutional Network (DSGCN), which mainly consists of a
Static-Relational graph (SRG) and a Dynamic-Relational graph (DRG).
The SRG aims to guide the network to learn the static spatial relation-
ship of facial expressions in each video frame, strengthening the salient
areas of the face through the dependencies of context nodes. The DRG
learns the dynamic temporal relationship of facial expressions by aggre-
gating video sequence features, constructing a graph with other samples
within a batch to share facial expression features with different contexts,
thus promoting feature diversity to improve robustness. The proposed
DSGCN framework achieves state-of-the-art results on the FERV39K,
DFEW and AFEW benchmarks, and ablation experiments verify the
effectiveness of each module.

Keywords: video-based facial expression recognition · graph
convolutional networks · dynamic-static relation

1 Introduction

Currently, automatic recognition of facial expressions, which plays a crucial role
in various human-computer interaction systems [1], including medical treatment,
driver assistance, and other areas, has been a popular subject for researchers.
The goal of facial expression recognition (FER) is to classify the input images
into seven basic expressions: neutral, happy, sad, surprised, afraid, disgusted,
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and angry. According to different types of input data, the FER systems can be
divided into image-based FER and video-based FER. Early FER methods mainly
focused on image-based facial expressions. However, since facial expression is a
dynamic process characterized by the interplay of muscle movements in different
regions of the face, understanding the temporal sequence of expressions, plays
a more important role than classifying static images. As a result, video-based
FER research has received increasing attention in recent years.

According to different data scenarios, video-based FER datasets can be
mainly divided into lab-controlled and in-the-wild. For the lab-controlled
datasets, all video sequences are collected in a controlled laboratory environ-
ment, and the videos are relatively simple and free from occlusion. Representa-
tive datasets include CK+ [2], Oulu-CASIA [3], and MMI [4]. For the in-the-
wild datasets (e.g., AFEW [5], Ferv39k [6], and DFEW [7]), video sequences
are collected from real-world scenes, which are closer to natural facial events.
Furthermore, the in-the-wild datasets are captured from thousands of subjects
in complex scenes, which greatly increases the diversity of the data. Nowadays,
the focus of video-based FER research has shifted from laboratory controls to
challenges under field conditions.

Early methods for solving video-based FER were primarily based on hand-
crafted features, such as the LBP-TOP [8], STLMBP [9], and HOG-TOP [10]. In
addition, Liu et al. [11] introduced a spatio-temporal manifold(STM) method to
model the video clips, and Liu et al. [12] used different Riemannian kernels mea-
suring the similarity distance between sequences. In recent years, deep learning
based methods gradually replace traditional methods. Among these methods,
the RNN-based method performed better at capturing the temporal relation-
ship between frames, and the spatial self-attention emerged [13] was proposed
as a powerful tool for guiding the extraction of image features and determining
the importance of each local feature. However, these methods focused on lim-
ited attention features or relationships from a single perspective, thus neglect-
ing large variations of different perspective expression patterns and data uncer-
tainties. The 3D CNN-based method [14] was able to learn both spatial and
temporal features in the sequence, but failed to effectively utilize long-distance
attention-dependent information to extract rich emotional features. Meanwhile,
CNN-based methods require stacking multiple layers of convolutional layers to
enlarge the receptive field. However, this often leads to the loss of input infor-
mation, increases computational load, and may even result in gradient vanishing
issues.

Motivated by the above shortages of existing methods, in this paper we pro-
pose a novel dynamic-static graph convolutional network (DSGCN) for video-
based FER. DSGCN consists of the Static-relational graph (SRG) and the
Dynamic-relational graph (DRG). Specifically, in SRG, our method first focuses
on the static spatial features extracted from the input facial expression images,
and then constructs GCN for these features, the features from each frame are
used as the vertex and the spatial similarity are used as the edges. Thus the con-
structed SRG strengthens the salient areas of the face through the dependencies
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of context nodes, and weakens the impact of in-the-wild factors (illumination
changes, non-frontal head poses, facial occlusions) on the final recognition. In
DRG our method first aggregates the features of the entire input video sequence
to learn the dynamic temporal information, then constructs GCN on other video
samples in the same batch. The sample nodes in the batch share features through
similarity, improving the robustness of facial expressions extracted in a single sit-
uation, thus better dealing with complex and changeable real situations. At last,
the video-based FER task is transferred into a node classification problem in the
graphs constructed on the batches.

