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Abstract. Designing a font library takes a lot of time and effort. Few-
shot font generation aims to generate a new font library by referring to
only a few character samples. Accordingly, it significantly reduces labor
costs and has attracted many researchers’ interest in recent years. Exist-
ing works mostly focus on font generation in the same language and
lack the capability to support cross-language font generation due to the
abstraction of style and language differences. However, in the context
of internationalization, the cross-language font generation task is neces-
sary. Therefore, this paper presents a novel few-shot cross-language font
generation network called CLF-Net. We specifically design a Multi-scale
External Attention Module (MEAM) to address the issue that previous
works simply consider the intra-image connections within a single ref-
erence image, and ignore the potential inter-image correlations between
all reference images, thus failing to fully exploit the style information
in another language. The MEAM models the inter-image relationships
and enables the model to learn essential style features at different scales
of characters from another language. Furthermore, to solve the problem
that previous approaches usually generate characters with missing or
duplicated strokes and blurry stroke edges, we define an Edge Loss to
constrain the model to focus more on the edges of characters and make
the outlines of generated results clearer. Experimental results show that
our CLF-Net is outstanding for cross-language font generation and gen-
erates better images than the state-of-the-art methods.

Keywords: Cross-language Font generation · External attention ·
Few-shot learning

1 Introduction

Font style is the art of visual representation of text and plays a crucial role in
conveying information. It can even deliver deeper meaning, such as whether the
current content is delightful or horrible. Designing a font is very time-consuming
and requires the highly professional ability of the designer. The designer has to
make proper artistic effects for strokes so that the font not only conveys the artis-
tic style but also guarantees the original content of the character. In addition,
when designing a large font library of multiple languages, the designer needs to
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spend a lot of time and effort to keep the characters of different languages in the
same style, which not only demands professional knowledge and skills but also
requires the designer to be proficient in different languages.

Therefore, automatic font generation via neural networks has attracted the
attention of researchers, and many GAN [5]-based models for automatic font gen-
eration have been proposed. Early models [13,14,24,25] need to be pre-trained
on large datasets and then fine-tuned for specific tasks, which requires many
computational resources and much effort to collect training samples. Recently,
many few-shot learning methods [3,9,11,19,20,23,31,32] have been proposed
specifically for the font generation task, and these models can generate complete
font libraries of the same language based on a small number of samples.

Nevertheless, in many scenarios, such as designing novel covers in different
translations, movie promotional posters for different countries, and user inter-
faces for international users, it is necessary to keep characters of different lan-
guages having the same font style. At the same time, characters of different
languages vary greatly in their glyph structure, e.g., the strokes and structures
of English letters are very different from those of Chinese characters. Specifically,
many components of Chinese characters have no counterparts in English letters,
which leads to the fact that learning the style of characters from another lan-
guage is difficult and requires the model to learn high-level style characteristics.
Thus, some efforts [15] attempt to use self-attention mechanism to capture style
patterns in another language. However, they ignore the potential inter-image
correlations between different reference images and thus fail to learn sufficiently
essential features in another language. Therefore, we propose to learn better
style representation in another language by analyzing the inter-image relation-
ships between all reference images rather than simply considering the intra-image
connections.

In this paper, we propose a novel model named CLF-Net. Its core idea is to
learn essential style features in another language by modeling the inter-image
relationships between all reference images. Specifically, we design a Multi-scale
External Attention Module (MEAM) to capture style features at different scales.
The MEAM not only considers the intra-image connections between different
regions of a single reference image but also implicitly explores the potential inter-
image correlations between the overall style images, which makes it possible to
extract the geometric and structural patterns that are consistently present in the
style images and thus learn the unified essential style information at different
scales in another language. In addition, considering that boundary pixels play
a key role in determining the overall style of Chinese characters, we define an
Edge Loss to compel the model to preserve more edge information and ensure
the generated characters have sharper edges with less blur. Combining these
components, we have achieved high-quality cross-language font generation.

