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Abstract. License plate detection is a critical component of license
plate recognition systems. A challenge in this domain is detecting small
license plates captured at a considerable distance. Previous researchers
have proved that pre-detecting the vehicle can enhance small license plate
detection. However, this approach only utilizes the one-way relation that
the presence of a vehicle can enhance license plate detection, potentially
resulting in error accumulation if the vehicle fails to be detected. To
address this issue, we propose a unified network that can simultaneously
detect the vehicle and the license plate while establishing bidirectional
relationships between them. The proposed network can utilize the vehicle
to enhance small license plate detection and reduce error accumulation
when the vehicle fails to be detected. Extensive experiments on the SSIG-
SegPlate, AOLP, and CRPD datasets prove our method achieves state-
of-the-art detection performance, achieving an average detection AP 5
of 99.5% on these three datasets, especially for small license plates. When
incorporating a license plate recognizer that relies on character detection,
we can achieve an average recognition accuracy of 95.9%, surpassing all
comparative methods. Moreover, we have manually annotated the vehi-
cles within the CRPD dataset and have made these annotations publicly
available at https://github.com/kiki00007/CRPDV.

Keywords: License plate detection - License plate recognition - Small
license plate - Bidirectional vehicle-plate relation

1 Introduction

Automatic license plate recognition (ALPR) has recently gained significant pop-
ularity in various applications, such as traffic enforcement, theft detection, and
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automatic toll collection. The ALPR system typically consists of three stages:
license plate detection, character detection, and character recognition [1]. Among
these stages, license plate detection plays a pivotal role in determining the over-
all accuracy of the ALPR system. Specifically, detecting small license plates
presents a significant challenge due to their size.

As shown in Fig. 1(a), many ALPR methods have been proposed to directly
detect the license plate from the input image [6,28]. However, detecting the
license plate directly can lead to missed detections, primarily due to its small
size. To address this issue, Kim et al. [12,14] propose a two-step approach as
depicted in Fig. 1(b), where the vehicle is first pre-detected, followed by license
plate detection within the vehicle region. These methods reduce the search region
and mitigate background noises, enhancing license plate detection. Neverthe-
less, these methods may encounter error accumulation if the vehicle fails to be
detected, resulting in subsequent failures in license plate detection. To mini-
mize error accumulation, Chen et al. [5] propose a fusion approach illustrated
in Fig. 1(c), which combines direct license plate detection (Fig.1(a)) and vehicle
pre-detection (Fig.1(b)), merging both detection branches to obtain the final
results. However, this approach is time-consuming due to the involvement in
multiple detection branches and the subsequent merge operation.
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Fig. 1. (a) Direct license plate detection from the input image. (b) License plate detec-
tion based on vehicle pre-detection. (c) License plate detection by combining direct
detection and vehicle pre-detection. (d) Our proposed method, using bidirectional
vehicle-plate relationships to enhance license plate detection.

To address the challenges mentioned earlier, as depicted in Fig. 1(d), we pro-
pose simultaneous detection of both the vehicle and the license plate, leveraging
their bidirectional relationship to enhance small license plate detection. This app-
roach facilitates mutual reinforcement between vehicles and license plates due to
their interdependency. In comparison to direct detection (Fig. 1(a)), our method
utilizes the presence of the vehicle to improve license plate detection. Unlike the
vehicle pre-detection approach (Fig.1(b)), our method mitigates error accumu-
lation arising from the one-way relationship between the vehicle and the license
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plate. Additionally, compared to the fusion approach (Fig.1(c)), our method
enhances inference speed through simultaneous detection and bidirectional rela-
tion mining. Extensive experiments on the SSIG-SegPlate [9], AOLP [11], and
CRPD [32] datasets validate the effectiveness of our method, achieving an aver-
age detection APg 5 of 99.5%, particularly for small license plates. When com-
bined with a YOLO-based character recognizer [15], our method outperforms
other state-of-the-art techniques, achieving an average recognition accuracy of
95.9%. Notably, annotations for both vehicles and license plates are available
for the SSIG-SegPlate and AOLP datasets within the community. However, for
the CRPD dataset, only license plate annotations are provided. To support the
community, we manually annotated vehicles in the CRPD dataset and made the
annotations publicly available at https://github.com/kiki00007/CRPDV.

