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Abstract. Deep subspace clustering (DSC) methods are widely used
in various fields such as motion segmentation, image segmentation, and
text mining. It uses the deep neural network to map high-dimensional
features into low-dimensional latent subspace to achieve effective divi-
sion of data. Nevertheless, DSC simply tends to learn representations
based on auto-encoder, which can’t fully exploit the intrinsic structure
of the data. In this paper, we design a novel approach called Deep self-
supervised subspace clustering with triple data (DSSCT), which aims to
uncover supervised information inherent in the data. Specifically, DSSCT
leverages data augmentation and triple contrastive loss to obtain more
effective low-dimensional representations that capture the similarity and
difference among different samples. In addition, we introduce a dual self-
expression matrix fusion strategy to further enhance the discriminant of
the self-expression matrix used in DSSCT. To evaluate the performance
of our proposed method, we conduct extensive experiments on several
widely used public datasets and achieved excellent performance when
compared with other state-of-art methods.

Keywords: Deep subspace clustering · Triple contrastive loss · Dual
self-expression matrix

1 Introduction

Clustering is an unsupervised learning methodology, which separates samples
into corresponding classes without labels’ information. With the development
of the times, more and more complex high-dimensional data have emerged.
However, traditional clustering algorithms such as k-means [11] and spectral
clustering [5,8] have shown adverse effects in those data. Subspace clustering
[10] assume that different subsets of features may exhibit distinct clustering
patterns. Subspace clustering methods can be broadly categorized into four
main categories, i.e., Iteration-based methods [1], Algebra-based methods [9],
Statistical-based methods [28], and Self-expression-based methods [25]. Among
them, self-expression-based subspace clustering has attracted a lot of researchers’
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attention. Numerous traditional subspace clustering methods has focused on
improving subspace clustering performance by introducing various constraints
on the matrix [8,25], but they have weak performance in dealing with non-linear
subspace data. With the development of deep neural networks (DNNs), a few
researchers proposed deep subspace clustering methods that employ neural net-
works to learn a non-linear mapping relationship between the original data and
its latent feature [7,16,18]. However, conventional subspace clustering methods
often rely on a single feature extraction, which may not capture the crucial
features and exploit the rich information contained in data [13] e.g., light, dark-
ness, shape, position, etc. These limitations undoubtedly impede the efficiency
of subspace clustering.

Self-supervised learning allows for leveraging large amounts of unlabeled
data to learn useful representations or features from the data. In recent years,
Contrastive learning [4,27] has gained significant attention and success in self-
supervised domains. It is based on the principle of encouraging the model to
learn a distinction between similar samples and dissimilar samples. It allows the
model to reduce the redundant features in learning representations and learn
more discriminative features [12].

Motivated by recent progress in deep subspace clustering and self-supervised
learning, in this paper we introduce a novel end-to-end trainable framework
called DSSCT (Deep Self-Supervised Subspace Clustering with Triple Data). Our
proposed method overcomes the limitation of traditional subspace clustering and
shows excellent performance on benchmark dataset. The framework of the model
is shown in Fig. 2. In our proposed method, we use the triple contrast module
and the dual self-expression module for training to learn better low-dimensional
latent features and enhance the discriminant of self-expression matrix. The main
contributions of this paper are as follows:

(1) We propose a novel end-to-end trainable framework called DSSCT (Deep
Self-Supervised Subspace Clustering with Triple Data), which employs a
triple contrastive module to capture significant differences and extract self-
expression information in latent subspace.

(2) We assume that the positive sample pairs lie in the same subspace and keep
difference with negative samples. Based on this assumption, we design a dual
self-expression structure and fuse two self-expression matrices as the affinity
matrix to improve the discriminant ability of the affinity matrix.

(3) We conduct extensive experiments on four benchmark datasets to verify the
superiority of our DSSCT.