Our contributions can be summarized as follows:

1) We first implicitly consider the inter-image associations and propose a novel
few-shot cross-language font generation network called CLF-Net instead of
simply considering the intra-image connections.
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2) We design a Multi-scale External Attention Module (MEAM) to learn the uni-
fied essential style information at different scales of characters from another
language, which solves the problem that the existing font generation models
can not fully exploit style information in another language.

3) We introduce an Edge Loss function to make the model generate characters
with sharper edges.

4) By modeling the inter-image relationships, our approach achieves significantly
better results than state-of-the-art methods.

2 Related Works

2.1 Image-to-Image Translation

Image-to-image (I2I) translation aims to learn a mapping function from the tar-
get domain to the source domain. Pix2pix [12] uses a conditional GAN-based
network that requires a large amount of paired data for training. To allevi-
ate the problem of obtaining paired data, the CycleGAN [33] introduces cycle
consistency constraints, which allow I2I methods to train cross-domain transla-
tions without paired data. FUNIT [16] proposes a few-shot unsupervised image
generation method to accomplish the I2I translation task by encoding content
images and style images separately and combining them with Adaptive Instance
Normalization (AdaIN) [10]. Intuitively, font generation is a typical I2I transla-
tion task that maps a source font to a target font while preserving the original
character structure. Therefore, many font generation methods are based on I2I
translation methods.

2.2 Automatic Font Generation

We categorize automatic font generation methods into two classes: many-shot
and few-shot font generation methods. Many-shot font generation methods [13,
14,24,25] aim to learn the mapping function between source fonts and target
fonts. Although these methods are effective, they are not practical because these
methods often first train a translation model and fine-tune the translation model
with many reference glyphs, e.g., 775 for [13,14].

Based on different kinds of feature representation, few-shot font generation
methods can be divided into two main categories: global feature representation
[1,4,27,31] and component-based feature representation [3,9,11,19,20,28,32].
The global feature representation methods, such as EMD [31] and AGIS-Net
[4], synthesize a new glyph by combining a style vector and a content vector
together, but they show worse synthesizing quality for unseen style fonts. Since
the style of glyphs is highly complex and fine-grained, it is very difficult to
generate the font utilizing global feature statistics. Instead, works related to
component-based feature representation focus on designing a feature represen-
tation that is associated with glyphs’ components or localized features. LF-Font
[19] designs a component-based style encoder that extracts component-wise fea-
tures from reference images. MX-Font [20] designs multiple localized encoders
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and utilizes component labels as weak supervision to guide each encoder to
obtain different local style patterns. DFS [32] proposes the Deep Feature Simi-
larity architecture to calculate the feature similarity between the input content
images and style images to generate the target images.

In addition, some efforts [9,11,15,21,23] attempt to use the attention mecha-
nism [26] for the font generation task. RD-GAN [11] utilizes the attention mech-
anism to extract rough radicals from content images. FTransGAN [15] captures
the local and global style features based on self-attention mechanism [29]. Our
Multi-scale External Attention Module (MEAM), motivated by external atten-
tion mechanism [7], extracts essential style features at different scales for cross-
language font generation.

Fig. 1. Architecture overview of the CLF-Net. zc/zs denotes the content/style latent
feature. Conv denotes a convolutional layer. BN denotes BatchNorm. MEAM denotes
the Multi-scale External Attention Module. ConvT denotes a transposed convolutional
layer.

