
Quality Scalable Video Coding Based
on Neural Representation

Qian Cao1, Dongdong Zhang1(B), and Chengyu Sun2

1 Department of Computer Science and Technology, Tongji University, Shanghai,
China

2230788@tongji.edu.cn, ddzhang@tongji.edu.cn
2 Shanghai Key Laboratory of Urban Renewal and Spatial Optimization Technology,

Tongji University, Shanghai, China
cy.sun@tongji.edu.cn

Abstract. Neural Representation for Videos (NeRV) encodes each video
into a network, providing a promising solution to video compression.
However, existing NeRV methods are limited to representing single-
quality videos with fixed-size models. To accommodate varying quality
requirements, NeRV methods need multiple separate networks with dif-
ferent sizes, resulting in additional training and storage costs. To address
this, we propose a Quality Scalable Video Coding method based on Neu-
ral Representation, in which a hierarchical network consisting of a base
layer (BL) and several enhancement layers (ELs) represents the same
video with coarse-to-fine qualities. As the smallest subnetwork, the BL
represents basic content. The larger subnetworks can be formed by grad-
ually adding the ELs which capture residuals between the lower-quality
reconstructed frames and original ones. Since the larger subnetworks
share the parameters of the smaller ones, our method saves 40% of stor-
age space. In addition, our structural design and training strategy enable
each subnetwork to outperform the baseline on average +0.29 PSNR.

Keywords: Implicit Neural Representation · Video compression ·
Quality Scalable coding

1 Introduction

Traditional video compression approaches such as H.264 [1], HEVC [2] rely on
manually-designed modules, such as motion estimation and discrete cosine trans-
form (DCT). With the success of deep learning, learning-based codecs [3,4]
replace handcraft modules with neural networks and achieve improved rate-
distortion performance. Recently, Implicit Neural Representation (INR) has
received increasing attention in the signal compression tasks such as image [5–7]
and video [8–16], due to its simpler pipelines and faster decoding speed.

Neural Representation for Videos (NeRV) methods [10–16] train a neural
network to represent a video, thus encoding the video into the network weights.
The encoding is the process of training a neural network to overfit video frames,
and the decoding is a simple forward propagation operation. The network itself
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Rudinac et al. (Eds.): MMM 2024, LNCS 14554, pp. 396–409, 2024.
https://doi.org/10.1007/978-3-031-53305-1_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-53305-1_30&domain=pdf
https://doi.org/10.1007/978-3-031-53305-1_30


Quality Scalable Video Coding Based on Neural Representation 397

Fig. 1. An example to represent a video at two different quality levels: HNeRV requires
two separate networks with different sizes (aM and bM parameters), while our meth-
ods achieves this with just one network with totaling bM parameters. The network
comprises a BL that can independently decode the lower-quality video and a EL that
enhances the quality by adding residual details to the BL.

serves as the video stream, and the model size dictates the trade-off between
rate and distortion. Larger networks exhibit greater reconstruction accuracy at
the expense of storage space and transmission bandwidth.

The original videos often need to be transmitted in different qualities adapted
to terminal device and network conditions. For NeRV methods, this requires mul-
tiple sizes of the networks to represent the video at different quality levels. Since
these networks of different sizes represent the same video content, there is infor-
mation redundancy among them. However, existing methods do not consider
this, and each network is trained and stored independently, resulting in signifi-
cant costs. If the larger network can directly leverage the knowledge learned by
the smaller ones instead of starting training from scratch, it can clearly converge
faster and save storage space by sharing parameters. Scalable Video Coding
(SVC) schemes [17,18] encapsulate videos with varying quality in a hierarchical
video stream that can be partially decoded to provide flexible quality. Motivated
by this, we propose using a single network that can be separated into executable
subnetworks with different sizes to represent a video in flexible quality. The small
subnetwork can operate independently or as part of larger ones. Therefore, larger
subnetworks can leverage information already learned by smaller ones.

