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Preface

SECITC (International Conference on Security for Information Technology and Com-
munications) is an annual international conference held in Romania focusing on all
theoretical and practical aspects related to information technology and communica-
tions security. Its primary goal is connecting security and privacy researchers as well as
professionals from different communities and providing a forum that allows informal
exchanges necessary for the emergence of new scientific and industrial collaborations.
Since 2015 the post-proceedings of the conference have been published in Springer
LNCS. The Program Committee also became international. This was a turning point
for Romania as it represented the alignment to the international standards in terms of
research.

The 16th edition of the conference, SECITC 2023, took place (both in person and
online) from 23rd to 24th November, 2023, in Bucharest. It was organised jointly by
the Bucharest University of Economic Studies, the Military Technical Academy, and the
Advanced Technologies Institute, the latter being the main organizer of this edition.

SECITC 2023 received 57 submissions. Each Program Committee (PC) member
was assigned an average of three submissions for review. Each paper was assigned to
at least three reviewers. The PC was helped by the reports and opinions of ten external
reviewers. The submission process was anonymous and author names were not visible
to the reviewers. Received reviews were anonymised to the paper’s authors. The review
process was organized and managed through EasyChair. The reviewers were asked to
declare any conflicts of interest for all submissions in the beginning of the process, and
the EasyChair system was configured to ensure that PC members (including PC chairs)
could see neither reviewer assignments nor reviews of papers for which they had a
confict of interest. For several papers, one PC Co-chair had a conflict of interest, and the
discussion on each of the papers was held, and the decision was made, between the other
two PC Co-chairs without a conflict of interest. The selection process was competitive
and after highly interactive discussions and a careful deliberation, 14 full papers (24.6%)
were selected by the PC for presentation at the conference.

SECITC 2023 programme featured three invited talks given by Bart Preneel from
KULeuven, Ahmad-Reza Sadeghi from TUDarmstadt, and Ivan Visconti from the Uni-
versity of Salerno. All invited speakers were offered an opportunity to publish extended
abstacts of their talks in the post-proceedings of the conference.

SECITC 2023 PC was co-chaired by Mark Manulis, Diana Maimuţ, and George
Teşeleanu, who selected the PC members and led their efforts in selecting papers that
appear in this volume.

We would like to thank everyone who contributed to the success of SECITC 2023.
We are grateful to all PC members and external reviewers for their commitment and
enthusiasm, which ensured that each submitted paper went through a thorough and fair
review process. We thank all members of the Organizing Committee of SECITC 2023
for their professional work and support. Last but not least, we also wish to thank all
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authors who submitted to SECITC 2023 and all conference participants for making the
conference an enjoyable experience.

November 2023 Mark Manulis
Diana Maimuţ

George Teşeleanu
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BASS: Boolean Automorphisms Signature
Scheme

Dima Grigoriev1, Ilia Ilmer2, Alexey Ovchinnikov3, and Vladimir Shpilrain4(B)
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Dmitry.Grigoryev@univ-lille.fr

2 Department of Computer Science, CUNY Graduate Center,
365 5th Avenue, New York, NY 10016, USA

i.ilmer@icloud.com
3 Department of Mathematics, Queens College, City University of New York,

Queens, NY 11367, USA
alexey.ovchinnikov@qc.cuny.edu

4 Department of Mathematics, The City College of New York,
New York, NY 10031, USA

shpilrain@yahoo.com

Abstract. We offer a digital signature scheme using Boolean automor-
phisms of a multivariate polynomial algebra over integers. Verification
part of this scheme is based on the approximation of the number of zeros
of a multivariate Boolean function.

Keywords: digital signature · multivariate polynomial · Boolean
function

1 Introduction

Due to the concern that if large-scale quantum computers are ever built, they
will compromise the security of many commonly used cryptographic algorithms,
NIST had begun in 2016 a process to develop new cryptography standards and,
in particular, solicited proposals for new digital signature schemes [5] resistant
to attacks by known quantum algorithms, such as e.g. Shor’s algorithm [6]. In
particular, there is an interest in signature schemes whose security is based on
new assumptions.

One possible way to avoid quantum attacks based on solving the hidden sub-
group problem (including the attacks in [6]) is not to use one-way functions that
utilize one or another (semi)group structure. The candidate one-way function
that we use in our scheme here takes a private polynomial automorphism ϕ as
the input and outputs ϕ(P ) for a public multivariate polynomial P .

To avoid any parallels with the encryption scheme of [4], we say up front
that since ours is just a signature scheme (i.e., is not a spin-off of any encryption
scheme), we do not need our candidate one-way function to have a trapdoor
because the private key holder does not need to invert the function. Also, in [4],
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Manulis et al. (Eds.): SecITC 2023, LNCS 14534, pp. 1–12, 2024.
https://doi.org/10.1007/978-3-031-52947-4_1
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2 D. Grigoriev et al.

the candidate one-way function was ϕ itself, and the private (decryption) key
was ϕ−1. In contrast, in our signature scheme ϕ−1 does not play any role and
does not have to be computed.

The main novelty of our signature scheme is manifested in the verification
part. First, note that any polynomial P has as many zeros as ϕ(P ) does, where
ϕ is any automorphism of the polynomial algebra. To balance between security
and efficiency, we do not want the number of zeros to be either too small or too
large. To that end, we use polynomials over integers, but we count zero values
on Boolean tuples only. Since the number of Boolean tuples is exponential in the
number of variables, it can still be too large to process deterministically. Instead,
we use a non-deterministic (Monte Carlo) method to estimate the number of zero
(or nonzero) values of a polynomial in question. We note that the accuracy of
the Monte Carlo method for estimating the number of zeros of a multivariate
polynomial was studied and quantified in [1].

2 Scheme Description

Let K = Z[x1, . . . , xn] denote the algebra of polynomials in n variables over the
ring Z of integers, and let B(K) denote the factor algebra of K by the ideal
generated by all polynomials of the form (x2

i − xi), i = 1, . . . , n. Informally,
one can call B(K) the “Booleanization” of K. We note that the ring B(K) is
isomorphic (as a ring) to the direct sum of 2n copies of the ring Z.
The signature scheme is as follows.

Private: an automorphism ϕ of the algebra B(K). We note that ϕ is defined
by the polynomials yi = ϕ(xi), i = 1, . . . , n.

Public:

– 3 sparse polynomials Pi = Pi(x1, . . . , xn) with coefficients ±1.
– 3 polynomials ϕ(Pi), where ϕ is a private automorphism of the algebra B(K).

We note that ϕ(Pi) = Pi(y1, . . . , yn), where yi = ϕ(xi).
– a hash function H with values in the algebra B(K) and a (deterministic)

procedure for converting values of H to sparse polynomials from the algebra
B(K).

– a set G of polynomials. This set includes, in particular, all monomials and all
polynomials of the form (1-monomial). See Sect. 4) for more details.

Remark 1. We emphasize that the automorphism ϕ, the 3 sparse polynomials
Pi, and the 3 polynomials ϕ(Pi) are all generated/computed in the offline phase.
The hash function H is one of the standard hash functions (we suggest SHA3-
256), with values converted to a polynomial in B(K) (see Sect. 3.3).

Signing a message m:

1. Apply the hash function H to the message m. Convert H(m) to a polynomial
Q = Q(x1, . . . , xn+1) with integer coefficients using a deterministic public
procedure (see Sect. 3.3). That is, the polynomial Q has an extra variable
compared to the polynomials Pi.
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2. The automorphism ϕ is extended to the “Booleanization” of the algebra
Z[x1, . . . , xn+1] by taking xn+1 to xn+1+r(x1, . . . , xn)−2xn+1 ·r(x1, . . . , xn),
where r(x1, . . . , xn) is a random polynomial from the set G of polynomials
(see Sect. 4). This extended automorphism we denote by the same letter ϕ.
(The fact that this is, indeed, an automorphism of the “Booleanization” is
part of Proposition 1 in Sect. 4.)

3. The signature is ϕ(Q).

Remark 2. The reason why we extend the automorphism ϕ by adding an extra
variable xn+1 at Step 2 is to prevent the forger from accumulating many pairs
(Q,ϕ(Q)) with the same ϕ. Now, with each new signature, we have a different ϕ
because of a random choice of the polynomial r(x1, . . . , xn) at Step 2. We note
that after extending ϕ, polynomials ϕ(Pi) do not change since all Pi depend on
x1, . . . , xn only.

Verification:

1. The verifier computes H(m) and converts H(m) to Q = Q(x1, . . . , xn+1)
using a deterministic public procedure.

2. The verifier selects a random 4-variable polynomial u(x, y, z, t) from
B(Z[x, y, z, t]) with coefficients 0, 1, −1, 2, or −2, and computes u(ϕ(P1),
ϕ(P2), ϕ(P3), ϕ(Q)). Note that this is equal to ϕ(u(P1, P2, P3, Q)). Denote
the polynomial ϕ(u(P1, P2, P3, Q)) by S.

3. The verifier also computes u(P1, P2, P3, Q). Denote this polynomial by R.
(Note that S should be equal to ϕ(R) if the signature is valid.)

4. The verifier then compares the proportion of positive values on Boolean tuples
for the polynomials R and S. That is, the proportion of positive values on
(n + 1)-tuples (x1, . . . , xn+1), where each xi is 0 or 1. These proportions are
estimated using a non-deterministic (Monte Carlo) method.

The verifier accepts the signature if and only if these proportions for R and
S are different in no more than 3% of the total number of trials in the Monte
Carlo method. (See Sect. 4 for an explanation of why these proportions should
be exactly the same when computed deterministically if S is an automorphic
image of R.)

Remark 3. With suggested parameters, the number of Boolean (n + 1)-tuples
is quite large (2n+1, to be exact). Given that counting zeros (or non-zeros) on
Boolean tuples is #P-hard, see [7], it is computationally hard to count the num-
ber of positive values on Boolean tuples precisely, which is why the verifier has
to use a non-deterministic method. We explain the method in the following sub-
section.

Correctness. While it is obvious that polynomials P and ϕ(P ) have the same
number of zeros, it is not at all obvious why they have the same number of
positive values on Boolean tuples. Indeed, this may not be true for an arbitrary
automorphism ϕ, so we have a special algorithm for sampling ϕ. This is explained
in Sect. 4, and correctness is formally proved in the Appendix.
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2.1 Monte Carlo Method for Counting Positive Values
of a Polynomial on Boolean Tuples

Our non-deterministic method for estimating the proportion of positive values
on Boolean tuples for a given polynomial P is pretty standard. Just plug in a
large number of random Boolean tuples into P and count how many of them
yield a positive value of P . Then divide the obtained number by the total number
of Boolean tuples used; this is your proportion.

We note that the accuracy of the Monte Carlo method for counting zeros of
Boolean polynomials was studied and quantified in [1]. See our Sect. 6.1 for more
details on the accuracy.

3 Key Generation

First we note that, since the algebra B(K) is the factor algebra of K by the ideal
generated by all polynomials of the form (x2

i −xi) and since we only count values
of a polynomial on Boolean tuples, when we generate the public polynomials Pi

it makes sense to only generate monomials where no xj occurs with an exponent
higher than 1. Then generating Pi will look as follows.

3.1 Generating a Random t-Sparse Polynomial

1. Select, uniformly at random, an integer d between 1 and b (where b is one
of the parameters of the scheme). This integer will be the degree of our
monomial. (Note that the degree of a monomial cannot be higher than n since
our monomials are square-free because of factoring by the ideal generated by
all polynomials of the form (x2

i − xi).)
2. To select a monomial of degree d, do a selection of xi, uniformly at random

from {x1, . . . , xn}, d times, avoiding repetition of xi. Then build the monomial
as a product of the selected xi.

3. Finally, build a t-sparse polynomial as a linear combination of t selected
monomials with coefficients ±1, selected at random.

3.2 Generating a Random Polynomial from the Set G

The set G of polynomials in Z[x1, . . . , xn] will play a crucial role in generating
automorphisms of the algebra B(K), see Sect. 4. This set can be defined recur-
sively as follows. Assign all variables x1, . . . , xn to G. Then keep adding more
polynomials to G using the following rules: (1) if a polynomial P belongs to G,
then 1 − P belongs to G, too; (2) if both polynomials P1 and P2 belong to G,
then their product P1P2 belongs to G, too.

Remark 4. The number of multiplications in the above procedure for generating
a polynomial from the set G (see Step 3 in the procedure below) is one of the
parameters of our scheme; denote it by r.
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Note that the set G consists of polynomials P such that P (x1, . . . , xn) = 0 or
1 for any Boolean n-tuple (x1, . . . , xn). This easily follows by induction from the
above recursive definition of the set G. In other words, any polynomial from G

induces an n-variable Boolean function and, conversely, any n-variable Boolean
function is induced by a polynomial from G.

Based on this description, we suggest the following procedure for sampling a
polynomial, depending on variables from a subset X of the set of variables, from
the set G. We emphasize again that in our scheme, this is done in the offline
phase.

1. Select a random monomial as in the previous Sect. 3.1, except that the degree
d should be really small, 1 or 2. Denote this monomial by M .

2. With probability 1
2 , select between M and 1 − M . Denote the result by M ′.

3. Select, uniformly at random, a variable xi not from the subset X of variables.
Then, with probability 1

2 , multiply M ′ by either xi or 1 − xi.
4. Repeat steps (2) through (3) r times for some small r (one of the parameters

of the scheme).

3.3 Converting H(m) to a Polynomial

We suggest using a hash function H from the SHA-3 family, specifically SHA3-
256. We assume the security properties of SHA3-256, including collision resis-
tance and preimage resistance. Below is an ad hoc procedure for converting a
hash H(m) to a polynomial. We assume there is a standard way to convert H(m)
to a bit string of length 256.

Let B be a bit string of length 256. We will convert B to a polynomial
from the factor algebra of K = Z[x1, . . . , xn+1] by the ideal generated by all
polynomials of the form (x2

i − xi), i = 1, . . . , n+ 1. We note that this process is
deterministic.

(1) Split 256 bits in 32 8-bit blocks. The 5 leftmost bits will be responsible for
a coefficient of the corresponding monomial, while the 3 rightmost bits will
be responsible for a collection of variables xi in the monomial.

(2) After Step (1), we have 32 3-bit blocks corresponding to monomials of degree
3 that we now have to populate with 3 variables each. Enumerate 96 bits
in these 32 3-bit blocks by x1, . . . , x32, x1, . . . , x32, x1, . . . , x32 (in this order,
going left to right). Now each 3-bit block is converted to a monomial that is
a product of xi corresponding to the places in the bit string where the bit
is “1”. In particular, each monomial will be of degree at most 3.

(3) Now we have to use 5 remaining bits in each 8-bit block to obtain an integer
coefficient for each monomial of degree ≤ 3 obtained at Step 2. This is done
as follows. First, we compute the sum of these 5 bits. Then, we reduce it
modulo 3. If the result is 0, then the coefficient is 0. If the result is 1, then
the coefficient is 1. If the result is 2, then the coefficient is −1.

(4) Combine all monomials and coefficients obtained at Steps (2), (3) into a
polynomial.
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4 Generating an Automorphism ϕ

An automorphism ϕ is generated offline, as follows.
Recall that the set G consists of polynomials P such that P (x1, . . . , xn) = 0

or 1 for any Boolean n-tuple (x1, . . . , xn), see Sect. 3.2.
Then we have:

Proposition 1. Let h = h(x1, . . . , xn) be a polynomial from the set G. Suppose
h does not depend on xk. Let α be the map that takes xk to xk + h − 2xk · h and
fixes all other variables. Then:

(a) α defines an automorphism of B(K), the factor algebra of the algebra
Z[x1, . . . , xn] by the ideal generated by all polynomials of the form (x2

i −xi),
i = 1, . . . , n. Denote this automorphism also by α.

(b) The group of automorphisms of B(K) is generated by all automorphisms as
in part (a) and is isomorphic to the group of permutations of the vertices of
the n-dimensional Boolean cube.

(c) For any polynomial P from Z[x1, . . . , xn], the number of positive values of
P on Boolean tuples (x1, . . . , xn) equals that of α(P ).

For the proof of Proposition 1, see the Appendix.

4.1 Generating Triangular Automorphisms

Our (private) automorphism ϕ will be a composition of “triangular” automor-
phisms and permutations on the set of variables. Below is how we generate an
“upper triangular” automorphism α.

(1) Let k = 1.
(2) With probability 1

2 , either take xk to itself or take xk to xk+h(x1, . . . , xn)−
2xk ·h(x1, . . . , xn), where h(x1, . . . , xn) is a random t-sparse polynomial from
the set G not depending on any xj with j ≤ k (see Sect. 3.2). Fix all other
variables.

(3) If k < n, increase k by 1 and go to Step (2). Otherwise, stop.

Generating a “lower triangular” automorphism β is similar:

(1) Let k = n.
(2) With probability 1

2 , either take xk to itself or take xk to xk+h(x1, . . . , xn)−
2xk ·h(x1, . . . , xn), where h(x1, . . . , xn) is a random t-sparse polynomial from
the set G not depending on xj with j ≥ k. Fix all other variables.

(3) If k > 1, decrease k by 1 and go to Step (2). Otherwise, stop.
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4.2 Generating ϕ as a Composition of Triangular Automorphisms
and Permutations

Having generated an upper triangular automorphism α and a lower triangular
automorphism β, we generate our private automorphism ϕ as a composition
αβπ, where π is a random permutation on the set of variables. Here α is applied
first, followed by β, followed by π.

At the end of the whole procedure, we will have n polynomials yi = ϕ(xi)
that define the automorphism ϕ.

5 Suggested Parameters

For the hash function H, we suggest SHA3-256.
For the number n of variables, we suggest n = 31.
For the number t of monomials in t-sparse polynomials, we suggest t = 3.
For the bound b on the degree of monomials in t-sparse polynomials, we suggest
b = 3.
For the degree d of the monomial M in the procedure for generating a polynomial
from the set G (Sect. 3.2), we suggest d = 2.
For the number r of the number of multiplications in the procedure for generating
a polynomial from the set G (Sect. 3.2), we suggest r = 1.
For the number of trials in Monte Carlo method for counting positive values of
a polynomial on Boolean tuples, we suggest 3,000.

6 Performance and Signature Size

For our computer simulations, we used Apple MacBook Pro, M1 CPU (8 Cores),
16 GB RAM computer. Julia code is available, see [2].

With the suggested parameters, signature verification takes about 0.3 s on
average, which is not bad, but the polynomial ϕ(Q) (the signature) is rather
large, almost 4 Kb on average.

The size of the private key (the automorphism ϕ) is about 1.5 Kb, and the
size of the public key is about 12.5 Kb.

We note that we have measured the size of a signature, as well as the size of
private/public keys, as follows. We have counted the total number of variables
that occurred in relevant polynomial(s) and multiplied that number by 5, the
number of bits sufficient to describe the index of any variable (except x32). To
that, we added the number of monomials times 3 (the average number of bits
needed to describe a coefficient at a monomial in our construction(s).

As usual, there is a trade-off between the size of the private key ϕ and its
security. The size of ϕ can be reduced to just a few hundred monomials, but
then security becomes a concern since some of ϕ(xi) may be possible to recover
more or less by inspection of the public pairs (Pi, ϕ(Pi)).

In the table below, we have summarized performance data for most reason-
able (in our opinion) parameter sets. Most columns are self-explanatory; the last
column shows memory usage during verification.
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Performance metrics for various parameter values
#
mono-
mials
in Pi

max
degree
of Pi

max
degree
of
mono-
mials M

parameter
r

verification
time (sec)

signature
size
(Kbytes)

public
key size
(Kbytes)

private
key size
(Kbytes)

memory
usage
(Mbytes)

3 3 1 1 0.3 4.3 17.5 1.2 5.7
3 3 2 1 0.3 3.7 12.6 1.6 5.7
3 4 1 1 0.5 4.3 25 1.2 5.8
4 3 1 1 4.1 4.2 38 1.25 7.1
5 3 1 1 6.2 6 46 1.3 8.2
3 3 1 2 2 20 56 5.5 6.3

6.1 Accuracy of the Monte Carlo Method

We have run numerous computer simulations to estimate the probability of a
“false positive” result, in particular accepting a forged signature from somebody
who knows only some of ϕ(xi). In our experiments, the difference between the
number of positive values of u and u′ for a u′ obtained by using a wrong private
key ϕ was always above 9%. Recall that the threshold difference for accepting a
signature in our scheme is 3%.

“False negative” results (i.e., rejecting a valid signature because the difference
was more than 3%) are not as critical as “false positive” results are, but it is still
better to avoid them. Increasing the number of trials in the Monte Carlo method
obviously reduces the probability of false negative (as well as false positive)
results. To quantify this statement, one can use the formula from [1, Theorem
1]:

N ≥ C · 4 log(
2
δ )

ε2
(1)

for some constant C. Here δ is the probability that the Monte Carlo method gives
a wrong answer, and ε is the accuracy we want. (In our case, ε = 3% = 0.03.)
Then, N is the number of trials needed to provide the desired accuracy with the
desired probability.

According to our computer simulations, in 1000 trials there is one false neg-
ative result on average. This suggests that the constant C in our situation is
about 0.02.

Therefore, with the recommended 3000 trials the probability of a false neg-
ative result will be about 2−33.

Thus, it is not surprising that with 3000 trials, we did not detect any false
negative or false positive results in any of our computer simulations.

7 What is the Hard Problem Here?

Recall that the candidate one-way function that we use in our scheme takes a
private polynomial automorphism ϕ as the input and outputs ϕ(P ) for a public
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multivariate polynomial P . Thus, the (allegedly) hard problem here is: given a
public pair (or several pairs) (P,ϕ(P )), recover ϕ. We note that such a ϕ does
not have to be unique, although most of the time it is.

The problem of recovering ϕ from a pair (P,ϕ(P )), as well as the relevant
decision problem to find out whether or not, for a given pair of polynomials
(P,Q), there is an automorphism that takes P to Q, was successfully addressed
only for two-variable polynomials [3]. For polynomials in more than two variables
the problem is unapproachable at this time, and there are no even partial results
in this direction. This is, in part, due to the fact that there is no reasonable
description of the group of automorphisms of Z[x1, . . . , xn] when n > 2, so even
a “brute force” approach based on enumerating all automorphisms is inapplicable.

Of course, in a cryptographic context one is typically looking not for gen-
eral theoretical results, but rather for practical ad hoc, often non-deterministic,
attacks. The most straightforward non-deterministic attack that comes to mind
here is as follows. Recall that monomials in the polynomial P have low degree
(bounded by 3). Thus, given a monomial, say, x1x2x3 in the polynomial P , one
can try to replace each xi by a hypothetical ϕ(xi) of the form

∑
(cixi+cijxixj +

cijkxixjxk), with indeterminate coefficients ci, cij , cijk. Given that ϕ is “sparse”,
this may yield a number of equations in the indeterminate coefficients that is not
huge. However, these equations will include not just linear equations, but also
equations of degree 2 and 3 (since ϕ(x1x2x3) = ϕ(x1)ϕ(x2)ϕ(x3)), and given a
large number (hundreds) of unknowns ci, cij , cijk, there is no computationally
feasible way known to solve such a system.

In the next Sect. 8, we offer a “linearization” of this attack where all equations
become linear, at the expense of making the number of unknowns and the number
of equations very large.

8 Linear Algebra Attack

One can attempt to recover the private automorphism ϕ from the public pairs
(Pi, ϕ(Pi)) by using linear algebra, more specifically by trying to replace ϕ by a
linear transformation of the linear space of monomials involved in Pi and in the
polynomials ϕ(xi). The latter polynomials are not known to the adversary, but
at least the degrees of monomials in those polynomials can be bounded based
on the public polynomials ϕ(Pi).

Let us compute the dimension of the linear space of monomials of degree at
most 27 in 31 variables. This is because a polynomial Pi has monomials of degree
at most 3, and in the polynomials ϕ(xi) there can be monomials of degree up to
9 (with the suggested parameters), so in ϕ(Pi) there can be monomials of degree
up to 27.

By a well-known formula of counting combinations with repetitions, the
number of monomials of degree at most 27 in 31 variables is equal to

(
57
30

)

≈ 1.4 · 1016 > 253. This is how many variables the attacker will have should
(s)he use a linear algebra attack. The number of equations will be about triple
of this number.
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Solving a system of linear equations with that many variables and equations
would require more than 253·2.3 ≈ 2122 arithmetic operations, according to our
understanding of the state-of-the-art in solving systems of linear equations.

We note that increasing the number of variables in the polynomial algebra will
not seriously affect efficiency as long as the bound on the degrees of monomials
remains the same. At the same time, the more variables the less feasible the
linear algebra attack is.

9 Security Claims

The linear algebra “brute force” attack amounts to solving a system of linear
equations (over Z) with about 253 variables and at least as many equations.

There could be ad hoc attacks on the public key aiming at recovering some
of the ϕ(xi), but recovering only some of ϕ(xi) does not make the probability of
passing verification non-negligible, according to our computer simulations.

We have not been able to come up with any meaningful ideas of forgery
without getting a hold of the private key.

As for quantum security, we do not make any general claims, just mention
that since there are no abelian (semi)groups in play in our scheme, Shor’s quan-
tum algorithm [6] cannot be applied to attack our scheme.

10 Conclusion: Advantages and Limitations of the Scheme

10.1 Advantages

1. A novel mathematical idea used for signature verification.
2. Efficiency of the signature verification (about 0.3 s on average).

10.2 Limitations

1. The main limitation is the size of the public key (about 15 Kbytes with
suggested parameters).

The private key (the automorphism ϕ) is not too small either, about 1.5
Kbytes on average. There is a trade-off between the size of ϕ and its security.
The size of ϕ can be, in principle, reduced to just a few hundred monomials, but
then security becomes a concern since some parts of ϕ(xi) may be possible to
recover more or less by inspection of the public pairs (Pi, ϕ(Pi)).

The signature size is about 4 Kb on average, which is decent but not record-
breaking.

2. Another limitation is that using non-deterministic methods, such as a Monte
Carlo type method, may result in errors, more specifically in false negative or
even false positive results of the signature verification, although so far, with
suggested parameters, we did not detect any false negative or false positive
results (“False negative” means rejecting a valid signature.)
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Appendix

Here we give a proof of Proposition 1.

Proposition 1. Let h = h(x1, . . . , xn) be a polynomial from the set G. Suppose
h does not depend on xk. Let α be the map that takes xk to xk + h − 2xk · h
and fixes all other variables. Then:

(a) α defines an automorphism of B(K), the factor algebra of the algebra
Z[x1, . . . , xn] by the ideal generated by all polynomials of the form (x2

i −xi),
i = 1, . . . , n. Denote this automorphism also by α.

(b) The group of automorphisms of B(K) is generated by all automorphisms as
in part (a) and is isomorphic to the group of permutations of the vertices of
the n-dimensional Boolean cube.

(c) For any polynomial P from Z[x1, . . . , xn], the number of positive values of
P on Boolean tuples (x1, . . . , xn) equals that of α(P ).

Proof. (a) Let Bn denote the Boolean n-cube, i.e., the n-dimensional cube whose
vertices are Boolean n-tuples. The map α leaves the set of vertices of Bn invari-
ant. Indeed, α fixes all xi except xk, and it is straightforward to see that if xk = 0,
then α(xk) = h(x1, . . . , xn), and if xk = 1, then α(xk) = 1 − h(x1, . . . , xn).
Since on any Boolean n-tuple (x1, . . . , xn), one has h(x1, . . . , xn) = 0 or 1 (see
Sect. 3.2), we see that α is a bijection of the set of vertices of Bn onto itself.

Next, observe that for any polynomial h from the set G, one has h2 = h
modulo the ideal generated by all polynomials of the form (x2

i − xi); this easily
follows from the inductive procedure of constructing polynomials h, see Sect. 3.2.
Therefore, α leaves the ideal generated by all (x2

i −xi) invariant since α takes xi

to xi +h− 2xi ·h, and then α(x2
i −xi) = (xi +h− 2xi ·h)2 − (xi +h− 2xi ·h) =

(x2
i − xi) + (h2 − h) + 2xih − 4x2

i h − 4xih
2 + 4x2

i h
2 + 2xih = (x2

i − xi) + (h2 −
h) + 4h(xi − x2

i ) + 4h2(x2
i − xi).

(b) Consider the automorphism α again. Fix a particular Boolean n-tuple
(x1, . . . , xn). Suppose that h(x1, . . . , xn) = 1. Suppose xk = 0 in this tuple. Then
α takes this tuple to the tuple where all xi, except xk, are the same as before,
and xk = 1, i.e., just one of the coordinates in the tuple was flipped. Therefore,
an appropriate composition of different α (with different xk) can map any given
Boolean n-tuple to any other Boolean n-tuple.

(c) This follows immediately from the argument in the proof of part (a). More
specifically, since the set of vertices of Bn is invariant under α, there is a bijection
between the sets of values of P and α(P ) on Boolean n-tuples.
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Abstract. In this study, we introduce an approach that leverages
memory-page offsets as an abstraction mechanism for real-time detec-
tion of control-flow-affecting cyberattacks. We, in particular, leverage
page offsets for a number of reasons. First, being a part of the mem-
ory addresses, they can efficiently be monitored by using some of the
features directly supported by modern CPUs, such as Intel Processor
Trace (intel PT). Second, they are not affected by the presence or
absence of address space layout randomization (ASLR). Finally, they
can be extracted from the system binaries statically without the need
for historical program executions for analysis. At runtime, we monitor
the sequences of page offsets being processed, mark the “suspicious”
sequences, and raise alarms as needed. In the experiments, which we car-
ried out on real-life, document-based malware instances for Adobe PDF
Reader and MS Word, the proposed approach successfully detected the
malicious executions with F-measures of 0.9903 and 0.9771, respectively.

Keywords: runtime detection of cybersecurity attacks · control-flow
hijacking attacks · malware · dynamic program analysis

1 Introduction

An important class of cyberattacks, including control-flow hijacking attacks and
certain types of malware, modifies the control flow of a system, such that a
malicious payload is carried out by executing some instructions that, from the
end-user’s perspective, are not supposed to be executed in the given context. We
collectively refer to these attacks as control-flow affecting attacks. Due to their
flexibility, control-flow affecting attacks are one of the most prevalent types of
attacks today [9].

Numerous control-flow integrity schemes [1], such as address space layout ran-
domization (ASLR) [20], stack canaries [6], and non-executable stacks [8], have
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been developed to prevent control-flow affecting attacks. At a high level, ASLR
randomly arranges a process’s address space, so that its parts are placed at differ-
ent memory addresses each time the process is spawned [17]. This randomization
makes it difficult for an attacker to predict the target memory addresses needed
to carry out the attack. In contrast, stack canaries aim to detect and prevent
stack buffer overflows by employing special tokens that are checked right before
every return instruction [29]. If the token values are incorrect, the processes are
terminated. Since the tokens are randomly determined each time a process is
spawned, it is challenging for an attacker to predict the tokens, preventing the
attacker from gaining control of the return pointers and the instruction point-
ers. Finally, non-executable stacks prohibit the execution of the stack memory
region, which forces the attacker to use more sophisticated techniques to place
the malicious payload in a non-protected memory region [7].

Despite the widespread deployment of the control-flow integrity schemes in
production environments, control-flow affecting attacks remain a reality. One
reason is that as these approaches do not monitor the actual control flows of
programs, they may fail to detect the potentially suspicious system behavior.

To alleviate these issues, many dynamic program analysis-based approaches
have been proposed [10,27,30]. These approaches monitor the memory addresses,
to which the control is transferred during the executions, so that the suspicious
transfers and/or the transfers that are previously known to be malicious can be
detected. One important downside of these approaches, however, is that they
generally do not provide an efficient and effective means of taking ASLR into
account. Indeed, some of these approaches completely ignore ASLR and use the
actual memory addresses for the analysis [27,30].

Given that the memory addresses would change from one execution to
another in the presence of ASLR and that ASLR is widely deployed in the field,
the practicality of these approaches is significantly hindered. Other approaches,
namely the control-flow integrity (CFI) approaches, check the memory addresses
encountered at runtime to see if they follow the statically determined control-
flow graph (CFG) of the program [10]. Since these approaches map the memory
addresses to the CFG nodes at runtime, they are not affected by the presence
(or the absence) of ASLR. However, to reliably construct the CFGs, many of
the CFI approaches require to have the source code and/or the binaries with
the debug information, which is often not available for the commercial software
systems. Furthermore, regardless of how the CFGs are constructed, the CFI
approaches typically impose excessive runtime overheads as the CFGs are to be
constructed, the memory addresses are required to be dynamically mapped to
the CFG nodes, and the paths taken need to be determined at runtime. One
commonly employed approach to reduce the overhead is to use a looser notion
of the control-flow integrity. It is, however, known that looser notions of control-
flow integrity are typically susceptible to certain types of control-flow affecting
attacks [10].

In this work we propose an ASLR-agnostic abstraction mechanism for pro-
gram executions, along with an accompanying anomaly-based approach to detect
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control-flow affecting attacks, including the zero-day attacks, at runtime. The
proposed abstraction mechanism leverages the page offsets, rather than the
actual memory addresses, to model the control flows. Since ASLR only mod-
ifies the start addresses of memory pages but leaves the offsets within each page
intact, our solution is not affected by the presence or absence of ASLR.

At a high level, our approach works by analyzing the sequences of page offsets
encountered at runtime to detect the presence of the “suspicious” sequences,
i.e., those that never appear in benign executions. If suspicious sequences are
detected, an alarm is raised, allowing the countermeasures, which are beyond
the scope of this work, to be taken in time.

We evaluated the proposed approach by using some real-life instances of
document-based malware. In particular, we experimented with a total of 1450
benign and 1918 malicious (i.e., infected) PDF and MS Word documents.
The proposed approach correctly determined the malicious documents with F-
measures of 0.9903 and 0.9771 for PDF and MS Word, respectively.

The remainder of the paper is organized as follows: Sect. 2 introduces the
proposed approach; Sect. 3 presents the empirical studies carried out and ana-
lyzes the results obtained; Sect. 4 discusses related work; and Sect. 5 concludes
with potential future work ideas.

2 Approach

The proposed approach leverages the page offsets to detect “suspicious” paths
taken by the executions. Memory management in computer systems typically
operates at the level of memory pages, which are fixed-size contiguous blocks
of memory, representing the smallest unit of interest from the perspective of
memory management. In particular, the processes’ memory spaces are divided
into memory pages that can individually be loaded into or swapped from the
physical memory. In the presence of ASLR, although the start addresses of the
pages are randomized, the page offsets (i.e., the relative addresses) within the
pages remain intact. Consequently, the page offsets, which are a part of the
actual memory addresses, are not affected by the presence or absence of ASLR.

We, in particular, monitor a system to obtain the memory addresses, thus
the page offsets, processed by the system at runtime (Fig. 1). One way to obtain
these memory addresses is through software instrumentation, which requires to

Fig. 1. A high-level view of the proposed approach.
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Fig. 2. For a general-purpose computing platform, which uses memory pages of size 4
KB, the right-most 12 bits of the address typically constitute the page offset.

Fig. 3. An example scenario where sliding windows of size 4 with a lag of 1 are used
with the page offsets.

instrument the source code and/or the binaries of the systems. To significantly
reduce the runtime overheads, we, on the other hand, push the majority of
the monitoring tasks onto the hardware, by using some of the features directly
supported by the CPU, namely Intel Processor Trace (Intel PT) [15].

At a very high level, Intel PT is an extension of the x64 architecture, allowing
an efficient tracing of the executions. More specifically, every trace is represented
in the form of a stream of packages, each of which captures information about
various aspects of the execution, including the branch addresses taken and the
clock cycles elapsed. Consequently, the exact sequence of all the instructions exe-
cuted, thus the exact path taken, by a process can reliably be reconstructed for
analysis. Furthermore, as the monitoring tasks are carried out by the CPU and
the traces are collected by bypassing the cache hierarchy, the runtime overheads
are reduced to the extent possible. The software developer’s manual published
by Intel indicates that collecting the PT traces generally impose less than 5%
runtime overhead. Intel PT has, indeed, been extensively used for debugging
and profiling [18]. We, however, use them to determine the memory addresses,
to which the control is transferred at runtime by the branch instructions. Note
further that, although we use an Intel-specific feature to monitor the executions
in this work, the same (or similar) features are also supported by other general-
purpose CPUs, such as AMD [5]. Consequently, the proposed approach is readily
applicable to other platforms.

From each memory address observed, we first extract the page offset (Fig. 2).
Page offsets are a part of the actual memory addresses, but the way they need to
be extracted may depend on the underlying hardware. For example, in today’s
general-purpose computing platforms, the memory pages are typically of size 4
KB each and the page offsets are stored in the rightmost 12 bits of the addresses
(i.e., 212 bytes is 4 KB).
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We then analyze the sequences of page offsets encountered to determine the
presence of “suspicious” sequences at runtime (Fig. 3). For this work, we define
a suspicious sequence as a sequence of page offsets, which has not been observed
in any of the historically known benign executions, i.e., the ones that are known
not to be affected by any attack.

To this end, we use a sliding window-based approach with two hyperparam-
eters, namely window size and lag. Figure 3 illustrates an example where sliding
windows of size 4 with a lag of 1 are used. That is, the first 4 page offsets encoun-
tered at runtime constitute the first window and the window is shifted to right
by one offset to form the subsequent window.

In the training phase, we use a collection of benign executions as the training
set (Fig. 4). For each execution, the memory addresses are captured, the page
offsets are extracted, and the sliding windows are formed for the given values
of hyperparameters. We then express all the distinct sequences of page offsets
observed in the training set as a hash set, which will simply serve as the basis
of the anomaly detection model used in the deployment phase.

Fig. 4. Training phase.

In the deployment phase (Fig. 5), the sliding windows of page offsets are
computed in exactly the same manner with the training phase. For each window
encountered, we check to see if the same window is observed in the training set.
If not, the window is marked as suspicious. In the remainder of the document,
these decisions, which are made individually for each window of offsets, will be
referred to as first-level decisions.

Rather than making binary decisions (e.g., suspicious or not), we could have
made probabilistic decisions by, for example, computing the likelihood of observ-
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Fig. 5. Deployment phase.

ing a page offset given a window of preceding page offsets. We, however, deliber-
ately opt to evaluate the accuracy of the binary decisions in this work, because,
as a feature work, we plan to extract the page-offset sequences from the binaries
in a static manner. Note that the page offsets present in the binaries do not get
changed during the executions. This helps us cope with the difficulties of having
a representative set of samples for training, which is a common issue with all
the machine learning (ML)-based approaches. This issue is, indeed, magnified
when the ML models are trained to capture the program behavior as finding
representative set of program executions for training is quite challenging.

One way to raise an alarm is to emit the alarm as soon as the first suspicious
window is observed. This, however, may increase false positive rates [24]. An
alternative approach, which we employ in this work, is to analyze the sequences
of first-level decisions made over a period of time before raising the alarm. This
is because a number of suspicious windows encountered during a brief period
of time is typically a better sign for the presence of an attack, compared to a
single, isolated suspicious window [24].

We, therefore, analyze the first-level decisions, i.e., the suspicious or not
suspicious decisions that are made on a per window of page offsets, by again
using a sliding window-based approach before raising an alarm.

To this end, we define three hyperparameters, namely window size, lag, and
threshold. The first two parameters are, indeed, semantically similar to the hyper-
parameters used for the first-level decisions, but they are applied to the sequences
of first-level decisions, rather the sequences of page offsets. The threshold param-
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eter, on the other hand, is defined as the cutoff ratio of the “suspicious” first-level
decisions to the total number of first-level decisions made in a window. In par-
ticular, if the ratio is above the threshold, then an alarm is raised.

When an alarm is raised, preventive and protective actions can be taken
against the potential attacks (Fig. 1). Such actions include, but are not limited
to, killing the offending processes, migrating the offending processes to a dif-
ferent machine, closely monitoring the offending processes with the goal of col-
lecting further information about a potential attack, disconnecting the offending
machines from the network, taking a snapshot of the system for post-mortem
analysis or as a backup, and reporting the issue to the registered stakeholders.
These countermeasures (except for raising an alarm) are, however, beyond the
scope of this work.

3 Experiments

To evaluate the proposed approach, we have carried out a series of experiments.

3.1 Subjects

In these experiments, we used the Intel PT traces collected for the real-world,
document-based malware instances embedded in PDF and MS Words docu-
ments. More specifically, we experimented with 200 benign and 379 malicious
PDF documents and 1250 benign and 1539 malicious MS Word documents. The
traces for the documents were obtained from Adobe PDF Reader version 9.3
and MS Word version 2010, which ran on the same platform consisted of an
Intel i7 − 6700K CPU and an Nvidia 1080-Ti GPU, running a 64-bit Windows
operating system. We, indeed, utilized the same traces used in [30].

3.2 Operational Framework

As the platform used in the experiments utilized memory pages of size 4 KB
where the page offsets were stored in the right-most 12 bits of the addresses, we
extracted the aforementioned bits from the memory addresses and used them as
the page offsets. Furthermore, since the control-flow affecting attacks typically
affect the conditional branches [30], we filtered out all the remaining types of
addresses in the traces before the windows of page offsets were computed.

For the first-level decisions, we used sliding windows of size 4 with a lag of 1
on the sequence of page offsets encountered. For finalizing the decisions, i.e., for
deciding whether an alarm should be emitted or not, we used sliding windows of
size 3000 with a lag of 1 on the first-level decisions. Furthermore, the threshold
parameter was set to 0.3, i.e., an alarm was emitted when 30% or more of the
first-level decisions in a window of 3000 decisions indicated potentially suspicious
sequences of page offsets.

Note that optimizing the settings of these hyperparameters is beyond the
scope of this work. Our ultimate goal in this work is rather to demonstrate that
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there is at least one set of settings for these hyperparameters, which support the
claims of the paper. To determine the settings we used in the experiments, we,
indeed, carried out small-scale experiments where we systematically varied the
hyperparameters until we encountered a tipping point, which did not necessarily
represented a global optimum.

3.3 Evaluation Framework

In the experiments, we created separate models for the PDF and MS Word
documents. In particular, we randomly created 10 different training and test set
pairs for each subject application. In each pair, while the test set consisted of
all the malicious traces and 10% of the benign traces, the training set consisted
of the remaining 90% of the benign traces.

For each training set, we trained a model, i.e., figured out the collection of
subsequences of page offsets appearing in the benign traces included in the train-
ing set, and used the test set to evaluate the proposed approach. In particular, if
an alarm indicating the presence of a potential malware was emitted for a given
trace, we marked the trace as malicious. Otherwise, that is when no alarm was
raised, we marked the trace as benign. We then computed the accuracy as well
as the precision, recall, and F-measure metrics for both malicious and benign
traces. The accuracy of the approach is computed as the ratio of the correctly
predicted traces. The precision of detecting malicious traces is then computed
as the ratio of correctly predicted malicious traces over all traces predicted as
malicious. And, the recall is computed as the ratio of correctly predicted mali-
cious traces over all truly malicious traces. Finally, F-measure is computed by
giving equal importance to both precision and recall. Furthermore, the evalu-
ation metrics for predicting the benign traces are also computed in the same
manner. Note that all these metrics assume a value between 0 and 1, inclusive.
The higher the value, the better the proposed approach is.

Table 1. Results obtained in the experiments.

PDF Documents MS Word Documents

accuracy 98.22% 95.71%

malicious F1-score 0.9903 0.9771

precision 0.9979 0.9894

recall 0.9829 0.9651

benign F1-score 0.8859 0.6548

precision 0.8129 0.5519

recall 0.9735 0.805
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3.4 Results and Discussions

All told, we created an evaluated 20 models by using a total of 1450 benign and
1918 malicious executions. Table 1 presents the results we obtained.

We first observed that the proposed approach detected the malicious docu-
ments with high F-measures. More specifically, the F-measures for successfully
detecting the malicious documents were 0.9903 and 0.9771 for PDF and MS
Word, respectively (Table 1).

We next observed that the results obtained for the PDF documents were
generally better than those obtained for the MS Word documents (Table 1).
This was also reflected on the F-measures of detecting the benign documents.

We believe that this was mainly due to the significantly fewer samples (i.e.,
documents) we had for training the model for MS Word. In particular, while
we had 1125 benign documents for training the PDF model, we had only 180
documents for training the MS Word model. As we have already discussed, this
is, in fact, a common issue with any statistical- and machine learning-based
approaches in that the quality of the models typically depends on both the size
and the representativeness of the data used for training/analysis. Indeed, finding
a representative set of program executions for training is quite challenging due
to the sheer sizes of the input spaces that area present even for simple software
systems.

These results together with our choice of the first-level hyperparameter set-
tings, therefore, further justify the importance of this work as a preliminary
work towards having a more reliable approach by reducing the need for finding
representative samples of program executions. More specifically, since we mark
any window of page offsets, which are not seen in the training set, as suspicious
in this work and since the runtime page offsets do not differ from the page offsets
present in the system binaries, a large fraction of the benign sequences of page
offsets can directly be extracted from the binaries statically without requiring
any program executions. This is, indeed, the hypothesis that we plan to evaluate
as a future work.

The sizes of the models used in the experiments, i.e., those of the hash sets
used for storing the sequences of page offsets observed in the training sets, were
30 and 25 MB for PDF Reader and MS Word, on average. Note that these
sizes include the redundant spaces that need to be maintained to keep the load
factors of the hash sets less than 0.5. Furthermore, we report the sizes without
any attempt to minimize them by, for example, using compression.

Note, however, that the size of a model depends on the window size to be
used for the first-level decisions as the maximum number of sequences, in theory,
grows exponentially with the window size. However, as not all of these sequences
may be valid, only a fraction of them typically need to be stored in the models.
For example, our models included only a 4.19e−07% (1.18 million out of 40964)
and 3.5e−07% (984, 276 out of 40964) of all possible sequences page offsets of size
4, on average, for the PDF and MS Word applications, respectively. From this
perspective, reducing the window sizes for the first-level decisions is important,
which was, indeed, the case in our experiments where we used windows of size
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4. If, however, longer sequences need to be used, then one way to cope with it
could be to make statistical decisions based on the embeddings created for the
sequences by using deep learning models, such as LSTMs [11].

4 Related Work

At a very high level, program analysis approaches are classified into two primary
groups: static analysis and dynamic analysis. Static analysis approaches operate
by analyzing the source code and/or binaries of the applications without ever
executing them. These approaches are widely used by the third-party analysis
tools to detect vulnerabilities and defects in the implementations [4]. However,
static analysis has its own limitations as not all the dynamic behavior of the
application under analysis can statically be determined, typically resulting in
high false positive rates [2]. Consequently, some research specifically focus on
reducing the false positive rates of static analyzers [12,25,33]. A comprehensive
analysis presented in [14] investigates the effectiveness of these studies, offering
valuable insights, lessons, and guidelines for evaluating false alarm detectors.

In contrast, dynamic program analysis involves executing the programs, col-
lecting information from inside the executions, and analyzing the information
collected to further improve the quality of the systems [22,34]. Consequently,
while the static analysis approaches reason about what might happen during
the executions, the dynamic analysis approaches focus on what has actually
happened in the executions.

To overcome the limitations of static and dynamic analysis, some studies
focus on developing hybrid approaches, which combine both types of analy-
ses [16,21,28,35]. The ultimate goal of such an analysis is to detect a wider
range of issues with the systems, while reducing the false positive rates, com-
pared to using either of the analysis approaches in isolation. Consequently, hybrid
approaches include leveraging static analysis results to guide dynamic analysis,
using dynamic analysis to validate and refine the static analysis results, and inte-
grating the results of both types of analyses to provide more detailed insights
and recommendations for quality improvements.

Other approaches for improving the security of the software systems, such
as malware detectors, employ machine learning (ML) and/or statistics to train
models capturing the normal behaviors of the systems and/or the previously
known malicious behaviors [3,13,19,26,31]. The observed system behaviors are
then compared to these models to identify the similarities (with the malicious
behavior models, for example) and/or the deviations (from the normal behavior
models, for example). The fundamental assumption behind these approaches is
that there are repeatable and identifiable patterns in program executions, and
deviations from these patterns and/or similarities to them is typically an indica-
tive of a potentially malicious behavior [23,32]. One downside of these approach,
however, is that they require to have a representative set of training data, so
that the models being trained could capture the actual patterns, rather than the
superficial ones. Indeed, finding representative samples of program executions is
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quite challenging due to the sheer volume of the input spaces even for simple
software systems.

In this work, we used page offsets for detecting the presence of control flow-
affecting attacks at runtime, which cause suspicious deviations in the control
flows of systems. From this perspective, the proposed approach, as it is pre-
sented in this work, can be classified as a dynamic analysis approach employing
a simple ML/statistical model. However, the reason behind our choice of using
the page offsets as an abstraction mechanism as well as the choice of the hyper-
parameter values we used for the first-level decisions in the experiments, was to
demonstrate the potentials of utilizing the proposed abstraction mechanism in a
hybrid approach employing ML/statistical models by extracting the page offsets
statically from the binaries, reducing the need of having representative set of
historical program executions.

5 Conclusion

In this paper, we presented an approach, which leverages sequences of page offsets
encountered at runtime, to detect the presence of control-flow affecting attacks.
We used page offsets, which are embedded in the actual memory addresses, as
an abstraction mechanism for three main reasons. First, they can efficiently be
collected by using some of the features that are directly supported by modern
CPUs, such as Intel PT. Second, they are not affected by the presence or absence
of ASLR. Finally, they can be extracted from the binaries statically without the
need for historical program executions for analysis.

The results of the empirical studies strongly support our basic hypothesis
that sequences of page offsets can, indeed, be used to distinguish malicious exe-
cutions (e.g., malicious paths taken) from benign executions. We have arrived at
this conclusion by observing that the proposed approach with the same hyper-
parameter settings, detected the malicious PDF and MS Word documents with
F-measures of 0.9903 and 0.9771, respectively.

One avenue for future research is to develop hybrid approaches where the
benign sequences of page offsets can be learned both via static analysis of the
binaries and via dynamic analysis of the historical executions. Another avenue
is to evaluate the performance of other anomaly detection models, including
LSTMs [11], by conducting comparative studies. Yet another avenue is to apply
the approach to a wide range of control-flow affecting attacks.
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Abstract. In the design of an identity-based encryption (IBE) scheme,
the primary security assumptions center around quadratic residues, bilin-
ear mappings, and lattices. Among these approaches, one of the most
intriguing is introduced by Clifford Cocks and is based on quadratic
residues. However, this scheme has a significant drawback: a large cipher-
text to plaintext ratio. A different approach is taken by Zhao et al., who
design an IBE still based on quadratic residues, but with an encryption
process reminiscent of the Goldwasser-Micali cryptosystem. In the follow-
ing pages, we will introduce an elementary method to accelerate Cocks’
encryption process and adapt a space-efficient encryption technique for
both Cocks’ and Zhao et al.’s cryptosystems.

Keywords: identity based encryption · quadratic residues ·
optimizations

1 Introduction

The development of identity based encryption (IBE) began in 1984 when Shamir
formulated its basic principles in [23]. However, he left the practical construc-
tion of such a scheme as an open problem. In 2001, the first IBE schemes were
proposed by Boneh and Franklin [6], who used bilinear mappings, and by Cocks
[11], who utilized quadratic residues, respectively.

The Cocks’ encryption scheme processes messages on a bit-by-bit basis, where
each encrypted bit is represented as a pair of two integers. Decryption involves
calculating the Jacobi symbol of one of the two integers in each pair. Therefore,
Cocks’ IBE has a large ciphertext to plaintext ratio, and thus is efficient only for
small messages. A space-efficient IBE based on quadratic residues was introduced
in [7]. Unfortunately, their solution is based on a quartic deterministic time-
complexity algorithm, and thus is infeasible to use in practice. To address this
issue, Jhanwar and Barua [4,18] introduced an efficient probabilistic algorithm.
However, their scheme, along with several other variations [13,14], have been
shown to be insecure [22]. A different approach was taken in [24]. Their proposal
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resembles the Goldwasser-Micali [16] cryptosystem. Their solution also has a
large ciphertext to plaintext ratio: to encrypt a bit we need four integers.

Our paper focuses on Cocks’ and Zhao et al.’s IBE schemes [11,24]. In the
first part of the paper we introduce a different method for generating the spe-
cial random numbers t required by Cocks’ encryption algorithm. The generation
method bears similarity to the Goldwasser-Micali encryption, with the primary
distinction being the distribution of one of the public parameters. While this
method may seem obvious, it is worth noting that all previous papers dealing
with Cocks’ IBE have relied on a trial-and-error method based on Jacobi sym-
bols to generate the t values. Therefore, our method lowers the complexity of
generating t values from at least O(M(2λ) log 2λ) to O(M(2λ)), where λ is a
security parameter and M(·) denotes the complexity of a multiplication.

In the second part of our work, we use some elementary remarks to reduce
the bandwith requirements for both Cocks’ and Zhao et al.’s IBE schemes with
2 and 4 bits per ciphertext, respectively. The changes made to achieve this
improvement, do not introduce any additional overhead to the encryption pro-
cess. It is worth noting that both IBEs have been recommended for symmetric
key encapsulation. Consequently, the additional bits can serve various purposes,
such as authenticating the encapsulation package. Since our changes involve only
comparison operators and differences, coupled with our reduced bit usage per
encapsulation, we believe that our proposal is preferable when compared to the
original schemes.

Structure of the Paper. In Sect. 2, we introduce the fundamental notions used
throughout the paper. In Sect. 3, we present a computationally efficient variant
of Cocks’ IBE. Section 4 discusses two space-efficient IBEs. Finally, we conclude
in Sect. 5.

2 Preliminaries

Notations. Throughout the paper, λ denotes a security parameter. The action
of selecting a random element x from a sample space X is denoted by x

$←− X,
while x ← y represents the assignment of value y to variable x.

The Jacobi symbol of an integer a modulo an integer n will be represented by
Jn(a). We consider the sets QRn and QNRn of quadratic and, respectively, non-
quadratic residues modulo an integer n. Jn denotes the sets of integers modulo
n with Jacobi symbol 1.

2.1 Identity-Based Encryption

An IBE scheme [5] comprises four probabilistic polynomial-time (PPT) algo-
rithms, denoted as Setup, KeyGen, Enc, and Dec. The first algorithm takes the
security parameter as input and produces the master secret key along with the
system’s public parameters as output. The subsequent algorithm takes an iden-
tity id, the master secret key, the public parameters as input, and yields a private
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key associated with id as output. The third algorithm, labeled Enc, accepts a
message m, an identity id, and the public parameters as input, encrypting m
using a key derived from id to produce the ciphertext c. The final algorithm,
Dec, decrypts the ciphertext c using the private key associated with id, yielding
the original message m.

