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Abstract. Recently, cross-modal hashing has become a promising line of
research in cross-modal retrieval. It not only takes advantage of comple-
mentary multiple heterogeneous data modalities for improved retrieval
accuracy, but also enjoys reduced memory footprint and fast query speed
due to efficient binary feature embedding. With the boom of deep learn-
ing, convolutional neural network (CNN) has become the de facto method
for advanced cross-model hashing algorithm. Recent research demon-
strates that dominant role of CNN is challenged by increasingly effective
Transformer architectures due to their advantages of long-range model-
ing by relaxing local inductive bias. However, the absence of inductive
bias shatters the inherent geometric structure, which inevitably leads to
compromised neighborhood correlation. To alleviate this problem, in this
paper, we propose a novel cross-modal hashing method termed Multi-
head Hashing with Orthogonal Decomposition (MHOD) for cross-modal
retrieval. More specifically, with the multi-modal Transformers used as
the backbones, MHOD leverages orthogonal decomposition for decou-
pling local cues and global features, and further captures their intrinsic
correlations through our designed multi-head hash layer. In this way, the
global and local representations are simultaneously embedded into the
resulting binary code, leading to a comprehensive and robust represen-
tation. Extensive experiments on popular cross-modal retrieval bench-
marking datasets demonstrate the proposed MHOD method achieves
advantageous performance against the other state-of-the-art cross-modal
hashing approaches.
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1 Introduction

With the rapid growth of multi-modal data including images, texts, videos
and audios, cross-modal retrieval [6,9,15,30] aims to perform fast and accu-
rate retrieval among different modalities, e.g., text-to-image or image-to-text
retrieval. By fully exploiting the complementarity among multiple data modal-
ities, inter-modality correlation can be uncovered in depth for significantly
improved retrieval accuracy. With the dramatic expansion of multi-modal data
volume, achieving efficient cross-modal retrieval is becoming increasingly urgent.
Emerging as a popular line of research in cross-modal retrieval, cross-modal
hashing [2,10,24] aims to project data of different modalities onto a Hamming
space, yielding compact hash codes of maintained similarity for binary feature
embedding.

As deep learning has prospered in recent years, the most representative convo-
lutional neural network (CNN) has considerably advanced the cross-modal hash-
ing for unprecedented performance improvements [1,2,10]. In particular, with the
rise of Transformer architecture and large-scale pre-trained models [14,19,22],
there is a major shift from the CNN-based to the Transformer-based meth-
ods [7,8,24], since the latter demonstrates superior performance in cross-modal
hashing. In particular, the Transformer-based vision-language models including
BERT [4,14] and CLIP [19] can well interpret and encode semantic representa-
tions of both images and text for accurate cross-modal retrieval. Aiming to cap-
ture global dependencies in sequential data, the Transformer model [25] learns
global contextual information by employing a self-attention mechanism to assess
the relative importance of each position with respect to other positions, making
the individual local contents downplayed in the feature embedding. Although
massive efforts are devoted to combining global and local information for gener-
ating more discriminative hashing codes, most studies [16,18,26] perform feature
fusion prior to hashing process without exploring intrinsic correlation between
global and local cues in the process of binary embedding. In this sense, the fea-
ture fusion is relatively independent of the binary embedding, leading to the
hashing codes which lack global-local perception capability.

To address the above-mentioned drawback, in this study, we propose a
novel cross-modal hashing method which is multi-head hashing with orthogo-
nal decomposition (MHOD) for cross-modal retrieval. In MHOD, an orthogonal
decomposition module is imposed on local tokens and global features derived
from multi-modal Transformer backbones, resulting in a set of tokens serving
as the local features. Next, both the local and global features are delivered to
our designed multi-head hashing layer to generate separate hashing codes. The
resulting binary codes are aggregated using a pooling-like operation, enabling the
combination of local and global information in a unified binary representation.
To summarize, the contributions of our work are threefold as follows:

– We leverage orthogonal decomposition for decoupling the local cues and the
global features, such that both local and global information can be fully
encoded in our cross-modal hashing framework.
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Fig. 1. The network architecture of the proposed MHOD. It consists of three primary
blocks including feature encoder used as Transformer backbone, orthogonal decompo-
sition module used for decoupling local cues and global features along with multi-head
hashing layer for generating aggregated hash codes. The resulting hash codes can be
exploited for accurate and fast cross-modal retrieval in the Hamming space. Different
from the existing methods, our method is capable of simultaneously integrating local
and global features into binary hashing within Transformer-based cross-modal hashing
framework, and considerably benefits mining the intrinsic correlation among different
modalities for accurate retrieval.

