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Abstract. Cloud contamination is inevitable in remote sensing images,
resulting in a large number of images that cannot be applied in various
fields. Therefore, cloud detection is one of the important tasks in remote
sensing image preprocessing, aimed at removing images obstructed by
clouds. Most existing methods are mostly based on CNN and feature
a complex network structure, requiring a significant amount of compu-
tational resources, making it challenging to deploy them in practical
applications. To tackle this problem, we propose a lightweight cloud
detection framework (LigCDnet) with a lightweight feature extraction
module (LFEM), a channel attention module (CAM), and a lightweight
feature pyramid module (LFPM). The LFEM serves as the backbone
of the network to capture rich spatial and contextual information; the
CAM adaptively adjusts the channel weights of the feature maps; and
the LFPM extracts cloud features at multiple scales. The effectiveness of
our approach is evaluated on two public datasets, GF-1 and LandSat8.
Extensive experiments have demonstrated that the proposed LigCDnet
achieves state-of-the-art detection accuracy while significantly reducing
computational burden and having a smaller model size.

Keywords: Remote sensing images · Cloud detection · Lightweight
Framework · GF-1 · LandSat8

1 Introduction

With the rapid development of remote sensing technology, optical remote sensing
images have been extensively used in various fields such as agriculture engineer-
ing, geographical survey, military reconnaissance, natural disaster prediction,
and environmental pollution monitoring [16]. However, cloud occlusion is an
inevitable challenge in satellite imagery due to the extensive cloud cover that
spans over 60% of the Earth’s surface area [14]. The cloud cover obstructs the
satellite sensor’s ability to obtain a clear view of the Earth’s surface, making
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many image analysis tasks difficult, such as remote sensing image classification
and segmentation [29], image matching [8], etc. Therefore, it is necessary to
quickly and accurately detect cloud cover in order to enhance the availability of
remote sensing images.

Over the years, researchers have conducted in-depth studies on cloud detec-
tion algorithms in remote sensing imagery and have proposed numerous algo-
rithms. These methods can be broadly categorized into two types: threshold-
based methods and machine learning-based methods. Threshold-based methods
rely on the physical characteristics of clouds and set appropriate thresholds based
on these characteristics to classify pixels in an image into cloud and non-cloud
categories. ISCCP [21] cloud mask algorithm utilized the fact that cloud and
clear scenes differ in the amount of radiance variability they exhibit in space and
time to detect clouds. Cihlar and Howarth [7] proposed a method that can iden-
tify clouds with different opacities as well as cloud shadows present in composite
materials, effectively eliminating the impact of cloud contamination in AVHRR
synthetic images on land. Huang et al. [12] used clear forest pixels as a reference
to define cloud boundaries and separate clouds from clear surfaces in a spectral-
temperature space. However, these methods lack a universal threshold and do not
consider the structure and texture of clouds when dealing with complex scenes,
resulting in low robustness. The principle of machine learning-based methods for
cloud detection is to extract features from remote sensing images as input and
then train a classification model by comparing these features with labeled sam-
ples. An and Shi [2] designed a scene learning-based cloud detection algorithm,
this algorithm utilizes the color features, texture features, and structural fea-
tures of the image. Li et al. [13] extracted brightness features, texture features,
and average gray-level co-occurrence matrix features [10] from the image, they
then used these features to train a support vector machine (SVM) [25] classi-
fier. Shi et al. [23] proposed a ground-based cloud detection method using graph
model built upon super-pixels [1] to integrate multiple sources of information.
However, these methods extract shallow features from images through statis-
tical means such as mean, maximum, minimum, variance, etc., which do not
effectively comprehend the images, leading to a decrease in detection accuracy.

In recent years, convolutional neural networks (CNNs) have allowed the field
of computer vision to grow rapidly with their powerful feature extraction capabil-
ities. CNN-based approaches can improve the model’s understanding of images
by stacking convolutional layers and yield superior performance in target detec-
tion, image classification, and semantic segmentation [24,33]. Yang et al. [30] uti-
lize thumbnail images to extract cloud masks, extracting multi-scale contextual
information without losing resolution. Wu and Xu [28] present cross-supervised
learning for cloud detection to address the issue of insufficient labeled cloudy
images. However, most existing deep learning methods feature complex network
structures and high computational resource requirements. In practical appli-
cations, the deployed devices often lack significant computational power and
storage space. Therefore, this limits the applicability of these methods.
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To solve the above problem, we design a lightweight cloud detection frame-
work called LigCDnet, which achieves excellent performance with very few
parameters. The contributions of this paper are briefly summarized as follows:

1. We propose a lightweight cloud detection framework based on the U-shaped
architecture, called LigCDnet. It achieves state-of-the-art detection accuracy
compared to existing cloud detection algorithms while having an extremely
small number of parameters, only 2.39M.

