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Abstract. The conflict between computational overhead and detection accuracy
affects nearly every Automated Accident Detection (AAD) system. Although the
accuracy of detection and classification approaches has recently improved dra-
matically, the systems’ high computational resource requirements make them
unsuitable for deployment in situations when immediate feedback is required.
This paper suggests a strategy for developing an accurate, cost-efficient automatic
collision identification system that can be deployed with a minimal amount of
hardware. The AAD system is divided into three key phases—Detection, Track-
ing, and Classification and offers computationally reduced intensive algorithms
for each of these stages. For the detection phase, YOLOv3, it uses a deep learn-
ing model that has been trained through knowledge distillation. Its accuracy is
on par with that of YOLO (You-Only-Look-Once). On the basis of the informa-
tion inference and data mining techniques COCO (Common Objects in Context)
dataset, YOLOv3 surpasses all other identification techniques considering run-
time complexity, averaging an astounding 30 frames/second on a low-end system.
It attains an Average Precision (AP) mark of 44.8. For the tracking phase, the
system makes use of SORT (Simple Online Real-time Tracking). Since a radial
basis kernel with a support vector machine works efficiently, an area under the
curve (or AUC) score of 0.92 is achieved. Alongside this, this paper examines a
number of machine-learning techniques for the classification stage.

Keywords: Automatic Accident Detection · Computer Vision · Deep Learning ·
YOLO · Vehicle Tracking

1 Introduction

Moving both individuals and possessions from one place to another requires efficient
and effective transportation in today’s world. However, there are also major risks asso-
ciated with transportation, most notably in terms of accidents. Traffic accidents cause
millions of deaths and injuries each year, posing a severe threat to global public health.
Traffic accidents have a substantial social and economic impact as well, costing an esti-
mated $518 billion annually throughout the globe [1]. The causes of traffic accidents
are complex and multifaceted, involving a combination of human, environmental, and
technological factors. Human factors, such as driver behavior and error, are the most
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common cause of accidents, accounting for up to 90% of all accidents [2]. Accidents
can also be caused by environmental variables, like as weather and road design. Techno-
logical factors, such as vehicle design and safety features, can help mitigate the risk of
accidents but can also introduce new risks, such as distracted driving. To address the issue
of traffic accidents, researchers and engineers have been exploring various approaches
to develop intelligent transportation systems that can detect and prevent accidents in
real-time. These systems can help reduce the number of accidents and improve overall
road safety, ultimately leading to more efficient and sustainable transportation systems.
Advanced technologies like artificial intelligence and computer vision enable the devel-
opment of intelligent solutions capable of real-time accident detection and prevention,
ultimately saving lives and improving the overall efficiency of our transportation sys-
tems. In addition to the human and economic costs of traffic accidents, there are also
broader societal implications to consider.

Traffic accidents can lead to significant disruptions in transportation systems, caus-
ing delays and inefficiencies that can have a ripple effect on other aspects of society,
such as commerce and healthcare. Additionally, accidents involving vehicles can harm
the environment, particularly through air pollution and greenhouse gas emissions. To
address these broader societal implications, it is essential to take a holistic approach
to transportation and accident prevention. This approach should involve a combination
of technological solutions, such as intelligent transportation systems, as well as policy
and regulatory measures, such as improved road safety regulations and enforcement
of traffic laws. Additionally, public education and awareness campaigns can help raise
understanding about the risks of traffic accidents and encourage safer driving behaviors.
In conclusion, transportation and accidents are inextricably linked, with traffic accidents
posing significant risks to public health, the economy, and the environment. By investing
in research and development in this field, we can develop innovative solutions that can
help reduce the number of accidents and improve overall road safety, ultimately lead-
ing to more efficient and sustainable transportation systems. Additionally, by taking a
holistic approach to transportation and accident prevention, we can address the broader
societal implications of traffic accidents and create a safer, more sustainable future for
all.

The rest of this paper is organized as follows: Sect. 2 discusses about literature
survey and previous works related to accident detection systems. Section 3 explains the
methodology followed for implementation of algorithms. Section 4 discusses the results
and validation measures for comparison among various algorithms. Section 5 concludes
the paper with overview of the paper and future directions.

2 Literature Survey

Kapri et al. [3] devised a system which states that in a remote location when no one
is present for reporting it, an accident could happen. High-end vehicles now come
equipped with hardware elements that may detect and record accidents. Unfortunately,
these gadgets are immovable and pricey.