In this paper, we propose a quality scalable video coding method based on
neural representation (QSVCNR). Building upon HNeRV [15], we design a hier-
archical network consisting of a base layer (BL) and one or more enhancement
layers (ELs). An example is illustrated in Fig. 1. The hierarchical network enables
a coarse-to-fine reconstruction and naturally decomposes the representation into
a basic component and progressive levels of details, separately preserved in dif-
ferent layers. As the smallest subnetwork, BL can independently reconstruct a
coarser video. Larger subnetworks are constructed by gradually introducing ELs
which fit the residuals between the lower-quality reconstructed frames and origi-
nal ones. We employ per-layer supervision to train the entire network end-to-end.
The main contributions are as follows:



398 Q. Cao et al.

– We propose a quality scalable video coding method based on neural repre-
sentation, in which a hierarchical network consisting of a BL and several ELs
represents the same video with coarse-to-fine qualities.

– We introduce additional structures including a context encoder for BL, resid-
ual encoders and inter-layer connections for ELs, and design an end-to-end
training strategy, to improve the representation capability of our method.

– On the bunny [19] and UVG [20] datasets, Our proposed method saves 40%
of storage space, and each subnetwork exhibits an average improvement of
+0.29 PSNR compared to the baseline.

2 Related Work

Implicit Neural Representation (INR) [21–23] parameterize the signal as
a function approximated by a neural network, which map reference coordinates
to their respective signal values. For instance, an image can be represented as
function f(x, y) = (R,G,B), where (x, y) are the coordinates of a specific point.
This concept has been applied to compression tasks such as image [5–7] and
videos [8,9]. However, these multi-layer perceptron (MLP) based INRs are lim-
ited to pixel-wise representation. They predict a single point at a time, resulting
in an unacceptably slow coding speed when applied to video representation.

Neural Representation for Videos (NeRV) is specifically designed
for video, including two branches: Index-based and Hybrid-based. Index-based
methods view video as an implicit function y = f(t) where y is the tth frame
of video. NeRV [10] first proposes image-wise representation with convolutional
layers, achieving better reconstruction quality and greatly improving efficiency.
ENeRV [11] Separate the representation into temporal and spatial branches.
NVP [12] uses learnable positional features. D-NeRV [13] introducing tem-
poral reasoning and motion information. However, Index-based methods only
focus on location information but ignore the visual information. Hybrid-based
method CNeRV [14] proposes a hybrid video neural representation with content-
adaptive embeddings. HNeRV [15] proposes that auto-encoder is also a hybrid
neural representation. The encoder extracts content-adaptive embedding, while
the decoder and embeddings are viewed as neural representations. DNeRV [16]
introduces difference between frames as motion information. Whereas, existing
methods are limited to representing a single video with a fixed-size neural net-
work, which lacks flexibility in practical applications. We adopt the framework
proposed in [15] as the baseline and propose a scalable coding method.

Video Compression algorithms such as H.264 [1], HEVC [2] achieve effi-
cient compression performance. The learning-based codecs [3,4] use neural net-
works to replace certain components but still follow the traditional pipeline.
These codecs explicitly encodes videos as latent codes of motion and residual.
NeRV methods represent videos as neural networks, and then employ model com-
pression techniques like model pruning and weight quantization to reduce the
model size further. It provides a novel pipeline for video compression, achieving
fast decoding and satisfactory reconstruction quality with a simpler structure.



Quality Scalable Video Coding Based on Neural Representation 399

Fig. 2. The pipeline of quality scalable video coding method based on neural represen-
tation. Model architecture comprises 3 layers: BL (green part), 1st EL (yellow part)
and 2nd EL (red part). The purple part is the implicit neural representation for video.
(Color figure online)

Scalable Video Coding (SVC) is an important extension for video com-
pression, e.g., SVC [17] for H.264 and SHVC [18] for HEVC. SVC obtains multi-
layer streams (BL and ELs) through one encoding to accommodate different
conditions. The BL can be independently decoded, and the ELs can be appended
to the BL to enhance the output quality. Typical scalability modes include tem-
poral, spatial, and quality scalability. In the NeRV method, the network itself is
the video stream. Inspired by multi-scale implicit neural representation [24,25],
we propose a hierarchical network for implementing quality scalable coding.