In summary, this paper has the following contributions:

(1) We propose DSGCN that simultaneously captures static spatial feature rela-
tionships, long-distance dynamic temporal dependencies and sample simi-
larity relationships to gain efficient expression-related features.

(2) We present a graph-based approach for solving the task of video-based facial
expression recognition by casting it as a node classification problem.

(3) Extensive experiments demonstrate DSGCN is able to outperform the base-
line model significantly and achieve state-of-the-art results on three popular
video-based FER datasets. Ablation studies verify the effectiveness of the
composed modules (i.e., SRG, DRG).

2 Related Work

2.1 Image-Based FER in the Wild

The Image-based FER mainly consists of three stages, namely face detection, fea-
ture extraction and expression recognition. In the face detection stage, methods
such as MTCNN [15] and Dlib [16] are usually used to locate faces in complex sit-
uations. In the feature extraction stage, early methods mostly use hand-extracted
features. Among them, texture-based features include HOG [10], Histograms of
LBP [8], Gabor wavelet coefficients. At the same time, there are many methods
of extracting features based on landmark points such as noses, eyes, and mouths,
and using multiple feature combinations to obtain richer representations. Cur-
rently deep learning based methods are widely used. Fasel [17] found that shallow
CNNs are robust to facial poses. Tang and Kahou et al. [18] used deep CNN for
feature extraction and won the FER2013 and Emotiw2013 challenges respec-
tively. Liu et al. [19] proposed a CNN architecture based on facial action units
for expression recognition. The next stage after feature extraction is to feed
the features into supervised classifiers such as support vector machines (SVM),
softmax layers, and logistic regression to assign facial expression categories.

2.2 Video-Based FER in the Wild

In order to capture the spatio-temporal information in the video, methods based
on CNN and RNN have emerged. Most of the CNN-RNN based DFER methods
first use CNN to learn spatial facial features for each video frame, and then RNN
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processes the temporal information between video frames. Some methods use
VGG or ResNet to extract spatial features, and long short-term memory (LSTM)
or Gated Recurrent Unit (GRU) to extract temporal features. For example, Bad-
dar et al. [20] proposed a pattern varied LSTM to encode spatio-temporal fea-
tures that are robust to unseen changing patterns. For 3D CNN-based methods
[14], spatial and temporal feature representations of video sequences are jointly
extracted through 3D convolutions. Some 3D-CNN-based methods extract tem-
poral and spatial features of video sequences through 3D convolutions. These
methods [21] extract spatio-temporal facial features by directly adopting 3D-
CNN, and such spatio-temporal features are usually combined with other types
of facial features. Recently, Liu et al. [22] leveraged graph convolutional networks
(GCNs) to learn frame-based features that focus on specific expression regions.
Lee et al. [23] proposed a Multi-modal Recurrent Attention Network (MRAN)
for learning spatio-temporal attention maps for robust DFER in the wild. Zhao
et al. [24] first introduced the transformer to the DFER task, they designed
CS-Former and T-Former for extracting spatial and temporal features.

2.3 GNN for Video Understanding

In recent years, transformer and GNN based methods have demonstrated excel-
lent performance in the field of video understanding, especially in improving the
performance of CNN/RNN-based methods. In the field of video understanding,
GNNs have been applied in dialogue modeling, video retrieval, emotion recogni-
tion and action detection. There are also video representation frameworks that
can be used for multiple downstream tasks. For example, Arnab et al. [25] created
a fully connected graph using foreground nodes extracted from video frames in
a sliding window fashion. They established connections between the foreground
nodes and the context nodes of adjacent frames. Liu et al. [22] introduced the
GCN layer in the general CNN-RNN based model of video-based FER, but they
only focused on the relationship between frames, and did not focus on the sim-
ilarity between samples. Differently, our work is dedicated to construct a graph
structure that can capture more relationships.