2 Related Work

2.1 Object Detection

Object detection is a task that involves locating the bounding box and pre-
dicting the category of an object. Previous object detectors can be broadly
categorized into two types based on the detection stage: two-stage detectors
[17,22] and one-stage detectors [8,18]. Additionally, they can be classified as
anchor-based [18,22] or anchor-free [26,30] based on the matching mechanism.
However, these methods typically involve complex post-processing and match-
ing procedures. To reduce complexity, DETR-based methods [4,31] utilize the
transformer [27] architecture and object queries to directly predict the class
and bounding box of an object. However, the aforementioned methods ignore
the relationships between different objects, which is suboptimal to small object
detection. In this work, besides object detection, we propose to utilize the bidirec-
tional relationships between vehicles and license plates to enhance small license
plate detection.

2.2 License Plate Detection

There are two prevailing approaches for license plate detection: direct detection
[6,28] and vehicle pre-detection [12,14]. The former involves directly detecting
the license plate in the image. However, these methods may not work well for
small license plates due to their small size. The latter approach, known as vehicle
pre-detection, first detects the vehicle in the image and then locates the license
plate within the vehicle region. This approach reduces the search region and
mitigates background noises, enhancing small license plate detection. However,
these vehicle pre-detection methods are prone to error accumulation because
the absence of vehicle detection inevitably leads to the failure of license plate
detection. To mitigate error accumulation, Chen et al. [5] introduce a method
incorporating two detection branches. One branch focuses on pre-detecting the
vehicle, and the other directly detects the license plate. The outputs from these
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Fig. 2. Overall architecture. The network utilizes an encoder-decoder architecture,
taking an image as input and generating predictions for the category, bounding box of
vehicles (V) and license plates (LP), and the relationships between them.

branches are then fused to obtain the final results. However, this approach intro-
duces significant computational overhead. In this work, we propose to simulta-
neously detect vehicles and license plates and leverage bidirectional relationships
between them to enhance the effectiveness and efficiency of small license plate
detection.

3 Method

As depicted in Fig. 2, our proposed network can simultaneously detect vehicles
and license plates and generate their bidirectional relationships. When a license
plate subordinates to a vehicle, their relation confidence is higher, and vice versa.
This way, it can mutually enhance the detection of vehicles and license plates.

3.1 Network Architecture

The proposed network can be mainly divided into three parts: (I) A CNN back-
bone to extract visual features from the input image; (IT) A transformer encoder-
decoder to process visual features and generate global features; (IIT) A multi-
layer perceptron layer (MLP) to generate predictions based on global features.
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Backbone: We utilize ResNet-50 [10] to extract visual features from the input
image into feature maps. The size of the input image and features maps is
[Ho, Wy, 3] and [H, W, C], respectively, s.t., H = Hy/32 and W = W;/32. Sub-
sequently, a 1x1 convolutional layer is utilized to reduce the channel dimension
from C' = 2048 to d = 256. Since the subsequent encoder requires a sequence as
input, we convert the reduced features into a sequence of length H xW, where
each step corresponds to a vector of size d. As a result, we obtain a flattened
feature map with the dimension of [H xW,d].

Encoder: The encoder follows the vanilla transformer [27], incorporating six
identical units. Each unit comprises an eight-head self-attention network and a
two-layer feed-forward network (FFN) with the dimension of dyy = 2048. The
output dimension is set to dpoger = 512. The Query, Key, and Value are all
obtained by the sum of positional encodings and visual features from the CNN
backbone to generate global features.