3 Methodology

3.1 Overview

Figure 2 illustrates the overview of our Quality Scalable Video Coding method
based on Neural Representation. We follow the hybrid philosophy proposed in
[15] that treats the embedding and decoder of the auto-encoder as the INR



400 Q. Cao et al.

Fig. 3. Structure of encoder and decoder

for videos. Our proposed network is hierarchical and consists of a BL and sev-
eral ELs. BL learns basic low-frequency information from current frame content
and neighboring contextual information. ELs learn high-frequency detailed infor-
mation from residue between the reconstructed frames and original ones. The
modular structure allows for the flexible selection of a BL and any number of
ELs to form subnetworks with different sizes, thus achieving quality scalability.

3.2 The Base Layer

The base layer (BL) is the initial layer and can function as an independent neural
representation for coarse reconstruction.

The encoder comprises two components: the content encoder and the context
encoder. The content encoder extracts the essential content-adaptive embedding
econtent from the current frame yt. However, the baseline methods [15] overlook
the contextual dependency on adjacent frames, which plays a significant role in
video tasks. We draw inspiration from [16] and introduce a context encoder. The
context encoder captures short-term context by considering neighboring frames
yt−1, yt+1, allowing for an explicit utilization of the temporal correlations.

econtent = CONTENT_ENC(yt)

econtext = CONTEXT_ENC(yt, yt−1, yt+1)
(1)

Each encoder consists of five stages, including a downsampling convolutional
layer and a ConvNext block [26], as illustrated in Fig. 3(a). All encoders share
the same structure, with variations only in the inputs. This enables all encoders
generate the embeddings of the same size, which can be merged through direct
concatenation. The dimensions of the embeddings are flexible and determined by
the downsampling stride and embedding channels specified in the hyperparame-
ters. We maintain consistency with the baseline approach. For 1920× 960 video,
the downsampling strides are set as [5, 4, 4, 3, 2], providing the embedding in
size of 16× 4× 2.



Quality Scalable Video Coding Based on Neural Representation 401

The content embedding econtent and context embedding econtext are combined
as inputs and pass through the decoder. Finally, the output stage maps the final
output features into pixel domain and gets the reconstructed frame ŷ0

t as follows:

f0
1 = BLOCK0

j (e
content, econtext)

f0
j = BLOCK0

j (f
0
j−1)

ŷ0
t = Sigmoid(Conv(f0

5 ))

(2)

The decoder includes five blocks, denoted as BLOCK0
1 through BLOCK0

5 , and
f0
j represents the output intermediate feature of the jth block. We utilize NeRV

block [10] as the fundamental unit of decoder, as shown in Fig. 3(b). Among
these, only the convolutional layer contains trainable parameters, and the pixel
shuffle layer serves as upsampling method. To ensure a consistent size between
the reconstructed frames and original ones, the upsampling strides are the same
as the downsampling strides applied in the encoder.

3.3 The Enhancement Layers

The Enhancement Layers (ELs) builds on the BL to capture progressive levels
of details, enabling higher-quality reconstruction.

It is inadequate for ELs to share a single fixed-size embedding with the BL.
The ELs primarily learn high-frequency details, but the low-frequency part of
embedding leads to poor fitting of the high-frequency information. It is impor-
tant for each layer’s embedding to align with its representation content, and
the embedding size should adapt to the changing subnetwork sizes. The high-
frequency details that previous layers fail to reconstruct are exactly the residuals.
Therefore, we introduce a residual encoder for each EL to extract the resid-
ual embedding ri from the reconstructed frame of the previous layer ŷi−1

t and
the original frame yt. The structure of the residual encoder is the same as the
encoders of BL described in the previous section.

ri = RESIDUAL_ENC(ŷi−1
t , yt) (3)

Regarding the decoder, a straightforward approach is to apply five blocks,
similar to the base layer (BL), and aggregate the final features from different
layers only in the output stage. In addition, we introduce Inter-layer connections
at each block to effectively utilize the information preserved in lower layers, as
shown in Fig. 2. Specifically, embeddings and intermediate features from previous
layers are included as additional input to each block of EL as follows:

f i
1 = Blocki

j(e
content, econtext, r1, · · · ri)

f i
j = Blocki

j(f
0
j−1, · · · f i

j−1)

ŷi
t = Sigmoid(Conv(f0

5 , · · · f i
5))

(4)

where, Blocki
j is the jth block of the ith EL, and f i

j denotes its output inter-
mediate feature. The reconstructed frame, ŷi

t is the output of the subnetwork
consisting of the BL and i ELs.