A system using HDyCopilot, an Android app, was recommended by Fernandes et al.
[4] for detecting accidents related to multimodal alert dissemination. The user can also
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access the app, get notifications from nearby vehicles for potential road dangers, and
stop the countdown timer if a false collision is discovered by using an android phone,
which is also used to access the app. When a car crash happens, an alert is sent out to
all nearby vehicles, and texts and phone calls are also made to the rescue number. This
is demonstrated on the e-Call platform. However, the core problem—phone breakage or
signal loss—remains unchanged, making the gadget ineffective.

Piedad et al. [5] analysis is based on Hungarian algorithm information inference
and data mining techniques. It developed a paradigm that outlines a smart system that
detects traffic problems across vehicle networks quickly, warns of them, and evaluates
their seriousness. The authors have created and used a prototype towards automated
accidents. After a careful examination of all pertinent characteristics, the results demon-
strated that a vehicle’s speed is a significant contributing element in front collisions.
The explored classification algorithms do not significantly differ from one another, and
they do demonstrate that the efficiency of the model can be markedly improved unless
accidents are classed according to the impacts, especially in front crashes in which the
vehicle is usually the one that strikes.

According to Priyanka et al. [6] description of this technique, aims to avoid accidents
by identifying the driver’s circumstances, such as when they are too tired or unfit to drive.
Infrared Radiation reflecting obstacle sensors are used to determine the positioning of
the eyes. The sensor transmits to the controller a weak signal as soon as the eyes open,
and a high signal after the eyes have been closed for at least four seconds. Input from
the sensor is processed by the PIC controller to turn on or off the alarm system and, if
the alarm sound is ON, display “Driver Slept” on the display. The low or high signal is
processed by the controller. The low or high signal is processed by the controller. As
therefore, driver is informed possibly avoiding a serious collision. Since fatigue plays
a large role in accidents, this kind of technology offers an especially efficient way of
preventing such occurrences.Although the systemoffers ameans of preventing accidents
brought on by drunkenness, the fact that it does not offer damage detection means that
there may be further reasons that are not discovered and the emergency contacts are not
informed would be a serious drawback.

According to Bewley et al. [7], the primary goal of this study’s measured approach of
multiple item detection and tracking is to effectively connect objects for usage in actual
time as well as online applications. For this reason, it is shown that tracking performance
is greatly influenced by detection quality and that improving the algorithm can improve
tracking up to 18.9%. Even though the tracking components of this system are only
tracked using a straightforward combination of well-known methods, which include the
Kalman Filter with Hungarian algorithm, it nonetheless achieves tracking accuracy on
par with other online trackers. The tracker changes at an average rate of 260 Hz, which
is around 20x faster with respect to other cutting-edge trackers.

Dogru et al. [8] proposed system broadcasts traffic alerts to the drivers using sim-
ulated data obtained from vehicular ad-hoc network (VANETs) relying on the velocity
as well as position of the cars. Additionally, it demonstrates how ITS may use machine
learning methods to detect collisions on freeways. In order to develop a model that can
identify between accident cases and usual cases, supervised machine learning methods
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like random forest models (RF), Artificial Neural Networks (ANN), and support vec-
tor machine are used to traffic data. In terms of accuracy, the RF algorithm was found
to perform superior to the ANN and SVM algorithms. With 91.56% accuracy, the RF
algorithm performed better than the SVM (88.71%) and the ANN (90.02%) algorithms.

Chand et al. [9] presented a cutting-edge support system for self-driving automobiles
that can detect collisions using a dashboard camera. The system uses the centroid tracker
technique for recognizing the observed vehicle and the Mask R-CNN framework to
detect cars. In order to determine whether an accident has taken place amongst all of the
recognized vehicles, the approach additionally computes a number of factors, including
as speed, momentum, and trajectory.

Tsuji et al. [10] address the construction of an extensive pedestrian detecting sys-
tem. They discuss the placement of the cameras, coordinate systems, simple IR-based
recognition, surveillance, computing relativemovement vectors, and collision evaluation
standards.

Wakim et al. [11] propose a Markovian hypothesis to explain pedestrian behavior.
Using a hidden Markov model, the dynamics of pedestrians are represented by four
states: sitting still, strolling, jogging, and running. The likelihood of changing states is
shown on a model transition diagram. The probability distributions of absolute speed
and change in direction were modeled as truncated Gaussians for each state. Collision
probabilities are forecasted using Monte-Carlo simulations.