3 Method Description

This section describes our method for few-shot cross-language font generation,
named CLF-Net. Given a content image and several stylized images, our model
aims to generate the character of the content image with the font of the style
images. The general structure of CLF-Net is shown in Fig. 1. Like other few-shot
font generation methods, CLF-Net adopts the framework of GAN, including a
Generator G and two discriminators: content discriminator Dc and style dis-
criminator Ds. Moreover, to make the model show enough generalization ability
to learn both local and global essential style features in another language, we
propose a Multi-scale External Attention Module (MEAM). More details are
given in Sect. 3.2.
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3.1 Network Overview

We regard the few-shot font generation task as solving the conditional probability
pgt(x|Ic, Is), where Ic is a content image in the standard style (e.g., Microsoft
YaHei), Is is a few style images having the same style but different contents, and
x denotes the target image with the same character as Ic and with the similar
style as Is. Considering that our task is cross-language font generation, Ic and
Is should be from different languages. Therefore, we choose a Chinese character
as the content image and a few English letters as the style images to train our
CLF-Net. The generator G consists of two encoders and a decoder. The content
encoder ec is used to capture the structural features of the character content. The
style encoder es is used to learn the style features of the given stylized font. Two
encoders extract the style latent feature and content latent feature, respectively.
Then the decoder d will take the extracted information and generate the target
image x̂. The generation process can be formulated as:

zc = ec (Ic) , zs = es (Is) , (1)

x̂ = G (Ic, Is) = d (zc, zs) , (2)

where zc and zs represent the content latent feature and style latent feature.
The content encoder consists of three convolutional blocks, each of which

includes a convolutional layer followed by BatchNorm and ReLU. The kernel
sizes of the convolutional layers are 7, 3, and 3, respectively.

The style encoder has the same structure as the content encoder, including
three convolutional blocks. Moreover, inspired by FTransGAN [15] and external
attention [7], we design a Multi-scale External Attention Module (MEAM) after
the above layers to capture essential style features at different scales. More details
are given in Sect. 3.2.

The decoder takes the content feature zc and style feature zs as input and
outputs the generated image x̂. The decoder consists of six ResNet blocks [8]
and two transposed convolutional layers that upsample the spatial dimensions of
the feature maps. Each transposed convolutional layer is followed by BatchNorm
and ReLU.

The discriminators include a content discriminator and a style discriminator,
which are used to check the matching degree from the style and content perspec-
tive separately. Following the design of PatchGAN [12], two patch discriminators
utilize image patches to check the features of the real images and the fake images
both locally and globally.

3.2 Multi-scale External Attention Module

Since self-attention mechanism [29] is applicable to the GAN [5] framework,
both generators and discriminators are able to model relationships between spa-
tial regions that are widely separated. However, self-attention only considers the
relationships between elements within a data sample and ignores the potential
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relationships between elements in different references, which may limit the abil-
ity and flexibility of self-attention. It is not difficult to see that incorporating
correlations between different style reference images belonging to the same font
helps to contribute to a better feature representation for cross-language font
generation.

External attention [7] has linear complexity and implicitly considers the cor-
relations between all references. As shown in Fig. 2a, external attention calcu-
lates an attention map between the input pixels and an external memory unit
M ∈ R

S×d by:
A = (α)i,j = Norm(FMT ), (3)

Fout = AM, (4)

and αi,j in Eq. (3) is the similarity between the i-th pixel and the j-th row of
M , where M is an input-independent learnable parameter that is a memory of
the whole training dataset. A is the attention map inferred from the learned
dataset-level prior knowledge.

External attention separately normalizes columns and rows using the double-
normalization method proposed in [6]. The formula for this double-normalization
is:

(α̃)i,j = FMT
k , (5)

α̂i,j = exp (α̃i,j)/
∑

k

exp (α̃k,j), (6)

αi,j = α̂i,j/
∑

k

α̂i,k. (7)

Finally, it updates the input features of M according to the similarities in A.
In practice, it uses two different memory units, Mk and Mv, as the key and value
to improve the capability of the network. This slightly alters the computation of
external attention to

A = Norm(FMT
k ), (8)

Fout = AMv. (9)

As mentioned above, the style of glyphs is complex and delicate. When
designing the fonts, experts need to consider multiple levels of styles, such as
component-level, radical-level, stroke-level, and even edge-level. Therefore, to
improve the attention modules in FTransGAN [15], we design a Multi-scale
External Attention Module (MEAM) to capture style features at different scales.