Cocks’ IBE Scheme. The first IBE based on the qr assumption1 was intro-
duced in [11]. The original scheme was defined for primes of type p ≡ q ≡
3 mod 4. Later on, this scheme was generalized in [19] to any prime numbers p
and q. We further present the IBE scheme provided in [19].

Setup(λ): Given a security parameter λ, generate two primes p, q > 2λ and
compute their product n = pq. Randomly generate an integer u ∈ Jn \ QRn.
The public parameters are pp = {n, u,H}, where H : {0, 1}∗ → Jn is a
cryptographic hash function. The master secret key is msk = {p, q}.

KeyGen(pp,msk, id): Let R = H(id). If R ∈ QRn, then compute r ≡ R1/2 mod
n. Otherwise, computes r = (uR)1/2 mod n. The private key is r.

Enc(pp, id,m): On inputting pp, an identity id and a message m ∈ {−1, 1},
compute the hash value R = H(id) and randomly choose two values t1, t2

$←−
Zn such that Jn(t1) = Jn(t2) = m. Also, calculate

c1 = t1 +
R

t1
mod n and c2 = t2 +

uR

t2
mod n.

Return the ciphertext C = (c1, c2).
Dec(pp, r, C): On input pp, a secret key r and a ciphertext C, compute

m =

{
Jn(c1 + 2r) if r2 ≡ H(id) mod n;
Jn(c2 + 2r) otherwise.

Remark 1. Cocks’ IBE scheme does not provide anonymity [7]. As a result, sev-
eral techniques have been introduced to address this issue [2,19–21]. Among
these, the most efficient method is the one described in [20], which is a simpli-
fied version of the approach presented in [19].

Zhao et al.’s IBE Scheme. An alternative IBE scheme relying on the qr
assumption was presented in [24]. Specifically, the scheme operates with polyno-
mials modulo n, where the primes p and q are selected such that p ≡ −q mod 4.
This scheme was subsequently extended and generalized in [12] to accommodate
arbitrary values of p and q. We further provide the scheme’s description as given
in [12].

Setup(λ): Given a security parameter λ, generate two primes p, q > 2λ and
compute their product n = pq. Randomly generate two integers u, y ∈ Zn such
that Jp(u) = Jq(u) = −1 and Jp(y) = −Jq(y). The public parameters are
pp = {n, u, y,H}, where H : {0, 1}∗ → Jn is a cryptographic hash function.
The master secret key is msk = {p, q}.

1 This assumption states that an adversary trying to decide if a random element is
from Jn \QRn or QRn has a negligible success probability.
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KeyGen(pp,msk, id): Let R = H(id). If R ∈ QRn, then compute r ≡ R1/2 mod
n. Otherwise, computes r = (uR)1/2 mod n. The private key is r.

Enc(pp, id,m): On inputting pp, an identity id and a message m ∈ {0, 1},
compute the hash value R = H(id) and randomly choose two polynomials
f(x), f(x) of degree 1 from Zn[x]. Also, calculate

g(x) = f(x)2 mod (x2 − R) and g(x) = f(x)2 mod (x2 − uR).

Return the ciphertext C = (ym · g(x), ym · g(x)).
Dec(pp, r, C): On input pp, a secret key r and a ciphertext C = (c(x), c(x)),

compute

m′ =

{
Jn(c(r)) if r2 ≡ H(id) mod n;
Jn(c(r)) otherwise.

Remark 2. Although Zhao et al.’s IBE scheme is not anonymous [24], it can be
made so by using the anonymization technique described in [9,10].

3 Computational Efficient IBE

In this section, we present an efficient method for generating the random t values
used in Cocks’ IBE. Although the method employed is elementary, it is worth
noting that all the papers built upon Cocks’ work, generate t values until the
Jacobi symbol reaches the desired value.

3.1 Cocks’ IBE Efficient Version

We further present the proposed encryption algorithm. To make the proposed
scheme work, we incorporate a public element e ∈ Zn \ Jn into the setup algo-
rithm. Note that the t values can be interpreted as a Goldwasser-Micali cipher-
text [16].

Enc(pp, id,m): On inputting pp, an identity id and a message m ∈ {−1, 1},
compute the hash value R = H(id) and randomly choose two values x1, x2

$←−
Zn. Set ti ≡ e(1−m)/2x2

i mod n for i ∈ {1, 2}. Also, calculate

c1 = t1 +
R

t1
mod n and c2 = t2 +

uR

t2
mod n.

Return the ciphertext C = (c1, c2).

3.2 Performance Analysis

To determine the efficiency of our proposal, we consider the following complexi-
ties for μ-bit integers
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– Multiplication [17]: M(μ) = O(μ log μ),
– Jacobi symbol [8]: O(M(μ) log μ).

Without loss of generality, we further assume that p mod 8 ≤ q mod 8. To
further accelerate the encryption process, we can select e as follows

e =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−1 p ≡ −q mod 4,
2 p ≡ 1 mod 8 and q ≡ 5 mod 8,
2 p ≡ 3 mod 8 and q ≡ 7 mod 8,
ē otherwise,

where ē is random element from Zn \ Jn. Therefore, generating t values comes
down to

t =

⎧⎪⎨
⎪⎩

n − x2 e = −1,
x2 + x2 e = 2,
ēx2 otherwise.

In the original scheme, generating a t value amounts to computing at least an
Jacobi symbol. Therefore, we obtain a complexity of at least O(M(2λ) log 2λ).
In our proposal, we obtain the following complexity⎧⎪⎨

⎪⎩
O(M(2λ)) e = −1,
O(M(2λ)) e = 2,
O(2M(2λ)) otherwise.

We further provide the reader with benchmarks for Cocks’ original scheme
and for our proposal. We ran the encryption algorithm for both schemes on
a CPU Intel i7-8700 3.20GHz and used GCC to compile it (with the O3 flag
activated for optimization). Note that for all computations we used the GMP
library [1]. To calculate the running times we used the native C++ function
clock(). To obtain the average running time in seconds we chose to encrypt
1000 128/192/256-bit messages. According to NIST [3], the modules of size
3072/7680/15360 offer 128/192/256-bit security. Therefore, we wanted to simu-
late a key distribution scenario.

The results are provided in Table 1. Please take note that the percentages
represent the time improvement relative to the original version. We can clearly
see that our proposal significantly reduces encryption time by at least 50%.
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Table 1. Average Encryption Time (ms)

Key Original Proposal
Length e = −1 e = 2 e = ē e = −1 e = 2 e = ē

128 bits 27.2190 23.1005 25.9760
10.1901 8.55514 10.1151

(62.56%) (62.96%) (61.06%)

192 bits 118.701 114.695 115.931
50.6101 48.9982 52.1820

(57.36%) (57.28%) (54.99%)

256 bits 360.541 355.493 354.617
167.129 164.818 173.592

(53.64%) (53.63%) (51.04%)

4 Space Efficient IBEs

In [19], the author introduces a variant of Cocks’ IBE that allows one to derive
the encryption of −m from the original ciphertext. Additionally, the author
presents a bandwidth-saving approach for this variant. In this section, we show
that this technique can be easily adapted to Cocks’ and Zhao et al.’s IBE
schemes.

We further impose the restriction p ≡ q mod 4. This implies that Jp(−1) =
Jq(−1), and therefore Jn(−1) = 1. Using this restriction, we are able to restrict
the ciphertexts interval from {1, . . . , n − 1} to {1, . . . , (n − 1)/2}.

4.1 Cocks’ IBE Compact Version

We remind the reader that Cocks’ ciphertext takes the following form

c1 = t1 +
R

t1
mod n and c2 = t2 +

uR

t2
mod n.

We can see that

Jn(−c1 + 2r) = Jn(−t1 − R · t−1
1 + 2r)

= Jn(−(t1 − r)2 · t−1
1 ) = Jn(t1),

and Jn(−c2 + 2r) = Jn(t2). Thus, the decryption algorithm works as intended
with any ciphertexts of the form (±c1,±c2). Therefore, we propose the following
encryption algorithm aimed at minimizing the bandwith overhead.

Enc(pp, id,m): On inputting pp, an identity id and a message m ∈ {−1, 1},
compute the hash value R = H(id) and randomly choose two values t1, t2

$←−
Zn such that Jn(t1) = Jn(t2) = m. Also, calculate

c′
1 = t1 +

R

t1
mod n and c′

2 = t2 +
uR

t2
mod n.
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Define

c1 = min(c′
1, n − c′

1) and c2 = min(c′
2, n − c′

2),

and return the ciphertext C = (c1, c2).

Remark 3. Remark that the technique outlined in this section does not interfere
with the security proofs of Cocks’ IBE provided in [15,19]. Furthermore, the
methods of anonymization outlined in [2,19–21] can be effectively applied to
this variant as well.

4.2 Zhao et al.’s IBE Compact Version

Using the trick presented in Sect. 4.1, we can also make Zhao et al.’s IBE scheme
more compact. Let f(x) = a · x+ b and f(x) = a · x+ b. When we compute c(x)
and c(x) we obtain

c(x) = c0 · x + c1 = [2yma] · x + [ym(a2R + b2)]

c(x) = c0 · x + c1 = [2yma] · x + [ym(a2uR + b
2
)]

Therefore, when r2 ≡ H(id) mod n we obtain that

Jn(c0 · r + c1) = Jn(ym · (2ar + a2R + b2)) = Jn(ym · (ar + b)2) = Jn(y)m,

Jn(c0 · r − c1) = Jn(ym · (2ar − a2R − b2)) = Jn(−ym · (ar − b)2) = Jn(y)m,

Jn(−c0 · r + c1) = Jn(ym · (−2ar + a2R + b2)) = Jn(ym · (ar − b)2) = Jn(y)m,

Jn(−c0 · r − c1) = Jn(ym · (−2ar − a2R − b2)) = Jn(−ym · (ar + b)2) = Jn(y)m,

since Jn(−1) = 1. Similarly, for the case r2 ≡ uH(id) mod n we obtain

Jn(c0 · r + c1) = Jn(c0 · r − c1) = Jn(−c0 · r + c1) = Jn(−c0 · r − c1).

Hence, the decryption algorithm works as intended with either of the following
ciphertext versions

(±c0 · x ± c1,±c0 · x ± c1).

Therefore, we can use the following encryption algorithm to save bandwith.

Enc(pp, id,m): On inputting pp, an identity id and a message m ∈ {0, 1},
compute the hash value R = H(id) and randomly chooses two polynomi-
als f(x), f(x) of degree 1 from Zn[x]. Also, calculate

g(x) = f(x)2 mod (x2 − R) and g(x) = f(x)2 mod (x2 − uR)

and let

(c′
0 · x + c′

1, c
′
0 · x + c′

1) = (ym · g(x), ym · g(x)).
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Define

c0 = min(c′
0, n − c′

0) and c1 = min(c′
1, n − c′

1)
c0 = min(c′

0, n − c′
0) and c1 = min(c′

1, n − c′
1),

and return the ciphertext C = (c0 · x + c1, c0 · x + c1).

Remark 4. Note that this space-saving technique does not interfere with the
security proof of Zhao et al.’s IBE provided in [24]. Additionally, the anonymiza-
tion technique described in [9,10] can also be applied to this version.

5 Conclusion

In this paper, we have introduced a method for accelerating the Cocks IBE
scheme. Additionally, through the application of elementary operations, we man-
aged to reduce the bandwidth requirements of both the Cocks and Zhao et al.
IBEs.
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Abstract. Strong designated verifier signature schemes rely on sender-
privacy to hide the identity of the creator of a signature to all but
the intended recipient. This property can be invaluable in, for exam-
ple, the context of deniability, where the identity of a party should not
be deducible from the communication sent during a protocol execution.
In this work, we explore the technical definition of sender-privacy and
extend it from a 2-party setting to an n-party setting. Afterwards, we
show in which cases this extension provides stronger security and in
which cases it does not.

Keywords: Designated-Verifier · Digital Signatures · Sender-Privacy ·
Undeniable Signatures

1 Introduction

Digital signatures have many useful applications in our everyday lives, from mes-
sage authentication to software updates. In many cases, they provide a publicly
verifiable way of proving the authenticity of a message. However, sometimes it is
desired to prove authenticity only to the intended receiver, or designated verifier,
of a message. Designated verifier signature (DVS) schemes were constructed for
this reason, to allow for the signing of a message in such a way that the receiver
would be fully convinced of its authenticity, but to third-party observers, the
validity of the signature could be denied. Strong designated verifier signature
(SDVS) schemes are the refinement of this idea, with the additional restraint
that no one but the creator and the designated verifier should be able to deduce
from a signature who was the creator. While this concept has been studied
extensively and is interpreted intuitively in the same way by many, the technical
definitions for the property separating DVS schemes from SDVS schemes, known
as sender-privacy, vary. In this work we analyze and generalize the definitions in
current literature and aim to provide a universally applicable way to define this
property, particularly focusing on the n-party setting. Furthermore, we prove
that our general form of sender-privacy can be achieved by combining weaker
forms of sender-privacy with non-transferability or unforgeability.
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1.1 Related Work

Chaum and van Antwerpen first introduced undeniable signatures in [3], which
required interaction between the signer and verifier. In 1996 this requirement
was removed by Chaum [2] and by Jakobsson et al. [6] separately, who intro-
duced designated verifier signatures. These formal definitions were later refined
by Saeednia et al. [9]. Rivest et al. introduced ring signatures in [8], which can
be interpreted as DVS when a ring size of 2 is used, although not SDVS.

An important step was made when Laguillaumie and Vergnaud formalised
sender-privacy, the property separating DVS from SDVS, in [7]. The notion of
SDVS was further refined to Identity-Based SDVS by Susilo et al. [10], where all
private keys are issued using a master secret key (i.e. central authority). For this
setting, sender-privacy was later formalized in a game-based manner by Huang
et al. [5].

1.2 Summary of Contributions

The main objective of the paper is to present a definition of sender-privacy
that is usable in the multi-party setting without requiring additional proofs. To
achieve this, we first survey the definitions of sender-privacy that are present
in the literature in Sect. 2. Here we also show how the definition of designated
verifier signatures got split into non-transferability and sender-privacy.

In Sect. 3 we show how the definitions from the literature differ from each
other and what their potential shortcomings are. Here we also present the multi-
party sender-privacy definition and go deeper into which oracles are used.

Definition 9 (Simplified). A designated verifier signature scheme is n-party
sender-private if an adversary interacting with n parties with oracle access to
the signing, simulating and verification procedures has negligible advantage in
deducing who the signing party of a challenge signature is. Here the challenge
signing party is always one of two fixed parties known to the adversary.

In Sect. 4 we show that a number of alternative definitions are equivalent to
the one above.

Definition 10 (Simplified). A designated verifier signature scheme is n-party
random-challenge sender-private if an adversary interacting with n parties with
oracle access to the signing, simulating and verification procedures has negligible
advantage in deducing who the signing party of a challenge signature is. Here the
challenge signing party is always one of the n parties known to the adversary.

Definition 11 (Simplified). A designated verifier signature scheme is n-party
adversarial-challenge sender-private if an adversary interacting with n parties
with oracle access to the signing, simulating and verification procedures has neg-
ligible advantage in deducing who the signing party of a challenge signature is.
Here the challenge signing party is always one of two parties chosen by the adver-
sary.

Theorem. Definitions 9, 10, and 11 are equivalent up to polynomial differences
in the advantages.
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In order to integrate our definition with the current literature, we present
in Sect. 5 some settings in which definitions with different oracles or numbers of
parties coincide.

Theorem 4 (Simplified). For any scheme that is strongly unforgeable, the
definitions of sender-privacy with or without access to a verifications oracle are
equivalent.

Theorem 5 (Simplified). For any scheme that is strongly unforgeable and com-
putationally non-transferable, the definitions of 2-party sender-privacy and n-
party sender-privacy are equivalent.

2 Preliminaries

We denote with κ ∈ N the security parameter of a scheme and implicitly assume
that any algorithm that is part of a scheme is given input 1κ, i.e. the string of κ
1’s, in addition to its specified inputs. We implicitly assume that all adversaries
are probabilistic polynomial-time Turing machines (PPT). We write [n] for the
set {0, . . . , n}. We call a function ε(n) negligible (denoted ε ≤ negl(n)) if for
every polynomial p there exists n0 ∈ N such that for all n ≥ n0 it holds that
ε(n) < 1

p(n) . We reserve ⊥ as an error symbol.

Definition 1. A designated verifier signature scheme (DVS scheme) is a
tuple (Setup,KeyGen,Sign,Verify,Simulate) of PPT algorithms such that:

– Setup: Produces the public parameters of a scheme, params. It is implicitly
assumed that these parameters are passed to the following algorithms.

– KeyGen: Produces a keypair (pk, sk).
– SignS→V (m) := Sign(skS , pkS , pkV ,m): produces a signature σ if all keys are

valid and ⊥ otherwise.
– VerifyS→V (m,σ) := Verify(skV , pkV , pkS ,m, σ): outputs the validity of σ (a

boolean value) if all keys are valid and ⊥ otherwise.
– SimulateS→V (m) := Simulate(skV , pkV , pkS ,m): produces a simulated signa-

ture σ′.

2.1 Current Definitions

The original definitions for strong verifier designation are a combination of what
we currently distinguish as non-transferability and sender-privacy. The following
definitions are the initial attempts at defining strong verifier designation, and
in their respective papers, they are accompanied by definitions for (non-strong)
verifier designation, which are very much in line with the intuition behind non-
transferability. To distinguish them from the later definitions, we name them JSI
and SKM strong designated verifier schemes respectively, after the names of the
authors that proposed them.
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Definition 2 ([6]). Let (PA,PB) be a protocol for Alice to prove the truth of the
statement Ω to Bob. We say that Bob is a JSI strong designated verifier if, for
any protocol (PA,PB ,PC ,PD) involving Alice, Bob, Cindy, and Dave, by which
Dave proves the truth of some statement θ to Cindy, there is another protocol
(PC ,P ′

D) such that Dave can perform the calculations of P ′
D, and Cindy cannot

distinguish transcripts of (PA,PB ,PC ,PD) from those of (PC ,P ′
D).

Definition 3 ([9]). Let P(A,B) be a protocol for Alice to prove the truth of the
statement Ω to Bob. We say that P(A,B) is a SKM strong designated verifier
proof if anyone can produce identically distributed transcripts that are indistin-
guishable from those of P(A,B) for everybody, except Bob.

In later work, we see the definition for strong verifier designation split. Non-
transferability captures the notion that the verifier can produce signatures from
anyone designated to himself, thus ensuring that no signature provides proof
of signer-verifier interaction for third parties. Sender-privacy adds to this that,
from a signature, one cannot deduce the sender, thus allowing no third-party
observer to use a signature to plausibly deduce that an interaction between two
parties happened.

Definition 4. A DVS scheme Π = (KeyGen,Sign,Verify,Simulate) is computa-
tionally non-transferable if for any adversary A,

AdvNTΠ,A(κ) = Pr
b∈{0,1}

[
GNT

Π,A(κ, b) = b
] − 1

2
≤ negl(κ),

where the game GNT
Π,A is defined as follows:

Game 1: GNT
Π,A(κ, b)

1 params ← Setup
2 (pkS , skS) ← KeyGen
3 (pkV , skV ) ← KeyGen
4 (m∗, , ) ← A(1, params, pkS , skS , pkV , skV )
5 if b = 0 then
6 σ∗ = Sign(skS , pkS , pkV , m∗)

7 else
8 σ∗ = Simulate(skV , pkV , pkS , m∗)

9 b′ ← A(2, , σ∗)
10 Output b′

Definition 5. A DVS Π = (KeyGen,Sign,Verify,Simulate) is statistically non-
transferable if for all S, V , and m, SignS→V (m) and SimulateS→V (m) are sta-
tistically indistinguishable distributions.



SDVS Sender-Privacy in the Multi-party Setting 39

For sender-privacy, many slightly different definitions are presented in the
literature. Many follow the form of Game 2, but with different oracles presented
to the adversary. Note that this game is a generalized definition designed to be
instantiated with a set of oracles O to form the specific definitions found in the
literature. For each i ∈ [n], party i is denoted Pi. Pn is designated as the verifier
for the challenge. In much of the literature, this game is played with 3 parties:
S0, S1, and V , who would here correspond with P0, P1, and P2 respectively in
the n = 2 setting.

Game 2: GSendPriv
Π,A,O (κ, n, c), the generalized game for sender-privacy.

1 params ← Setup
2 (pkP0

, skP0) ← KeyGen; . . . ; (pkPn
, skPn) ← KeyGen

3 (m∗, ) ← AO(1)
sign,O(1)

veri,O
(1)
sim(1, params, pkP0

, . . . , pkPn
)

4 σ∗ = SignPc→Pn(m
∗)

5 c′ ← AO(2)
sign,O(2)

veri,O
(2)
sim(2, , σ∗)

6 Output c′

Definition 6 ([5]). A DVS Π = (KeyGen,Sign,Verify,Simulate) is a Hua-strong
DVS if it is statistically non-transferable and for any PPT adversary A,

AdvSendPrivΠ,A (κ) = Pr
c←{0,1}

[
GSendPriv

Π,A (κ, 2, c) = c
] − 1

2
≤ negl(κ),

where GSendPriv
Π,A is played with the following oracles:

– O(1)
sign: Upon input (mi, di) returns SignPdi

→P2(mi) if di ∈ {0, 1} and ⊥ oth-
erwise.

– O(2)
sign: Upon input (mi, di) returns SignPdi

→P2(mi) if di ∈ {0, 1} and mi �=
m∗,and ⊥ otherwise.

– O(1)
veri: Upon input (σi,mi, di) returns VerifyPdi

→P2(mi) if di ∈ {0, 1} and ⊥
otherwise.

– O(2)
veri: Upon input (σi,mi, di) returns VerifyPdi

→P2(mi) if di ∈ {0, 1}, σi �= σ∗,
and mi �= m∗,and ⊥ otherwise.

– O(1)
sim = O(2)

sim = ∅
In [5], Huang et al. define signer-privacy for identity-based-SDVS, a similar

type of DVS where all keypairs are issued by a central authority. Here, they
allow signing queries from any party to any party, and the adversary is allowed
to choose the two signer and the verifier parties. We explore this option for SDVS
in Definition 11.
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3 Bringing Sender-Privacy to the Multi-party Setting

Sender-privacy is meant to provide security in the setting where an eavesdropping
adversary is trying to detect the identity of the sender of a signature. In the
previously presented definitions, this is modelled by a coin flip between two
senders, with a fixed verifier. This way of defining sender-privacy is similar to key-
privacy in public-key cryptography [1]. The key difference here is that public-key
ciphertexts are only related to one keypair, the receiver’s. However, designated
verifier signatures are bound to two parties, the signer and the designated verifier.
This creates the problem that the naive way of defining sender-privacy does not
cover any attacks that require multiple parties. In key-privacy, any adversary
requiring n parties for their attack can perform this attack in the two-party
setting by simulating the other n − 2 parties themself. However, in the case of
SDVS schemes, this is not necessarily possible. The adversary could be unable to
create signatures signed by one of the two challenge parties with their simulated
parties as the verifier We explore settings where this is a non-issue in Sect. 5.

3.1 Oracles

Many different interpretations exist in the literature of what oracles the adver-
sary should be given access to. The key choices here are whether (1) a simulation
oracle should be provided, (2) a verification oracle should be provided, and (3)
whether the adversary should still have access to the oracles after the challenge
has been issued. Whereas the precise attacker model might depend on the con-
text and our framework allows us to capture this, we here choose to focus on the
strongest level of security, by providing the adversary with as much as possible
without trivially breaking the challenge.

Definition 7. For any n, let the standard n-sender SendPriv-oracles denote:

– O(1)
sign = O(2)

sign: Upon input (mi, s, v) returns σi := SignPs→Pv
(mi) if s, v ∈ [n]

and ⊥ otherwise.
– O(1)

sim = O(2)
sim: Upon input (mi, s, v) returns σi := SimulatePs→Pv

(mi) if s, v ∈
[n] and ⊥ otherwise.

– O(1)
veri: Upon input (mi, σi, s, v) returns VerifyPs→Pv

(mi, σi) if s, v ∈ [n] and
⊥ otherwise.

– O(2)
veri: Upon input (mi, σi, s, v) returns VerifyPs→Pv

(mi, σi) if s, v ∈ [n] and
σi �= σ∗, and ⊥ otherwise.

Note that the oracles make use of an implicit ordering of the parties. This
makes no difference in any real-world application, but for constructing proofs we
also define a set of oracles that allows this ordering to be hidden by a permuta-
tion.

Definition 8. For any set of oracles for GSendPriv and any permutation π define
the permuted oracles as follows, where b ∈ {0, 1}:
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– O(π,b)
sign : On input (mi, s, v) output O(b)

sign(mi, π(s), π(v))
– O(π,b)

sim : On input (mi, s, v) output O(b)
sim(mi, π(s), π(v))

– O(π,b)
veri : On input (mi, σi, s, v) output O(b)

veri(mi, σi, π(s), π(v))

3.2 Definition

Taking all these things into consideration, we can now craft a definition of sender-
privacy. This definition is more in line with current research in ID-based-SDVS
research such as [4].

Definition 9. A DVS scheme Π is n-party sender-private with respect to O if
for any adversary A,

AdvSendPrivΠ,A,O (κ, n) = Pr
c←{0,1}

[
GSendPriv

Π,A (κ, n, c) = c
] − 1

2
≤ negl(κ).

A DVS scheme is n-party sender-private if it is n-party sender-private with
respect to the standard n-sender SendPriv-oracles.

4 Alternative Definitions

In this section, we look at possible alternative definitions that one could con-
sider equally valid generalizations of the 2-party setting to the n-party setting.
For example, in the 2-party setting, we pick the challenge uniformly at random
between the two possible senders, thus one could consider picking uniformly at
random from n senders in the n-party setting.

Definition 10. A DVS scheme is n-party random-challenge sender-private with
respect to O if for any adversary A,

AdvnrSendPriv
Π,A,O (κ, n) = Pr

c←[n−1]

[
GSendPriv

Π,A,O (κ, n, c) = c
] − 1

n
≤ negl(κ).

A DVS scheme is n-party random-challenge sender-private if it is n-party
random-challenge sender-private with respect to the standard n-sender SendPriv-
oracles.

Furthermore, one could strengthen the definition even more by allowing the
adversary to choose which two senders the challenge is chosen from and which
party is the verifier.

Definition 11. A DVS scheme is n-party adversarial-challenge sender-private
with respect to O if for any adversary A,

AdvChosenSendPrivΠ,A,O (κ, n) = Pr
c←{0,1}

[
GChosenSendPriv

Π,A (κ, n, c) = c
] − 1

2
≤ negl(κ).

A DVS scheme is n-party adversarial-challenge sender-private if it is n-
party adversarial-challenge sender-private with respect to the standard n-sender
SendPriv-oracles.
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Game 3: GChosenSendPriv
Π,A,O (κ, n, c)

1 params ← Setup
2 (pkP0

, skP0) ← KeyGen; . . . ; (pkPn
, skPn) ← KeyGen

3 (m∗, s0, s1, r, ) ← AO(1)
sign,O(1)

veri,O
(1)
sim(1, params, pkP0

, . . . , pkPn
)

4 σ∗ = SignPsc →Pr (m
∗)

5 c′ ← AO(2)
sign,O(2)

veri,O
(2)
sim(2, , σ∗)

6 Output c′

4.1 Relations

As one might expect, the above-defined alternative definitions relate strongly to
the main definition, Definition 9. In fact, in this section, we show that they are
equivalent up to polynomial differences in the advantages.

For the universally random challenge, this can be done by simply only con-
sidering the cases where the challenge is P0 or P1, which will be the case 2 out
of n times, giving us a loss in the advantage of a factor 2

n .

Theorem 1. For any adversary A, DVS scheme Π, and set of oracles O,

2
n

· AdvSendPrivΠ,A,O (κ, n) ≤ AdvnrSendPriv
Π,A,O (κ, n).

Proof. AdvnrSendPriv
Π,A (κ, n)

= Pr
c←[n−1]

[
GSendPriv

Π,A (κ, n, c) = c
] − 1

n

=
2
n

Pr
c←[1]

[
GSendPriv

Π,A (κ, n, c) = c
]
+

n − 2
n

Pr
c←[2,n−1]

[
GSendPriv

Π,A (κ, n, c) = c
] − 1

n

=
2
n

(
Pr

c←[1]

[
GSendPriv

Π,A (κ, n, c) = c
] − 1

2

)
+

n − 2
n

Pr
c←[2,n−1]

[
GSendPriv

Π,A (κ, n, c) = c
]

=
2
n

· AdvSendPrivΠ,A (κ) +
n − 2

n
Pr

c←[2,n−1]

[
GSendPriv

Π,A (κ, n, c) = c
]

≥ 2
n

· AdvSendPrivΠ,A,O (κ, n),

where [2, n − 1] = {2, . . . , n − 1}. �	
Theorem 2. For any adversary A, set of oracles O and DVS scheme Π, there
exists an adversary B such that

1
2
AdvnrSendPriv

Π,A,O (κ, n) ≤ AdvSendPrivΠ,B,O (κ, n).

Simplified. We define an adversary B that randomly permutes the parties to avoid
a bias for the 0, 1 parties in A. We then run A and use its guess if it outputs the
original 0 or 1 party, otherwise we guess 0. This transfers the guessing advantage
of A in the chosen cases. The full proof is available in Appendix A. �	
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Corollary 1. For any n ∈ N, an SDVS scheme is n-party random-challenge
sender-private if and only if it is n-party sender-private.

Similarly, we can show an equivalence up to polynomial factors for the
adversarial-chosen challenges.

Theorem 3. For any adversary A and set of oracles O, there exists an adver-
sary B such that

2
n3 − n

· AdvChosenSendPrivΠ,A,O (κ, n) ≤ AdvSendPrivΠ,B,O (κ, n)

Simplified. We could try to simply consider only the cases where the adversary
chooses P0 and P1 as the challenge senders and Pn as the challenge verifier.
However, an adversary could be crafted to never choose this exact combination
of parties. Thus, we again hide the indexation of the parties under a random
permutation. This is done only for the proof and has no impact on the actual
definition, as all parties’ keypairs are i.i.d. samples. Since the adversary does not
know this permutation, the chance of them picking these parties is in the order
of n−3 and thus a loss of this order is incurred in the advantage. The detailed
proof can be found in Appendix B. �	
Corollary 2. For any n ∈ N, an SDVS scheme is n-party adversarial-challenge
sender-private if and only if it is n-party sender-private.

Proof. Theorem 3 shows that if a scheme is sender-private then it is also ad-
versarial-challenge sender-private since the advantage differs by a factor O(n3).
The other direction is trivial, as any adversary for sender-privacy can trivially be
transformed into an adversary for adversarial-challenge sender-privacy, always
outputting s0 = 0, s1 = 1, r = n, which gives both adversaries the exact same
winning probability. �	

5 Alternative Oracles

In this section we show that one can use other properties of SDVS schemes, e.g.
non-transferability and unforgeability, to provide equally strong sender-privacy
while giving the adversary weaker oracles. This allows us to more easily prove
that existing schemes satisfy our definition. Note that in this section we only con-
sider the cases where the security advantages are negligible. First, we will focus
on the verification oracle, showing that they can be removed without impact-
ing the quality of the security when the scheme is unforgeable. Then, we show
that the number of parties can be limited to 3 (n = 2) when a scheme is both
unforgeable and non-transferable.

Definition 12. A DVS scheme Π = (KeyGen,Sign,Verify,Simulate) is n-party
strongly-unforgeable with respect to O if for any adversary A,

AdvUFΠ,A,O(κ, n) = Pr
[
GUF

Π,A,O(κ, n) = 
] ≤ negl(κ),
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Game 4: GUF
Π,A,O(κ, n)

1 params ← Setup
2 (pkP0

, skP0) ← KeyGen; . . . ; (pkPn
, skPn) ← KeyGen

3 (m∗, σ∗, s, v) ← AOsign,Overi,Osim(params, pkP0
, . . . , pkPn

)

4 if VerifyPs→Pv (m
∗, σ∗) = 1 and ∀i : σ∗ �= σi then

5 Output �.

6 else
7 Output ⊥.

where the game GUF
Π,A,O is defined in Game 4. A DVS scheme is n-party

strongly-unforgeable if it is n-party strongly-unforgeable with respect to O(1)
sign,

O(1)
sim, O(1)

veri from the standard n-sender SendPriv-oracles.

Theorem 4. Let n ∈ N and O = {O(1)
sign,O(2)

sign,O(1)
sim,O(2)

sim,O(1)
veri,O(2)

veri} be the
n-sender standard oracles. Any DVS scheme that is n-party sender-private with
respect to O′ = {O(1)

sign,O(2)
sign,O(1)

sim,O(2)
sim,O′(1)

veri = ∅,O′(2)
veri = ∅} and strongly

unforgeable is n-party sender-private (with respect to O).

Proof. Fix n ∈ N. Suppose DVS scheme Π is n-party sender-private with respect
to O′ = {O(1)

sign,O(2)
sign,O(1)

sim,O(2)
sim,O′(1)

veri = ∅,O′(2)
veri = ∅} and strongly unforge-

able, but not n-party sender-private with respect to O. Then there exists an
adversary A such that AdvSendPrivΠ,A,O (κ) �≤ negl(κ). Let A′ be A, except every query
O(b)

veri(mi, σi, s, v) is replaced with 
 if (mi, σi) was the result of a signing or
simulating oracle query and ⊥ otherwise. Since A′ no longer uses the verifica-
tion oracles, we have AdvSendPrivΠ,A′,O = AdvSendPrivΠ,A′,O′ ≤ negl(κ), i.e. A′ has the same
advantage with respect to O and O′, as they only differ in the verification oracles.

Now consider the adversary B, who intends to create a forged signature.
B runs A, recording all signing and simulating queries. Whenever A makes a
verification query for a valid signature that was not the result of a signing or
simulating query, B outputs this signature and halts. Note that the only dif-
ference in the behaviour of A and A′ can occur when A makes such a query.
Since the difference between AdvSendPrivΠ,A′,O and AdvSendPrivΠ,A,O is more than negligible,
we have that such a query occurs with more than negligible probability, giving
B a more than negligible probability of constructing a forgery. This contradicts
the fact that Π is strongly unforgeable. �	
Theorem 5. Any DVS scheme Π that is 2-party sender-private, strongly
unforgeable, and computationally non-transferable is n-party sender-private for
any n ≥ 2.

Proof. Suppose a DVS scheme Π is 2-party sender-private, strongly unforgeable,
and computationally non-transferable. Assume towards a contradiction that Π



SDVS Sender-Privacy in the Multi-party Setting 45

is not n-party sender-private for some fixed n > 2. By Theorem 4, this means Π
is also not n-party sender-private with respect to

O′ = {O(1)
sign,O(2)

sign,O(1)
sim,O(2)

sim,O′(1)
veri = ∅,O′(2)

veri = ∅}.

Thus, there exists and adversary A such that AdvSendPrivΠ,A,O′ (κ, n) �≤ negl(κ).
Let A′(1, params, pkP0

, pkP1
, pkP2

) be as follows: First, sample n − 2 keypairs
(sk′

P2
, pk′

P2
) . . . (sk′

Pn−1
, pk′

Pn−1
) representing parties P ′

2 . . . P ′
n−1 and set P ′

0 = P0,
P ′
1 = P1, P ′

n = P2. Then, run A with the oracles O′′ defined as follows, with
b = 1, 2:

– O′′(b)
veri = ∅.

– O′′(b)
sign(mi, s, v) :

• If s, v ∈ {0, 1, n}, return O(b)
sign(mi,max(2, s),max(2, v)).

• If s ∈ {2, . . . , n − 1} and v ∈ [n], return SignP ′
s→P ′

v
(mi).

• If s ∈ {0, 1, n} and v ∈ {2, . . . , n − 1}, return SimulateP ′
s→P ′

v
(mi).

• Else, return ⊥.
– O′′(b)

sim (mi, s, v) :
• If s, v ∈ {0, 1, n}, return O(b)

sim(mi,max(2, s),max(2, v)).
• If v ∈ {2, . . . , n − 1} and s ∈ [n], return SimulateP ′

s→P ′
v
(mi).

• If v ∈ {0, 1, n} and s ∈ {2, . . . , n − 1}, return SignP ′
s→P ′

v
(mi).

• Else, return ⊥.

Note that these oracles make use of the fact that one can simulate or sign
a signature without, respectively, the sender’s or verifier’s secret key. Thus we
circumvent the issue mentioned in Sect. 3. In the oracles, max is used here to map
n to 2, as n and 2 are the challenge verifiers in the n- and 2-party respectively.

Since Π is 2-party sender-private, we have AdvSendPrivΠ,A′,O′′(κ, 2) ≤ negl(κ). When
we replace all oracle calls by their respective functionality, then GSendPriv

Π,A,O′ (κ, n, c)
and GSendPriv

Π,A′,O′′(κ, 2, c) differ, up to relabeling of the parties, only in one way:
some Sign executions in GSendPriv

Π,A,O′ (κ, n, c) have been replaced by Simulate in
GSendPriv

Π,A′,O′′(κ, 2, c) and vice versa. Suppose i ∈ N such replacements have been
made, then for 0 ≤ j ≤ i let Gj(κ, c) be GSendPriv

Π,A,O′ (κ, n, c) with only the
first j such replacements made, which means G0(κ, c) = GSendPriv

Π,A,O′ (κ, n, c) and
Gi(κ, c) = GSendPriv

Π,A′,O′′(κ, 2, c). Since, by construction, Pr [G0(κ, c) = c] − 1
2 �≤

negl(κ) and Pr [Gi(κ, c) = c] − 1
2 ≤ negl(κ), we can fix a lowest k such that

Pr [Gk(κ, c) = c] − 1
2 �≤ negl(κ) and Pr [Gk+1(κ, c) = c] − 1

2 ≤ negl(κ). Gk and
Gk+1 differ only in one replacement. Without loss of generality, assume one
SignPs→Pv

(m) was replaced by SimulatePs→Pv
(m)

Now define an adversary B for GNT as follows: B(1, params, pkS , skS , pkV , skV )
picks a c ∈ {0, 1} and runs Gk(c, κ), replacing pks with pkS , sks with skS , pkv

with pkV , and skv with skV . This replacement is only a relabeling. The execution
of Gk is stopped at the one difference with Gk+1, then outputs (m, (state, c)),
where state is the current state of Gk and m the message in the replaced Sign.
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B(2, (state, c), σ) then continues the execution of Gk with σ as the result of the
replaced Sign until Gk outputs c′. B then outputs 0 if c = c′ and 1 otherwise.

Note that in GNT
Π,B(0, κ), i.e. the case where a Sign is used in the non-trans-

ferability game, B plays Gk(c, κ) and in GNT
Π,B(1, κ), B plays Gk+1(c, κ). Thus we

have that

Pr
b

[
GNT

Π,B(b, κ) = b
]
=

1
2
Pr
c
[Gk(c, κ) = c] +

1
2
Pr
c
[Gk+1(c, κ) �= c] .

This directly implies that

AdvNTΠ,B(κ, n) =
1
2

(
Pr
c
[Gk(c, κ) = c] − Pr

c
[Gk+1(c, κ) = c]

)
�≤ negl(κ).

This contradicts our assumption that Π is computationally non-transferable,
thus Π must be n-party sender-private. �	

6 Conclusion

In this paper, we provided a way of defining sender-privacy in the n-party set-
ting that is novel for DVS schemes, a generalization of existing definitions and
in line with definitions for other types of schemes in the multi-party setting, in
particular, ID-based SDVS schemes. We explored the effects of choosing the chal-
lenge differently and observed that this induces only polynomial differences in
the advantage the adversary has. Furthermore, we showed how other properties
of a SDVS scheme can be used to boost the sender-privacy of a scheme from an
alternative definition to our definition. In particular, we have proven that under
the assumption of strong unforgeability and computational non-transferability,
a 2-party sender-private scheme is n-party sender-private. The proven relations
are important since the SDVS schemes are often meant to be employed in an
n-party setting and we give sufficient conditions for this to be secure.

We would like to stress that the objective of this paper is to formulate sender-
privacy in such a way that it can be invoked in proofs that require this property
and deal with a multi-party setting. Our last theorem shows that in almost all
schemes the two-party sender-privacy will extend to the multi-party setting, as
most schemes are unforgeable and non-transferable. As such we do not provide
separating examples of schemes that satisfy one definition but not another, as
any such case would be extremely artificial. Instead, the definitions in this work
and their equivalence should be used to simplify proofs where sender-privacy
property is used.
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Q-CoDe/Ryan) and the CORE project EquiVox (C19/IS/13643617/EquiVox/Ryan).
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A Full Proof of Theorem 2

Theorem 2. For any adversary A, set of oracles O and DVS scheme Π, there
exists an adversary B such that

1
2
AdvnrSendPriv

Π,A,O (κ, n) ≤ AdvSendPrivΠ,B,O (κ, n).

Proof. Here, we omit the subscripts Π and O for Adv and G for simplicity. Let B
be defined as in Games 5 and 6. The permutationis used here to hide the indexa-
tion of the parties from the adversary. Note that applying a permutation π in this
fashion is equivalent to generating the keypairs in the order π−1(0) . . . π−1(n)
and since these are i.i.d. samples the order of their generation does not affect the
winning probability of A. However, it guarantees that the winning probability
of A is the same for every c. Note that here we use Prπ to indicate the uniform
probability over all π : [n] �→ [n] such that π(n) = n.

Game 5: BO(1)
sign,O(1)

veri,O(1)
sim(1, params, pkP0

, . . . , pkPn
)

1 Pick a random permutation π : [n] �→ [n] such that π(n) = n

2 (m∗, ) ← AO(π,1)
sign ,O(π,1)

veri ,O(π,1)
sim (1, params, pkPπ(0)

, . . . , pkPπ(n)
)

3 Output (m∗, (π, ))

Game 6: BO(2)
sign,O(2)

veri,O(2)
sim(2,′ , σ∗)

1 Parse ′ as (π, )

2 c′ ← AO(π,2)
sign ,O(π,2)

veri ,O(π,2)
sim (2, , σ∗)

3 if π(c′) ∈ {0, 1} then
4 Output π(c′)

5 else
6 Output 0

AdvSendPrivB (κ, n)

= Pr
c←[1]

[
GSendPriv

B (κ, n, c) = c
] − 1

2

= Pr
c←[1],π

[
GSendPriv

A (κ, n, π−1(c)) = π−1(c)
]

+
1
2
Pr
π

[
GSendPriv

A (κ, n, π−1(0)) �∈ {π−1(0), π−1(1)}] − 1
2

= Pr
c←[n−1]

[
GSendPriv

A (κ, n, c) = c
]
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− 1
2
Pr
π

[
GSendPriv

A (κ, n, π−1(0)) ∈ {π−1(0), π−1(1)}]

=
1
2

Pr
c←[n−1]

[
GSendPriv

A (κ, n, c) = c
] − 1

2
Pr
π

[
GSendPriv

A (κ, n, π−1(0)) = π−1(1)
]

=
1
2

(
Pr

c←[n−1]

[
GSendPriv

A (κ, n, c) = c
] − 1

n − 1
Pr

c←[n−1]

[
GSendPriv

A (κ, n, c) �= c
]
)

=
1
2

(
n

n − 1
Pr

c←[n−1]

[
GSendPriv

A (κ, n, c) = c
] − 1

n − 1

)

=
n

2(n − 1)
AdvnrSendPriv

A (κ, n) ≥ 1
2
AdvnrSendPriv

A (κ, n)

�	

B Full Proof of Theorem 3

Theorem 3. For any adversary A and set of oracles O, there exists an adversary
B such that

2
n3 − n

· AdvChosenSendPrivΠ,A,O (κ, n) ≤ AdvSendPrivΠ,B,O (κ, n)

Proof. Fix A. Let B be defined as in Game 7 and Game 8.

Game 7: BO(1)
sign,O(1)

veri,O(1)
sim(1, params, pkP0

, . . . , pkPn
)

1 Pick a random permutation π : [n] �→ [n]

2 (m∗, s0, s1, r, ) ← AO(π,1)
sign ,O(π,1)

veri ,O(π,1)
sim (1, params, pkPπ(0)

, . . . , pkPπ(n)
)

3 if π(s0) = 0 ∧ π(s1) = 1 ∧ π(r) = n then
4 Output (m∗, (0, ))

5 else if π(s0) = 1 ∧ π(s1) = 0 ∧ π(r) = n then
6 Output (m∗, (1, ))

7 else
8 Output (m∗, (2, ))

The permutation is used here to hide the indexation of the parties from the
adversary. Note that applying a permutation π in this fashion is equivalent to
generating the keypairs in the order π−1(0) . . . π−1(n) and since these are i.i.d.
samples the order of their generation does not affect the winning probability of
A. When playing game GSendPriv

Π,B , we can now distinguish two cases:

1. {π(s0), π(s1)} = {0, 1} and π(r) = n. Since π is random and unknown to A,
this happens with probability 2(n−2)!

(n+1)! . In this case, A has chosen P0 and P1 as
the possible signers and Pn as the verifier, making GChosenSendPriv

Π,A and GSendPriv
Π,B

equivalent.
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Game 8: BO(2)
sign,O(2)

veri,O(2)
sim(2,′ , σ∗)

1 Parse ′ as (b, )

2 c′ ← AO(2)
sign,O(2)

veri,O
(2)
sim(2, , σ∗)

3 if b = 0 then
4 Output c′

5 else if b = 1 then
6 Output 1 − c′

7 else
8 c′′ ← {0, 1}
9 Output c′′

2. Otherwise, A has chosen different signers or verifiers, in which case GSendPriv
Π,B

becomes equivalent to a random coin flip, with probability 1
2 of guessing c.

Combining this, we get that

Pr
c←{0,1}

[
GSendPriv

Π,B,O (κ, n, c) = c
]
=

2(n − 2)!
(n + 1)!

Pr
c←{0,1}

[
GChosenSendPriv

Π,A,O (κ, n, c) = c
]
+

(
1 − 2(n − 2)!

(n + 1)!

)
1
2
.

Thus,

AdvSendPrivΠ,B,O (κ, n) =
2(n − 2)!
(n + 1)!

· AdvChosenSendPrivΠ,A,O (κ, n).

�	
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Abstract. Speculative attacks are still an active threat today that, even
if initially focused on the x86 platform, reach across all modern hardware
architectures. RISC-V is a newly proposed open instruction set architec-
ture that has seen traction from both the industry and academia in recent
years. In this paper we focus on the RISC-V cores where speculation is
enabled and, as we show, where Spectre attacks are as effective as on x86.
Even though RISC-V hardware mitigations were proposed in the past,
they have not yet passed the prototype phase. Instead, we propose low-
overhead software mitigations for Spectre-BTI, inspired from those used
on the x86 architecture, and for Spectre-RSB, to our knowledge the first
such mitigation to be proposed. We show that these mitigations work
in practice and that they can be integrated in the LLVM toolchain. For
transparency and reproducibility, all our programs and data are made
publicly available online.

Keywords: side-channel attacks · hardware security · system security

1 Introduction

The introduction of Spectre [12] and Meltdown [16] attacks in 2018 opened up
a new field of research exploiting side-effects that are spilled by speculation
techniques inside the micro-architecture of modern processors [5,8,11,13,22,26].
Spectre attacks proved to be the hardest to mitigate [4,18,26], even though it
was attempted via both software [1,9,20,21,24] and hardware [8,14,17] patches.
These attacks mainly targeted the popular x86 architecture, but Spectre was
later shown to affect multiple other architectures [8,19,22,23].

RISC-V is a new open-standard instruction set architecture (ISA) [25]
recently proposed by University of California, Berkeley that has seen wide aca-
demic and industry adoption [17]. In this paper we focus on reproducing and
mitigating Spectre attacks on the RISC-V architecture.

Even if the RISC-V cores are written from scratch in order to research new
efficient hardware methods, they must also keep up with existing performance-
inducing technologies. Speculation is one of them and it is present on all modern
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processors. Despite recent speculation attacks, unfortunately, for mainstream
architectures such as x86, there are few hardware mitigations and even these
seem to not be sufficient [4]. On RISC-V, the few proposed hardware implemen-
tations [8,17,27] are mostly combinations or adaptations of the x86 ones. So,
even if they seem to be quite efficiently in the present, as the RISC-V commu-
nity grows, we expect the same problems as on x86. In this context, despite the
fact that the same performance can not be achieved as with hardware solutions,
software mitigations remain the most practical and safe ones.

To our knowledge, currently on RISC-V there are implemented the follow-
ing variants of Spectre: Spectre on Conditional Branches (Spectre v1), Spectre
Branch Target Injection (Spectre-BTI or Spectre v2) [8] and Spectre Return
Stack Buffer (Spectre-RSB or Spectre v5) [23].

In this paper we propose software mitigations for the Spectre-BTI variants
and also for Spectre-RSB. As far as we know, this is the first time that Spectre-
RSB mitigations are proposed.

Retpoline [24] is such a mitigation for x86 that targets only Spectre-BTI. As
far as we know, no software mitigation is known for the RISC-V architecture
and in fact, for any other RISC architecture. We assume that this is also due
to the fact that for the RISC-V ISA things are not as straight-forward as on
x86 because the prologue and the epilogue of a function are more complex. The
stack frame requires saving of a really important callee-saved register - the return
address ra. Retpoline is influenced by the calling-convention and how function
return is achieved. Therefore, for RISC-V, it can not be applied. In this paper
we propose a new software mitigation method for RISC-V that addresses and
circumvents these issues.

Revisiting the main idea behind x86 Retpoline, we note that this mitigation
can be applied for Spectre v2 because speculation also appears in the context
of a call instruction. Thus, we defend against this type of attack by applying
a defense technique derived from another speculation attack - Spectre v5. The
idea is that the indirect jump to an address from a register (x86 jmp, RISC-V
jalr) can be replaced with a direct call to a function (call, jal) where the
return address can be overwritten with the value of that register. At the return
phase, the execution will continue at the address from the register. At the same
time, speculatively there will be executed the instructions under the call. Thus,
in order to trap the speculation, we add an infinite loop after the indirect jump.

Focusing on RISC-V, this defense can not be applied in the same manner. If
we modify the return address with the desired register value, the function called
indirectly will also have as return address the beginning of the function and the
execution will be caught in an infinite loop (we describe this in detail around
Listings 3 and 6). This is because the return is not dictated by the value from the
top, but by the return address register which is saved on the stack and restored
at the end (we describe this behavior in detail around Listing 4). Nevertheless,
this mitigation can be applied as described above in specific contexts: for indirect
jumps there is no stack frame created and there is no dependency on the value
of the return address register.
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Contribution. Our main contribution is the proposal of software mitigations on
RISC-V against Spectre attacks. To this end we provide an implementation of the
proposed defense that handles Spectre-BTI, for both indirect jumps and calls,
and Spectre-RSB. To our knowledge, this is the first time that Spectre-RSB
mitigation is proposed. The distinction can be made directly in the assembly
code and the defense can be applied by replacing the jump/call instructions
with specific code. To prove this, we provide a publicly available LLVM feature
that can be activated at compilation time through enabling the mitigations via a
single flag. The resulting executable can be run on the RISC-V speculative core
BOOM. Spectre-BTI and Spectre-RSB will be no longer reproduced. Another
contribution is the adaptation of the existing Spectre variants for the RISC-V
speculative cores that we implement in practice and make publicly available. We
also provide the steps necessary to reproduce our research together with our test
programs and data.

Outline. In Sect. 3, we revisit and adapt the Spectre attacks needed in order to
prove that RISC-V is vulnerable to this type of attacks, which are also required
in part for our proposed mitigations. Next, in Sect. 4, we introduce the proposed
defenses against Spectre-RSB and two types of Spectre-BTI attacks. We test
our attack and mitigations attacks and provide experiments along with ways of
reproducing our results in Sect. 5. In the next section we conclude and make
publicly available our implementation and data.

2 Berkeley Out of Order Machine

Berkeley Out of Order Machine (BOOM) [3,7,28] is an open-source RV64GC
core written in Chisel. It is superscalar, out-of-order and speculative, being an
ideal candidate for our work. The speculation is dictated by a two-level branch
predictor composed of a Next-Line Predictor (NLP) and a Backing Predictor
(BPD). The predicted address is chosen based on two other structures incor-
porated in the NLP - Branch Target Buffer (BTB) and Return Address Stack
(RAS). The taken/not taken decision is up to the BPD, but as we do not address
an attack based on branches, we will not present more information here.

BTB is a table with 64 × 4 entries, set-associative which stores a mapping
from a PC address to a target address. A tag search is initiated in this table,
whenever a prediction for an indirect jump is needed.

RAS is a stack which maintains in the top the following address after the last
call. This value is popped when a ret instruction is met. The stack structure
was chosen in order to handle nested calls. However, this was a problem in the
second version of BOOM because the stack was not updated correspondingly in
case of a mispredict. This was solved in SonicBoom, the third version of BOOM.

3 RISC-V Spectre Attacks

This section presents Spectre-BTI (Branch Target Injection) [12] and Spectre-
RSB (Return Stack Buffer) [13] in the RISC-V context [8] along with the side-
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channel technique Evict&Reload [10] which is a prerequisite for these attacks.
Both attacks are illustrated by reading memory from the same process, in-place,
referred to as BTB-SA-IP and RSB-SA-IP accordingly to the threat model pre-
sented in [6].

3.1 Spectre-BTI

Spectre-BTI was reproduced on RISC-V on the experimental speculative core
BOOM. In this variant, arbitrary locations in the allocated memory of a program
can be read exploiting the indirect branch instructions - jalr for calls and jr
for jumps. Each jump/call to an indirect address, loaded in a register, creates a
speculation window during which essential information can be brought into the
cache memory. As on other architectures, in case of a mispredict, the cache is
not cleared and the information can be retrieved by an attacker.

The attack is illustrated by reading memory from the same process, having a
role-play between an attacker and a victim. In our experiments we use this app-
roach due to the limitations imposed by the simulator (as will be later described).
The time needed to execute is quite long, so we prefer to use a single binary. In
the first phase, the attacker mistrains the Branch Target Buffer (BTB) jumping
for a large number of times to a valid fixed address. The valid jump is taken
to a segment of code that discloses information from a certain memory region.
This step makes the predictor assume that the jump will always be taken. In the
second stage, the attacker makes the victim execute an indirect jump to another
(normally illegal) address, where the disclosed information is of interest to the
attacker, and, due to the training phase and speculation, the predictor assumes
the jump will be taken and the pipeline proceeds with the memory access. Thus,
the second phase can create side-effects into the cache, side-effects that provide
unauthorized information to the attacker. In the end, even if the jump is made
to the correct address, the data from cache can still be read by the attacker.