Decoder: The decoder also follows the vanilla transformer, incorporating six
identical units. Each unit comprises an eight-head cross-attention network, an
eight-head self-attention network, and a two-layer feed-forward network. Similar
to the encoder, the FF'N dimension is dyy = 2048, and the output dimension is
dmoder = D12. The decoder takes three inputs, i.e., positional encodings, V-LP
queries, and global features from the encoder, to generate N = 100 embeddings
for predictions. In the cross-attention network, the Value is obtained directly
from global features. The Key is the sum of global features and positional encod-
ings, and the Query is the sum of positional encodings and V-LP queries.

Vehicle-Plate Instance Prediction: The output embeddings generated by
the decoder are converted into vehicle-plate instances using MLPs. We define
the vehicle-plate instance as a five-tuple consisting of vehicle confidence, vehicle-
plate relation confidence, plate confidence, vehicle box, and plate box. Specif-
ically, two three-layer MLPs are employed to predict the bounding box of the
vehicle and the license plate. Additionally, three single-layer MLPs are utilized
to estimate the confidence of the vehicle, the plate, and the vehicle-plate relation.

3.2 Training Objective

We treat the prediction of vehicle-plate instances as a problem of set prediction,
involving a bipartite matching between the predicted instances and the ground
truth. When presented with an input image, our model generates N = 100 pre-
dicted instances, where IV represents the number of V-LP queries. The prediction
set is represented as P = p’,i = 1,2,..., N. The ground-truth set is represented
as G = ¢',i =1,2,..,M,¢,...,¢, where ¢ denotes a null value for one-to-one
matching between P and G, and M denotes the total number of ground-truth
instances, s.t., M < N. The number of ¢ plus M equals N.
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As demonstrated in Eq. (1), we use the Hungarian algorithm [13] to find the
best bipartite matching ¢ by minimizing the overall matching cost (.os¢, which
is composed of the matching cost of all N matching pairs.

o= argminGeost, 0 € On

N
) . 1
Ccost = Z Cmatch (gl)pU(Z)) ( )

where Oy represents the one-to-one matching solution space, and o represents
an injective function from the ground-truth set G to the prediction set P.
Cmaten (g%, p7@) represents the matching cost between the i-th ground truth and
o(1)-th prediction, where o (i) represents the matching index of the prediction.

Fig. 3. Ground truth during training. The red and green boxes denote the ground-truth
boxes of vehicles and license plates, respectively. The solid purple line represents the
ground-truth V-LP relation, i.e., the positive relation sample used during training. The
dotted purple line denotes no relation between the vehicle and the license plate, i.e.,
the negative relation sample, which is not used during training. (Color figure online)

As demonstrated in Eq. (2), the matching cost of each pair contains the
classification loss (7.5 and bounding box regression loss Ckboz.

Cmatch(gi,pg(i)) = [ Z Oéjcjcls + B2 Z Ckboac (2)

JEV,p,T kev,p

where v, p,r represents the vehicle, license plate, and vehicle-plate relation,
respectively. (7. is calculated by the softmax cross-entropy loss. (¥y,, is cal-
culated by the weighted sum of L; loss and GIoU [23] loss. In this work, we
emphasize classification by setting 81 to 2 and (s to 1. Among classification, we
emphasize vehicle-plate relation by setting o, to 2, a,, to 1, and «; to 1. The
ground truth during training is illustrated in Fig. 3.
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4 Experiments

4.1 Datasets

We utiliz three publicly available datasets: SSIG-SegPlate [9], AOLP [11], and
CRPD [32]. SSIG-SegPlate and AOLP provide the annotations for the vehicle
and the license plate, but CRPD only provides the annotations for the license
plate. We manually annotated the vehicles in CRPD and made them available
at https://github.com/kiki00007/CRPDV.

SSIG-SegPlate comprises 2,000 Brazilian license plates obtained from 101
vehicles. Following the official settings, we use 40% images for training, 20% for
validation, and 40% for testing.