402 Q. Cao et al.

Fig. 4. Training strategy

While the Inter-layer connections require BL to accommodate the representa-
tion tasks of higher layers, thereby impacting its performance, ELs can effectively
leverage the knowledge acquired from previous layers through this structure to
better capture high-frequency residuals. Notably, connections are unidirectional,
maintaining the independence of lower layers. Consequently, even without higher
ELs, the preceding layers can still serve as a standalone subnetwork represent-
ing lower-quality frames. This modular structure allows the BL and ELs to form
subnetworks with different sizes, thus providing flexible quality scalability.

3.4 End-to-End Multi-task Training Strategy

There are two training strategies: progressive training [24,27] and end-to-end
training. In progressive training, BL is trained first, and then ELs are trained
layer by layer with the weights of previous layers frozen, as illustrated in Fig. 4(a).
This approach maintains the performance of the previous layers as the training
progresses. However, it only considers the current layer, ignoring that each layer
is part of larger subnetworks. As a result, this strategy may fail to achieve the
global optimal between multiple subnetworks.

Each subnetwork shares specific layers and has similar objective to recon-
struct the same frames at different quality. We adopt a multi-task learning
strategy that enables adaptive balancing of the objectives across subnetworks.
Unlike training each layer sequentially, our strategy trains the entire network
end-to-end, as depicted in Fig. 4(b). Each layer is supervised with an individual
loss, and these losses are weighted and summed to obtain the total loss. Higher
weights are assigned to ELs to emphasize the capture of high-frequency details.
The total loss function is expressed in Eq. 5.

Loss =
l∑

i=1

λiMSE(ŷi
t, yt) (5)

where l is the total number of layers, MSE is Mean squared error, ŷi
t represents

the reconstructed frame of the ith layer, and yt represents the original frame, λi

denotes the weight for the loss of the ith layer.



Quality Scalable Video Coding Based on Neural Representation 403

4 Experiments

4.1 Datasets and Settings

Datasets. Experiments are conducting on the bunny [19] and UVG [20] datasets.
The bunny is a video consisting of 132 frames with a 1280× 720 resolution. The
UVG dataset contains seven videos, in a total of 3900 frames, with a 1920×1080
resolution. To ensure consistency with previous approaches, we apply center-
cropping to the videos to match the size of the embeddings. Specifically, we
center crop the bunny to 1280× 640 and UVG videos to 1920× 960.

Settings. The stride list for encoder and decoder is set as [5, 4, 3, 2, 2] for the
UVG and [5, 4, 2, 2, 2] for the bunny. We vary the number of channels of the
NeRV blocks to obtain representation models of specific sizes. During training,
we use the Adam optimizer [28] with cosine learning rate decay. The maximum
learning rate is 1e−3, with 10% of epochs dedicated to warm-up. The batch
size is 1. The reconstruction quality is assessed using the peak signal-to-noise
ratio (PSNR), while video compression performance is evaluated by measuring
the bits per pixel (Bpp) required for encoding the video. All experiments are
performed in the PyTorch framework on an RTX 3090 GPU.

Table 1. Video reconstruction on bunny and UVG.

Model bunny UVG
beauty bosph bee jockey ready shake yach avg.