– To further explore the intrinsic correlation between the local and global fea-
tures, we simultaneously integrate them into our designed multi-head hashing
layer to generate aggregated hash codes with preferable global-local percep-
tion capability. This is in contrast to the previous methods in which feature
fusion and binary hashing are separately handled.

– Extensive experiments on two public benchmarking cross-modal retrieval
datasets demonstrate the superiority of our proposed MHOD against the
other state-of-the-art cross-modal hashing models.

The remainder of this paper is organized as follows. We elaborate on our pro-
posed MHOD model in Sect. 2 and carry out extensive experimental evaluations
in Sect. 3. The paper is finally concluded in Sect. 4.

2 The Proposed Method

2.1 The Model Framework

While Transformer-based cross-modal hashing methods have achieved consid-
erable success, they either overlook the local clues during the hashing process
or perform local-global coupling independent of binary embedding, leading to
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hash codes with degraded local-global perception. To address the drawback, we
propose a cross-modal hashing method termed MHOD for cross-modal retrieval
in this study. As shown in Fig. 1, our MHOD first leverages feature encoder
modules for generating global features from class tokens across data modalities.
Subsequently, local clues are decoupled from the local tokens via orthogonal
decomposition and combined with global features in the multi-head hashing
layer, producing aggregated hash codes for cross-modal retrieval. Next, We will
discuss these key modules and the training loss functions in details.

2.2 Feature Encoder

For notation, D = {Xi, Yi}Ni=1 denotes a batch of pairwise data modalities, while
N is the number of instances. Since we mainly focus on two different modalities of
image and text in cross-modal hashing, Xi and Yi indicate the original ith image
and text instance respectively. In each training batch, F ∈ RN×d denotes the
feature embedding extracted from the feature encoder where d is the dimension
of feature embedding. In addition, F I and FT respectively represent the feature
of image and text modality.

With the help of the successful pre-trained large models, we adopt the pre-
trained CLIP model as our feature encoder for both image and text input. More
specifically, image encoder is used as the vision Transformer structure ViT [5],
while the text encoder is GPT2 [20] which is a modified architecture devel-
oped from Transformer. For brevity, the CLIP encoders are denoted as CLIP
which takes the cross-modal image and text as input. Mathematically, the feature
encoding process of raw data can be formulated as:

Fg, Ft = CLIP (D) (1)

where Fg is essentially the object-specific class token obtained by feature encod-
ing from a global perspective, while Ft denotes the remaining local-aware tokens.

2.3 Orthogonal Decomposition

Since local tokens Ft in Eq. (1) also characterize certain global information
via self-attention mechanism for exploring local interaction, it is necessary to
decouple the local clues and the global information for deriving local features
from Ft. Following [27], consequently, we leverage the orthogonal decomposition
module for decoupling local cues and the global features. Specifically, Fg and
Ft are treated as the input, while F k

t denotes the kth token in Ft. At first, the
tokens pass through consecutive Fully-Connected layers (FCs) such that they
have the same dimension as the global features. Afterwards, each token F k

t is
projected onto the global feature Fg, which can be mathematically expressed as
follows:

F k
t,proj =

F k
t · Fg

‖Fg‖22
Fg (2)
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Fig. 2. Illustration of orthogonal decomposition for deriving the local features from
local tokens. For notation, Fg represents global feature and F k

t indicates a local token.
In order to decouple F k

t and Fg, we first project F k
t onto Fg to obtain F k

t,proj which
encodes the global component related to Fg. Thus, the orthogonal component F k

t,orth

obtained by subtracting F k
t,proj from F k

t can be treated as the local feature that is
independent of Fg.

where F k
t · Fg indicates dot product operation and ‖·‖2 is �2 norm. As demon-

strated in Fig. 2, the orthogonal component can be calculated as the difference
between F k

t and its projection onto Fg, which is formulated as:

F k
t,orth = F k

t − F k
t,proj (3)

In this way, F k
t,orth is independent of the global feature Fg, and can be treated

as the local feature Fl that is separated from the global clues.

