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Abstract. Gait recognition is a long range biometric technology that
identifies individuals by their walking patterns. Currently, gait recog-
nition primarily extracts gait features using convolutional neural net-
works, which are based on either the global appearance or local human
body regions. However, the global feature methods are lack of long range
interactions in different local regions and lose temporal features by some
extent, and the local feature method segmenting gait silhouettes into
blocks limits the ability to characterize local feature weights. In this
paper, we propose a gait recognition method that enhances interactions
between local regions. To implement this method, we construct a new fea-
ture enhancement module, which is a global and local feature extractor
based on SENet (GLFES), to enhance the recognition of local features
using the attention mechanism. Extensive experiments based on our pro-
posed method have been conducted on the public datasets CASIA-B and
OUMVLP to achieve state-of-the-art performances.

Keywords: Gait recognition · Squeeze and excitation · Convolutional
neural network · Human body alignment · Global and local features

1 Introduction

As a kind of unique biometric features, gait is long-range, non-contact and diffi-
cult to disguise. Moreover, gait samples can be obtained without subjects’ coop-
eration. It has a very wide range of applications in security surveillance, criminal
investigation surveillance and the public domain (Fig. 1).

Existing global or local feature extraction methods [1,10,12,17,26] mainly
focus on extracting spatial features, while temporal features are limited by some
extent. Specifically, the max-pooling operation in the temporal dimension easily
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Fig. 1. The gait silhouettes images are from individuals 33 and 53, taken every 4 frames.
It can be observed that subtle changes need to be slowly detected through timing, as
a single silhouette image alone cannot depict them. Therefore, the temporal features
of gait are crucial, especially when individuals are wearing coats.

loses many gait temporal features. Moreover, existing methods mainly segment
gait features into chunks and extract local features of different local regions
separately, the interacting relationships between different human body parts
have not been discovered enough, which thus limits gait recognition accuracies.

To address these issues, in this paper, we propose a gait recognition method
that enhances the temporal gait features and interactions between local features.
Specifically, we build a new feature enhancement module, called Global and Local
Feature Extractor based on SeNet (GLFES), to enhance the interactions between
local features by integrating attention mechanism. This method is realized by a
squeeze and excitation Module (SEM) in the network, a module that is capable
of enhancing inter-regional interactions. We can see the effect of SEM in Fig. 2.
We show visualization maps under different views, including 0◦, 54◦, 90◦ and
126◦.

At the same time, we design a Temporal Global and Local Aggregator
(TGLA) to extract temporal global and local features in a principled way. The
global timing feature extractor focuses on the timing features of the entire gait
sequence, while the local timing feature extractor splits the gait sequence in the
time dimension, focusing on the gait details of adjacent frames. This then gives
the model better recognition abilities by merging both global and local features.

(a) 0◦ (b) 54◦ (c) 90◦ (d) 126◦

Fig. 2. The convolutional feature map visualization after SEM. The visualization on
the left is without SEM module, and the visualization on the right is with SEM module.
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Finally, we design a novel Temporal Feature Aggregator (TFA). The gait
features have two dimensions, height and width, and the features in the higher
dimension are more discriminative than the wider dimension. Therefore, by pool-
ing the wide dimension and reducing the number of parameters of the gait
features as input to the TFA, the recognition accuracy of the model can be
improved. The highlighted contributions of our method are listed as follows:

(1) We propose a simple and lightweight application of convolution, called Tem-
poral Global and Local Aggregator (TGLA), to facilitate refined learning of
temporal features at the local level. The core idea of TGLA is to constraint
the convolutional temporal perceptual wilderness and focus more on local
timing information of gait-adjacent frames, then the local temporal feature
are enhanced.

(2) We propose a novel local feature enhancement module (SEM) that maximises
the usage of local features by interacting with local features in different
regions.

(3) We propose a lightweight convolutional application, called Temporal Feature
Aggregator (TFA), which is able to improve the comprehensive performance
of the model.

(4) We conduct extensive experiments on the public datasets CASIA-B and
OUMVLP. Experimental estimates show that the proposed method can
achieve the state-of-the-art performance.