In their Probabilistic framework for multi-object tracking, Antonini et al. [12] used
this setup to analyze pedestrian trajectory and assign marks for doing so. The way a
pedestrian’s body is oriented frequently reveals important details about the direction of
movement to come. Therefore, determining the pedestrian orientation may help with
motion prediction and provide more accurate collision probability predictions. Support
Vector Machines based on Hartley wavelet coefficients are used by Poggio et al. [13]
to estimate a person’s orientation and classify amongst various orientations. To extract
the automobile’s characteristics (velocity, momentum, and direction), Zu et al. [14] use
the Mean Shift algorithms for tracking as well as a motion detection using the Gaussian
Mixture Model (GMM). Ren et al. [15] suggestion is to first extract segments of road
and line positions before applying background subtraction for obtaining moving objects.
Then a time and space graphic with a traffic tracking graph is produced. For classification
and accident recognition, a Support Vector Machine (SVM) was employed.

3 Methodology

Our system is designed to automate incident detection in real-time using a three-phase
process: detection, tracking, and classification. In the detection phase, we employ the
You Only Look Once (YOLO) method [16], a popular deep learning algorithm, to iden-
tify and categorizemoving cars in images and video frames. YOLOdivides the input into
a grid-like arrangement of cells and predicts box boundaries and class likelihoods for
each cell. This approach is faster than traditional object detection algorithms and allows
for the detection of multiple items in a single pass. The YOLO method has proven to
be versatile and can be applied to various tasks beyond accident detection, including
traffic monitoring, vehicle counting, and license plate recognition [17]. The data gen-
erated by these systems can be valuable for traffic management and law enforcement
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organizations. To track the detected cars over time, we utilize the Simple Online and
Realtime Tracking (SORT) algorithm. SORT combines well with YOLO, as it focuses
on object tracking while YOLO excels at object identification and categorization. Stud-
ies have demonstrated that the YOLO and SORT algorithms achieve high accuracy and
reliability in object detection and tracking [18]. In the classification stage, we evalu-
ate different machine learning techniques to classify the segmented automobile images
from the detection phase into damaged and undamaged classes. This step allows us
to assess the state of damage for each detected car. By employing less computation-
ally intensive algorithms for each stage, we aim to create a reliable and economically
affordable real-time incident alert system that requires minimal equipment. In addition
to accident detection, other related works have explored the application of deep learning
techniques for driver safety. For instance, a real-time driver drowsiness detection model
based on facial features has been proposed [19]. This system quickly detects signs of
drowsiness in drivers and provides warnings to ensure their safety. The YOLO develop-
ers have provided a range of trained models with different backbone classifiers. Table 1
showcases the model size, performance, parameter quantity, and layer depth for several
backbone classifiers on the ImageNet validation benchmark. Among these classifiers,
MobileNet-v2 stands out for its competitive performance and minimal memory and pro-
cessing requirements. Therefore, we have employed the pretrained YOLO-v3 model,
which utilizes MobileNet-v2 as the backbone, for both the teacher and student models.
Figure 1 represents the top-level design of the proposed methodology.

Table 1. Multiple backbone classifier model’s depth, parameter count and size.

Classifier Size Parameter Depth Accuracy

VGG19 543 MB 143 M 26 72%

ResNet50 100 MB 25 M 20 74.6%

ResNet101 175 MB 44 M 20 76.9%

MobileNet 16 MB 4 M 90 71%

MobileNetV2 14 MB 3 M 90 72.5%

3.1 Phase 1 - Vehicle Detection

In view of the necessity for significant recall and computing lightness, we used the
YOLO v3 vehicle recognition method, which is computationally light and has a high
recall. YOLO v3 is ahead of the pack for a number of reasons, including its:

• Quickness
• Detection precision
• Excellent generalization
• Freely available
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Fig. 1. Top-level design of the suggested system

Implementing the following four methods, the algorithm operates:

1. Grid blocks: In this first step, uniformly shaped N×N cell grids are created from the
original image (A). The class of every grid cell and the confidence value of probability
value should be predicted locally. This is done along with the coverage of the item of
grid cell.

2. Bounding box: The next step is to localize the borders of the bounding box. These
boxes are the rectangles that cover/bound every article present in the image. It is
possible to have several box boundaries as there are items in each image. All the
final bounding boxes are stored in Y which is the final matrix/vector form of each
bounding box.

