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Abstract. Delegation of operations used in cryptographic schemes from
a computationally weaker client to a computationally stronger server has
been advocated to expand the applicability of cryptosystems to comput-
ing with resource-constrained devices. Classical results for the verifica-
tion of integer and polynomial products are based on a test due to Pip-
penger, Yao and Kaminski which verifies these operations modulo a small
prime. In this paper we describe and prove an efficient small integer mod-
ulus test and show its application to single-server delegated computation
of operations of interest in cryptosystems. In particular, we show single-
server delegated computation protocols, without any preprocessing, for
the following operations:
1. modular multiplication of two public group values,
2. modular inverse of a public group value,
3. modular inverse of a private group value, and
4. exponentiation of a public base to a small public exponent in the

RSA group.
Our protocols satisfy result correctness, input privacy (unless the input
is public), result security and client efficiency. Previous work satisfied
only a subset of these properties, or required preprocessing, or satisfied
lower client efficiency.

Keywords: Small Modulus Test · Applied Cryptography · Secure
Delegation · Group Theory

1 Introduction

Server-aided cryptography (starting with, e.g., [1,11,22]) addresses the problem
of resource-constrained clients, such as IoT devices, delegating or outsourcing
cryptographic computations to computationally more powerful servers. Cur-
rently, this area is seeing a renewed interest because of the increasing pop-
ularity of various computing trends (i.e., computing over IoT devices’ data,
cloud/edge/fog computing, etc.), and the need to efficiently implement cryp-
tographic schemes and their sometimes relatively expensive operations on them.
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The ubiquitous deployment of resource-constraint devices makes the secu-
rity designer’s life harder, in that the task of guaranteeing the security of these
devices becomes less and less manageable. The natural approach of running
a preprocessing phase where cryptographic keys and credentials are stored on
these devices and then allowing them to participate in state-of-the-art cryp-
tography protocols based on this stored information, may not always succeed,
since sometimes these devices are deployed in use cases where physical security
(specifically, confidentiality and/or integrity) of any stored secret keys or data
cannot be guaranteed.

This motivated the problem studied in this paper: is it possible for a resource-
constrained client to efficiently, privately and securely delegate to a server the
computation of operations used in currently applied cryptography schemes, with-
out need for a preprocessing phase? A solution to this problem needs to make
computation for the client more efficient than in a non-delegated computation,
but also needs to withstand server’s attacks in learning any new information
about the input to the computation (when input privacy is desired), or in dis-
rupting the computation and fooling the client into accepting an incorrect com-
putation result. All of the above needs to be achieved without a preprocessing
phase storing data on the client’s memory.

More generally, we require a solution to the delegation of a function F to
be a 2-party protocol between client C and server S, where C and S have a
brief message exchange (typically, a message from C to S followed by one from
S to C; see Fig. 1), and where the following requirements are satisfied (see also
Appendix A for more formal definitions):

1. δc-result correctness: if C and S honestly run the protocol, at the end of the
protocol C returns F (x) with some high probability δc;

2. εp-input privacy: except for some small probability εp, no new information
about input x is revealed to S;

3. εs-result security: S should not be able, except possibly with some small
probability εs, to convince C to return a result different than F (x) at the end
of the protocol; and

4. (tF , tS , tC , cc,mc)-efficiency:
– client runtime efficiency: C’s runtime, denoted as tC , should be signifi-

cantly smaller than the runtime, denoted as tF , of computing F (x) with-
out delegation;

– small S’s runtime tS (i.e., a small constant times tF );
– small online phase communication complexity cc (i.e., ideally a small con-

stant times input and output sizes);
– small number of online phase messages mc (i.e., ideally, ≤ 2).

Our Contribution and Comparison with Previous Work. We show single-
server protocols, without preprocessing, for the delegation of

1. modular multiplication of two public group values,
2. modular inverse of a public group value,
3. modular inverse of a private group value, and
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Fig. 1. Delegated computation of y = F (x) without preprocessing

4. exponentiation of a public base to a small public exponent in the RSA group.

All of our protocols satisfy the following 4 properties:

– δc-result correctness, for δc = 1;
– εp-input privacy (unless the input is public), for εp = 0;
– εs-result security, for εs = 2−λ, where λ is a configurable statistical parameter

which in applications can be set, for instance, as = 50); and
– client runtime efficiency, with a software implementation that achieves ratio

tF /tC significantly larger than 1, when λ = 50 and when the value range
of input length σ is consistent with the use of these operations in applied
cryptography.

In the case of modular multiplication of two public values, we are not aware
of any previous work satisfying these 4 properties without preprocessing. The
closest results we know of are: (a) the protocol in [7], which satisfies these 4
properties with preprocessing, and (b) a protocol obtained by a direct adaptation
to modular multiplication of the integer multiplication verification test [15,32],
which at best achieves client efficiency in an asymptotic sense.

In the case of modular inverses, previous work (see, e.g., [5]) did achieve an
efficient delegation protocol without preprocessing, even in the case where the
input needs to remain private. The protocols in this paper have improved client
efficiency, since the client only performs a few modular reductions with a small
modulus, while in [5] the client performed a few modular multiplications.