2 Related Work

Current gait recognition studies prove the importance of spatial feature extrac-
tion and modeling from time series [2–4,6,7,9,14,23,24,27,31,32]. In order to
obtain more discriminative features from gait sequences, most of the existing
models are based on CNNs, and they use 2D [2,32] or 3D [14,16,22–25] convo-
lution for feature extraction along the spatial dimension with good success. The
importance of different human body parts in gait recognition is different, and
performing the same scanning operation for all gait sequences often overlooks this
characteristic. To obtain more detailed information about the different human
body parts, GaitSet [2,3], GaitPart [7], GLN [9], MT3D [15] tried to slice the
output features into m blocks along the horizontal dimension, which can learn
unique gait features of different body parts.

In addition, to better obtain discriminative gait features, many studies have
integrated the entire gait sequence into one frame [14,29]. At the same time,
there are many studies that extracted frame-level features from gait sequences
by CNNs and applied a max-pooling operation on the temporal dimension [2,9],
which easily limits the interrelationships and interactions between different gait
frames.

In order to better obtain the relationships between consecutive gait frames,
the original max-pooling operation is replaced by LSTM to integrate the gait
features in the time series to generate the final gait features [5,13,18,32], and the
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whole pipeline retains the non-essential order constraint in the gait sequences.
These methods are good at extracting spatial and temporal features from gait
sequences, ignore the spatio-temporal dependencies between non-local features.
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Fig. 3. The overview of the whole GaitSE framework. ‘Conv3d’ and ‘LTConv3d’ denote
three-dimensional convolution. ‘TGLA’ represents the Temporal Global and Local
Aggregator. ‘GLFES’ represents the Global and Local Feature Extrator based on SeNet.
‘TFA’ represents Temporal Feature Aggregator. ‘GeMHPP’ represents the Generalized-
Mean Horizontal Pyramid pooling. ‘FC’ represents Fully Connected layer. ‘Triplet Loss’
and ‘Cross Entropy Loss’ represent two kinds of loss functions

3 Method

In this section, the pipeline of GaitSE is first described, then the Temporal
Global and Local Aggregator (TGLA) is described, followed by the Global and
Local Feature Extractor based on SeNet(GLFESN), ending with the Temporal
Feature Aggregator (TFA) and implementation details. The overall framework
is presented in Fig. 3.

3.1 Pipeline

To obtain more holistic gait features, we first extract shallow features from the
original gait sequences by 3D CNNs. Next, the Temporal Global and Local
Aggregator (TGLA) was designed to extract a combination of global and local
temporal information. Later, the Local Temporal 3D Convolution (LTConv3d)
is designed to replace the original Max-pooling operation to retain more spatio-
temporal information to ensure more comprehensive temporal information. After
that, the Global and Local Feature Extractor based on SeNet (GLFES) is
designed to enhance global and local information. Then, we propose the Tem-
poral Feature Aggregator (TFA) to integrate the global temporal information.
Finally, the triplet loss and cross entropy loss are used as our loss functions to
train the model.
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3.2 Temporal Global and Local Aggregator

We propose a Temporal Global and Local Aggregator (TGLA). The TGLA mod-
ule consists of two 3D CNNS, one for global temporal information and the other
for local temporal information. Since global and local temporal information are
considered at the same time, the gait features extracted by TGLA are compre-
hensive, as shown in Fig. 4.
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Fig. 4. Architectures of Temporal Global and Local Aggregator. ‘H’, ‘W’, ‘C’ and
‘T’ denote the height, width, number of channels and length of the gait sequence. ‘n’
denotes the number of cuts along the time dimension. ‘Temporal Partition’ denotes
the segmentation of features along the time dimension and ‘N’ represents the number
of segmented regions. ‘Conv3d’ is a 3D convolution operation, and ‘share’ denotes
these 3D convolution shared parameters. ‘Concat’ indicates a concat operation in the
temporal dimension

3.3 Global and Local Feature Extractor Based on SeNet

We propose a Global and Local Feature Extractor based on SeNet (GLFES). The
first of this paragraph for the two forms of fusion methods, local features and
global features, there are two classical methods, one is addition and the other is
concat in this high dimension. The module based on additional fusion method
we define as GLSEA, the module based on concat fusion method we define as
GLSEC, the difference between the two lies in the final fusion method. The
GLFES module consists of four layers ‘GLSEA1-MaxPool3d-GLSEA2-GLSEC’
as shown in Fig. 3.