NeRV 0.5M 25.77 30.53 28.90 32.05 26.48 20.71 28.41 24.89 27.42
NeRV 1.5M 29.20 32.00 31.09 36.28 28.95 22.79 31.57 26.35 29.86
NeRV 3M 32.67 32.88 33.22 38.44 31.03 24.73 33.52 27.73 31.65
NeRV avg 29.21 31.80 31.07 35.59 28.82 22.74 31.16 26.32 29.64
ENeRV 0.5M 27.07 31.16 29.68 36.10 25.84 20.56 30.99 25.30 28.51
ENeRV 1.5M 31.01 33.25 31.11 37.68 27.59 22.36 33.37 26.00 30.19
ENeRV 3M 35.41 34.06 33.94 38.59 29.52 24.34 35.30 27.74 31.92
ENeRV avg 31.16 32.82 31.57 37.45 27.65 22.42 33.22 26.34 30.21
HNeRV 0.5M 31.98 31.69 30.49 36.79 26.83 21.02 32.44 25.94 29.31
HNeRV 1.5M 35.57 33.06 33.06 38.65 29.79 23.66 34.06 27.85 31.44
HNeRV 3M 37.43 33.58 34.73 38.96 32.04 25.74 34.57 29.26 32.69
HNeRV avg 34.99 32.77 32.76 38.13 29.55 23.47 33.69 27.68 31.14
QSVCNR(2/3 training) 0.5M 32.07 31.70 30.50 37.10 27.65 21.47 32.30 25.96 29.53
QSVCNR(2/3 training) 1.5M 35.97 32.90 32.83 38.54 30.28 24.02 33.99 27.83 31.48
QSVCNR(2/3 training) 3M 38.02 33.46 34.17 39.12 32.04 25.76 34.97 28.98 32.64
QSVCNR(2/3 training) avg 35.35 32.69 32.50 38.25 29.99 23.75 33.75 27.59 31.22
QSVCNR(full training) 0.5M 32.38 32.02 30.60 37.21 27.90 21.68 32.44 26.05 29.70
QSVCNR(full training) 1.5M 36.25 33.20 32.99 38.69 30.59 24.30 34.14 28.00 31.70
QSVCNR(full training) 3M 38.29 33.71 34.41 39.23 32.45 26.04 35.21 29.26 32.90
QSVCNR(full training) avg 35.64 32.98 32.67 38.38 30.31 24.01 33.93 27.77 31.43



404 Q. Cao et al.

4.2 Main Results

We compare our method QSVCNR with baseline method HNeRV [15] and other
implicit methods NeRV [10], ENeRV [11]. Our three-layer network consists of
the BL with 0.5M parameters, the first EL with 1M parameters, and the second
EL with 1.5M parameters. The network is trained end-to-end for 900 epochs.
For other methods [10,11,15], we scale channel width to get three models with
sizes of 0.5M, 1.5M and 3M. Each is trained for 300 epochs, totaling 900 epochs.
The reconstruction performance is compared on the bunny and UVG datasets,
as shown in Table 1. Remarkably, our proposed method, QSVCNR, achieved
comparable or even superior performance within just two-thirds of the total
epochs. After completing the full training, an average improvement of 0.29 PSNR
on UVG dataset is achieved, specifically, +0.39 PSNR for 0.5M model, +0.26
PSNR for 1.5M model, and +0.21 PSNR for 3M model.

Notably, our method only requires storing a single 3M model, while other
methods require storing three models, totaling 5M parameters. This saves 40% of
storage space. The information represented in models with different sizes is simi-
lar, but training three models separately fails to utilize their redundancy and cor-
relation. In our approach, each subnetwork shares lower layers and avoids learn-
ing the low-frequency information repeatedly. Hence, within the same total num-
ber of training epochs, each layer undergoes more extensive training. Addition-
ally, the hierarchical coarse-to-fine framework and residual embedding enhance
the ability of the ELs to capture intricate high-frequency details.

Fig. 5. Video reconstruction visualization. With the same parameters, ours recon-
structs videos with better details.



Quality Scalable Video Coding Based on Neural Representation 405

For example, ‘Ready’ in Fig. 5 illustrates the visualization result of the video
reconstruction. At the same memory budget, the improved performance in recon-
structing details is evident. Specifically, the numbers and letters in the images
exhibit enhanced visual quality.

We apply 8-bit quantization to both the model and the embedding for video
compression. Finally, lossless entropy coding is applied. To assess the compres-
sion performance, we compare our method QSVCNR with other NeRV meth-
ods [10,11,15], as well as traditional methods like H.264 and HEVC [1,2], along
with the state-of-the-art SVC method, SHVC [18]. As shown in Fig. 6, QSVCNR
exhibits superior performance compared to HNeRV [10](+over 0.3 PSNR) and
HEVC [2]. It is worth noting that our experiments are all conducted at small
bpp, showing its potential in high-rate video compression.

Fig. 6. PSNR vs. BPP on UVG dataset.