2 Related Work

2.1 Deep Subspace Clustering

Subspace clustering is an effective clustering technique, which assumes data
points whose lie in the same subspace can well be represented by a low-
dimensional linear subspace [8]. Traditional subspace clustering for dealing with
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linear subspace problems are based on spectral clustering [26]. They can be uni-
fied into two setps: a) building a affinity matrix; b) applying the matrix into
spectral clustering. Ehsan et al. [25] proposed the Sparse Subspace Clustering
(SSC) algorithm, which imposes an l1 norm on self-expression matrix to make
the feature in subspace as sparse as possible. But SSC is sensitive to the noise
of data. To deal with this problem, René et al. [26] proposed the Low-Rank
subspace clustering (LRR) method, which used kernel norm to optimize the
self-expression matrix. However, some researchers [3,6,21,24,31] observed that
traditional subspace clustering methods, both SSC and LRR, often exhibit lim-
ited performance when applied directly in the original subspace. Most classical
methods can be formulated as:

argmin
θ∈RN×N

‖X − Xθ‖2F + R(θ), s.t.(θ) = 0 (1)

where R(θ) represent different norms. With the development of deep learning,
more and more works leverage deep neural networks for data projection and clus-
tering. They project the input data into a more suitable feature space by deep
neural networks, and then applying clustering algorithms specifically designed
for the projected representation [12]. In the past years, Deep subspace clustering
network (DSC-NET) was proposed by Ji et al. [13], as shown in Fig. 1. DSC-NET
inserted a fully connected linear as self-expression module between the encoder
and decoder to generate the suitable subspace clustering coefficient. Inspired by
low-rank representation, Kheirandishfard et al. [14] extended DSC-net and pro-
posed Deep Low-Rank Subspace Clustering (DLRSC) to enable subspace clus-
tering using the low-rank features that existed in original data separate samples.
For a given data matrix X ∈ RN×D, the deep subspace clustering network can
be described by the formulation:

lθ =
1
2

∥
∥X − X̄

∥
∥
2

F
+ ϕ1 ‖θ‖p +

ϕ2

2
‖Z − Z · θ‖2F , s.t.diag(θ) = 0 (2)

where Z is the latent features obtained after convolutional auto-encoder that its
different classes of features belong to different subspaces.

Fig. 1. The framework of Deep Subspace Clustering Network.

2.2 Self-supervised Deep Subspace Clustering

Self-supervised learning [12,15,17] can be broadly classified into two categories:
generative and discriminative methods. Generative models take the original data
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as input to project it into the latent space and then perform pixel-level recon-
struction. Since depth subspace clustering relies solely on the reconstruction of a
single pixel of the auto-encoder to map the data into the latent space. Therefore,
many researchers leverage self-supervised learning methods to acquire additional
auxiliary information and optimize features in the latent subspace. By designing
pretext tasks that do not require human annotations, these approaches aim to
exploit the inherent structure and patterns within the data to learn meaning-
ful representations. Inspired by self-supervised learning, Zhou et al. [31] made
further advancements to the Deep Subspace Clustering (DSC) model by intro-
ducing an adversarial approach known as Discriminative Adversarial Subspace
Clustering (DASC). Then Yu et al. [29] proposed DSC-DAG, which leverages
the dual generative adversarial networks (GANs) for learning latent features of
the input data through an adversarial training process. In addition, Zhang et
al. [30] proposed S2ConvSCN to optimize the self-expression model using the
auxiliary information contained in the spectral clustering fused into the sub-
space clustering. Inspired by contrastive learning, Peng et al. [3] proposed deep
contrastive subspace clustering (DSCSC) network, which enhanced the perfor-
mance of subspace clustering. Chen et al. [20] proposed DSCNSS, which used the
supervised information provided by clustering pseudo-label to improve network
performance.

3 Method

In this section, we provide a comprehensive overview and all the necessary details
of our model.

3.1 Architecture of DSSCT

Different from previous work, DSSCT consists of three modules: a) Triple
Autoencoder Module (TAM), which consists of a triplet generation module and
stacked convolutional auto-encoder. TAM can reconstruct triple data and cap-
ture the latent feature; b) Triplet Contrastive Module (TCM) projects the latent
feature into a triple contrastive subspace to capture the relationship between pos-
itive pairs and negative pairs; c) Dual Self-Expression Fusion Module (DSFM),
which incorporates dual self-expression layers to enhance the discriminant abil-
ity of the model. In the following, we will provide detailed explanations of each
module incorporated in our model and show our model in Fig. 2.