In the case of modular exponentiation of a public base to a small public
exponent in the RSA group [25], we are not aware of any previous work satisfying
this set of 4 properties without any preprocessing. The closest results we are
aware of are a protocol that satisfies these 4 properties but requires preprocessing
[8], and the following protocols without preprocessing for large public exponents:
(a) delegation of a batch of exponentiations where the client does compute a
single exponentiation [9], and (c) delegation of a single exponentiation which
only provably satisfies result correctness and client efficiency [24,28,33]. We note
that exponentiation to a small exponent is of much interest since many library
implementations of RSA encryption use small exponents, for efficiency reasons.

We show the client runtime efficiency property of our protocols in two ways:
with analytical runtime expressions, and by performance measurements for a
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software implementation of our protocols as well as some previous protocols (see
Tables 1, 2, 3, and 4 for details). Our protocols also perform well with respect
to the other targeted efficiency properties; specifically:

– low exchanged communication (a constant number of group values; i.e., cc =
O(1) for modular multiplication and inverses, and a logarithmic number; i.e.,
cc = O(log x) for modular exponentiation to small exponent x),

– only 1 or 2 exchanged messages (client delegating to server, and server
responding; i.e., mc ≤ 2), and

– low server runtime (only lower order computations in addition to the dele-
gated function).

Our main technical contribution consists of a 2-parameter generalization of
Pippenger’s probabilistic test [15,32] on efficiently verifying integer equations.
Given an integer equation y = a · b, this test consisted of checking whether this
identity holds modulo a small random prime. We generalize this test in two
ways: by using a small random integer instead of a small random prime, and by
optimizing the length of this random integer as a function of the desired error
probability for the test. We also give a self-contained proof of the lemma proving
the effectiveness of this test.
More Related Work. Almost all past work showing proved guarantees in del-
egation of operations used in cryptography protocols (starting with, e.g., [14]
for exponentiation and [30] for pairings), made critical use of preprocessing, as
follows. The delegation protocol was divided into an offline phase and an online
phase, and the client was assumed to have time resource constraints only in the
online phase. While this assumption may be reasonable in many practical sce-
narios, it may also not be so in scenarios where we cannot guarantee the integrity
and/or confidentiality of the data stored on the client’s memory at the offline
phase or even cached across multiple protocol executions. Thus, delegation with-
out preprocessing of operations used in cryptography schemes, although much
harder to achieve, seems to be an important capability to have for applications
with resource-constrained devices.

We are only aware of the following few exceptions (i.e., single-server delega-
tion protocols proved to satisfy the above 4 properties, without requiring any
preprocessing): a protocol to delegate an inverse in a group (see, e.g., [5]), and
a recent protocol to delegate any single pairing computation with public inputs
[19]. With respect to batch computations, we are aware of the following solutions
proved to satisfy the above 4 properties, without preprocessing: 2 protocols to
delegate a batch of public-base, public-exponent, exponentiations in prime-order
or RSA groups, where the client does perform a single exponentiation compu-
tation [9], and protocols to delegate a batch of public-input pairings, where the
client does perform one or some pairing computations [10,23,30]. We note that
in these latter protocols the client does cache some values across the batch dele-
gation, and stress that if cached for a long time, the confidentiality and integrity
of these values is also at risk (similarly as discussed for values stored during any
preprocessing).
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In the case of no-preprocessing delegation of a single large-exponent expo-
nentiation modulo a composite integer, previous attempts satisfied result cor-
rectness and client efficiency [24,28,33] but were later showed to satisfy neither
input privacy nor result security [4,24]. Similarly for the case of no-preprocessing
delegation of a single pairing: the scheme in [13] satisfies result correctness, input
privacy and client efficiency but does not target result security, and protocol 1
in [20] satisfies result correctness and client efficiency but was showed to satisfy
neither input privacy nor result security in [19]. Some literature papers achieved
delegation without preprocessing in the presence of 2 or more non-colluding
servers; see, for instance, [29] for the delegation of pairings.

There is also much other work on delegation for operations in a different
domain than what studied here, for which we refer to reader to the survey in [27]
for other operations beyond cryptography and the survey in [2] for computation
of arbitrary functions, with clients more powerful than considered here.
Preliminary Definitions. Let (G, ·) denote a group, where we refer to opera-
tion · as multiplication, and let 1 denote G’s identity element. For any a ∈ G, let
b = a−1 denote the multiplicative inverse of a; i.e., the value b such that a ·b = 1.
We consider the following functions:

– Fmul : G × G → G, mapping any a, b ∈ G to their multiplication a · b.
– Finv : G → G, mapping any value x ∈ G to its multiplicative inverse x−1.
– Fexp,c : G × {0, 1}c → G, mapping any values x ∈ G and any c-bit exponent

e to the exponentiation xe.

In the rest of the paper, we will consider these functions over the group (Z∗
m, ·

mod m), for an arbitrary integer m. In particular, when m is a positive integer
of one of the following two forms: (1) m is a prime; (2) m is the product of
two same-length primes p, q. Note that these definitions capture groups where
the discrete logarithm problem or RSA/factoring problems are conjectured to
be hard.

For asymptotic efficiency evaluation of our protocols, we will use the following
definitions:

– a(�): runtime for modular addition/subtraction of �-bit values
– m(�): runtime for modular multiplication of �-bit values
– d(�): runtime for modular inversion of an �-bit value
– mr(�): runtime for modular reduction to an �-bit modulus
– p(�): runtime for a random generation of an �-bit prime number
– i(�): runtime for a random generation of an �-bit integer
– η1 = �λ + log2 λ + log2(π(2σ))�, where π(z) is the number of primes ≤ z
– η2 = �λ + log2 σ�.