Y = [px, bc, bd , bh, bw,C1,C2] (1)

This is especially important when the model is being trained.

• The value of px denotes the object’s square’s likelihood value.
• The x and y location coordinates of the center of the bounding box with respect to

the adjacent grid cell - bc and bd.
• The letters bh and bw stand for the bounded box’s height and breadth in reference to

the adjacent grid cell.
• The classes C1 and C2 serve as substitutes for Player or Ball, respectively. More

classes are available if your use cases require them.

IOU (Intersection Over Union): The IOU’s (a value within 0 and 1) purpose is to
eliminate such grid boxes and retain only the necessary ones. Here is the reasoning for
it:

The IOU selection threshold is set by the user and can be, for example, 0.5.
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The IOU, which is the the intersection Region divide by the Union Area, is then
calculated for each grid cell using YOLO.

Finally, it considers grid cells with an an IOU > limit rather than those predicted to
have an IOU threshold.

Non-Maximum Suppression: Setting an IOU ceiling isn’t always enough because an
item could have many boxes with IOU that’s over the limit, and if all of those boxes are
left open, noise might get in. It can be used in this situation to conserve only the items
having the best chance of being found.

Dataset
For YOLOv3 training, made use of the Boxy Automobiles Dataset [20]. Since the pri-
mary purpose of the Boxy cars dataset was to train vehicle identification algorithm in
self-driving systems, the majority of the dataset’s photos include automobiles in traffic
and on roads. Given that our system receives CCTV footage from scenes of busy high-
ways and traffic, for our use case, this dataset works out exactly right. This files include
200,000 1232 × 1028-pixel photos with 1,990,806 automobiles tagged with 2D and 3D
bounding rectangles. During the distillation training phase, annotated images (ground
truth) which are two-dimensional are used as hard labels. Figure 2 represents a sample
image of the dataset which is used for YOLOv3 training.

Fig. 2. Two-dimensional bounding boxes with annotations

Preprocessing
The dataset’s images are all down scaled to 512× 512 resolution, and the trained YOLO
v3 using ResNet152 backbone classifier is used to generate the custom annotation or
soft labels. A three-dimensional tensor with the shape 19*19*85 that recognizes and
categorizes items from the MS-COCO dataset that correspond to 80 different classes is
predicted of the trainedmodel (teachermodel). Here only exists one class, “Vehicle,” that
has to be identified by our system. As a result, our model’s (the student model’s) output
is a 3D tensor with the shape19*19*6 as represented in Fig. 3. From the 80 potential
subclasses in the MS-COCO dataset, only four classes are predicted—”motorcycle,”
“car,” “truck,” and “bus”—are used to produce soft labels for each image.
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Fig. 3. Yolo architecture. A 19*19*6 tensor replaces MobileNet-v2’s last classification

Training
During training, when an object is identified in bounding box, the loss of classification
(Eq. 2) in each cell equals the squared variance of the category’s conditional probability
for every class:

L1 =
∑s2

i=0
1obji

∑
c∈classes

(
pi(c) − p

ˆ
i(c)

)2
(2)

where 1obji = 1 if an object shows up in cell i, otherwise 0. p̂i(c) signifies the conditional
likelihood for class c in cell i.

Localization loss (Eq. 3): Localization loss calculates the variances in expected sizes
aa well as placements of the boundary boxes.

L2 = λcoord
∑s2

i=0

∑B

j=0
1objij

[(
xi − x

ˆ
i

)2 +
(
yi − y

ˆ
i

)2]

+ λcoord
∑s2

i=0

∑B

j=0
1objij

[(√
wi − √

w
ˆ
i

)2 +
(√

h − √
h
ˆ
i

)2]
(3)

whereλcoord in order to compensate up for the loss of boundary box coordinates, increase
the weight. 1objij = 1 if the object’s identity is determined by the jth border box in cell i,
else 0, x, and y represent box offsets. Box dimensions are w and h, respectively.

Confidence loss (Eq. 4): If a box-containing object is found, the following degree of
confidence loss occurs:

L3 =
∑s2

i=0

∑B

j=0
1objij

(
Ci − C

ˆ
i

)2
(4)

where 1objij = 1 Ci is the border box’s rating of the box j in cell i, if the jth border box
in cell i is responsible for detecting the object, otherwise 0. The degree of degree of
confidence loss is following in the absence of an object being found in the box. (Eq. 5):

L4 = λnoobj
∑s2

i=0

∑B

j=0
1noobjij

(
Ci − C

ˆ
i

)2
(5)
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where is 1noobjij is complement of 1objij
When identifying the background, λnoobj weighs down the loss by using the box

confidence value of boxes j in cell i, or C
ˆ
i.