Triple Auto-encoder Module (TAM). We first introduce the basic mod-
ule TAM in DSSCT. TAM contains the triple data generation module and the
triple auto-encoder module. In the triplet data generation module, we can eas-
ily generate the triplet data through data augmentation. Specifically, for given
data Xanc = [x1...xi...xn] ∈ RN×D, we use random data augmentation strat-
egy τ i (.) for each xi to get augment data x̂i = τ i (xi). 2020 Mahdi et al.
[16] shows that selecting an appropriate data augmentation strategy plays an
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Fig. 2. The network architecture of the proposed DSSCT method, which consists of
three modules divided by dotted line with different colors. The TAM is used to learn
the latent embedded representation Zanc, Zpos, Zneg, then DSFM combines Zanc, Zpos

with θ, θpos to reconstruct the subspace latent representation. At the same time, TCM
guides framework to learn the discriminative feature.

important role in improving subsequent task performance. Therefore, we follow
the same augmentation strategy to construct our positive and negative pairs.
In this work, six types of data augmentation methods are used i.e., Posterize,
Sharpness, FlipLR, ShearX, TranslateY and Contrast. Then we can easily obtain
positive sets Xpos = {x̂1...x̂i...x̂n} and negative sets Xneg =

{

x̂
′
1...x̂

′
i...x̂

′
n

}

.
Then triple data generation module combines the three sets to get triplet data
T = {Xanc,Xpos,Xneg}. For a specific sample xi, we use {xi, x̂i} as a positive
pair and choose

{

xi, x̂i, x̂
′
i

}

as a group of triplet data, where xi is anchor sample,

x̂i is a positive sample and x̂
′
i is negative sample selected different from xi and

x̂i. Subsequently, the triple auto-encoder module, which consists of a few shared
auto-encoders, maps the triplet data T into the latent subspace and gets the
reconstructed data X̄anc, X̄pos, X̄neg in the same triplet subspace. Finally, TAM
network parameters are updated through the process of backpropagation with
the following loss function:

lrec =
1
2

(∥
∥Xanc − X̄anc

∥
∥
2

F
+

∥
∥Xpos − X̄pos

∥
∥
2

F
+

∥
∥xneg − X̄neg

∥
∥
2

F

)

(3)

Triplet Contrastive Module (TCM). To preserve both local and overall
structural information of the data, we propose a novel joint contrast loss function
that combines the triplet loss and the temperature cross-entropy loss. This joint
loss function encourages the model to learn an affinity matrix that captures
more semantic information. Specifically, under the limitation of margin, triplet
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loss enforces a higher similarity between samples Xanc and Xpos compared to
the negative pair {Xanc,Xneg} i.e., s(Xanc,Xpos) − s(Xanc,Xneg) > margin.
Furthermore, the temperature cross-entropy loss can also be seen as soft triplet
loss but with an adaptive margin, which will compensate for the limitation of
triplet loss with a fixed margin. To alleviate the information loss caused by the
triplet contrastive module, we introduce a projector F (·) to transform the triple
latent features into another latent subspace, rather than directly perform triple
contrastive on the original latent subspace. Note that F (·) has consisted of two-
layer fully connected nonlinear MLP. The triplet contrastive loss function can
be formulated by Eq. 6:

ltriple = max(F (Zanc) · F (Zpos)− F (Zanc) · F (Zneg) + margin, 0) (4)

lCe = log(
exp(F (Zanc) · F (Zpos)/ι)

exp(F (Zanc) · F (Zpos)/ι) + exp(F (Zanc) · F (Zneg)/ι)
) (5)

ltripleCe = ξ1 · ltriplet − ξ2 · lCe (6)

where ι is temperature parameter that control the softness, margin is similarity
parameter that restraint the triplet data, ξ1, ξ2 are trade-off parameters.

In TCM, the reason that we combine the triplet loss and the temperature
cross-entropy loss can be summarized as follows: a) Triplet loss could preserve
local structure information and maintain a stable self-expression metric. b) Tem-
perature cross-entropy loss can be regarded as soft triplet loss, which will com-
pensating for the limitation of the fixed margin. c) The joint loss function will
reduce the influence of negative pairs and enhancing the performance of DSSCT.