For practical runtime evaluation, we have produced a software implemen-
tation, in Python 3.8 using the gmpy2 package, of our protocols on a macOS
Big Sur Version 11.4 laptop with a 3.2 GHz Apple M1 processor with 8 cores
(4 performance cores and 4 efficiency cores at 1/10th of the power) and 16 GB
RAM.
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2 An Identity Verification Test Modulo Small Integers

We show a 2-parameter generalization of Pippenger’s probabilistic test [15,32].
Given an integer equation y = a · b, this test consisted of randomly choosing
a small prime q, and checking whether y mod q = (a mod q) · (b mod q). We
generalize this test in two ways: by using a small random integer s instead of
the small random prime q, and by setting the length of s as a function of the
desired error probability for the test. We now show the key lemma proving the
effectiveness of this test (stated in terms of zero testing since verifying the integer
equation y = a · b is equivalent to verifying that y − a · b = 0).

Lemma 1. Let λ, σ be integers such that λ ≥ 2 and 7 ≤ σ ≤ 108. Also, let
Nη be the set of positive integers ≤ 2η and > 1. For any integer x such that
1 ≤ x ≤ 2σ, if η = �λ + log2 σ�, it holds that

Prob [ q ← Nη : x = 0 mod q ] ≤ 2−λ.

We start the proof of Lemma 1 by providing some definitions and facts. Our
goal is to compute an upper bound on the probability, denoted as pη,λ,x, in the
lemma statement; i.e., the probability that after randomly choosing an integer
q ≤ 2η and > 1, it holds that x = 0 mod q. To compute an upper bound on
pη,λ,x, we first elaborate on known bounds on the product of prime numbers.

Theorem 18 in [26] states that for any integer u < 108, the product of all
prime integers ≤ u is > et, for t = u − 2.05282

√
u, which is > 2u for all integers

u ≥ 49. By direct calculation, one can see that the product of all prime integers
≤ u is > 2u for all 7 ≤ u ≤ 49. This implies the following

Fact 1. For any integer u such that 7 ≤ u ≤ 108, the product of all prime
integers ≤ u is > 2u.

We now need a result almost identical to Corollary 1 in [18].

Fact 2. For any integers σ, x such that 7 ≤ σ ≤ 108 and x < 2σ, the number of
positive integers that divide x is ≤ σ − 1.

To show why Fact 2 holds, we see that by assuming that there are b > σ − 1
distinct positive integers q1, . . . , qb which divide x, one reaches the contradiction

2σ > x

≥ lcm(q1, . . . , qb)
≥ lcm(smallest b positive integers)
≥ product of all primes ≤ b

> 2σ

where the last inequality follows from Fact 1, after setting u = σ.
Using the above facts, we can now compute the desired upper bound on

probability pη,λ,x as follows.
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pη,λ,x ≤ number of positive integers dividing x

number of integers ≤ 2η and > 1

≤ σ − 1
2η − 1

≤ σ

2η
≤ σ

2λ+log2 σ
≤ 1

2λ
,

where the first inequality follows by the definition of pη,λ,x, the second inequality
follows from Fact 2, the fourth inequality follows from the definition of η in
the lemma statement, and the third and fifth inequalities follow by algebraic
simplifications. 
�

3 No-Preprocessing Delegation of Group Multiplication

In this section we show the first single-server delegation protocols for group
multiplication, without any preprocessing. Formally, we obtain the following

Theorem 1. Let σ be computational security parameter, let m be a σ-bit inte-
ger, and let λ be a statistical security parameter. There exist (constructively) a
single-server protocol Pmul without preprocessing for delegating computation of
function Fmul in group (Z∗

m, · mod m), satisfying the properties of 1-correctness,
2−λ-security, and (tF , tS , tC ,mc, cc)-efficiency, where, for η = �λ + log2 σ�,

– tC = 5 η-bit-modulus reductions of σ-bit integers

+ 2 η-bit-values multiplications + 1 η-bit-value addition;
– tS = 1 multiplication + 1 division mod m,
– mc = 1, cc = 2

We also remark that the asymptotic expression of tC is O(mr(η)+m(η)+a(η)),
which improves over non-delegated computation runtime tF = m(σ) of ring
multiplication for a large region of the (λ, σ) parameter space, including values
of highest practical interest, when using the most recommended algorithms in
applied cryptography (i.e., Karatsuba’s algorithm, Toom-Cook’s algorithm and
the grade-school algorithm).

In the rest of this section we show the proof of Theorem 1.
Informal Description of Pmul. Our starting point is the delegation protocol,
with preprocessing, for multiplication modulo primes from [7], here denoted as
Pmul

pre . In this latter protocol, the online input to C and S consists of two integers
a, b and a prime modulus p, and its online phase starts with S computing the
product w = a · b over the integers and sending to C the decomposition of w
modulo p (i.e., the quotient w0 and the remainder w1 of the division of w by p).
After that, C verifies the equation a·b = w0 ·p+w1 modulo a small random prime
q, which was chosen in the offline phase. Protocol Pmul

pre uses a verification test
which extended a well-known test for probabilistic verification of multiplication
over the integers, mentioned by Yao [32] and Kaminski [15], and credited in
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both papers to Pippenger (see, e.g., example 2 in [15] for a description of the
protocol). The extension consists in a configurable choice of the size of the small
prime modulus q, based on the desired error probability for the test.