We will present here only the main aspects of this attack in order to introduce
our work. The implementation details can be found in the Supplementary Mate-
rial and also in the original paper [8]. Spectre authors present an attack based
on the indirect calls having two pieces of code similar to the functions presented
in Listing 1. Spectre-v2 was presented by the authors only for indirect calls that
appear, for example, when we are talking about virtual functions. We extended
this example and add a new one for the indirect jumps when the register keeps
the address of a snippet of code, such as for a switch case. Thus, in the new
example, we took the assembly code generated for this function, removed the
instructions related to the stack frame and used the global variable passInIdx
to access the desired memory. Even if for the calls we could have maintained
passInIdx as a parameter, we also kept it as a global variable for linearity.

As presented above, the BTB is trained in the first stage to predict the
victimFunc address. The jump to that function was repeated 40 times, each
time assigning different valid values to the passInIdx variable. The 41st time,
as it can be seen in line 15, the attacker assigned to this variable a convenient
value, for example, the index corresponding to the beginning of the secret. In
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1 uint64_t passInIdx;
2 uint8_t array1 [10] = {1,2,3,4,5,6,7,8,9,10};
3 uint8_t array2 [256 * L1_BLOCK_SZ_BYTES];
4 char* secretString = "BOOM!";
5
6 void wantFunc (){
7 asm("nop");
8 }
9

10 void victimFunc (){
11 temp &= array2[array1[passInIdx] * L1_BLOCK_SZ_BYTES];
12 }
13
14 int main() {
15 uint64_t attackIdx =
16 (uint64_t)(secretString - (char*) array1);
17 ...
18 // victimFunc address is loaded in %[addr]
19 // for the training phase
20 // wantFunc addrees is loaded in %[addr]
21 // by the victim
22 "jalr ra, \%[ addr], 0\n"
23 ...
24 }

Listing 1. Spectre v2

the second phase, in line 22, the victim tries to call via an indirect instruc-
tion wantFunc, but speculatively victimFunc is called again. So, in line 11,
array2[array1[attackIdx] * L1_BLOCK_SZ_BYTES] is brought in the cache
(i.e. array2[’B’ * L1_BLOCK_SZ_BYTES]). Having this value in the cache and
access to array2, the attacker can retrieve the first character from the pass-
word with a side-channel attack method such as Evict & Reload [10]. For your
convenience, we review this in the Supplementary Material.

For more details, the reader is advised to consult the full attack provided
in the Supplementary Material. There, the code presented in Listing 9 is for an
attack on indirect calls (see the called functions from Listing 10). For indirect
jumps, at line 73, we should have a jump instruction: jalr x0, %addr, 0. Also,
for the return from the snippets of code presented in the assembly file from
Listing 11, we added at the end a jump back to a label from the source file. This
label should be added after the indirect jump at line 74 and declared as global
before main (asm(".global end\n")).

3.2 Spectre-RSB

Spectre-RSB [13], known as Spectre-v5, was reproduced on SonicBoom, the third
generation of BOOM which added as a feature a functional RAS. In this variant,
the vulnerability is based on the RAS hardware stack where the most probable
return addresses are pushed for each call instruction. Based on these values, the
return from a function is speculatively computed and, as before, a speculation
execution window is created. Although, if the value of the return address register
ra is manipulated during the function, the program will continue the execution
on a different path and the information brought into the cache by the instructions
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1 __asm__ (
2 "frameDump:";
3 "# Pop off stack frame and get main RA"
4 "ld ra, 56(sp)";
5 "addi sp, sp, 64";
6 "ld fp , -16(sp)";
7 ...
8 "ret");
9 void specFunc(char *addr){

10 extern void frameDump ();
11 uint64_t dummy = 0;
12 frameDump ();
13 char secret = *addr;
14 dummy = array2[secret * L1_BLOCK_SZ_BYTES];
15 dummy = rdcycle ();
16 }

Listing 2. Spectre v5

executed speculatively will not be erased. In this context, again, an attacker can
retrieve the information using the Flush & Reload technique.

For BOOM, the implementation of RAS generates a new stack entry: the
address of the next instruction after the call. In Listing 2 we illustrate the
attack. As can be seen, it is enough to add a function which modifies the
return address and add relevant code after the call to this function (lines 13–
15). To accomplish this, the function frameDump (line 2) loads in ra the value
of the return address of the function specFunc (line 4) and the stack frame is
popped (line 5), so the execution will continue directly in the calling function of
specFunc.

Similar to what we discussed in the previous attack, the attacker can set the
parameter to specFunc as the desired address (line 9), in this case the address
of the secret string. The value from array2 (line 14) corresponding to the first
character will be brought into memory and the attacker will be able to retrieve
the information using Flush & Reload. By repeating the attack for all characters,
the secret will be revealed.

4 RISC-V Spectre Mitigations

Given the attacks from Sect. 3, we now propose two Spectre-BTI mitigation
strategies for the RISC-V architecture, inspired by the x86-specific software mit-
igation Retpoline [24] and a new Spectre-RSB mitigation, the first in the field as
far as we know. In the current section we present and discuss ways of replacing
indirect jumps and calls with a sequence of instructions that will provide the
same behavior while removing the speculation attack.

4.1 Spectre-BTI: Indirect Jumps

Indirect jumps are realized using the jr instruction which is in fact an assembly
pseudo instruction for jalr with the first operand set as register X0.

jr rd, rs1 → jalr x0, rs1, 0
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1 jr a5

1 jal set_up_target
2 capture_spec:
3 j capture_spec
4 set_up_target:
5 addi ra, a5, 0
6 jr ra

Listing 3. RISC-V miti-
gation - indirect jump

1 addi sp, sp, -16 # add space on the stack
2 sd ra, 8(sp) # save the return address
3 sd fp, 0(sp) # save the frame pointer
4 addi fp, sp, 16 # modify the stack frame base

1 ld fp, 0(sp) # restore the frame pointer
2 ld ra, 8(sp) # restore the return address
3 addi sp, sp, 16 # reduce the size of the stack
4 jr ra # return in the caller

Listing 4. Current general function prologue (top) and
epilogue (bottom)

This register is hardwired zero. So, its presence on that position indicates that
no register will take the value of the following instruction address.

The mitigation is summarized in Listing 3; the first block represents the orig-
inal indirect jump and the second its replacement. To replace the jr instruction
(first block, line 1), we use the Spectre v5 vulnerability and rewrite it as a direct
call to a pseudo-function with no calling-convention applied (second block, line
1). In this function we store in ra the value of the register from the indirect
jump (line 5). At the end we do a ret - an indirect jump to the return address
register jr ra (line 6). During this time the speculation will be caught in an
infinite loop that takes place after the call instruction (lines 2–3).

Remark 1. Regarding line 6, it may seem that the original problem from line 1
was only moved below due to the usage of the same instruction (the unconditional
jump jr). In fact this is not the case because this new jump has a special
property - it is a return instruction. The unconditional jumps having as operand
the register ra are marked as SPSVERBc6s and are used only to remove the
RAS entry added by the calls. It would make no sense to predict a target of a
ret as it depends on the location of the associated call. This behavior was also
confirmed by our experiments from Sect. 5.

4.2 Spectre-BTI: Indirect Calls

For the indirect calls, the transformation is not so simple. The indirect calls are
reflected in the jalr single-operand pseudo-instruction which is an alias for the
instruction with the same name, but more operands.

jalr rs1 → jalr ra, rs1, 0

The first operand which is the operand that will take the value of the following
instruction address is in this case set by default to ra. In this way, the return
from the called function is right after the call instruction and now it is quite
clear why this value is chosen as a RAS entry.

ra ← pc + 4
pc ← rs1 + 0
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1 addi sp, sp, -32
2 sd ra, 24(sp)
3 sd fp, 16(sp)
4 addi fp, sp, 16
5 sd s1, 8(sp)
6 sd s2, 0(sp)

1 addi sp, sp, -16
2 sd ra, 8(sp)
3 sd fp, 0(sp)
4 addi fp, sp, 0
5 addi sp, sp, -16
6 sd s1, 8(sp)
7 sd s2, 0(sp)

Listing 5. Prologue mitigation for function f1: top block represents the original pro-
logue and the bottom block presents the proposed mitigation.

In order to achieve the same behavior as for the indirect jumps we need to find
a way not to overwrite the return address for the functions called through the
register. We want to maintain the idea of overwriting the return address for
the set_up_target function with the address of the beginning of the function
stored in the register. Thinking about where does the called function return, we
discover that in fact that address is not represented by the value from ra, but
by the value from the stack restored at the end in ra. Thus we can replace the
return address register with the value of the register from the indirect call, but
with one condition: we can not store this new address on the stack. Instead, we
need to save the legitimate one - the address after the indirect call.

Remark 2. If during the function execution the return address register ra is
modified, for example when handling an error via an early return inside an if-
clause, our mitigation will not affect the normal program behavior.

In Listing 4 we present an usual prologue and epilogue for a 64-bit RISC-V
core. In the Prologue (top block), in order to meet the condition presented above,
we need to jump over the instruction that adds space on the stack by default
(line 1) and over the instruction that stores the value of ra on the stack (line
2). In order to do this, we need to recreate these instructions in the body of the
set_up_target.

In practice the first lines in the prologue are not always the ones presented
in the top block of Listing 4. These lines are changed by adding the callee-saved
registers on the stack. These are resizing the stack and the space added becomes
dependent on their number. For example, for a given function f1, registers s1
and s2 must be saved on the stack so the allocated space is increased to 32 bytes.
Another function f2, that is also called indirectly, requires a single register to
be saved and the allocated space is only of 24 bytes. Our goal is to replace the
indirect call with the same code all the time no matter of the function at hand.

Thus the first measure to be taken is one that offers consistency to the
instructions used by the prologue. We propose to accomplish this in two separate
phases. The idea here is to modify the prologue of all functions such that in the
first phase, the memory is allocated only for the registers saved all the time - ra
and fp. In the second stage, the stack size can be adjusted by the initial value
minus 16 bytes (in case of a 64-bit architecture). From then on, the compiler can
continue to emit the stores for the other callee-saved and the rest of the function
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1 jalr a5

1 jal set_up_target
2 capture_spec:
3 j capture_spec
4 set_up_target:
5 addi ra, a5, 4
6 addi sp, sp, -16
7 la a5, end
8 sd a5, 8(sp)
9 jr ra

10 end:

Listing 6. RISC-V mitigation - indirect
call

1 call frameDump

1 jal set_up_target
2 capture_spec:
3 j capture_spec
4 set_up_target:
5 la ra, frameDump
6 jr ra

Listing 7. RISC-V mitigation - Spectre
RSB

body. Therefore, the initial part of the prologue is replaced by one with the same
behavior which keeps the first instructions constant.

As an example, the transformation for the f1 function is presented in Listing
5. In the first frame, the stack allocation is the usual one, similar to the one
exposed in Listing 4, adapted for the f1 function. In the second frame, the
prologue is changed as previously described. The stack size is initially increased
only by 16 bytes (line 1) in order to allocate space for the storage of ra and fp
(lines 2–3). Now, the frame pointer is modified to point to the value of the old
fp by taking the value of sp (line 4). As a last step, at line 5, the value of sp is
decreased again with the necessary amount of space for the callee-registers - 16
bytes for s1 and s2 (the stack grows downwards).

We generalize this approach and introduce the resulting instructions in the
body of the set_up_target function. The full implementation is depicted in
Listing 6: the top block contains the original indirect call instruction and the
bottom block our proposed mitigation. On line 5, in order to jump over the first
two instructions, we need to add in ra the value from the register plus 4. For this,
we remind the reader that we use RV64GC - the default target for the existing
compilers. In this case, some instructions like addi and sd are compressed on 2
bytes each. After that, on line 6, we need to add the instruction which allocates
space for the registers ra and fp and store on the stack (lines 7–8) the address
at the end of the snippet of code (line 10). In our LLVM implementation we
computed the offset for the relative jump, but here, for clarity, we store the
address of a pre-added label (line 10). Other than that, the idea is the same as
for the indirect jump, the call to the function is realized using the value from
the ra register (line 9) and the speculation is trapped after the call (lines 2–3).

Remark 3. The transformation presented in 6 is applied in case of using the
compressed extension. Also, the function and the call should be in files compiled
with the same option (with or without the compressed extension activated).
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4.3 Spectre-RSB

The idea behind this mitigation is similar to the one presented for the two
variants of Spectre-BTI. We need to avoid a call instruction which will add
into the RAS an address that will be used for speculation.

A call does not have as an operand a register, but a relocated symbol whose
address is either known, either will be computed at link time. Either way, there is
no reason not to use the symbol in a different instruction. So, similar to moving
the value of the register used for indirect jumps in ra, we can use the symbol
for a load in ra.

As a result, we propose a mitigation where, as per Listing 7, we maintain the
idea of catching the speculation in an infinite loop (lines 2–3) and make a call to
the set_up_target function (line 1). In this function with no prologue and no
epilogue, we load the address of the symbol in the ra register(line 5) and return
basically at the beginning of the function that we need to call (line 6).

5 Experiments1

To run our experiments we used a superscalar, speculative, out-of-order core
named BOOM (Berkeley Out-of-Order Machine). For this project we used the
latest version of BOOM named SonicBoom. BOOM can be also integrated in
a SoC using the majority of hardware structures from Rocket Chip by loading
them like a library. BOOM can be used as a part of a larger project named
Chipyard which includes a number of different cores, tools, accelerators and
simulators. From this project, different configurations of a chip can be generated
with different numbers of cores, with vectorization support or different number of
inputs for certain components. In our experiments, we used the smallest available
configuration - SmallBoomConfig.

These configurations can be used directly on FPGAs or using the VCS sim-
ulator. They can also be executed on the open-source simulator Verilator which
was our choice as well. Being a software simulated environment, execution times
can take a really long time. Nevertheless, the results are reliable and the behavior
is similar as for the other options. Even though we reached out to other vendors
that offer RISC-V chips with speculation enabled, in our case this was the only
testbed available that we could run our attacks and test our proposed mitiga-
tions on. To reproduce our experiments, we created a minimal configuration in
the Spectre-v2-v5-mitigation-RISCV repository. The interested reader should
also consult the official documentation of BOOM [28] and Chipyard [2].

The mitigations for the scenarios presented in Sect. 4 were adapted and inte-
grated in the LLVM toolchain. In the future, we hope to get our work integrated
in the official LLVM project. The patchset and the full tree of the modified LLVM
version is also made available online in our repository. To reproduce our results,
it is necessary to download the updated version of LLVMand build it following

1 Programs, code and data available at https://github.com/riscv-spectre-mitigations.

https://github.com/riscv-spectre-mitigations
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1 ./simulator -chipyard -SmallBoomConfig bin
/indirectBranchFunction .riscv

2 The attacker guessed character B 8 times.
3 The attacker guessed character O 8 times.
4 The attacker guessed character O 7 times.
5 The attacker guessed character M 8 times.
6 The attacker guessed character ! 9 times
7 The guessed secret is BOOM!
8 ./simulator -chipyard -SmallBoomConfig bin

/indirectBranchSwitch.riscv
9 The attacker guessed character B 7 times

10 The attacker guessed character O 6 times
11 The attacker guessed character O 7 times
12 The attacker guessed character M 6 times.
13 The attacker guessed character ! 8 times
14 The guessed secret is BOOM!
15 ./simulator -chipyard -SmallBoomConfig bin

/returnStackBuffer.riscv
16 The attacker guessed character B 9 times
17 The attacker guessed character O 8 times
18 The attacker guessed character O 6 times
19 The attacker guessed character M 6 times.
20 The attacker guessed character ! 10 times
21 The guessed secret is BOOM!

1 ./simulator -chipyard -SmallBoomConfig bin
/indirectBranchFunction .riscv

2 The attacker guessed character 1 times.
3 The attacker guessed character 1 times.
4 The attacker guessed character 1 times.
5 The attacker guessed character 1 times.
6 The attacker guessed character 1 times.
7 The guessed secret is
8 ./simulator -chipyard -SmallBoomConfig bin

/indirectBranchSwitch.riscv
9 The attacker guessed character 1 times.

10 The attacker guessed character 1 times.
11 The attacker guessed character 1 times.
12 The attacker guessed character 1 times.
13 The attacker guessed character 1 times.
14 The guessed secret is
15 ./simulator -chipyard -SmallBoomConfig bin

/returnStackBuffer.riscv
16 The attacker guessed character 0 times.
17 The attacker guessed character 1 times.
18 The attacker guessed character 0 times.
19 The attacker guessed character 1 times.
20 The attacker guessed character 0 times.
21 The guessed secret is

Listing 8. Attacks (left) and mitigations (right): spectre attack is repeated 10 times
for each memory read. Left block recovers the seceret "BOOM!" via three Spectre
attacks; right block attempts to do the same but with mitiagtions enabled but fails.

the recommendations on their official page. Additionally, GNU toolchain version
2.32 for RISC-V needs to be installed in the same directory as LLVM.

Our repository also contains programs testing for and, if possible, repro-
ducing the attacks for the two variants of Spectre v2, on indirect jumps (see
indirectBranchSwitch), and indirect calls (see indirectBranchFunction) and
also for Spectre v5 (returnStackBuffer). These can be compiled and executed
using the Makefile. To activate the mitigation it is necessary to add the param-
eter RETPOLINE=1 to the make command. For both cases, there are also some
variants of the tests that do not need the updated compiler. Here, the attack is
mitigated directly from the code, using inline assembly and manually replacing
the unsafe sections as described in Sect. 4.

We present an instance of our experiments in Listing 8 where the left block
reproduces the Spectre attacks and the right block tries to reproduce them with
mitigations enabled thus failing to retrieve the secret. As customary with Spectre
attacks, due to the empirically chosen cache hit threshold, the confidence level
of the retrieved data is increased by running the attack for ten times on each
character from the secret. As we can see in Listing 8 in the left block, on an
unpatched system, the characters are guessed in the majority of times. After
adding the LLVM compiler option that includes our mitigations, in the right
block of Listing 8, the characters are no longer guessed. Nothing will be printed
in the console, as each time a different non-printable character from the ASCII
code is guessed. Other times no character is guessed at all (denoted “0 times”
in the figure) as nothing was found in the cache. This is why we do not see a
character in the output and this is also why for each character we get that it
was guessed only a single time.
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Table 1. Size difference for each change created by the mitigation for the standard
ISA (RV64G) and standard ISA with the compressed extension (RV64GC).

RV64G RV64GC

Indirect jumps 12 bytes 10 bytes
Indirect calls 28 bytes 22 bytes
Function Prologue 4 bytes 2 bytes
Direct calls 16 bytes 14 bytes

Regarding the performance impact of our proposed mitigations, unfortu-
nately, using the simulator as our only option, did not permit us to obtain a
reliable execution time performance analysis. Of course, the code size will be
increased by the instructions depicted in Listings 3 and 6, but we argue that
this small increase is acceptable.

The code size depends on the usage of the compressed extension (RV64GC).
Also, the size difference is influenced by the number of indirect jumps, indirect
calls, direct calls, and functions. The number of bytes for each case is presented
in Table 1. For indirect jumps and calls, the difference results from adding extra
instructions as presented in Listings 3 and 6. For functions, only one supplemen-
tary instruction is added by splitting the stack allocation in two phases. Future
research can help reduce this code size increase by employing static or dynamic
analysis to identify and replace only the vulnerable paths. Given that our mit-
igations have a similar approach to that of the x86 Retpoline implementation
which is in use by most users today, we expect this to also be the next step
for RISC-V development and to become the default on this platform. Nowadays
kernels on x86 are compiled with this mitigation for both Windows [1] and Linux
(since 4.15) [21] operating systems. Also, the Retpoline authors showed that this
mitigation does not cause significant performance degradation for x86 [15].

6 Conclusions

In this paper we reproduced Spectre-BTI and Spectre-RSB attacks on the RISC-
V speculative core BOOM. Our main contribution represents the proposed soft-
ware mitigations for Spectre-RSB, to our knowledge the first mitigation for this
attack, and for Spectre-BTI indirect jumps and indirect calls. We demonstrate
that these mitigations are effective against Spectre variants as depicted by our
experiments. The resulting work is integrated in the LLVM toolchain for ease of
use and reproducibility.
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Abstract. We present here a reverse engineering tool that can be used
for information retrieval and anti-malware techniques. Our main contri-
bution is the design and implementation of an instrumentation frame-
work aimed at providing insight on the emulation process. Sample emu-
lation is achieved via translation of the binary code to an intermediate
representation followed by compilation and execution. The design makes
this a versatile tool that can be used for multiple task such as infor-
mation retrieval, reverse engineering, debugging, and integration with
anti-malware products.

Keywords: binary analysis · dynamic analysis · information retrieval

1 Introduction

In this paper we present the design and implementation of a new security tool
called Pinky. Although an emulator at its core, Pinky comes with its own instru-
mentation framework, intermediate representation, coupled with a set of transla-
tors and compilers, and platform emulation (filesystem, memory, libraries) thus
allowing samples from multiple operating systems to be analyzed and executed
on any platform or machine. For example, its platform independence allows it
to analyze a Windows 32-bit executable on a Linux distribution running on a
MIPS-64 platform.

The instrumentation framework is designed such that the emulation process
can be stopped at any point in order to provide data on the state it is in. For
example we can peak and change mapped memory, registers, stack, executable
code and data sections, and the filesystem. At the same time, we can also enable,
set, or disable various information points. The instrumentation framework has no
performance impact on the emulation process. Through instrumentation, Pinky
can put on various hats. It can act as a tracer for system and library calls.
Suspending and resuming emulation allows it to create memory dumps at var-
ious execution points, making it an universal unpacker. With more abstract
instrumentation points, the tool can also become a reverse engineering debug-
ger. And finally, it can act as anti-malware engine enabling the setup for static
and dynamic signatures through its callback mechanism.
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Pinky is designed as an opaque tool providing a clear and simple interface
that allows it to be integrated and controlled by third-party applications in a
non-intrusive way. Thus it can be used inside datacenters (e.g. as an automated
information retrieval tool or scanner), together with other software (e.g. existing
IDS or anti-malware solutions), or as a stand-alone reverse engineering tool inside
a laboratory.

Existing Work. We focused our work on recent studies regarding dynamic
binary analysis. Our main inspiration for the intermediate representation and
the compiler-translator coupling has been the work on UQBT [6,24,25] but also
others like [10,17,18].

We differentiate ourselves from existing tools such as generic emulation tools
such as QEMU [4] or Bochs [14] through performance, customization and instru-
mentation. The goals are different, we do not plan on being a generic virtualisa-
tion solution. This is important, especially in the anti-malware scenario, because
speed difference and low-memory footprint sets us apart from generic solutions.
More sophisticated tools like Valgrind [18] or rr [20] are more advanced in some
regards, but they do not offer platform customization, a file system, instrumen-
tation, nor cross platform emulation.

In the examples displayed in this paper we will see that, through instrumen-
tation, Pinky can act as many well known tools. For example, it can give traces
of system calls and native APIs (such as ntdll.dll, kernel32.dll, advapi32.dll and
so on) much like strace and ltrace do in Linux. But while it does that, at the
same time it can provide much more functionality.

2 Emulator Schematics

Following the work on intermediate representation languages we seek to obtain a
fast and performant emulator through our virtual machine (VM) implementation
coupled with just-in-time (JIT) compilation strategies and efficient caching. The
main emulation performance is gained by tiered compilation through threshold-
based mixins of JIT compilation and VM emulation. Every codeblock that gets
processed is also cached and will be reused the next time it’s encountered. Cur-
rently there are two caching strategies to choose from. More aggressive optimiza-
tions can occur when a codeblock is frequently enough. If a platform is missing
JIT support, it will always fallback on the VM.

Instrumentation is done by dynamically enabling and disabling information
retrieval points throughout the emulation process. Data points can adhere to
dictated caller-callee protocols and exchange data structures that influence the
sample control and data flows. The instrumentation points have no performance
impact when they are disabled.

The emulation callback system is designed with the anti-malware engines
in mind. For example a common issue that comes up in the field is handling
polymorphic routines in static unpackers and coping with the different versions
and variations in the wild. This can get to a point where the static routine gets
so complex and has to deal with so many cases that it slowly becomes a dynamic



Pinky: A Modern Malware-Oriented Dynamic Information Retrieval Tool 67

analysis tool on its own. In this scenario, a solution would be to let the static
unpacking process run until the offending polymorphic routine is reached, stop
and handle things over to the emulator which will dynamically unpack it and
then give control back to the static routine.

When used as a reverse-engineering tool, it can act as a debugger by setting
breakpoints, watches, single-stepping at different granularity (e.g. codeblocks or
instructions), setting different instrumentation points at runtime, tracing system
calls and library APIs, enabling different logs at various verbosity levels for
discrete periods of time, and many other similar useful features. As a tool in the
laboratory, it can also be used in bulk scans to craft generic or specific reports.
The generated data can include sample geometry, memory dumps, classification
criteria, profiling data and other custom data retrieved through instrumentation.

Reproducible results are made possible through the ability to stop the emu-
lation process in a coherent and platform agnostic fashion. This implies repro-
ducibility no matter of the processor frequency, memory size or type, disk input-
output throughput or other machine dependent factors.

Pinky is written in C++ with a focus on the C-subset with portability in
mind. The interface is simple and intuitive. It consists of three parts: the emu-
lator interface, the configuration interface and the instrumentation interface. It
is implemented through abstract virtual classes that make it easy to decouple
from the rest of the project. In the following sections we will describe each tool
component and go into more details about its design and implementation.

3 Design and Implementation

3.1 Intermediate Representation

The goal of the intermediate representation (IR) was to have a small and reusable
instruction set architecture (ISA) that would cater to all existing hardware and
software computer models. In order to keep the instruction set small we designed
an orthogonal ISA [19], thus allowing us to separate addressing modes and
opcode functionality [12]. Existing hardware examples are the PDP-11, VAX,
and ARM11 architectures. Orthogonality also allowed us to enforce fixed size
instructions which in turn made it easier for us to enforce aligned access. Our
architecture address resolution is 32-bits, and its instruction size is identical to
its word size. Each of our instructions has the following fixed form: opcode size

dest src imm flags. This is unlike most hardware implementations [5] which
have variable instruction size and permit unaligned access. The x86 family [11]
is particular famous in this regard as it permits constructs like

Before: After:
407F1A E834000000 CALL sample.407F53
...
407F4F 20978CEAF873 AND BYTE PTR DS:[EDI+73F8EA8C],DL 407F53 F8 CLC
407F55 020F ADD CL, BYTE PTR DS:[EDI] 407F54 7302 JNB SHORT sample.407F67

The call instruction at address 1A jumps in the middle of the and instruction at
address 4F which is interpreted as a legitimate but entirely different instruction.
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Note that the entire program flow is affected by this and that the attacker relied
on the fact that a legitimate hidden instruction exists at address 53.

Stability was another key aspect because once we will start having consumers
of our architectures (also called translators), it would become difficult to make
large changes in the initial choice. This is also true for compilers and interpreters
that will use the resulting intermediate representation to target code and execute
it. The ARM architecture is infamous for its frequent ISA changes. A small and
stable ISA meant that we had to ensure that we can reduce CISC architectures
to it. We did and we provide a few examples of difficult instruction subsets
(such as SSE and FPU) that we were successfully able to emulate with our
ISA in the following sections. With that in mind, we are now able to define
our cross intermediate representation (XIR). In Table 1 we present the entire
instruction set. The control instructions handle jumps, function returns, and
flag manipulations, while for memory manipulations we only have load, store
and move instructions. The arithmetic and logic operations consist of the usual
suspects with the note that the some have a c-suffix denoting an extra carry
operation. Shifts and rotation are supported also.

Table 1. Instruction set

Control jmp, ret, fsave, frestore

Memory ld, st, mv

Arithmetic add, addc, sub, subc, mul, div

Logical and, or, xor, not, cmp

Shifts rl, rr, sl, sr

Special syscall

When designing such a tool, if going after full CPU and thus ISA support
one of a few hard choices has to be made: design only for a specific platform
(e.g. IA-32-based only), sprinkle hacks throughout the codebase thus ensuring
multiple layer violations (the translator reaches into the intermediate represen-
tation, or even directly into the compiler), or, in academic spirit, we can just
ignore them and have a toy example working only on an instruction subset. In
this article we propose an alternative approach which is able to deal with all
special architecture specific instruction set extensions. That is why at the end of
Table 1 we introduced a special instruction syscall that maintains modularity
and solves the issue by calling out to the emulator for help. We have imple-
mented and tested its usefulness with multiple extensions such as Intel’s FPU,
MMX, SSE instructions. We consider this to be fully extensible to others and
also consider it future proof. Of course, this instruction is slower.

When picking registers we went with 256 word-sized 32-bit registers with 8-
bit access. Further, we partitioned them into groups: upper range mapped to the
registers of the emulated architecture, lower range reserved for compiler internal
use, plus other special registers for interrupts, flags and initialization.

In terms of stack choices, while most architectures have a word-sized stack
or worse, a multiple granularity stack like x86, we choose no stack at all. This
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avoids multiple security issues Even though the ISA has no concept of a stack
nor does it emulate it in any way, the stack of other models is modeled as direct
memory access operations. To our knowledge, this represents a novel approach.

3.2 Translator

Each instruction set architecture that we want to support has to provide a dis-
assembler and a translator to our intermediate representation. The disassembler
tokenizes the instructions, fetches the implicit or explicit opcode arguments,
and dispatches this information for translation. Our translator interface consists
of only two functions: translate(mmu, addr, ir); syscall(env, mmu, opcode).
The first translates block at address addr using the current memory contents
as reflected by the mmu and returns the intermediate representation ir. For each
opcode we have a translating function (or a handler) that receives the opcode
arguments and writes out the equivalent functionality in IR opcodes

A typical x86 opcode translation will look like gen opcode(dst, src, aux,

mod) where the first three represent operands that can have various types like reg-
ister, memory, immediate value. The last argument, mod, represents the instruc-
tion modifier that can dictate a switch to a different addressing mode (e.g. 16-bit)
or a special request (e.g. repeating the instruction multiple times, locking etc.).
The function call will generate a stream of equivalent XIR instructions.

gen_add(dst, src, aux, mod)
if (dst->type == OP_MEM && src->type == OP_IMM)
reg_t tmp = alloc_reg();

ld(dst->width, tmp, dst->r, dst->imm);
add(dst->width, tmp, 0, src->imm);
st(dst->width, dst->r, tmp, dst->imm);

free_reg(tmp);

In the above we depict the x86 ADD translation where the destination is the
memory address of an integer to which we have to add an immediate value. This
translates to three XIR operations: we load the integer value from memory to a
temporary register (ld), then we perform the addition (add), and store back the
result (st). Notice that we used the destination width to dictate the addressing
mode. This makes the code portable and adaptable to word size changes.

As earlier discussed, syscall provides instruction emulation for particular
instruction subsets. The registers and memory layout are prepared by the trans-
lator before calling out to the compiler to solve the specifics of the opcode given
the current execution environment. Thus, when encountering a special instruc-
tion the emulator will pause and exit translation, emulate (part of) the instruc-
tion on the real CPU, write the results in translation state registers re-enter and
resume translation. Here is a quick example for the x86 FABS instruction

gen_fabs() emu_fabs()
sys(UD_Ifabs, 0, 0); double fpdata = FPU_ST(0);

if (!isnan(fpdata))}
FPU_ST(0) = fabs(fpdata);
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Once the disassembler, udis86 in this case [23], decodes the instruction it calls
gen fabs from the translator in order to obtain IR. This being a special FPU (or
x87) instruction, the event is marked through a syscall with the appropriate
opcode id that the complier will handle. The IR is thus a single syscall instruc-
tion. When the compiler reaches this instruction, it ties it via the identifier to
the special complier function emu fabs that will know how to handle the spe-
cial opcode via x87 specific instructions as can be seen above. Through similar
syscall mechanisms, the tool can also handle kernel (ring-0) sample emulation.

A special mention is required in regards to the handling of flags. The flags
register does not have a special status. It is manipulated as any other register and
it is modeled in an architecture specific way by each translator. Internal changes
and checks can be protected by fsave and frestore guards. Post translation, the
compilers are in charge of keeping the flags sound. In particular, the XIR virtual
machine mimics the flag behavior of x86.

3.3 Compiler

Once everything is translated, the XIR instructions can be executed via inter-
pretation, compilation, or a mixture of the two (also called tiered compilation).
Interpretation is done through the XIR virtual machine (XIRVM). The imple-
mentation is straight forward: for each IR function (see ADD example translated
above) we execute each XIR instruction in the emulator’s own process space.
The sample is isolated in a memory mapped region where all XIRVM operations
perform their tasks. Note that we only need to implement a few VM instructions;
the ones listed in Table 1.

exec_st(mmu, env, pc, dst, src, imm, flags)
b = flags & BITS_MASK;
addr = env->regs[dst] + imm;
val = read_reg(env, b, src);
size = 1 << b;

set_word_le(&val, val);

page = mmu->pte[addr >> PAGE_BITS]
offset = addr & (PAGESZ - 1);
if (page != 0 && offset + size <= PAGESZ)
memcpy((uint8_t *) page + offset, &val, size);

else
mmu->write_memory(addr, &val, size))

In the above example we depict the XIR store (st) virtual machine interpreta-
tion. The first instructions fetch the addressing mode in b, the memory address
from the destination operand, and the value to be written from the source
operand. Based on the size b we store the read value in proper endianess and
alignment according to the target architecture. Here we assume it is word sized,
but it can be any subdivision or multiple of it. Next, the memory address is
translated into a page and offset within the virtual machine memory manage-
ment unit. If the page is already mapped, we perform a simple memory copy
instruction. Otherwise we call out to the MMU to perform the write, which also
implies a page mapping operation beforehand.
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Compilation is performed via just-in-time (JIT) compilation strategies. Sim-
ilar to the interpreter, each IR function is compiled and executed natively on
the host machine. Implementation is also straight forward due to the reduced
number of instructions in the XIR ISA. We tested with several JITs for both
32-bit and 64-bit targets. For x86 we used AsmJIT [13].

gen_mv(dst, src, imm, flags)
b = flags & BITS_MASK;

switch (b)
case B32:
if (src)
as.mov(eax, XIR_REG32(src));
if (imm)
as.lea(eax, dword_ptr(eax, imm));

as.mov(XIR_REG32(dst), eax);
else
as.mov(XIR_REG32(dst), imm);

break;

In the above example we depict the XIR move (mv) JIT compilation. The first
instructions fetch the addressing mode in b and in the displayed operations
we assume it is 32-bit, but it can obviously be any other mode. If the source
operand is defined, we have to emit a register-register move instruction. If only
the immediate value imm is defined, then we move it to the destination register
and we are done. If both the source and the immediate operands are defined,
then we treat it imm as an offset from src.

As with other systems, the interpreter is generally slower than the compiler.
But often we found that when a XIR function is not repeatedly called, the effort
of compiling the code outruns the gain in running native code. Thus in these
cases it might be better to just use the interpreter. To handle this scenario we
implemented tiered compilation [3,9], where the IR is compiled only if its usage
passed a certain threshold. In order to improve the performance of the translate-
compile cycle, we added caching for IR functions such that already codeblocks
that have already been processed can go straight to execution.

3.4 Memory Management Unit

Earlier we saw memory store operations, What happens when any of the
following needs to be emulated: MOV EAX, [1000]; JMP [EDX]; STOS DWORD PTR

ES:[EDI]. The instructions alone can not describe the entire system state, we
need to keep track of memory writes and reads. This involves having an initial
memory state before starting the emulation process. This initial state is operat-
ing system (OS) dependent. The stack state is also partially dictated by the OS
in general, and by its C library implementation and by its format for executa-
bles. Thus doing writes and reads forces us to set and maintain an internally
stored memory map.

To address these issues, we designed a transparent platform-agnostic memory
management unit (MMU). Its contents is data without any semantics or logic
tied to it. We choose to represent it as a flat 4096-bytes paging system such that
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memory access can be done with O(1) complexity. The memory is allocated con-
tiguously and grouped into memory regions. These are automatically managed
by the MMU when memory is allocated or freed by the emulator. A caching
mechanism is set in place in order to take a big load off of the translator and
the compiler resulting in big speed-ups. Overall this makes it a performant and
clean memory representation.

read_memory(va, buffer, size); pmap(sz, perf_va, actual_va, flags, min_va, max_va);
write_memory(va, buffer, size); pmap_lookup(count, pref_va, min_va, max_va);
void dump(dmp_dir); pmap_remove(start_va, end_va);

The interface is simple and similar to what system programmers are used to
encounter when dealing with memory. The first functions map pages into mem-
ory; pmap wires the required pages for a sz sized buffer with optional constraints
such as virtual address (va) interval or forcing a fixed mapping via pref va and
flags. Calls to the read and write memory operations were presented earlier in
the compiler section; the functions require a virtual address, the buffer and its
size. Finally, dump is a very useful function to be called at various emulation
points in order to inspect the memory layout and its contents. It can be used
for malware analysis, information retrieval or debugging tasks.

3.5 File System

With an MMU, we still have to address other memory problems during execution.
Consider the following sequence that can appear in our emulated sample

01002E8D PUSH ESI
01002E8E LEA EAX, [EBP-0x8]
01002E91 PUSH EAX
01002E92 CALL DWORD [0x1001074]
7DD85AB0 CALL DWORD 0x7dd85ab5

representing an API call to kernel32.dll!GetSystemTimeAsFileTime; a function
implementation inside a shared system library. These are usually stored as
imports inside a special section of the sample’s executable in respect to the
executable format of the underlying operating system. Almost all executables
have at least a few such imports in order to function properly.

The same issue arises when the sample wants to access the file system for
common input-output (IO) operations such as creating, reading, or writing to
files and directories. In Windows operating systems it might even call out to
manipulate registry entries, or similarly on Linux touch and modify /proc entries.
While we can emulate or get around some of these issues, most calls do not have
a clean solution and thus require the presence of a file system.

We address this issue by creating a virtual file system (VFS) that stores
created or modified files throughout the emulation process. In addition it pro-
vides a minimal file system environment resembling the expected OS and it also
takes care of special features such as registry and mimics special files such as the
ones found in /proc and /dev. Thus VFS provides an interface for creating and
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managing file system containers that are platform specific and that are generated
before the emulation process through an archiving like tool.

init(container); unlink(path);
fd = open(path, mode); stat(path, size, attributes, mode, base);
close(fd); seek(fd, pos);
read(fd, buffer, size); chmod(path, attributes);
write(fd, buffer, size ); rename(from, to);

After loading the container with init, the VFS interface follows the UNIX system
call conventions for handling files.

3.6 Executable Loader

With the system memory and file system present, the final missing puzzle is
the executable loader. Without it the API call problem still exists: a connection
between the sample and the library needs to be made and that link is present
in the sample file. Each executable follows an executable format depending on
the operating system. The executable format dictates how the file is partitioned
into sections. The sections contain information about external dependencies,
including libraries and the functions therein used by the current sample. Thus, a
loader should setup the virtual address space, including the stack, for the sample
and resolve links to external libraries.

For popular platforms such as Linux, BSD or Mac that use the ELF for-
mat [15,22], open-source implementations exist that can be integrated in the
emulator. Windows uses a similar but different format called portable executable
(PE) [21] that is mostly undocumented and depends on the kernel version. Given
the wide impact of malware and other malicious software on the Windows plat-
form, we also designed and implemented a PE loader. Our PE loader mimics as
close as possible the NT kernel, passes all non-conforming but loading samples
we found in the wild, and passes all tests on the Corkami dataset [1].

When providing the actual library implementations, existing solutions either
emulate the real functions and run them outside emulation or use external bina-
ries, perhaps the exact platform library binaries, and run them inside the emu-
lator. Because of the delicate subject of distributing external binaries, but also
the man-hour impact of rewriting the existing ones, we chose to provide both
options. The emulator will try the native implementation and, if it can not find
the function, it will try to find the binary in the VFS and load it. Of course, for
internal laboratory use it is enough to create a file system container with the
original libraries which is completely possible via the VFS functionality.

Writing your own native implementations does come with advantages such
as the fact that you trust the code (since you wrote it) and can thus gain extra
performance by running it outside emulation. Also, in general, the implementa-
tions are simpler and smaller in size. The down sides are the fact that running
it outside of emulation means that if it crashes it brings the entire process to a
halt and it is also harder to debug.

Using external libraries wrapped in a VFS container has the advantage of
having each library call going through the emulation layer and thus gaining
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better control and insight on the whole process. Also, crashing does not affect
the emulator. The down sides are increased complexity due to emulation and
running through abstractions that might not be needed for the task at hand.
A windows library has to account for many use-cases and inter-connections and
comes with no redistribution rights.

3.7 Instrumentation and Information Retrieval

Dtrace is a modern dynamic tracing tool [16] used in most modern operating
systems [8] for debugging, accounting, logging and other information retrieval
tasks such as reverse engineering [2]. Unlike most tools, dtrace has the advantage
of having zero cost when disabled, a feat accomplished through machine depen-
dent tricks. This allowed for the spread and setup of multiple instrumentation
points (or probes) at no cost. When needed, these information points can be
enabled and executed (or fired up).

In our emulator we followed the dtrace model and implemented a similar
functionality across all modules. The probes have no cost when setup and can be
fired at any time during emulation. Once implemented, this enabled us to quickly
gain useful features such as feedback at any point during emulation, peaking at
mapped memory, registers, stack, executable sections, and the file system. The
instrumentation framework has no performance impact on the emulation.

probe_enable(probe_id); probe_create(probe_id, name, provider, enabler);
probe_disable(probe_id); probe_register(probe_id, consumer, consumer_id);

probe_cb_consumers(probe_id, context);

We defined the probe interface is as follows. A probe has a provider and multiple
consumers. Once a provider creates a probe, a consumer can register using the
probe unique identification number or the probe name. Registered consumers
are walked through when a probe is fired either from the probed function itself
or through a generic consumers callback. If the probe has a broadcast-like func-
tionality, the later is preferred. If a certain list of conditions need to be fulfilled
for a consumer trigger to be pulled, then the former is the way to go.

4 Results

Information Retrieval. Through the use of the instrumentation probes, we
built a flexible configuration framework that, during emulation, allows us to
change (with immediate effect) all the emulation options, tweak the interpreter,
compiler and the tiered compilation threshold, and also switch caching algo-
rithms. Through the same configuration interface we support multiple level log-
ging for all of the emulator’s modules that can be turned on, off or switched to
a different verbosity at any time.

010029E3 push ebx ----------------+ ST32 [r165-0x4], r164
010029E3 - MV32 r165, r165-0x4
010029E4 push edi ----------------+ ST32 [r165-0x4], r168
010029E4 - MV32 r165, r165-0x4
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010029E5 call dword [0x1001058] --+ MV32 r165, r165-0x4
010029E5 + MV32 r32, 0x10029EB
010029E5 + ST32 [r165], r32
010029E5 + LD32 r32, [0x01001058]
010029E5 - RET r32

In this example we turned on IR debugging to see how the translator turned x86
machine code (left hand side) into XIR instructions (right hand side).

We also have a probe interface that can stop the emulation process and feed
memory regions through the MMU to static analysis tools for further insight.
Based on these results, the external tools can change the behaviour or control
flow of the analyzed sample before resuming emulation.

Command Line Debugger. We put together multiple probes to create a com-
mand line tool for inspecting, controlling and changing the emulation process.
This tool includes debugger functionality like setting breakpoints, watchpoints
and more sophisticated conditional stopping points all through the use of probes.
This tool can also produce on-demand MMU dumps during emulation for sig-
nature inspection.

> break 0x7DE9FA40
> ping.exe
EMULATING ping.exe
Breakpoint 0 at 0x7DE9FA40
> probe x86_step_mode
> set log:ir 1
> next
DEBUG - debug_code.cpp:301 - ir:
Source -> IR:
7DE9FA90 mov dword [ebp-0x10], 0xffffffff + MV32 r32, 0xFFFFFFFF
7DE9FA90 + ST32 [r166-0x10], r32
7DE9FA90 - RET 0x7DE9FA97
Breakpoint 1 at 0x7DE9FA90

Above is an example inside the debugger. First we set breakpoint at an address
inside the Windows ping executable and then proceed to run the sample. The
debugger stops when the address is reached. Then we set fire the stepping mode
probe that turns every codeblock into a single instruction, enable the logging
level for the IR translation and proceed to the next instruction.

Stopping. We provide deterministic stopping that is agnostic to the host hard-
ware. The goal is to be able to stop the emulation process around the same
instruction no matter if we run on an Intel Xeon or a small ARM device. To
do that we started an ample analysis where we marked the important nodes in
the dynamic analyzer, added counters in these key positions, ran the emulator
through large corpus of varied data samples and at the end stored the execution
time and the final counter values. The corpus consisted of m samples with n
counters each such that m � n. Thus a given sample has an execution time
t =

(
c1 c2 c3 . . . cn

) (
w1 w2 w3 . . . wn

)T . Let T ∈ R
m be the vector consisting

of all sample execution times, C ∈ R
m×n the counters matrix and w ∈ R

n the
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weights. These measurements lead to a simple least-squares problem [7] T = Cw
whose solution are the associated weights w.

This model leads to some nice practical properties. We can start with a
small set of counters which leads us to a fair approximation thus gaining a fast
start-up. This starting point can be continuously adjusted and improved through
counter addition and elimination but also through the addition of new sample
information. This can also be seen as a profiling tool.

We name the weight values metrics. The speed of a platform is measured as
metrics per second. We can now build a deterministic threshold by computing
only once an average platform speed, and setting a metric threshold based on
that. If a process was stopped we know exactly where. As a side effect, we also get
an implicit time threshold for free. For example, if we have an average platform
speed of 50 metrics per second, we can set the threshold to 150 metrics which
results in a 3 s maximum emulation time per sample.

Production. The tool has been integrated and used successfully in an anti-
malware engine environment (acting as a generic unpacker and memory inspec-
tion tool and doubling the product detection rate), as a bulk scanning tool for
malware and clean sets, and also as a debugger-like reverse-engineering tool
for sample analysis. Three applications that seamlessly integrated the library
with success. This lead to a few nice properties, software wise. The emulator is
reentrant and has built-in exception and fault protection for POSIX and Win-
dows operating systems. Through continuous integration, it is tested weekly on
1, 000, 000+ samples with support for multiple debugging and quality assurance
tools such as OProfile and Electric Fence.

The emulator is highly portable. For example the bulk scanning tool runs
on Linux, OpenBSD and Windows with 32-bit and 64-bit Intel-derivate CPUs.
Also quick nightly scans are conducted on a wide range of system configurations,
both big endian and little endian, with hardware platforms such as Intel 32-bit
and 64-bit, ARMv5 and ARMv7, MIPS-64, PowerPC, Sparc, Sparc64, HP-PA,
and on operating systems such as Windows (versions from Windows XP up to
Windows 10), OS X, Linux, FreeBSD, OpenBSD, NetBSD, Solaris, IllumOS,
Darwin and others. The solution is compiled with all mainline compilers: Visual
Studio, GCC, and CLang.

5 Conclusion and Future Work

In this paper we presented a reverse engineering tool that can be used for infor-
mation retrieval and anti-malware techniques. Our main contribution has been
the design and implementation of an instrumentation framework created to pro-
vide insight on the emulation process that is achieved via the translation to
an intermediate representation and then compilation of the studied sample. In
the results section we show-cased its application to multiple tasks such as infor-
mation retrieval tool, debugger and its ability to integrate in an anti-malware
production environment. Due to the reduced number of instructions in the XIR
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ISA, adding translators and JITs is not a difficult task which makes us consider
adding an LLVM translator in the near future.
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Abstract. In this paper, we put forward a new practical application
of Inner-Product Functional Encryption (IPFE) that we call Message
Selection functional encryption (M-Sel) which allows users to decrypt
selected portions of a ciphertext. In a message selection functional
encryption scheme, the plaintext is partitioned into a set of messages
M = {m1, . . . , mt}. The encryption of M consists in encrypting each
of its elements using distinct encryption keys. A user with a functional
decryption key skx derived from a selection vector x can access a subset
of M from the encryption thereof and nothing more. Our construction is
generic and combines a symmetric encryption scheme and an inner prod-
uct functional encryption scheme, therefore, its security is tied to theirs.
By instantiating our generic construction from a DDH-based IPFE we
obtain a message selection FE with constant-size decryption keys suit-
able for key storage in lightweight devices in the context of Internet of
Things (IoT).

Keywords: Functional Encryption · Inner-Product Functional
Encryption · Adaptive Security

1 Introduction

1.1 Functional Encryption

Unlike traditional Public-Key Encryption (PE), which allows a user with a
decryption key to uncover the entire encrypted data, Functional Encryption
(FE) allows a finer control over the amount of information accessible to each
user from the ciphertext. For a more meaningful formulation, let c = Encrypt(m)
be a ciphertext and skf a secret key derived from a function f , the decryption of
c using skf reveals nothing more than f(m). The key skf is also called functional
decryption key.

Functional encryption first appeared in the forms of Identity-Based Encryp-
tion [14,19,32], Searchable Encryption [1,13], Attribute-Based Encryption
[11,24,31] and Predicate Encryption [26,29]. But the formal study of functional
encryption giving its definitions and various security notions was done later by
Boneh, Sahai and Waters [15] and O’Neill [30]. The first FE schemes for less
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general functionality was proposed by Abdalla et al. [4]. Their schemes allow
the evaluation of the inner product 〈x,y〉 of two vectors (x encrypted and y
associated with a decryption key sky ). Therefore, these schemes are called Inner-
Product Functional Encryption (IPFE) schemes. The publication of Abdalla et
al. [4] has aroused a lot of interest among researchers [7,8,10] as application
fields are diverse and varied.

Although it is not required that the function associated with the decryption
key be hidden, function hiding is very important since its guarantees that sensi-
tive information on the plaintext do not leak. If f is known, information on the
plaintext m can be gained from f(m). Therefore, the inner-product functionality
with function hiding is investigated in [12,20,21].

The single input inner-product functionality is extended to the multi-user
setting [2,5,6,17,18,22,28]. The latter setting refers to Multi-Input Functional
Encryption (MIFE) and Multi-Client Functional Encryption (MCFE). MIFE
introduced in [23] is designed for scenarios where input data m1, . . . , mn come
from different sources. Each functional decryption key skf is derived from a
multi-input function f that allows computation of f(m1, . . . , mn) from encrypted
data Encrypt(m1), . . . ,Encrypt(mn). Also, the requirement that nothing beyond
f(m1, . . . , mn) is revealed applies. MCFE allows the same computation as MIFE
but for input data coming from clients 1, . . . , n who do not trust each other. Each
client i using a secret encryption key generates a ciphertext ci = Encrypt(mi, t, i)
for a plaintext mi associated with a tag t and an index i. However, MCFE is
more restrictive than MIFE on decryption since a decryption key allows the
computation of f(m1, . . . , mn) only if the corresponding ciphertexts c1, . . . , cn

are labeled with the same tag t.

1.2 This Work

This work introduces a new type of functional encryption scheme that we call
Message Selection functional encryption (M-Sel), which has several attractive
real-life applications. For example:

Classified Documents. The document owner identifies the elements of infor-
mation that must be classified and establishes the level of classification for
each such element. A document M = {m1, . . . , mt} ∈ 2{0,1}∗

is considered
as a set of messages which can be words, phrases, paragraphs, images, etc.
To encrypt M , one computes C = {Encrypt(sk1,m1), . . . ,Encrypt(skt,mt)}
where each mi,i∈[1..t] is encrypted using a secret key ski. Decrypting C using
a functional key skx derived from a selection vector x ∈ Z

�
2 yields a subset of

M .
Image Sharing. A cloud server hosts images consisting of set of encrypted lay-

ers (e.g., map layers in Geographic Information System (GIS)). With their
functional decryption key each user accesses a new image obtained by flat-
tening a subset of layers.

Chat room. Participants produce encrypted message flows and each of them
can only view message flows associated to their functional decryption key.
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M-Sel uses a symmetric encryption scheme SE , an inner-product func-
tional encryption scheme IPFE and hashing. Our construction can succinctly
be presented as follows: the plaintext is partitioned into a set of plaintexts
M = {m1, . . . , mt} ∈ 2{0,1}∗

. For each mi ∈ M we pick a random si ∈ Z
∗
p,

derive a bit string σi ← H(si) and compute ui = SE .Encrypt(σi,mi). Then, a
vector yi in the canonical basis of Z�

2 is chosen and si is hidden by computing
vi = IPFE.Encrypt(mpk, si · yi). Therefore, the encryption of mi is (ui, vi). A
user with a functional decryption key skx derived from a selection vector x ∈ Z

�
2

accesses mi if IPFE.Decrypt(skx , vi) = si. For more details, please refer to the
Sect. 3 of the paper.

We prove that our message selection functional encryption scheme have indis-
tinguishable encryptions under a chosen-plaintext attack (IND-CPA) if the under-
lying SE and IPFE schemes are IND-CPA secure.

1.3 Related Work

Abdalla, Bourse, De Caro and Pointcheval [4] are the first to propose a func-
tional encryption scheme for the inner product functionality. They provided two
simple and efficient constructions for IPFE, one based on the Decision Diffie-
Hellman assumption (DDH) and the other based on the Learning-With-Errors
assumption (LWE). However, the IPFE schemes in [4] are only proven secure in
the selective security model where the adversary is asked to declare its challenge
messages before the setup of the security game. Subsequently, Agrawal et al.
[8] proposed an improvement to attain full security under the DDH, LWE, and
Decision Composite Residuosity (DCR) assumptions. Chosen ciphertext secure
IPFE schemes are first obtained by Benhamouda et al. [10]. Their construction is
based on projective hash functions with homomorphic properties. These propos-
als are of great theoretical interest but are not sufficiently efficient for practical
applications. Since either they require that the inner product 〈x,y〉 be small
enough for the decryption to work or their parameters sizes are impractical.
Finally, Castagnos et al. [16] provided IPFE schemes which are efficient for the
evaluation of unbounded inner products modulo a prime p. The efficiency of
their constructions is obtained by relying on a cyclic group where the DDH
assumption holds containing a subgroup where the discrete logarithm problem
is easy.

The message selection functionality can be tackled in the naive way with
traditional Hybrid Public-key Encryption HPE which is capable of encrypt-
ing arbitrary bit strings. Hybrid public-key encryption combines a symmet-
ric encryption scheme SE and a public-key encryption scheme. In this con-
text, the public-key encryption scheme is called key-encapsulation mechanism
KEM = (Gen,Encaps,Decaps).