Dual Self-expression Fusion Module (DSFM). The dual self-expression
fusion module is designed to fuse dual self-expression matrices and get discrimi-
nant features. With the constraint in Eq. 6, our model will follow the subspace-
preserving property in the latent space to construct the self-expression layer.
Different from other works, we believe that the positive sample pairs not only
lie in the same subspace, but also can express each other in the latent subspace
i.e., Zanc = Zanc · θ, Zpos = Zpos · θpos. Therefore, we use a weighted fusion
strategy to obtain the shared self-expression matrix C = ζ1 · θ ⊕ ζ2 · θpos, where
ζ1 and ζ2 are hyper-parameters, ⊕ denotes an addition with different weights.
The loss function of the dual self-expression fusion module can be described by
the following equation:

lself =
1
2
(α ‖Zanc − Zanc · θ‖2F + (1 − α) ‖Zpos − Zpos · θpos‖) + (β ‖θ‖F

+(1 − β) ‖θpos‖F ), s.t.diag(θ) = 0, diag(θpos) = 0
(7)

where α and β are different trade-off parameters that apply different attention
to the dual self-expression matrix.
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3.2 Optimization and Training Strategy

Our framework can be regarded as a ’multi-task’ model, so it is still difficult to
train the million-parameters network model directly. Therefore, we divide the
whole training strategy into two parts i.e., pre-training and fine-tuning phases
to obtain faster convergence speed and better generalization ability. At first, we
pre-train the auto-encoder using the triplet data with Eq. 2. Then we fine-tune
the whole network with overall objective loss Eq. 8 and obtain the affinity matrix
W through W = |C|+|C|T

2 .

ltoal = λ1lrec + λ2lself + λ3ltripleCe (8)

where λi, i ∈ (1, 3) is trade-off parameter of DSSCT, W is regarded as the
input of spectral clustering algorithm to get clustering result. The optimization
strategy of our model is presented in Algorithm 1.

Algorithm 1. Training procedure of our DSSCT-Net
Input: Data X, trade-off parameters λ1,λ2,λ3,λ4,α, β margin, temperature ι,

maximum iteration Tmax, and Test iteration Ttest.
Pre-training: Pre-train auto-encoder via (5);run TAM module to initialize

Xpos and Xneg ; initialize θ and θpos with 1.0e − 8;
Fine-tuning:
while iter < Tmax do

update Xpos and Xnbeg by running TAM module;
run the encoder to extract feature;
update all the network parameters via minimizing ltoal with Adam solver;
if iter%Ttest = 0 then

run the DSFM module to get affinity matrix C = ω1 · θ ⊕ ω2 · θpos.
run the Spectral Clustering on C.

end if
end while

Output: label Y.

4 Experiments

In this section, we conducted a comprehensive evaluation of our proposed method
on four public benchmark datasets. To assess its effectiveness, we compared our
approach against state-of-art subspace clustering methods, and the details of
experience will be shown in Sect. 4.3, 4.4 and 4.5.

4.1 Datasets

There are four public datasets included: COIL20 [19], ORL [22], COIL100 [19],
Extended Yale B [10].
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Coil20 dataset is a most common object dataset, which is consisted of 1440
grayscale images of 20 objects, each with the dimension of 32 × 32 × 1.

ORL is a widely adopted face dataset in the field of feature extraction and image
clustering. It comprises facial images collected from 40 distinct individuals. Each
individual’s face is represented by 10 images captured from different viewing
angles, resulting in a total of 400 images on the dataset, we down-sample the
dimension from 112 × 92 to 32 × 32.

Coil100 dataset comprises 1440 RGB images of 100 different objects. Following
DSCN [13], we down-sample the dimension of those RGB images from 128×128
to 32 × 32 and use their grayscale version.

Extended Yale B is also a popular face dataset. It contains 38 individuals with
64 images, each recorded from different angles, for a total of 2432 face images.
According to previous work, we down-sampled dimension to 48 × 48 × 1. Some
images of the dataset are shown in Fig. 3.