Equation 1: For truth predictions, combined training loss: Lg = L1 + L2 + L3 +
L4.

Equation 2: Soft label loss:

Ls =
∑19

i=1

∑19

j=1

∑6

k=1

(
yijk − y

ˆ
ijk

)2
(6)

where yijk denotes the expectation of the student YOLOv3model.

and y
ˆ
ijk denotes the expectation of the teacher YOLOv3model.

Equation 3: Combined YOLOv3 training loss:

L = Ls∗α + (1 − α)Lg (7)

where α ∈ [0,1] is a hyperparameter used to measure soft label loss.

Evaluation Metrics: We computed the AP value on the preprocessed dataset to assess
the detection ability of our model. The accuracy of detectors for objects is frequently
assessed using the AP, or average precision score.

AP =
∫

p(r)dr (8)

3.2 Phase 2 - Vehicle Tracking

The major goal of SORT’s pragmatic approach to tracking many objects is to associate
them effectively for online as well as real-time applications. Despite merely employing
a simple combination of well-known methods for the tracking components, like the
Kalman Filter along with Hungarian algorithm, this method achieves an accuracy on par
with cutting-edge online trackers. Additionally, relative to other competing methods, it
delivers exceptional runtime speedbecause of its simplicity. The localization andvelocity
of each vehicle’s bounding box were considered by the writers in SORT, and in order
to approximate values from previously collected data, they employed Kalman filtering.
Then, depending on the Euclidean distance between each of the bounding boxes, they
utilized theHungarian assignment algorithm to assign each one to previously established
tracks or, if the distancewas too great, to initialize a new track. A recursivemethod called
the Kalman filter determines the current state of a system using noisy measurements.
The system’s state shows the position and motion of an object in a video stream when
it comes to online real-time tracking. The measurements of an object’s position, its
noise characteristics, and the current state estimation are all inputs to the Kalman filter.
The updated state estimate is then generated, considering the fresh measurements, and
dampening the impact of measurement noise. The process is described in Fig. 4.
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Fig. 4. SORT Tracking

The object detections are assigned to the tracks using Hungarian algorithm. The
assignment issue, which is the challenge of assigning a set of items to a set of targets, is
solved by a combinatorial optimization algorithm. In the framework of online real-time
surveillance, the targets are the previously established tracks, and the objects represent
detected in the current frame. Hungarian algorithm places each detection on the line of
track that is physically closest to it. The overall distance between each of the detection
and the tracks is calculated for this assignment to be as short as possible. The shape
19*19*6 of image which the algorithm allocates detections to tracked objects in a way
that reduces the overall distance between them, whereas the Kalman filter offers precise
state estimations of the object across time. In computer vision applications like tracking
objects in CCTV cameras, autonomous cars, and robotics, this strategy is frequently
utilized.

3.3 Phase 3 - Accident Classification

The images of the detected vehicles are extracted using the bounding box obtained from
the input frame. After that, each image is categorized based on the extent of damage. An
accident was caused by a damaged automobile, according to higher damage status. To
categorize identified vehicle photos for damage state, a SVM was trained using a radial
basis kernel. The training methodology is covered in detail in the section that follows.

Dataset Used
The classification model was trained using the Accident dataset (Pasheai al., 2019).
There are 10,480 photos of both damaged and undamaged autos in the dataset. The
majority of the samples in the repository were downloaded from websites. This results,
a larger share is made up of excellent photos. The size of the dataset is roughly 1.5 GB.
The photos are 640 × 480 pixels in size and in the JPEG format. Each image in the
collection is given a class label (damaged or undamaged) that corresponds to it.

Preprocessing
Every picture in this data set is transformed to grayscale color space and down sampled
to 224*224 resolution. Given that the majority of the database’s photos were directly.

Most of the content was taken from the internet and was of great quality. We have
included nominal noise inGaussian form to simulate inputs directly acquired from lower-
resolution CCTVs to boost the generalization of the model’s results in deployment. Such
a process has demonstrated a notable improvement in accuracy at the inference time.
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Fig. 5. Label 1 for “damaged vehicle” & Label 2 for “undamaged vehicle”

Training
For the purpose of categorising vehicle photos into damaged and undamaged categories,
we trained the SVM using radial basis kernel. The standard configuration in scikit-learn,
a Python language tool that is used for training the SVM, is 1.0 for the most important
SVM parameter, slackness, and 0.1 for the gamma value of the radial basis function.
Figure 5 represents the classification for vehicles.