In particular, our method can model relationships between all style refer-
ence images from another language with the presence of the MEAM. With the
MEAM, we can obtain high-quality essential style features at different scales.
Specifically, when the style reference images go into the style encoder, whose
architecture is shown in Fig. 2b, they will first go through three convolution
blocks. Afterward, we feed the feature map outputted by the last convolutional
block in the above layers into the MEAM. The MEAM first further extracts two
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Fig. 2. The architecture of External Attention Block and the style encoder with Multi-
scale External Attention Module. NN denotes a single-layer neural network. ConvBlock-
1, ConvBlock-2, ConvBlock-3, ConvBlock-4, and ConvBlock-5 denote convolutional
blocks, each of which includes a convolutional layer followed by BatchNorm and ReLU.
F3, F4, and F5 denote the feature maps with receptive fields of 13 × 13, 21 × 21, and
37 × 37, respectively.

feature maps separately through two consecutive convolutional blocks, each of
which has a convolutional layer with kernel sizes of 3, and each convolutional
layer is followed by BatchNorm and ReLU. Then the MEAM uses three juxta-
posed External Attention Blocks to process the above three feature maps with
receptive fields of 13 × 13, 21× 21, and 37× 37, respectively. Thus, the feature
maps with different receptive fields contain the multi-scale features. The con-
text information is obtained and incorporated into the feature map through an
External Attention Block, which is computed as:

hr = EA(vr), (10)

where EA denotes the External Attention Block, {vr}H×W
r=1 denotes each region

of the feature map and the new feature vector hr contains not only the informa-
tion limited to their receptive field but also the context information from other
regions of other reference images.

Then, considering that not all regions contribute equally, we assign scores to
each region. Specifically,

ur = S1(hr), (11)

ar = softmax(uT
r uc), (12)

f =
H×W∑

r=1

arvr. (13)

That is, we input the feature vector hr into a single-layer neural network S1 and
get ur as the latent representation of hr. Next, the importance of the current
region is measured using the context vector uc, which is randomly initialized
and co-trained with the whole model. After that, we can obtain the normalized



134 Q. Jin et al.

score by a softmax layer. Finally, we compute a feature vector f as a weighted
sum for each region vr.

We also consider that features at different scales need to be given different
weights. Therefore, we flatten the feature map given by the last convolutional
block to obtain a feature vector fm, which is inputted into a single-layer neural
network S2 to generate three weights, then we assign scores to three different
scale feature vectors f1, f2, and f3, respectively. These scores explicitly indicate
which feature scale the model should focus on. Specifically,

w1, w2, w3 = S2(fm), (14)

z =
3∑

i=1

wifi, (15)

where w1, w2, and w3 are the three normalized scores given by the neural network
and z is the weighted sum of three feature vectors. Note that each time the style
encoder will accept K images. Thus, the final latent feature zs is the average of
all vectors:

zs =
1
K

∑

K

zk. (16)

Besides, we copy the style latent feature zs seven times to match the size of the
content latent feature zc.

3.3 Loss Function

To achieve few-shot cross-language font generation, our CLF-Net employs three
kinds of losses: 1) Pixel-level loss to measure the pixel-wise mismatch between
generated images and the ground-truth images. 2) Edge Loss to make the model
pay more attention to the edge pixels of characters and make the edges of gener-
ated images sharper. 3) Adversarial loss to solve the minimax game in the GAN
framework.