Fig. 3. Sample images of the dataset used in the paper

4.2 Evaluation Indicators

In our experience, we employed two widely adopted performance metrics i.e.,
Accuracy (ACC) [23] and Normalized Mutual Information (NMI) [2], to assess
the effectiveness of our method. ACC is used to evaluate the clustering perfor-
mance, and it can be described by the following formulation:

ψ(a, b) =
{
1 whilea �= b
0 whilea = b

(9)

ACC = 1 − argmin

∑N
i=1 ψ(yi, ŷi))

N
, s.t.(yi, ŷi)εK (10)

where N is the number of images, xi denotes a sample that input the model, ŷi

s the prediction label output by the model, yi is the ground truth of xi, ψ(.)
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Table 1. DSSCT-net clustering performance on Coil20 and Coil100 datasets

Methods Coil20 Coil100
ACC NMI ACC NMI

SSC 0.8631 0.8892 0.5510 0.5841

AE+SSC 0.8711 0.8747 0.4607 0.4871

LRR 0.8118 0.8603 0.4018 0.4721

ENSC 0.8760 0.8952 0.5732 0.5924

EDSC 0.8371 0.8828 0.6187 0.6751

SSC-OMP 0.6410 0.7412 - -

DSC-NET-l1 0.9314 0.9353 0.6638 0.6720

DSC-NET-l2 0.9368 0.9408 0.6904 0.7015

LRSC 0.7416 0.8452 0.4933 0.5810

DLRSC 0.9708 - 0.7186 -

DSSCN 0.9799 - 0.7253 -

S2ConSCN -l1 0.9786 - - -

S2ConSCN -l2 0.9767 - - -

DSCSC 0.9788 0.9742 - -

DSCNSS-l1 0.9606 - 0.6966 -

DSCNSS-l2 0.9624 - 0.7142 -

DSSCT (ours) 0.9833 0.9824 0.7428 0.7528

represent discriminant function, K is the number of subspaces. NMI is another
commonly used in clustering. It accounts for the clustering quality in terms of
both cluster purity and cluster completeness, and it can be formulated by Eq. 11:

NMI(Y, Ŷ ) = 2N

∑Y
i=1

∑Ŷ
j=1 mij log(

Nmij

mimj
)

∑Y
i=1

∑Ŷ
j=1 mimj log(

mi
N

) log(
mj

N
)

(11)

where Y, Ŷ are the collections of yi and Ŷi, mi is the number of i-th class and mj

is the prediction number of j-th class. mij is the number of predicted categories
that do not match the true labels. Note that these metrics provide robust and
objective measures for evaluating our model, and both have a range of [0, 1],
where the value more closer to 1 indicates better performance.

4.3 Coil20 and Coil100 Clustering

To evaluate the effectiveness of our model, we performed experiments on two
object datasets and compared with several classic and recent methods. Accord-
ing to the previous work, we down-sample images to 32 × 32 and use the
same experimental setup as DSCN. Specifically, the auto-encoder consists of
one layer of convolutional layers with 15 and 50 channels, and the kernel sizes
are 3×3 and 5×5 respectively, and the network setting is shown in Table 4. For
Coil20 (K = 20) dataset, the parameter of our model used as follows: λ1 = 10.0,
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λ2 = 75.0, λ3 = 20.0, λ4 = 10.0, ι = 0.5, margin =0.25. The Coil100 dataset
(K = 100) has a higher number of categories compared to COIL20, so we use the
following trade-off parameters: λ1 = 10.0,λ2 = 75.0, λ3 = 20.0, λ4 = 10.0, ι = 0.5,
margin = 0.2. Table 1 summarizes the clustering results on two object datasets.
It is able to see that the accuracy of our method is higher than DSC-net-l2 by
4.58% and 4.18% on the two datasets, and both better than the current self-
supervised methods. This demonstrates the excellence of our model on the item
dataset.