As the offline of Pmul
pre essentially only consists of randomly choosing a small

prime and storing it on C’s memory, a natural approach to obtain a delegation
protocol without preprocessing consists of moving this step into C’s program
in the online phase. We denote the resulting protocol as Pmul

opm. As detailed in
Table 1, when implementing Pmul

opm for practical parameter values, C’s runtime
is significantly slower than a non-delegated computation. After we realized that
this is due mainly to the random choice and testing of the small prime, we
considered using a version of this probabilistic verification test based on arbitrary
small integers as moduli (instead of primes), as in Sect. 2, for which the random
modulus choice is very efficient and no primality testing of the modulus is needed.
Our Lemma 1 shows that this approach is sound, and the size of this integer is
not much different (in fact, slightly smaller) than the size of the prime integer
chosen in [7]. As a consequence, in the resulting delegation protocol, denoted
as Pmul, C’s runtime is smaller than non-delegated computation, even if no
preprocessing is used.
Formal Description of Pmul. Consider the group (Z∗

m, · mod m), for some
positive integer m. We now formally describe a 1-server protocol Pmul = (C,S)
for the delegation of multiplication of public online group values a and b in Z

∗
m,

where |a| = |b| = σ, and with statistical parameter λ.
Online Input to C and S: 1σ, 1λ, integer m ∈ {0, 1}σ, a, b ∈ Z

∗
m

Online Phase Instructions:

1. S computes w := a · b (i.e., the product, over Z, of integers a and b)
S computes w0, w1 such that w = w0 · m + w1 (over Z), where 0 ≤ w1 < m
S sends w0, w1 to C

2. C randomly chooses an integer s < 2η, where η = �λ + log2 σ�
C computes w′

0 := w0 mod s and w′
1 := w1 mod s

C computes a′ := a mod s, b′ := b mod s and m′ := m mod s
If a′ · b′ �= w′

0 · m′ + w′
1 mod s then

C returns: ⊥ and the protocol halts
C returns: y := w1

Properties of Pmul: The proofs for the result correctness and result security
of Pmul, the latter using Lemma 1, can be found in Appendix B.

The efficiency property follows by protocol inspection. In particular, S com-
putes one multiplication of two σ-bit values over Z, and one reduction of a σ-bit
integer modulo m, and C computes five reductions modulo the η-bit integer s of
integers of size at most σ and one verification check which requires one addition
and two multiplications modulo the η-bit integer s.

In Table 1 we report on the practical efficiency of the scheme, based on
our software implementation of the scheme, one main takeaway being that C’s
runtime tC is smaller than non-delegated computation tF (i.e., the delegation



An Efficient Small Modulus Test and Its Applications 165

improvement ratio tF /tC is > 1) for all values of most interest of parameters λ, σ;
specifically, λ = 50 and σ ∈ {1024, 2048, 3072}. We also report the ratio tF /tC
for two related protocols: protocol Pmul

pre from [7] with preprocessing, and the
protocol Pmul

opm which has no preprocessing, where C chooses a prime modulus s
in the online phase. The takeaways there are that, for such practical parameter
values: (1) delegation would not improve C’s runtime in Pmul

opm; (2) delegation
does improve C’s runtime in Pmul by a multiplicative factor between 1.7 and
4 depending on the modulus size; and (3) the delegation improvement ratio for
Pmul, not using preprocessing, is about half the ratio of Pmul

pre , which does use
preprocessing, or larger.

Table 1. Performance results for the delegation of Fmul(a, b) = a · b mod m in Z
∗
m,

where |m| = σ, λ = 50, tCm(η) ≤ 5mr(η) + 2m(η) + a(η) and tF = 1.19E-05 s.

Protocol/Pre-processing tC tF /tC σ = 3072

σ = 2048 σ = 3072 σ = 4096 tP tC

m is a prime integer

Pmul
pre Yes tCm(η1) 3.479 4.852 6.578 5.78E-05 2.44E-06

Pmul
opm No tCm(η1) + p(η1) 0.108 0.185 0.314 0 6.43E-05

Pmul No tCm(η2) + i(η2) 1.694 2.716 3.973 0 4.43E-06

m is the product of 2 same-length primes

Pmul
pre Yes tCm(η1) 3.538 4.728 6.501 6.46E-05 2.53E-06

Pmul
opm No tCm(η1) + p(η1) 0.122 0.198 0.306 0 6.06E-05

Pmul No tCm(η2) + i(η2) 1.731 2.701 3.999 0 4.34E-06

4 No-Preprocessing Delegation for Group Inverses

In this section we present single-server protocols for delegated computation of
group inverses which have improved client efficiency over previous work. Our
protocols build on the multiplication delegation protocol in Sect. 3. Formally,
our result is the following

Theorem 2. Let σ be computational security parameter, let m be a σ-bit inte-
ger, and let λ be a statistical security parameter. There exist (constructively)
two single-server protocols Pinv

1 , for input scenario ‘x public online’, and Pinv
2 ,

for input scenario ‘x private online’, for delegating computation of function Finv,
in group (Z∗

m, · mod m), satisfying the properties of 1-result-correctness, 2−λ-
result-security, and (tF , tS , tC ,mc, cc)-efficiency, where, for η = �λ + log2 σ�,
– for Pinv

1 : εs = 2−λ, tF = 1 inversion,
tC = 5 η-bit-modulus reductions + 2 η-bit-values multiplications

+ 1 η-bit-value addition,
tS = 1 inversion + 1 multiplication + 1 division mod m,
mc = 1, cc = 3
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– for Pinv
2 (also satisfying input-privacy): εs = 2−λ, tF = 1 inversion,

tC = 2 group multiplications + 5 η-bit-modulus reductions
+ 2 η-bit-values multiplications + 1 η-bit-value addition,

tS = 1 inversion + 1 multiplication + 1 division mod m,
mc = 2, cc = 4.