3 Proposed Method

As shown in Fig. 1, the proposed DSGCN mainly consists of a static-relational
graph (SRG) and dynamic-relational graph (DRG). The input of DSGCN are
dynamically sampled fixed-length facial expression sequences from raw videos.
SRG takes video series as input, dividing the video to single frames and extract-
ing spatial facial features for each frame. Subsequently, SRG constructs a graph
by using the spatial feature of each frame as nodes, the similarity between nodes
as edges, thus capturing the long-distance dependencies of expressions. DRG
aggregates the spatial feature sequence enhanced by SRG, and constructs GCN
from other sample videos in the same batch, sharing feature information through
the similarity between samples. Finally, the classification results are obtained by
a full-connected (FC) layer.
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Fig. 1. The proposed model (DSGCN) architecture, which mainly consists of a Static-
Relational graph (SRG) and a Dynamic-Relational graph (DRG).

3.1 Static-Relational Graph (SRG)

SRG mainly builds GCNs from frame nodes with rich spatial features. Given
a facial expression video as input, a fixed-length sequence of facial expressions
dynamically sampled from the raw video sequence is fed into the model. The
frames in the sequence are first transformed to features carrying rich facial spatial
information through the spatial network module, and then GCNs are constructed
based on the features to strengthen the salient facial expression regions.

Static Spatial Feature: Fixed-length clip X ∈ R
T×3×H×W are obtained

as input by dynamically sampling raw video. Specifically, we split the video
sequence into S segments, and randomly select V frames in each segment. We
thus obtain an input clip of fixed length T = S × V .

For building static-relational graph, extracting rich spatial representation
from the frame, we use a Spatial Transformer [24]. The Spatial Transformer
consists of five convolution blocks and N spatial encoders. The previous four
convolution blocks, including conv1, conv2, conv3 and conv4, are used to extract
local facial spatial features M ∈ R

C×H′×W ′
. After this, we flatten the feature

and add positional information Pspatial to feed it into N spatial encoder. The
spatial encoders consist of a multi-head self-attention and feed forward network
to model global spatial relationships. The final convolution block conv5 is used
to refine the final facial features. Therefore, input the Spatial Transformer of
the t-length clip, and the output is F ∈ R

T×f that carries sufficient spatial
information.

Intra-Video Graph: In order to capture the long-range dependencies of
facial regions in videos, we propose a graph-based module to capture expres-
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sion changes. We construct a GCN layer by obtaining T features with spatial-
temporal relations from the previous module, and model the contextual correla-
tion by learning the dynamic adjacency matrix A. All nodes tend to be influenced
by expression informative frames and update themselves as more contributing
ones.

The inputs are representation maps F̂ = {f̂1, . . . , f̂T }extracted by spatial
transformer from the original video. To begin with, we use cosine similarity
coefficient to calculated the similarity between different representations as:

cossim(fi, fj) =
fi ∗ fj
‖fi‖fj‖ (1)

At the same time, we construct the adjacency matrix A through the cosine
similarity coefficient, and Ai,j represents the similarity between node i and node
j. And in each time step, as the node features are updated, the adjacency matrix
A will also update the similar state between nodes.

Ai,j = cossim(fi, fj) (2)

i, j ∈ {1, 2, . . . , T}. then, we employ GCN as:

F l+1 = D̄− 1
2 ĀD̄− 1

2F lW l (3)

where l represents the lth time step, Ā = A+I is the sum of un-directed graph A
and the identity matrix, D̄ is the diagonal matrix from A, which is D̄i,i =

∑

j

Ai,j .

F l and F l+1 are the corresponding input and output representations on the lth
level, and W l are the trainable parameters on this level. At each time step, the
GCN layer shares the features of each node to neighbor nodes based on the
adjacency matrix A, and accepts update messages from neighbor nodes.

3.2 Dynamic-Relational Graph (DRG)

Dynamic Temporal Feature: Using the output F ′ from the SRG as input,
DRG aims at capturing the dynamic temporal relation for the feature nodes
that have obtained spatial information, and mining the facial expression move-
ment information between nodes. In the method, we first use the implemented
Temporal Transformer [24]. The Temporal Transformer consists of M temporal
encoders, each of which includes a multi-head self-attention and a feed-forward
network. For T spatial features X ′ from the Spatial relation graph, they will
be input to the temporal encoder after adding position information Ptemporal.
Through the multi-head self-attention and a feed-forward network in the tem-
poral encoder, the global temporal information is modeled to output features h
with rich spatial-temporal information.