Table 2. DSSCT-net clustering performance on ORL and Extended Yale B datasets

Methods ORL EYale B
ACC NMI ACC NMI

SSC 0.7425 0.8459 0.7354 0.7796
AE+SSC 0.7450 0.8824 0.7475 0.7764
LRR 0.8110 0.8603 0.8499 0.8636
ENSC 0.7525 0.8540 0.7537 0.7915
EDSC 0.7038 0.7799 0.8814 0.8835
SSC-OMP 0.7100 0.7952 0.7372 0.7803
DSC-NET-l1 0.8550 0.9032 0.9681 0.9687
DSC-NET-l2 0.8600 0.9034 0.9733 0.9703
LRSC 0.7200 0.8156 0.7913 0.8264
DLRSC - - 0.9753 -
DSSCN 0.8850 - 0.9432 -
S2ConSCN -l1 0.8875 0.9214 0.9848 -
S2ConSCN -l2 0.8950 0.9238 0.9844 -
DSCSC 0.9075 0.9444 0.9864 0.9815
DSCNSS-l1 0.8868 - 0.9792 -
DSCNSS-l2 0.8921 - 0.9815 -
DSSCT(ours) 0.9084 0.9519 0.9823 0.9756

We also visualized the loss functions during alternation training. Figure 4
shows that the loss of each model gradually decrease until it become stable. With
the optimization of other sub-loss, the affinity Loss demonstrates that affinity
matrix θ strives to learn information as much as possible in the subspace.

4.4 ORL and Extend Yale B Clustering

Then we evaluate our method on the face image ORL and Extend Yale B.
In the process of experience, the structure of the auto-encoder still consistent
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Table 3. Accuracy clustering result (%) on Coil20 dataset with different combinations
of modules

Coil20 Coil100
ACC NMI ACC NMI

TAM 0.9444 0.9448 0.6938 0.7086
TAM with TCM 0.9826 0.9819 0.7322 0.7455
TAM and TCM with DSFM 0.9833 0.9824 0.7428 0.7528

with previous work. Both encoder and decoder have three-layer convolutional
structure with (5, 3, 3) and (10, 20, 30) channels, and the kernel sizes are 5 × 5
and 3 respectively. As shown in Table 2, our model achieves an accuracy of
90.84%, which is better than the DSC-net-l2 method by 4.84% and higher than
the compared methods. On the Extend Yale B dataset, we achieve an accuracy
of 98.23%, which also has perfect performance. It is worth noting that we do
not specifically train the pre-trained model, so there still have some potential to
improve the results on the face dataset. Table 4 shows the details of the network
on different real-word datasets.

Table 4. The network setting for different dataset

encoder-1 encoder-2 encoder-3 self-expression decoder-1 decoder-2 decoder-3
Coil20 3 × 3 - - 1440 × 1440 - - 3 × 3
Coil100 5 × 5 - - 7200 × 7200 - - 5 × 5
ORL 5 × 5 3 × 3 3 × 3 400 × 400 3 × 3 3 × 3 5 × 5
EYale B 5 × 5 3 × 3 3 × 3 2432 × 2432 3 × 3 3 × 3 5 × 5

4.5 Ablation Experiments

In order to assess the positive impact of different modules on DSSCT (Deep Self-
Supervised Subspace Clustering with Triple Data), some ablation experiments
are conducted. We performed ablation experiments on two object datasets and
the results of the experiment are summarized in Table 3. In addition, we have
visualized the block-diagonal structure matrix generated by our method and
compared them with DSC-Net on Coil20, Coil100 and ORL datasets. Specifically,
the affinity matrix is a mutual-expressed matrix that has high-dimensional data
in a particular low-dimensional subspace. Therefore, the affinity matrix with
subspace-preserving properties should have a distinct block diagonal structure
and the more distinct block diagonal the better discriminant. As shown in Fig. 6,
our model has obtained a more discriminative block diagonal matrix on different
datasets.
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Fig. 4. The optimized trend of sub-loss (a) Triple Loss; (b) Rec Loss; (c) Affinity Loss
(d) Self−Expression Loss

Fig. 5. The block-diagonal structure matrix of DSCN on different datasets

Fig. 6. The block-diagonal structure matrix of our method on different datasets

5 Conclusion

In this paper, we proposed a novel framework called DSSCT-net, which inte-
grated the triplet contrastive loss into our model. We introduce a dual self-
expression layer structure to enhance the discriminant of our model. The exper-
imental result shows that our model gets excellent performance on many real-
word datasets and is competitive compared with other state-of-art methods. In
the future, we will continue improve the robustness and efficiency of our model.
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