2. We utilize a lightweight feature extraction module (LFEM) to capture spatial
and contextual information and design a channel attention module (CAM)
to adjust the impact of different channels on cloud detection performance.
Additionally, we propose a lightweight feature pyramid module (LFPM) to
extract cloud features at different scales.

2 Proposed Method

2.1 Overall Framework

Fig. 1. Framework of the proposed LigCDnet.

We use a U-shaped encoder-decoder structure as the framework for our cloud
detection network model, as shown in Fig. 1. High-level features contain rich
semantic information, low-level features contain rich spatial information [32].
The abundant spatial information plays a crucial role in generating cloud masks.
Therefore, in the encoder part, we performed three downsampling operations to
preserve rich spatial information in the feature map. We utilize the lightweight
feature extraction module (LFEM) that maximizes the extraction of cloud fea-
tures while minimizing the increase in parameters. To enhance the feature maps
channels that are favorable for cloud segmentation, designing a channel atten-
tion module (CAM) to adjust the channel weights. To better understand clouds
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of different scales, we propose the lightweight feature pyramid module (LFPM).
In the decoder part, we gradually restore the resolution of the feature maps
through upsampling and compensate for the spatial information lost during the
encoding stage by connecting them with the feature maps in the encoder using
skip connections.

Given a remote-sensing image I as input, the feature map S1 is first gener-
ated in the encoder by depthwise separable convolution operations. Depthwise
separable convolution consists of depthwise convolution and pointwise convolu-
tion. that is

S1 = Hconvdep

(
Hconvpoi(I)

)
(1)

where Hconvdep(·) represents depthwise convolution operation, and Hconvpoi(·)
denotes pointwise convolution operation, S1 has the same size as the input image.

To reduce the computational complexity while extracting cloud information,
we use a downsampling unit, that is

Fdownsampling = MaxPool
(
HLFEM (S)

)
(2)

where MaxPool(·) is max pooling operation, and HLFEM (·) denotes the
lightweight feature extraction module. Then, the feature maps S2, S3 are gen-
erated by consecutive downsampling unit, that is

S2 = Fdownsampling(S1) (3)

S3 = HLFPM

(
HCAM

(
HLFEM

(
F 2
downsampling(S2)

))
)

(4)

where F 2
downsampling(·) means that Fdownsampling is executed two times,

HCAM (·) represents channel attention module, HLFPM denotes lightweight fea-
ture pyramid module. S2 is 1/2 × 1/2 size of the input image, S3 is 1/8 × 1/8
size of the input image.

Due to the small spatial resolution of the feature map S3 generated in the
encoder, it leads to problems such as information loss, insufficient contextual
information, and blurred boundaries. In the decoder part, we restore the feature
map to the same resolution as the input image by gradually upsampling it, the
upsampling is limited to 2×. To reduce computational complexity, we employ
a simple bilinear interpolation to directly upsample S3 twice, resulting in the
generation of feature map N1, N1 is 1/2 × 1/2 size of the input image. And
introduce the upsampling unit, that is

Fupsampling = bilinear
(
H2

conv3(I)
)

(5)

where bilinear(·) denotes bilinear interpolation operation, Hconv3(·) represents
a convolution operation with a convolution kernel size of 3, and the predicted
cloud detection result IO can be described as

IO = HCAM

(

concat

(
S1, Fupsampling

(
concat

(
HCAM (S2), N1

))
))

(6)

where concate denotes the concatenate operation, IO has the same size as the
input image.
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2.2 Lightweight Feature Extraction Module