The naive scheme is the following. For a plaintext M = {m1, . . . , m�} ∈
2{0,1}∗

, generate � independent key pairs {ski, pki}�
i=1, set mpk = {pk1, . . . , pk�}

and msk = {sk1, . . . , sk�}. Apply the encryption algorithm of HPE to mpk and
M to obtain C ← {HPE .Encrypt(pki,mi)}�

i=1 = {(ci, c
′
i)}�

i=1 where (ci, si) ←
KEM.Encaps(1λ, pki) and c′

i = SE .Encrypt(si,mi). A user who wants to access a
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subset of M from C is given the secret keys ski corresponding to the indices of
the selected elements of M .

In Table 1 we summarize the comparison between our approach (M-Sel) based
on functional encryption and the naive one based on traditional hybrid public-
key encryption in terms of key size and ciphertext size. For this comparison, we
consider the instantiation M-SelDDH of M-Sel from the DDH-based IPFE scheme
of [8]. M-SelDDH is described in Sect. 5. Without loss of generality, we assume
that the secret keys ski are randomly picked from Zp and the corresponding
public keys pki are picked from a cyclic group G of prime order p.

Table 1. Comparing M-Sel and the naive approach based on HPE . |M | = ∑�
i=1 |mi|.

mpk msk Ciphertext Decryption key

The naive scheme � log p � log p � log p + |M | O(� log p)

M-SelDDH � log p 2� log p �(� + 2) log p + |M | 2 log p

We note that the size of the ciphertext in M-Sel is quadratic in � whereas
it is linear in � in the naive solution. However, it is important to note that
the advantage of our scheme over the naive one is its short and constant size
decryption key which is significantly smaller than that of the naive scheme (which
consists of a set of O(�) secret keys). This makes M-Sel interesting for key storage
in lightweight devices in the context of Internet of Things (IoT).

1.4 Organization

The remainder of this paper is organized as follows. Section 2 is devoted to
primitives used as components in M-Sel and various settings of encryption. In
Sect. 3 we describe the construction of our message selection functional encryp-
tion scheme. The security analysis of M-Sel is done in Sect. 4. We show an instan-
tiation of M-Sel from the DDH-based IPFE scheme of [8] in Sect. 5. Section 6
concludes this work.

2 Basic Tools

In this section, we recall the syntax of symmetric encryption and of inner-product
functional encryption. We also discuss the setting of multi-recipient encryption
and the setting of multiple encryptions.

2.1 Symmetric Encryption

Definition 1 (Symmetric Encryption Scheme). A symmetric encryption
scheme SE = (KeyGen,Encrypt,Decrypt) consists of 3 polynomial-time algo-
rithms:
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1. KeyGen(1λ) takes as input a security parameter λ and returns a key sk.
2. Encrypt(sk,m) takes as input a key sk and a plaintext message m ∈ {0, 1}∗

and returns a ciphertext c ← Encrypt(sk,m; r) ∈ {0, 1}∗ where r is randomly
picked from the coins set associated to SE. We consider r to be a part of the
ciphertext.

3. Decrypt(sk, c) takes as input a key sk and a ciphertext c and returns a message
m or an error denoted by the symbol ⊥.

For correctness it is required that Decrypt(sk,Encrypt(sk,m)) = m for all m ∈
{0, 1}∗.

A symmetric encryption scheme can be used in the multi-recipient setting
with randomness re-use. We define multi-recipient encryption as follow:

Multi-recipient Encryption Schemes and Randomness Re-use. Let
SE = (KeyGen,Encrypt,Decrypt) be a standard symmetric encryption scheme.
Consider n receivers, numbered 1, . . . , n each of which has its secret key ski. A
sender picks random coins r1, . . . , rn from the coins set associated to SE and
uses the symmetric encryption scheme SE = (KeyGen,Encrypt,Decrypt) to com-
pute C ← SE .Encrypt((sk1, . . . , skn), (m1, . . . , mn); (r1, . . . , rn)) = (c1, . . . , cn),
where ci ← SE .Encrypt(ski,mi; ri). Each receiver i recovers the plaintext
mi = SE .Decrypt(ski, ci). The symmetric encryption scheme SE is termed the
Multi-Recipient Encryption Scheme (MRES) associated to SE . When all the
coins ri are equal (ri = r for i ∈ [1 .. n]) that is ci ← SE .Encrypt(ski,mi; r),
SE is termed the Randomness Re-using MRES (RR-MRES) associated to the
underlying standard encryption scheme SE .

The definition of security for multi-recipient encryption schemes first
appeared in [27] and was later refined in [9]. Following [9], we define hereunder
indistinguishable encryptions under a chosen-plaintext attack (IND-CPA) exper-
iment for RR-MRES. Let SE = (KeyGen,Encrypt,Decrypt) be a randomness re-
using symmetric multi-recipient encryption scheme, let A be an adversary and
λ be the security parameter. A has access to an oracle which takes a vector of
n ∈ poly(λ) messages and outputs a ciphertext vector.

Experiment. ExpIND-RR-CPA
SE,A (λ)

(t, skt+1, . . . , skn) ← A(1λ) such that 1 ≤ t ≤ n ∈ poly(λ)
For each i ∈ [1 .. t] do ski ← SE .KeyGen(1λ) EndFor
SK ← (sk1, . . . , skn)
(m1

0, . . . , m
t
0;m

1
1, . . . , m

t
1;mt+1, . . . , mn) ← ASE(SK,·)

b
R← {0, 1}

M ← (m1
b , . . . , m

t
b,mt+1, . . . , mn)

r
R← Coins

C ← SE .Encrypt(SK,M ; r)
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b′ ← ASE(SK,·)(C)
Return 1 if b′ = b, 0 otherwise

It is mandated that |mi
0| = |mi

1| for all i ∈ [1 .. t]. Coins is the coins set associated
to SE . Notice that when given the security parameter adversary A outputs n− t
secret keys and in the challenge phase in addition to messages m1

0, . . . , m
t
0 and

m1
1, . . . , m

t
1 it provides n − t other messages. As indicated in [9], this solves the

problem of insider attacks (A has successfully corrupted n − t users).

Definition 2 (IND-CPA security of RR-MRES). The advantage of any poly
(λ)-time adversary A in the experiment ExpIND-RR-CPA

SE,A (λ) is defined as follow:

AdvIND-RR-CPA
SE,A (λ) = 2 · Pr

[
ExpIND-RR-CPA

SE,A (λ) = 1
]

− 1.

A randomness re-using symmetric multi-recipient encryption scheme SE is
IND-CPA secure, if the function AdvIND-RR-CPA

SE,A (·) is negligible.

Theorem 1 (RR-MRES security [9]). Fix a symmetric-key encryption scheme
SE = (KeyGen,Encrypt,Decrypt) and a polynomial n. Let SE = (KeyGen,Encrypt,
Decrypt) be the corresponding RR-MRES. If SE is reproducible then for any
polynomial-time adversary B, there exists a polynomial-time adversary A, such
that:

AdvIND-RR-CPA
SE,B (λ) ≤ n(λ) · AdvIND-CPA

SE,A (λ)

Also, [9] states that if F is a pseudorandom function family then the sym-
metric encryption scheme CBC[F ] that operates in CBC mode is reproducible.
For the remainder of the paper, we consider SE to be a symmetric encryption
scheme that operates in CBC mode.

2.2 Functional Encryption

Functional Encryption is formalized by Boneh, Sahai and Waters in [15]. It is
related to the notion of functionality. Inner product functional encryption [4] is a
special case of functional encryption and was first provided by Abdalla, Bourse,
De Caro and Pointcheval.

Definition 3 (Functionality) A functionality F defined over (K,M) is a
function F : K × M → Σ ∪ {⊥}, where K is a key space, M is a message
space and Σ is an output space.

Definition 4 (Inner-Product Functional Encryption). Inner-product
functional encryption is designed for the functionality F : R� × R� → R ∪ {⊥}
such that F (x,y) = 〈x,y〉 for some ring R and a natural number �. An inner
product functional encryption scheme IPFE = (Setup,KeyDer,Encrypt,Decrypt)
consists of 4 polynomial-time algorithms:
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1. Setup(1λ, 1�) takes as input a security parameter λ and a functionality param-
eter � and returns a master public key mpk and a master secret key msk.

2. KeyDer(msk,x) takes as input the master secret key msk and a key x ∈ R�

and derives a secret key skx .
3. Encrypt(mpk,y) takes as input the master public key mpk and a plaintext

y ∈ R� and returns a ciphertext cy .
4. Decrypt(mpk, skx , cy ) takes as input the master public key mpk, a secret key

skx and a ciphertext cy and returns 〈x,y〉.
For correctness, it is required that for all x ∈ R� and all y ∈ R�, we have
Decrypt(mpk, skx ,Encrypt(mpk,y)) = 〈x,y〉 or ⊥ with negligible probability.

The ring R is either Z or Zp for some prime number p. When the inner prod-
uct is computed in Zp, the KeyDer algorithm must monitor secret key requests to
avoid giving an adversary decryption keys associated with linearly independent
vectors. Indeed, an adversary can request secret keys associated to vectors which
are linearly dependent in Zp but linearly independent in Z. Such linearly inde-
pendent secret keys can lead to a solvable system of linear equations where the
unknowns are the components of the master secret key. Therefore, the KeyDer
algorithm must be stateful [8]. Meaning that the adversary obtains redundant
information when trying to collect more than � − 1 linearly independent secret
keys since the KeyDer algorithm will return a linear combination of the previous
secret keys.

The definition of security for IPFE in the sense of indistinguishable encryp-
tions under a chosen-plaintext attack (IND-CPA) is given via the following exper-
iment. Let A be an adversary.

Experiment ExpIND-CPA
IPFE,A (λ)

Let 1 ≤ q1 ≤ q ∈ poly(λ); � ∈ poly(λ); S ← ∅; Sx ← ∅
(mpk,msk) ← Setup(1λ, 1�)
For each i ∈ [1 .. q1] do

xi ← A(mpk, S)
skxi

← KeyDer(msk,xi)
S ← S ∪ skxi

Sx ← Sx ∪ xi

EndFor

� First phase of secret key
queries,xi ∈ R�.

(y0,y1) ← A(mpk, S) �Challenge phase.

b
R← {0, 1}

C ← Encrypt(mpk,yb)
For each i ∈ [q1 .. q] do
xi ← A(mpk, S,C)
skxi

← KeyDer(msk,xi)
S ← S ∪ skxi

Sx ← Sx ∪ xi

EndFor

� Second phase of secret key
queries.
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b′ ← A(mpk, S,C)
Return 1 if b′ = b, 0 otherwise

It is mandated in the challenge phase and in the second phase of secret key
queries that 〈xi,y0〉 = 〈xi,y1〉 for all xi ∈ Sx .

Definition 5 (IND-CPA security of IPFE). The advantage of any poly(λ)-time
adversary A in the experiment ExpIND-CPA

IPFE,A (λ) is defined as follow:

AdvIND-CPA
IPFE,A (λ) = 2 · Pr

[
ExpIND-CPA

IPFE,A (λ) = 1
]

− 1.

An inner-product functional encryption scheme IPFE has indistinguishable
encryptions under a chosen-plaintext attack, if the function AdvIND-CPA

IPFE,A (·) is neg-
ligible.

Multiple Encryptions. Using the same master public key to encrypt multiple
messages is termed Multiple Encryptions (ME). The security of ME is related
to that of the based encryption scheme. Hereunder, we define indistinguishable
encryptions under a chosen-plaintext attack (IND-CPA) experiment for multiple
encryptions. Let FE = (Setup,KeyDer,Encrypt,Decrypt) be a functional encryp-
tion scheme for the functionality F , let K be the key space, let M be the message
space, let A be an adversary and λ be the security parameter.

Experiment ExpIND-ME-CPA
FE,A (λ)

Let 1 ≤ q1 ≤ q ∈ poly(λ); t ∈ poly(λ); S ← ∅; Sk ← ∅
(mpk,msk) ← Setup(1λ)

First phase of secret key queries � Syntactically identical
to that of ExpIND-CPA

IPFE,A (λ).

(m1
0, . . . , m

t
0;m

1
1, . . . , m

t
1) ← A(mpk, S) �Challenge phase.

b
R← {0, 1}

C ← (Encrypt(mpk,m1
b), . . . ,Encrypt(mpk,mt

b))

Second phase of secret key queries � Syntactically identical
to that of ExpIND-CPA

IPFE,A (λ).
b′ ← A(mpk, S,C)
Return 1 if b′ = b, 0 otherwise

It is mandated in the challenge phase and in the second phase of secret
key queries that F (ki,m

j
0) = F (ki,m

j
1) for all ki ∈ Sk ⊂ K and |mj

0| =
|mj

1|,mj
0,m

j
1 ∈ M for j ∈ [1 .. t].
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Definition 6 (IND-CPA security of ME). The advantage of any poly(λ)-time
adversary A in the experiment ExpIND-ME-CPA

FE,A (λ) is defined as follow:

AdvIND-ME-CPA
FE,A (λ) = 2 · Pr

[
ExpIND-ME-CPA

FE,A (λ) = 1
]

− 1.

A functional encryption scheme FE has indistinguishable multiple encryptions
under a chosen-plaintext attack, if the function AdvIND-ME-CPA

FE,A (·) is negligible.

Theorem 2 (Multiple encryptions security [25]). If a public-key encryp-
tion scheme PE is CPA-secure, then it also has indistinguishable multiple encryp-
tions.

3 Our Message Selection FE Scheme

In this section, we describe our functional encryption scheme for the message
selection functionality.

Definition 7 (Message Selection Functionality). Let S be the set con-
taining finite sets of messages such that for every M ∈ S , 2M ⊂ S . Consider
2M = {Mw}w∈{0,1}|M| as an indexed family of sets. The message selection func-
tionality is the function F : {0, 1}n × S → S ∪ {⊥} such that F (w,M) = Mw

where n is a natural number.

Let SE = (KeyGen,Encrypt,Decrypt) be a symmetric encryption scheme operat-
ing in CBC mode with key length κ. Let IPFE = (Setup,KeyDer,Encrypt,Decrypt)
be an inner-product functional encryption scheme. The construction of M-Sel is
as follow:

Setup(1λ, 1�). This algorithm performs the following steps:

1. Choose a cryptographic hash function H : Zp → {0, 1}κ for some prime
number p > 2λ.

2. Call IPFE.Setup(1λ, 1�) to obtain a master secret key msk and a master public
key mpk.

KeyDer(msk,x) derives from x ∈ Z
�
2 a functional key skx ← IPFE.

KeyDer(msk,x).

Encrypt(mpk,M). To encrypt a plaintext M = {m1,m2, . . . , mt} ∈ 2{0,1}∗
this

algorithm performs the following steps:

1. Let S ← ∅.
2. Let B� be the canonical basis of Z�

2.
3. Pick a random coins r from the coins set associated to SE .
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4. For each i ∈ [1 .. t] do:
4.1 Pick a random number si ∈ Z

∗
p\S; S ← S ∪ si.

4.2 Compute ui ← SE .Encrypt(H(si),mi; r).
4.3 Choose yi ∈ B� and compute vi ← IPFE.Encrypt(mpk, si · yi).

5. Return the ciphertext C = (r, u1, v1, . . . , ut, vt).

Decrypt(skx , C). Using skx to decrypt the ciphertext C = (r, u1, v1, . . . , ut, vt),
this algorithm performs the following steps:

1. Let Mx = ∅.
2. For each i ∈ [1 .. t] do:

2.1 Compute ρi = IPFE.Decrypt(skx , vi). Note that ρi = 〈x, si · yi〉 is either
equal to 0 or si.

2.2 If ρi = 0 then return to step 2.1. for the next value of i. Otherwise,
compute mi = SE .Decrypt(H(ρi), ui; r).

2.3 If mi = ⊥ then return to step 2.1. for the next value of i. Otherwise, Set
Mx ← Mx ∪ mi

3. Return the plaintext Mx .

Correctness. For each i ∈ [1 .. t], we have that

SE .Decrypt
[
H

[
IPFE.Decrypt(skx , vi)

]
, ui; r

]
= SE .Decrypt

[
H

[〈x, si · yi〉
]
, ui; r

]

=

{SE .Decrypt
(
H(0), ui; r

)
or
SE .Decrypt

(
H(si), ui; r

)

=

{⊥
or
mi

Therefore, Decrypt(skx , C) ∈ 2M .

4 Security Against Chosen-Plaintext Attack

Here, we prove that M-Sel has indistinguishable encryptions under a chosen-
plaintext attack assuming the underlying symmetric CBC encryption scheme SE
and inner product functional encryption scheme IPFE are IND-CPA secure.

The experiment ExpIND-CPA
M-Sel,A (λ) by which we define IND-CPA security for M-Sel

is syntactically identical to the experiment ExpIND-ME-CPA
FE,A (λ) given in Sect. 2.2

except for some slight differences presented below:

1. The key space is Z
�
2.

2. F is the message selection functionality.
3. In the challenge phase, adversary A chooses two distinct sets of messages

M0 ← {m1
0, . . . , m

t
0}, M1 ← {m1

1, . . . , m
t
1} ∈ 2{0,1}∗

subject to the restriction
that, F (xi,M0) = F (xi,M1) for all xi ∈ Sx ⊂ Z

�
2.
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Theorem 3. If the underlying SE and IPFE schemes are IND-CPA secure, then
M-Sel is IND-CPA secure.

We recall the definition of perfect secrecy.

Definition 8. (Perfectly Secret [25]). An encryption scheme E = (KeyGen,
Encrypt,Decrypt) with message space M is perfectly secret if for every proba-
bility distribution over M every message m ∈ M, and every ciphertext c ∈ C for
which Pr[C = c] > 0:

Pr[M = m|C = c] = Pr[M = m].

(The requirement that Pr[C = c] > 0 is a technical one needed to prevent condi-
tioning on a zero-probability event.)

Proof (of Theorem 3). Let A be an IND-CPA adversary that has advantage ε(λ)
against M-Sel by making q ∈ poly(λ) secret key queries. Since M-Sel uses SE and
IPFE, we consider the following extreme cases:

– Case 1: the underlying IPFE seems perfectly secret. Therefore, the security of
the RR-MRES based on the underlying SE reduces to the security of M-Sel.
We present an adversary B that interacts with A to break the SE-based
RR-MRES.

– Case 2: the underlying SE primitive seems perfectly secret. Therefore, the
security of the ME based on the underlying IPFE reduces to the security of
M-Sel. We present an adversary C that interacts with A to break the IPFE
multiple encryptions.

Let F be the message selection functionality.

Case 1. Let SE = (KeyGen,Encrypt,Decrypt) be the RR-MRES associated to
SE . Adversary B challenges the IND-CPA security of SE . Let λ be the security
parameter and � be the functionality parameter of the underlying IPFE. Consider
the following interactions between B and A:

(t, skt+1, . . . , skn) ← B(1λ) such that 1 ≤ t ≤ n ∈ poly(λ)

For each j ∈ [1 .. t] do: skj
R← SE .KeyGen(1λ) EndFor ➊

SK ← (sk1, . . . , skn)
(mpk,msk) ← M-Sel.Setup(1λ, 1�) ➋
Let 1 ≤ q1 ≤ q ∈ poly(λ); S ← ∅;Sx ← ∅
For each i ∈ [1 .. q1] do
xi ← A(mpk, S)
skxi ← M-Sel.KeyDer(msk,xi)
S ← S ∪ skxi

Sx ← Sx ∪ xi

EndFor

� First phase of secret
key queries. xi ∈ Z

�
2.

({m1
0, . . . , m

t
0}, {m1

1, . . . , m
t
1}) ← A(mpk, S) � Challenge phase.

M0 ← {m1
0, . . . , m

t
0}
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M1 ← {m1
1, . . . , m

t
1}

(m1
0, . . . , m

t
0;m

1
1, . . . , m

t
1;mt+1, . . . , mn) ← BSE(SK,·)(M0,M1) ➌

b
R← {0, 1}

M ← (m1
b , . . . , m

t
b,mt+1, . . . , mn)

r
R← Z

∗
p

(r, u1, . . . , ut, ut+1, . . . , un) ← SE .Encrypt(SK,M ; r) ➍
C ← (r, u1, . . . , ut, ut+1, . . . , un)
Let B� be the canonical basis of Z�

2

For each j ∈ [1 .. t] do

sj
R← Z

∗
p; yj

R← B�

vj ← M-Sel.IPFE.Encrypt(mpk, sj · yj)
EndFor
(r, u1, v1, . . . , ut, vt) ← BSE(SK,·)(M0,M1, C)
For each i ∈ [q1 .. q] do
xi ← A(mpk, S, (r, u1, v1, . . . , ut, vt))
skxi

← M-Sel.KeyDer(msk,xi)
S ← S ∪ skxi

Sx ← Sx ∪ xi

EndFor

� Second phase of secret
key queries.

b′ ← A(mpk, S, (r, u1, v1, . . . , ut, vt))
b′ ← BSE(SK,·)(M0,M1, C, b′)

➊ The challenger sets up the IND-RR-CPA security game for B.
➋ B sets up the IND-CPA security game of M-Sel and gets ready to answer to

secret keys queries from A.
➌ B outputs its challenge messages.
➍ The challenger outputs the challenge ciphertext for B who also prepares the

challenge ciphertext for A.

It is mandated in the challenge phase and in the second phase of secret key
queries that F (xi,M0) = F (xi,M1) for all xi ∈ Sx and M0,M1 ∈ 2{0,1}∗

.
Assuming that the underlying IPFE primitive seems perfectly secret, we see

that adversary B interacts with A as the latter would interact with the challenger
during a chosen plaintext attack against M-Sel. Therefore, we have:

AdvIND-RR-CPA
SE,B (λ) = AdvIND-CPA

M-Sel,A (λ) (1)

Case 2. Let IPFE = (Setup,KeyDer,Encrypt,Decrypt) be an inner-product func-
tional encryption scheme. Adversary C challenges the IND-CPA multiple encryp-
tions security of IPFE. Let λ be the security parameter and � be the functionality
parameter of the underlying IPFE. Consider the following interactions between
C and A:
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Let 1 ≤ q1 ≤ q ∈ poly(λ); t ∈ poly(λ); S ← ∅;Sx ← ∅
(mpk,msk) ← IPFE.Setup(1λ, 1�) ➊

For each i ∈ [1 .. q1] do
xi ← A(mpk, S)
skxi

← IPFE.KeyDer(msk,xi)
S ← S ∪ skxi

Sx ← Sx ∪ xi

EndFor

� First phase of secret
key queries. xi ∈ Z

�
2.

({m1
0, . . . , m

t
0}, {m1

1, . . . , m
t
1}) ← A(mpk, S) � Challenge phase.

M0 ← {m1
0, . . . , m

t
0}

M1 ← {m1
1, . . . , m

t
1}

Let B� be the canonical basis of Z�
2 ➋

r
R← Z

∗
p

For each j ∈ [1 .. t] do

yj
R← B�

sj
0

R← Z
∗
p; ej

0 ← sj
0 · yj

sj
1

R← Z
∗
p; ej

1 ← sj
1 · yj

ui ← M-Sel.SE .Encrypt(H(sj
0),m

j
0; r)

EndFor

(e10, . . . ,e
t
0;e

1
1, . . . ,e

t
1) ← C(mpk,M0,M1) � 〈xi,e

i
0〉 = 〈xi,e

i
1〉

for all xi ∈ Sx.

b
R← {0, 1}

(v1, . . . , vt) ← (
IPFE.Encrypt(mpk,e1b), . . . , IPFE.Encrypt(mpk,et

b)
)

➌
C ← (v1, . . . , vt)
(u1, v1, . . . , ut, vt) ← C(mpk,M0,M1, C) ➍

For each i ∈ [q1 .. q] do
xi ← A(mpk, S, (u1, v1, . . . , ut, vt))
skxi

← IPFE.KeyDer(msk,xi)
S ← S ∪ skxi

Sx ← Sx ∪ xi

EndFor

� Second phase of secret
key queries.

b′ ← A(mpk, S, (u1, v1, . . . , ut, vt))
b′ ← C(mpk,M0,M1, C, b′)

➊ The challenger sets up the IND-ME-CPA security game and gets ready to
answer to secret keys queries from C who itself gets those secret key queries
from A.

➋ C prepares the challenge ciphertext for A.
➌ The challenger outputs the challenge ciphertext for C.
➍ C outputs the challenge ciphertext for A.

It is mandated in the challenge phase and in the second phase of secret key
queries that F (xi,M0) = F (xi,M1) for all xi ∈ Sx and M0,M1 ∈ 2{0,1}∗

.
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Assuming that the underlying SE primitive seems perfectly secret, we see
that adversary C interacts with A as the latter would interact with the challenger
during a chosen plaintext attack against M-Sel. Therefore, we have:

AdvIND-ME-CPA
IPFE,C (λ) = AdvIND-CPA

M-Sel,A (λ) (2)

By summing up Eqs. 1 and 2, we obtain:

AdvIND-CPA
M-Sel,A (λ) =

1
2

· AdvIND-RR-CPA
SE,B (λ) +

1
2

· AdvIND-ME-CPA
IPFE,C (λ)

From Theorem 1, we know that if a symmetric encryption scheme operates in
CBC mode and is IND-CPA secure then the corresponding RR-MRES is also
IND-CPA secure. Therefore, AdvIND-RR-CPA

SE,B (λ) is negligible. From Theorem 2, we
also have AdvIND-ME-CPA

IPFE,C (λ) is negligible. Thus, AdvIND-CPA
M-Sel,A (λ) is negligible and

we conclude that M-Sel is IND-CPA secure. �

5 Instantiation from a DDH-Based IPFE Scheme

Instantiation of M-Sel from IPFE schemes of [16] which compute efficiently the
inner product is straightforward. Therefore, we give here an instantiation from
the DDH-based IPFE scheme of [8] for which the inner product is hard to com-
pute. That DDH-based IPFE scheme (see Fig. 1) can give short ciphertexts and
keys using elliptic curves [3].

Algorithm Setup(1λ, 1 )

1. Choose a cyclic group G of prime
order p > 2λ with generators g, h

2. s = (s1, . . . , s ) R
Zp

3. t = (t1, . . . , t ) R
Zp

4. For each i ∈ [1 ]
compute hi = gsi · hti

5. Return
msk = (s, t),
mpk = (G, g, h, {hi}i=1)

Algorithm Encrypt(mpk,y)
y = (y1, . . . , y ) ∈ Zp

1. Pick r
R

Z
∗
p

2. Compute C = gr, D = hr

3. Compute {Ei = gyi · hr
i }i=1

4. Return Cy = (C, D, E1, . . . , E )

Algorithm KeyDer(msk,x)
x = (x1, . . . , x ) ∈ Zp

1. Compute α = i=1 si · xi

2. Compute β = i=1 ti · xi

3. Return skx = (α, β)

Algorithm Decrypt(mpk, skx, Cy)
skx = (α, β)

1. Compute
Ex = ( i=1 Exi

i )/(Cα · Dβ)
2. Return x,y = logg(Ex)

Fig. 1. DDH-based IPFE scheme of Agrawal et al. [8].
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To suit our M-Sel scheme, we customize the decryption algorithm so that
it does not compute the actual value of 〈x,y〉 but returns Ex = g〈x,y〉. In the
remainder of the paper, to avoid confusion, we denote Decrypt� this customiza-
tion of Decrypt. This immunizes M-Sel against the main drawback of DDH-based
IPFE schemes that is the inner product 〈x,y〉 must be small enough for the
decryption to work.

DDH-Based M-Sel. In the description hereunder of M-SelDDH, we only show
steps in our generic construction (in Sect. 3) that change.

Let SE = (KeyGen,Encrypt,Decrypt) be a symmetric encryption scheme
operating in CBC mode with key length κ. Let IPFEDDH = (Setup,
KeyDer,Encrypt,Decrypt) be the DDH-based IPFE scheme of [8]. Let G be a
cyclic group of prime order p > 2λ with generators g, h.

Setup(1λ, 1�).

1. Choose a cryptographic hash function H : G → {0, 1}κ.

KeyDer(msk,x). No changes.

Encrypt(mpk,M). M = {m1,m2, . . . , mt} ∈ 2{0,1}∗
.

4.2. Compute ui ← SE .Encrypt(H(gsi),mi; r).

Decrypt(skx , C). C = (r, u1, v1, . . . , ut, vt).

2.1. Compute ρi = IPFEDDH.Decrypt�(skx , vi). Note that ρi = g〈x,si·y i〉 is either
equal to the identity element 1G or gsi .

2.2. If ρi = 1G then return to step 2.1. for the next value of i. Otherwise, compute
mi = SE .Decrypt(H(ρi), ui; r).

6 Conclusion

We proposed a generic construction for the message selection functionality called
M-Sel that achieves security against adaptive adversaries. M-Sel can be efficient
an practical when instantiated with an efficient inner-product functional encryp-
tion (IPFE) scheme. An instantiation of M-Sel from a DDH-based IPFE was also
presented. The latter instantiation has short and constant size decryption key
thus, suitable for key storage in lightweight devices in the context of Internet of
Things (IoT).

Acknowledgements. We would like to thank the anonymous reviewers for providing
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Abstract. In this work, we explore the notion of deniability in public-
key authenticated quantum key exchange (QKE), which allows two par-
ties to establish a shared secret key without leaving any evidence that
would bind a session to either party. The deniability property is expressed
in terms of being able to simulate the transcripts of a protocol. The
ability to deny a message or an action has applications ranging from
secure messaging to secure e-voting and whistle-blowing. While quite
well-established in classical cryptography, it remains largely unexplored
in the quantum setting. Here, we first present a natural extension of clas-
sical definitions in the simulation paradigm to the setting of quantum
computation and formalize the requirements for a deniable QKE scheme.
We then prove that the BB84 variant of QKE, when authenticated using
a strong designated verifier signature scheme, satisfies deniability and,
finally, propose a concrete instantiation.

Keywords: Public-key Cryptography · Deniability · Quantum
Cryptography · Post-Quantum Cryptography · Quantum Key
Distribution · Authenticated Quantum Key Exchange ·
Designated-Verifier Signatures

1 Introduction

Among the wide variety of anticipated cybersecurity challenges, the possibility of
the emergence of scalable quantum computers poses a serious threat to our cur-
rent information security infrastructure and has been receiving increasingly more
attention from the information security community over the past few decades.
While quantum computing would have its advantages, Shor’s algorithm [16] for
efficiently computing discrete logarithms and performing integer factorization
showed that quantum computing is a double-edged sword as it can be equally dam-
aging when used for the purpose of compromising public-key (PK) cryptosystems
that guarantee the security of today’s modern communication systems.

These concerns are perhaps best exemplified by recent advances that have
prompted calls by the National Security Agency (NSA) for transitioning to post-
quantum (PQ) secure cryptosystems and the call for PQ secure proposals, ini-
tiated by the National Institute of Standards and Technology (NIST) as part of
a standardization process for post-quantum algorithms [17].
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On the other hand, Quantum Key Exchange (QKE), provides security with-
out relying on computational assumptions as in PQ key exchange protocols,
but at the cost of developing new infrastructure to support quantum chan-
nels. Whereas such quantum communication infrastructures for a long time were
mostly of academic interest, both terrestrial and satellite networks are now being
deployed in practice and planned at large scale, see e.g. [7,10].

Deniability constitutes a subtle and fundamental concept in cryptography
that has many applications ranging from secure messaging (e.g., the Signal proto-
col) to coercion-resistance in secure e-voting to deniable transmission and storage
in the context of data breaches. On a more fundamental and theoretical level,
deniability shares an intimate connection with incoercible secure multi-party
computation [5]. Yet, it has received very little attention in the quantum setting
and thus presents a wealth of open questions.

Attempts at providing security against quantum adversaries can be broken
down into two classes, namely those that largely rely on classical constructions
that are conjectured to be quantum-secure, often classified as post-quantum
cryptography, e.g., lattice-based cryptography, and those that make use of quan-
tum information processing and thus fall in the realm of quantum cryptography,
such as quantum key exchange. In both cases, and perhaps more surprisingly in
the context of quantum cryptography, the notion of deniability has been largely
neglected to the extent that there exist only a few works on this topic in the
literature [1–3].

In this work, we focus on deniability in public-key authenticated QKE in
the simulation paradigm wherein a scheme is considered to be deniable if its
transcripts can be simulated. This becomes relevant in a setting with two parties
A and B, in which one of the parties is dishonest (i.e., the adversary M) and
the goal is to prevent either one from proving to a judge that they exchanged
a key with a specific party in a given session. Now, if the transcript obtained
by M could have been simulated without having access to the honest party’s
secret key, the resulting evidence cannot convincingly associate a specific party
with a given session. Note that in the case of deniable key exchange, not only
the communication but also the resulting session secret should be simulatable
[8].

The particular choice of considering public-key authentication for QKE is
motivated by the following observations. As already pointed out in the seminal
work of Di Raimondo et al. [8] on deniable authenticated key exchange for classi-
cal schemes, deniability for symmetric key exchange protocols in the simulation
paradigm is trivially satisfied. Secondly, to cope with the criticism that uncon-
ditionally secure QKE requires pre-shared symmetric keys for authentication, a
problem that scales quadratically with the number of connected users, the idea
of using public-key authentication algorithms for performing QKE with everlast-
ing security had been considered for quite a while until its security was formally
proved by Mosca et al. in [13]. For a detailed analysis of PK-authenticated QKE,
we refer the reader to [11].
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While PK-authenticated QKE solves the problem of pre-shared keys, the
signatures also introduce non-repudiation. In this paper, we demonstrate how a
deniable QKE can be constructed in the PK setting, in order to regain the deni-
ability from the symmetric setting, by authenticating via quantum-safe strong
designated verifier signatures (SDVS), e.g. obtained from lattices as in [14], thus
being potentially quantum secure. This implies that the resulting deniable QKE
scheme would provide everlasting security, i.e., unless the adversary breaks the
authentication during a limited window of attack, the derived shared secret
key retains information theoretic security. Note that due to a unique property
of QKE, namely that of non-attributability [11] (i.e., the final secret key being
completely independent of the classical communication and the initial pre-shared
key), the simulatability of the classical communication and that of the secret key
itself can be considered separately. The latter follows from the inherent prop-
erties of QKE and, to establish the deniability of our solution, it thus suffices
to show that the transcript of the authentication can be simulated, i.e., the
authentication is deniable.

Related Work. Compared to classical cryptography, deniability remains largely
unexplored in the context of quantum and post-quantum cryptography. More
specifically, in a paper by Beaver [3] focusing on a setting motivated by an ear-
lier work by Canetti et al. [6] on deniable encryption, it is mainly argued that
QKE protocols are not necessarily deniable. In a related work [2], Atashpendar
et al. revisit Beaver’s analysis and formalize the problem of coercer-deniability
in terms of the indistinguishability of coercer views, which considers a scenario
wherein the adversary can demand that the honest parties reveal their private
randomness in order to verify whether or not their revealed secret key is real
or fake. They also establish a link between covert quantum communication and
deniability, as well as a relation between entanglement distillation and informa-
tion theoretic deniability.

However, [2] concludes with a number of open questions, including an analysis
of public-key authenticated QKE in the simulation paradigm, which is the focus
of our work.

The work of Canetti et al. [6] led to a long series of works on deniability
for various cryptographic primitives, including a formalization of deniability for
authenticated key exchange in the simulation paradigm by Di Raimondo et al.
[8], which in turn was an extension of the definitional work of Dwork et al. [9]
on deniable authentication in the context of zero-knowledge proofs. We refer the
reader to [1,2] and references therein for more details on deniability in cryptog-
raphy.

Contributions. We adopt the security framework for authenticated QKE given
in [13] and adapt the classical definition of deniable AKEs [8] to the quantum
setting for public-key authenticated QKE and formulate it in terms of the sim-
ulatability of protocol transcripts in a game-based setting.

We prove in Theorem1 that a public-key authenticated QKE protocol sat-
isfies deniability when authenticated using an SDVS with non-transferability
against quantum adversaries. We also propose the first concrete instance of a
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deniable PK-authenticated QKE, which is a BB84 variant whose deniability fol-
lows as a corollary of Theorem 1.

2 Preliminaries

Notation. We write y ← A(x) to denote that algorithm A outputs y on input x
and use ⊥ ← A to denote that A produced an error. We write v to denote a vector
of values and vi to denote the i-th value of this vector. We use κ ∈ N to denote
the security parameter, and implicitly assume it is passed to all algorithms of
schemes in unary, i.e. in the form 1κ. Lastly, we use f(n) ≤ negl(n) to denote
that a function f is negligible, which means that f(n)−1 is superpolynomial. We
use [n] to denote the set {0, . . . , n}.

While we deal with notions from quantum computing, their understanding
is not critical to the work and thus we refer to [19] for an overview of quantum
computing. We adopt the standard bra-ket notation from quantum computing.
We denote pure states with |·〉 and mixed states with ρ. We use (+) to denote
the {|0〉, |1〉} basis and (×) to denote the {|+〉, |−〉} basis. We denote the class
of quantum polynomial-time algorithms as QPT (the quantum equivalent of
PPT) and use D1 ≈q D2 to denote that two probability distributions cannot be
distinguished with more than negligible probability by any QPT distinguisher.

Strong Designated Verifier Signatures (SDVS). The classical communica-
tion in authenticated QKE poses a challenge for deniability because a receiver
must be able to verify that a message came from the correct sender, but this
task must be impossible for any eavesdropper. Note that we focus explicitly on
the setting of public-key authentication, which presents the problem that a stan-
dard signature, verifiable by anyone with the signer’s public key, would prove
the involvement of the signer. In the symmetric-key setting, this problem would
be trivially solved, as any signature can only be verified by the signer and the
intended recipient, and either party can create the same signatures. To achieve
these same properties in the public-key setting, we make use of strong designated
verifier signatures.

Definition 1. A designated verifier signature scheme (DVS scheme) is a tuple
(Setup,KeyGen,Sign,Verify,Simulate) of PPT algorithms such that:

– Setup: Produces the public parameters of a scheme, params. It is implicitly
assumed that these parameters are passed to the following algorithms.

– KeyGen: Produces a keypair (pk, sk).
– SignS→V (m) := Sign(skS , pkS , pkV ,m): Upon input of a sender’s keypair, a

verifier’s public key, and a message m, produces a signature σ.
– VerifyS→V (m,σ) := Verify(skV , pkV , pkS ,m, σ): Upon input of a verifier’s key-

pair, a sender’s public key, a message m, and a signature σ, outputs the
validity of σ (a boolean value).

– SimulateS→V (m) := Simulate(skV , pkV , pkS ,m): Upon input of a verifier’s
keypair, a sender’s public key, and a message m, produces a signature σ′.
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We list some relevant properties of DVS schemes, but refer to [12,15]
for more details. Correctness of a DVS means that for any valid signature
σ ← SignS→V (m), VerifyS→V (m,σ) outputs 1 with overwhelming probability.
Unforgeability of a DVS means that only the signer and the verifier can cre-
ate a valid signature between them. Non-transferability of a DVS ensures that
no party can distinguish between valid signatures and their simulations. Lastly,
sender-privacy of an SDVS guarantees that only the signer and the verifier know
the signer’s identity and differentiates strong designated verifier schemes from
normal designated verifier schemes. Since these last two properties will be used
in this work, we give the formal definition in a game-based setting.

Definition 2. A DVS scheme Π = (KeyGen,Sign,Verify,Simulate) is computa-
tionally non-transferable if for any adversary A,

AdvNTΠ,A(κ) := Pr
b∈{0,1}

[
GNT

Π,A(κ, b) = b
] − 1

2
≤ negl(κ),

where the game GNT
Π,A is defined as follows:

Algorithm 1: GNT
Π,A(κ, b)

1 params ← Setup
2 (pkS , skS) ← KeyGen
3 (pkV , skV ) ← KeyGen
4 (m∗, state) ← A(1, params, pkS , skS , pkV , skV )
5 if b = 0 then
6 σ∗ = SignS→V (m∗)

7 else
8 σ∗ = SimulateS→V (m∗)

9 b′ ← A(2, state, σ∗)
10 Output b′

For sender-privacy, we explicitly choose a definition that has been adapted
to work in the n + 1-party setting. For the interested reader we refer to [20] for
more information on this choice.

Definition 3 ([20]). A DVS scheme Π is sender-private, if for any adversary
A and any n,

AdvSendPrivΠ,A (κ, n) := Pr
c←{0,1}

[
GSendPriv

Π,A (κ, n, c) = c
] − 1

2
≤ negl(κ),

where GSendPriv
Π,A is defined as in Algorithm 2, using the oracles defined right below

the algorithm.
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Algorithm 2: GSendPriv
Π,A (κ, n, c)

1 params ← Setup
2 (pkP0

, skP0) ← KeyGen; . . . ; (pkPn
, skPn) ← KeyGen

3 (m∗, state) ← AOsign,O(1)
veri,Osim(1, params, pkP0

, . . . , pkPn
)

4 σ∗ = SignPc→Pn(m∗)

5 c′ ← AOsign,O(2)
veri,Osim(2, state, σ∗)

6 Output c′

– Osign: On input (mi, s, v) returns σi := SignPs→Pv
(mi) if s, v ∈ [n] and ⊥

otherwise.
– Osim: On input (mi, s, v) returns σi := SimulatePs→Pv

(mi) if s, v ∈ [n] and
⊥ otherwise.

– O(1)
veri: On input (mi, σi, s, v) returns VerifyPs→Pv

(mi, σi) if s, v ∈ [n] and ⊥
otherwise.

– O(2)
veri: On input (mi, σi, s, v) returns VerifyPs→Pv

(mi, σi) if s, v ∈ [n] and
σi �= σ∗, and ⊥ otherwise.

In this paper, we will make use of the SDVS scheme proposed in [14], called
SUSDVS, which satisfies the above properties when assuming some properties of
lattices explained in Sect. 3.

BB84. In order to give a specific instantiation of a deniable QKE algorithm,
we will use the BB84 protocol [4]. In Algorithm 3, we describe the protocol
abstractly, to give an intuition. The exact implementation of the protocol in our
chosen model can be found in AppendixA. For both privacy amplification and
information reconciliation, we will use 2-universal hash functions, as described
in [13].

3 Framework

Security Model. We use the QKD model from [13] to model the combination
of classical and quantum communication, for which we provide a brief overview
here. Each party in this model has access to both a classical and a quantum
Turing machine, connected by a private tape. Furthermore, the classical machine
has access to a private randomness tape and both machines can communicate
to other parties over public tapes. Two or more parties may execute a protocol,
which is specified as a series of subroutines. Each subroutine is triggered by an
activation over one of the tapes. In AppendixA, we present an overview of the
exact activations that can be performed.

Modeling the Adversary. In our work, the main objective of the adversary
is to prove the involvement of a party in a key exchange protocol, e.g. to prove
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Algorithm 3: BB84 with protection against a δ error rate
1 Alice generates two random bit strings a, b ∈ {0, 1}n1 , encodes ai into |ψi〉 in

basis (+) if bi = 0 and in (×) otherwise, and ∀i ∈ [1, |a|] sends |ψi〉 to Bob.
2 Bob generates a random bit string b′ ∈ {0, 1}n1 and upon receiving the qubits,

measures |ψi〉 in (+) or (×) according to b′
i to obtain a′

i.
3 Bob announces b′, Alice announces b, and both discard a′

i where bi �= b′
i, ending

up with n2 bits.
4 Alice picks a set of check bits at random from a by uniformly including or

excluding each bit and announces it. Let kA be the non-check bits of a and kB

be the non-check bits of a′.
5 Alice and Bob compare their check bits and abort if the error exceeds a

predefined threshold δ.
6 Alice constructs a 2-universal hash functions F and computes F ′ = F (kA).
7 Alice constructs a 2-universal hash functions G and a random permutation P

and announces F, F ′, P , and G.
8 Bob uses F and F ′ to correct kB to k′

B .
9 Alice and Bob use G(P (kA)) and G(P (k′

B)) respectively as their final secret key.

that A talked to B. The model, as presented in [13], was mainly used for an
eavesdropping adversary, but in our case, we will consider the adversary to always
be the initiator (A) or responder (B) in a protocol. The reason for this is that
if no adversary M can prove that A talked to M, then surely M can also not
prove that A talked to B. This argument is also made in [8], although we provide
some alternate views on this in the discussion.

Concretely, this means we model the adversary as a quantum and classical
Turing machine, who can perform the QKE protocol with any number of honest
parties Pi. The adversary can be the initiator or responder in any of these inter-
actions. For any adversary M, we write ViewM to mean the complete contents
of M’s memory at the end of execution, including all keys that were established
with the other parties.

Security Assumptions. The security and deniability of the particular scheme
we present rely on several assumptions regarding the quantum safeness of lattice
problems, inherited from the SDVS scheme used. In particular, these are the SIS
and ISIS problems, which are thought to be quantum secure. In AppendixB we
present the exact parameters needed.

4 Deniability

We first provide a natural extension of the classical definition of deniability given
in [8] to the quantum setting, by making both the adversary and the distinguisher
a QPT algorithm. In the following definition, the adversary M is given access
to the public keys of an arbitrary number of honest parties, with whom M can
interact. M is also given an auxiliary input from the set AUX. The simulator is
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given all the same inputs as M, including the same classical randomness, but
cannot interact with the honest parties.

Definition 4. A QKE scheme (AKG, ΣI , ΣR) is deniable w.r.t. AUX if for any
QPT adversary M there exists a QPT simulator SIMM s.t.

∀κ ∈ N, aux ∈ AUX : Real(κ, aux) ≈q Sim(κ, aux),

where

Real(κ, aux) = [(ski, pki) ← AKG(1κ); (aux,pk,ViewM(pk, aux))]
Sim(κ, aux) = [(ski, pki) ← AKG(1κ); (aux,pk,SIMM(pk, aux))].

Definition 5. Given a public-key signature scheme (AKG,Sign,Verify), we
define the QKE scheme AuthBB := (AKG, ΣI , ΣR) (authenticated BB84), where
ΣI and ΣR are as in Algorithm5 and Algorithm 6 respectively, which can be
found in AppendixA. This is the implementation of BB84 as described before,
in the above-presented model and using the public-key signature scheme for the
classical authentication.

We restate the definition of deniability, in order to relate deniability to the
properties of SDVS, which are presented in a game-based setting.

Definition 6 (Restatement of Definition 4 with AUX = {0}). A QKE sc-
heme Π = (AKG, ΣI , ΣR) is deniable if for any QPT adversary M there exists
a QPT simulator SIMM that does not interact with any party s.t. no QPT dis-
tinguisher F can achieve non-negligible advantage AdvDen

Π,F,M,SIMM(κ, n), which
is the advantage in winning the game GDen

Π,F,M,SIMM as defined in Algorithm 4.

Algorithm 4: GDen
Π,F,M,SIMM(κ, n, b)

1 (pkP0
, skP0) ← AKG; . . . ; (pkPn−1

, skPn−1) ← AKG

2 Let pk = pkP0
. . . pkPn−1

3 if b = 0 then
4 b′ ← F(ViewM(pk), pk)

5 else
6 b′ ← F(SIMM(pk), pk)

7 Output b′

The advantage of F in this game is defined as:

AdvDen
Π,F,M,SIMM(κ, n) := Pr

b←{0,1}
[
GDen

Π,F,M,SIMM(κ, n, b) = b
] − 1

2
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4.1 Deniable PK-Authenticated BB84

In the following theorem, we provide a concrete scheme that satisfies our version
of deniability, however we emphasize that the precise schemes chosen for this (in
particular SUSDVS) are simply examples and not critical to the satisfiability of
the definition, another possibility could be the scheme presented in [18].

Theorem 1. AuthBB with authentication scheme ΠSDVS is deniable if ΠSDVS

is an SDVS with non-transferability and sender-privacy against quantum adver-
saries.

Proof. Fix an arbitrary M. This adversary M can generate many different key-
pairs to perform protocol sessions with the honest parties, or even use public
keys for which they do not know the private key. However, it is not the goal of
the adversary to impersonate or trick any of the honest parties, but simply to
convince a third-party that they interacted with one of the honest parties. Thus,
w.l.o.g. we assume that, for each session, the adversary either uses a keypair
(pkM, skM) for which M knows the secret key or uses pk′

M for which M does
not know the private key. SIMM simulates M and all Pi, except:

(*) For each Pi, generate a keypair (pk′
Pi

, sk′
Pi

).
(1) Each call of SignPi→M is replaced with SimulatePi→M.
(2) Each call of Sign(skPi

, pkPi
, pk′

M, x) is replaced with Sign(sk′
Pi

, pk′
Pi

, pk′
M, x).

(3) Each call of Verify is replaced with 
.

By definition, each Pi performs only honest executions of the protocol, thus
only uses its private key in Sign and Verify. Furthermore, each Sign using skPi

is replaced with either a Sign using sk′
Pi

or a Simulate, which does not make use
of skPi

. Each Verify is replaced with a static 
, which also does not use skPi
.

This means SIMM can run on input pk, i.e. simulate each party Pi without the
knowledge of skPi

.
First we show that change (1) is undetectable by an adversary. Define P

(1)
i

to be the simulation of Pi after modification (1) and SIM
(1)
M to be the simulation

of M interacting with P
(1)
i instead of Pi. Let Π be AuthBB using ΠSDVS. For

any fixed distinguisher F , let Hstart be the b = 0 instance of GDen

Π,F,M,SIM
(1)
M

and

Hend be the b = 1 instance. Let H0, . . . ,Hm be a series of hybrids such that
H0 = Hstart, Hm = Hend and each step Hk → Hk+1 replaces one SignPi→M(x)
with SimulatePi→M(x).

Suppose, for some fixed k, there exists a QPT distinguisher D that can dis-
tinguish between Hk and Hk+1, where one SignPi→M(x) is replaced in the step
Hk → Hk+1. We use this distinguisher to build an adversary A that breaks the
non-transferability of ΠSDVS, as follows:

– A receives (1, params, pkS , skS , pkV , skV ).
– A runs Hk, but replaces (pkPi

, skPi
, pkM, skM) with (pkS , skS , pkV , skV )

before running F .
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– A stops Hk before the replaced SignPi→M(x) call and outputs (x, state), where
state is the state of A at this point.

– A receives (2, state, σ∗) and restores from state.
– A replaces SignPi→M(x) with σ∗ and continues running Hk.
– A runs D and outputs what D outputs.

Observe that in the b = 0 case of GNT
ΠSDVS,A, the Sign is replaced by SignS→V (x)

and in the b = 1 case it is replaced by SimulateS→V (x). Furthermore, observe
that the insertion of the (pkS , skS , pkV , skV ) keypairs is only a relabeling of the
keypairs, but ensures that the b = 0 case of GNT

ΠSDVS,A is equal to Hk and the
b = 1 case equal to Hk+1, thus the distinguishing probability of D is the same
as the winning probability of A in the GNT

ΠSDVS,A game, which would imply that
AdvNTΠSDVS,A is non-negligible. Since this is a contradiction, it must be the case
that no such D exists.

For modification (2), the argument is similar. Suppose, in a chain of hybrids
similar to the one above, there are two hybrids H and H′, where H′ is the result
of replacing one call of Sign(skPi

, pkPi
, pk′

M, x) with Sign(sk′
Pi

, pk′
Pi

, pk′
M, x) in

H and some QPT distinguisher D can distinguish between them. We use this
distinguisher to build an adversary B that breaks the n+2-party sender-privacy
of ΠSDVS, as follows:

– B receives (1, params, pk0, . . . , pkn+1).
– B runs H, but replaces (pkPi

, pk′
Pi

, pkP0
, . . . , pkPi−1

, pkPi+1
, . . . , pkPn−1

, pk′
M)

with (pk0, . . . , pkn+1) before running F . All Sign, Simulate and Verify calls
involving some Pj are performed by oracle calls.

– B stops H before the Sign(skPi
, pkPi

, pk′
M, x) call that will be replaced in H′

and outputs (x, state), where state is the state of A at this point.
– B receives (2, state, σ∗) and restores from state.
– B replaces Sign(skPi

, pkPi
, pk′

M, x) with σ∗ and continues running H.
– B runs D and outputs what D outputs.

Observe that in the b = 0 case of GSendPriv
ΠSDVS,B, Sign is replaced by

Sign(skPi
, pkPi

, pk′
M, x) and in the b = 1 case it is replaced by Sign(sk′

Pi
,

pk′
Pi

, pk′
M, x). Furthermore, observe that the replacement of the public keys for

all honest parties and pk′
Pi

is simply a relabeling, since they were all honestly
generated. The only public key that is not honestly generated was pk′

M, how-
ever since the adversary, by definition, does not know the corresponding private
key the replacement is undetectable to the adversary. The replacements of the
keys ensures that the b = 0 case of GSendPriv

ΠSDVS,B is equal to H and the b = 1 case
equal to H′, thus the distinguishing probability of D is the same as the winning
probability of B in the GSendPriv

ΠSDVS,B game, which would imply that AdvSendPrivΠSDVS,B is
non-negligible. Since this is a contradiction, it must be the case that no such D
exists.

For modification (3), observe that both the initiator and the responder perform
their verification after having done all their communication. This means that it
is impossible for M to prove to a third party whether the key exchange was
accepted or rejected by Pi. Any communication between M and Pi after the
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protocol using the newly established key can be simulated, as the simulator
would also have the key. Modification (3) ensures that, for the simulator, even
invalid signatures are accepted by the simulated honest parties, but this change
cannot alter the behaviour of the simulated adversary as the adversary cannot
detect this change. In fact, for each session the simulated honest party could
stop their execution after the last message is sent since the rest of the execution
is private and does not influence future sessions.

�
Corollary 1. Under Assumptions B1 and B2 defined in Appendix B, SUSDVS
(from [14]) is an SDVS with non-transferability against quantum adversaries,
thus AuthBB using SUSDVS is deniable in the standard model.

4.2 Eavesdropping on Interactions Between Honest Parties

In Theorem 1 we assume that the honest parties only perform QKE sessions with
the adversary, arguing that the adversary has no more power as a third-party
observer than she has as one of the participants. This assumption was also made
in [8] and we consider it fundamentally sound. However, one can consider what
happens if we relax it and give the adversary the ability to force two honest
parties to perform a QKE session. The reason that this setting is interesting, is
that the simulator is no longer able to create a signature between two honest
parties, as doing so requires the private key of either of the honest parties. E.g.
if two-party ring signatures were used for authentication, then when Alice and
Bob communicate the adversary can prove that at least one of them was present,
which would defy deniability.

To solve this problem, one can use the sender-privacy property of an SDVS
scheme. The simulator simply generates a keypair for each simulated honest
party and uses this to sign any messages, still designating the verifier by their
original public key. Since all eavesdropped sessions are between honest parties,
the simulator can skip the verification of these signatures. The sender-privacy
property ensures that no third party can distinguish between these incorrect
signatures and any correct ones the adversary might have collected.