2.4 Multi-head Hashing

To leverage both the global and local information effectively, the decoupled global
and local features are forwarded to hashing layer for generating and aggregat-
ing efficient binary hashing codes. In MHOD, the hashing layer includes mul-
tiple heads as shown in Fig. 3. Each head comprises a MLP, a tanh activation
function, and a sign function. The MLP maps high-dimensional features to low-
dimensional ones. Using the tanh function, the low-dimensional features are
rescaled from -1 to 1. Finally, the sign function converts these features into
discrete binary embeddings for generating the hash code b:

b = sign(tanh(MLP (feat))) (4)

Each hashing head within our multiple heads receives different input features
feat, with the first head taking global features. Each of the remaining local fea-
ture groups is averaged, producing averaged local features delivered to individual
hashing head. Thus a hashing matrix H ∈ RL×M can be derived, where M is
the number of hashing heads and L denotes the length of hash code. We gener-
ate multiple hash codes from global and local vectors, but only one hash code
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Fig. 3. The structure of our designed multi-head hashing module (left) and accumu-
lation mechanism for aggregating multi-head output into the final hash code (right).
Each hashing head contains a MLP, a tanh activation function, and a sign function. μ
represents the mean value operation which is used to average the local features. With
the hash codes derived from multiple hashing heads, a simple accumulation strategy is
adopted to generate the aggregated hash code.

contributes to the final feature matching. The matching is refined at each bit,
handling each bit of the final hash code via a voting mechanism. This ensures
that each bit of the hash code is optimized. As illustrated in Fig. 3, we adopt a
simple fusion mechanism to aggregate the hashing codes resulting from different
heads. Mathematically, it can be formulated as:

Bi =

⎧
⎨

⎩

1
∑M

m=1 O(i,m) > 0

−1 otherwise

(5)

Specifically, ith element of the hash code Bi is set as 1 when the sum of ith row
in H is greater than 0, and -1 conversely.

2.5 Loss Function

The loss function of our MHOD network for model training includes two critical
components, namely similarity loss and hashing loss. Let f i

I denote the feature
for image i and f j

T for the corresponding text j. With label ai for each sample,
the semantic relation of two different samples can be defined as:

Aij =
{

1 ai · aj > 0
0 ai · aj = 0 (6)
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Similarity Loss. For similarity loss, we evaluate both the inter-modality and
intra-modality feature similarity. The similarity S based on Euclidean distance
is defined as:

SIT
ij =

∥
∥
∥f i

I − f j
T

∥
∥
∥
2

(7)

For each sample within the same batch, there exist positive samples with the
same label and negative samples with different labels. Consequently, the positive
sample similarity P IT and negative sample similarity N IT can be respectively
computed as:

P IT =
1

N2

N∑

i=1

N∑

j=1

(
SIT
ij · AIT

ij

)2
(8)

N IT =
1

N2
·

N∑

i=1

N∑

j=1

((√
L − STT

ij

)
· (

1 − AIT
ij

))2

(9)

Therefore, cross-modal similarity can be formulated as:

LIT
sim = P IT + N IT (10)

Similarly, the image-related and text-specific intra-modality similarity LII
sim and

LTT
sim can be obtained respectively, and the complete similarity loss Lsim is:

Lsim = LIT
sim + LII

sim + LTT
sim (11)

Hashing Loss. In addition to similarity loss, hashing loss Lhash aims to calcu-
late the information loss of binary embedding:

Lhash =
1
M

(
M∑

m=1

Hm
I +

M∑

m=1

Hm
T

)

(12)

where H represents modality-specific hashing loss. More specifically, image-
related hashing loss HI can be formulated as:

HI =
1
N

N∑

n=1

√
√
√
√

L∑

l=1

(
f
(n,l)
I − h

(n,l)
I

)2

(13)

where h is computed as sign(f). Besides, HT can be calculated analogously.
Notably, the modality-specific hashing loss is computed independently for each
hashing head.

Overall Loss. The overall loss function is the weighted sum of the above-
mentioned similarity loss and hashing loss:

L = Lsim + λLhash (14)

where λ is a balancing hyper-parameter to compromise between the two terms.
It will be discussed in the parameter analysis in the following section of experi-
ments.
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Table 1. Comparison of different cross-modal hashing methods in the two public
datasets (mAP@all). The best results are highlighted in bold and the second best
are underlined. The results demonstrate that our method is superior to the other
state-of-the-art models in both MS-COCO and NUS-WIDE.