In recent years, the main trend in improving the network’s understanding of
complex scenes has been the development of deeper and more complex networks.
However, these networks require a significant amount of computational cost both
during training and inference phases. To address this challenge, a plethora of
lightweight network frameworks have been proposed. For instance, in MobileNet
[22], depthwise separable convolution is employed, which consists of depthwise
convolution and pointwise convolution. Depthwise convolution operates indepen-
dently on each channel of the input feature map, pointwise convolution integrates
information between different channels to enhance the network’s representational
capacity. In LEDNet [26], channel splitting and shuffle operations are applied to
each residual block. Channel splitting divides the channels of the feature map
into multiple groups, allowing the network to independently extract different
types of features. Shuffle operations enable information exchange between dif-
ferent channel groups. Inspired by the MobileNet, we designed the lightweight
feature extraction module shown in Fig. 2. The lightweight feature extraction
module consists of two pointwise convolutions and one depthwise convolution.
For a feature map with C channels, the first step is to increase its dimensionality
to 2C by employing a pointwise convolution. The different channels of feature
maps can be seen as the network’s response to various characteristics of the data,
enabling the network to understand the data from different perspectives. Sub-
sequently, a depthwise convolution is utilized to capture spatial features of the
cloud and extract local information for each channel. Lastly, another pointwise
convolution is employed to reduce the dimensionality back to C while integrating
features across the channels of the feature map.

Fig. 2. Structure of LFEM.

For a 3×3 standard convolution, with an input feature map of [H ×W ×C],
output channel set to 2C, and convolution layer depth set to 3, the number of
parameters of the module is 3×3×C×2C+3×3×2C×2C+3×3×2C×2C = 90C.
And the number of parameters of our lightweight feature extraction module is
1 × 1 × C × 2C + 3 × 3 × 2C + 1 × 1 × 2C × 2C = 24C. With the same depth
of convolution layers, the number of standard convolutional parameters is 3.74
times higher than ours, and the LFEM module greatly reduces the number of
parameters while increasing the inference speed and computational efficiency.
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The lightweight feature extraction module can be stated as

HLFEM = Hconvpoi

(
Hconvdep

(
Hconvpoi(I)

))
(7)

2.3 Channel Attention Module

Fig. 3. Structure of CAM.

In computer vision tasks, which often rely on convolutional operations to
extract features from images, different channels of the feature map play different
important roles for the task in the process of network learning. Therefore, we
designed a channel attention module and introduced a learnable weight vector
to enable the network to automatically learn the importance of different chan-
nels in the task. It allows the network to adjust the weights of each channel,
enhancing the dependency on important channels and reducing the dependency
on unimportant channels, as shown in Fig. 3. First, we apply max-pooling oper-
ations to each channel of the feature map to generate initial channel weight
vectors. Then, these vectors are fed into three layers of linear units to let the
network learn the importance of different channels. Subsequently, the weight vec-
tors are normalized using the sigmoid function, and finally, the weight vectors
are element-wise multiplied with their corresponding channels. By adjusting the
channels of the feature map, the network can utilize the information between
channels more effectively, thereby improving the performance of the task. The
channel attention module can be stated as

HLFEM = Ffc2

(
Ffc1

(
Ffc0

(
MaxPool(I)

))
)

⊗ I (8)

where Ffc denotes Linear layer operation, ⊗ is element-wise multiplication oper-
ation.

2.4 Lightweight Feature Pyramid Module

Clouds have diverse morphologies, and accurately segmenting clouds of differ-
ent sizes is a fundamental challenge for cloud detection algorithms. Capturing
multi-scale cloud features and establishing contextual information can effectively
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Fig. 4. Structure of LFPM.

enable the network to learn feature differences between cloud regions and back-
grounds. Inspired by the ASPP [5] model, we propose a lightweight pyramid
module, as shown in Fig. 4. The number of channels of the feature map is first
adjusted by a pointwise convolution. Dilated convolution [31], also known as
atrous convolution, can significantly expand the receptive field of convolutional
neural networks. Combining multiple dilated convolutions with different sam-
pling rates in parallel effectively captures multi-scale contextual information.
Therefore, we use parallel dilated convolutions with dilation rates of 1, 6, and 12.
To reduce computational complexity, the dilated convolutions are replaced with
deepwise convolutions while keeping the dilation rates unchanged. Additionally,
a global average pooling (GAP) layer is introduced to extract global contextual
information. Subsequently, the features captured by the four parallel branches
are concatenated along the channel dimension. To facilitate feature reuse and
mitigate the gradient vanishing problem, short connections are introduced. The
Lightweight Feature Pyramid Module can be stated as

HLFPM = concate(I,Hconvpoi(I),Hconvdep−r6(I),
Hconvdep−r12(I), bilinear(HGAP (I)))

(9)

where Hconvdep−r
(·) is depthwise convolution with dilate rate r, HGAP denotes

global average pooling operation.