5 Discussion and Future Work

While the work presented here provides a firm basis for deniability in the quan-
tum setting, some obvious open problems remain. Firstly, our protocol delays all
authentication until the end. This is done to stop the adversary from intention-
ally sending an invalid signature to cause an abort, as the simulator would not
be able to perform the verification when simulating the honest parties. However,
this intentional abort can only be caused by the behaviour of the adversary,
which the simulator knows. Thus, intuitively deniability should be achievable
without this modification.

Furthermore, in the case of QKE, there is inherent independence between the
classical communication and the established key, meaning that the classical part
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of the transcript contains no information about the established key [13]. This
leads us to conjecture that using any deniable public-key authentication might
be enough to create a deniable QKE protocol.

Finally, we limit ourselves to the case where AUX = {0} for simplicity, how-
ever we conjecture that this restriction is not necessary and that the provided
proof extends to any AUX.
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A Appendix: The [13] Model

In this appendix we elaborate on the [13] model. The classical Turing machine
can receive the following activations:

– SendC(Ψ,msg): The Turing machine resumes the session with identifier Ψ
using msg as input. Ψ may also be a vector of session identifiers, where it
is clear from context which one belongs to the receiving party and which to
other parties.

– SendC(params, pid): When SendC is received without a session identifier it
indicates the start of a new protocol execution with public parameters params.

– Q2C(msg): This activation indicates a classical output of the quantum Turing
machine and activates the classical Turing machine with the most recent
session.

The quantum Turing machine has the following activations:

– SendQ(ρ): The quantum Turing machine activates with as input the state ρ.
– C2Q(msg): The quantum Turing machine is activated by the classical Turing

machine with message msg.

We use Ψ to denote ephemeral variables, which are variables that are bound
to a session. After each activation, the Turing machines may send activations
over their respective public channel and the private channel between them. At
the end of a session, the classical Turing machine of both parties outputs four
values:

– sk, the shared secret key established during this session, or ⊥ if execution
failed.

– pid, the identifier of the other party involved in this session.
– A vector v = (v0, . . . ), where each vi is a vector of labels of values.
– A vector u = (u0, . . . ), where each ui is a vector of labels of values.
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A protocol is correct if, when all messages are delivered without changes or
reordering, both parties output the same key sk and the same vector v. Each
classical value Ψd has a label 	(Ψd) and an adversary can partner a value by issu-
ing Partner(	(Ψd)) to learn the value corresponding to the label. An adversary
can also partner a session Ψ , learning the value sk if it has been output. Note
that if an adversary learns a value without partnering (through public commu-
nication, for example), this value remains unpartnered. A session Ψ is fresh as
long as every vi contains at least (the label of) one value that the adversary has
not partnered and the adversary has not partnered Ψ or any session Ψ ′ with the
same v and sk and, at the time of output, there is least one value in each ui

with which the adversary has not partnered. This signifies the main difference
between v and u: values in u pose no security risk if revealed after the key has
been established, but values in v do.

A.1 BB84 in This Model

In Algorithms 5 and 6 we present, respectively, the initiator and responder roles
in the [4] QKD protocol, following the [13] model.

B Appendix: Lattice Hardness Problems Needed for [14]

In this appendix, we briefly present the following assumptions, which are conjec-
tured to hold in the presence of quantum computers, but refer to [14] for their
precise statements. We use the following (simplified) parameters:

– |msg| is the length of the message being signed,
– κ is the security parameter,
– h = O(log κ)
– m = O(κh),
– q = poly(κ) is a sufficiently large number,
– l ≤ (p − 1)κ, where p is the smallest prime dividing q, and
– s = O(

√
κlh) · ω(

√
log κ)2 a sufficiently large parameter.

Definition 7 ([14]). Given a uniformly random matrix A ∈ Z
n×m
q and a syn-

drome u ∈ Z
n
q , the ISISq,m,β problem is to find a nonzero vector v ∈ Z

m such
that Av = u (mod q) and ‖v‖ ≤ β.

The SISq,m,β problem is the ISISq,m,β problem for u = 0.

Assumption B1. The SISq,m,β problem is hard for sufficiently large q =√
(|msg| + 4ms2)κ + ω(

√
log κ) and β =

√|msg| + 4ms2. The SISq,m,β prob-
lem and ISISq,m,β problem are hard for sufficiently large q = O(l3/2κ3 log5/2 κ) ·
ω(

√
log κ)6, m = O(κ log q), and β = s

√
2mO(lκ3/2k

3/2) · ω(
√

log κ)3.

Furthermore, we have the following assumption on the hardness of distin-
guishing lattices, where q is prime. Here DΛ⊥

w (A),s denotes the distribution of
sampling from {z ∈ Z

κ | Az = w(mod q)} according to a Gaussian distribution.
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Algorithm 5: ΣI

Upon Activation: SendC(start, initiator, R)
1.1 Create a new session Ψ I with responder identifier R

1.2 Read n1 random bits Ψ I
dIR

1.3 Read n1 random bits Ψ I
bI

1.4 Send activation C2Q(Ψ I
dIR, Ψ I

bI , R)

1.5 Send activation SendC(Ψ I , start, responder, I) to R

Upon Activation: C2Q(Ψ I
dIR, Ψ I

bI , R)
2.1 Prepare ρ to be the bitwise encoding of Ψ I

dIR in the (+) or (×) basis if the

corresponding bit of Ψ I
bI is 0 or 1 respectively

2.2 Send activation SendQ(ρ) to R

Upon Activation: SendC(Ψ I , ΨR, ΨR
bR)

3.1 Discard all bit positions from Ψ I
dIR for which Ψ I

bI is not equal to ΨR
bR; Let n2

denote the amount of bits left in Ψ I
dIR

3.2 Read n2 random bits Ψ I
indIR; Let Ψ I

chkIR be the substring of Ψ I
dIR for which the

bits of Ψ I
indIR are 1 and Ψ I

kIR the substring for which they are 0; Let n3 be the
length of Ψ I

kIR

3.3 Send activation SendC(Ψ I , ΨR, Ψ I
bI , Ψ

I
indIR, Ψ I

chkIR) to R

Upon Activation: SendC(Ψ I , ΨR, ε, σR)
4.1 Read random bits Ψ I

F to construct a 2-universal hash function F and compute

F ′ ← F (Ψ I
kIR)

4.2 Read random bits Ψ I
P,G to construct a 2-universal hash function G and a

random permutation P and compute Ψ I
skIR ← G(P (Ψ I

kIR))

4.3 Compute σI ← Sign(ΨI , ΨR, Ψ I
bI , Ψ

I
indIR, Ψ I

chkIR, F, F ′, P, G, I)

4.4 Send activation SendC(Ψ I , ΨR, F, F ′, P, G, σI) to R

4.5 Abort if Verify(σR, (Ψ I , ΨR, ΨR
bR, ε, R)) fails

4.6 Output (sk = Ψ I
skIR, pid = R, v =

(�(Ψ I
dIR), �(ΨR

dIR), �(Ψ I
bI), �(Ψ

R
bR), �(Ψ I

F ), �(Ψ I
P,G)),u = (skI))

Assumption B2 (Assumption 2.1 in [14]). Let m1,m2 = O(κ log q), A,R
uniform random matrices from Z

κ×m1
q , C0, . . . , Cl uniform random matrices

from Z
κ×m2
q , w a fixed vector from Z

κ
q , μ ∈ {0, 1}l a secret bitstring, and

Cμ = C0 +
∑l

j=1 μjCj, then it is hard to distinguish between DΛ⊥
w (A|Cµ),s and

DΛ⊥
w (R|Cµ),s without any information on μ.
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Algorithm 6: ΣR

Upon Activation: SendC(Ψ I , start, responder, R)
1.1 Create a new session ΨR with initiator identifier I

1.2 Read n1 random bits ΨR
bR

1.3 Send activation C2Q(ΨR
bR)

Upon Activation: C2Q(ΨR
bR) combined with SendQ(ρ)

2.1 Set ΨR
dIR to be the qubit-wise measurement of ρ in the (+) or (×) basis if the

corresponding bit of ΨR
bR is 0 or 1 respectively

2.2 Send activation Q2C(ΨR
dIR)

Upon Activation: Q2C(ΨR
dIR)

3.1 Send activation SendC(Ψ I , ΨR, ΨR
bR) to I

Upon Activation: SendC(Ψ I , ΨR, Ψ I
bI , Ψ

I
indIR, Ψ I

chkIR)
4.1 Discard all bit positions from ΨR

dIR for which Ψ I
bI is not equal to ΨR

bR

4.2 Let ΨR
chkIR be the substring of ΨR

dIR for which the bits of Ψ I
indIR are 1 and ΨR

kIR

the substring for which they are 0

4.3 Let ε be the proportion of bits of Ψ I
chkIR that do not match ΨR

chkIR; abort if
ε > δ, where δ is the error rate parameter.

4.4 Compute σR ← Sign(Ψ I , ΨR, ΨR
bR, ε, R)

4.5 Send activation SendC(Ψ I , ΨR, ε, σR) to I

Upon Activation: SendC(Ψ I , ΨR, F, F ′, P, G, σI)
5.1 Abort if Verify(σI , (ΨI , ΨR, Ψ I

bI , Ψ
I
indIR, Ψ I

chkIR, F, F ′, P, G, I)) fails

5.2 Use F and F ′ to correct ΨR
kIR to ΨR

kIR′

5.3 Compute ΨR
skIR ← G(P (ΨR

kIR′))

5.4 Output (sk = ΨR
skIR, pid = I, v =

(�(Ψ I
dIR), �(ΨR

dIR), �(Ψ I
bI), �(Ψ

R
bR), �(Ψ I

F ), �(Ψ I
P,G)),u = (skR))
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Abstract. National and cross-border e-commerce deliveries require
cooperation between several parties as it involves, in addition to the
transport of products, complex procedures and financial transactions.
In this context, several issues need to be tackled such as personaliza-
tion of the delivery, product information traceability (track and trace),
logging and auditing of important actions to avoid disputes between
stakeholders, and workflow automation as regards frequently repeated
processes. The unique features of Blockchain technology allowed the
usage of Blockchain for increasing transparency and accountability in
the supply chain and e-commerce sector. In this paper, we present a
blockchain-based system that attempts to deal with the aforementioned
issues that arise in national and cross-border e-commerce deliveries thus
boosting transparency, traceability, accountability and overall security
in such contexts.

Keywords: blockchain · e-commerce · transparency · security · smart
contracts · IoT

1 Introduction

The need for security and transparency in the transportation of products is
growing more and more nowadays. The transport of packages through courier
companies requires cooperation between their stakeholders as it involves except
for product transfer, complex processes, and financial transactions. The com-
plexities are even more prominent in cross-border transportations. There are
plenty of cases in that packages have been lost or damaged especially in cross-
border transports where a lot of intermediate links are involved, without finding
the real culprit. Moreover, it is often the delivery of the packages to be dramat-
ically delayed or their packaging be damaged. It is also frequent that recipients
in critical deliveries cannot be authenticated in an indisputable manner with
current authentication mechanisms such as hand-written signatures or usage of
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Personal Identification Number (PIN). Another common issue is the distortion of
temperature-sensitive packages due to their increase in temperature during their
transport. Non automated frequently repeated processes increase the workload
of employees in courier companies, increase paper usage thus having bad ecolog-
ical impact, and do not allow efficient management of transportation resources
(e.g. tracks that may not contain enough load). The reasons mentioned above
have led to customer dissatisfaction, the tension between stakeholders, and the
inefficient management of resources in courier companies. The specific features
of Blockchain technology render it suitable for applications in supply chain man-
agement and e-commerce as it can solve many of the aforementioned problems.
Firstly, it allows all the companies that participate in cross-border transport of
products to share a common view of data since each block in the blockchain
includes a set of transactions, and when a new transaction is added to a block,
a record of the transaction is added to the ledger of every participant that par-
ticipates in the Blockchain network. As such, complex processes are more eas-
ily tracked since there is no need to view/update common information in each
and every individual information system of the companies involved. Moreover,
Blockchain is a distributed ledger technology that supports recording informa-
tion in an immutable way. As such, by logging critical actions to the blockchain
it can be used as a source of truth when there are disputes between stakeholders
and ensure accountability. The logging in the Blockchain system can include, as
the most important actions, such as the delivery, the receipt, and the return of
a product. Besides, logging the checkpoints and the corresponding time through
which the package passes ensures transparency and traceability during the prod-
uct transportation. Furthermore, in the case of temperature-sensitive packages,
the temperature exceedance (if any) as well as the id of the IoT thermal device
performing the measurement, can be recorded in the system. This will have as
an outcome the control of the product at all times and the reduction of lost or
damaged packages. What is more, Blockchain can provide the public key infras-
tructure and digital signature through which authenticity of the data signed can
be verified. Using the Blockchain Public key infrastructure, recipients in critical
deliveries can be authenticated in an indisputable manner by submitting trans-
actions that include their digital signatures with them. Besides, smart contracts
are supported by most of the modern Blockchain Platforms. Smart contracts are
scripts that can automate processes and be executed based on a predefined set
of rules agreed upon by the involved stakeholders. Many of the aforementioned
non automated frequently repeated processes can be automated by leveraging
smart contracts. In this paper, we present our contribution, a blockchain-based
system that aims to provide an entire solution regarding secure and transparent
transactions in e-commerce deliveries by tackling one by one the aforementioned
problems. It should be noted that the proposed system has been validated against
four real business scenarios in frames of the TRANSFARENCY Epanek project:

1. Personalised Delivery: In critical deliveries, the recipient should be authenti-
cated in an indisputable way. Current authentication mechanisms for signing
the delivery of a product such as hand-written signatures or usage of Personal
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Identification Number (PIN) are not so efficient. Blockchain uses Public Key
Infrastructure (PKI) in order to allow all clients to sign the transactions that
they submit to the Blockchain network with their cryptographic credentials.
Submitting a signed transaction upon the receipt of a product solves the
problem of the personalization of a delivery in an efficient way. In the case
that the Recipient cannot receive the product on their own, they can change
the name and the address of the Recipient and let the new Recipient sign in
the same way using Blockchain.

2. Track and trace the progress of a product transportation: The customer will
have the chance to monitor the package when passing through checkpoints
to reduce the chance of being lost or damaged. The passage of checkpoints
and the time that it takes place will be recorded in the blockchain platform
to ensure transparency and traceability.

3. Logging and auditing of critical actions in terms of security: The critical
actions like delivery, receipt and return of a product will be logged in the
blockchain network so as to allow the resolution of conflicts between stake-
holders and to ensure accountability.

4. Workflow automation: The automation of repetitive actions in transporta-
tion companies has several benefits such as, reduction of transportation time,
fewer mistakes, and overall better resources management of the courier com-
panies. Moreover, it will have positive ecological impact by reducing paper
consumption. The proposed system leverages smart contracts in order to sup-
port automation as regards the following processes:
(a) The automatic billing of the recipient in cases of non-return of defective

products within the agreed period of time
(b) The assurance of payment of the intermediate companies involved in the

cross-border transportations by ensuring the Proof Of Delivery of the
product to all intermediate courier companies using Blockchain

(c) The coordination of the courier companies involved in cross-border trans-
portations in order to reduce the means of transport traveling without
(sufficient) load at the cross-border level, so as to reduce the required
time of transport procedures.

(d) The Control of temperature-sensitive packets using IoT devices: There
are packages whose temperature must be within certain limits through-
out the shipment. For this reason, thermal IoT devices will be placed
inside the packages to measure the temperature at any time. In case the
temperature exceeds the permissible limits, the recipient and the sender
will be automatically notified so that they can take informed decisions
(e.g. the recipient may not be willing to receive the product), the sys-
tem will automatically issue a suggestion to the courier company as to
whether the recipient should be charged or not, and the exceedance of
temperature will be regarded as a critical action and as such it will be
recorded in the blockchain platform.

The remainder of this paper is structured as follows. In Sect. 2 we present
similar works that have been implemented in the fields of our business cases. In



116 A. Theodouli et al.

Sect. 3 we present the design of the proposed blockchain-based system including
business scenarios, users involved, and system architecture, while in Sect. 4 we
present the implementation details with focus on the description of the smart
contracts. Finally, Sect. 5 concludes the paper.

2 Related Work

This section describes previous works related to the business scenarios against
which our system was validated, namely: a) track and trace b) logging and
auditing c) workflow automation. To the authors’ knowledge, there are no papers
in personalised delivery using Blockchain and this constitutes a novelty of this
work.

2.1 Track and Trace Using Blockchain

1. S. Terzi et al. [1] describe how Blockchain technology can be implemented in
the logging and tracing of the ingredients from the time they were shipped to
the time they were purchased by the customers. This will prevent the falsifica-
tion of many products such as medicines and electronics while it provides the
possibility of monitoring them in a short time. Furthermore, it describes how
authentication works for users who maintain an identity on the Blockchain
network. Undoubtedly, Blockchain can guarantee insurance, uprightness, and
responsibility in the supply chain, logistics, and multi-level agile manufactur-
ing systems.

2. Khaled Salah et al. [2] present a solution for monitoring and detecting soy-
beans throughout the agricultural supply chain. The basis of the implemen-
tation is the Ethereum Blockchain platform and smart contracts which con-
tribute to the management and control of all interactions and transactions
between involved participants in the supply chain ecosystem. All transactions
are recorded and stored in the Blockchain immutable ledger and then linked
to a decentralized file system (IPFS) for transparency, security, and reliability.

2.2 Logging and Auditing Using Blockchain

1. Konstantinos Moschou et al. [3] present a methodology focusing on the eval-
uation of the performance of transactions by two different processors for the
same use case and for the same type of transaction developed using the Hyper-
ledger Sawtooth platform. In addition, the methodology was tested and the
outcomes, that can be considered useful for the future design of Blockchain
solutions, were depicted.

2. Benedikt Putz et al. [4] analyze a new system for maintaining the integrity
of records, which is based on Blockchain technology and unreliable proof of
existence is stored from generated records. It guarantees secure recording
and is independent of trusted third parties, specific material, and possible
modifications to the records.
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3. Nicholas D. Pattengale and Corey M. Hudson [5] implemented a technique
for the unchanging recording of actions and the ability of queries to the
Blockchain network for a cross-site genomic dataset access audit trail. The
main goal is an efficient structure of time and space in order to store and
regain access to the gene data logs. The implementation is based on the Mul-
tiChain platform which supports effective queries of data for single clause
constraints and heuristic and binary search techniques for queries containing
conjunctions of clause limits, and various timestamp queries.

2.3 Workflow Automation Using Blockchain

1. Kristen N. Griggs et al. [6] propose a blockchain-based smart contract system
monitors the patients in real-time and supports medical interventions. It also,
sends notifications both to patients and doctors and records all activities on a
blockchain network. This would significantly improve remote patient monitor-
ing, contribute to automated information to the involved parties and protect
the health information that origin from IoT devices. The implementation is
based on the Ethereum protocol. More specifically, there is communication
between the system and sensor, and all events are recorded on a blockchain
network.

2. Haya R. Hasan and Khaled Salah [7] propose a blockchain-based system that
ensures Proof Of Delivery (PoD) of digital assets and automatic settlement of
payments when the asset is transported using a single or multiple intermediate
transporters. Authors use Ethereum Smart Contracts to let all intermediate
transporters to verify a key that is stored within a Smart Contract deployed in
the Ethereum network, they also use a chain of Smart Contracts to propagate
a payment settlement function in all intermediate transporters if the key
verification is done successfully in all intermediate transporters.

3 Proposed Blockchain-Based System

In this section, we present our a blockchain-based system that aims to provide
an entire solution regarding secure and transparent transactions in e-commerce
deliveries.

3.1 Business Scenarios

The proposed system was validated against four business cases that are promi-
nent in the national and cross-border e-commerce field. The four business scenar-
ios are the following, (i) Personalised Delivery, (ii) Track and trace the progress
of a product transportation, (iii) Logging and auditing of critical actions in terms
of security, and (iv) Workflow automation. More details about each scenario and
how blockchain is used to enhance several security aspects in frames of each of
the business scenarios is provided in Sect. 1 above.
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3.2 Users

Corporate Senders. The senders of the parcels are responsible for deliver-
ing the package to the courier company employees. Additionally, they need to
provide information about the recipient and indicate if it is a critical shipment.
In the case of a sensitive package, they are required to declare the acceptable
temperature range in which the package can be kept unchanged. Through the
proposed system, they have the ability to track the progress of the shipment and
the arrival of the package at various checkpoints in real-time. Moreover, through
automated flows (smart contracts), automated updates to the recipient regard-
ing environmental conditions throughout the transportation of the product can
be made if it is temperature-sensitive. Additionally, the sender can be automat-
ically charged for the specific shipment in cases where the accepted value limit
is exceeded.

Recipients. Recipients are responsible for receiving the parcels from courier
company employees. Through the proposed system, they have the ability to
track the progress and location of the expected product, at specific checkpoints.
In the case where a shipment is declared as critical by the sender, recipients
digitally sign using Blockchain Public Key Infrastructure the delivery of the
parcel upon receipt. Recipients also have the ability, through their dedicated
web application, to transfer their rights to another recipient when they are not
available to receive the product, as well as to change the delivery address if
they cannot receive it at the initially declared address. Additionally, they can
monitor the most significant actions taken during the product’s shipment as the
system records the most important and critical actions. If a package is declared
as temperature-sensitive, they can receive automated updates if the temperature
exceeds a specific allowable range.

Employees of the First Courier Company. This category includes distribu-
tors, drivers, and employees who interact with the proposed system in frames of
the four business scenarios against which the system is being validated. Distrib-
utors are responsible for transporting the product from the company store to the
recipient. Distributors are required to verify the identity of the recipient in the
case of a critical shipment and inform the system about the delivery or return
of the product. Distributors do not directly interact with the proposed system
for the needs of the scenarios. The company’s drivers determine the weight and
volume of the package to calculate the load in the coordination of the courier
companies involved in cross-border transportations in order to reduce the means
of transport traveling without (sufficient) load which is a sub-scenario of work-
flow automation as it has been mentioned in Sect. 1 above. Company employees
are responsible for collecting the parcels and initiating the entire shipment pro-
cess. Additionally, they are responsible for placing the IoT device on sensitive
packages to support certain automated workflows of the project. Finally, in the
scenario of payment to intermediate companies involved in cross-border trans-
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portation once the transportation is completed, it is within their responsibilities
to handle the payment processes.

Employees of the Second Courier Company. These users are the same as
the users of the first company, but belong to the second courier company. The
second courier company is a mock company used for the purposes of the following
two sub-scenarios that are examined at a cross-border level and belong to the
workflow automation scenario, (i) Payment of intermediary companies involved
in the transportation of the product at the cross-border level, provided that
the transportation has been successfully completed, and (ii) Coordination of the
involved organizations/companies in order to reduce the transportation means
that travel without (sufficient) load at the cross-border level. In Particular, the
drivers of the second courier company have their own web applications and
participate in the aforementioned sub-scenarios.

3.3 System Architecture

The system architecture has been designed by using the “4+1 Architectural View
Model (AVM)” [8]. It describes the system’s architecture based on various simul-
taneous views. 4+1 Architectural View Model (AVM) is an open architecture
description framework consisting of four primary viewpoints, namely a) Logical
view b) Process View c) Development View d) Physical View. In this paper, we
concentrate on the Development View, by describing the system components as
well as their interfaces and technical specifications. Each component is described
in detail by analyzing its subcomponents and technologies used to implement it.

– Transfarency applications. These are web interfaces that allow the Users, i.e.
corporate senders, recipients, and employees of courier companies to interact
with the Blockchain network through the Middleware API in order for the
them to issue queries to the Blockchain, view the results of the queries and
submit transactions relevant with the four business scenarios against which
the TRANSFARENCY system was validated. Transfarency applications were
implemented using React.js v17.0.21, Bootstrap v2.1.22 and Socket.io v4.5.43

and communicate with the Middleware API using API calls over https and
also using the Websocket API for interactive two-way communication that
allows the implementation of notifications.

– Middleware API. The Middleware API serves as the communication gateway
between the information systems of the courier companies and the trans-
farency applications with the Blockchain network. It is responsible for issuing
transactions and connecting end users to the Blockchain network as it includes
all the libraries that facilitate the connection to the Blockchain network. The
middleware API uses a node.js server v10.24.14 and contains the following

1 https://react.dev/.
2 https://getbootstrap.com/.
3 https://socket.io/.
4 https://nodejs.org/en.

https://react.dev/
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https://nodejs.org/en
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packages: express, body parser, cors, socket.io and uses specific modules and
classes from the Hyperledger Fabric SDK for node.js v2.2 to interact with
the Blockchain network, i.e. fabric-ca-client version 2.2.4 and fabric-network
version 2.2.4 [9].

– Permissioned Blockchain network. This is a peer to peer network run by
multiple organisations who form a consortium. In this work, the organisations
that run the network nodes are the two courier companies that participate in
the cross-border scenarios. The permissions of each organisation are defined
by a set of policies. Smart contracts which are deployed to the nodes of the
network are used to generate transactions which change the world state of
the ledger which holds the data of the business objects. The network is built
using Hyperledger Fabric v2.2.4 [9] and the smart contracts, also termed as
chaincode in Hyperledger Fabric, are written in JavaScript. The Blockchain
network communicates with the Middleware API using gRPC calls [10] and
exchange messages using Protocol Buffers. The choice of Hyperledger Fabric
is made because its permissioned nature fits our business scenarios, it does not
contain any transaction fees, and it is scalable due to its low-cost consensus
algorithms.

– Identity Management System. Users that access TRANSFARENCY applica-
tions and external information system software clients are registered with the
Authorisation server and upon successful registration, they are enrolled with
the Hyperledger Fabric CA by the Courier company administrator. This pro-
cess creates the certificate and private key which is used in order to sign the
transactions that they issue to the Blockchain network (e.g. when the Recip-
ient signs a personalised delivery). When they want to access Blockchain
network resources, they first issue an authentication request to the Autho-
risation Server which authenticates them and upon successful authentica-
tion they are given access to the Blockchain network resources based on
the permissions that have been granted. Authorisation server is implemented
with keycloak [11] technology that uses OAuth 2.0 and OpenID Connect
(OIDC) protocols. This is a component that has been developed in frames of
H2020 FEVER project [12,13], and it was properly integrated in the TRANS-
FARENCY architecture. External information systems of courier companies
can be connected with the TRANSFARENCY system by communicating with
the Middleware RestFul API over https after being properly authenticated
and authorised by the Identity Management System. In the case of cross-
border scenarios, each courier company should own its own Authorisation
Server and Hyperledger Fabric CA and its own administrator who should
revoke client certificates when necessary. There is no further credential val-
idation e.g. cross-validation with external authorities and this is a limita-
tion of the system. The system architecture is depicted in Figure 1 below.
External Systems, identity management system and internal components of
the TRANSPARENCY architecture are shown with different colours as it
appears in the included legend.
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Fig. 1. System Architecture of our proposed system

4 Smart Contracts

As it has been mentioned in Sect. 3.3 above, within the Blockchain network,
there are deployed the Smart contracts that hold the business logic that changes
the world state of the ledger which holds the data of the business objects. In
this section, we will describe the Smart Contracts that were designed, developed,
and deployed to the Blockchain network to meet the requirements of the four
business case scenarios that have been described in Sect. 3.1 above.

4.1 Personalised Delivery

This smart contract contains functions that allow recipients to sign the Delivery
of a product using their private key during critical deliveries in which the recip-
ient need to be authenticated in an indisputable way. It also contains functions
that allow the define a new recipient for a specific delivery by logging the change
in the blockchain. More specifically, the contract has the function:

– StoreSignature(): When the package reaches the recipient, the recipient
receives a notification and is required to sign for the specific delivery. This
function, following the authorization of the request via the Identity Man-
agement System and validation of the request body, allows the Recipient to
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digitally sign with their private key and store to the Blockchain the following
data: recipient’s email, order ID, and the timestamp of the delivery.

– StoreChange(): Every recipient expecting package delivery has the ability to
change the recipient and specify a new recipient in place of themselves. In
this case, the details filled out in the recipient change form are stored in the
Blockchain. The necessary recipient change details are stored as a JSON with
fields: order ID, and the details of the new recipient, including Name, Mobile,
email, Address, City, ZIP Code, Notes, and Bell Name.

– GetChangeByOrderID(): This function accepts the order ID as an argument
and returns the details filled out by the first recipient in the recipient change
form for the specific order.

4.2 Track and Trace

This smart contract logs in the blockchain platform the passage of the product
that is shipped in frames of a specific order, through all its checkpoints near the
time to ensure transparency and traceability. More specifically, it contains these
functions:

– StoreOrder(): This particular function, after checking via the Identity Man-
agement System that the caller is authorised to do the request, validates
the body of the request, and then stores the details of each order in the
Blockchain. In this case, the caller is the software client of the transportation
company. This function changes the state of the ledger.

– StoreCheckpoint(): This particular function, after checking via the Identity
Management System that the caller is authorised to do the request, validates
the body of the request and stores in the Blockchain the details of each
checkpoint which correspond to a specific order. In this case, the caller is
the software client of the transportation company. This function changes the
state of the ledger.

– GetAllCheckpoints(): This is a getter function that accepts the order ID as
an argument and returns all the checkpoints from which this specific order
has passed through.

4.3 Logging and Auditing

As mentioned above, apart from the need to track and trace each product, there
are some critical events (delivery, receipt and return of a product) that need
to be logged in the blockchain as a digital evidence to resolve future conflicts
between stakeholders. The functions of the smart contract are the same as the
ones described in Sect. 4.2, during the storage of the checkpoint there is a specific
field that marks the checkpoint as critical or not. Back in the web interfaces of
the transfarency apps, there are specific filters that allow the user to filter the
checkpoints by their criticality to easily sort out the ones that can be used as a
digital evidence.
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4.4 Workflow Automation

This smart contract contains functions that automate repetitive processes that
are described as sub-scenarios of the workflow automation scenario in Sect. 1
above. To achieve automation, the functions of this smart contract first apply
the business logic of each sub-scenario and then they use Contract Events in
order to send notifications to the listeners of the middleware API for specific
critical actions depending on each sub-scenario. These notifications are then
propagated from the middleware API to the web interfaces of the users using
socket.io.

– NotifyRecepientCharged(): This specific function is called by the middleware
API after the expiration of a countdown timer, which signifies the end of
the specified return period for a product and the consequent release of the
charge to the recipient. The function accepts three arguments from the mid-
dleware API: the calculated expiration date (expirationDate), the order code
(orderID), and the charge amount (amount). After verifying that the expira-
tion date has indeed passed, it triggers/emits a contract event that is listened
to by the middleware API. Subsequently, it notifies the recipient with a notifi-
cation that their charge for the particular order has been activated, providing
relevant information such as the order number and the charge amount. Addi-
tionally, the function records the timestamp of the event, along with the order
ID and the recipient’s charge amount, in the blockchain. A composite key is
also generated based on the order ID and amount to facilitate data retrieval
and access. The listener responsible for receiving and processing the event is
located in the chaincode, which resides in the middleware API. This listener
connects to the Blockchain network and communicates with the chaincode
connected to the Gateway. Finally, to complete the scenario, the notification
emitted by the smart contract and subsequently received by the listener is
delivered to the end user via socket.io.

– DriverNotification(): In the case of a cross-border shipment, this function
sends a notification through the Blockchain to the delivery driver, urging
them to apply for availability with another transportation company in order
to deliver the package.

– DeclareAvailability(): When a driver from another transportation company
applies for availability, a notification is sent to the driver of the second trans-
portation company, inviting them to accept or reject the package delivery
based on the availability of their transportation vehicle. After receiving the
response, a notification is sent back to the driver of the first transportation
company, informing them of the acceptance or rejection of the package.

– DeclareArrival(): If the driver of the second transportation company accepts
the package for delivery, the driver of the first transportation company is
informed through a notification and is prompted to make a declaration of
arrival when they reach the delivery location.

– StoreHash(): In the case of cross-border shipments, this function generates a
unique hash with the shipment number as an argument and stores it on the
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Blockchain. This is done to enable future comparison of keys. The generated
hash serves as a reference point for ensuring the authenticity and integrity of
the shipment information.

– ProofofDelivery(): This function is called when the driver of the second trans-
portation company presses the “Confirmation of Shipment Key” button via
the web interface of their application with the goal of ensuring transparency
through the Blockchain. Subsequently, a comparison of the encoded keys is
performed. In case of a match, both the driver of the first transportation
company and the sender are notified of the successful delivery of the pack-
age to the second company. A similar process is followed when the recipient
presses the “Confirmation of Shipment Key” button at the time of receiving
the package. The stored hash is compared with the hash generated in the
middleware. If they match, the drivers of both transportation companies are
informed that the package has reached its destination and payment can be
processed.

– IotReport(): In the case of shipping sensitive packages with temperature mon-
itoring through IoT devices, recorded temperature data is transmitted. If the
duration of temperature deviation exceeds or equals 10% of the total record-
ing time, a notification is sent to both the sender and the recipient. This
notification informs them of the temperature deviation.

5 Conclusions and Future Work

In this work, we proposed a blockchain-based system that attempts to solve well
known problems that arise in national and cross-border e-commerce deliveries.
The system leverages the blockchain technology to boost transparency, traceabil-
ity, accountability and overall security in such contexts. The proposed system
was validated against four business scenarios that are prominent in the national
and cross-border e-commerce field. The four business scenarios are the following,
(i) Personalised Delivery, (ii) Track and trace the progress of a product trans-
portation, (iii) Logging and auditing of critical actions in terms of security, and
(iv) Workflow automation. As a future step, we propose to perform an exten-
sive performance and storage scalability analysis and adjustment of the system
in accordance with the findings (e.g. usage of hashes of orders and checkpoints
and references of the orders and checkpoints to the external information sys-
tems of the transportation companies, instead of storing on-chain the data per
se). Moreover, the legal aspects of users’ credential verification may be explored.
Finally, the system may be compared with similar platforms in terms of privacy,
confidentiality, performance, and scalability such as the one developed in frames
of the H2020 EFPF project [14].

Acknowledgements. Authors acknowledge support from the Research-Innovate-
Create project funded by the Greek state (Epanek) project TRANSFARENCY (T2E
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Abstract. The bootloader is a critical part of a device’s secure startup,
and its interactions with firmware images require cryptographic opera-
tions. Instead of storing keys for authentication and encryption in the
bootloader, one can harden the system by offloading the key storage and
all cryptographic operations to a secure element. This paper analyzes
the susceptibility of MCUboot used in conjunction with a secure ele-
ment to voltage fault injection during firmware image verification. We
designed and built a low-cost voltage fault injection tool using a Cortex-
M7 MCU and an analog switch, which can achieve a timing resolution of
6.67 ns. We found vulnerable instructions in the glue code between the
bootloader and the secure element library. By targeting these vulnerable
instructions, we showed how an attacker could bypass a signature veri-
fication performed by a secure element by faulting a Nordic nRF52840
host MCU. While secure elements are still suited for securely storing
keys and other sensitive data, a holistic approach is required to secure
a device against fault injection. Otherwise, the threat of fault injection
could diminish the benefits of secure bootloaders and secure elements.

Keywords: Fault injection · Voltage glitching · MCUboot · Secure
elements · Ethical hacking · Hardware implant · Embedded systems

1 Introduction

The bootloader is one of the most critical pieces of software in a device for
multiple reasons (e.g., security, safety, dependability, IP theft, and brand rep-
utation). Specifically, it is a security concern as the bootloader runs with the
highest privileges and initializes the root of trust (RoT) and all the crypto-
graphic hardware. Justifiably, Morel and Couroussé [1] declared the bootloader
to be the Achilles’ heel of an IoT system. Attackers can target the bootloader
with fault injection (FI) attacks for executing unauthenticated code by either
faulting functions that check the authenticity of the code or directly gaining code
execution with elevated privileges by re-enabling debug or testing interfaces [2].
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Also, scenarios where attackers induced multiple consecutive faults for breaching
a target have been documented [3]. Moreover, extracting the firmware images
of the target device allows for searching them for software vulnerabilities (e.g.,
buffer overflow), which attackers can use for conventional exploits. This approach
is especially interesting for threat actors as software exploitations generally scale
much better [4].

Instead of executing unauthenticated code, it might be even more valuable
for an attacker to compromise the bootloader itself. Modifying the bootloader
through some vulnerability allows the attacker to completely negate any crypto-
graphic security measures as the boot process runs with the highest privileges. In
order to prevent such malicious modification, first-stage bootloaders are generally
immutable to serve as an RoT. Unfortunately, vulnerabilities in immutable boot-
loaders are highly problematic as manufacturers cannot patch them afterward,
making it impossible to fix affected devices. Further, extracting the bootloader
code might reveal sensitive data, such as the symmetric keys some bootloaders
use for decrypting and authenticating images. This information effectively grants
an attacker complete control over a device and all its future upgrades, even over
other devices if keys have been reused. In such a case, the attacker can easily
decrypt firmware updates and search them for vulnerabilities [1].

Compromised IoT devices can subsequently be used as a vehicle for larger
attacks like breaching other hosts on the same network [5] or launching a bot-
net [6]. Ronen et al. [7] created a native and autonomously self-spreading ZigBee
worm for the Philips Hue light system by extracting the symmetric encryption
and authentication keys from the bootloader.

Offloading cryptographic operations and keys to a secure element might be
advantageous, as their tamper-resistant memory protects keys and other sensi-
tive data from modification or extraction. Depending on the use case, they can
offer higher performance and reduced energy consumption compared to execut-
ing the cryptographic algorithms on the MCU [8]. However, adding a secure
element might give developers a false sense of security, as it does not necessarily
increase the overall protection of the device against fault injection threats. In
this paper, we advise that the threat analysis should not just focus on where
sensitive data is stored or processed. Instead, a holistic approach to viewing a
device’s security is required by considering side-channel threats.

Our contribution consists of analyzing an application that uses MCUboot [9]
as the bootloader and an externally connected secure element for all crypto-
graphic operations (e.g., firmware image authentication). We present (1) the
code section vulnerable to fault injection attacks and (2) how we managed to
boot malicious firmware with a voltage fault injection attack by bypassing the
firmware image verification offloaded onto the secure element. Furthermore, we
(3) developed our own voltage fault injection tool constructed from inexpensive
off-the-shelf parts. We discuss fault injection countermeasures to protect devices
from such attacks in Sect. 3, but applying them is out of scope for this paper.
Our work increases the security of IoT devices by providing developers with
information on how comparably little effort and cost attackers need to spend to
bypass sophisticated countermeasures like secure elements.
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This paper is structured accordingly: Sect. 2 explains the basic concepts of
voltage FI attacks needed to understand the subsequent attack. Section 3 lists
various mitigations for impeding or preventing FI attacks. Section 4 introduces
a secure-element-hardened MCUboot implementation we used as this project’s
target. Section 5 describes how we bypassed the secure element’s firmware image
verification using FI attacks. Section 6 discusses the applicability of such attacks
and their required effort. Finally, we draw appropriate conclusions in Sect. 7 and
describe future work related to the findings of this study.

2 Voltage Fault Injection

FI using voltage transients (colloquially known as “voltage glitching”) has been
studied extensively for quite some time [10–12]. Injecting transient voltage
glitches over some physical interface into a target (e.g., supply pins) results
in electrical transients at the circuit level. These transients might manifest as
faulty bits at the micro-architectural level if they managed to be captured by a
logic gate, memory cell, or flip-flop. Finally, these faulty bits propagate to the
application level as faulty instructions or data [13,14].

Various fault models exist for predicting the consequences of such attacks.
Kazemi et al. [15] categorize the high-level fault consequences into two main
groups: control flow corruption (disrupting the execution or order of instruc-
tions, branches, and statements) and data flow corruption (compromising the
integrity or confidentiality of data). Timmers et al. [16] assume in their fault
model that the fault flips a variable amount of bits in the current instruction,
thus modifying it into any other valid instruction supported by the architecture.
Their model then classifies the subsequent outcome as either instruction corrup-
tion or instruction skipping. The former occurs if the faulty instruction changes
the behavior or state of the device, like modifying a used register or branching
to an arbitrary address. The latter occurs whenever the faulty instruction has no
impact on the state and execution flow at all, like modifying an unused register
or adding zero to a register.

Attackers can craft simple exploits with such faults, like skipping a (con-
ditional) branch instruction or changing the value read from a configuration
register. It is important to note that many of these exploits can happen on
all levels, i.e., the functions above and below on the call stack of the targeted
function, because faults can propagate through parameters and return values.
However, some attackers do not limit themselves to such simple exploits and cre-
ate significantly more complex attacks. For example, glitching the size argument
of a memcpy() command might result in a buffer overflow that the attacker can
exploit using shellcode injection [17].

We have to agree with Bittner et al. [2], which state that various manufac-
turers seemingly ignore the threat of FI, even though smartcard manufacturers
have been equipping their products with FI mitigations for the last 20 years.
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3 Fault Injection Mitigations

Timmers et al. [16] propose three principles for mitigating FI. Firstly, deflecting
attacks by decreasing the probability of a successful FI attack. Introducing ran-
domness into the execution order or adding delays makes the target significantly
less predictable. Secondly, if fault injections can be detected quickly enough, the
target might be able to halt before any real damage (like exfiltrating sensitive
information) has taken place. Lastly, reacting to FI attacks after they have been
detected by imposing penalties (like timeouts or erasing the device) can make
them impractically slow.

In order to follow these principles, software and hardware mitigations can
be utilized. Belleville et al. [18] propose an automated software countermeasure
that protects vulnerable software components with run-time code polymorphism.
Lalande et al. [19] propose a non-compiler-based software mitigation that ensures
control flow integrity (CFI) with incrementing and decrementing counters on
function calls. This mitigation comes at a high cost, as their experiments with
hardening an Advanced Encryption Standard (AES) implementation resulted in
a 400% execution time and 272% size overhead on an ARM Cortex-M3 MCU.

Generally, hardware mitigations are less costly regarding execution time and
memory footprint. However, they might require further development or man-
ufacturing steps, increasing the production cost. For example, developers can
use heat- and solvent-resistant epoxy to protect decoupling capacitors and volt-
age rails, embed planes in multi-layer printed circuit boards (PCBs) that act as
decoupling capacitors, or redesign the device with an MCU that has fully inte-
grated voltage regulators [2]. Moreover, various proposals for (micro-) architec-
ture extensions exist, like entering secure trap handlers when faults have been
detected [20], CFI based on computing message authentication codes (MAC)
over executed instructions and comparing them against expected MACs [21], or
CFI based on cryptographic sponges [22]. De Clercq et al. [23] analyzed and
summarized many hardware-based solutions in their survey.

MCUboot allows the developer to set the software-based fault injection hard-
ening (FIH) to one of four levels: off, low (simple CFI with global counter
inc/dec on function call/return, and a failure loop hardened against loop escap-
ing), medium (all FIH low features, constants with large hamming distance, and
redundant variables and checks), and high (all FIH medium features, random
delays between redundant variable checks) [24]. Atilano et al. [25] analyzed the
effectiveness of the mitigations using simulation and provided feedback contain-
ing several issues to the MCUboot developers. In addition, the mitigations stop
as soon as MCUboot calls into either MbedTLS or TinyCrypt (depending on
the algorithm used), as all publicly available information indicates that neither
is hardened against FI attacks. In the case of this project, it makes no sig-
nificant difference whether MCUboot calls into an unhardened crypto library
or an unhardened secure element software development kit (SDK). In both
cases, the target probably contains more than enough code vulnerable to FI
attacks for the attacker to exploit. Even if a secure element SDK contains some
form of FIH, these mitigations might not be compatible with those used in the
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bootloader, requiring some potentially vulnerable glue code to translate between
the mitigations. For example, one form of FIH consists of encoding a single return
value into two separate but logically-coupled variables (e.g., value and its 1 s-
complement). Comparing this hardened return value against a constant requires
two if statements (and thus two compare instructions). This hardening forces the
attacker to inject multiple faults when attempting to tamper with the compar-
ison result, significantly decreasing the chance of a successful attack. However,
the bootloader and the secure element SDK might not encode such a hardened
value in the same way, and the required translation might result in a single point
of failure. This inconsistency could result in a high probability of success for the
attackers despite FIH. In general, discrepancies in the implementation of FIH
create weak points at all junctions between the bootloader and secure element
SDK.

We agree with Witteman et al. [26] that both soft- and hardware mitigations
are necessary for adequate FI protection. It is exceedingly important to consider
FI protections already during development, as FI can severely undermine the
effectiveness of other countermeasures. Secure elements contain the necessary
protections against FI, and bypassing some of the secure element’s functionality
(like the firmware image verification bypass presented in this project) will not
threaten the confidentiality of its keys. However, it still might be enough to reach
a given attack goal, like booting malicious firmware images.

4 Device Hardening with Secure Elements

Securely booting firmware images requires the bootloader to verify the firmware
image signature with the public key embedded in the bootloader code. This
signature verification (key material and procedure) must be hardened against
tampering. Using a secure element for both immutably storing the public key
and executing the verification reduces the attack surface significantly. MCUboot
can be modified to use an externally connected secure element for key stor-
age and executing the signature verification [27]. Figure 1 illustrates MCUboot’s
boot procedure — both off-the-shelf and with such modifications. In the default
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Image
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Signature
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Image boot
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Fig. 1. Basic boot procedure when using MCUboot off-the-shelf A and after modi-
fying it to use a secure element for verifying the signature B .
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MCUboot procedure A , the bootloader executes its initialization before validat-
ing the firmware image (checking for errors and faulty configuration). Then, the
bootloader checks the signature with the public key embedded in the bootloader
code and boots the image if the checks are successful. In contrast, procedure
B shows MCUboot offloading the signature verification and booting the image
depending on the secure element’s response. MCUboot’s boot procedure con-
tains more steps (like swapping images after a firmware upgrade and downgrade
prevention), which have been omitted here for conciseness.

In order to prove the feasibility of this concept, the authors of [27] used a
Nordic nRF52840 development kit (DK), ran a simple application built with the
Zephyr real-time operating system (RTOS), and used the modified MCUboot
as the bootloader, representing a straightforward way to incorporate a secure
element into MCUboot.

5 Fault Injection in Practice

We used the work in [27] as the target for our attack setup. In our attack scenario,
we bypassed the signature verification performed by the secure element, resulting
in the target booting a malicious firmware image. Our work demonstrates how
even low-cost FI tools can circumvent sophisticated countermeasures like secure
elements.

5.1 Code Section Vulnerable to Fault Injection

As described in Sect. 3, MCUboot contains a fault injection hardening (FIH)
module for preventing FI attacks. Unfortunately, FIH is turned off by default1
when using MCUboot in a Zephyr version 3.1.0 application. This opposes the
“secure by default” principle, as it leaves room for human error. For example,
forgetting to enable the protection, accidentally disabling it, or not enabling
it due to obliviousness. However, even enabling the highest level of FIH would
not protect the following code section from being attacked to bypass the secure
element’s signature verification. This is because the FIH is only applied internally
and stops when calling functions outside MCUboot.

Listing 1 shows MCUboot’s bootutil_verify_sig() function as modified
by the authors of [27]. Instead of MbedTLS, the function now invokes the secure
element’s SDK at A for the signature verification. Dictated by the function
signature, the if statement at B converts the return value from the secure
element SDK to either a zero (success) or non-zero (failure) value.

Listing 2 demonstrates the resulting assembly instructions. A compare branch
on zero (cbz) instruction branches to the specified address if the value in the
tested register is zero. If the signature verification fails, R3 contains zero, and
the cbz instruction at address 8e6 branches to address 930. Thus, an FI attack

1 https://github.com/zephyrproject-rtos/mcuboot/blob/
e58ea98aec6e5539c5f872a98059e461d0155bbb/boot/zephyr/Kconfig#L343.

https://github.com/zephyrproject-rtos/mcuboot/blob/e58ea98aec6e5539c5f872a98059e461d0155bbb/boot/zephyr/Kconfig#L343
https://github.com/zephyrproject-rtos/mcuboot/blob/e58ea98aec6e5539c5f872a98059e461d0155bbb/boot/zephyr/Kconfig#L343
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Listing 1. Modified firmware image verification function for executing the ECDSA
verify on the secure element A and converting the return value from the secure
element SDK B .

int bootutil_verify_sig(uint8_t *hash , uint32_t hashlen ,
uint8_t *sig , size_t siglen ,
uint8_t key_id)

{
/* Code snipped for conciseness */
status = sec_elem_ecdsa_verify(hash , hashlen , sig ,

siglen , &success );

if (status != SEC_ELEM_OK) {
/* Code snipped for conciseness */
return -EIO;

}

if (success) {
LOG_INF("Image verification successful");
return 0;

} else {
LOG_ERR("Image verification unsuccessful");
return -EFAULT;

}
}

A

B

Listing 2. Vulnerable assembly instructions resulting from bootutil_verify_sig().

878: add sp , #28 Clean up stack
87a: ldmia.w sp!, {r4 , r5 , r6 , r7 , r8 , r9 , pc} Return
...
8e2: ldrb.w r3 , [sp , #23] Load "success" in R3
8e6: cbz r3 , 930 Branch if R3 == 0
8e8: movs r1 , #73 LOG_INF parameter
8ea: ldr r0 , [pc , #108] LOG_INF parameter
8ec: bl d256 <log_printk > Print LOG_INF
8f0: movs r0 , #0 Set return value "0"
8f2: b.n 878 Branch to function epilogue
...
930: movs r1 , #69 LOG_ERR parameter
932: ldr r0 , [pc , #56] LOG_ERR parameter
934: bl d256 <log_printk > Print LOG_ERR
938: mvn.w r0 , #13 Set return value "-EFAULT"
93c: b.n 878 Branch to function epilogue

if
!=0

==0

resulting in skipping this cbz instruction boots an invalid image. Alternatively,
the attack might also be successful if it modifies the cbz instruction instead of
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skipping it, as long as it does not branch anywhere or corrupt any currently used
registers.

5.2 Attack Setup

Figure 2 contains the attack setup consisting of three main components and the
corresponding data flow. The glitcher for generating a voltage glitch with a
configurable width and offset in relation to the trigger signal, the target under
attack, and the Raspberry Pi for coordinating the automatic glitching process by
configuring the glitcher, setting up the target, and starting the glitching process.

Regarding the data flow, the glitcher needs two connections to the target: one
for picking up a trigger signal and one for injecting the glitch. The Pi needs bidi-
rectional communication with the glitcher to configure the next glitching param-
eters (useful for sweeping through various configurations). Furthermore, the Pi
sets up the target (and provides further stimuli if needed) to get the target to
execute the previously determined vulnerable code. Lastly, the Pi needs feedback
from the target (e.g., GPIOs, communication protocol, or power consumption
through side-channel power analysis) to determine if the glitch succeeded.

We developed our glitcher using a Teensy 4.0 development board [28] and
a Maxim MAX4619 analog switch. The Teensy generates the glitch signal for
controlling the analog switch, which drives the target to the desired voltage
levels. Figure 3 illustrates the basic structure of the glitcher. VTarget needs to
be connected to the target, and depending on the glitch signal of the Teensy,
the analog switch either connects VNormal or VGlitch to the target pin. A power

Config
Trigger

TargetPi Glitch

Feedback
Setup / Stimuli

Glitcher

Fig. 2. Main components of the attack setup with their corresponding data flow.

Config
VNormal
VGlitch

Trigger

MAX4619Teensy 4.0

VTarget Target

Power
Supply

Glitcher

Pi

Fig. 3. Basic structure of the glitcher. Connections between Pi and target have been
removed for clarity.
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supply supplies the desired normal and glitch voltages. Running the Teensy’s
NXP i.MX RT1062 at its maximum frequency of 600MHz resulted in a timer
clock frequency of 150MHz due to the fixed prescaler of 4. Thus, we achieved a
glitch width and offset resolution of 6.67 ns.

5.3 Target Modifications

Most targets must be modified to increase the probability of a successful FI
attack. According to the datasheet, the power supply circuitry of the nRF52840
consists of low-dropout regulators (LDOs) and DC/DC regulators, which output
the 1.3V system power. Additionally, it has six decoupling pins (DEC1-6 ) to
ensure the stability of the internal power regulation circuitry (LDO, DC/DC).
According to the reference circuitry in the datasheet, hardware designers need
to connect specific capacitors to these pins. However, Nordic has not published
any further information, for example, which decoupling pin is attached to the
core voltage rail. According to this Nordic DevZone thread2, they even seem
reluctant about specifying voltage tolerances. We determined a suitable pin for
injecting glitches by measuring the voltage traces during boot and making an
educated guess on which pin might be attached to the core voltage rail. Figure 4
contains the measured traces, and only DEC1 and DEC4/6 have stable voltages
near the declared 1.3V system power. We assume that DEC4/6 are connected
to the output of the last DC/DC regulator because of the ripple, and DEC1 is
the core voltage rail at 1.1V.

Reset

DEC1

Voltage

Time

DEC3

DEC4/6

DEC5

400 μs

3 μs 1.1 V

0.8 V

3 V

1.3 V
1.2 V

0 V

3 V

1.2 V

0 V

Fig. 4. Voltage traces measured on the nRF52840 decoupling pins during boot.

2 https://devzone.nordicsemi.com/f/nordic-q-a/60633/the-tolerance-of-voltage-of-
dec-pins-of-52840.

https://devzone.nordicsemi.com/f/nordic-q-a/60633/the-tolerance-of-voltage-of-dec-pins-of-52840
https://devzone.nordicsemi.com/f/nordic-q-a/60633/the-tolerance-of-voltage-of-dec-pins-of-52840
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Thus, we decided to inject glitches on pin DEC1. In order to increase the
probability of a successful glitch, we tried to remove as many capacitors as
possible using trial and error while still checking that the target boots success-
fully. In our case, we could only remove the capacitor on DEC3, as any other
removed capacitor resulted in the target not booting anymore. Figure 5 shows
the wire connected to the capacitor on DEC1, where the glitcher will inject
voltage glitches.

There is a possibility that the remaining decoupling capacitors still protect
the MCU too well from glitches. Thus, the methods described in the following
Sect. 5.4 would not be able to find any suitable glitching parameters. In this
case, reducing the capacitance instead of removing the capacitors could make
the MCU more susceptible to glitches while maintaining the target’s ability to
boot.

5.4 Determining Suitable Glitching Parameters

The search space would grow enormously if we had to guess all parameters for the
attack. Fortunately, finding suitable parameters can be split into independent
processes. Figure 6 illustrates that the attacker must determine the glitch width
and voltage level A first. Subsequently, the attacker must find the correct offset
between the trigger and the glitch B to hit the vulnerable instruction. We will
explain step A in this section and step B in Sect. 5.5.