Dataset Method I to T T to I

16bit 32bit 64bit 16bit 32bit 64bit

MS-COCO DCMH [10] 0.5533 0.5540 0.5667 0.5272 0.5467 0.5521

SCAHN [12] 0.6095 0.6502 0.6435 0.6035 0.6403 0.6435

MSSPQ [31] 0.5710 0.5862 0.5881 0.5472 0.5630 0.5985

DADH [1] 0.6388 0.6668 0.6812 0.6027 0.6334 0.6528

DCHMT [24] 0.6447 0.6757 0.6915 0.6531 0.6832 0.7025

MHOD (Ours) 0.6595 0.6870 0.7056 0.6713 0.6940 0.7130

NUS-WIDE DADH [1] 0.6492 0.6662 0.6664 0.6501 0.6679 0.6808

DMFH [18] 0.6065 0.6212 0.6396 0.6307 0.6468 0.6798

TEACH [28] 0.6512 0.6643 0.6704 0.6732 0.6871 0.6893

DCHMT [24] 0.6799 0.6992 0.7038 0.6876 0.7104 0.7253

SCAHN [12] 0.6155 0.6403 0.6662 0.6446 0.6702 0.6980

MHOD (Ours) 0.6992 0.7083 0.7168 0.7041 0.7135 0.7299

3 Experiments

3.1 Datasets and Experimental Settings

We have evaluated our approach in two popular benchmarking datasets for cross-
modal retrieval, i.e., MS-COCO [13] and NUS-WIDE [3]. On both datasets, we
randomly select 10,000 samples for training data, 5,000 samples as queries and
the rest as retrieval database. We initialize both the image and text encoders
with a pre-trained CLIP(ViT-B/32) model. In our proposed MHOD, Adam opti-
mizer [11] is used for model training. The initial learning rate is set as 0.001 in
MS-COCO, 0.0001 in NUS-WIDE, and 1e-7 for the Transformer encoders. The
batch size is set to 64 and the number of hashing heads is 3. In terms of eval-
uation metric, mAP@all and mAP@50 are used for performance measures. All
the experiments are conducted on a server with Intel i9-10900K CPU and one
NVIDIA RTX3090 GPU using PyTorch framework.

3.2 Results

Comparative Studies. As demonstrated in Table 1, we have compared our
MHOD model with recent eleven state-of-the-art cross-modal hashing methods
including DADH [1], DMFH [18], TEACH [28], DCHMT [24], SCAHN [12],
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Table 2. Comparison of different cross-modal hashing methods in NUS-WIDE dataset
(mAP@50). The best results are highlighted in bold.

Method I to T T to I

16bit 32bit 64bit 16bit 32bit 64bit

DJSRH [23] 0.724 0.773 0.798 0.712 0.744 0.771

HNH [29] 0.582 0.789 0.800 0.423 0.747 0.781

DUCH [17] 0.753 0.775 0.814 0.726 0.758 0.781

DAEH [21] 0.766 0.789 0.809 0.718 0.751 0.766

MHOD (Ours) 0.806 0.817 0.836 0.766 0.773 0.783

Table 3. Ablation studies in MS-COCO using 64bit hashing code (mAP@all). MH
denotes our designed multi-head hashing component for generating aggregated hashing
codes. It should be noted that the first two methods corresponding to the first two rows
directly employ a straightforward sign function mapping instead of MH for binary
embedding.

Global Local MH I to T T to I

� 0.6998 0.7010

� 0.6912 0.6970

� � 0.7013 0.7076

� � 0.6934 0.7012

� � � 0.7056 0.7130

DCMH [10], MSSPQ [31], DUCH [17], DAEH [21], DJSRH [23] and HNH [29]
in the two benchmarking datasets for different cross-modal retrieval tasks.
More specifically, for image-to-text retrieval task, our MHOD reports the high-
est mAP@all scores at 65.95%, 68.70% and 70.56% in MS-COCO, surpassing
DCHMT model by 1.5%, 1.1% and 1.4% when the length of the hashing code
is 16, 32 and 64, respectively. In NUS-WIDE, analogous advantages against
DCHMT can also be observed with respective performance gains of 1.9%, 0.9%
and 1.3% for various hashing codes of different lengths. Similar results are also
shown for text-to-image retrieval task, suggesting that our method beats the
other competing models in both MS-COCO and NUS-WIDE. In terms of the
mAP@50 metric, our MHOD also reports the highest accuracies of 80.6%, 81.7%
and 83.6% in NUS-WIDE when the length of hash code is 16, 32 and 64 respec-
tively, revealing consistent advantages against the state-of-the-arts as shown in
Table 2.
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Fig. 4. Performance of the proposed MHOD with different numbers of hashing head
in NUS-WIDE using 64bit hashing code.