3 Experimental Results

3.1 Dataset and Experimental Setup

Dataset. We chose two widely used datasets, GF-1 remote sensing images and
datasets of CloudSat8, to validate the effectiveness of our method, using only
their visible channels. The GF-1 remote sensing images includes 108 GF-1 Wide
Field of View (WFV) level-2A scenes and its reference cloud and cloud shadow
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masks. 86 of the images are used for training and 22 images are used for testing
[15]. The CloudSat8 dataset contains 18 images of size 1000 × 1000 for training
and 20 same-size images for the test [19]. We crop the above original high pixel
image into 512 × 512 × 3 sub-images for training and testing.

Evaluation Metrics. In order to measure the performance of the model
comprehensively, we used six widely used quantitative metrics, including Jac-
cardIndex, Precision, Recall, F1-score, and overall accuracy (OA), mean inter-
section over union (MIoU). These metrics are defined as follows:

JaccardIndex =
TP

(TP + FN + FP )
(10)

Precision =
TP

(TP + FP )
(11)

Recall =
TP

(TP + FN)
(12)

F1 − score = 2 × Precision × Recall

(Precision + Recall)
(13)

OverallAccuracy =
TP + TN

(TP + TN + FP + FN)
(14)

MIoU =
1
k

k∑

i=1

nii
∑k

j=1 nij +
∑k

j=1 nji − nii

(15)

where TP, TN, FP, and FN are the total number of true-positive, true-negative,
false-positive, and false-negative pixels, respectively. The k represents the num-
ber of categories, nii represents the count of correctly predicted pixels, and nij
represents the count of pixels where the true value is i and they were predicted
as j.

Parameter Settings. Our model is implemented using the Pytorch framework
[20], with the training step running on Ubuntu 22.04 and an RTX3090 GPU.
Using the Stochastic Gradient Descent (SGD) [3] algorithm for optimization
with an initial learning rate of 2 × 10−4, decay strategy “poly” [4], batch size
of 4, momentum of 0.9. All CNN-based methods are trained using the same
configuration and settings without the need for pre-training.

3.2 Comparative Experiments

Comparative Methods. This paper compares a machine learning-based
cloud detection method: SVM [11], and also compares six state-of-the-art
deep learning-based cloud detection algorithms: FCN-8 [17], DeeplabV3+ [6],
CDNetV1 [30], CDnetV2 [9], LWCDnet [18], Boundarynet [27]. Among these,
LWCDnet is a lightweight cloud detection method.
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Table 1. Quantitative comparisons with other cloud detection methods on the GF-1
test set. Cloud extraction accuracy (%)

Method Jaccard index precision recall F1-score OA MIoU

SVM 62.01 81.17 71.62 73.61 89.20 72.72

FCN-8 72.94 80.20 86.96 83.15 92.23 79.66

deeplabV3+ 77.82 83.95 89.78 87.14 94.14 83.59

CDnetV1 80.77 86.45 91.34 89.22 94.65 85.85

CDnetV2 76.80 82.86 89.78 86.33 93.86 82.9

LWCDnet 75.57 80.99 87.69 83.81 93.03 82.61

Boundarynet 83.14 90.68 89.90 90.60 95.88 87.68

LigCDnet 84.29 90.42 92.18 91.11 95.88 88.35

Fig. 5. Visual comparisons of different cloud detection methods on GF-1 dataset.