Inter-Video Graph: Not limited to learning contextual relations in videos, we
then extend the DRG module to learn the similarity between the input video
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samples. Our module accepts B video samples in the same batch, and the fea-
tures of each video are transformed into a feature h carrying rich spatio-temporal
information through the above steps, then we construct GCNs on these features.
Our graph structure learns different scene knowledge of similar expressions for
each video node in a single scene by sharing video samples of different expres-
sions.

The inputs are representation maps Ĥ = {ĥ1, . . . , ĥB}extracted by temporal
transformer from the sample video under the same batch. We will construct the
adjacency matrix A based on Eqn. (2), and update the video nodes in the same
batch based on Eqn. (3). After l rounds of updating node features, each node
successfully learns different scene knowledge of similar expressions to deal with
the large variations of expression patterns and data uncertainties.

Node Classification: In the previous steps, we have described our graph con-
struction procedure that converts a batch video into a graph where each node
has its own spatio-temporal feature vector. During the training process, we feed
all videos in a batch simultaneously into the proposed model, and add fc layers
at the end of the outputs, transferring the original video-based facial expression
recognition into a seven-category node classification problem in the constructed
graph.

4 Experiments

4.1 Datasets

FERV39k. [6] Currently represents the largest in-the-wild DFER dataset, con-
taining 38,935 video clips collected from four different scenarios, which can be
recursively divided into 22 fine-grained scenes, such as daily life, talk shows,
business, and crime. All scene video clips are randomly shuffled and 80% of clips
are allocated to the training set, while 20% of clips are reserved for the test set
to avoid dataset overlaps. Therefore, in order to conduct a fair comparison, we
directly use the training and testing sets divided by FERV39k.

DFEW [7] is a database that contains 16,372 video clips from more than 1,500
movies. All samples have been divided into five equally sized parts (fd1 fd5).
Five-fold cross-validation is used as the evaluation scheme. In each fold, a por-
tion of the samples is used for testing while the remaining data is reserved for
training. Finally, all predicted labels are used to compute an evaluation metric
by comparing them with the ground truth.

AFEW. [5] Dataset serves as the evaluation platform for the annual EmotiW
challenge from 2013 to 2019. AFEW contains 1809 video clips collected from
different movies and TV series. Consistent with DFEW, each video clip in AFEW
is assigned to one of seven basic expressions. The test clips are not publicly
available, so we train our model on train clips and test on validation clips.
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Table 1. Comparison with state-of-the-art methods on FERV39k.

Methods Accuracy of Each Emotion (%) Metrics (%)
Happiness Sadness Neutral Anger Surprise Disgust Fear UAR WAR

C3D 48.20 35.53 52.71 13.72 3.45 4.93 0.23 22.68 31.69
P3D 61.85 42.21 49.80 42.57 10.50 0.86 5.57 30.48 40.81
R2Plus1D 59.33 42.43 50.82 42.57 16.30 4.50 4.87 31.55 41.28
3DR18 57.64 28.21 59.60 33.29 4.70 0.21 3.02 26.67 37.57
R18+LSTM 61.91 31.95 61.70 45.93 14.62 0.00 0.70 30.92 42.59
VGG13+LSTM 66.26 51.26 53.22 37.93 13.64 0.43 4.18 32.42 43.37
Two C3D [6] 54.85 52.91 60.67 31.34 5.96 2.36 6.96 30.72 41.77
Two R18+LSTM [6] 59.00 45.87 61.90 40.15 9.87 1.71 0.46 31.28 43.2
Two VGG13+LSTM [6] 69.65 47.31 52.55 47.88 7.68 1.93 2.55 32.79 44.54
Former-DFER [24] 65.65 51.33 56.74 43.64 21.94 8.57 12.52 37.20 46.85
STT [26] 69.77 47.81 59.14 47.41 20.22 10.49 9.51 37.76 48.11
NR-DFERNet [27] 69.18 54.77 51.12 49.70 13.17 0.00 0.23 33.99 45.97
DSGCN 86.90 61.95 72.32 55.68 31.19 9.21 16.24 47.64 59.88

4.2 Implementation Details

Training Setting: For all the three datasets, we train our model from scratch
with a batch size of 32, initialize the learning rate to 0.01, and divide it by 5
every 50 epochs. Due to the small number of data samples in AFEW dataset, in
order to make a fair comparison, we first pre-train our model and other models
on DFEW (fd1), and then fine-tune on AFEW with the same setting.