In the rest of this section we prove Theorem 2, by describing the two claimed
protocols in the two different input scenarios and their properties. Specifically, we
describe delegation of inversion Finv(x) = x−1 mod m in group (Z∗

m, · mod m),
using a protocol Pmul for delegation of multiplication Fmul(a, b) = a · b mod m,
such as the protocol from Sect. 3, where inputs a and b are public online.

4.1 The “x Public Input” Scenario

Our first protocol consists of a single message by the server including the inverse
value x−1 mod m of the input x and the client delegating the computation of
the product x ·x−1 mod m, using protocol Pmul from Sect. 3, and checking that
the result obtained at the end of this protocol execution is equal to 1.
Formal Description of Protocol Pinv

1 .
Input Scenario: x public online
Online Input to C and S: σ, λ, desc(Finv), x

Online Phase Instructions:

1. S computes w := x−1 mod m and sends w to C
2. C and S use protocol Pmul, for a = x and b = w, and parameters σ, λ,

resulting in C obtaining z;
3. If z �= 1 then C returns ⊥ and the protocol halts
4. C returns y := w and halts.

Properties of Pinv
1 : The proofs for the result correctness and result security

properties, the latter using Lemma 1, can be found in Appendix C.
The efficiency properties follow directly by protocol inspection and the same

properties of Pmul. In particular, we note that if Pmul consists of a single message
from S to C, as the protocol in Sect. 3, then so does Pinv

1 .
In Table 2 we report on the practical efficiency of the scheme, based on our

software implementation of Pinv
1 , one main takeaway being that C’s runtime tC

is smaller than non-delegated computation tF (i.e., the delegation improvement
ratio tF /tC is > 1) for all values of most interest of parameters λ, σ; specifically,
λ = 50 and σ ∈ {2048, 3072, 4096}. We also report the ratio tF /tC for two related
protocols: protocol Pinv

1,pre with preprocessing (using the multiplication protocol
with preprocessing from [7]), and the protocol Pinv

1,opm which has no preprocessing,
where C chooses a prime modulus s in the online phase. The takeaways there
are that, for such practical parameter values: (1) delegation would not improve
C’s runtime in Pinv

1,opm; (2) delegation does improve C’s runtime in Pinv
1 by a

multiplicative factor between 4.8 and 8.1 depending on the modulus size; and
(3) the delegation improvement ratio for Pinv

1 , not using preprocessing, is about
half the ratio of Pinv

1,pre, which does use preprocessing, or larger.
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Table 2. Performance results for the delegation of F (x) = x−1 mod m in Z
∗
m, where

x is public, m is a σ-bit prime, λ = 50, tCm(η) ≤ 5mr(η) + 2m(η) + a(η) and tF =
3.19E-05 s.

Protocol/Pre-processing tC tF /tC σ = 3072

σ = 2048 σ = 3072 σ = 4096 tP tC

Pinv
1,pre Yes tCm(η1) 10.008 13.394 16.235 6.30E-05 2.35E-06

Pinv
1,opm No tCm(η1) + p(η1) 0.359 0.488 0.816 0 6.73E-05

Pinv
1 No tCm(η2) + i(η2) 4.782 6.543 8.111 0 4.79E-06

4.2 The “x Private Input” Scenario

Our second protocol Pinv
2 starts with the client sending a randomized version

of the input to the server. Then it continues with the client delegating the com-
putation of the inverse of the randomized input, using our first protocol Pinv

1 .
Finally, the client derives the result by removing the randomizer. Input masking
techniques have already been used in many delegation protocols in the literature.
In the case of inverse delegation, it is interesting to note that it does not require
the client to store any preprocessing values.
Formal Description of Protocol Pinv

2 .
Input Scenario: x private online
Online Input to C σ, desc(Finv), x
Online Input to C σ, desc(Finv)

Online Phase Instructions:

1. C randomly chooses r ∈ G, computes z := x · r mod m, and sends z to S;
2. S computes w := z−1 and sends w to C
3. C and S use protocol Pmul for a = z and b = w, and parameters σ, λ,

resulting in C obtaining v;
4. If v �= 1 then C returns ⊥ and the protocol halts
5. C returns y := r · w mod m and halts.

Properties of Pinv
2 : The proofs for the result correctness, input privacy and

result security properties, the latter using Lemma 1, can be found in Appendix D.
The efficiency properties of Pinv

2 follow directly by protocol inspection and
the same properties of Pinv

1 and Pmul. In particular, note that tC only increases
by 2 · m(σ) with respect to protocol Pinv

1 .
In Table 3 we report on the practical efficiency of the scheme, based on our

software implementation of Pinv
2 , where we reach analogue conclusions as for

Pinv
1 on the effectiveness of delegation.