Cloud Detection Results on GF-1 Dataset: Table 1 reports the results of
different cloud detection methods in the GF-1 dataset. From the results, our
proposed LigCDnet outperforms most of them. Compared to the SVM machine
learning method, deep learning methods have significant advantages in various
metrics. FCN-8, in terms of Jaccard index, recall, and F1-score, shows an aver-
age improvement of 12% over SVM. Compared to cloud detection methods, the
boundarynet achieves slightly higher precision, with the same score as ours on
OA. However, in terms of Jaccard index and MIoU, our method is higher than it
by 1.15% and 0.67%, respectively. Compared to the lightweight method LWCD-
net, our proposed method outperforms LWCDnet by 7.3% and 5.74% in terms
of F1-score and MIoU metrics, respectively. Fig. 5 shows a visual comparison of
five typical examples of cloud segmentation methods in the GF-1 dataset, with
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a variety of cloud cover and backgrounds. For clarity, we use white to represent
correctly labeled cloud pixels and black to represent non-cloud pixels. Red mark-
ings indicate misclassified pixels. From a visual perspective, SVM’s performance
is the poorest; it only extracts the physical features of the image and does not
fully comprehend the context of the image. CDnetV2 tends to misclassify bright
objects as clouds. Overall, our LigCDnet performs the best.

Table 2. Quantitative comparisons with other cloud detection methods on the Land-
Sat8 test set. Cloud extraction accuracy (%)

Method Jaccard index precision recall F1-score OA MIoU

SVM 72.38 86.72 77.16 80.74 85.10 65.12

FCN-8 79.09 85.19 83.81 87.58 93.09 74.00

deeplabV3+ 81.30 86.61 87.38 87.26 92.06 76.74

CDnetV1 84.83 90.72 86.52 87.74 94.61 81.91

CDnetV2 79.68 86.89 84.83 86.48 93.64 79.07

LWCDnet 82.09 85.48 86.78 88.42 93.44 76.20

Boundarynet 83.71 89.25 87.28 90.20 94.64 80.55

LigCDnet 88.02 93.99 90.16 92.25 95.00 84.39

Fig. 6. Visual comparisons of different cloud detection methods on LandSat8 dataset.
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Cloud Detection Results on LandSat8 Dataset: Table 2 reports the results
of different cloud detection methods on the LandSat8 dataset. From the results,
it can be observed that our proposed LigCDnet achieves better performance,
especially in terms of Jaccard index and MIoU. While LigCDnet’s OA is only
0.39% higher than CDnetV1, there is a significant improvement of 3.19% in
MIoU. Compared to the lightweight network LWCDnet, our proposed network
still demonstrates clear advantages, with a 3.38% higher recall and an 8.19%
higher MIoU score. Figure 6 illustrates five examples from the LandSat 8 dataset,
these examples encompass various backgrounds, such as situations where thin
clouds and cloud ice coexist. From the visual results, it is evident that SVM
performs poorly in handling scenarios where ice and snow coexist. DeeplabV3+
and LWCDnet also exhibit significant errors when dealing with scenes containing
thin clouds. In contrast, our method demonstrates the best overall performance
in handling all complex scenarios. It has fewer false positives (highlighted in red)
compared to other methods.

Computational Complexity Analysis: In Table 3, we utilized floating point
operations (FLOPs) and the number of trainable parameters to assess the com-
putational complexity of these networks. Due to the results of the efficiency eval-
uation being directly proportional to the input image size, the FLOPs results
were computed from input images sized at 224 × 224 × 3. From the table, it
can be observed that our proposed network has the fewest parameters. Although
our proposed method has 7.69% higher GFLOPs compared to the lightweight
model LWCDnet, we demonstrate significant advantages in both quantitative
and qualitative analyses on various datasets. This is because we employ the
Channel Attention Module (CAM) multiple times to adjust the weights of fea-
ture map channels, and we have designed a Lightweight Feature Pyramid Module
(LFPM) to capture features of multi-scale clouds.

Table 3. Computational Complexity Analysis Based on CNN Method

Method GFLOPs
(224 × 224)

Params (M)

FCN-8 26.57 32.9

deeplabV3+ 33.19 39.75

CDnetV1 59.94 47.50

CDnetV2 14.27 67.08

LWCDnet 3.10 2.55

Boundarynet 97.62 88.87

LigCDnet 10.79 2.39
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3.3 Ablation Study

The LigCDnet proposed by us consists of three modules, namely the lightweight
feature extraction module (LFEM), the channel attention module (CAM) and
the lightweight feature pyramid module (LFPM). To investigate the performance
of different components in the network, we conducted an ablation analysis on
the GF-1 dataset. Table 4 provides detailed quantitative results.

From the results, LigCDnet demonstrates the best performance. Decreasing
any of the blocks results in a certain degree of degradation in network perfor-
mance. Removing CAM results in a deterioration of the metrics, indicating that
CAM adjusts the weights of different channels in the feature maps, allowing
channels favorable for the detection task to play a major role. Without LFPM,
the metrics show a decrease, which suggests that LFPM can capture cloud fea-
tures at different scales. Overall, these three modules play important roles in the
cloud detection task.