The principle of TGLA has been shown above, and the difference between
TGLA and GLSE lies in how the local feature map is partitioned and the Squeeze
and Excitation Module (SEM). The segmentation of TGLA is along the time
dimension, and GLSE is a horizontal segmentation. The SEM is shown in Fig. 5

Given Xl ∈ R
H×W×T×Cl as the final local feature map. Therefore, the

squeeze and excitation module can be formulated as:

Yf = Fse(Reshape(Max(Xl))) (1)
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Yend = Fscale(Reshape(Yf ), xl) (2)

where Max(.) in maximizes the width of the feature, and Reshape(.) denotes
merging the height and time dimensions of the feature. Fse(.) indicates that ‘FC-
ReLU-FC-Sigmoid’ operations are performed, and and the output dimension of
the first FC is Cl

r , and the output dimension of the second FC is Cl. Yf ∈
R

H×1×T×Cl indicates the output of the Eq. 1. The Reshape in Eq. 2 means to
separate the dimensions. Fscale(., .) denotes width-wise multiplication between
the feature map. Yend ∈ R

H×W×T×Cl denotes the output of the Eq. 2.
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Fig. 5. The overview of SeM Attention Mechanism. The attention mechanism is widely
used in Transformer.

3.4 Temporal Feature Aggregator

We propose an effective and low-consumption module, Temporal Feature
Aggregator (TFA). The TFA module includes three layers, ‘Conv2d down-
Conv2d inter-Conv2d up’.

Suppose the input to the module is Xt ∈ R
Cbegin×T×H×W , where Cbegin

indicates the total number of channels of input, T represents the length of the
input gait sequence and (H,W ) denotes the height and width of each silhouette
image. Therefore, the Temporal Feature Aggregator can be formulated as:

Ybeg = Max(Xt, dim = W ) (3)

Ymid = Fr(Fb(Fu(Fbr(Fi(Fbr(Fd(Ybeg))))) + Ybeg) (4)

Yend = GMP (Ymid) (5)

where Max(., dim = W ) represents the maximization of the input along the
wide(W ) dimension, and Ybeg ∈ R

Cbegin×T×H×1 is the first output. Fd(.), Fi(.)
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and Fu(.) denote three different 2d convolutions with output channel Cdown,
Cinter and Cbegin. Their convolution kernel sizes are (1, 1), (Ti, 1) and (1, 1)
respectively. Fb(.) and Fr(.) represent batch normalization and ReLU operations
respectively, and Fbr(.) denotes that the input performs the batch normalization
operation first and then the ReLU operation. GMP (.) denotes global maximum
pooling operation. Ymid ∈ R

Cbegin×T×H×1 and Yend ∈ R
Cbegin×1×1×1 denotes

the output of the corresponding step.

3.5 Generalized-Mean Horizontal Pyramid Pooling

GeMHPP is an in-between method, determined by parameter learning. The
GeMHPP module can be represented as:

YGeMHPP = (FAvg(YGeMin.pow(p)))).pow(1/p) (6)

where YGeMin and YGeMHPP denotes the input and output of GeMHPP. FAvg

denotes the average pooling operation. pow(.) denotes the power operation. p
is a parameter to be learned, and a suitable parameter is derived by multiple
training.

In order to better train the proposed model, we use both triplet loss [8] and
cross entropy loss.

4 Experiments

In this section, we first compare the experimental results on CASIA-B dataset
with the state-of-the-art methods, then perform ablation study to compare the
influence of different modules. Then we compare the experimental results on
OUMVLP dataset.

4.1 Datasets

(1) CASIA-B [28] is a multi-view large gait dataset. There are gait samples of
124 subjects in this dataset. The samples are collected from 11 views (0◦,
18◦, . . ., 162◦, 180◦).

(2) OUMVLP [20] contains above 10,000 subjects. Each subject’s samples are
collected from 14 views (0◦, 15◦, 30◦, 45◦, 60◦, 75◦, 90◦, 180◦, 195◦, 210◦,
215◦, 240◦, 255◦, and 270◦).

(3) GREW [33] is currently recognized as the most extensive gait dataset in the
wild according to available information. It consists of raw videos collected
from 882 cameras positioned in a large public area, resulting in a substantial
collection of nearly 3,500 h of video streams at a resolution of 1, 080×1, 920.
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Table 1. Rank-1 accuracy (%) on CASIA-B dataset under all view angles, different
settings and conditions