5 No-Preprocessing Delegation for Small-Exponent
Exponentiation in RSA Groups

We discuss the first protocol to delegate small-exponent exponentiation in the
RSA group Z

∗
n, in the input case where both the base and the exponent are
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Table 3. Performance results for the delegation of F (x) = x−1 mod m in Z
∗
m, where

x is private, m is a σ-bit prime, λ = 50, and tF = 3.11E-05 s

Protocol/Pre-processing tF /tC σ = 3072

σ = 2048 σ = 3072 σ = 4096 tP tC

Pinv
2,pre Yes 2.977 3.110 2.858 6.70E-05 1.00E-05

Pinv
2,opm No 0.606 0.791 1.013 0 3.93E-05

Pinv
2 No 2.504 2.832 2.653 0 1.09E-05

public, without preprocessing. This is obtained by carefully combining a specific
variant of the square-and-multiply algorithm with the delegation protocol Pmul

for multiplication from Sect. 3. Formally, we obtain the following

Theorem 3. Let σ be computational security parameter, let m be a σ-bit inte-
ger, let λ be a statistical security parameter, and let e be a c − bit integer,
where c is constant with respect to σ and λ. There exist (constructively) a
single-server protocols Pexp, for input scenario ‘x and e public’, for delegating
computation of function Fexp, in group (Z∗

m, · mod m), satisfying the proper-
ties of 1-result-correctness, 2−λ-result-security, and (tF , tS , tC ,mc, cc)-efficiency,
where, for η = �λ + log2 σ�,
– εs = 2−λ, tF = 1 exponentiation to a c-bit exponent,
– tC = O(c) η-bit-modulus reductions of σ-bit integers

+ O(c) η-bit-values multiplications
– tS = O(c) multiplications and divisions mod m,
– mc = 1, cc ≤ 8c.

Informal Description of Pexp. Our protocol Pexp can be seen as an optimized
simulation of the (iterative) square and multiply algorithm for modular expo-
nentiation, while using a multiplication delegation subprotocol, such as protocol
Pmul in Sect. 3, to compute squares and multiplications modulo n in this algo-
rithm. A similar approach has already been taken in [8], where, however, both
protocols for multiplication and exponentiation did need a preprocessing phase
including the generation and storage of the small prime modulus.

The natural approach to remove the preprocessing phase would be similar
as for the results in Sects. 2 and 3: replacing the small prime modulus with a
small integer modulus, and letting C generate the small modulus during the
protocol (as opposed to doing that in some preprocessing phase). It turns out
that this is not yet sufficient to achieve effective delegation (i.e., for the delegation
improvement ratio tF /tC to be > 1), and further optimizations are needed. Thus,
we consider the iterative protocol structure of the square and multiply algorithm,
and try to let the client run as many operations as possible only once instead
of once for each multiplication, as it would happen on a direct simulation of the
algorithm, with calls to protocol Pmul from Sect. 3. In particular, we apply the
following 3 optimizations:
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1. C only chooses the small integer modulus s once;
2. C only compute the reduction of m modulo the small modulus s once.
3. The protocol uses the version of the square and multiply algorithm where the

exponent is expressed in binary and the ‘multiply’ part of the algorithm only
multiplies the value computed until then by a fixed number (i.e., the input
base); accordingly, C only computes the reduction of the input base modulo
the small integer s once, instead of once for each multiplication operation
carried out for each exponent bit = 1.

Formal Description and Properties of Pexp. A formal description of Pexp

is very similar as the construction in [8] and is detailed in Appendix E.
The result correctness and result security properties of Pexp, the latter using

Lemma 1, follow from the above informal description.
In Table 4 we report on the practical efficiency of the scheme, based on our

software implementation of Pexp, where we reach analogue conclusions as for
our previous protocols, on the effectiveness of delegation.

Table 4. Performance results for the delegation of F (x) = xe mod n, when x and
e are public, m is a σ-bit product of 2 same-length primes, e is a c-bit integer, and
λ = 50.

Protocol/Pre-processing tF /tC

c = 8 c = 32

σ = 2048 σ = 3072 σ = 2048 σ = 3072

Pexp
pre Yes 1.543 2.652 1.157 2.240

Pexp
opm No 0.288 0.571 0.500 0.782

Pexp No 1.448 2.716 1.532 2.586

6 Conclusions

We showed single-server protocols, without preprocessing, for the single-server
delegation of the following operations, used in several cryptosystems:

1. modular multiplication of two public group values,
2. modular inverse of a public group value,
3. modular inverse of a private group value, and
4. exponentiation of a public base to a small public exponent in the RSA group.

Our protocols satisfy result-correctness, input-privacy (unless the input is
public), result-security, and client-efficiency (with respect to non-delegated com-
putation) for parameter values of interest in cryptography applications. To the
best of our knowledge, the only other single-server protocols in the literature
satisfying these properties were presented for the delegation of:
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1. a pairing, with both inputs being public, and
2. a batch of public-base and public-exponent exponentiation operations in

discrete-log and RSA groups.

Several open problems remain in this area of single-server delegation with-
out preprocessing, especially with respect to operations where input privacy is
required, and our results should be interpreted as a step in this direction.
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A Formal Definitions

In this section we recall the formal definition (based on [12,14]), of delegation
protocols and their correctness, privacy, security, and efficiency requirements.
Basic Notations. The expression z ← T denotes randomly and independently
choosing z from set T . By y ← A(x1, x2, . . .) we denote running the algorithm
A on input x1, x2, . . . and any random coins, and returning y as output. By
(y, tr) ← (A(u1, u2, . . .), B(v1, v2, . . .)) we denote running the interactive proto-
col between A, with input u1, u2, . . . and any random coins, and B, with input
v1, v2, . . . and any random coins, where tr denotes A’s and B’s messages in this
execution, and y is A’s final output.
System Scenario: Entities and Protocol. We consider a system with a single
client, denoted by C, and a single server, denoted by S, who are connected by
an authenticated channel, and therefore do not consider any integrity or replay
attacks on this channel. Differently than much of previous work in the area,
we consider a delegation protocol without offline phase or preprocessing client
computations, typically storing extra values in client’s memory, and only consider
client computations in what is also called online phase in the literature, where
C has time constraints.