3.3 Ablation Study

To gain an insight into the effectiveness of each module within our MHOD net-
work, we have carried out comprehensive ablation studies for exploring the effect
of individual module on our model. Firstly, we investigate the feature fusion
module and compare different strategies of feature embedding. As illustrated
in Table 3, combining both local and global features contributes to further per-
formance boost. For text-to-image retrieval task, To be specific, our complete
model with local-global fusion provides respective performance gains of 0.5% and
1.2% over the approach with single global feature embedding and single local
feature embedding. While the global features plays a dominant role in feature
embedding, local contents are supplementary to global feature and conducive
to boosting model performance. On the other hand, with our multi-head hash-
ing layer (which is MH for short in Table 3), the retrieval accuracy increases
from 70.10% to 70.76% when only global feature embedding is performed. When
only considering local cues, similar improvement can also be observed, which
substantially suggests the beneficial role of our MH module.

In our MHOD model, the multi-head hashing module consists of multiple
hashing heads. In addition to the above ablation studies, we discuss the effect of
different head numbers on the model performance. As shown in Fig. 4, the over-
all declined performance is observed with increasing head number. This can be
explained by less tokens assigned to each head when the hashing head increases.
Consequently, the amount of information available for each individual hash-
ing head decreases. This reduction in token allocation can adversely affect the
retrieval accuracy of the hashing code generated from each head. As a result,
the aggregated hashing code combining the outputs of all the heads may still
suffer from degraded retrieval accuracy.
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Fig. 5. Demonstration of top returned results achieved by two different methods for
different cross-modal retrieval tasks. The query-related ground-truths are highlighted
in a green box, whereas the mismatched ones are annotated in a red box. Compared to
the method only considering global information, our MHOD model can retrieve more
positive images or texts that better match the query by leveraging both local and global
contents. (Color figure online)

In addition to the above quantitative results of ablation studies, we also
present some qualitative results as shown in Fig. 5. It is shown that compared to
only using global feature, our proposed MHOD using both global and local fea-
tures not only brings a boost in retrieval accuracy, but also helps us find more
query-related targets. For instance, for text-to-image retrieval task, the query
texts are closely related to two objects, namely car and motorcycle. The model
which only focuses on global contents mainly captures the car object while over-
looking the other one. In contrast, by taking advantage of both global and local
clues, our model can find the images including both car and motorcycle, which
implies the beneficial and supplementary role of local information in capturing
multiple objects in cross-model retrieval.
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Fig. 6. λ Sensitivity Analysis in NUS-WIDE.

3.4 Parameter Sensitivity Analysis

In the loss function of our MHOD model as formulated in Eq. (14), the hyper-
parameter λ needs to be tuned for balancing the similarity loss and hashing loss.
Figure 6 demonstrates the performance of our model with varying λ values in
NUS-WIDE for different cross-modal retrieval tasks. It can be observed that the
best results of 72.99% and 71.68% are reported when λ equals 0.2 for image-
to-text retrieval and text-to-image retrieval task. Interestingly, the results even
exceed the model performance when λ equals 0 which implies hashing loss is not
involved in our model. Profiting from the multi-head hashing module, our model
does not severely suffer the information loss resulting from binary embedding of
the hashing loss.

4 Conclusions

In this paper, we present a novel cross-modal hashing method termed MHOD
for cross-modal retrieval task. More specifically, it leverages the multi-modal
Transformer encoders for generating global features and local tokens, which is
followed by the orthogonal decomposition module for decoupling the local cues
and the global features. Then, the feature fusion is achieved by passing both
global and local features through multi-head hashing layer for generating aggre-
gated hash codes. Different from the previous methods in which either local con-
tents are downplayed or the local-global fusion is independent of binary hashing,
our method can integrate local-global feature fusion into the hashing process for
improved local-global perception capability. Extensive experiments in two public
benchmarking datasets show that the proposed MHOD achieves the state-of-the-
art performance.
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