Evaluation Metrics: Without loss of generality, We choose Unweighted Aver-
age Recall (UAR, i.e. the accuracy of each category divided by the number of

Table 2. Comparison with state-of-the-art
methods on DFEW.

Methods Metrics(%)
UAR WAR

3DR18 46.52 58.27
R18+LSTM 51.32 63.85
R18+GRU 51.68 64.02
EC-STFL [7] 45.35 56.51
Former-DFER [24] 53.69 65.70
EST [28] 53.43 65.85
STT [26] 54.58 66.65
NR-DFERNet [27] 54.21 68.19
GCA+IAL [29] 55.71 69.24
DPCNet [30] 57.11 69.24
DSGCN 57.06 70.57

Table 3. Comparison with state-of-the-art
methods on AFEW.

Methods Metrics(%)
UAR WAR

C3D 43.75 46.72
I3D-RGB 41.86 45.41
R(2+1)D 42.89 46.19
3DR18 42.14 45.67
R18+LSTM 43.96 48.82
Former-DFER [24] 47.42 50.92
EST [28] 49.57 54.26
STT [26] 49.11 54.23
NR-DFERNet [27] 48.37 53.54
DPCNet [30] 47.86 51.67
DSGCN 60.46 65.49
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categories, regardless of the instances of each category) and weighted average
recall (WAR, i.e. accuracy) as the metrics.

4.3 Comparison with State-of-the-Arts

In this section, we compare our best results with current state-of-the-art methods
on the FERV39k, DFEW and AFEW benchmarks.

As shown in the Table 1, we compare our method with other state-of-
the-art methods on the FERV39k dataset, including C3D, P3D, R2Plus1,
3DR18, R18+LSTM, VGG13+LSTM, Two C3D [6], Two R18+LSTM [6], Two
VGG13+LSTM [6], Former-DFER [24], STT [26], NR-DFERNet [27]. DSGCN
improvements of 9.88% and 11.77% in UAR and WAR than the previous state-
of-the-art method STT. Moreover, we show the performances on each expression
in the Table. As can be seen, our method achieve the best results on most of the
expressions, only slightly lower than STT on Disgust with a gap of 1.28%. At
the same time, in Table 1, we can see that most of the methods perform poorly
in “disgust” and “fear”, which we believe is caused by insufficient training data
in the original datasets.

Fig. 2. Illustration of feature distribution learned by the Former-DFER [24] (top) and
DSGCN (bottom) on three datasets.

For the DFEW data set, the experiment compared 3DR18, R18+LSTM,
R18+GRU, EC-STFL [7], Former-DFER [24], EST [28], STT [26], NR-DFERNet
[27], GCA+IAL [29], and DPCNet [30] under 5-fold cross-validation. As shown in
Table 2, DSGCN outperforms the comparison methods on the WAR metric, and
is very close to the current state-of-the-art method DPCNet on the UAR metric.
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Specifically, we have a 1.33% improvement on WAR and only a 0.05% reduction
on UAR compared to DPCNet. It should be noticed that DFEW also has a
imbalanced data distribution. The proportions of “disgust” and “fear” sequences
are 1.22% and 8.14%, which is the reason why our method achieve a relatively
low performance in UAR.

For the AFEW dataset, all methods are first pre-trained on DFEW (fd1) and
then fine-tuned on AFEW with the same settings. Our method compares C3D,
I3D-RGB, R(2+1)D, 3DR18, R18+LSTM, Former-DFER [24], EST [28], STT
[26], NR-DFERNet [27], DPCNet [30]. The comparative performance shown in
Table 3 shows that DSGCN achieves the best results on both UAR and WAR.
In particular, our method shows an improvement of 10.89% and 11.23% in UAR
and WAR than the previous state-of-the-art method EST.

Fig. 3. Visualization of the learned feature maps. There are three sequences are pre-
sented, which including the facial expression of Neutral, Anger and Sadness, respec-
tively. For each sequence, the images in the first row are heat-maps generated by the
Former-DFER, and the images in the second row are heat-maps generated by DSGCN.