Let σ denote the computational security parameter (derived from hard-
ness considerations of the underlying computational problem), and let λ denote
the statistical security parameter (defined so that statistical test failure events
with probability 2−λ are extremely rare). Both parameters are expressed in
unary notation (i.e., 1σ, 1λ). We think of σ as being asymptotically much
larger than λ. Let F denote a function and desc(F ) denote F ’s description.
Assuming 1σ, 1λ, desc(F ) are known to both C and S, we define a client-
server protocol for the delegated (n-instance) computation of F as the execu-
tion: {(y, tr) ← (C(x), S)}, where both parties are assume to be aware of inputs
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(1σ, 1λ, desc(F )), which we will ofter omit for brevity, and tr is the transcript of
the communication exchanged between C and S.
Correctness Requirement. Informally, the correctness requirement states
that if both parties follow the protocol, C obtains some output at the end
of the protocol, and this output is, with high probability, equal to the value
obtained by evaluating function F on C’s input. Formally, we say that a no-
preprocessing client-server protocol (C,S) for the delegated computation of F
satisfies δc-correctness if for any x in Dom(F ),

Prob [ out ← CorrExpF : out = 1 ] ≥ δc,

for some δc close to 1, where experiment CorrExp is:

1. (y, tr) ← (C(x), S)
2. if y = F (x), then return: 1 else return: 0

Privacy Requirement. Informally, the privacy requirement should guarantee
the following: if C follows the protocol, a malicious adversary corrupting S can-
not obtain any information about C’s input x from a protocol execution. This is
formalized by extending the indistinguishability-based approach typically used
in definitions for encryption schemes. Let (C,S) be a no-preprocessing client-
server protocol for the delegated computation of F . We say that (C,S) satisfies
εp-privacy (in the sense of indistinguishability) against a malicious adversary if
for any algorithm A, it holds that

Prob
[
out ← PrivExpF,A : out = 1

] ≤ 1/2 + εp,

for some εp close to 0, where experiment PrivExp is:

1. (x0, x1, aux) ← A(desc(F ))
2. b ← {0, 1}
3. (y, tr) ← (C(xb), A(aux))
4. d ← A(tr, aux)
5. if b = d then return: 1 else return: 0.

Security Requirement. Informally, the security requirement states that for
any efficient and malicious adversary corrupting S and even choosing C’s input
tuple x, at the end of the protocol, C cannot be convinced to obtain some
output tuple z containing a value z �= F (x) Formally, we say that the client-
server protocol (C,S) for the delegated n-instance computation of F satisfies
εs-security against a malicious adversary if for any algorithm A,

Prob
[
out ← SecExpF,A : out = 1

] ≤ εs,

for some εs close to 0, where experiment SecExp is:

1. (	x, aux) ← A(desc(F ))
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2. (	z, tr) ← (C(x), A(aux))
3. if z ∈ {⊥, F (x)} then return: 0 else return: 1.

We consider different input scenarios, where the input x may be private
or public. The above definition considered the “x private” input scenario. The
definition for the “x public” input scenario is obtained by the following slight
modifications: (1) S is also given x as input; (2) no input privacy is required.

B Properties of Pmul

The correctness property follows by observing that if C and S follow the protocol,
then S computes w0, w1 as w = a · b = w0 · m + w1 and the equation a · b =
w0 · m + w1 is satisfied over Z and is therefore satisfied also modulo the small
prime s. This prevents C to return ⊥, and allows C to return the correct output
value w1 = w mod m = a · b mod m.

To prove the security property against any malicious S we need to compute
an upper bound εs on the security probability that an adversary corrupting S
convinces C to output a y such that y �= a · b mod m.

We continue the proof of the unbounded security property by defining the
following events:

– ey, �=, defined as “C outputs y such that y �= a · b mod m”
– et, defined as “S’s message contains w0, w1 such that a · b �= w0 · m + w1

mod m”.

We now compute an upper bound on the probability of event ey, �=, conditioned on
event et. We observe that, when event et is true, it holds that a ·b mod m �= w1.
In this scenario, for event ey, �= to happen, it needs to hold that

(a mod s)(b mod s) = (w0 mod s)(m mod s) + w1 mod s.

This happens when

(a · b − w0 · m − w1) = 0 mod s.

By setting x = a · b − w0 · m − w1, and applying Lemma 1 for this value of x,
we obtain that the probability that x = 0 mod s is at most 2−λ, which implies
the following

Fact 3. Prob [ ey, �= | et ] ≤ 2−λ

We then observe that when event et is false, then the message from S follows
the protocol and therefore ey, �= is also false. This implies the following

Fact 4. Prob [ ey, �= | ¬et ] = 0
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We can now compute an upper bound on the probability of event ey, �=. We have
that Prob [ ey, �= ] is

= Prob [ et ] Prob [ ey, �=|et ] + Prob [¬ et ] Prob [ ey, �=|¬ et ]
≤ Prob [ ey, �=|¬ et ] + Prob [ ey, �=|¬ et ]
≤ Prob [ ey, �=|¬ et ] ≤ 2−λ,

where the first equality and the first inequality follow from basic probability
facts; the second inequality follows by applying Fact 4, and the last inequality
follows by applying Fact 3.