4.3 Ablation

Context Encoder. Despite the challenge of modeling long-time contexts with
auto-encoder framework, the inclusion of neighbouring frames as short-term con-
text can enhance the reconstruction performance. To demonstrate this, we inte-
grate a context encoder into the baseline method and present the results in
Table 2. The incorporation of the context encoder leads to improvements of 0.16
PSNR for the 1.5M model and 0.18 PSNR for the 3M model.

Table 2. Context Encoder ablation on UVG

Model beauty bosph bee jockey ready shake yach avg.

HNeRV 1.5M 33.06 33.06 38.65 29.79 23.66 34.06 27.85 31.44
HNeRV 3M 33.58 34.73 38.96 32.04 25.74 34.57 29.26 32.69
HNeRV 1.5M +context 33.11 33.14 38.68 30.24 24.12 34.10 27.96 31.62
HNeRV 3M +context 33.68 34.74 39.23 32.13 25.94 35.01 29.25 32.85



406 Q. Cao et al.

Residual Encoder. The residual encoder makes the embedding of each EL con-
sistent with its representation content and helps ELs better fit high-frequency
detailed information. To evaluate its effectiveness, we conduct an experiment
where we remove the residual encoder from the ELs and allow all layers to share
the content and context embedding as input. To ensure a fair comparison, we
increased the channels of the content embedding to three times, maintaining the
total embedding size unchanged. The results are presented in Table 3. The model
without the residual encoder shows an evident decrease over 0.5 PSNR. Each
layer represents content of a different frequency, but sharing a common embed-
ding mixes all frequency components together, resulting in poor reconstruction.
It is necessary to introduce residual encoders and embeddings for ELs.

Table 3. Residual Encoder ablation on UVG

Model beauty bosph bee jockey ready shake yach avg.

QSVCNR 0.5M 32.02 30.60 37.21 27.90 21.68 32.44 26.05 29.70
QSVCNR 1.5M 33.20 32.99 38.69 30.59 24.30 34.14 28.00 31.70
QSVCNR 3M 33.71 34.41 39.23 32.45 26.04 35.21 29.26 32.90
QSVCNR avg 32.98 32.67 38.38 30.31 24.01 33.93 27.77 31.43
-resiual 0.5M 31.63 30.11 36.54 27.27 21.00 32.23 25.67 29.20
-resiual 1.5M 32.85 32.46 38.35 29.64 23.39 33.99 27.30 31.15
-resiual 3M 33.45 33.80 38.94 31.30 25.02 34.92 28.60 32.29
-resiual avg 32.64 32.12 37.94 29.40 23.13 33.71 27.21 30.88

Inter-layer connection in Decoder. We conduct experiments to remove
Inter-layer connections and only aggregate the final feature of layers at output
stage. We scale the channels of each block, ensuring that every subnetwork main-
tains the same total of parameters as before. The results are presented in Table 4.
By removing Inter-layer sharing, the BL can focus on representing its specific
part, resulting in improved performance. However, the ELs tend to exhibit lower
performance. Overall, Inter-layer sharing enables ELs to learn higher-frequency
details by leveraging the knowledge gained from the lower layers, leading to
better overall performance.

Table 4. Inter-layer connection ablation on UVG

Model beauty bosph bee jockey ready shake yach avg.

QSVCNR 0.5M 32.02 30.60 37.21 27.90 21.68 32.44 26.05 29.70
QSVCNR 1.5M 33.20 32.99 38.69 30.59 24.30 34.14 28.00 31.70
QSVCNR 3M 33.71 34.41 39.23 32.45 26.04 35.21 29.26 32.90
QSVCNR avg 32.98 32.67 38.38 30.31 24.01 33.93 27.77 31.43
-interlayer 0.5M 32.04 30.63 37.25 27.94 21.73 32.48 26.15 29.74
-interlayer 1.5M 33.17 32.95 38.71 30.52 24.01 34.11 28.01 31.64
-interlayer 3M 33.67 34.39 39.22 32.30 25.90 35.18 29.28 32.84
-interlayer avg 32.95 32.65 38.39 30.25 23.88 33.92 27.81 31.40



Quality Scalable Video Coding Based on Neural Representation 407

Training Strategies. In progressive learning, each layer is individually trained
for 300 epochs, and then its weights are frozen before training the next layer. We
compare the performance of a 3-layer model trained using progressive training
to our end-to-end trained model. The results presented in Table 5 indicate that
freezing a portion of the weights harms the representational capability. The end-
to-end training of all layers with multi-objective performs better.