Gallery NM#1-4
Probe

Gallery view: 0◦ − 180◦ Mean

0◦ 18◦ 36◦ 54◦ 72◦ 90◦ 108◦ 126◦ 144◦ 162◦ 180◦

NM#5-6 ACL [30] 92 98.5 100 98.9 95.7 91.5 94.5 97.7 98.4 96.7 91.9 96

GEINet [19] 40.2 38.9 42.9 45.6 51.2 42 53.5 57.6 57.8 51.8 47.7 48.1

GaitSet [2] 90.8 97.9 99.4 96.9 93.6 91.7 95 97.8 98.9 96.8 85.8 95

GaitPart [7] 94.1 98.6 99.3 98.5 94 92.3 95.9 98.4 99.2 97.8 90.4 96.2

GLFE [14] 96 98.3 99 97.9 96.9 95.4 97 98.9 99.3 98.8 94 97.4

GLN [9] 93.2 99.3 99.5 98.7 96.1 95.6 97.2 98.1 99.3 98.6 90.1 96.9

Ours 96.1 98.5 99.1 97.9 96.4 95.6 97.4 98.9 99.3 99 95.5 97.6

BG#1-2 GEINet [19] 34.2 29.3 31.2 35.2 35.2 27.6 35.9 43.5 45 39 36.8 35.7

GaitSet [2] 83.8 91.2 91.8 88.8 83.3 81 84.1 90 92.2 94.4 79.0 87.2

GaitPart [7] 89.1 94.8 96.7 95.1 88.3 84.9 89 93.5 96.1 93.8 85.8 91.5

GLFE [14] 92.6 96.6 96.8 95.5 93.5 89.3 92.2 96.5 98.2 96.9 91.5 94.5

GLN [9] 91.1 97.7 97.8 95.2 92.5 91.2 92.4 96 97.5 95 88.1 94

Ours 92.7 95.5 97 95.6 94.3 88.8 92.2 96.8 97.9 97.2 92.2 94.6

CL#1-2 GEINet [19] 19.9 20.3 22.5 23.5 26.7 21.3 27.4 28.2 24.2 22.5 21.6 23.45

GaitSet [2] 61.4 75.4 80.7 77.3 72.1 70.1 71.5 73.5 73.5 68.4 50 70.4

GaitPart [7] 70.7 85.5 86.9 83.3 77.1 72.5 76.9 82.2 83.8 80.2 66.5 78.7

GLFE [14] 76.6 90 90.3 87.1 84.5 79 84.1 87 87.3 84.4 69.5 83.6

GLN [9] 70.6 82.4 85.2 82.7 79.2 76.4 76.2 78.9 77.9 78.7 64.3 77.5

Ours 78.7 90.8 92.7 90.2 85.1 78.9 84.3 87.5 89.1 86.7 72.9 85.2

4.2 Experiment Results on CASIA-B

To test the performance in cross-view scenarios, we compare GaitSE with the
latest advanced methods. As shown in Table 1, GaitSE outperforms SOTA in
most views. Specifically, GaitSE outperforms previous methods by at least 0.2%,
0.1% and 1.6% in three conditions (normal/bag/cloth). Most notably, in the
most challenging CL condition, GaitSE achieves an accuracy of 85.2%, a 1.6%
improvement compared to GaitGL [14], which validates the robustness of GaitSE
in difficult scenarios.

From the results we see that the accuracy of our proposed network can be
greatly improved under cl conditions, which proves that the potential of the
model can be improved by SeM, thus improving the resistance of the network
to interference. From the graphs, we can see that the accuracy improvement is
much larger in the (0◦, 180◦) than in the other angles.

4.3 Experiment Results on OUMVLP

In this section, we evaluate the performance of our proposed model on a larger
OUMVLP dataset. The experimental settings in this section follow the setup of
GaitPart [7] and GaitGL [14]. In Table 2, we evaluate gait samples at 14 different
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Table 2. The recognition accuracy (%) comparison on OUMVLP dataset under 14
probe views excluding identical views.

Method Gallery view: 0◦ − 180◦

0◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦ 108◦ 195◦ 210◦ 225◦ 240◦ 255◦ 270◦ Mean

GEINet [19] 23.2 38.1 48.0 51.8 47.5 48.1 43.8 27.3 37.9 46.8 49.9 45.9 45.7 41.0 42.5

GaitSet [2] 79.3 87.9 90.0 90.1 88.0 88.7 87.7 81.8 86.5 89.0 89.2 87.2 87.6 86.2 87.1

GaitPart [7] 82.6 88.9 90.8 91.0 89.7 89.9 89.5 85.2 88.1 90.0 90.1 89.0 89.1 88.2 88.7

GLN [9] 83.8 90.0 91.0 91.2 90.3 90.0 89.4 85.3 89.1 90.5 90.6 89.6 89.3 88.5 89.2

GLFE [14] 84.9 90.2 91.1 91.5 91.1 90.8 90.3 88.5 88.6 90.3 90.4 89.6 89.5 88.8 89.7

Ours 86.6 90.8 91.4 91.7 91.5 91.1 90.7 89.8 89.3 90.6 90.7 90.2 90 89.5 90.3

views. During the test, we used Seq#00 and Seq#01 as the probe and gallery
sequence, respectively. From the results, it seems that our proposed method
improves more in the larger scale dataset than in the smaller scale dataset.