C Properties of P inv
1

The result correctness property follows directly by observing that if C and S
follow the protocol, the same property of Pmul implies that

z = a · b mod m = x · w mod m = x · (x−1) mod m = 1,

after which C returns y = w = x−1 mod m.
To prove the result security property against any malicious S we need to

compute an upper bound εs on the security probability that an adversary cor-
rupting S convinces C to output a y such that y �= x−1 mod m. Assume this
adversary sends w′ to C and runs Pmul with C, resulting in C obtaining z′.
Now, because C checks whether z′ �= 1, the only possible cheating strategy for
the adversary is that of convincing C to accept that z′ = 1 and z′ is the product
of x and w′, even when w′ is not the inverse of x. By the result security property
of Pmul, this can only happen with probability at most 2−λ.

D Properties of P inv
2

The result correctness property follows directly by observing that if C and S
follow the protocol, the same property of Pmul implies that

v = z · w mod m = (x · r) · z−1 mod m = (x · r) · (x · r)−1 mod m = 1,

after which C returns y = r · w = r · (x · r)−1 = r · r−1 · x−1 = x−1 mod m.
The input privacy follows by observing that C only sends a random group

value to S.
To prove the result security property against any malicious S we need to

compute an upper bound εs on the security probability that an adversary cor-
rupting S convinces C to output a y such that y �= x−1 mod m. Assume this
adversary, after receiving z from c, sends w′ to C and runs Pmul with C, result-
ing in C obtaining v′. Now, because C checks whether v′ �= 1, the only possible
cheating strategy for the adversary is that of convincing C to accept that v′ = 1
and v′ is the product of z and w′, even when w′ is not the inverse of z. By the
result security property of Pmul, this can only happen with probability ≤ 2−λ.
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E Protocol Pexp

To formally define protocol Pexp = (C,S) for the delegated computation of xe

mod m, we use definitions and algorithms from protocol Pmul as well as an
optimized version of it, as mentioned in Sect. 5 and further discussed below.

First, by Pmul = (Sm, Cm) we denote a protocol for the delegation of func-
tion Fmul with statistical parameter λm, for public inputs a and b, such as
the protocol in Sect. 3. In particular, the notation (q, r) ← Sm(a, b) refers to
an execution of the Pmul server’s algorithm with inputs a, b, returning mes-
sage (q, r) for C, such that a · b = q · m + r, where 0 ≤ r < m. Similarly,
the notation d ← Cm(a, b, q, r) refers to an execution of the Pmul client’s algo-
rithm with inputs a, b, and server’s message (q, r), and returning decision bit d
where d = 1/0 depending on whether Cm accepts/does not accept the statement
r = a · b mod n.

While algorithm S will run Sm, algorithm C will run an optimized version
of Cm, which reuses the same modulus s, and the same values m′ = m mod s
and x′ = x mod s, whenever possible across the multiple uses of multiplication
delegation within exponentiation delegation, as we now define. Given a randomly
chosen η-bit integer s, and values m′ = m mod s and x′ = x mod s, we define
the notation d ← C ′

m(a, b, q, r, s,m′, x′) to refer to a variant of algorithm Cm,
where the computation of s and m′ are replaced by the use of its arguments
s,m′, and the use of x as a product factor in correspondence of a bit of exponent
e being = 1 is replaced by the use of its argument x′. Here, by using C ′

m, the
client only computes the values s,m′, x′ once, while by using Cm, it would have
recomputed each of these values either log e or about (log e)/2 times.

We now formally describe protocol Pexp to delegate small-exponent expo-
nentiation function Fexp,c, which maps x ∈ Z

∗
m to xe mod m. in a group Z

∗
m,

where x and e are public, and e has c bits.
Online Input to C and S: 1σ, 1λ, 1c, m ∈ {0, 1}σ, x ∈ Z

∗
m, e ∈ {0, 1}c

Online Phase of Pexp:

1. S sets z = x, y = 1 and i = 1
2. While e > 1 do

S computes (q1i, r1i) = Sm(z, z) and sets z = ri1

if e is even then
S sets q2i = r2i = 0, i = i + 1 and e = e/2

if e is odd then
S computes (q2i, r2i) = Sm(z, x) and sets
S sets z = ri2, i = i + 1 and e = (e − 1)/2

3. S sends ((q11, r11, q21, r21), . . . , (q1c, r1c, q2c, r2c) to C
4. C sets i = 1 and z = x
5. C randomly chooses an η-bit integer s, where η = �λ + log2 σ�

C computes m′ = m mod s and x′ = x mod s
6. While e > 1 do

if e is even then
C computes d1i = Cm(z, z, q1i, r1i, s,m

′, x′)
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if d1i = 0 then C halts
else C sets z = r1i, i = i + 1 and e = e/2 if e is odd then

C computes d1i = Cm(z, z, q1i, r1i, s,m
′, x′) and sets z = r1i

C computes d2i = Cm(z, x′, q2i, r2i, s,m
′, x′) and sets z = r2i

if d1i = 0 or d2i = 0 then C halts
else C sets i = i + 1 and e = (e − 1)/2

7. C returns: y = r2i and halts
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