Table 5. Training Strategies ablation on UVG

Model beauty bosph bee jockey ready shake yach avg.

QSVCNR 0.5M 32.02 30.60 37.21 27.90 21.68 32.44 26.05 29.70
QSVCNR 1.5M 33.20 32.99 38.69 30.59 24.30 34.14 28.00 31.70
QSVCNR 3M 33.71 34.41 39.23 32.45 26.04 35.21 29.26 32.90
QSVCNR avg 32.98 32.67 38.38 30.31 24.01 33.93 27.77 31.43
progress 0.5M 31.78 30.56 36.69 27.35 21.49 32.62 25.68 29.45
progress 1.5M 32.73 32.25 38.10 29.15 23.01 33.90 27.06 30.88
progress 3M 33.22 33.40 38.66 30.49 24.16 34.65 27.94 31.78
progress avg 32.57 32.07 37.81 28.99 22.88 33.72 26.89 30.70

The experiment confirms that the end-to-end training is preferable. However,
in some specific cases where a new EL needs to be added to an already trained
network, the progressive training method can serve as an alternative that does
not require retraining the entire network.

5 Conclusion

This paper proposes a quality scalable video coding method based on neural rep-
resentation, in which a hierarchical network comprising a BL and several ELs
represents the same video with different qualities simultaneously. Without re-
training multiple individual networks, these layers can be gradually combined to
form subnetworks with varying sizes. The larger subnetworks share the parame-
ters of small ones to save storage space. In addition, the context encoder improves
performance by exploiting temporal redundancy, while the residual encoders and
Inter-layer connections effectively enhance the ELs’ capability to learn high-
frequency details. The entire network can be trained end-to-end, allowing for
the dynamic balancing of optimization objectives across different layers. As a
result, these subnetworks outperform individually trained networks of the same
size.

References

1. Wiegand, T., Sullivan, G.J., Bjontegaard, G., Luthra, A.: Overview of the h.
264/avc video coding standard. IEEE Trans. Circuits Syst. Video Technol. 13(7),
560–576 (2003)



408 Q. Cao et al.

2. Sullivan, G.J., Ohm, J.R., Han, W.J., Wiegand, T.: Overview of the high efficiency
video coding (HEVC) standard. IEEE Trans. Circuits Syst. Video Technol. 22(12),
1649–1668 (2012)

3. Lu, G., Ouyang, W., Xu, D., Zhang, X., Cai, C., Gao, Z.: DVC: an end-to-end
deep video compression framework. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 11006–11015 (2019)

4. Li, J., Li, B., Lu, Y.: Deep contextual video compression. Adv. Neural. Inf. Process.
Syst. 34, 18114–18125 (2021)

5. Dupont, E., Goliński, A., Alizadeh, M., Teh, Y.W., Doucet, A.: COIN: compression
with implicit neural representations. arXiv preprint arXiv:2103.03123 (2021)

6. Dupont, E., Loya, H., Alizadeh, M., Goliński, A., Teh, Y.W., Doucet, A.: COIN++:
neural compression across modalities. arXiv preprint arXiv:2201.12904 (2022)

7. Strümpler, Y., Postels, J., Yang, R., Gool, L.V., Tombari, F.: Implicit neural rep-
resentations for image compression. In: European Conference on Computer Vision,
pp. 74–91. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-19809-0_5

8. Zhang, Y., van Rozendaal, T., Brehmer, J., Nagel, M., Cohen, T.: Implicit neural
video compression. arXiv preprint arXiv:2112.11312 (2021)

9. Rho, D., Cho, J., Ko, J.H., Park, E.: Neural residual flow fields for efficient video
representations. In: Proceedings of the Asian Conference on Computer Vision, pp.
3447–3463 (2022)

10. Chen, H., He, B., Wang, H., Ren, Y., Lim, S.N., Shrivastava, A.: NeRV: neural
representations for videos. Adv. Neural. Inf. Process. Syst. 34, 21557–21568 (2021)