Determining the glitch width and voltage levels uses a straightforward tech-
nique with only a minor limitation. For this approach, we must erase and
flash the target with a different application, likely requiring a second target

Fig. 5. Wire connected to capacitor on pin DEC1 of nRF52840 DK for injecting
glitches.
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hardware because it cannot be erased, reprogrammed, or because we cannot
flash the original bootloader and firmware back afterward.

Generally, a single glitch results in one of the following three outcomes. If
the glitch width and voltage levels are just right, the induced fault manifests as
corrupted control or data flow. Deviating from this sweet spot either causes a
reset or halt (usually called “mute” as the target does not respond either way) or
does not impact the target. As FI is a stochastic attack method, any given set
of glitching parameters is not guaranteed to always result in the same outcome.
Thus, repeated testing of various glitching configurations helps to determine the
one with the highest probability of inducing a fault.

An application providing direct feedback after injecting a glitch expedites
the search for suitable glitching parameters significantly. Flashing the target
with the code in Listing 3 instructs it to increment the count variable contin-
uously and print the computed value over a serial connection afterward. While

Trigger

Glitch

Voltage

Time

Voltage

Time

Fig. 6. Determining the glitch width and the glitch voltage level A and finding a
suitable offset to hit the vulnerable instruction B .

Listing 3. Test application for finding suitable glitch width by incrementing a counter
in a loop and printing the computed value afterward.

void main(void)
{

volatile uint32_t i,count ,iteration;
iteration = 0;

while (1) {
count = 0;

gpio_pin_set(TRIGGER_PIN , 1);
for (i=0; i<I_LOOP; i++) {

count ++;
}
gpio_pin_set(TRIGGER_PIN , 0);
print("Iteration %u: %u %u", iteration , i, count );
iteration ++;

}
}
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incrementing count, the application sets a GPIO high, which functions as a trig-
ger signal. The Pi then instructs the glitcher to generate glitches continuously
while the trigger GPIO is high and subsequently checks the output of the target
for irregular behavior. The Pi automatically configures the glitcher with differ-
ent glitch widths during multiple iterations and finally prints the accumulated
results. Changing the glitching voltage might be required if the glitch width res-
olution is too coarse for a given target [29]. In such a case, some width always
results in normal target behavior, and the next possible width always results in
a mute target. However, this technique is not required as our glitcher’s width
resolution is high enough for the target at hand.

Figure 7 illustrates the detailed attack setup with all the required intercon-
nections. As explained in Sect. 5.2, the VTarget pin of the glitcher is the pole
of a single-pole double-throw analog switch. The DEC1 pin previously deter-
mined where the glitcher will inject voltage transients into the nRF52840 does
not have to be supplied with any power during normal operation. Thus, the
normally closed throw of the glitcher is left floating. The normally open throw is

Config serial

Trigger

TargetPi Glitch

Reset
Serial for count output

Glitcher
Enable

Fig. 7. Attack setup for determining a suitable glitching width.

Fig. 8. Voltage trace measured on the DEC1 pin while being pulled to ground for 170 ns
including the subsequent ringing when releasing the pin again (500 mV & 100 ns per
div.).
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connected to ground, resulting in the DEC1 pin being pulled low during a glitch.
Figure 8 shows the voltage trace at DEC1 while being pulled to ground during
a 170 ns glitch. Significant ringing (regarding time and voltage) occurred after
releasing the pin. It is unclear which part of the recorded behavior is responsi-
ble for the fault injection. However, this information is optional as the attacker
determines the injection timing empirically, as will be explained in Sect. 5.5.

It turns out that the best glitch width slightly changes (± 20 ns) during the
day, probably due to temperature and other environmental changes. However,
having a script on the Pi that automatically checks for the current best glitch
width instead of doing it by hand is very beneficial as we can rerun it before
executing the actual attack.

5.5 Executing the Actual Attack

In order to maximize the probability of a successful FI attack, the attacker
needs to control as many unknown variables as possible. If something is not fully
controllable, narrowing it down to a small range is crucial, as this significantly
reduces the amount of possible glitching configurations. Furthermore, the glitcher
needs a trigger that does not jitter relative to the vulnerable instruction. The
reset signal of the target is rarely a suitable trigger signal, as there are many
jitter-inducing sources like inconsistently starting oscillators or communication
with other devices (in this case, the I2C communication with the secure element).
Interestingly, we can use such communication as a trigger point because the
last packet from the secure element to the host (containing the decision if the
signature is valid) always has the same time offset in relation to the vulnerable
code section that decides whether or not to boot the firmware image.

As this project focuses on bypassing a cryptographic operation performed
by a secure element, creating a trigger signal after the nth I2C packet is out of
scope for this paper. Instead, we modified the bootloader to set a GPIO high
after receiving the last I2C packet of the signature verification. Notably, this
instrumentation of the code only expedites the implementation of the attack but
does not make it easier to glitch. Moreover, designing something that triggers on
the nth I2C packet or setting up an oscilloscope with advanced protocol triggering
would be relatively little extra work for a determined attacker.

As the coordinator of the attack, the Pi needs to determine whether or not
an attack was successful. Regarding this project, the bootloader blinks the DK’s
LED1 whenever the signature verification fails, thus signaling an unsuccessful
attack. We designed our malicious firmware to blink LED2 as soon as it gets
booted to indicate that the fault bypassed the signature verification and the
attack was successful. This setup allows the glitcher to quickly determine the
result of the attack by monitoring two GPIOs. Having observable GPIO outputs
is also plausible for a real-world scenario, as there are usually various signals that
we can tap. Otherwise, side-channel attacks like power analysis usually have no
trouble identifying when a target enters an infinite loop, like the one it enters
when the firmware image verification fails.
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Figure 9 shows the final attack setup. The only difference between this setup
and the one used for determining a suitable glitch width is that the serial con-
nection used to output the count values has been replaced with the two GPIOs
that signal either an aborted boot (signature verification detected a malicious
firmware image) or a successful glitch (malicious firmware image booted). Like
the automated glitch width detection from Sect. 5.4, a script running on the Pi
automatically tries a range of offsets relative to the trigger signal until it succeeds
and the malicious firmware image is booted.

Figure 10 shows a photo of the final attack setup. Various parts on the
glitcher’s prototyping board are only needed for development purposes. Every-
thing can easily fit on a PCB smaller than the Teensy by only including the
required parts and using an SMD package of the analog switch. Furthermore,
we used a secure element add-on board to attach the secure element to the
nRF52840 DK.

Config serial

Trigger

TargetPi Glitch

Reset
"Boot aborted" GPIO

Glitcher
Enable

"Glitch successful" GPIO

Fig. 9. Attack setup for attacking the actual target and bypassing the firmware image
verification.

Fig. 10. Photo of the final attack setup, consisting of the glitcher A , Raspberry Pi
B , and target C .
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Using the described methods, tools, and setup, we successfully bypassed the
signature verification performed by the secure element, resulting in the target
booting a malicious firmware image.

6 Discussion

Voltage FI is an entirely non-deterministic process, which makes it exceedingly
hard to quantify the required time to find suitable glitching parameters (i.e.,
voltage, width, and offset). The lack of knowledge about what really happens
inside the MCU during a glitch only exacerbates the problem, and insights from
manufacturers would be necessary to investigate this in more detail. Adapting
an attack setup to a new target (picking up a trigger signal, finding the best pin
to inject the glitch, removing as many capacitors as possible, customizing attack
scripts) might take a couple of person-days of work. However, most attack setups
do not require any further attention afterward and continuously try various
glitching configurations until they succeed. This allows attackers to let it run for
a couple of weeks or months until it succeeds without any further effort. Various
attack scenarios only require the target to be glitched once (e.g., for exfiltrating
sensitive data) instead of creating a reliable setup for repeated glitching, further
increasing the severity of this attack vector. Unfortunately, the attack might still
be feasible even if some target requires to be glitched regularly (e.g., during every
boot). Regarding our attack setup, repeatedly glitching usually took between one
to 100 attempts (≈ 1–100 s) after finding suitable glitching parameters.

6.1 Required Effort

The simplicity of the glitcher built for this project underlines that such attacks
are not limited to attackers with unlimited time and large budgets. Researching,
planning, building, and testing the glitcher required around 40 person-days of
work and resulted in hardware expenses of around 30 USD (Teensy, Maxim
MAX4619 analog switch, prototyping board, and basic components). Moreover,
the Raspberry Pi was only needed to sweep through all the various glitching
configurations until we found a successful combination. Thus, once the attacker
has found suitable glitching parameters, they can program these values into the
glitcher (i.e., the firmware of the Teensy) and attach the glitcher permanently
to the target device. This so-called “hardware implant” can glitch the target
regularly (e.g., during every boot) or on-demand. For attackers not interested in
building their own glitchers, there are commercially available FI tools like the
“Riscure Inspector FI” [30] or open-source and low-cost solutions like the NewAE
Technology Inc.’s ChipWhisperer [31].

Lastly, the actual exploitation phase (creating the malicious firmware image,
finding vulnerable code sections, adapting the attack scripts running on the
Raspberry Pi to the given target, and executing the attack) took only about three
person-days. This high affordability (regarding time and cost), combined with
setups that repeatedly attack targets, results in an attack vector that seriously
threatens a device’s security.
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6.2 Fault Injection Applicability

In this project, we reached our attack goal of bypassing the firmware image ver-
ification by skipping a “compare branch on zero” instruction and thus changing
the control flow. Many other exploits are feasible because virtually any change in
control and data flow is possible. However, the odds of success for such attacks
depend on two main factors: First, the target hardware must be susceptible
to fault injection. We observe that many products contain components (e.g.,
microcontrollers) with little to no hardware protection, allowing injected faults
to manifest themselves on the application level. Other types of FI (e.g., electro-
magnetic, optical, clock) require different mitigations, further exacerbating the
problem. Second, the target’s application must offer sufficient possibilities (i.e.,
vulnerable instructions) to reach a desired attack goal through changes to the
control and data flow. Thus, applying software mitigations lowers the probability
of a successful attack significantly by reducing the amount of vulnerable instruc-
tion. As discussed in Sect. 3, such software-based mitigations can be quite costly
regarding execution time and memory footprint. This project demonstrates that
even a comparatively small amount of unprotected glue code leaves a device
vulnerable to FI.

7 Conclusion and Further Research

Fault injection poses a significant threat to a device’s security by corrupting the
control or data flow, allowing various attacks like extracting sensitive data or
tampering with the execution flow to reach a given attack goal. Our attack did
not threaten the confidentiality or integrity of the keys stored in the tamper-
resistant memory of the secure element. We bypassed the signature verification
performed by the secure element by targeting vulnerable instructions executed
in the host MCU instead of the secure element itself — effectively circumventing
the secure element completely. This attack demonstrates that glue code between
hardened pieces of software can leave the device vulnerable to fault injection,
thus requiring a holistic approach to secure a device against fault injection.

Regarding our specific attack scenario, we demonstrate that an attacker can
bypass the firmware image verification on a secure element by targeting the
code between MCUboot and the secure element SDK with voltage glitching.
Furthermore, this attack can conceivably be carried out by anyone as it is not
cost prohibitive. Moreover, the used hardware for glitching is so inexpensive and
readily available that one can use it as a hardware implant, which can glitch
the target regularly or on-demand instead of a single time (e.g., for exfiltrating
sensitive data).

Further research on protecting glue code between hardened pieces of software
from FI attacks is necessary — for example, applying mitigations and analyz-
ing their effectiveness against FI attacks. Additionally, their impact on cost,
computational performance, memory footprint, energy consumption, and other
important metrics must be evaluated.
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Abstract. The seL4 microkernel is currently the only kernel that has
been fully formally verified. In general, the increased interest in ensuring
the security of a kernel’s code results from its important role in the entire
operating system. One of the basic features of an operating system is that
it abstracts the handling of devices. This abstraction is represented by
device drivers - the software that manages the hardware. A proper ver-
ification of the software component could ensure that the device would
work properly unless there is a hardware failure. In this paper, we choose
to model the behavior of a device driver and build the proof that the code
implementation matches the expected behavior. The proof was written in
Isabelle/HOL, the code translation from C to Isabelle was done automat-
ically by the use of the C-to-Isabelle Parser and AutoCorres tools. We
choose Isabelle theorem prover because its efficiency was already shown
through the verification of seL4 microkernel.

Keywords: formal verification · operating systems · secure systems

1 Introduction

The kernel is a crucial component of the system, and direct access to hardware
resources leads to an increased risk if a malfunction occurs. In our case, seL4 was
designed as a microkernel in order to reduce the impact of software problems to
the system’s functionalities.

The main topic of interest in the analysis of the seL4 microkernel is the way
to prove the functional correctness through the Isabelle/HOL theorem prover.
The methods applied in system verification are more powerful and accurate
than automated verification techniques such as model checking, static analysis,
or deploying the entire kernel in a type-safe language. This method of proving
in Isabelle all the critical properties of the systems allows the analysis of specific
aspects such as exploring the branches of execution of safe scenarios (safe exe-
cution), but also a set of specifications and proofs of kernel behavior reaching
the analysis of implementation in C of the kernel for the ARM platform.

In this paper we investigate the process of adapting and applying the seL4
verification process for verify parts of another operating system and present a
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M. Manulis et al. (Eds.): SecITC 2023, LNCS 14534, pp. 144–156, 2024.
https://doi.org/10.1007/978-3-031-52947-4_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52947-4_11&domain=pdf
https://doi.org/10.1007/978-3-031-52947-4_11


OpenBSD Formal Driver Verification with SeL4 145

concrete case for the octrng(4) driver for the Octeon/MIPS64 platform provided
by the OpenBSD operating system.

Outline. In Sect. 2 we introduce the necessary seL4 concepts which, together
with the methodology from Sect. 3 regarding the translation of C code to Isabelle
theorem prover, allow us to present the verification of the OpenBSD driver in
Sect. 4. In Sect. 5 we conclude with limitations and future research.

2 SeL4 Verification Structure

SeL4 [9] is part of the L4 family - along with other implementations that share
the same L4 interface: Pistachio [11], Fiasco [10] or Hazelnut [3]. The proofs
that underlie the verification of seL4 system are in the form of Hoare structures
that have in their center a code component or whole functions. The difficulty
of verifying the seL4 micro-kernel lies in formulating pre-conditions and post-
conditions that accurately represent security properties that it must meet. At
the same time, the formal representation must be as close as possible to the
structure and functionalities implemented in the source code. Although work to
implement its proofs was started in 2009 formal proofs of the kernel are still
maintained up to date with publicly available source code.

A key aspect of the design of a microkernel and the properties of the C code
in relation to the form of their verification is the separation of kernel functions
calls in two phases [8]: verification and execution. The verification phase can be
understood as a stage of validation of the preconditions: the input data and the
permissions on the actions to be performed are verified. The execution consists
in the actual running of the system function, benefiting from its verification
because the preconditions have already been verified in the previous phase.

Note that in the verification phase the system status is not changed otherwise
this separation would no longer be relevant. This brings a valuable advantage in
the verification process because it simplifies the system call proof: execution will
not return an error if the verification phase has been completed successfully.

2.1 SeL4 Memory Management

SeL4 kernel memory allocation model transfers allocation control from kernel
space to applications that have this permission. Memory management permission
is represented by having a structure called capability [6]. As a consequence the
kernel heap memory can be precisely partitioned between applications: each
application has that part of the heap for which it has a capability that gives it
that authority. Separating heap memory is especially important for expressing
and demonstrating security properties (integrity and confidentiality).

The basic features of the kernel memory allocation model are as follows [8]:
allocation is explicit and is performed only when assigning a type (retype) to
an untyped memory area, allocation is strictly delimited by the specified free
memory kernel objects are not shared or reused.
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This memory management model leaves the responsibility for verifying secu-
rity policies outside the kernel. All that is left is to verify the correctness of the
memory allocation algorithm in the kernel. The properties of interest being that
allocated objects are within the corresponding areas of free memory and that
memory regions allocated to objects do not overlap.

Memory allocation capabilities can be transferred between the kernel compo-
nents. Transfers are represented as a tree in which the capabilities are the nodes
of the tree. Freeing memory is done in two steps that invalidate all references to
that region: search for all the capabilities for which access rights are granted on
the memory object and then delete all these capabilities and mark the memory
region as free. For the first stage, the capability transfer tree is used to find and
invalidate all capabilities that allow permissions on the memory region. In the
second stage, it is verified through the same tree that there are no references in
other objects or global references to the area to be released.

2.2 Memory Access Verification

Memory access is an interesting topic in order to model as accurately as possible
the behavior of a C program. In Isabelle pointers are represented as a new type of
data, datatype a ptr = Ptr word32, which means that the pointer is represented
only by the 32-bit address it contains. Using this representation one can reason
about heap memory.

Here an important problem is raised when we pass from one pointer type to
another. For example, if we have two float and int pointers to the same address,
after we use one to change the value from the address to which it points, we
cannot be sure that the other has not been changed. To ensure that pointers of
different types point to different addresses, the Burstall-Bornat model is used as
a solution [2] where heap memory is separated into types. Thus each data type
has its own function that maps pointers to their values:

record state =
heap_int :: word32 → int
heap_float :: word32 → float
heap_intptr :: word32 → addr...

While this solves the issues mentioned above, it also renders type casts unus-
able. A memory area, once allocated, remains defined in the corresponding heap
memory section until it is released.

3 Methodology: C to Isabelle Conversion

A key component of the formal check in seL4 is the bridge between C language
and the proofs in Isabelle [13]. This is also the most complex part of the proofs
because the semantics of the C language must be taken into account such as
the ones mentioned in the previous section but also data structures storage,
pointer arithmetic and others. In Isabelle memory addressing is represented by
a function defined on the address space without information about the type of
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data to which the address refers. The way different types of data are stored is
treated separately [12]. Abstracting how memory access, data alignment, and
how different data types are modeled removed the need for higher-level proofs to
employ repetitive checks, such as that a pointer is not null before being accessed,
instead these checks are already defined as constraints.

The correctness of the C language semantics is not, however, treated as crit-
ical to the proofs of the whole system because it adds an additional verification
level: the validation of the correspondence between the formal model and the
result obtained after compilation. The proof technique used to ensure the cor-
respondence between the abstract specifications, the formal model of the source
code, and the model resulting from the analysis of the binary file is called a refine-
ment. A refinement is defined in [8] as: “Program C is a refinement of program
A, if the set of behaviors of program C is a subset of the behaviors described
by program A”. Here a behavior means a sequence of steps given by a change
of system state and the transition between these states. The state of the system
consists of the state of its components (memory, processes, resources) belonging
to the user space and to the kernel space.

3.1 Isabelle/HOL Theorem Prover

Isabelle is an interactive theorem prover that supports several types of formal
logic systems. Isabelle/HOL is Isabelle’s specialization of Higher Order Logic
(HOL). HOL is a type-based logic whose system resembles the one from func-
tional programming languages [1]. Existing types can be classified [9] into:

– basic types, e.g. bool(boolean), nat(N) or int(Z)
– type constructors, e.g. list and set types. Type constructors are written post-

fix, that is, after their arguments. For example, nat list is the type of lists
whose elements are natural numbers.

– types of functions are denoted by “⇒”;
– types of variables are denoted by ′a,′ b, etc.

Terms are represented like in functional programming: by applying functions
to certain types of arguments. If we have f a function of type τ1 ⇒ τ2 and t is
a term of type τ1 then ft is a term of type τ2. In Isabelle the notation t::τ is
used to represent that the term t is of type τ . Isabelle’s proofs are structured
in theories. A theory is a collection of types, functions and theorems, just like a
module in a programming language. A theory has the following format

theory T
imports B1 ... Bn
begin
statements, definitions, proofs

end

where B1 ... Bn are the names of the existing theories on which the T theory is
based. Each T theory must be in a file called T.thy. HOL contains a Main theory,
which contains all predefined basic theories, such as arithmetic, lists, or sets. A
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theory can include a list of more .thy files. In practice, to have all theories needed
for parsing and basic proofs we have to include AutoCorres.AutoCorres. Proofs
can take the form of theorems or lemmas, both can be used inside other proofs.
There are specific keywords for applying these in order to reach our goal [13],
for example the most common keywords used in our proofs are: unfolding x -
which applies the definition of x on the current goal and apply x - which refers
to other theorems or set of rules to be used.

3.2 Parsing C to Isabelle

Approaching the C language from the perspective of obtaining a semantic model
on which valid reasoning can be built is an important contribution of the seL4
system and deserves to be studied in detail. Several steps are taken to translate
the C code from seL4 into Isabelle [4], steps that we will also need to take for
the OpenBSD driver:

1. each C source file is parsed by an external preprocessor, which extends
#include formulas and macro commands and other directives

2. the result is translated into Simpl by the C-to-Isabelle analyzer [12]
3. each structure in the program is represented by a record in Isabelle
4. local and global variables are analyzed to generate two new types: a global

variables record globals and “a myvars” record for locals
5. functions are translated in equivalent Simpl language representation;
6. proofs are performed on the generated functions to specify which global vari-

ables modify them

The post-translation steps in Simpl are embedded in the AutoCorres tool [4].
Because this tool uses the result of the C-to-Isabelle parser as input, AutoCorres
supports the same subset of the C language. Programs that use loops, function
calls, cast between various types, pointer arithmetic, structures, and recursion
are supported, but references to local variables, “goto” and “switch” expressions,
unions, floating point arithmetic operations or the use of pointers to functions are
not supported. The example in [4] shows how one can go from the implementation
in C of a simple function to the C-to-Isabelle parser output (with which it is
quite difficult to work) and then to the final form after running the AutoCorres
tool. In essence, the purpose of the AutoCorres tool is to abstract the low-level
representation from the C-to-Isabelle parser into a high-level one by:

– performing the conversion between the deeply embedded representation to
the shallowly embedded one (as described below)

– abstracting the arithmetic operations at 32-bit machine word level into oper-
ations on the whole set of integers and natural numbers

– abstracting the heap memory at byte level into separate data-type areas using
the Burstall-Bornat model [2]

– simplifying the code and translating the variable types from the Simpl repre-
sentation into a form that is easy to reason in Isabelle.
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Deeply vs Shallowly Embedded Representations. Before we can begin to
formally reason about a program, we must first translate it into the logic used
by our theorem demonstrator. To bring the C code into Isabelle, it is necessary
to decide which aspects of the code will be translated into the demonstrator
logic. If the emphasis is on the C program structure and its preservation in
Isabelle, we say that deeply embedded representation is used. If the semantics of
the program are important in the translation process, then we have a shallowly
embedded representation of the source code in Isabelle logic. AutoCorres has the
role of conversion between the structural representation of the C language given
by the C-to-Isabelle parser into the semantic representation on which reasoning
will be performed.

An example from [4] tries to explain the difference between the two forms of
code representation starting from: 2 + 2 = 4. If we want to prove that the left
side is equal to the right side, we perform the addition (treating the expression
as shallowly embedded) and state that the proposition is true. If we look at the
structure of the equation (deeply embedded), on the left we have 3 characters
and on the right only one. Thus we can say that the two parts are not equal
because we did not give any semantics to the assembly operation and its terms.
Structural treatment is not helpful if we want to prove certain statements about
a program. For this reason, the semantic representation of the C code is an
important contribution in the verification of the seL4 kernel, and this is done
through the AutoCorres tool.

The semantic representation obtained with AutoCorres aims to capture the
behavior of C programs where the representation in Isabelle can show that the
program might change the overall state of the system, might contain loops which
may not end, might have exceptions or other errors and so on. These require-
ments are covered by the extensive use of existing monads in Simpl (Skip, Basic,
Cond, Guard, etc.) and the addition of new constructs such as gets, return,
whileLoop. The later provides a great similarity between the imperative language
of the source and the functional one in which it is modeled.

3.3 C Subset Limitations

In our work we needed to tackle the C-language constraints mentioned above, so
we used only a subset of the C99 standard specifications [7]. The most relevant
restriction is that pointers to functions are not supported. Pointer data types are
defined as functions that return data stored at those addresses. If the pointers
refer to the address of a function, there is no guarantee that the reference cannot
be circular and that the address of the function must also be resolved. Other
issues that we ran into include control flow sequences such as code jumps using
“goto” or “switch” which are not supported and compiler optimization for data
positioning in memory when dealing with unions or bit fields.

Calling Function Pointers. The limitation of not being able to call func-
tions that were set via their address to a function pointer was a major drawback
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in the integration of the OpenBSD driver because we needed to address pro-
grammable tasks to be executed in the future. The tasks may come from the
device driver, the timer or other sources. The main loop can only call the cor-
responding function that was set via its pointer. Below we depict a simplified
program to showcase the issue where the C-to-Isabelle parser fails to translate
the last function because the call to foo() is done via the function pointer p_fun.

static int counter;
void foo(void) { counter++; }
void (*p_fun)(void);
void set_function(void) { p_fun = foo; }
void call_function(void) {

if(p_fun) p_fun();
}

Workarounds cannot provide the full proof, they only skip certain parts of
the program or proofs in order to provide a translation avoiding the part were
the function pointer is used. We list here a few options:

– skip parsing call_function by adding the DONT_TRANSLATE annotation, we used
this in the proof because the other translations were not affected, we only had
to avoid proving annotations the function pointer;

– add the following annotations before parsing the C file, this will assert those
theorems as axioms rather than try to prove them:

declare [[quick_and_dirty = true]]
declare [[sorry_modifies_proofs = true]]

– add annotations before parsing the C file, this will not try to prove the the-
orem that involves function pointers

[[calculate_modifies_proofs = false]]

4 Driver Verification

Drivers are pieces of software that are part of a monolithic kernel (but can also
run is userspace), whose purpose is to interact with hardware devices or buses
and to provide a interface between the kernel and those components. We choose
to verify drivers as a further development of seL4 verification because drivers
are independent enough from the kernel structure, thus the verification process
does not need to take into consideration the particularities of the kernel where
the driver came from.

The main objective of driver modeling in Isabelle is to generalize the verifi-
cation of kernel drivers and make it OS-agnostic. We started from an OpenBSD
driver which suffered adaptations meant to decouple its dependency on the ker-
nel mid-layer. This simulation comes at a cost, we have to assume that the
rest of the system works correctly because the verification will cover only the
driver functionality. We applied this assumption to hardware related components
like bus communication and reading/writing form device registers. We assume
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that the bus works correctly and the register behavior matches the datasheet
specifications. In general, this separation between the software driver and the
hardware components is helpful for identifying the source of defective device
behavior. Theorems, code and data are available at https://gitlab.com/system.
verification

4.1 OpenBSD Octrng Driver

The driver used for prototyping seL4 verification is a hardware random num-
ber generator for Octeon boards. We choose this driver because it has a small
configuration sequence and it is pretty isolated from the OpenBSD kernel
(there are no major dependencies from other drivers or kernel components).
The driver structure is very simple, it has two important functions. First the
driver initialization routine, octrng_attach whose purpose is to configure the
hardware in order to start generating random values. To do this it maps the
registers of the device in the main address space and sets bits 62 and 63
(OCTRNG_ENABLE_OUTPUT, OCTRNG_ENABLE_ENTROPY) of register 0× 1180040000000
(OCTRNG_CONTROL_ADDR). The device starts generating random values. Afterwards,
octrng_rnd, the second function, is called periodically to retrieve the random
value generated by the device from register 0 × 1400000000000 (OCTEON_RNG_BASE
+ OCTRNG_ENTROPY_REG). The random value is be added to the entropy pool on
each call.

4.2 Mid-Layer Decoupling

Before parsing the C driver implementation into Isabelle, some OpenBSD kernel
mid-layer particularities had to be decoupled and implemented separately so
that the driver can stand on its own. We mimicked:

Bus Communication. The original driver accesses the bus via bus_space_x()
functions, where x can refer to register mapping, reading or writing on the bus.
In our case, we replace the bus access with simple reading or writing to local
memory. This way, bus behavior is copied for read/write commands except for
the timing (a bus write may need more time than writing to a local variable).
In our case timing is not relevant because all actions are done sequentially.

Device Registers. Because the bus communication is simulated, we imple-
ment and express register behavior using local memory with a static structure
containing only the required fields from the registers. For octrng driver, we only
need the control register, so we had a static structure rng_regs with only one
member control_addr which will be the absolute address of the control register.

Reading and writing the device register is done by mapping the physical
registers in memory. This involves communication with the device via the bus
on which it is located. For our model however, the device is just a representation

https://gitlab.com/system.verification
https://gitlab.com/system.verification
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of the actual one, so there are no physical registers and our bus transfers are
simply read-write operations from the device register structure.

Our model resembles as much as possible the internal register behavior.
For the octrng driver, only some registers are important and so we have to
cover only these cases: enabling the output bit, the entropy bit and reading the
control value. We implement this with two helper functions set_register and
get_register. The first function modifies the required register with a given value
while the second one reads the control register or returns the value of the current
timer if both output and entropy flags are set.

Global Timer. In our model the timer serves two purposes. The first is inher-
ited from the original driver: scheduling a call to the random function every
10 milliseconds. The other has been added for verification purposes and is not
present on the actual hardware device: mimicking the random value by returning
the timer value instead of the random value from the device register. Note that
because we do not have access to an actual timer, we will simply use a global
variable that will be incremented by the idle() function each time the main loop
schedules a task (see below).

Task Scheduling. The initialization call to the attach function of the driver is
done from a separate file whose purpose is to simulate a very simple scheduler.
The scheduler is a loop guarded by a timeout where we check for tasks waiting
to be scheduled during each iteration. This loop also calls the idle function to
increase the global timer. Tasks are stored into a static structure array whose
members are the timeout, the start (or arrival) time and the timeout_fun call-
back. Scheduling a task to run function foo() after 3 time units in the future
implies adding a new task in the task queue with timeout set to 3, start set to
the current time value and timeout_fun pointing to the foo() function. The task
queue is a circular buffer, each task addition increments the index of the newest
task added. Tasks are removed from the buffer after completion.

4.3 Proving Driver Function Correctness in Isabelle

We translate our driver model into Isabelle/HOL by applying successively the
C-to-Isabelle parser and then the AutoCorres tool. A limitation of these tools is
that we can only parse one .c file at a time and provide one corresponding .thy
file. In seL4, some of the .c files have produced isolated theory files and these
theories are then included where needed. However, there is a starting point to
parse all the other files and this is the kernel_C preprocessor output file. We used
the same approach by including the octrng driver and the timer implementation
inside the .c file containing the main loop. The theory file contains the import
statements that include AutoCorres theories and all the helper theories. The
C-to-Isabelle parser is applied by declaring the input preprocessed file. After
this step we have all the C functions translated into Simpl theorems. In order to
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obtain the final representation of these theorems, the AutoCorres tool is applied
on the target file. Inside the main context of this theory we can start defining
new terms, functions or proving new lemmas about the translated C functions.

After the translation into Isabelle, we can access the functions from C as
theorems in Isabelle. For example, C function foo is represented as a theorem
named foo’_def. All additional functions implemented in all the included files
will be translated. We analyze only the two functions related to the octrng driver:
octrng_attach and octrng_rnd. Any constants need to be redefined if we want
to use the same names through the new theorems or lemmas. The C constants
have been translated directly into their values, but we can give a name to the
same values as Isabelle definitions (for example the enable output flag will be
defined in Isabelle as definition “OCTRNG_ENABLE_OUTPUT ≡ (1 << 1):: word32”).

The Attach Function. This is where the device configuration takes place and
also the task of periodically checking the value is programmed. The resulting
Isabelle translation of the associated modeled driver C code is:

Original:
void octrng_attach(void) {
unsigned long control_reg;

control_reg = get_register(OCTRNG_CONTROL_ADDR);
control_reg |= OCTRNG_ENABLE_OUTPUT;
control_reg |= OCTRNG_ENABLE_ENTROPY;
set_register(OCTRNG_CONTROL_ADDR,control_reg);

add_task(octrng_rnd, 5);
}

Isabelle:
do ret’ ← get_register’ 0x0001180040000000;
set_register’ 0x0001180040000000 (ret’ || 3);
add_task’ (PTR(unit) (symbol_table ’’octrng_rnd’’)) 5

od

We now want to verify that after the execution of octrng_attach the device
state is ready for generating random values, i.e. the control register is set cor-
rectly. We model this inside a lemma in the form of a Hoare triple {P}C{Q},
where P and Q are the precondition and respectively the postcondition, C is the
executed program. In our case, we want to verify that running the octrng_attach
program function in any program state, will result in the control register having
set to 1 the enable output and entropy flags. So the precondition is always True
because there are no requirements and in the postcondition we check the bits of
the flags.

lemma octrng_attach : "{| λs. True |}
octrng_attach’

{| λ_s.
control_addr_C (rng_regs_’’ s) && OCTRNG_ENABLE_OUTPUT �= 0 ∧
control_addr_C (rng_regs_’’ s) && OCTRNG_ENABLE_ENTROPY �= 0 |} "

This proof is straightforward, we only need to use unfolding to apply all the
functions and definitions needed. The weakest precondition tool (wp command)
computes the necessary precondition that we have to prove further. All the
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provided goals can be derived automatically from the function definition. Except
for the bit operations where we need to explicitly apply the word_bitwise theo-
rems.

The Periodic RNG Function. This function should constantly retrieve the
“random” value and add it to the pool. Because we only have the driver part
and not the rest of the OpenBSD kernel, this value will be the timer value and
the randomness pool will be just a global variable which will be updated by call-
ing this function. The modeled C implementation just reads the value from the
output register and saves it into the rand_value global variable, then it sched-
ules another function execution after 10 time units. The Isabelle representation
matches the same behavior, the only difference is that all the global variables
from the C program are now represented as Isabelle terms, for example the inte-
ger rand_value is translated in Isabelle as rand_value_” a term of type sword32
(signed word on 32 bits).

Original:
void octrng_rnd(void) {
unsigned int value;
rand_value = get_register(OCTRNG_ENTROPY_REG);
add_task(octrng_rnd, 10);

}
Isabelle:
do ret’ ← get_register’ 0;
modify (rand_value_’’_update (λa. ret’));
add_task’ (PTR(unit) (symbol_table ’’octrng_rnd’’)) 10

od

The verification lemma for octrng_rnd has a few more preconditions than the
initialization function because we have to first make sure that the function can
be executed (the task queue is not full) and then that the driver is configured
properly (the output and entropy flags are set).

lemma octrng_rnd:
"{| λs. timer_" s = a ∧ running_tasks_" s < MAX_QUEUE ∧

current_tasks_" s < MAX_QUEUE ∧
control_addr_C (rng_regs_" s) && OCTRNG_ENABLE_OUTPUT �= 0 ∧
control_addr_C (rng_regs_" s) && OCTRNG_ENABLE_ENTROPY �= 0 |}

octrng_rnd’
{| λ_s. rand_value_" s=a |}! "

The additional clause λ s. timer_" s = a represents that in any given state s
the global timer variable may have a label a for its value. What we want to
prove is that the same value will be set to the global rand_value and this is
the precondition λ_s. rand_value_" s = a. The verification will be done using
the same proofs as for the previous lemma: first we apply the definition of all
functions used and then apply the weakest precondition tool. The goals obtained
this way are easy to prove by applying the auto method.

This lemma could be improved by adding other specifications like checking
that the same function will be called after 10 time units or that the function will
be always called in time. The proofs that involve task scheduling were avoided
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because the translation of the function that runs the actual task is not parsed
due to the issues described in the C subset limitation section.

Main Loop and Other Lemmas. The driver functions are bound together
inside a small program that simulates a simple scheduler. The main loop does
the initialization of the environment including the call of the octrng_attach
function, then the main loop checks for each time unit if there are tasks whose
timeout expired so their function has to be run. We can add lemmas for those
additional functions mainly because some of them might be useful in proving
other properties. For example, a simple function idle increases the global timer
after each iteration of the main loop. The lemma for this function can verify that
the timer is modified exactly by 1 after its execution in any program state.

lemma idle_increases [simp]:
"{| s. timer_" s = a |}
idle’
{| λ_s. timer_" s = a + 1 |}! "

lemma main_function:
"{| λs. timer_" s = 0 ∧ running_tasks_’’ s = 0 |}
main’
{| λ_s. timer_" s = TIMEOUT |}!"

Its proof is obvious, we only have to apply the weakest precondition tool and
then the auto method for applying the simplifications. A proof that is more
interesting is the one that states the main loop runs until a timeout occurs. This
is done by limiting the timer with a maximum value, if this value is reached
no other task will be called. The difference between this lemma’s proof and the
other is that here we have loops so we have to first provide a proof that those
loops ends. Because the function that actually runs the task is not parsed, we will
only prove the main loop, the one that increases the timer via the idle function
and continuously run until timeout. This aspect is specified in the main_function
lemma: if we call the main function from a state where the timer is not started
and there are no running tasks, then at the end the timer will have reached the
timeout value. In order to prove this loop we have to specify and invariant and
a measure.

The invariant is a property that has to be true before, during and after the
main loop ends - because we want to prove something about the timer value,
the invariant specifies that at any state of the loop, the timer will have a value
between 0 and the timeout limit. The measure is a value that has to decrease at
each iteration - following the same model, the measure in our case is the distance
between the timer and the timeout limit.

definition
timer_limits_inv :: "word32 ⇒ ’s lifted_globals_scheme ⇒ bool"
where
"timer_limits_inv a s ≡ a = timer_" s ∧ 0 ≤timer_" s ∧
timer_" s ≤ TIMEOUT "

definition
timer_limits_measure :: " ’a ⇒ ’s lifted_globals_scheme ⇒ word32"
where
"timer_limits_measure a s ≡ a = TIMEOUT - timer_" s "
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We can apply these two definitions via the whileLoop_add_inv monad and obtain
a proof goal that can be further broken into smaller goals using the weakest
precondition tool.

5 Conclusions

In this paper we adapted and made use of the seL4 verification framework to show
that we can use the theorems and proofs of a micro-kernel operating system to
successfully verify the octrng driver of the monolithic OpenBSD kernel. Besides
that, we also provided a proof of concept regarding the verification of other mid-
layer kernel components such as the scheduler. While this is just a small part
of the large OpenBSD code base, our efforts lead to an encouraging conclusion:
that the automatic abstraction of the source code using the AutoCorres tool
reduces the complexity of the effort to demonstrate [5] the properties of any
system outside seL4.

We hope that in the future this direction could facilitate the inclusion of
verification as an important step in the development of system critical software.
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Abstract. Delegation of operations used in cryptographic schemes from
a computationally weaker client to a computationally stronger server has
been advocated to expand the applicability of cryptosystems to comput-
ing with resource-constrained devices. Classical results for the verifica-
tion of integer and polynomial products are based on a test due to Pip-
penger, Yao and Kaminski which verifies these operations modulo a small
prime. In this paper we describe and prove an efficient small integer mod-
ulus test and show its application to single-server delegated computation
of operations of interest in cryptosystems. In particular, we show single-
server delegated computation protocols, without any preprocessing, for
the following operations:
1. modular multiplication of two public group values,
2. modular inverse of a public group value,
3. modular inverse of a private group value, and
4. exponentiation of a public base to a small public exponent in the

RSA group.
Our protocols satisfy result correctness, input privacy (unless the input
is public), result security and client efficiency. Previous work satisfied
only a subset of these properties, or required preprocessing, or satisfied
lower client efficiency.

Keywords: Small Modulus Test · Applied Cryptography · Secure
Delegation · Group Theory

1 Introduction

Server-aided cryptography (starting with, e.g., [1,11,22]) addresses the problem
of resource-constrained clients, such as IoT devices, delegating or outsourcing
cryptographic computations to computationally more powerful servers. Cur-
rently, this area is seeing a renewed interest because of the increasing pop-
ularity of various computing trends (i.e., computing over IoT devices’ data,
cloud/edge/fog computing, etc.), and the need to efficiently implement cryp-
tographic schemes and their sometimes relatively expensive operations on them.
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
M. Manulis et al. (Eds.): SecITC 2023, LNCS 14534, pp. 157–177, 2024.
https://doi.org/10.1007/978-3-031-52947-4_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52947-4_12&domain=pdf
http://orcid.org/0000-0002-5138-1144
https://doi.org/10.1007/978-3-031-52947-4_12


158 M. Khodjaeva and G. di Crescenzo

The ubiquitous deployment of resource-constraint devices makes the secu-
rity designer’s life harder, in that the task of guaranteeing the security of these
devices becomes less and less manageable. The natural approach of running
a preprocessing phase where cryptographic keys and credentials are stored on
these devices and then allowing them to participate in state-of-the-art cryp-
tography protocols based on this stored information, may not always succeed,
since sometimes these devices are deployed in use cases where physical security
(specifically, confidentiality and/or integrity) of any stored secret keys or data
cannot be guaranteed.

This motivated the problem studied in this paper: is it possible for a resource-
constrained client to efficiently, privately and securely delegate to a server the
computation of operations used in currently applied cryptography schemes, with-
out need for a preprocessing phase? A solution to this problem needs to make
computation for the client more efficient than in a non-delegated computation,
but also needs to withstand server’s attacks in learning any new information
about the input to the computation (when input privacy is desired), or in dis-
rupting the computation and fooling the client into accepting an incorrect com-
putation result. All of the above needs to be achieved without a preprocessing
phase storing data on the client’s memory.

More generally, we require a solution to the delegation of a function F to
be a 2-party protocol between client C and server S, where C and S have a
brief message exchange (typically, a message from C to S followed by one from
S to C; see Fig. 1), and where the following requirements are satisfied (see also
Appendix A for more formal definitions):

1. δc-result correctness: if C and S honestly run the protocol, at the end of the
protocol C returns F (x) with some high probability δc;

2. εp-input privacy: except for some small probability εp, no new information
about input x is revealed to S;

3. εs-result security: S should not be able, except possibly with some small
probability εs, to convince C to return a result different than F (x) at the end
of the protocol; and

4. (tF , tS , tC , cc,mc)-efficiency:
– client runtime efficiency: C’s runtime, denoted as tC , should be signifi-

cantly smaller than the runtime, denoted as tF , of computing F (x) with-
out delegation;

– small S’s runtime tS (i.e., a small constant times tF );
– small online phase communication complexity cc (i.e., ideally a small con-

stant times input and output sizes);
– small number of online phase messages mc (i.e., ideally, ≤ 2).

Our Contribution and Comparison with Previous Work. We show single-
server protocols, without preprocessing, for the delegation of

1. modular multiplication of two public group values,
2. modular inverse of a public group value,
3. modular inverse of a private group value, and



An Efficient Small Modulus Test and Its Applications 159

Fig. 1. Delegated computation of y = F (x) without preprocessing

4. exponentiation of a public base to a small public exponent in the RSA group.

All of our protocols satisfy the following 4 properties:

– δc-result correctness, for δc = 1;
– εp-input privacy (unless the input is public), for εp = 0;
– εs-result security, for εs = 2−λ, where λ is a configurable statistical parameter

which in applications can be set, for instance, as = 50); and
– client runtime efficiency, with a software implementation that achieves ratio

tF /tC significantly larger than 1, when λ = 50 and when the value range
of input length σ is consistent with the use of these operations in applied
cryptography.

In the case of modular multiplication of two public values, we are not aware
of any previous work satisfying these 4 properties without preprocessing. The
closest results we know of are: (a) the protocol in [7], which satisfies these 4
properties with preprocessing, and (b) a protocol obtained by a direct adaptation
to modular multiplication of the integer multiplication verification test [15,32],
which at best achieves client efficiency in an asymptotic sense.

In the case of modular inverses, previous work (see, e.g., [5]) did achieve an
efficient delegation protocol without preprocessing, even in the case where the
input needs to remain private. The protocols in this paper have improved client
efficiency, since the client only performs a few modular reductions with a small
modulus, while in [5] the client performed a few modular multiplications.

In the case of modular exponentiation of a public base to a small public
exponent in the RSA group [25], we are not aware of any previous work satisfying
this set of 4 properties without any preprocessing. The closest results we are
aware of are a protocol that satisfies these 4 properties but requires preprocessing
[8], and the following protocols without preprocessing for large public exponents:
(a) delegation of a batch of exponentiations where the client does compute a
single exponentiation [9], and (c) delegation of a single exponentiation which
only provably satisfies result correctness and client efficiency [24,28,33]. We note
that exponentiation to a small exponent is of much interest since many library
implementations of RSA encryption use small exponents, for efficiency reasons.

We show the client runtime efficiency property of our protocols in two ways:
with analytical runtime expressions, and by performance measurements for a
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software implementation of our protocols as well as some previous protocols (see
Tables 1, 2, 3, and 4 for details). Our protocols also perform well with respect
to the other targeted efficiency properties; specifically:

– low exchanged communication (a constant number of group values; i.e., cc =
O(1) for modular multiplication and inverses, and a logarithmic number; i.e.,
cc = O(log x) for modular exponentiation to small exponent x),

– only 1 or 2 exchanged messages (client delegating to server, and server
responding; i.e., mc ≤ 2), and

– low server runtime (only lower order computations in addition to the dele-
gated function).

Our main technical contribution consists of a 2-parameter generalization of
Pippenger’s probabilistic test [15,32] on efficiently verifying integer equations.
Given an integer equation y = a · b, this test consisted of checking whether this
identity holds modulo a small random prime. We generalize this test in two
ways: by using a small random integer instead of a small random prime, and by
optimizing the length of this random integer as a function of the desired error
probability for the test. We also give a self-contained proof of the lemma proving
the effectiveness of this test.
More Related Work. Almost all past work showing proved guarantees in del-
egation of operations used in cryptography protocols (starting with, e.g., [14]
for exponentiation and [30] for pairings), made critical use of preprocessing, as
follows. The delegation protocol was divided into an offline phase and an online
phase, and the client was assumed to have time resource constraints only in the
online phase. While this assumption may be reasonable in many practical sce-
narios, it may also not be so in scenarios where we cannot guarantee the integrity
and/or confidentiality of the data stored on the client’s memory at the offline
phase or even cached across multiple protocol executions. Thus, delegation with-
out preprocessing of operations used in cryptography schemes, although much
harder to achieve, seems to be an important capability to have for applications
with resource-constrained devices.

We are only aware of the following few exceptions (i.e., single-server delega-
tion protocols proved to satisfy the above 4 properties, without requiring any
preprocessing): a protocol to delegate an inverse in a group (see, e.g., [5]), and
a recent protocol to delegate any single pairing computation with public inputs
[19]. With respect to batch computations, we are aware of the following solutions
proved to satisfy the above 4 properties, without preprocessing: 2 protocols to
delegate a batch of public-base, public-exponent, exponentiations in prime-order
or RSA groups, where the client does perform a single exponentiation compu-
tation [9], and protocols to delegate a batch of public-input pairings, where the
client does perform one or some pairing computations [10,23,30]. We note that
in these latter protocols the client does cache some values across the batch dele-
gation, and stress that if cached for a long time, the confidentiality and integrity
of these values is also at risk (similarly as discussed for values stored during any
preprocessing).
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In the case of no-preprocessing delegation of a single large-exponent expo-
nentiation modulo a composite integer, previous attempts satisfied result cor-
rectness and client efficiency [24,28,33] but were later showed to satisfy neither
input privacy nor result security [4,24]. Similarly for the case of no-preprocessing
delegation of a single pairing: the scheme in [13] satisfies result correctness, input
privacy and client efficiency but does not target result security, and protocol 1
in [20] satisfies result correctness and client efficiency but was showed to satisfy
neither input privacy nor result security in [19]. Some literature papers achieved
delegation without preprocessing in the presence of 2 or more non-colluding
servers; see, for instance, [29] for the delegation of pairings.

There is also much other work on delegation for operations in a different
domain than what studied here, for which we refer to reader to the survey in [27]
for other operations beyond cryptography and the survey in [2] for computation
of arbitrary functions, with clients more powerful than considered here.
Preliminary Definitions. Let (G, ·) denote a group, where we refer to opera-
tion · as multiplication, and let 1 denote G’s identity element. For any a ∈ G, let
b = a−1 denote the multiplicative inverse of a; i.e., the value b such that a ·b = 1.
We consider the following functions:

– Fmul : G × G → G, mapping any a, b ∈ G to their multiplication a · b.
– Finv : G → G, mapping any value x ∈ G to its multiplicative inverse x−1.
– Fexp,c : G × {0, 1}c → G, mapping any values x ∈ G and any c-bit exponent

e to the exponentiation xe.

In the rest of the paper, we will consider these functions over the group (Z∗
m, ·

mod m), for an arbitrary integer m. In particular, when m is a positive integer
of one of the following two forms: (1) m is a prime; (2) m is the product of
two same-length primes p, q. Note that these definitions capture groups where
the discrete logarithm problem or RSA/factoring problems are conjectured to
be hard.

For asymptotic efficiency evaluation of our protocols, we will use the following
definitions:

– a(�): runtime for modular addition/subtraction of �-bit values
– m(�): runtime for modular multiplication of �-bit values
– d(�): runtime for modular inversion of an �-bit value
– mr(�): runtime for modular reduction to an �-bit modulus
– p(�): runtime for a random generation of an �-bit prime number
– i(�): runtime for a random generation of an �-bit integer
– η1 = �λ + log2 λ + log2(π(2σ))�, where π(z) is the number of primes ≤ z
– η2 = �λ + log2 σ�.

For practical runtime evaluation, we have produced a software implemen-
tation, in Python 3.8 using the gmpy2 package, of our protocols on a macOS
Big Sur Version 11.4 laptop with a 3.2 GHz Apple M1 processor with 8 cores
(4 performance cores and 4 efficiency cores at 1/10th of the power) and 16 GB
RAM.
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2 An Identity Verification Test Modulo Small Integers

We show a 2-parameter generalization of Pippenger’s probabilistic test [15,32].
Given an integer equation y = a · b, this test consisted of randomly choosing
a small prime q, and checking whether y mod q = (a mod q) · (b mod q). We
generalize this test in two ways: by using a small random integer s instead of
the small random prime q, and by setting the length of s as a function of the
desired error probability for the test. We now show the key lemma proving the
effectiveness of this test (stated in terms of zero testing since verifying the integer
equation y = a · b is equivalent to verifying that y − a · b = 0).

Lemma 1. Let λ, σ be integers such that λ ≥ 2 and 7 ≤ σ ≤ 108. Also, let
Nη be the set of positive integers ≤ 2η and > 1. For any integer x such that
1 ≤ x ≤ 2σ, if η = �λ + log2 σ�, it holds that

Prob [ q ← Nη : x = 0 mod q ] ≤ 2−λ.

We start the proof of Lemma 1 by providing some definitions and facts. Our
goal is to compute an upper bound on the probability, denoted as pη,λ,x, in the
lemma statement; i.e., the probability that after randomly choosing an integer
q ≤ 2η and > 1, it holds that x = 0 mod q. To compute an upper bound on
pη,λ,x, we first elaborate on known bounds on the product of prime numbers.

Theorem 18 in [26] states that for any integer u < 108, the product of all
prime integers ≤ u is > et, for t = u − 2.05282

√
u, which is > 2u for all integers

u ≥ 49. By direct calculation, one can see that the product of all prime integers
≤ u is > 2u for all 7 ≤ u ≤ 49. This implies the following

Fact 1. For any integer u such that 7 ≤ u ≤ 108, the product of all prime
integers ≤ u is > 2u.

We now need a result almost identical to Corollary 1 in [18].

Fact 2. For any integers σ, x such that 7 ≤ σ ≤ 108 and x < 2σ, the number of
positive integers that divide x is ≤ σ − 1.

To show why Fact 2 holds, we see that by assuming that there are b > σ − 1
distinct positive integers q1, . . . , qb which divide x, one reaches the contradiction

2σ > x

≥ lcm(q1, . . . , qb)
≥ lcm(smallest b positive integers)
≥ product of all primes ≤ b

> 2σ

where the last inequality follows from Fact 1, after setting u = σ.
Using the above facts, we can now compute the desired upper bound on

probability pη,λ,x as follows.
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pη,λ,x ≤ number of positive integers dividing x

number of integers ≤ 2η and > 1

≤ σ − 1
2η − 1

≤ σ

2η
≤ σ

2λ+log2 σ
≤ 1

2λ
,

where the first inequality follows by the definition of pη,λ,x, the second inequality
follows from Fact 2, the fourth inequality follows from the definition of η in
the lemma statement, and the third and fifth inequalities follow by algebraic
simplifications. 
�

3 No-Preprocessing Delegation of Group Multiplication

In this section we show the first single-server delegation protocols for group
multiplication, without any preprocessing. Formally, we obtain the following

Theorem 1. Let σ be computational security parameter, let m be a σ-bit inte-
ger, and let λ be a statistical security parameter. There exist (constructively) a
single-server protocol Pmul without preprocessing for delegating computation of
function Fmul in group (Z∗

m, · mod m), satisfying the properties of 1-correctness,
2−λ-security, and (tF , tS , tC ,mc, cc)-efficiency, where, for η = �λ + log2 σ�,

– tC = 5 η-bit-modulus reductions of σ-bit integers

+ 2 η-bit-values multiplications + 1 η-bit-value addition;
– tS = 1 multiplication + 1 division mod m,
– mc = 1, cc = 2

We also remark that the asymptotic expression of tC is O(mr(η)+m(η)+a(η)),
which improves over non-delegated computation runtime tF = m(σ) of ring
multiplication for a large region of the (λ, σ) parameter space, including values
of highest practical interest, when using the most recommended algorithms in
applied cryptography (i.e., Karatsuba’s algorithm, Toom-Cook’s algorithm and
the grade-school algorithm).

In the rest of this section we show the proof of Theorem 1.
Informal Description of Pmul. Our starting point is the delegation protocol,
with preprocessing, for multiplication modulo primes from [7], here denoted as
Pmul

pre . In this latter protocol, the online input to C and S consists of two integers
a, b and a prime modulus p, and its online phase starts with S computing the
product w = a · b over the integers and sending to C the decomposition of w
modulo p (i.e., the quotient w0 and the remainder w1 of the division of w by p).
After that, C verifies the equation a·b = w0 ·p+w1 modulo a small random prime
q, which was chosen in the offline phase. Protocol Pmul

pre uses a verification test
which extended a well-known test for probabilistic verification of multiplication
over the integers, mentioned by Yao [32] and Kaminski [15], and credited in
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both papers to Pippenger (see, e.g., example 2 in [15] for a description of the
protocol). The extension consists in a configurable choice of the size of the small
prime modulus q, based on the desired error probability for the test.