4.4 Experiment Results on GREW

We have analyzed the effectiveness of the proposed method by comparing its per-
formance with various gait recognition methods using the GREW dataset. The
evaluated methods, namely GaitGraph [21], GaitSet [2], Gaitpart [7], GaitGL
[14], and CSTL [11], have been thoroughly assessed, and their respective exper-
imental outcomes are presented in Table 3. Our findings from this compari-
son reveal an important trend. It appears that the gait recognition methods,
which demonstrate satisfactory results in controlled laboratory settings, exhibit
a notable decline in performance when confronted with real-world scenarios and
datasets.

Table 3. The recognition accuracy (%) comparison on GREW dataset

Method R-1 % R-5 % R-10 %

GaitGraph [21] 6.25 16.23 5.18

GaitSet [2] 46.3 63.6 70.3

GaitPart [7] 44 60.7 67.3

GaitGL [14] 47.3 63.6 69.3

CSTL [11] 50.6 65.9 71.9

ours 49 66.2 72.4

4.5 Training Details

The alignment of the input silhouettes is referred to [20], and the resolution
size of the final silhouette is 64 × 44. Adam as our optimizer sets the learning
rate and momentum to 1e−4 and 0.9, respectively. The margin m in the Eq. ??
about triplet loss is set to 0.2. The length of the gait sequences T is set to 30.
Four NVIDIA 3080TI GPUs are used as our computational resources to train
our model.
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4.6 Ablation Study

We design various pertinent ablation experiments to analyze the importance of
different modules.

Analysis of Global and Local Feature Extractor Based on SeNet. In
GLSE, the role of the SEM module is mainly to reorganize features. In GaitGL
[14], only local features are fused together to form a new gait feature map ignor-
ing the connections between regions, the SEM module helps to establish the
interactions between regions (Table 4).

Table 4. The recognition accuracy (%) of different max-pooling strategies in SE mod-
ule on CASIA-B dataset.

SEM NM BG CL MEAN

Height Width Temporal

� × × 97 94.1 83.6 91.6

× � × 97.6 94.6 85.2 92.5

� � × 97.3 94.1 83.7 91.7

� � � 97.4 94.4 84.5 92.1

Analysis of Temporal Feature Aggregator. We set the TFA in different
places and set different temporal feature convolution kernel sizes, and drew
experimental conclusions in Table 5. In order to fully verify the best hyperparam-
eters, we set two positions, which are after GLSEA2 and GLSEC. Meanwhile,
we also set three convolution kernel sizes, i.e., (3, 1), (4, 1) and (5, 1). From the
table we can see that the hyperparameters mentioned above have quite a strong
influence on the model, especially under the CL condition.

Table 5. The recognition accuracy (%) of placing TFA in different positions on CASIA-
B dataset.

TFA NM BG CL MEAN

Location kernel size

GLSEA2 (3, 1) 97.3 94.2 84 91.8

GLSEA2 (4, 1) 97.3 94.6 84.1 92

GLSEA2 (5, 1) 97.1 94 83.8 91.6

GLSEC (3, 1) 97.4 94.5 84.2 92

GLSEC (5, 1) 97.2 94.3 84.1 91.9

GLSEC (4, 1) 97.6 94.6 85.2 92.5
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5 Conclusions

In this paper, we propose a novel gait recognition framework that is capable of
enhancing temporal global and local gait information, which can better gener-
ate interactions among the local regions and thus improve the robustness of the
gait recognition task. First, we propose to partition the features into multiple
local regions along the temporal dimension to extract discriminative features
separately, i.e., Temporal Global and Local Aggregator. Second, we propose to
introduce SEM into the local features in order to better utilize the local fea-
tures, which enhances the interaction between regions. Our experiments on pub-
lic datasets including both CASIA-B and OUMVLP demonstrate the superiority
of our proposed framework.
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