Table 4. Ablation study on the GF-1 dataset by our LigCDnet with different modules

Method Jaccard index precision recall F1-score OA MIoU

LFEM 82.11 88.66 90.64 89.74 95.41 86.76

LFEM+CAM 82.85 88.31 91.88 90.23 95.70 87.40

LFEM+LFPM 83.15 89.44 91.54 90.07 95.76 87.66

LigCDnet 84.29 90.42 92.18 91.11 95.88 88.35

4 Conclusions

This article proposes a lightweight method (LigCDnet) for cloud detection. Com-
pared with existing cloud detection models, LigCDnet achieves the best detection
accuracy with a minimal number of parameters. In LigCDnet, we extensively
extract multi-scale contextual features and further enhance segmentation accu-
racy by adjusting the channel weights of the feature maps. In the encoder, LFEM
effectively extracts the semantic information of clouds, while CAM enhances fea-
ture map channels beneficial for the detection task and suppresses feature map
channels that interfere with segmentation accuracy. Due to the diverse morphol-
ogy of clouds, LFPM efficiently captures contextual features at different scales.
In the decoder, the feature maps are gradually restored to the size of the input
image through skip connections. Extensive experiments have been conducted on
GF-1 and LandSat8 datasets, and the results show that LigCDnet can achieve
excellent performance while reducing computational effort.
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els compared to state-of-the-art superpixel methods. IEEE Trans. Pattern Anal.
Mach. Intell. 34(11), 2274–2282 (2012)

2. An, Z., Shi, Z.: Scene learning for cloud detection on remote-sensing images. IEEE
J. Sel. Top. Appl. Earth Observ. Remote Sens. 8(8), 4206–4222 (2015)

3. Bottou, L.: Stochastic gradient descent tricks. In: Montavon, G., Orr, G.B., Müller,
K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 421–436.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8 25

4. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab:
semantic image segmentation with deep convolutional nets, atrous convolution,
and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–
848 (2017)

5. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution
for semantic image segmentation. arXiv preprint arXiv:1706.05587 (2017)

6. Chen, L.-C., Zhu, Y., Papandreou, G., Schroff, F., Adam, H.: Encoder-decoder
with atrous separable convolution for semantic image segmentation. In: Ferrari, V.,
Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp.
833–851. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2 49

7. Cihlar, J., Howarth, J.: Detection and removal of cloud contamination from
AVHRR images. IEEE Trans. Geosci. Remote Sens. 32(3), 583–589 (1994)

8. Guo, J.h., Yang, F., Tan, H., Wang, J.x., Liu, Z.h.: Image matching using structural
similarity and geometric constraint approaches on remote sensing images. J. Appl.
Remote Sens. 10(4), 045007–045007 (2016)

9. Guo, J., Yang, J., Yue, H., Tan, H., Hou, C., Li, K.: Cdnetv2: CNN-based cloud
detection for remote sensing imagery with cloud-snow coexistence. IEEE Trans.
Geosci. Remote Sens. 59(1), 700–713 (2020)

10. Hafizah, W.M., Supriyanto, E., Yunus, J.: Feature extraction of kidney ultrasound
images based on intensity histogram and gray level co-occurrence matrix. In: 2012
Sixth Asia Modelling Symposium, pp. 115–120. IEEE (2012)

11. Hao, Q., Zheng, W., Xiao, Y.: Fusion information multi-view classification method
for remote sensing cloud detection. Appl. Sci. 12(14), 7295 (2022)

12. Huang, C., et al.: Automated masking of cloud and cloud shadow for forest change
analysis using landsat images. Int. J. Remote Sens. 31(20), 5449–5464 (2010)

13. Li, P., Dong, L., Xiao, H., Xu, M.: A cloud image detection method based on SVM
vector machine. Neurocomputing 169, 34–42 (2015)

14. Li, Y., Yu, R., Xu, Y., Zhang, X.: Spatial distribution and seasonal variation of
cloud over china based on ISCCP data and surface observations. J. Meteorol. Soc.
Jpn. Ser. II 82(2), 761–773 (2004)