Pixel-Level Loss: To learn pixel-level consistency, we use L1 loss between
generated images and the ground truth images:

LL1 = Ex,x̂∈P(x,x̂) [‖ x − x̂ ‖1]. (17)

Edge Loss: Pixel-level loss is widely used in existing font generation models.
They all estimate the consistency of the distribution of the two domains based on
the per-pixel difference between the generated and real characters. However, in
the font generation task, the weights of pixels in the images of Chinese characters
are different. Different from pixels used as background or fill, boundary pixels
play a key role in the overall style of Chinese characters. Therefore, our model
needs to pay more attention to the edges of each Chinese character. To preserve
more edge information of Chinese characters, we define an Edge Loss to limit our
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model to generate results with sharper edges inspired by [21]. We utilize Canny
algorithm [2] to extract the edges of generated images and the target images and
utilize L1 loss function to measure the pixel distance between the two edges:

Ledge = Ex,x̂∈P(x,x̂) [‖ Canny(x) − Canny(x̂) ‖1]. (18)

Adversarial Loss: Our proposed method uses a framework based on GAN.
The optimization of GAN is essentially a game problem, and its goal is to allow
generator G to generate examples that are indistinguishable from the real data
to deceive the discriminator D. In CLF-Net, the generator G has to extract the
information from the style images Is and the content image Ic, and generate
an image with the same content as Ic and the similar style as Is, and then the
discriminators Dc and Ds are used to determine whether the generated image
has no difference with the reference images in terms of content and style. We
use hinge loss [18] function to compute the adversarial loss as:

Ladv = LadvC + LadvS , (19)

Ladvc = max
Dc

min
G

EIc∈Pc,Is∈Ps
[log Dc(Ic) + log(1 − Dc(x̂))], (20)

LadvS = max
Ds

min
G

EIc∈Pc,Is∈Ps
[logDs(Is) + log(1 − Ds(x̂))], (21)

where Dc(·) and Ds(·) represent the output from the content discriminator and
style discriminator respectively.

Combining all losses mentioned above, we train the whole model by the
following objective:

L = λL1LL1 + λedgeLedge + λadvLadv, (22)

where λL1, λedge, and λadv are the weights for controlling these terms.

4 Experiments

4.1 Datasets

For a fair comparison, our experiments use the public dataset of FTransGAN
[15], which contains 847 grayscale fonts (stylized inputs), each font with about
1000 commonly used Chinese characters and 52 English letters of the same style.
The test set consists of two parts: images with known contents but unknown
styles and images with known styles but unknown contents. They randomly
select 29 characters and fonts as unknown contents and styles and leave the rest
as training data.

4.2 Training Details

We trained CLF-Net on Nvidia RTX 3090 with the following parameters on the
above dataset. For experiments, we use Chinese characters as the content input
and English letters as the style input. We set λL1 = 100, λedge = 10, λadv = 1,
and K = 6.
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4.3 Competitors

To comprehensively evaluate the model, we chose the following three models,
EMD [31], DFS [32], and FTransGAN [15] as our competitors. As mentioned
above, previous works usually focus on font generation for a specific language,
and there are few works on cross-language font generation. Therefore, in addition
to FTransGAN being specifically designed for the cross-language font generation
task, EMD and DFS are both designed for monolingual font generation, and we
make them suitable for the cross-language task according to the modifications
made by the authors of FTransGAN.

Table 1. Quantitative evaluation on the test set. The bold numbers indicate the best,
and the underlined numbers represent the second best.

Content-aware Style-aware Pixel-level

Accuracy↑ mFID↓ Accuracy↑ mFID↑ MAE↓ SSIM↑
Evaluation on the unseen character images

EMD 81.2 116.9 24.4 597.1 0.117 0.497

DFS 89.2 150.0 2.7 820.6 0.185 0.303

FTransGAN 97.0 49.8 58.1 308.9 0.121 0.501

Ours 97.5 45.8 61.6 294.1 0.121 0.503

Evaluation on the unseen style images

EMD 85.5 184.4 4.4 623.2 0.166 0.384

DFS 91.7 230.7 0.7 662.4 0.214 0.231

FTransGAN 99.8 97.8 11.7 418.8 0.179 0.368

Ours 99.9 96.9 11.9 427.5 0.180 0.369

4.4 Quantitative Evaluation

Quantitative evaluation of generative models is inherently difficult because there
are no generalized rules for comparing ground truths and generated images.
Recently, several evaluation metrics [30] based on different assumptions have
been proposed to measure the performance of generative models, but they remain
controversial. In this paper, we evaluate the models using various similarity
metrics from pixel-level to perceptual-level. As shown in Table 1, our model
outperforms existing methods in most metrics.