AOLP consists of three distinct subsets, each captured using different shoot-
ing methods. The AC subset focuses on static vehicles, while the LE subset
captures vehicles violating traffic rules via roadside cameras. The RP subset
captures images from various viewpoints and distances using cameras mounted
on patrol vehicles. In total, the dataset includes 2,049 images containing Tai-
wanese license plates. When testing on one subset, the other two subsets are
used for training and validation.

CRPD has 33,757 Chinese license plates captured by overpasses, which cover
various vehicle models, such as cars, trucks, and buses. We follow the official
split, i.e., 25,000 images for training, 6,250 for validation, and 2,300 for testing.

4.2 Training Settings

The backbone and transformer are initialized using the pre-trained DETR [4]
model. During training, we utilize the Adam optimizer [21] to train the model
for 50 epochs with the learning rate of 10=* for the transformer and 10~ for
the backbone, weight decay to 10~%, and batch size to 2. Moreover, data aug-
mentation is adopted. First, we apply the image-level augmentation by adjusting
the brightness and contrast with a probability of 0.5. Specifically, we randomly
select a parameter from the range of [0.8, 1.2] for the brightness and contrast,
slightly modifying the original image. Second, we perform scale augmentation
by resizing the input image such that the shortest side ranges from 480 to 800
pixels, while the longest side is at most 1333 pixels. The input image is then
scaled to the range of [0, 1] and normalized using channel mean and standard
deviation. All the experiments are conducted on four NVIDIA 2080Ti GPUs.

4.3 Evaluation Protocols

We use Average Precision (AP) to evaluate license plate detection. Specifically,
we utilize the computation method introduced in COCO [19] that calculates AP
with different ToU (Intersection over Union) thresholds, i.e., ranging from 0.5 to
0.95 with an interval of 0.05. APq 5 refers to the average precision calculated
at the IoU threshold of 0.5. We utilize Accuracy as the evaluation metric for
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license plate recognition, where all characters must be recognized accurately.
We use Frame Per Second (FPS) to calculate the inference speed.

In addition, to verify the effectiveness of small license plate detection, we
categorize license plates into three groups based on their height. License plates
with a height of 25 pixels or less are categorized as small (S), those exceeding 25
pixels but not exceeding 50 pixels are categorized as medium (M), and license
plates taller than 50 pixels are categorized as large (L).

4.4 Ablation Study

Table 1. Ablation study on SSIG-SegPlate. LP: license plate. V: vehicle.

Method | LP V Relation Detection (V) | Detection (LP) | Recognition
AP AP0A5 AP APO.5 Accuracy
DETR Vv - - 45.6%  96.3% 95.4%
v Vv 78.0% 99.2% | 50.1% 97.5% 95.6%
Ours | v Vv 81.4% 100.0% | 60.6% 100.0% 96.4%
Table 2. Ablation study on AOLP. R: relation.
Detection (V) | Detection (LP) Recognition
Method |[LP V R AP AP Accuracy
AC LE RP|AC LE RP | AC LE RP
DETR. Vv - - - 53.2 52.2 43.6 | 96.1 94.3 95.3
v v 89.2 87.8 83.6 |52.2 54.6 40.6 | 96.2 95.0 94.5
Ours | v/ + +/193.9 90.8 91.5/65.2 60.8 58.2|/98.1 98.0 97.6
Table 3. Ablation study on CRPD.
Method | LP V Relation Detection (V) | Detection (LP) | Recognition
AP APy 5 AP APy 5 Accuracy
DETR Vv - - 53.0% 96.3% 86.0%
v Vv 83.9% 98.5% | 54.2% 96.2% 87.5%
Ous | v | 87.2% 98.6% 62.8% 98.6%  89.3%