11. Li, Z., Wang, M., Pi, H., Xu, K., Mei, J., Liu, Y.: E-NeRV: expedite neural video
representation with disentangled spatial-temporal context. In: European Confer-
ence on Computer Vision, pp. 267–284. Springer, Cham (2022). https://doi.org/
10.1007/978-3-031-19833-5_16

12. Kim, S., Yu, S., Lee, J., Shin, J.: Scalable neural video representations with learn-
able positional features. Adv. Neural. Inf. Process. Syst. 35, 12718–12731 (2022)

13. He, B., et al.: Towards scalable neural representation for diverse videos. In: Pro-
ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 6132–6142 (2023)

14. Chen, H., Gwilliam, M., He, B., Lim, S.N., Shrivastava, A.: CNeRV: content-
adaptive neural representation for visual data. arXiv preprint arXiv:2211.10421
(2022)

15. Chen, H., Gwilliam, M., Lim, S.N., Shrivastava, A.: HNeRV: a hybrid neural rep-
resentation for videos. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 10270–10279 (2023)

16. Zhao, Q., Asif, M.S., Ma, Z.: DNeRV: modeling inherent dynamics via difference
neural representation for videos. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 2031–2040 (2023)

17. Schwarz, H., Marpe, D., Wiegand, T.: Overview of the scalable video coding exten-
sion of the h. 264/avc standard. IEEE Trans. Circuits Syst. Video Technol. 17(9),
1103–1120 (2007)

18. Boyce, J.M., Ye, Y., Chen, J., Ramasubramonian, A.K.: Overview of SHVC: scal-
able extensions of the high efficiency video coding standard. IEEE Trans. Circuits
Syst. Video Technol. 26(1), 20–34 (2015)

19. Big buck bunny. http://bbb3d.renderfarming.net/download.html
20. Mercat, A., Viitanen, M., Vanne, J.: UVG dataset: 50/120fps 4k sequences for video

codec analysis and development. In: Proceedings of the 11th ACM Multimedia
Systems Conference, pp. 297–302 (2020)

http://arxiv.org/abs/2103.03123
http://arxiv.org/abs/2201.12904
https://doi.org/10.1007/978-3-031-19809-0_5
http://arxiv.org/abs/2112.11312
https://doi.org/10.1007/978-3-031-19833-5_16
https://doi.org/10.1007/978-3-031-19833-5_16
http://arxiv.org/abs/2211.10421
http://bbb3d.renderfarming.net/download.html


Quality Scalable Video Coding Based on Neural Representation 409

21. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,
R.: NeRF: representing scenes as neural radiance fields for view synthesis. Commun.
ACM 65(1), 99–106 (2021)

22. Sitzmann, V., Martel, J., Bergman, A., Lindell, D., Wetzstein, G.: Implicit neural
representations with periodic activation functions. Adv. Neural. Inf. Process. Syst.
33, 7462–7473 (2020)

23. Chen, Y., Liu, S., Wang, X.: Learning continuous image representation with local
implicit image function. In: Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pp. 8628–8638 (2021)

24. Cho, J., Nam, S., Rho, D., Ko, J.H., Park, E.: Streamable neural fields. In:
European Conference on Computer Vision, pp. 595–612. Springer, Cham (2022).
https://doi.org/10.1007/978-3-031-20044-1_34

25. Landgraf, Z., Hornung, A.S., Cabral, R.S.: PINs: progressive implicit networks for
multi-scale neural representations. arXiv preprint arXiv:2202.04713 (2022)

26. Liu, Z., Mao, H., Wu, C.Y., Feichtenhofer, C., Darrell, T., Xie, S.: A convnet for
the 2020s. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 11976–11986 (2022)

27. Rusu, A.A., et al.: Progressive neural networks. arXiv preprint arXiv:1606.04671
(2016)

28. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

https://doi.org/10.1007/978-3-031-20044-1_34
http://arxiv.org/abs/2202.04713
http://arxiv.org/abs/1606.04671
http://arxiv.org/abs/1412.6980

	Quality Scalable Video Coding Based on Neural Representation
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Overview
	3.2 The Base Layer
	3.3 The Enhancement Layers
	3.4 End-to-End Multi-task Training Strategy

	4 Experiments
	4.1 Datasets and Settings
	4.2 Main Results
	4.3 Ablation

	5 Conclusion
	References