15. Li, Z., Shen, H., Li, H., Xia, G., Gamba, P., Zhang, L.: Multi-feature combined
cloud and cloud shadow detection in gaofen-1 wide field of view imagery. Remote
Sens. Environ. 191, 342–358 (2017)

16. Long, J., Shi, Z., Tang, W., Zhang, C.: Single remote sensing image dehazing. IEEE
Geosci. Remote Sens. Lett. 11(1), 59–63 (2013)

17. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic
segmentation. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 3431–3440 (2015)

18. Luo, C., et al.: LWCDnet: a lightweight network for efficient cloud detection in
remote sensing images. IEEE Trans. Geosci. Remote Sens. 60, 1–16 (2022)

https://doi.org/10.1007/978-3-642-35289-8_25
http://arxiv.org/abs/1706.05587
https://doi.org/10.1007/978-3-030-01234-2_49


450 B. Su and W. Zheng

19. Mohajerani, S., Saeedi, P.: Cloud-net: an end-to-end cloud detection algorithm
for landsat 8 imagery. In: IGARSS 2019–2019 IEEE International Geoscience and
Remote Sensing Symposium, pp. 1029–1032. IEEE (2019)

20. Paszke, A., et al.: Pytorch: an imperative style, high-performance deep learning
library. In: Advances in Neural Information Processing Systems, vol. 32 (2019)

21. Rossow, W.B., Garder, L.C.: Cloud detection using satellite measurements of
infrared and visible radiances for ISCCP. J. Clim. 6(12), 2341–2369 (1993)

22. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: Mobilenetv 2:
inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

23. Shi, C., Wang, Y., Wang, C., Xiao, B.: Ground-based cloud detection using graph
model built upon superpixels. IEEE Geosci. Remote Sens. Lett. 14(5), 719–723
(2017)

24. Sun, L., et al.: A cloud detection algorithm-generating method for remote sensing
data at visible to short-wave infrared wavelengths. ISPRS J. Photogramm. Remote.
Sens. 124, 70–88 (2017)

25. Suthaharan, S., Suthaharan, S.: Support vector machine. Machine learning models
and algorithms for big data classification: thinking with examples for effective
learning, pp. 207–235 (2016)

26. Wang, Y., et al.: Lednet: a lightweight encoder-decoder network for real-time
semantic segmentation. In: 2019 IEEE International Conference on Image Pro-
cessing (ICIP), pp. 1860–1864. IEEE (2019)

27. Wu, K., Xu, Z., Lyu, X., Ren, P.: Cloud detection with boundary nets. ISPRS J.
Photogramm. Remote. Sens. 186, 218–231 (2022)

28. Wu, K., Xu, Z., Lyu, X., Ren, P.: Cross-supervised learning for cloud detection.
GISci. Remote Sens. 60(1), 2147298 (2023)

29. Yang, F., Guo, J., Tan, H., Wang, J.: Automated extraction of urban water bodies
from zy-3 multi-spectral imagery. Water 9(2), 144 (2017)

30. Yang, J., Guo, J., Yue, H., Liu, Z., Hu, H., Li, K.: CDnet: CNN-based cloud
detection for remote sensing imagery. IEEE Trans. Geosci. Remote Sens. 57(8),
6195–6211 (2019)

31. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv
preprint arXiv:1511.07122 (2015)

32. Zhang, Z., Zhang, X., Peng, C., Xue, X., Sun, J.: ExFuse: enhancing feature fusion
for semantic segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss,
Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 273–288. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-01249-6 17

33. Zhou, P., Han, J., Cheng, G., Zhang, B.: Learning compact and discriminative
stacked autoencoder for hyperspectral image classification. IEEE Trans. Geosci.
Remote Sens. 57(7), 4823–4833 (2019)

http://arxiv.org/abs/1511.07122
https://doi.org/10.1007/978-3-030-01249-6_17

	LigCDnet:Remote Sensing Image Cloud Detection Based on Lightweight Framework
	1 Introduction
	2 Proposed Method
	2.1 Overall Framework
	2.2 Lightweight Feature Extraction Module
	2.3 Channel Attention Module
	2.4 Lightweight Feature Pyramid Module

	3 Experimental Results
	3.1 Dataset and Experimental Setup
	3.2 Comparative Experiments
	3.3 Ablation Study

	4 Conclusions
	References