As presented in Table1, Table2, and Table3, we investigate the impact of
implicit and explicit relationships between vehicles and license plates on the
SSIG-SegPlate, AOLP, and CRPD datasets, respectively. We conduct three abla-
tion experiments: (I) direct license plate detection using the vanilla DETR model;
(IT) simultaneous vehicle and license plate detection using the vanilla DETR
model, which implicitly captures the relation between vehicles and license plates;
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(III) our proposed method, except for simultaneous vehicle and license plate
detection, explicitly incorporating vehicle-plate relationships. After performing
license plate detection, we employ the same YOLO-based character recognizer
[15] for license plate recognition. Implicit vehicle-plate relationships have min-
imal impact on license plate detection and recognition. However, when incor-
porating explicit vehicle-plate relationships, our method substantially improves
license plate detection and recognition. Additionally, our method enhances vehi-
cle detection due to the bidirectional relationships between vehicles and license
plates.

As shown in Fig.4, we visualize the attention map of vehicle-plate rela-
tionships. The attention map highlights vehicles and their subordinated license
plates, which means the relationships are constructed between them. Hence, the
detection performance of vehicles and license plates are both enhanced.

Fig. 4. Visualization of vehicle-plate relationships.

4.5 Comparative Experiments

Table 4. Comparative experiments on SSIG-SegPlate.

Method Detection Recognition
AP APos FPS| Accuracy
RARE [29] - - - 93.7%
Rosetta [3] - - - 94.3%
Direct Detection [4] 45.6% 96.3% 13.0 95.4%
Vehicle Pre-detection [6] | 52.6% 97.5% 7.7 95.6%
STAR-Net [20] - - - 96.1%
Two Branches [5] 53.8% 98.2% 5.4 96.2%
Ours 60.6% 100.0% 12.2 96.4%

As presented in Table4, Table5, and Table6, we conduct comparative experi-
ments on the SSIG-SegPlate, AOLP, and CRPD datasets, respectively. In all of
these datasets, we compare three approaches: direct detection (Fig. 1(a)), vehicle
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Table 5. Comparative experiments on AOLP.

Detection Recognition
Method AC LE RP AC LE RP
AP APps AP APgs AP APgs Accuracy
RCLP [16] - 98.5 - 97.8 - 95.3 1 94.8 94.2 884
DLS [24] - 92.6 - 93.5 - 92.9 196.2 954 95.1
DELP [25] - 99.3 - 99.2 - 99.0 1 97.8 974 96.3
Direct Detection [4] 53.2 982 522 96.1 436 978 |96.1 94.3 95.3
Vehicle Pre-detection [6] | 47.8 98.1 53.8 96.3 444 96.9 |96.2 95.0 94.5
Two Branches [5] 584 96.4 57.8 93.5 48.8 98.2 |94.7 922 96.2
Ours 65.2 100.0 60.8 99.0 58.2 100.0/98.1 98.0 97.6

Table 6. Comparative experiments on CRPD.

Method Detection Recognition
AP APos FPS | Accuracy
SYOLOv4+CRNN |[2] - - - 71.0%
RCNN+CRNN [22] - - - 73.7%
UCLP [32] - _ _ 84.1%
Direct Detection [4] 53.0% 96.3% 12.8 86.0%
Vehicle Pre-detection [6] | 57.4% 97.8% 7.4 86.2%
Two Branches [5] 58.8% 98.1% 4.8 87.5%
Ours 62.9% 98.3% 12.5 89.3%

pre-detection (Fig. 1(b)), and two branches combining direct detection and vehi-
cle pre-detection (Fig. 1(c)). To ensure a fair comparison, all of these comparative
methods utilize the same backbone and transformer as our proposed method.
After performing license plate detection, both the comparative methods and our
proposed method employ the same YOLO-based character recognizer [15] for
license plate recognition. Our proposed method demonstrates superior detection
and recognition performance on the SSIG-SegPlate and CRPD datasets while
achieving the best performance on most subsets within the AOLP dataset. Con-
cretely, our proposed method achieves an average APg 5 of 99.5% and an average
recognition accuracy of 95.9% on the SSIG-SegPlate and CRPD datasets and
three subsets of AOLP. However, for the LE subset of AOLP, our proposed
method can not effectively handle some low-light images. In future work, we aim
to enhance license plate detection under low-light conditions.