4.4 Visualization Results

We utilize t-SNE [31] to analyze the feature distribution learn by the Former-
DFER and DSGCN on three datasets. As shown in Fig. 2, it is obvious that the
feature distribution of each category learned by our method is tighter, and the
boundaries between different categories are more obvious. This shows that our
method can better discriminate different facial expressions in feature level. Fur-
thermore, we conduct experiments to visualize the learned facial feature maps,
as shown in Fig. 3, we used neutral, angry, and sad three types of expressions to
compare with Fomer-DFER. For the first neutral expression sequence, although
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there is no significant expression behavior, our method still pays more atten-
tion to facial regions. In the second angry expression sequence and the third
sad expression sequence, our method pays more attention to the facial regions
such as mouth and eyes that contain more emotional information. In the second
sequence where the subject has large head pose changes, our method always
locks on the subject’s face region compared to the comparison method.

Table 4. Ablation study to evaluate the effectiveness of different modules in our pro-
posed method.

Methods FERV39K(%) DFEW(%) AFEW(%)
UAR WAR UAR WAR UAR WAR

Baseline 37.20 46.85 53.69 65.70 47.42 50.92
SRG 44.64 57.47 55.29 67.56 58.95 64.15
DRG 44.35 57.74 56.43 68.38 59.90 64.69
DSGCN 47.64 59.88 57.06 70.57 60.46 65.49

4.5 Ablation Study

We conduct extensive ablation studies on the three video-based FER datasets to
demonstrate the effectiveness of different components of our proposed method.
Including the individual part of SRG and DRG, as well as the final DSGCN.
The Former-DFER is employed as the baseline. As shown in Table 4, our STRG
achieves the WAR and UAR of 40.43%/54.81%, 55.56%/67.04%, 57.67%/62.80%
on three datasets, which outperforms some existing methods because of the
spatio-temporal features we learned. in one hand, by using SRG we have achieved
obvious improvements in WAR and UAR compared to the baseline. This proves
that SRG can effectively enhance facial expressions by learning the similarity of
expressions at different moments in the same video, and provide more robust fea-
tures for subsequent extraction of temporal information. In other hand, through
the propagation and enhancement of spatio-temporal features, DRG outper-
forms the baseline to varying degrees on the three datasets. The most significant
improvements are in AFEW, where CRG exceeds baseline by 12.48% and 13.77%
on WAR and UAR. This proves that DRG can indeed capture the correlation
between different sample expressions to strengthen the current expression. We
notice solely using DRG performs slightly better than using SRG, the reason
is dynamic features from other video sequences can better improve the robust-
ness of node features than in the same video sequence. Finally, in the complete
method DSGCN, all indicators in the three datasets reach the highest, the results
prove our method can indeed learn both the spatial and temporal relationship
of the input video facial expressions.
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5 Conclusion

This paper proposes a novel dynamic-static graph convolutional network
(DSGCN) for dynamic facial expression recognition in-the-wild scenarios. Specif-
ically, the proposed DSGCN mainly consists the static-relational graph (SRG)
and the dynamic-relational graph (DRG), it can capture multi-level relationships
among the input video sequences, including spatial relationship, temporal rela-
tionship, context relationship and sample relationship. Extensive experiments
with previous methods show that the proposed DSGCN achieves state-of-the-
art results on three popular dynamic FER benchmarks. The abundant ablation
studies have validated the effectiveness of each part in DSGCN. Moreover, the
visualization results of facial features demonstrate that DSGCN can pay more
attention to the salient facial regions. The visualization results of the feature dis-
tribution show that the method can better discriminate the learned face features.
Furthermore, comparisons with previous methods show that DSGCN achieves
state-of-the-art results on three popular dynamic FER benchmarks.

In future work, based on our DSGCN framework, we will further expand
it to Micro-Expression Recognition, Pose Prediction, Person Recognition and
other fields. Additionally, we plan to integrate our DSGCN framework with
self-supervised learning, encouraging the model to learn potential internal rela-
tionships in a large amount of unlabeled data, thereby alleviating the impact of
imbalances in facial data.
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