As the offline of Pmul
pre essentially only consists of randomly choosing a small

prime and storing it on C’s memory, a natural approach to obtain a delegation
protocol without preprocessing consists of moving this step into C’s program
in the online phase. We denote the resulting protocol as Pmul

opm. As detailed in
Table 1, when implementing Pmul

opm for practical parameter values, C’s runtime
is significantly slower than a non-delegated computation. After we realized that
this is due mainly to the random choice and testing of the small prime, we
considered using a version of this probabilistic verification test based on arbitrary
small integers as moduli (instead of primes), as in Sect. 2, for which the random
modulus choice is very efficient and no primality testing of the modulus is needed.
Our Lemma 1 shows that this approach is sound, and the size of this integer is
not much different (in fact, slightly smaller) than the size of the prime integer
chosen in [7]. As a consequence, in the resulting delegation protocol, denoted
as Pmul, C’s runtime is smaller than non-delegated computation, even if no
preprocessing is used.
Formal Description of Pmul. Consider the group (Z∗

m, · mod m), for some
positive integer m. We now formally describe a 1-server protocol Pmul = (C,S)
for the delegation of multiplication of public online group values a and b in Z

∗
m,

where |a| = |b| = σ, and with statistical parameter λ.
Online Input to C and S: 1σ, 1λ, integer m ∈ {0, 1}σ, a, b ∈ Z

∗
m

Online Phase Instructions:

1. S computes w := a · b (i.e., the product, over Z, of integers a and b)
S computes w0, w1 such that w = w0 · m + w1 (over Z), where 0 ≤ w1 < m
S sends w0, w1 to C

2. C randomly chooses an integer s < 2η, where η = �λ + log2 σ�
C computes w′

0 := w0 mod s and w′
1 := w1 mod s

C computes a′ := a mod s, b′ := b mod s and m′ := m mod s
If a′ · b′ �= w′

0 · m′ + w′
1 mod s then

C returns: ⊥ and the protocol halts
C returns: y := w1

Properties of Pmul: The proofs for the result correctness and result security
of Pmul, the latter using Lemma 1, can be found in Appendix B.

The efficiency property follows by protocol inspection. In particular, S com-
putes one multiplication of two σ-bit values over Z, and one reduction of a σ-bit
integer modulo m, and C computes five reductions modulo the η-bit integer s of
integers of size at most σ and one verification check which requires one addition
and two multiplications modulo the η-bit integer s.

In Table 1 we report on the practical efficiency of the scheme, based on
our software implementation of the scheme, one main takeaway being that C’s
runtime tC is smaller than non-delegated computation tF (i.e., the delegation
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improvement ratio tF /tC is > 1) for all values of most interest of parameters λ, σ;
specifically, λ = 50 and σ ∈ {1024, 2048, 3072}. We also report the ratio tF /tC
for two related protocols: protocol Pmul

pre from [7] with preprocessing, and the
protocol Pmul

opm which has no preprocessing, where C chooses a prime modulus s
in the online phase. The takeaways there are that, for such practical parameter
values: (1) delegation would not improve C’s runtime in Pmul

opm; (2) delegation
does improve C’s runtime in Pmul by a multiplicative factor between 1.7 and
4 depending on the modulus size; and (3) the delegation improvement ratio for
Pmul, not using preprocessing, is about half the ratio of Pmul

pre , which does use
preprocessing, or larger.

Table 1. Performance results for the delegation of Fmul(a, b) = a · b mod m in Z
∗
m,

where |m| = σ, λ = 50, tCm(η) ≤ 5mr(η) + 2m(η) + a(η) and tF = 1.19E-05 s.

Protocol/Pre-processing tC tF /tC σ = 3072

σ = 2048 σ = 3072 σ = 4096 tP tC

m is a prime integer

Pmul
pre Yes tCm(η1) 3.479 4.852 6.578 5.78E-05 2.44E-06

Pmul
opm No tCm(η1) + p(η1) 0.108 0.185 0.314 0 6.43E-05

Pmul No tCm(η2) + i(η2) 1.694 2.716 3.973 0 4.43E-06

m is the product of 2 same-length primes

Pmul
pre Yes tCm(η1) 3.538 4.728 6.501 6.46E-05 2.53E-06

Pmul
opm No tCm(η1) + p(η1) 0.122 0.198 0.306 0 6.06E-05

Pmul No tCm(η2) + i(η2) 1.731 2.701 3.999 0 4.34E-06

4 No-Preprocessing Delegation for Group Inverses

In this section we present single-server protocols for delegated computation of
group inverses which have improved client efficiency over previous work. Our
protocols build on the multiplication delegation protocol in Sect. 3. Formally,
our result is the following

Theorem 2. Let σ be computational security parameter, let m be a σ-bit inte-
ger, and let λ be a statistical security parameter. There exist (constructively)
two single-server protocols Pinv

1 , for input scenario ‘x public online’, and Pinv
2 ,

for input scenario ‘x private online’, for delegating computation of function Finv,
in group (Z∗

m, · mod m), satisfying the properties of 1-result-correctness, 2−λ-
result-security, and (tF , tS , tC ,mc, cc)-efficiency, where, for η = �λ + log2 σ�,
– for Pinv

1 : εs = 2−λ, tF = 1 inversion,
tC = 5 η-bit-modulus reductions + 2 η-bit-values multiplications

+ 1 η-bit-value addition,
tS = 1 inversion + 1 multiplication + 1 division mod m,
mc = 1, cc = 3
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– for Pinv
2 (also satisfying input-privacy): εs = 2−λ, tF = 1 inversion,

tC = 2 group multiplications + 5 η-bit-modulus reductions
+ 2 η-bit-values multiplications + 1 η-bit-value addition,

tS = 1 inversion + 1 multiplication + 1 division mod m,
mc = 2, cc = 4.

In the rest of this section we prove Theorem 2, by describing the two claimed
protocols in the two different input scenarios and their properties. Specifically, we
describe delegation of inversion Finv(x) = x−1 mod m in group (Z∗

m, · mod m),
using a protocol Pmul for delegation of multiplication Fmul(a, b) = a · b mod m,
such as the protocol from Sect. 3, where inputs a and b are public online.

4.1 The “x Public Input” Scenario

Our first protocol consists of a single message by the server including the inverse
value x−1 mod m of the input x and the client delegating the computation of
the product x ·x−1 mod m, using protocol Pmul from Sect. 3, and checking that
the result obtained at the end of this protocol execution is equal to 1.
Formal Description of Protocol Pinv

1 .
Input Scenario: x public online
Online Input to C and S: σ, λ, desc(Finv), x

Online Phase Instructions:

1. S computes w := x−1 mod m and sends w to C
2. C and S use protocol Pmul, for a = x and b = w, and parameters σ, λ,

resulting in C obtaining z;
3. If z �= 1 then C returns ⊥ and the protocol halts
4. C returns y := w and halts.

Properties of Pinv
1 : The proofs for the result correctness and result security

properties, the latter using Lemma 1, can be found in Appendix C.
The efficiency properties follow directly by protocol inspection and the same

properties of Pmul. In particular, we note that if Pmul consists of a single message
from S to C, as the protocol in Sect. 3, then so does Pinv

1 .
In Table 2 we report on the practical efficiency of the scheme, based on our

software implementation of Pinv
1 , one main takeaway being that C’s runtime tC

is smaller than non-delegated computation tF (i.e., the delegation improvement
ratio tF /tC is > 1) for all values of most interest of parameters λ, σ; specifically,
λ = 50 and σ ∈ {2048, 3072, 4096}. We also report the ratio tF /tC for two related
protocols: protocol Pinv

1,pre with preprocessing (using the multiplication protocol
with preprocessing from [7]), and the protocol Pinv

1,opm which has no preprocessing,
where C chooses a prime modulus s in the online phase. The takeaways there
are that, for such practical parameter values: (1) delegation would not improve
C’s runtime in Pinv

1,opm; (2) delegation does improve C’s runtime in Pinv
1 by a

multiplicative factor between 4.8 and 8.1 depending on the modulus size; and
(3) the delegation improvement ratio for Pinv

1 , not using preprocessing, is about
half the ratio of Pinv

1,pre, which does use preprocessing, or larger.
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Table 2. Performance results for the delegation of F (x) = x−1 mod m in Z
∗
m, where

x is public, m is a σ-bit prime, λ = 50, tCm(η) ≤ 5mr(η) + 2m(η) + a(η) and tF =
3.19E-05 s.

Protocol/Pre-processing tC tF /tC σ = 3072

σ = 2048 σ = 3072 σ = 4096 tP tC

Pinv
1,pre Yes tCm(η1) 10.008 13.394 16.235 6.30E-05 2.35E-06

Pinv
1,opm No tCm(η1) + p(η1) 0.359 0.488 0.816 0 6.73E-05

Pinv
1 No tCm(η2) + i(η2) 4.782 6.543 8.111 0 4.79E-06

4.2 The “x Private Input” Scenario

Our second protocol Pinv
2 starts with the client sending a randomized version

of the input to the server. Then it continues with the client delegating the com-
putation of the inverse of the randomized input, using our first protocol Pinv

1 .
Finally, the client derives the result by removing the randomizer. Input masking
techniques have already been used in many delegation protocols in the literature.
In the case of inverse delegation, it is interesting to note that it does not require
the client to store any preprocessing values.
Formal Description of Protocol Pinv

2 .
Input Scenario: x private online
Online Input to C σ, desc(Finv), x
Online Input to C σ, desc(Finv)

Online Phase Instructions:

1. C randomly chooses r ∈ G, computes z := x · r mod m, and sends z to S;
2. S computes w := z−1 and sends w to C
3. C and S use protocol Pmul for a = z and b = w, and parameters σ, λ,

resulting in C obtaining v;
4. If v �= 1 then C returns ⊥ and the protocol halts
5. C returns y := r · w mod m and halts.

Properties of Pinv
2 : The proofs for the result correctness, input privacy and

result security properties, the latter using Lemma 1, can be found in Appendix D.
The efficiency properties of Pinv

2 follow directly by protocol inspection and
the same properties of Pinv

1 and Pmul. In particular, note that tC only increases
by 2 · m(σ) with respect to protocol Pinv

1 .
In Table 3 we report on the practical efficiency of the scheme, based on our

software implementation of Pinv
2 , where we reach analogue conclusions as for

Pinv
1 on the effectiveness of delegation.

5 No-Preprocessing Delegation for Small-Exponent
Exponentiation in RSA Groups

We discuss the first protocol to delegate small-exponent exponentiation in the
RSA group Z

∗
n, in the input case where both the base and the exponent are
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Table 3. Performance results for the delegation of F (x) = x−1 mod m in Z
∗
m, where

x is private, m is a σ-bit prime, λ = 50, and tF = 3.11E-05 s

Protocol/Pre-processing tF /tC σ = 3072

σ = 2048 σ = 3072 σ = 4096 tP tC

Pinv
2,pre Yes 2.977 3.110 2.858 6.70E-05 1.00E-05

Pinv
2,opm No 0.606 0.791 1.013 0 3.93E-05

Pinv
2 No 2.504 2.832 2.653 0 1.09E-05

public, without preprocessing. This is obtained by carefully combining a specific
variant of the square-and-multiply algorithm with the delegation protocol Pmul

for multiplication from Sect. 3. Formally, we obtain the following

Theorem 3. Let σ be computational security parameter, let m be a σ-bit inte-
ger, let λ be a statistical security parameter, and let e be a c − bit integer,
where c is constant with respect to σ and λ. There exist (constructively) a
single-server protocols Pexp, for input scenario ‘x and e public’, for delegating
computation of function Fexp, in group (Z∗

m, · mod m), satisfying the proper-
ties of 1-result-correctness, 2−λ-result-security, and (tF , tS , tC ,mc, cc)-efficiency,
where, for η = �λ + log2 σ�,
– εs = 2−λ, tF = 1 exponentiation to a c-bit exponent,
– tC = O(c) η-bit-modulus reductions of σ-bit integers

+ O(c) η-bit-values multiplications
– tS = O(c) multiplications and divisions mod m,
– mc = 1, cc ≤ 8c.

Informal Description of Pexp. Our protocol Pexp can be seen as an optimized
simulation of the (iterative) square and multiply algorithm for modular expo-
nentiation, while using a multiplication delegation subprotocol, such as protocol
Pmul in Sect. 3, to compute squares and multiplications modulo n in this algo-
rithm. A similar approach has already been taken in [8], where, however, both
protocols for multiplication and exponentiation did need a preprocessing phase
including the generation and storage of the small prime modulus.

The natural approach to remove the preprocessing phase would be similar
as for the results in Sects. 2 and 3: replacing the small prime modulus with a
small integer modulus, and letting C generate the small modulus during the
protocol (as opposed to doing that in some preprocessing phase). It turns out
that this is not yet sufficient to achieve effective delegation (i.e., for the delegation
improvement ratio tF /tC to be > 1), and further optimizations are needed. Thus,
we consider the iterative protocol structure of the square and multiply algorithm,
and try to let the client run as many operations as possible only once instead
of once for each multiplication, as it would happen on a direct simulation of the
algorithm, with calls to protocol Pmul from Sect. 3. In particular, we apply the
following 3 optimizations:
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1. C only chooses the small integer modulus s once;
2. C only compute the reduction of m modulo the small modulus s once.
3. The protocol uses the version of the square and multiply algorithm where the

exponent is expressed in binary and the ‘multiply’ part of the algorithm only
multiplies the value computed until then by a fixed number (i.e., the input
base); accordingly, C only computes the reduction of the input base modulo
the small integer s once, instead of once for each multiplication operation
carried out for each exponent bit = 1.

Formal Description and Properties of Pexp. A formal description of Pexp

is very similar as the construction in [8] and is detailed in Appendix E.
The result correctness and result security properties of Pexp, the latter using

Lemma 1, follow from the above informal description.
In Table 4 we report on the practical efficiency of the scheme, based on our

software implementation of Pexp, where we reach analogue conclusions as for
our previous protocols, on the effectiveness of delegation.

Table 4. Performance results for the delegation of F (x) = xe mod n, when x and
e are public, m is a σ-bit product of 2 same-length primes, e is a c-bit integer, and
λ = 50.

Protocol/Pre-processing tF /tC

c = 8 c = 32

σ = 2048 σ = 3072 σ = 2048 σ = 3072

Pexp
pre Yes 1.543 2.652 1.157 2.240

Pexp
opm No 0.288 0.571 0.500 0.782

Pexp No 1.448 2.716 1.532 2.586

6 Conclusions

We showed single-server protocols, without preprocessing, for the single-server
delegation of the following operations, used in several cryptosystems:

1. modular multiplication of two public group values,
2. modular inverse of a public group value,
3. modular inverse of a private group value, and
4. exponentiation of a public base to a small public exponent in the RSA group.

Our protocols satisfy result-correctness, input-privacy (unless the input is
public), result-security, and client-efficiency (with respect to non-delegated com-
putation) for parameter values of interest in cryptography applications. To the
best of our knowledge, the only other single-server protocols in the literature
satisfying these properties were presented for the delegation of:
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1. a pairing, with both inputs being public, and
2. a batch of public-base and public-exponent exponentiation operations in

discrete-log and RSA groups.

Several open problems remain in this area of single-server delegation with-
out preprocessing, especially with respect to operations where input privacy is
required, and our results should be interpreted as a step in this direction.
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A Formal Definitions

In this section we recall the formal definition (based on [12,14]), of delegation
protocols and their correctness, privacy, security, and efficiency requirements.
Basic Notations. The expression z ← T denotes randomly and independently
choosing z from set T . By y ← A(x1, x2, . . .) we denote running the algorithm
A on input x1, x2, . . . and any random coins, and returning y as output. By
(y, tr) ← (A(u1, u2, . . .), B(v1, v2, . . .)) we denote running the interactive proto-
col between A, with input u1, u2, . . . and any random coins, and B, with input
v1, v2, . . . and any random coins, where tr denotes A’s and B’s messages in this
execution, and y is A’s final output.
System Scenario: Entities and Protocol. We consider a system with a single
client, denoted by C, and a single server, denoted by S, who are connected by
an authenticated channel, and therefore do not consider any integrity or replay
attacks on this channel. Differently than much of previous work in the area,
we consider a delegation protocol without offline phase or preprocessing client
computations, typically storing extra values in client’s memory, and only consider
client computations in what is also called online phase in the literature, where
C has time constraints.

Let σ denote the computational security parameter (derived from hard-
ness considerations of the underlying computational problem), and let λ denote
the statistical security parameter (defined so that statistical test failure events
with probability 2−λ are extremely rare). Both parameters are expressed in
unary notation (i.e., 1σ, 1λ). We think of σ as being asymptotically much
larger than λ. Let F denote a function and desc(F ) denote F ’s description.
Assuming 1σ, 1λ, desc(F ) are known to both C and S, we define a client-
server protocol for the delegated (n-instance) computation of F as the execu-
tion: {(y, tr) ← (C(x), S)}, where both parties are assume to be aware of inputs
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(1σ, 1λ, desc(F )), which we will ofter omit for brevity, and tr is the transcript of
the communication exchanged between C and S.
Correctness Requirement. Informally, the correctness requirement states
that if both parties follow the protocol, C obtains some output at the end
of the protocol, and this output is, with high probability, equal to the value
obtained by evaluating function F on C’s input. Formally, we say that a no-
preprocessing client-server protocol (C,S) for the delegated computation of F
satisfies δc-correctness if for any x in Dom(F ),

Prob [ out ← CorrExpF : out = 1 ] ≥ δc,

for some δc close to 1, where experiment CorrExp is:

1. (y, tr) ← (C(x), S)
2. if y = F (x), then return: 1 else return: 0

Privacy Requirement. Informally, the privacy requirement should guarantee
the following: if C follows the protocol, a malicious adversary corrupting S can-
not obtain any information about C’s input x from a protocol execution. This is
formalized by extending the indistinguishability-based approach typically used
in definitions for encryption schemes. Let (C,S) be a no-preprocessing client-
server protocol for the delegated computation of F . We say that (C,S) satisfies
εp-privacy (in the sense of indistinguishability) against a malicious adversary if
for any algorithm A, it holds that

Prob
[
out ← PrivExpF,A : out = 1

] ≤ 1/2 + εp,

for some εp close to 0, where experiment PrivExp is:

1. (x0, x1, aux) ← A(desc(F ))
2. b ← {0, 1}
3. (y, tr) ← (C(xb), A(aux))
4. d ← A(tr, aux)
5. if b = d then return: 1 else return: 0.

Security Requirement. Informally, the security requirement states that for
any efficient and malicious adversary corrupting S and even choosing C’s input
tuple x, at the end of the protocol, C cannot be convinced to obtain some
output tuple z containing a value z �= F (x) Formally, we say that the client-
server protocol (C,S) for the delegated n-instance computation of F satisfies
εs-security against a malicious adversary if for any algorithm A,

Prob
[
out ← SecExpF,A : out = 1

] ≤ εs,

for some εs close to 0, where experiment SecExp is:

1. (	x, aux) ← A(desc(F ))
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2. (	z, tr) ← (C(x), A(aux))
3. if z ∈ {⊥, F (x)} then return: 0 else return: 1.

We consider different input scenarios, where the input x may be private
or public. The above definition considered the “x private” input scenario. The
definition for the “x public” input scenario is obtained by the following slight
modifications: (1) S is also given x as input; (2) no input privacy is required.

B Properties of Pmul

The correctness property follows by observing that if C and S follow the protocol,
then S computes w0, w1 as w = a · b = w0 · m + w1 and the equation a · b =
w0 · m + w1 is satisfied over Z and is therefore satisfied also modulo the small
prime s. This prevents C to return ⊥, and allows C to return the correct output
value w1 = w mod m = a · b mod m.

To prove the security property against any malicious S we need to compute
an upper bound εs on the security probability that an adversary corrupting S
convinces C to output a y such that y �= a · b mod m.

We continue the proof of the unbounded security property by defining the
following events:

– ey, �=, defined as “C outputs y such that y �= a · b mod m”
– et, defined as “S’s message contains w0, w1 such that a · b �= w0 · m + w1

mod m”.

We now compute an upper bound on the probability of event ey, �=, conditioned on
event et. We observe that, when event et is true, it holds that a ·b mod m �= w1.
In this scenario, for event ey, �= to happen, it needs to hold that

(a mod s)(b mod s) = (w0 mod s)(m mod s) + w1 mod s.

This happens when

(a · b − w0 · m − w1) = 0 mod s.

By setting x = a · b − w0 · m − w1, and applying Lemma 1 for this value of x,
we obtain that the probability that x = 0 mod s is at most 2−λ, which implies
the following

Fact 3. Prob [ ey, �= | et ] ≤ 2−λ

We then observe that when event et is false, then the message from S follows
the protocol and therefore ey, �= is also false. This implies the following

Fact 4. Prob [ ey, �= | ¬et ] = 0
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We can now compute an upper bound on the probability of event ey, �=. We have
that Prob [ ey, �= ] is

= Prob [ et ] Prob [ ey, �=|et ] + Prob [¬ et ] Prob [ ey, �=|¬ et ]
≤ Prob [ ey, �=|¬ et ] + Prob [ ey, �=|¬ et ]
≤ Prob [ ey, �=|¬ et ] ≤ 2−λ,

where the first equality and the first inequality follow from basic probability
facts; the second inequality follows by applying Fact 4, and the last inequality
follows by applying Fact 3.

C Properties of P inv
1

The result correctness property follows directly by observing that if C and S
follow the protocol, the same property of Pmul implies that

z = a · b mod m = x · w mod m = x · (x−1) mod m = 1,

after which C returns y = w = x−1 mod m.
To prove the result security property against any malicious S we need to

compute an upper bound εs on the security probability that an adversary cor-
rupting S convinces C to output a y such that y �= x−1 mod m. Assume this
adversary sends w′ to C and runs Pmul with C, resulting in C obtaining z′.
Now, because C checks whether z′ �= 1, the only possible cheating strategy for
the adversary is that of convincing C to accept that z′ = 1 and z′ is the product
of x and w′, even when w′ is not the inverse of x. By the result security property
of Pmul, this can only happen with probability at most 2−λ.

D Properties of P inv
2

The result correctness property follows directly by observing that if C and S
follow the protocol, the same property of Pmul implies that

v = z · w mod m = (x · r) · z−1 mod m = (x · r) · (x · r)−1 mod m = 1,

after which C returns y = r · w = r · (x · r)−1 = r · r−1 · x−1 = x−1 mod m.
The input privacy follows by observing that C only sends a random group

value to S.
To prove the result security property against any malicious S we need to

compute an upper bound εs on the security probability that an adversary cor-
rupting S convinces C to output a y such that y �= x−1 mod m. Assume this
adversary, after receiving z from c, sends w′ to C and runs Pmul with C, result-
ing in C obtaining v′. Now, because C checks whether v′ �= 1, the only possible
cheating strategy for the adversary is that of convincing C to accept that v′ = 1
and v′ is the product of z and w′, even when w′ is not the inverse of z. By the
result security property of Pmul, this can only happen with probability ≤ 2−λ.
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E Protocol Pexp

To formally define protocol Pexp = (C,S) for the delegated computation of xe

mod m, we use definitions and algorithms from protocol Pmul as well as an
optimized version of it, as mentioned in Sect. 5 and further discussed below.

First, by Pmul = (Sm, Cm) we denote a protocol for the delegation of func-
tion Fmul with statistical parameter λm, for public inputs a and b, such as
the protocol in Sect. 3. In particular, the notation (q, r) ← Sm(a, b) refers to
an execution of the Pmul server’s algorithm with inputs a, b, returning mes-
sage (q, r) for C, such that a · b = q · m + r, where 0 ≤ r < m. Similarly,
the notation d ← Cm(a, b, q, r) refers to an execution of the Pmul client’s algo-
rithm with inputs a, b, and server’s message (q, r), and returning decision bit d
where d = 1/0 depending on whether Cm accepts/does not accept the statement
r = a · b mod n.

While algorithm S will run Sm, algorithm C will run an optimized version
of Cm, which reuses the same modulus s, and the same values m′ = m mod s
and x′ = x mod s, whenever possible across the multiple uses of multiplication
delegation within exponentiation delegation, as we now define. Given a randomly
chosen η-bit integer s, and values m′ = m mod s and x′ = x mod s, we define
the notation d ← C ′

m(a, b, q, r, s,m′, x′) to refer to a variant of algorithm Cm,
where the computation of s and m′ are replaced by the use of its arguments
s,m′, and the use of x as a product factor in correspondence of a bit of exponent
e being = 1 is replaced by the use of its argument x′. Here, by using C ′

m, the
client only computes the values s,m′, x′ once, while by using Cm, it would have
recomputed each of these values either log e or about (log e)/2 times.

We now formally describe protocol Pexp to delegate small-exponent expo-
nentiation function Fexp,c, which maps x ∈ Z

∗
m to xe mod m. in a group Z

∗
m,

where x and e are public, and e has c bits.
Online Input to C and S: 1σ, 1λ, 1c, m ∈ {0, 1}σ, x ∈ Z

∗
m, e ∈ {0, 1}c

Online Phase of Pexp:

1. S sets z = x, y = 1 and i = 1
2. While e > 1 do

S computes (q1i, r1i) = Sm(z, z) and sets z = ri1

if e is even then
S sets q2i = r2i = 0, i = i + 1 and e = e/2

if e is odd then
S computes (q2i, r2i) = Sm(z, x) and sets
S sets z = ri2, i = i + 1 and e = (e − 1)/2

3. S sends ((q11, r11, q21, r21), . . . , (q1c, r1c, q2c, r2c) to C
4. C sets i = 1 and z = x
5. C randomly chooses an η-bit integer s, where η = �λ + log2 σ�

C computes m′ = m mod s and x′ = x mod s
6. While e > 1 do

if e is even then
C computes d1i = Cm(z, z, q1i, r1i, s,m

′, x′)
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if d1i = 0 then C halts
else C sets z = r1i, i = i + 1 and e = e/2 if e is odd then

C computes d1i = Cm(z, z, q1i, r1i, s,m
′, x′) and sets z = r1i

C computes d2i = Cm(z, x′, q2i, r2i, s,m
′, x′) and sets z = r2i

if d1i = 0 or d2i = 0 then C halts
else C sets i = i + 1 and e = (e − 1)/2

7. C returns: y = r2i and halts
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Abstract. The use of pseudorandom function (PRF) and weak PRF as
foundational primitives is common in a variety of cryptographic appli-
cations, including encryption, authentication, and identification. In this
paper, we present a new PRF construction derived from a weak PRF
family. Specifically, we propose a derandomization technique from a
post-quantum hardness assumption known as learning Burnside homo-
morphisms with noise (Bn-LHN). Through the derandomization, a new
hardness assumption arises, which we refer to as learning Burnside homo-
morphisms with rounding (Bn-LHR). We establish the security of the
derandomization by demonstrating that the Bn-LHR problem is at least
as hard as the Bn-LHN problem.

In the work by Naor and Reingold (NR), a PRF construction is intro-
duced based on a weak PRF family, utilizing a novel cryptographic prim-
itive called a pseudorandom synthesizer (PRS). However, this approach
necessitates an excessively large key size to design a PRF family. To over-
come this issue and produce a more efficient PRF construction, we design
a length-doubling pseudorandom generator (PRG) from a weak PRF.
Here, the PRG is defined using the secret-key components of a PRF.
Notably, in our PRF construction, the length-doubling PRG exhibits
efficiency primarily when employed as an intermediate function. We also
provide insight into the Bn-LHR problem by discussing the details of the
concatenation operation and error distribution in the Burnside group.

Keywords: Post Quantum Cryptography · Derandomization · (Weak)
Pseudorandom Function · Burnside Group · Learning Homomorphisms
with Noise/Rounding

1 Introduction

Baumslag et al. introduced a group-theoretic learning problem called learning
homomorphisms with noise (LHN) as a generalization of the learning parity with
noise (LPN) and learning with errors (LWE) problems [3,5,8,25,28–32]. In this
context, the learning Burnside homomorphisms with noise (Bn-LHN) problem
focuses on recovering the homomorphism between Burnside groups based on prob-
abilistic polynomial sample pairs of preimage and distorted image. Several aspects
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related to the security and cryptography of the Bn-LHN problem, such as random-
self reducibility, error distribution, and 1-bit symmetric cryptosystem, have been
extensively studied [5,11]. However, the construction of a fundamental crypto-
graphic primitive, namely a pseudorandom function (PRF) family, based on the
Bn-LHN problem remains an open question and has not been developed yet.

PRF designs can be categorized into two main approaches: (1) theory-based
and (2) heuristic-based. In the theory-based approach, well-established hardness
assumptions are used to construct a PRF family, while the heuristic-based app-
roach relies on practical heuristics to design a PRF family [4]. Heuristic-based
designs are often efficient to implement and suitable for practical applications.
However, their security is not rigorously justified, as demonstrated in the design
of Rijndael’s AES [20]. In this paper, our objective is to construct a PRF family
based on a post-quantum hardness assumption, namely the decisional Bn-LHN
assumption [5].

A PRF is a mathematical function that produces output that appears to be
random, even though it is generated by a deterministic algorithm. The output of
a PRF is dependent on the secret-key which makes it computationally infeasible
for a probabilistic polynomial time (PPT ) adversary to distinguish the output
oracle from the random oracle without knowing the uniformly sampled secret-
key. A distribution of a PRF should be defined in such a way that it is easy to
sample a function from the distribution and it is efficient to evaluate a function.
Because of the adaptive power to the PPT adversary, the PRF is considered
hard to design. For a PRF construction, this paper uses the standard definition
of the PRF from [7,13,21,23,24,36].

Consider a PRF family denoted by F = {Fλ}, where each function fk :
{0, 1}l −→ {0, 1}l in Fλ is defined by a secret-key k. For a uniformly sampled
secret-key k, the function fk is a PRF, meaning that no PPT adversary can
distinguish the polynomially many outputs {fk(ai)} from truly random outputs.
The adversary is allowed to make adaptive queries to the inputs {ai}. Similarly,
in a weak PRF family denoted by Z = {Zλ}, a randomly selected function
ζk : {0, 1}l −→ {0, 1}l from Zλ exhibits the property that it is computationally
infeasible for any PPT adversary to distinguish polynomially many samples
{ai, ζk(ai)} from samples drawn from a truly random source. Here, ai is a random
string selected from {0, 1}l, and the adversary does not possess adaptive query
power over the inputs {ai} [26].

The concept of a PRF construction was initially explored in a seminal paper
by Goldreich, Goldwasser, and Micali (GGM) [13]. GGM introduced the use of a
length-doubling pseudorandom generator (PRG) as an intermediate component
in constructing a PRF. A deterministic function G : {0, 1}l −→ {0, 1}l′ , with l′ >
l, is considered a PRG if no efficient adversary can distinguish the polynomial
outputs {G(si)} from truly random outputs [6,12,18].

The PRF construction proposed by GGM is defined as follows: Let G :
{0, 1}l −→ {0, 1}l′ be a length-doubling PRG, where l′ = 2l. The output G(si)
is divided into two equal halves, denoted as G(0)(si) and G(1)(si), representing
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the left and right halves, respectively. For a given secret-key k, the function fk

in the PRF family, when applied to an input x = x1 . . . xm, is defined as

fk(x1 . . . xm) = G(xm)(. . . (G(x2)(G(x1)(k))) . . . ). (1)

Roughly after a decade, Naor and Reingold (NR) introduced a new primitive,
called a pseudorandom synthesizer (PRS), and designed a PRF family [26,27]. In
their paper, they also presented a construction for PRS using a weak PRF fam-
ily. Furthermore, in their subsequent work [27], NR proposed a constant-depth
PRF construction using a set of intermediate PRGs. The construction of these
intermediate PRGs relies on the decisional Diffie-Hellman (DDH) assumption,
where the function is defined based on the secret-key components of a PRF. It
is important to note that the security of these intermediate PRGs is inherently
tied to the security of the DDH assumption.

A PRS S : {0, 1}l × {0, 1}l −→ {0, 1}l is defined as follows: Let CS(U, V ) be
the t2 sequential l-bits from S(ui, vj) for 1 ≤ i, j ≤ t, where U = {u1, . . . , ut}
and V = {v1, . . . , vt} are the set of l-bit strings. Given the sets U and V with
uniform entries, a function S is a PRS if no PPT adversary can distinguish
the outputs CS(U, V ) from the random outputs. NR defined PRS-based PRF
construction as follows: Let {Sk1 , . . . , Sklog m

} be a set of functions in a PRS
family. A function fk̃ in a PRF family for an input x = x1 . . . xm is defined as

fk̃(x1 . . . xm) = SQSklog m
(. . . (SQSk2

(SQSk1
(a1,x1 , . . . , am,xm

))) . . . ). (2)

The secret-key for the function fk̃ is k̃ = 〈k, a〉, where k = 〈k1, . . . , klog m〉
and a = 〈a1,0, a1,1, . . . , am,0, am,1〉. The squeeze function SQSk

(u1, . . . , um) is
defined as {u′

1, . . . , u
′
� m

2 �} where u′
i = Sk(u2i−1, u2i) for 1 ≤ i ≤ �m

2 �. If m

is odd, then u′
� m

2 � = um. The PRF construction in GGM utilizes a sequential
approach based on pseudorandom generators (PRGs). It requires m invocations
of the PRG to compute the output fk(x1 . . . xm) as shown in Eq. (1). On the
other hand, NR employs a parallel approach for the PRF construction using a
PRS family, which is inherently parallel in nature. This parallel construction
involves logm layers for the independent computations, as shown in Eq. (2). At
each layer i, where 1 ≤ i ≤ logm, there are m

2i independent PRS invocations,
resulting in a total of m PRS invocations to compute the output fk̃(x1 . . . xm).
The key advantage of NR’s PRS-based PRF construction lies in its ability to
leverage parallel computation at each layer. Conversely, the main advantage of
GGM’s PRG-based PRF construction is the utilization of a smaller key size.

Contribution. In this paper, we present a construction of a PRF from a weak
PRF family using a design proposed by NR [26]. However, we observe a sig-
nificant limitation in this construction, which is its large secret-key size. This
limitation becomes even more critical when using a weak PRF from the Bn-
LHR assumption. Moreover, we propose an alternative construction for a PRF
utilizing a weak PRF family, where the secret-key size is p+pq, where p denotes
the entropy of a word in a Burnside group Bn and q denotes the entropy of a
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homomorphism in a set of homomorphisms from Bn to Br. The proposed PRF
construction is developed in two steps, making use of the decisional Bn-LHN
assumption, which is a post-quantum hardness assumption.

The security of the Bn-LHN problem hinges on the secrecy of the homomor-
phisms between Burnside groups and the presence of random errors within the
problem formulation. In the first step, we introduce a derandomization process
for the Bn-LHN problem, where the random errors are replaced by a determin-
istic rounding operation. This process establishes a novel hardness assumption
termed as learning Burnside homomorphisms with rounding (Bn-LHR). Further-
more, we establish the equivalence in security between the Bn-LHR problem and
the well-established Bn-LHN problem. Consequently, the resulting deterministic
Bn-LHR assumption provides a weak PRF family.

In the second step, we proceed to design a PRF from the aforementioned
weak PRF family. Specifically, we define a PRF fk̃ : {0, 1}m −→ {0, 1}p, for an
input x = x1 . . . xm and secret-key k̃ = 〈k, a0〉, as follows:

fk̃(x1 . . . xm) = G
(xm)
ζk(am)(. . . (G

(x2)
ζk(a2)

(G(x1)
ζk(a1)

(a0))) . . . ). (3)

Above, the secret-key component k in a secret-key k̃ = 〈k, a0〉 defines a weak
PRF ζk : {0, 1}p −→ {0, 1}p and a0 is an initial secret for the first function Gζk(a1).
A set {a1, . . . , am} is public, where ai is sampled uniformly from the Burnside
group Bn. The function Gζk(aj) : {0, 1}p −→ {0, 1}2p is defined in Construction 3.
Finally, we establish the security of a PRF construction by demonstrating that
a length-doubling function Gζk(ai) acts as a PRG with the Theorem 3.

Outline. Section 2 provides an introduction to the fundamental concepts of a
relatively free group, specifically focusing on a Burnside group. It further delves
into the elucidation of error distribution, a crucial element for establishing a
post-quantum hardness assumption known as Bn-LHN.

In Sect. 3, a derandomization technique for the Bn-LHN assumption is pre-
sented. The chapter explores the establishment of the hardness equivalence
between two key assumptions: Bn-LHN and Bn-LHR. Additionally, the chapter
presents a construction that defines a length-preserving weak pseudorandom
function (PRF) based on the Bn-LHR assumption.

Section 4 explores two distinct approaches to constructing a pseudorandom
function (PRF) from a weak PRF family. Within this context, the chapter intro-
duces two fundamental primitives: pseudorandom synthesizer (PRS) and pseu-
dorandom generator (PRG). Notably, the PRG-based design offers a significant
reduction in the secret-key size compared to alternative methods.

2 Background

2.1 Notation

Throughout our discussions, λ denotes the security parameter and N denotes
the set of natural numbers. We utilize log to refer to the binary logarithm. For
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a set S, a
$←− S denotes an element a sampled uniformly from S. Similarly,

for a distribution D over a set S, a
D←− S represents an element a in a set S

sampled according to a distribution D. A bit-string 〈w1, . . . , wm〉 denotes the
concatenation of strings w1, . . . , wm that may be of different lengths. However,
in an algebraic context, G = 〈X〉 denotes a (relatively) free group G generated
by a generating set X. For some polynomial function poly(), {ai} denotes a set
{a1, . . . , apoly(λ)}, and ai denotes an ith element in a set {ai} for 1 ≤ i ≤ poly(λ).

2.2 Free Group

Let X = {x1, . . . , xn} denote an arbitrary set of symbols, where n ∈ N. Within
X, each element x and its inverse x−1 (or equivalently, x2) are referred to as
literals. A word w represents a finite sequence of literals from X, as defined
in Eq. (4). A word w is considered reduced if all instances of sub-words xx−1

or x−1 x are eliminated. The length of a reduced word w is determined by the
number of positions occupied by literals and is denoted as |w|. The empty word
is denoted as 1, and its length is represented as |1| = 0.

w = xα1
i1

. . . xαk
ik

, xij
∈ X,αj ∈ {1, 2}, k ∈ N. (4)

A group G is called a free group with a generating set X, denoted by G = 〈X〉,
if every nontrivial element in G is a reduced word in X. In this definition, X
is called a free basis of G, and G is said to be a free group on X [15,17,33].
For a free group G = 〈X〉, following universal property holds: for every mapping
φ : X −→ H, for some group H, there exist a unique homomorphism ϕ : G −→ H,
so the following diagram commutes (Fig. 1).

X G

H

φ
ϕ

Fig. 1. Universal property of a free group G = 〈X〉.

2.3 Relatively Free Group: Burnside Groups

If N is a normal subgroup of a free group G, then the factor group G/N is called
relatively free if N is fully invariant. That is, φ(N) ⊆ N for any endomorphism
φ of G. A Burnside group Bn is a (relatively) free group with a generating set
X = {x1, . . . , xn} where the order of all the words in Bn is 3 [15–17,19]. The
concatenation operation (.) between words w1, w2 ∈ Bn is to write w1 and w2

side by side and generate the reduced word in Bn. It is denoted by w = w1.w2
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for any w1, w2 ∈ Bn. Since the order of Bn is 3, w.w.w = 1 for all w ∈ Bn. The
empty word is the identity in Bn and represented by 1. Each word in Bn = 〈X〉
can also be represented in normal form as in Eq. (5). More details are explained
in [1,2,9,10,16,17,34]. In the normal representation of a word w in Bn, αi,
βi,j , γi,j,k are the exponents of generators (xi), 2-commutators ([xi, xj ]), and
3-commutators (([xi, xj , xk])) respectively. The order of a group Bn is |Bn| = 3ñ

where ñ = n +
(
n
2

)
+

(
n
3

)
.

w =
∏

1≤i≤n

x
αi

i

∏

1≤i<j≤n

[xi, xj ]
βi,j

∏

1≤i<j<k≤n

[xi, xj , xk]
γi,j,k

. (5)

The concatenation operation is the most primitive operation in Bn. Let α
(1)
i ,

β
(1)
i,j , and γ

(1)
i,j,k are the exponents for w1 ∈ Bn. Similarly, let α

(2)
i , β

(2)
i,j , and γ

(2)
i,j,k

are the exponents for w2 ∈ Bn. Equation (6) shows the efficient concatenation
w = w1.w2, where αi, βi,j , and γi,j,k are the exponents in w for 1 ≤ i < j <
k ≤ n. Note: +3 and ×3 are addition and multiplication modulo 3 operations
respectively.

αi ←α
(1)
i +3 α

(2)
i ,

βi,j ←β
(1)
i,j +3 β

(2)
i,j +3 (α

(1)
j ×3 α

(2)
i ×3 2),

γi,j,k ←γ
(1)
i,j,k +3 γ

(2)
i,j,k +3 (β

(1)
i,j ×3 α

(2)
k )

+3 (β
(1)
j,k ×3 α

(2)
i )

+3 (β
(1)
i,k ×3 α

(2)
j ×3 2)

+3 (α
(1)
k ×3 α

(2)
i ×3 α

(2)
j )

+3 (α
(1)
j ×3 α

(2)
i ×3 α

(2)
k ×3 2)

+3 (α
(1)
j ×3 α

(1)
k ×3 α

(2)
i ×3 2).

(6)

The abelianization operation collects all the generators and corresponding expo-
nents in w ∈ Bn as in Eq. (7).

ρ(w) =
∏

1≤i≤n

x
αi

i
. (7)

Finitely generated Burnside groups can also be construed as geometric entities
through the utilization of Cayley graphs. The Cayley graph of a Burnside group
Bn, defined with respect to a generator set X = {x1, . . . , xn}, characterizes group
words as vertices. An edge connects two vertices if and only if multiplication by
a generator (or its inverse) transforms one into the other. The Cayley distance
between two words is established as the shortest path length between their cor-
responding vertices within the Cayley graph. The Cayley norm of a word is thus
defined as its distance from the identity word within the Cayley graph. Based
on the implementation observations, Table 1 displays the frequency distribution
at each Cayley norm layer within a Cayley graph of a Burnside group Br for the
specific case of r = 4.
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Table 1. A frequency of words in Br, where r = 4.

Cayley norm (l) #Words at Cayley norm layer l (|Bl
r|)

l = 0 1

l = 1 8

l = 2 48

l = 3 264

l = 4 1, 356

l = 5 6, 624

l = 6 29, 008

l = 7 124, 416

l = 8 492, 012

l = 9 1, 472, 032

l = 10 2, 122, 312

l = 11 520, 560

l = 12 13, 896

l = 13 384

l = 14 48

|Br| =
14∑

l=0

|Bl
r| 4,782,969

2.4 Error Distribution

As emphasized in Sect. 2.5, errors significantly contribute to the hardness of
the Bn-LHN problem. In the context of the Burnside group Br (n � r ∈ N),
the error distribution Ψ is generated by concatenating generators in random
order, accompanied by random exponents. The probability mass function of
errors e ∈ Br is precisely defined as follows [5]:

∀e ∈ Br, Pr
e

Ψ←−E

[e] = Pr
v

$←−Fr
3,σ

$←−Sr

[
e =

∏
xvi

σi

]
. (8)

In Eq. (8), vi is the ith component of a vector v = (v1, . . . , vr) sampled uni-
formly from a field F

r
3. Sr is the set of all permutations of a set {1, . . . , r}. The

probability mass function in Eq. (8) generates r! × 3r possible errors in Br.

Multiset of Errors, Errors, and Abelianized Errors. Let M = ∪Ml,
0 ≤ l ≤ r, represents a multiset of errors as defined in Eq. (8). Ml is a collection
of errors with Cayley norm l. Let E =

⋃
El, where El is the corresponding

underlying set of multiset Ml. The underlying function f : M −→ E is defined by
simplifying an error in M by using the multiple concatenation operations in the
Burnside group Br. Let A be the set of the abelianized errors and ρ : E −→ A be
the corresponding abelianization as defined in Eq. (7). The order of the multiset
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r!

r!

r!/2!

r!/3!

...

1

l = 0

l = 1

l = 2

l = 3

l = r

...

1

1

2!

3!

r!

...

l = 0

l = 1

l = 2

l = 3

l = r

|M | =
r

l=0

r
l

× r!× 2l

|E| =
r

l=0

r
l

× l!× 2l

|A| =
r

l=0

r
l

× 2l

Fig. 2. Function f : M −→ E with r!/l! pre-images of an error. Note: l is a Cayley norm
of an error in Br.

M is r!× 3r. The order of the set A is 3r. Similarly, the order of the subsets Ml,
El, and Al is r! × 2l ×

(
r
l

)
, l! × 2l ×

(
r
l

)
, and 2l ×

(
r
l

)
respectively.

Since the function f maps an error from Ml to El, Ml has exactly r!/l!
preimages of an error in El. Equivalently, exactly r!/l! errors in Ml are the
different representations for an error in El as shown in Fig. 2. If we consider
r!/l! (same) errors in Ml as a cluster, then there are l! × 2l ×

(
r
l

)
such clusters

in Ml.

Lemma 1. The distribution of abelianized errors in A ⊂ Br is uniform if and
only if the distribution of the errors in M ⊂ Br is uniform.

Proof. Let f : M −→ E and ρ : E −→ A denote the functions representing
simplification and abelianization, respectively. The proof is straightforward due
to the fact that the composition of f and ρ (ρ ◦ f) remains unaffected by the
Cayley norm l, where 0 ≤ l ≤ r. Specifically, the function f maps exactly
r!/l! errors from Ml to an error in El, while the function ρ compensates for
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non-uniformity by mapping l! errors in El to an error in Al. As a result, the
composition ρ ◦ f preserves the independence of the Cayley norm l throughout
the process.

Table 2. A distribution of errors in Br, where r = 4.

Cayley Norm |Ml| =
(
r
l

) × 2l × r! |El| =
(
r
l

) × 2l × l! |Al| =
(
r
l

) × 2l

l = 4(= r) 16 × 24 16 × 24 16

l = 3 32 × 24 32 × 6 32

l = 2 24 × 24 24 × 2 24

l = 1 8 × 24 8 × 1 8

l = 0 1 × 24 1 × 1 1

|M | =
r∑

l=0

|Ml| = 1944 |E| =
r∑

l=0

|El| = 633 |A| =
r∑

l=0

|Al| = 81

Uniform Distribution of Errors. For the Bn-LHN cryptosystem, the uni-
form distribution of the errors, as defined in Eq. (8), is required. The naive and
straight-forward approach is to determine v

$←− F
r
3, σ

$←− Sr as exponents and
indices respectively. This approach requires multiple concatenation operations
to get the simplified normal representation of an error. The detail of the errors
in a Burnside group B4 at each Cayley norm layer is shown in Table 2.

However, a uniform distribution in M can be achieved through one-time
pre-computation of the set E. We provide the subset El appropriate weight so
that the induced distribution in M is uniform, which is the requirement of the
Bn-LHN cryptosystem. For the uniform distribution of errors in the set A, the
probability of an error should be 1/3r. Since exactly l! preimages in El maps to
an error in Al via function ρ, probability given to the set of errors in El should be
(2l ×

(
r
l

)
)/3r. Since the distribution in M and A are equivalent, with distribution

weight to the subset El as (2l ×
(
r
l

)
)/3r, we can achieve uniform distribution of

M , that is, the distribution Ψ .

2.5 Learning Burnside Homomorphism with Noise (Bn -LHN)

The universal property of the free groups can be extended to the relatively
free groups, the Burnside groups Bn and Br with n � r ∈ N. There exists a
homomorphism ϕ : Bn −→ Br for any random mapping from a generating set
X ⊆ Bn to a Burnside group Br. Let Φn be the set of homomorphisms from Bn

to Br. For each generator in the generating set X, there are |Br| = 3r̃ possible
mappings where r̃ = r +

(
r
2

)
+

(
r
3

)
. The order of a set of all homomorphisms is

|Φn| = |Br|n. A few notations used in the subsequent discussions are as follows:
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– Recall that the distribution Ψ represents the error distribution in the set of
errors E ⊂ Br (Details are in Sect. 2.4).

– Let ϕ ∈ Φn be a homomorphism. The distribution AΨ
ϕ is defined as a dis-

tribution with outputs {ai, wi}, where ai is randomly chosen from Bn and
wi = ϕ(ai).ei with ei

Ψ←− E. On the other hand, RΨ
ϕ is defined as a corre-

sponding random distribution with outputs {ai, wi}, where both ai and wi

are chosen uniformly from Bn and Br respectively.
– OAΨ

ϕ and ORΨ
ϕ are the oracles with distributions AΨ

ϕ and RΨ
ϕ respectively.

The decisional Bn-LHN assumption is formally stated as follows:

Definition 1 (Decisional Bn-LHN Assumption). For any probabilistic
polynomial-time (PPT ) adversary A, there exists a negligible function negl(.)
such that:

∣
∣
∣
∣
∣

Pr
ϕ

$←−Φn

[
AOAΨ

ϕ (1λ) = 1
]

− Pr
[
AORΨ

ϕ (1λ) = 1
]∣
∣
∣
∣
∣
≤ negl(λ). (9)

The decisional Bn-LHN problem is to distinguish the oracles OAΨ
ϕ and ORΨ

ϕ with
a non-negligible advantage from given polynomial samples. By setting the value
of n, a level of security of n log(|Br|) bits can be achieved from the decisional
Bn-LHN problem.

2.6 Minicrypt Using [SPSDOLLAR1DOLLARSPS]-LHN
Assumption

A symmetric cryptosystem based on the hardness of decisional Bn-LHN problem
is defined as follows [5]:
KeyGen(1λ) - The secret-key is ϕ

$←− Φn.
Encryption - Let τ be a (public) word in Br with Cayley norm greater than
or equal to 2r. To encrypt a message bit i, ciphertext 〈a,w〉 is generated where
a

$←− Bn and w = ϕ(a).e.τ i with the error sampled from a set of errors E
according to the distribution Ψ .
Decryption - To decrypt a ciphertext 〈a,w〉, we compute w′ = ϕ(a)−1.w. The
plaintext bit i is 0 if the Cayley norm of a word w′ is less than or equal to r.
Otherwise, the plaintext bit i is 1.

3 Derandomization and Weak PRF

In 1984, Goldreich, Goldwasser, and Micali (GGM) introduced the pioneering
definition of a pseudorandom function (PRF) family and devised its construction
using a length-doubling pseudorandom generator (PRG) [13]. A decade later,
Naor and Reingold (NR) proposed an alternative primitive called a pseudoran-
dom synthesizer (PRS) for constructing a PRF [26,27]. The GGM construction
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offers the advantage of a shorter key size, while the NR construction provides a
PRF family that exhibits lower depth and allows for parallel computations.

The following section commences by introducing a derandomization tech-
nique for the Bn-LHN assumption. This technique leads to the formulation of
a novel hardness assumption, termed learning Burnside homomorphisms with
rounding (Bn-LHR). We subsequently delve into the exploration of the hardness
equivalence between these two assumptions. Finally, we present a construction
of a length-preserving weak PRF using the Bn-LHR assumption. Throughout
the subsequent discussions, the following notations will be utilized:

– Recall, E is the set of errors in the Burnside group Br.
– The definitions of the error sphere operation (E) and core operation (C) are

given in Definitions 2 and 3, respectively.
– B

(L)
r and B

(R)
r are two disjoint subsets (equal in size) of a Burnside group

Br such that |C(B(L)
r )| = |C(B(R)

r )| and |Br| = |B(L)
r | + |B(R)

r |. Note: If the
cardinality of the word set Br is an odd number, we can selectively eliminate
a randomly chosen word from Br and subsequently partition the resultant set
into the corresponding disjoint subsets, denoted as B

(L)
r and B

(R)
r .

– For a homomorphism ϕ ∈ Φn, A
��
ϕ represents a distribution with outputs

{ai, vi}, where ai
$←− Bn and vi = �ϕ(ai)�. The rounding operator, ��, is

defined in Definition 4. As well as, R
��
ϕ represents a random distribution with

outputs {ai, vi} where ai
$←− Bn and vi

$←− {0, 1}.
– OR��

ϕ and OR��
ϕ are the corresponding oracles with distributions A

��
ϕ and R

��
ϕ

respectively.

Definition 2 (Error Sphere, E). The error sphere of a word w in a Burnside
group Br with a set of errors E, denoted by E(w), is the set of words w.e for all
e ∈ E. Similarly, the error sphere of a subset S in Br is defined as:

E(S) =
⋃

w∈S

E(w). (10)

Definition 3 (Core, C). The core of a subset S in a Burnside group Br with
a set of errors E, denoted by C(S), is a subset of S with maximum size and is
defined as:

C(S) = {max Sc | E(Sc) ⊆ S}. (11)

3.1 Learning Burnside Homomorphism with Rounding (Bn -LHR)
Problem

The presence of random errors in the Bn-LHN problem adds an additional layer
of complexity beyond the challenge of finding the pre-image of the one-way
function. We introduce a method to make the Bn-LHN problem significantly
harder by excluding the random errors present in the original problem. This
process, known as derandomization, leads to an equivalent problem called Bn-
LHR. The new problem is proven to be at least as hard as Bn-LHN, as discussed
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in Theorem 1. The decisional Bn-LHR assumption is defined in Definition 5.
Similarly, the Bn-LHR problem is to distinguish the oracles OA��

ϕ over OR��
ϕ

with a non-negligible advantage from given polynomial samples.

Definition 4 (Rounding Operator, ��). For a word a ∈ Bn and a homo-
morphism ϕ ∈ Φn, the rounding operator (��) is defined as:

�ϕ(a)� =

{
0, if ϕ(a) ∈ B

(L)
r ,

1, otherwise.
(12)

Definition 5 (Decisional Bn-LHR Assumption). For any probabilistic
polynomial-time (PPT ) adversary A, there exists a negligible function negl(.)
such that:

∣
∣
∣
∣
∣

Pr
ϕ

$←−Φn

[
AOA

��
ϕ (1λ) = 1

]
− Pr

[
AOR

��
ϕ (1λ) = 1

]∣
∣
∣
∣
∣
≤ negl(λ). (13)

Theorem 1. The decisional Bn-LHR assumption is as hard as the decisional
Bn-LHN assumption.

Proof. Assume, for the sake of contradiction, that there exists a PPT distin-
guisher A for the challenge oracles OA��

ϕ and OR��
ϕ with an advantage ε(λ). We

will use A to construct a PPT distinguisher B for the challenge oracles OAΨ
ϕ

and ORΨ
ϕ .

We begin by dividing Br into subsets B
(L)
r and B

(R)
r , ensuring that the

corresponding cores, C(B(L)
r ) and C(B(R)

r ), are equal. Next, let 〈ai, wi〉 be an
input sample obtained from the challenge oracle (which can be either OAΨ

ϕ or
ORΨ

ϕ ) to the adversary B for unknown ϕ
$←− Φn. The adversary B proceeds as

follows:

– The adversary B rejects an input 〈ai, wi〉 if a word wi is not from either
C(B(L)

r ) or C(B(R)
r ), and requests the next sample 〈ai+1, wi+1〉 from the chal-

lenge oracle.
– If a word wi in the input 〈ai, wi〉 belongs to C(B(L)

r ), then the adversary B
sends the pair 〈ai, 0〉 to the distinguisher A.