Evaluation Metrics
To assess the classification performance of the SVM classifier, recall and precision were
evaluated.Accuracy andmemory are important factors to considerwhen evaluatingmod-
els. Precision is with regard to of runtime complexity defined as the group of correctly
classified positive instances amongst all occurrences, whereas recall is the percentage
of every instance in the positive category that were correctly labelled.

4 Results

YOLOv3 surpasses all other detection methods on the MS-COCO datasets. Therefore,
driver is informed runtime complexity as well averaging a startling 30 frames per sec-
ond on a low-end PC. This results in an average precision (AP) value of 44.8. Simple
Online Real Time Tracking, or SORT, is used for the tracking step, and for the stage
of classification, various machine learning techniques are compared and shown that the
support vector machine technique with a radial basis kernel excels over the opposition
with an AUC. Table 2 shows the AP score and runtime of various models when used
with ResNetv2 as backbone classifier. Table 3 shows the Precision, Recall and F-score
of various classification algorithms.

Table 2. Performance evaluation of several detection algorithms

Model AP score Run Time(fps)

Faster R-CNN 34.7 15

Single Shot Detectors 31.2 19

Yolo v3 44.8 30
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Table 3. The accident classification model’s performance

Model Precision Recall F1-score

Random Forest 0.85 0.79 0.82

Decision Tree 0.70 0.69 0.70

SVM(linear) Classifier 0.82 0.81 0.82

4.1 AUC-ROC Analysis

A typical statistic for assessing the efficacy of binary classification algorithms is the area
under a curve (AUC). It evaluates the model’s ability to distinguish between positive and
negative categories. AUC has a range of 0 to 1, with 0.5 suggesting that the algorithm is
no better than guessing at random and 1 suggesting perfect classification. Here we are
classifying between two labels accident vs non-accidents. Figure 6 represents the AUC
using various algorithms - decision tree attains 0.91, random forest attains 0.70, linear
SVM achieves 0.91 and SVM achieves 0.92.

Fig. 6. Illustration of AUC using various algorithms



Deep Learning Envisioned Accident Detection System 37

5 Conclusion

The relationship between computational overhead and detection accuracy affects nearly
every AAD system. The study offers a way for creating a real-time, AAD system that
is both reliable and affordable in terms of computing. The suggested system seeks to
address the trade-off between computing overhead and detection accuracy by segment-
ing the model into three phases – Detection phase, tracking phase, and classification
phase) and employing unique algorithm for each stage. YOLO v3 for the Detection
stage are introduced. SORT is used for the tracking stage. The research evaluates vari-
ous machine learning methods for the classification stage and determines that the SVM,
which employs a radial basis kernel, is the best performance. Overall, the proposed
method offers a viable solution to the problems of processing overhead and detection
precision in AAD systems. The suggested method strikes a balance between compu-
tational effectiveness and accuracy, opening the door for the creation of useful and
affordable real-time accident detection technologies. Future research directions in this
field may include exploring the integration of other data sources, such as LiDAR and
radar, to enhance the system’s performance and robustness. Additionally, the develop-
ment of more efficient and lightweight deep learning models, such as those based on
neural architecture search, can help address the computational challenges associated
with real-time processing. Finally, the incorporation of reinforcement learning and other
advanced machine learning techniques can enable the system to adapt and improve its
performance over time, further enhancing its effectiveness in detecting and preventing
accidents.

Aswe continue to explore the possibilities of vision-based accident detection systems
using deep learning, it is important to consider their broader implications and applica-
tions. These systems can be integrated with intelligent transportation systems (ITS),
such as traffic signal control and dynamic traffic routing, leading to more efficient traf-
fic management and improved road safety. Real-time accident detection enables faster
emergency response, potentially saving lives and reducing the severity of injuries. The
data collected by these systems is valuable for insurance companies and law enforcement
agencies, aiding in determining accident causes and liability assessment. With the rise
of autonomous vehicles, vision-based accident detection systems can ensure their safe
operation by proactively detecting and avoiding potential accidents. Additionally, the
data gathered can provide insights for urban planning and infrastructure development,
helping design safer and more efficient transportation networks.
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