Pixel-Level Evaluation. A simple way to quantitatively evaluate the model is
to calculate the distance between generated images and the ground truths. The
pixel-wise assessment is to compare the pixels that are at the same position in
the ground truths and generated images. Here, we use the following two metrics:
mean absolute error (MAE) and structural similarity (SSIM).
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Fig. 3. Visual comparison of our proposed model and its competitor.

Table 2. Effect of different components in our method. The bold numbers indicate the
best, and the underlined numbers represent the second best.

Content-aware Style-aware Pixel-level

Accuracy ↑ mFID ↓ Accuracy ↑ mFID ↑ MAE ↓ SSIM ↑
Evaluation on the unseen character images

FM-Ledge 97.4 48.4 58.3 311.7 0.121 0.502

FM-Ledge-MEAM 97.1 50.7 46.5 361.3 0.127 0.482

FM 97.5 45.8 61.6 294.1 0.121 0.503

Evaluation on the unseen style images

FM-Ledge 99.9 98.9 10.9 428.5 0.180 0.367

FM-Ledge-MEAM 99.7 106.9 10.9 417.2 0.181 0.360

FM 99.9 96.9 11.9 427.5 0.180 0.369
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Perceptual-Level Evaluation. However, pixel-level evaluation metrics often
go against human intuition. Therefore, we also adopt perceptual-level evaluation
metrics to comprehensively evaluate all models. Drawing on FTransGAN [15],
we use the Fréchet Inception Distance (FID) proposed in [22] to compute the
feature map distance between generated images and the ground truths. This
metric evaluates the performance of the network rather than simply comparing
generated results. In this way, we can evaluate the performance of the content
encoder and the style encoder separately. The score is calculated from the top-1
accuracy and the mean Fréchet Inception Distance (mFID) proposed by [17].

4.5 Visual Quality Evaluation

In this section, we qualitatively compare our method with the above methods.
The results are shown in Fig. 3. We have randomly selected some outputs from
three groups of our model and other competitors. In Fig. 3, the first group is
handwriting fonts, the second group is printing fonts, and the third group is
highly artistic fonts. We can see that EMD [31] erases some fonts with thinner
strokes and works worse on highly artistic fonts. DFS [32] performs poorly on
most fonts. FTransGAN [15] ignores fine-grained local styles and is not detailed
enough in dealing with the style patterns of the stroke ends on highly artistic
fonts, which causes artifacts and black spots in generated images. Our approach
generates high-quality images of various fonts and achieves satisfactory results.

4.6 Ablation Study

Edge Loss. As shown in Table 2, after stripping out the Edge Loss from full
model(FM), we find that Edge Loss significantly improves the classification accu-
racy of style and content labels. From the mFID [17] scores, we can observe that
the feature distribution of the images generated by the model trained with Edge
Loss is closer to the real images.

Multi-scale External Attention Module. Continue taking out the Multi-
scale External Attention Module (MEAM), according to Table 2, both pixel-level
and perceptual-level metrics drop rapidly.

5 Conclusion

In this paper, we propose an effective few-shot cross-language font generation
method called CLF-Net by learning the inter-image relationships between all
style reference images. In CLF-Net, we design a Multi-scale External Attention
Module for extracting essential style features at different scales in another lan-
guage and introduce an Edge Loss function that produces results with less blur
and sharper edges. Experimental results show that our proposed CLF-Net is
highly capable of cross-language font generation and achieves superior perfor-
mance compared to state-of-the-art methods. In the future, we plan to extend
the model to the task of font generation across multiple languages.
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