Moreover, the direct detection method [4] offers the fastest inference speed
but suffers from the lowest detection and recognition performance due to its
limited ability to detect small license plates. On the other hand, the vehicle
pre-detection method [6] improves license plate detection at the cost of slower
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Fig. 5. Visualization examples of license plate detection and recognition.

inference speed. By combining direct detection and vehicle pre-detection, the
two branches method [5] further enhances license plate detection and recogni-
tion, albeit with the slowest inference speed. In contrast, our proposed method
achieves the best detection and recognition performance while maintaining a
comparable inference speed to the direct detection method.

Figure 5 demonstrates that our proposed method can accurately detect vehi-
cles and license plates, and the YOLO-based character recognizer [15] can accu-
rately recognize the detected license plates based on character detection.

4.6 Experiments on Multi-scale License Plates

Table 7. Comparative experiments on multi-scale license plates of the CRPD dataset.

Detection (LP) Recognition
Method S M L S M L
AP APos AP APys AP APos Accuracy
Direction Detection [4] 45.3 924 56.7 96.5 626 96.9 | 82.2 86.1 86.8

Simultaneous Detection [7] | 45.0 92.0 56.6 96.8 62.1 96.9 | 82.0 86.2 86.7
Vehicle Pre-detection [6] 48.7 93.5 59.0 973 624 98.0 |83.5 874 87.6
Two Branches [5] 50.5 93.6 604 98.1 64.7 985 | 84.0 88.4 88.5
Ours 55.0 95.6 62.5 98.4 67.3 99.2 |85.1 89.2 89.9

Table 7 presents comparative experiments involving multi-scale license plates
on the CRPD dataset. Notably, we do not conduct multi-scale experiments
on the SSIG-SegPlate and AOLP datasets because the size of license plates
in these datasets is relatively consistent. In all of these sizes, we compare three
approaches: direct detection (Fig. 1(a)), vehicle pre-detection (Fig. 1(b)), and two
branches combining direct detection and vehicle pre-detection (Fig. 1(c)). More-
over, the simultaneous detection method denotes detecting vehicles and license



264 S. Dai et al.

plates simultaneously using the vanilla DETR model. To ensure a fair compari-
son, all of these comparative methods utilize the same backbone and transformer
as our proposed method. After performing license plate detection, both the
comparative methods and our proposed method employ the same YOLO-based
character recognizer [15] for license plate recognition. Our proposed method
demonstrates superior performance in both license plate detection and recogni-
tion across all sizes, especially for small license plate detection. Concretely, it
achieves a 4.5% AP improvement in the detection performance of small license
plates compared to the two branches method, with a 2.1% AP improvement for
medium license plates and a 2.6% AP improvement for large license plates.

As depicted in Fig. 6, our method can effectively detect small license plates
at a considerable distance. Our method can achieve comparative inference speed
with the direct detection method, surpassing other comparative methods. More-
over, our method can detect vehicles truncated by image edges due to the bidi-
rectional relationships between vehicles and license plates.

Direct Detection Vehicle Pre-dtection Two Branches Ours
70ms 120ms 180ms 80ms

Fig. 6. Visualization examples. Under challenging conditions, our proposed method
can accurately small license plates at a fast inference speed.

5 Conclusion

We propose to leverage bidirectional relationships between the vehicle and the
license plate to enhance small license plate detection. Extensive experiments
on the SSIG-SegPlate, AOLP, and CRPD datasets prove our method achieves
state-of-the-art detection performance, especially for small license plates. When
incorporating a character recognizer, our proposed method can surpass all com-
parative methods in license plate recognition. In the future, we aim to enhance
license plate detection under severe low-light conditions, enabling it to handle
more complex scenarios.
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