– Similarly, for an input sample 〈ai, wi〉 where the word wi is in C(B(R)
r ), the

adversary B forwards 〈ai, 1〉 to the adversary A.

With polynomial input samples {ai, vi} where the bit vi ∈ {0, 1}, if the adversary
A distinguishes the oracles OA��

ϕ and OR��
ϕ with advantage ε(λ) for unknown

ϕ
$←− Φn, the adversary B distinguishes the challenge oracles OAΨ

ϕ and ORΨ
ϕ with

advantage 2σε(λ)
|Br| where σ = |C(B(L)

r )| = |C(B(R)
r )|. This is based on the following

observation.
For the adversary B with an input sample 〈ai, wi〉, if the challenge oracle is

OAΨ
ϕ with wi = ϕ(ai).ei, then �ϕ(ai)� will always be 0 when wi belongs to the
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core C(B(L)
r ). Likewise, when the adversary B is provided with an input 〈ai, wi〉

from the challenge oracle OAΨ
ϕ where wi = ϕ(ai).ei, it can be observed that

�ϕ(ai)� will invariably be 1 if wi belongs to the core C(B(R)
r ).

3.2 Weak PRF Construction

A weak PRF is a more constrained variant of a PRF, where the challenge oracle
determines the random input values for the function as in Definition 6. In this
case, the adversary lacks the adaptive capability to make queries based on the
previous outputs of the function. This section initially presents the construction
of a length-preserving weak PRF from a weak PRF family. Subsequently, in the
following section, we explore two methods for building a PRF using a length-
preserving weak PRF family. Formally, a weak PRF is defined as:

Definition 6 (Weak PRF). Let F = {Fλ} be a family of functions. For any
PPT adversary A, a random function fk : {0, 1}p → {0, 1}q in Fλ is a weak
PRF if the polynomial outputs {ai, fk(ai)} is computationally indistinguishable
to the outputs {ai, vi}, where ai and vi are independent and sampled uniformly
from {0, 1}p and {0, 1}q respectively.

The decisional Bn-LHR assumption itself provides a weak PRF family where a
homomorphism ϕ ∈ Φn and a rounding operator �� (see Definition 4) together
work as a weak PRF. We construct a length-preserving weak PRF from Bn-LHR
assumption as shown in Construction 1.

Construction 1 (Length-Preserving Weak PRF, ζ). Let p be the entropy
of a word in the Burnside groups Bn. A function ζk : {0, 1}p −→ {0, 1}p, with
secret-key k = 〈ϕ1, . . . , ϕp〉 and input ai ∈ Bn, is defined as:

ζk(ai) = 〈�ϕ1(ai)�, . . . , �ϕp(ai)�〉. (14)

Here, the secret-key components ϕi are independent and sampled uniformly from
Φn.

We claim that the function ζk with a secret-key k = 〈ϕ1, . . . , ϕp〉 uniformly
sampled from Φp

n as described in Construction 1 serves as a weak PRF. The
formal proof of this claim is presented in Theorem 2 using a hybrid argument
similar to the approach described in [26,27,35].

Theorem 2. If the Bn-LHR assumption holds, it follows that the function ζk,
where the secret-key k is uniformly sampled (as described in Construction 1),
qualifies as a weak PRF.

Proof. Let ζk be a function with uniformly sampled secret-key k as described in
Construction 1. We consider two distributions: Aζk

and Rζk
, with output samples

{ai, ζk(ai)} and {ai, a
′
i}, respectively, where ai and a′

i are randomly chosen from
Bn. We assume the existence of a PPT adversary A that can distinguish between
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the challenge oracles OAζk and ORζk with a non-negligible advantage ε(λ), for
some secret-key k uniformly sampled from Φp

n as described in Construction 1.
By utilizing the distinguisher A, we can construct a PPT distinguisher B for

the challenge oracles OA��
ϕ and OR��

ϕ as follows: Recall that the challenge oracles
OA��

ϕ and OR��
ϕ challenges the adversary B with polynomially many samples,

either {ai, �ϕ(ai)�} or {ai, vi} respectively, where ai
$←− Bn, vi

$←− {0, 1}, and
ϕ

$←− Φn.
We employ a hybrid argument to construct a distinguisher B from a dis-

tinguisher A. For 0 ≤ J ≤ p, let H(J) denote a hybrid that outputs {ai, ri},
where ai

$←− Bn and ri = 〈ri,1, . . . , ri,J , �ϕJ+1(ai)�, . . . , �ϕp(ai)�〉. Here, rij is
a random bit from {0, 1} for 1 ≤ j ≤ J , and ϕt is uniformly sampled for all
(J + 1) ≤ t ≤ p. It is evident that the hybrid H(0) corresponds to the ora-
cle OAζk , while the hybrid H(p) corresponds to ORζk . With hybrid argument,
an adversary A can distinguish the hybrids H(J)/H(J+1) for 0 ≤ J < p with
non-negligible advantage ε(λ)

p .
Let the distinguisher B receives input sample 〈ai, vi〉 from either of its chal-

lenge oracles OA��
ϕ or OR��

ϕ . For a randomly selected 0 ≤ J < p and samples
〈ai, vi〉, a distinguisher B chooses a set {ϕJ+2, . . . , ϕp}, where each ϕj is uni-
formly sampled from Φn for (J +2) ≤ j ≤ p. For input sample 〈ai, vi〉, generated
either by oracles OA��

ϕ or OR��
ϕ , the adversary B challenges A with sample 〈ai, ri〉

where ri = 〈ri,1, . . . , ri,J , vi, �ϕJ+2(ai)�, . . . , �ϕp(ai)�〉. Here, rij is a random bit
from {0, 1} for 1 ≤ j ≤ J . We can easily claim that if the sample 〈ai, vi〉 is
generated by oracle OA��

ϕ , then the adversary B emulates the hybrid H(J) to the
adversary A. Otherwise, the adversary B turns into the hybrid H(J+1) to the
adversary A.

Using the standard hybrid argument, we claim that if the adversary A can
distinguish the oracles H(J)/H(J+1) with a non-negligible advantage, then the
distinguisher B can distinguish the oracles OA��

ϕ and OR��
ϕ with non-negligible

advantage. This contradicts the assumption that the oracles OA��
ϕ and OR��

ϕ are
indistinguishable.

4 PRF Construction from a Weak PRF Family

The weak PRF is the immediate implication of the Bn-LHR assumption. This
section discusses two approaches to constructing a PRF using a collection of
weak PRFs. In the first approach, we show a construction of a pseudorandom
synthesizer (PRS) from a length-preserving weak PRF as in [26]. As the second
approach, we propose a design for the length-doubling PRG using a length-
preserving weak PRF family. A collection of length-doubling PRG is the basis
for the GGM’s PRG-based PRF construction as provided in [13].
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4.1 PRS-Based PRF Construction

A few notations that are used in the subsequent discussions are as follows:

– Recall, p denotes the entropy of a word in a Burnside group Bn. Let q denotes
the entropy of a homomorphism in Φn, which is n times the entropy of a word
in a Burnside group Br .

– A function ζk : {0, 1}p −→ {0, 1}p, where the secret-key k = 〈ϕ1, . . . , ϕp〉 is
sampled uniformly from Φp

n, is a length-preserving weak PRF. The function is
defined in Construction 1 and the corresponding proof is provided in Theorem
2.

We construct a PRS S : {0, 1}pq × {0, 1}pq −→ {0, 1}pq using a length-preserving
weak PRF ζk as in Construction 2.

Construction 2 (Pseudorandom Synthesizer, S). For k = 〈ϕ1, . . . , ϕp〉
in Φp

n and a = 〈a1, . . . , aq〉, where ai ∈ Bn, a pseudorandom synthesizer S :
{0, 1}pq × {0, 1}pq −→ {0, 1}pq is defined as

S(a, k) = 〈ζk(a1), . . . , ζk(aq)〉.

If ζk is a length-preserving weak PRF with a secret-key k sampled uniformly
from Φp

n (as in Construction 1), then it is easy to visualize that a function S
in Construction 2 is a pseudorandom synthesizer (PRS). We omit the proof but
the concept is similar to [26].

PRS-Based PRF Construction. Here, we design a PRF from a PRS family
S = {Sn}. Let {Sk1 , . . . , Sklog(m)} be a set of pseudorandom synthesizers in Sn,
where Ski

: {0, 1}pq × {0, 1}pq −→ {0, 1}pq is defined as in Construction 2. Define
a key k̃ = 〈a, k〉 where a = 〈a1,0, a1,1, . . . , am,0, am,1〉 with ai,j ∈ {0, 1}pq, and
k = 〈k1, . . . , klog(m)〉. A PRF fk̃, for input x = x1 . . . xm and secret-key k̃ = 〈a, k〉
is defined as

fk̃(x1 . . . xm) = SQSk1
(. . . (SQSklog(m)

(a1,x1 , . . . , am,xm
)) . . . ). (15)

The squeeze function SQSki
is defined as

SQSki
(u1, . . . , u2m) = 〈Ski

(u1, u2), . . . , Ski
(u2m−1, u2m)〉. (16)

Note: The disadvantage of the PRS-based PRF construction is the enormous
secret-key size of a function fk̃ in Eq. (15).

4.2 Length-Doubling PRG from a Weak PRF

The construction of a PRS-based PRF using a length-preserving weak PRF
comes with an evident drawback, which is the requirement of a significantly large
secret-key size. To address this, we propose an alternative approach involving
a length-doubling PRG denoted as G : {0, 1}p −→ {0, 1}2p, constructed using a
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length-preserving weak PRF ζk : {0, 1}p −→ {0, 1}p. The precise design of G can
be found in Construction 3.

Initially, it may appear that utilizing the function Gζk(aj) with an index
ζk(aj) results in inefficiency due to the output being 〈ai, ζk(aj .ai)〉. However,
the function Gζk(aj) becomes efficient when it serves as an intermediate PRG
within a PRF construction, as demonstrated in Eq. (18). In the PRF construction
outlined in Eq. (18), the components aj for 1 ≤ j ≤ m are publicly known, while
k forms a part of the secret-key. This combination ensures the effectiveness and
security of the constructed PRF.

Construction 3 (Pseudorandom Generator, G) Let ζk : {0, 1}p −→ {0, 1}p

be an efficiently computable length-preserving weak PRF as in Construction 1.
A function Gζk(aj) : {0, 1}p −→ {0, 1}2p is defined as

Gζk(aj)(ai) = 〈G(0)
ζk(aj)

(ai), G
(1)
ζk(aj)

(ai)〉
= 〈ai, ζk(aj .ai)〉. (17)

Here, ai, aj ∈ Bn. Note: Dot (.) in aj .ai is the concatenation operation in Bn.

Theorem 3. If Z = {Zλ} is a collection of length-preserving weak PRFs and
ζk is a function in Zλ with secret-key k sampled uniformly as in Construction 1,
then the function Gζk(aj) in Construction 3, for aj sampled uniformly from Bn,
is a PRG.

Proof. In accordance with the approach presented in [35], we structure our proof
based on a series of games: G0, G1, G2, and G3, all operating within the same
underlying probability space. These games are constructed in a sequential man-
ner, with each game introducing incremental modifications to the behavior of
the challenge oracles. Notably, the final game (G3) is designed in such a way
that achieving the adversary’s objective becomes clearly impossible. Leveraging
the indistinguishability of consecutive games, we can then conclude that the
adversary’s advantage in the original game is negligible.

Let A
ζk(aj)
G be a distribution whose outputs are of the form {ai, ζk(aj .ai)}

where ai
$←− Bn and aj is a random word in a Burnside group Bn fixed for all

polynomially many samples. Furthermore, let ζk be a length-preserving weak
PRF with a secret-key k sampled uniformly as in Construction 1. Similarly, let
R

ζk(aj)
G be a random distribution with outputs {ai, a

′
i} where both ai and a′

i are
sampled uniformly from a Burnside group Bn.

Game G0: On input 1λ, the adversary A interacts with a challenge oracle
OR

ζk(aj)
G through polynomially many input samples of the form {ai, a

′
i}.

Game G1: In game G1, the adversary A interacts with polynomially many
input samples of the form {ai, ζk(ai)} where ζk is a length-preserving weak PRF
with a uniformly sampled secret-key k and ai

$←− Bn.
Game G2: In game G2, challenge oracle slightly modify the interacting sam-

ples. Here, the adversary A interacts with polynomially many input samples
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of the form {a−1
j .ai, ζk(ai)} where ζk is a length-preserving weak PRF with a

uniformly sampled secret-key k. Here, ai is sampled uniformly from a Burnside
group Bn and aj is a random word in Bn fixed for all polynomially many samples
{a−1

j .ai, ζk(ai)}.
Game G3: In game G3, challenge oracle re-represents the polynomially many

input samples, and the adversary A interacts with samples {a′
i, ζk(aj .a

′
i)} where

ζk is a length-preserving weak PRF with a uniformly sampled secret-key k. Here,
a′

i
$←− Bn and aj is a random word in Bn fixed for all polynomially many samples

{a′
i, ζk(aj .a

′
i)}.

For the games G0 and G1, we observe that they are computationally indis-
tinguishable to any PPT adversary A. This holds true due to the fact that ζk

functions are a weak PRF. Moving on to the games G1 and G2, we find that
they are statistically indistinguishable for any PPT adversary A. This conclu-
sion can be easily derived based on their construction and properties. Lastly,
when considering the games G2 and G3, we can establish their equivalence for
any PPT adversary A, where the equivalence holds as a result of the transfor-
mation a′

i = a−1
j .ai, which ensures the indistinguishability between these games.

PRF Construction. Given Z = {Zλ} be a length-preserving weak PRF family,
and let ζk denotes a function in Zλ, where k is uniformly sampled from Φp

n

(refer to Construction 1). We define Gζk(aj) according to Construction 3 for all
publicly known aj , 1 ≤ j ≤ m, sampled uniformly from a Burnside group Bn.
Now, consider a PRF fk̃ with input x = x1 . . . xm and secret-key k̃ = 〈k, a0〉,
which is defined as follows:

fk̃(x1 . . . xm) = G
(xm)
ζk(am)(. . . (G

(x1)
ζk(a1)

(a0)) . . . ). (18)

Here, k̃ = 〈k, a0〉 is the secret-key of the function fk̃, where a0 is sampled uni-
formly from a Burnside group Bn.

5 Conclusion

In summary, this paper introduced a novel Bn-LHR assumption through the
derandomization of the well-established Bn-LHN assumption. A security reduc-
tion was provided to establish the hardness of the Bn-LHR assumption. Addi-
tionally, a design for a length-preserving weak PRF from the Bn-LHR assump-
tion was presented. Furthermore, a length-doubling pseudorandom generator
(PRG) was devised using a collection of length-preserving weak PRFs. Impor-
tantly, this construction is of a general nature, demonstrating that any collection
of weak PRFs can be utilized to construct a collection of length-doubling PRGs
(as well as a PRF family using the GGM construction).

Acknowledgements. We sincerely thank the reviewers for their valuable and insight-
ful feedback on the initial draft of this paper.



Bn-LHR and PRF 195

References

1. Adian, S.I.: Problema Bernsaida i tozhdestva v gruppakh. Nauka (1975)
2. Adian, S.I.: The burnside problem and related topics. Russ. Math. Surv. 65(5),

805 (2010)
3. Ajtai, M.: Generating hard instances of lattice problems extended abstract. In: Pro-

ceedings of the Twenty-eighth Annual ACM Symposium on Theory of Computing,
pp. 99–108 (1996)

4. Banerjee, A., Peikert, C., Rosen, A.: Pseudorandom functions and lattices. In:
Pointcheval, D., Johansson, T. (eds.) EUROCRYPT 2012. LNCS, vol. 7237, pp.
719–737. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29011-
4_42

5. Baumslag, G., Fazio, N., Nicolosi, A.R., Shpilrain, V., Skeith, W.E.: Generalized
learning problems and applications to non-commutative cryptography. In: Boyen,
X., Chen, X. (eds.) ProvSec 2011. LNCS, vol. 6980, pp. 324–339. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-24316-5_23

6. Blum, M., Micali, S.: How to generate cryptographically strong sequences of pseu-
dorandom bits. SIAM J. Comput. 13(4), 850–864 (1984)

7. Bogdanov, A., Rosen, A.: Pseudorandom functions: three decades later. In: Tutori-
als on the Foundations of Cryptography. ISC, pp. 79–158. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-57048-8_3

8. Brakerski, Z., Langlois, A., Peikert, C., Regev, O., Stehlé, D.: Classical hardness of
learning with errors. In: Proceedings of the Forty-fifth Annual ACM Symposium
on Theory of Computing, pp. 575–584 (2013)

9. Burnside, W.: On an unsettled question in the theory of discontinuous groups.
Quart. J. Pure Appl. Math. 33, 230–238 (1902)

10. Burnside, W.: The Collected Papers of William Burnside: Commentary on Burn-
side’s Life and Work; Papers 1883–1899, vol. 1. Oxford University Press (2004)

11. Fazio, N., Iga, K., Nicolosi, A.R., Perret, L., Skeith, W.E.: Hardness of learning
problems over burnside groups of exponent 3. Des. Codes Crypt. 75(1), 59–70
(2015)

12. Goldreich, O.: A primer on Pseudorandom Generators, vol. 55. American Mathe-
matical Society, Providence (2010)

13. Goldreich, O., Goldwasser, S., Micali, S.: How to construct random functions. J.
ACM (JACM) 33(4), 792–807 (1986)

14. Golod, E.S., Shafarevich, I.R.: On the class field tower. Izvestiya Rossiiskoi
Akademii Nauk. Seriya Matematicheskaya 28(2), 261–272 (1964)

15. Gupta, N.: On groups in which every element has finite order. Am. Math. Mon.
96(4), 297–308 (1989)

16. Hall, M.: Solution of the burnside problem for exponent 6. Proc. Natl. Acad. Sci.
U.S.A. 43(8), 751–753 (1957)

17. Hall, M.: The Theory of Groups. Macmillan Company, New York (1959)
18. HÅstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator

from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999). https://
doi.org/10.1137/S0097539793244708

19. Ivanov, S.V.: The free burnside groups of sufficiently large exponents. Int. J. Alge-
bra Comput. 4, 1–308 (1994)

20. Joan, D., Vincent, R.: The design of Rijndael: AES-the advanced encryption stan-
dard. Information Security and Cryptography (2002)

https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-29011-4_42
https://doi.org/10.1007/978-3-642-24316-5_23
https://doi.org/10.1007/978-3-319-57048-8_3
https://doi.org/10.1137/S0097539793244708
https://doi.org/10.1137/S0097539793244708


196 D. K. Pandey and A. R. Nicolosi

21. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman &
Hall/CRC Cryptography and Network Security Series, CRC Press (2020). https://
books.google.com/books?id=RsoOEAAAQBAJ

22. Levi, F., van der Waerden, B.L.: Über eine besondere klasse von gruppen. Abhand-
lungen aus dem Mathematischen Seminar der Universität Hamburg 9, 154–158
(1933)

23. Levin, L.A.: The tale of one-way functions. Probl. Inf. Transm. 39(1), 92–103
(2003)

24. Luby, M.: Pseudorandomness and Cryptographic Applications, vol. 1. Princeton
University Press, Princeton (1996)

25. Micciancio, D., Regev, O.: Lattice-based cryptography. Post-quantum Cryptogra-
phy, pp. 147–191 (2009)

26. Naor, M., Reingold, O.: Synthesizers and their application to the parallel construc-
tion of pseudo-random functions. J. Comput. Syst. Sci. 58(2), 336–375 (1999)

27. Naor, M., Reingold, O.: Number-theoretic constructions of efficient pseudo-random
functions. J. ACM (JACM) 51(2), 231–262 (2004)

28. Regev, O.: New lattice-based cryptographic constructions. J. ACM (JACM) 51(6),
899–942 (2004)

29. Mihailescu, M.I., Nita, S.L.: Lattice-based cryptography. In: Pro Cryptography
and Cryptanalysis, pp. 291–300. Apress, Berkeley, CA (2021). https://doi.org/10.
1007/978-1-4842-6367-9_11

30. Regev, O.: On lattices, learning with errors, random linear codes, and cryptogra-
phy. J. ACM (JACM) 56(6), 1–40 (2009)

31. Regev, O.: The learning with errors problem. Invited Survey CCC 7(30), 11 (2010)
32. Regev, O.: The learning with errors problem (invited survey). In: 2010 IEEE 25th

Annual Conference on Computational Complexity, pp. 191–204. IEEE (2010)
33. Robinson, D.J.: A Course in the Theory of Groups, vol. 80. Springer, New York

(2012)
34. Shanov, I.: Solution of the Burnside’s problem for exponent 4. Leningrad State

Univ. Ann. (Uchenye Zapiski) Mat. Ser. 10, 166–170 (1940)
35. Shoup, V.: Sequences of games: a tool for taming complexity in security proofs.

cryptology eprint archive (2004)
36. Shoup, V.: A Computational Introduction to Number Theory and Algebra. Cam-

bridge University Press, New York (2005)

https://books.google.com/books?id=RsoOEAAAQBAJ
https://books.google.com/books?id=RsoOEAAAQBAJ
https://doi.org/10.1007/978-1-4842-6367-9_11
https://doi.org/10.1007/978-1-4842-6367-9_11


Some Results on Related Key-IV Pairs
of Espresso

George Teşeleanu1,2(B)

1 Advanced Technologies Institute, 10 Dinu Vintilă, Bucharest, Romania
2 Simion Stoilow Institute of Mathematics of the Romanian Academy,

21 Calea Grivitei, Bucharest, Romania
tgeorge@dcti.ro

Abstract. In this paper, we analyze the Espresso cipher from a related
key chosen IV perspective. More precisely, we explain how one can obtain
Key-IV pairs such that Espresso’s keystreams either have certain iden-
tical bits or are shifted versions of each other. For the first case, we
show how to obtain such pairs after 232 iterations, while for the second
case, we present an algorithm that produces such pairs in 228 iterations.
Moreover, we show that by making a minor change in the padding used
during the initialization phase, it can lead to a more secure version of
the cipher. Specifically, changing the padding increases the complexity
of our second attack from 228 to 234. Finally, we show how related IVs
can accelerate brute force attacks, resulting in a faster key recovery.
Although our work does not have any immediate implications for break-
ing the Espresso cipher, these observations are relevant in the related-key
chosen IV scenario.

Keywords: Espresso · slide attacks · cryptanalysis · related keys

1 Introduction

With the growth of Internet of Things (IoT) applications, lightweight ciphers are
becoming highly demanded in the IoT industry. Lightweight ciphers are required
to offer users a high level of assurance, while running in resource-constrained
devices. Additionally, with the rise of 5G networks, traffic volume is estimated to
increase by 1000 times [11]. Hence, besides being implemented in IoT devices that
usually have limited computing power and strict power constraints, lightweight
ciphers should also offer low propagation delays in implementation.

Since previously cipher designs focused either on hardware size or speed, a
new class of lightweight ciphers had to be introduced. Such a class was introduced
in [8] and was designed to be a trade-off between hardware size and speed for
a given security level. The basic idea of this new design is to combine the short
propagation delays of the Galois Non-Linear Feedback Shift Registers (NFSRs)
with the advantage of Fibonacci NFSRs, which are more easily analyzed from a
security point of view. More precisely, the authors of [8] employ a NFSR in Gal-
lois configuration and carry out their security analysis on a transformed NFSR
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which resembles a Fibonacci NFSR. They also provide a concrete construction,
called Espresso, that is a representative of their design.

The only independent security analyses that we are aware of can be found
in [13,14]. In [13], the authors propose a related key chosen IV attack on a vari-
ant of Espresso, denoted Espresso-a. Similar to [8], they transform the Galois
NFSR to a Fibonacci one, however the output function is the same as that
of Espresso. The authors of [14], state that the transformed NFSR studied in
[8,13] are not equivalent to the original Galois NFSR, unless the output function
is changed accordingly. Hence, the security analyses are not conducted on the
actual cipher. To support their claim, the authors introduce a novel transforma-
tion that converts Espresso-like ciphers into LFSR filter generators. Then they
provide several algebraic and fast correlation attacks that can be applied to the
resulting filter generators. In light of their results, they also urge researchers to
reassess Espresso’s resistance against chosen IV attacks, differential attacks and
weak key attacks.

Compared to previous approaches, instead of studying the equivalent
Fibonacci NFSR, we propose three related key chosen IV attacks by working
directly with the Galois NFSR. We will first study the differential properties of
the initialization algorithm and we will show how to construct related Key-IV
pairs that produce identical bits on certain positions. Our methods are influenced
by the differential attacks, previously published in [4,10], designed against the
Grain family. Secondly, we show a sliding property of the initialization algorithm
that allows an attacker to construct related Key-IV pairs that generate shifted
keystreams. Again, we were influenced by the sliding attacks devised against the
Grain family (presented in [4–6,9,10]). To increase the complexity of our pro-
posed slide attacks, we suggest a slight change to Espresso’s padding. Thirdly,
we propose a guess and determine attack that takes as input two or four related
IV’s and outputs the secret key. A similar approach1 can be found for Grain-
128a in [7] and Espresso-a in [13]. We finally note that we do not consider any
of the attacks presented in this paper to be a serious threat in practice. How-
ever, they certainly expose some non-ideal behavior of the Espresso initialization
algorithm.

Full version. The full version of the paper can be found here [12].

Structure of the Paper. We introduce notations and preliminaries in Sect. 2. In
Sect. 3 we present differential attacks, in Sect. 4 we propose several constructions
for generating related Key-IV pairs and in Sect. 5 we suggest several key recovery
algorithms. We conclude in Sect. 6.

1 both using only two related IV’s
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2 Preliminaries

Notations. Throughout the paper, the notation ‖ denotes string concatenation,
⊕ denotes bitwise XOR and | denotes bitwise OR. The x ≫ i operator causes
the bits in x to be rotated to the right by i positions. The subset {0, . . . , s} ∈ N is
denoted by [0, s]. The action of selecting a random element x from a sample space
X is represented by x ∈R X. Hexadecimal strings are marked by the prefix 0x.
We define MID[�1,�2](Q) = q�1‖ . . . ‖q�2 and LSB�1(Q) = MID0,�1(Q), where
Q = q0‖ . . . ‖q�1‖ . . . ‖q�2‖ . . . ‖q�.

2.1 Description of Espresso

We further provide the specifications of Espresso as presented in [8]. One of the
main building blocks of Espresso is a 256-bit NFSR in the Galois configuration.
Let Xi = [xi, xi+1, . . . , xi+255] denote the state of the NFSR at time i and let
gj(Xi), where j ∈ [0, 255], be the feedback functions of the NFSR. The nonlinear
feedback functions are defined as follows

g255(Xi) = xi ⊕ xi+41xi+70 g251(Xi) = xi+252 ⊕ xi+42xi+83 ⊕ xi+8

g247(Xi) = xi+248 ⊕ xi+44xi+102 ⊕ xi+40 g243(Xi) = xi+244 ⊕ xi+43xi+118 ⊕ xi+103

g239(Xi) = xi+240 ⊕ xi+46xi+141 ⊕ xi+117 g235(Xi) = xi+236 ⊕ xi+67xi+90xi+110xi+137

g231(Xi) = xi+232 ⊕ xi+50xi+159 ⊕ xi+189 g217(Xi) = xi+218 ⊕ xi+3xi+32

g213(Xi) = xi+214 ⊕ xi+4xi+45 g209(Xi) = xi+210 ⊕ xi+6xi+64

g205(Xi) = xi+206 ⊕ xi+5xi+80 g201(Xi) = xi+202 ⊕ xi+8xi+103

g197(Xi) = xi+198 ⊕ xi+29xi+52xi+72xi+99 g193(Xi) = xi+194 ⊕ xi+12xi+121

The remaining feedback functions are of type gj(Xi) = xi+j+1.
Another building block of the Espresso cipher is a non-linear output function

z(Xi) given by

z(Xi) =xi+80 ⊕ xi+99 ⊕ xi+137 ⊕ xi+227 ⊕ xi+222 ⊕ xi+187 ⊕ xi+243xi+217

⊕ xi+247xi+231 ⊕ xi+213xi+235 ⊕ xi+255xi+251 ⊕ xi+181xi+239 ⊕ xi+174xi+44

⊕ xi+164xi+29 ⊕ xi+255xi+247xi+243xi+213xi+181xi+174

We further describe the main algorithms used by the Espresso cipher in the
initialization and keystream generation phases.

Key Loading Algorithm (KLA). Espresso uses a 128-bit key K, a 96-bit initial-
ization vector IV and a fixed 32-bit padding P = 0xfffffffe. The key is loaded
in the NFSR as follows: X0 = K‖IV ‖P .
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Key Scheduling Algorithm (KSA). After running KLA, the output2 zi = z(Xi)
is XOR-ed to g255(Xi) and g217(Xi) update functions, i.e., during one clock the
update functions are updated as g255(Xi) = xi ⊕xi+41xi+70 ⊕ zi and g217(Xi) =
xi+218 ⊕ xi+3xi+32 ⊕ zi.

Pipeline Key Scheduling Algorithm (PKSA). Due to the pipelining of the output
function some extra clocks are needed before producing the keystream. Hence,
the PKSA algorithm instead of outputting(See footnote 2) zi simply ignores it.
Note that after each generated bit the NFSR’s internal state is updated using the
KSA routine with g255(Xi) = xi⊕xi+41xi+70 and g217(Xi) = xi+218⊕xi+3xi+32.

Pseudorandom Keystream Generation Algorithm (PRGA). After performing the
KSA routine for 256 clocks and the PKSA routine for 3 clocks, bit zi is used as
the output keystream bit. After each generated bit the NFSR’s internal state is
updated as in the PKSA routine.

2.2 Security Model

In this paper, we will work in the Related Key Chosen IV security model. In
this model, according to [5, Section 2.1], the adversary A is given access to an
encryption oracle O that has access to the key K. Therefore, A can query O
and thus obtain valid ciphertexts.

More precisely, for each query i, the adversary first chooses the oracle’s
parameters: an initialization vector IVi, a function Fi : {0, 1}n → {0, 1}n and
a message mi. Then O encrypts mi using the Key-IV pair (Fi(K), IVi). After
repeating this process several times, the adversary’s task is to distinguish the
keystream output from a random stream or to compute the secret key efficiently.

3 Related Key-IV Pairs

Our first goal is to construct a family of related Key-IV functions such that
the adversary can distinguish the resulting keystreams from random ones with
high probability. An important step to construct such pairs is the observation
that the KSA and PKSA routines are invertible. More precisely, if a state Xi is
obtained by applying either KSA or PKSA to Xi−1, we can recover Xi−1 from
Xi by rolling back one clock. We further refer to the transition functions from
Xi to Xi−1 as KSA−1 and PKSA−1. The exact details of KSA−1 and PKSA−1

are given in the full version of the paper [12].
We further denote by KSA256 and KSA−1

256 the KSA and KSA−1 routines
performed for 256 clocks. Similarly, we define PKSA3 and PKSA−1

3 . We also
define KLA−1(X) = (LSB127(X),MID[128,223](X)) and Δ(X) = X ⊕ δ, where
δ ∈ {0, 1}256. Using these routines we can obtain a pair of related Key-IVs
(K, IV ) and (K, IV )Δ such that they produce almost similar initial keystreams.
A high level description of the construction is provided in Fig. 1.
2 during one clock
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We further present an algorithm that checks which keystream positions pro-
duced by the states X0 and X0,Δ are identical. Before stating our result, we first
introduce a small modification to the keystream generation algorithm. Note that
this modification is only used as part of Algorithm 1 and is needed to aid us find
identical positions. We also make an assumption about Espresso’s keystream
bits.

Fig. 1. Construction of the Related Key-IV function

Modified Pseudorandom Keystream Generation Algorithm (PRGA′). To obtain
our modified PRGA we replace ⊕ (XOR) and · (AND) operations in the original
PRGA with | (OR) operations.

Assumption. Based on the experimental results we obtained, we further assume
that the output of PRGA3 is independently and uniformly distributed. To obtain
these results 100 keystream were statistically tested using the NIST Test Suites
[1,2]. During our experiments we used the default pseudorandom numbers gen-
erator implemented in the GMP library [3] to randomly generate 100 Key-IV
pairs.

Theorem 1. Let δ ∈ {0, 1}256, q1 the number of desired identical positions in
the keystream and q2 the maximum number of search trials. Then, Algorithm 1
finds at most q1 identical positions in a maximum of q2 trials.

Proof. Let ω be the Hamming weight of δ. We note that in Algorithm 1 the
bits bi1 , . . . , biω

on position i1, . . . , iω are set. For j ∈ [1, ω], if bit bij
is taken

into consideration while computing the output bit of PRGA then the output of
PRGA′ is also set due to the replacement of the original operations ⊕ and · with
| operations. The same argument is valid if a bit of Espresso’s internal state is
influenced by bij

. ��
Remark 1. Note that if we run Algorithm 1 we do not obtain all the identi-
cal positions. This is due to the fact that Algorithm 1 is prone to producing
internal collisions, and thus eliminate certain positions that are identical in both
keystreams. Although we do not find all the positions, our algorithm has the
advantage of finding identical keystream positions automatically.
3 implicitly PKSA and PKSA−1
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3.1 Multiple Key-IV Trials with a Fixed Differential

We further consider that the adversary is allowed to produce any related Key-
IV pairs for a given fixed differential. In this case, the while loop of our pro-
posed algorithm (Algorithm 2) has to run an expected 232 times with different
randomly chosen (K, IV ) pairs, until X0,Δ has the correct padding. Once this
happens, we output a related Key-IV pair (K, IV ) and (K ′, IV ′).

Algorithm 1: Search for identical keystream positions
Input: Integers δ ∈ {0, 1}256 and q1, q2 > 0
Output: Keystream positions ϕ

1 Set s ← 0 and ϕ ← ∅

2 Let X0 ∈ {0, 1}256 be the zero state (0, . . . , 0)
3 Construct X0,Δ = X0 ⊕ δ
4 while |ϕ| ≤ q1 and s < q2 do
5 Set b ← PRGA′(X0,Δ) and update state X0,Δ with the current state
6 if b = 0 then
7 Update ϕ ← ϕ ∪ {s}
8 Set s ← s + 1

9 return ϕ

Algorithm 2: Search for Key-IV pairs that produce almost similar initial
keystreams for a given δ

Input: An integer δ ∈ {0, 1}256

Output: Key-IV pairs (K, IV ) and (K′, IV ′)
1 Set s ← 0
2 while s = 0 do
3 Choose K ∈R {0, 1}128 and IV ∈R {0, 1}96

4 Run KSA256(K‖IV ) and PKSA3(K‖IV ) routines to obtain an initial state
X0 ∈ {0, 1}256

5 Compute the state X0,Δ = X0 ⊕ δ

6 Run PKSA−1
3 (X0,Δ) and KSA−1

256(X0,Δ) routines to produce state Xk
0,Δ = K′‖IV ′‖P ′

7 if P ′ = 0xfffffffe then
8 Set s ← 1

9 return (K, IV ) and (K′, IV ′)

3.2 Single Key-IV Trials with Multiple Differentials

In practice, the attacker has access to a single Key-IV pair and he has to produce
a second Key-IV pair related to the one given. In this case, the attacker has to
try around 232 different values for δ, until Algorithm 3 outputs a pair.

In Fig. 2a we can see how cardinality of ϕ fluctuates depending on the iter-
ation step i and the Hamming weight ω of δ. In [10], the authors introduce an
algorithm that computes Key-IV pairs that produce similar initial Grain-128a
keystreams for δ’s of the form 0 . . . 010 . . . 0. Our proposal (Algorithm 3) can be
easily adapted to Grain-128a, and thus for comparison we also provide in Fig.
2b the evolution of |ϕ| in the case of Grain-128a.
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For a given Δ, let X1 be a random state such that X1 �= X0,Δ. Note that in
Algorithm 3 parameter � controls the probability of obtaining identical keystream
bits for states X0 and X1 on the positions included in ϕ. More precisely, the
probability of obtaining a collision for X0 and X1 is 1/2�. In Table 1 we can see
the number of δ’s such that |ϕ| ≥ 16. Hence, for � = 16 in Algorithm 3 it is
sufficient to run the while loop until j �= 5 since 239 · 137 · 110 · 69 · 18 ≥ 232.
In the case of Grain-128a it is sufficient to run the while loop until j �= 4 since
2564 ≥ 232.
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Fig. 2. The evolution of |ϕ|

Algorithm 3: Search for a Key-IV pair that produces an almost similar
initial keystream with a given Key-IV pair (K, IV )

Input: A Key-IV pair (K, IV ) and an integer � > 0
Output: A related Key-IV pair (K′, IV ′)

1 Run KSA256(K‖IV ) and PKSA3(K‖IV ) routines to obtain an initial state X0 ∈ {0, 1}256

2 Set the integer j ← 0 and the state δ = 0
3 while j 
= 256 do
4 Set the bit δj = 1 and compute j ← j + 1
5 for i ∈ [0, 255] do
6 Compute ϕ ← Algorithm 1(δ, 160, 160)
7 if |ϕ| < � then
8 Skip the next instructions and go to the next i
9 Compute the state X0,Δ = X0 ⊕ δ

10 Run PKSA−1
3 (X0,Δ) and KSA−1

256(X0,Δ) routines to produce state
Xk

0,Δ = K′‖IV ′‖P ′

11 if P ′ = 0xfffffffe then
12 Set s ← 1

13 return (K′, IV ′)
14 Rotate to the right δ = δ ≫ 1
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Table 1. Number of valid possibilities for � = 16

Cipher ω

1 2 3 4 5 6 7 8 9 10 11 12

Espresso 239 137 110 69 56(18) 51 49 48 47 0 0 0
Grain-128a 256 256 256 256 256 247 233 185 164 158 133 121

4 Key-IV Pairs That Produce Shifted Keystreams

In this section, we will show how an attacker can obtain related Key-IV pairs
that produce 4-bit shifted keystreams. Our algorithm’s main idea is that we can
obtain a valid padding after running KSA−1 for 4 clocks if we fix the last four bits
of the IV. We also provide a slower algorithm that uses the KSA routine, which
will be useful in the next section. Our results are presented in Theorem 2. To
increase the complexity of these attacks and consequently increase the security
of the Espresso cipher, we recommend using the padding 0x7fffffff instead of
0xfffffffe. To support our claim we adapted Theorem 2 to the 0x7fffffff
padding and we presented the attacks’ complexity in Theorem 3. Note that in
all the attacks the PRNG routine is composed of PKSA and PRGA.

Algorithm 4: Constructing Key-IV pairs that generate 4-bit shifted
keystream (forward construction)

Output: Key-IV pairs (K′, IV ′) and (K, IV )
1 Set s ← 0
2 while s = 0 do
3 Choose K ∈R {0, 1}128 and IV ∈R {0, 1}96

4 Run KSA(K‖IV ) routine for 4 clocks to obtain a state X′
0 = K′‖IV ′‖P ′

5 if P ′ = 0xfffffffe then
6 Run KSA(K′‖IV ′) and PRNG routine for 252 clocks and 4 clocks, respectively, to

obtain bits z257, z258, z259, z260
7 if z257 = z258 = z259 = z260 = 0 then
8 Set s ← 1

9 return (K, IV ) and (K′, IV ′)

Table 2. State evolution of bits 255 to 224 after applying the KSA routine (Algorithm
4)

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

? 0 1 1 ? 1 1 1 ? 1 1 1 ? 1 1 1 ? 1 1 1 ? 1 1 1 ? 1 1 1 1 1 1 1

? ? 0 1 ? ? 1 1 ? ? 1 1 ? ? 1 1 ? ? 1 1 ? ? 1 1 ? ? 1 1 1 1 1 1

? ? ? 0 ? ? ? 1 ? ? ? 1 ? ? ? 1 ? ? ? 1 ? ? ? 1 ? ? ? 1 1 1 1 1

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 1 1
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Theorem 2. There are two attack strategies that an adversary can use to pro-
duce 4-bit shifted keystreams. He can use either the KSA algorithm (see Algo-
rithm 4) or the KSA−1 algorithm (see Algorithm 5). The algorithms’ have an
average running time of 232 and 228 iterations, respectively.

Proof. In the first case, the attacker can use the algorithm described in Algo-
rithm 4 to obtain 4-bit shifted keystreams. For simplicity, we present in Table
2 the evolution of bits 255 to 224 of state X0 after each run of the KSA rou-
tine. We highlighted with red the positions that are updated after each run4 and
we denote by ? the bits that are unknown to the attacker. We can easily see
that after 4 clocks the bits from 255 to 228 are unknown to the attacker and
are randomly distributed5. Hence, we should obtain a correct padding after 228

iterations.
To obtain a shifted keystream we need an extra restriction. More precisely,

when we run the KSA routine for 256 clocks state X0 evolves to state X256, but
state X ′

0 = X4 evolves to state X ′
256 = X260. Hence, to obtain the shifted

keystream we need z257 = z258 = z259 = z260 = 0. The probability of this happen-
ing is 1/24. Therefore, the average running time of Algorithm 4 is 228 · 24 = 232.

Algorithm 5: Constructing Key-IV pairs that generate 4-bit shifted
keystream (backward construction)

Output: Key-IV pairs (K′′, IV ′′) and (K, IV )
1 Set s ← 0
2 while s = 0 do
3 Choose K ∈R {0, 1}128 and V ∈R {0, 1}92

4 Set IV ← V ‖0xf
5 Run KSA−1(K‖IV ) routine for 4 clocks to obtain a state X′′

0 = K′′‖IV ′′‖P ′′

6 if P ′′ = 0xfffffffe then
7 Run KSA(K‖IV ) and PRNG routine for 252 clocks and 4 clocks, respectively, to

obtain bits z253, z254, z255, z256
8 if z253 = z254 = z255 = z256 = 0 then
9 Set s ← 1

10 return (K, IV ) and (K′′, IV ′′)

Table 3. State evolution of bits 255 to 220 after applying the KSA−1 routine (Algo-
rithm 5)

0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 ? 1 1 1 ? 1 1 1 ? 1 1 1 ? 1 1 1 ? 1 1 1 ? 1 1 1 1 1 1 1 1 1 1 1 ×
1 1 ? ? 1 1 ? ? 1 1 ? ? 1 1 ? ? 1 1 ? ? 1 1 ? ? 1 1 1 1 1 1 1 1 1 1 × ×
1 ? ? ? 1 ? ? ? 1 ? ? ? 1 ? ? ? 1 ? ? ? 1 ? ? ? 1 1 1 1 1 1 1 1 1 × × ×
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 1 1 1 1 1 1 × × × ×

4 255, 251, 247, 243, 239, 235, 231
5 due to the key bits involved in their computation
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A more efficient strategy is described in Algorithm 5. In this case, we set the
last four bits of the initialization vector to 1. In Table 3 we can see the state
evolution of bits 255 to 220 after running the KSA−1 routine. We separated the
extra four bits of the IV by a straight line and we denoted by × the bits that
are unknown to the attacker, but are irrelevant for our attack. In this case, the
updated positions are 252, 248, 244, 240, 236, 232. We can easily see that after
4 clocks we have 24 unknown positions. Thus, the expected running time until
we obtain a correct padding is 224.

As in the first case, we need some additional restrictions. We can see that
after running the KSA routine for 256 clocks state X0 evolves to state X256,
but state X ′

0 = X−4 evolves to state X ′
256 = X252. Hence, to obtain the shifted

keystream we need z253 = z254 = z255 = z256 = 0. Therefore, the average running
time of Algorithm 5 is 224 · 24 = 228. ��

We further consider the padding 0x7fffffff and we study its impact on
the average time needed to obtain shifted keystreams. We can easily see that
this small change increases the complexity of finding shifted keystreams. Hence,
we suggest using this padding instead of the classical one. Note that due to
the attacks presented in Sect. 3, it is sufficient to devise a padding scheme that
induces an average running time greater than 232.

Theorem 3. There are two attack strategies that an adversary can use to pro-
duce 8-bit shifted keystreams. He can use either the KSA algorithm (see Algo-
rithm 6) or the KSA−1 algorithm (see Algorithm 7). The algorithms’ have an
average running time of 240 or 234 iterations, respectively.

Algorithm 6: Constructing Key-IV pairs that generate 8-bit shifted
keystream (forward construction)

Output: Key-IV pairs (K′, IV ′) and (K, IV )
1 Set s ← 0
2 while s = 0 do
3 Choose K ∈R {0, 1}128 and IV ∈R {0, 1}96

4 Run KSA(K‖IV ) routine for 8 clocks to obtain a state X′
0 = K′‖IV ′‖P ′

5 if P ′ = 0x7fffffff then
6 Run KSA(K′‖IV ′) and PRNG routine for 248 clocks and 8 clocks, respectively, to

obtain bits z257, . . . , z264
7 if z257 = . . . = z264 = 0 then
8 Set s ← 1

9 return (K, IV ) and (K′, IV ′)
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Table 4. State evolution of bits 255 to 224 after applying the KSA routine (Algorithm
6)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

? 1 1 1 ? 1 1 1 ? 1 1 1 ? 1 1 1 ? 1 1 1 ? 1 1 1 ? 1 1 1 1 1 1 1

? ? 1 1 ? ? 1 1 ? ? 1 1 ? ? 1 1 ? ? 1 1 ? ? 1 1 ? ? 1 1 1 1 1 1

? ? ? 1 ? ? ? 1 ? ? ? 1 ? ? ? 1 ? ? ? 1 ? ? ? 1 ? ? ? 1 1 1 1 1

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 1 1

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 1

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1

? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?

Proof (sketch). The proof is similar to the proof of Theorem 2 and thus we omit
some details.

In the first case, the attacker can use the algorithm described in Algorithm 6
to obtain 8-bit shifted keystreams. The evolution of bits 255 to 224 of state X0

is presented in Table 4. We can easily see that after 8 clocks the bits from 255 to
224 are unknown to the attacker and thus he will obtain a correct padding after
232 iterations. Note that, when we run the KSA routine for 256 clocks state X0

evolves to state X256, but state X ′
0 = X8 evolves to state X ′

256 = X264. Hence,
to obtain the shifted keystream we need z257 = . . . = z264 = 0. Therefore, the
average running time of Algorithm 6 is 232 · 28 = 240.

The second strategy is described in Algorithm 7. In this case, we set the last
six bits of the initialization vector to 1. In Table 5 we can see the state evolution
of bits 255 to 218. Note that we also have position 218 updated. We can easily see
that after 8 clocks we have 26 unknown positions. Thus, the expected running
time until we obtain a correct padding is 226. Note that, after running the KSA
routine for 256 clocks state X0 evolves to state X256, but state X ′

0 = X−8

evolves to state X ′
256 = X248. Hence, to obtain the shifted keystream we need

z249 = . . . = z256 = 0. Therefore, the average running time of Algorithm 7 is
226 · 28 = 234. ��

Algorithm 7: Constructing Key-IV pairs that generate 8-bit shifted
keystream (backward construction)

Output: Key-IV pairs (K′′, IV ′′) and (K, IV )
1 Set s ← 0
2 while s = 0 do
3 Choose K ∈R {0, 1}128 and V ∈R {0, 1}90

4 Set IV ← V ‖0x3f
5 Run KSA−1(K‖IV ) routine for 8 clocks to obtain a state X′′

0 = K′′‖IV ′′‖P ′′

6 if P ′′ = 0x7fffffff then
7 Run KSA(K‖IV ) and PRNG routine for 248 clocks and 8 clocks, respectively, to

obtain bits z249, . . . , z256
8 if z249 = . . . = z256 = 0 then
9 Set s ← 1

10 return (K, IV ) and (K′′, IV ′′)
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Table 5. State evolution of bits 255 to 218 after applying the KSA−1 routine (Algo-
rithm 7)

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1

1 1 1 ? 1 1 1 ? 1 1 1 ? 1 1 1 ? 1 1 1 ? 1 1 1 ? 1 1 1 1 1 1 0 1 1 1 1 1 1 ?

1 1 ? ? 1 1 ? ? 1 1 ? ? 1 1 ? ? 1 1 ? ? 1 1 ? ? 1 1 1 1 1 0 1 1 1 1 1 1 ? ?

1 ? ? ? 1 ? ? ? 1 ? ? ? 1 ? ? ? 1 ? ? ? 1 ? ? ? 1 1 1 1 0 1 1 1 1 1 1 ? ? ×
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 1 0 1 1 1 1 1 1 ? ? × ×
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 0 1 1 1 1 1 1 ? ? × × ×
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 0 1 1 1 1 1 1 ? ? × × × ×
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 0 1 1 1 1 1 1 ? ? × × × × ×
? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? 1 1 1 1 1 1 ? ? × × × × × ×

5 Key Recovery Algorithms

According to the results presented in Sect. 4, we know that related IV’s exist.
Note that we also know the average running time τ needed to find such a pair
(IV, IV ′) and the keystream shift σ that they produce. Since we do not have
access to the secret key, a simple strategy to finding such a pair is to choose a
random IV and use it to generate α bits that are stored in memory. Then clock
the NFSR either forward or backwards, and then randomly generate6 IV ′ until
we obtain a keystream with the desired shift σ. Note that the probability of
randomly obtaining the desired shift is 1/2α−σ. Therefore, if we choose a large
enough α the probability is small enough.7

We further assume that we are in possession of two related IV’s and we
want to recover the secret key. Using a related IV pair, we can use a guess
and determine attack8 to recover the secret key. We propose three key recovery
attacks. The first one (forward construction) uses IV pairs generated using the
KSA routine, while the second (backward construction) use IV-pairs created
using the KSA−1 routine. The last attack (mixed construction) assumes that
we are in possession of two IV-pairs and is a combination of the forward and
backward constructions.

6 an average of τ IV’s are generated
7 e.g. α = 100 since σ = 4 or 8
8 An attacker starts by brute-forcing parts of a cryptographic key and then uses var-

ious methods to determine the remaining unknown portions, often relying on prior
knowledge or observations about the encryption process.
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Table 6. Modified cells after running the KSA routine

Clock Cells
1 193, 197, 201, 205, 209, 213, 217, 231, 235, 239, 243, 247, 251, 255
2 192, 193, 196, 197, 200, 201, 204, 205, 208, 209, 212, 213, 216, 217, 230,

231, 234, 235, 238, 239, 242, 243, 246, 247, 250, 251, 254, 255

3 191 − 193, 195 − 197, 199 − 201, 203 − 205, 207 − 209, 211 − 213,
215 − 217, 229 − 231, 233 − 235, 237 − 239, 241 − 243, 245 − 247,

249 − 251, 253 − 255

4 190 − 217, 228 − 255

5 189 − 217, 227 − 255

6 188 − 217, 226 − 255

7 187 − 217, 225 − 255

8 186 − 217, 224 − 255

5.1 Forward Construction

Before presenting our attack, we want to see which NFSR positions are modified9

by the KSA routine after each clock. These positions are presented in Table 6.
In this subsection, we study the classical Espresso cipher, while in the full

version of the paper [12] we develop a key recovery algorithm for our proposed
version of Espresso.

Looking at the KLA and KSA routines, we can see that on clock i+1 K’s bits
used by the feedback functions and the output function are found on positions
0−(127−i), where i ∈ [0, 3]. According to Table 6, none of K’s bits are modified.
Similarly, we can see that IV ’s bits used by the feedback functions are not
modified. In the case of the output function, we can see that the only positions
that are modified are 213 and 217 at clocks 2 − 4. Luckily we can recover them
from IV ′’s bits. Also, note that for i = 2, 3 the value found on position 222 is 1
(due to the shifting of the initial padding).

As stated in Table 6, some positions between 223 and 255 are modified. But
we are working with two related IV’s that produce 4-bit shifted keystreams.
Hence, we know that after 4 clocks we end up with a valid padding. Hence, we
know their values.

Rewriting the feedback functions we obtain

g255(Xi+1) = ki ⊕ ki+41ki+70 ⊕ z(Xi+1) g247(Xi+1) = 1 ⊕ ki+44ki+102 ⊕ ki+40

g243(Xi+1) = 1 ⊕ ki+43ki+118 ⊕ ki+103 g239(Xi+1) = 1 ⊕ ki+46ivi+13 ⊕ ki+117

g235(Xi+1) = 1 ⊕ ki+67ki+90ki+110ivi+9 g231(Xi+1) = 1 ⊕ ki+50ivi+31 ⊕ ivi+61

g217(Xi+1) = ivi+90 ⊕ ki+3ki+32 ⊕ z(Xi+1) g213(Xi+1) = ivi+86 ⊕ ki+4ki+45

g209(Xi+1) = ivi+82 ⊕ ki+6ki+64 g205(Xi+1) = ivi+78 ⊕ ki+5ki+80

g201(Xi+1) = ivi+74 ⊕ ki+8ki+103 g197(Xi+1) = ivi+70 ⊕ ki+29ki+52ki+72ki+99

g193(Xi+1) = ivi+66 ⊕ ki+12ki+121

9 and hence, unknown to an attacker



210 G. Teşeleanu

and

g251(Xi+1) =

{
1 ⊕ ki+42ki+83 ⊕ ki+8 if i �= 3

ki+42ki+83 ⊕ ki+8 if i = 3

where

z′(Xi+1) = ki+80 ⊕ ki+99 ⊕ ivi+9 ⊕ ivi+59 ⊕ ivi+53 ⊕ ivi+46ki+44 ⊕ ivi+36ki+29

z(Xi+1) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

z′(Xi+1) ⊕ iv85iv89 ⊕ iv94+i if i = 0

z′(Xi+1) ⊕ iv′
81+iiv

′
85+i ⊕ 1 ⊕ iv′

81+iiv53+iiv46+i ⊕ iv94+i if i = 1

z′(Xi+1) ⊕ iv′
81+iiv

′
85+i ⊕ iv′

81+iiv53+iiv46+i if i = 2

z′(Xi+1) ⊕ iv′
81+iiv

′
85+i ⊕ iv′

81+iiv53+iiv46+i if i = 3

From Espresso’s feedback functions we can see that the only functions con-
taining retrievable key bits are g255, g251, g247, g243, g239 and g217. Note that all
positions, except 217, can be recovered from the padding (see Table 2). In the
case of g217, the value can be recovered from IV ′’s bits. Therefore, we obtain
Algorithm 8 for recovering some of K’s bits. To ease understanding, in Algo-
rithm 8 we marked at each step the recovered key bits %rec and the used key
bits %use.

5.2 Backward Construction

In this case, we want to see how the KSA−1 routine affects the NFSR positions
after each clock. The results are presented in Table 7.

With respect to the classical Espresso10, we can see that the KSA−1 routine
on clock i − 1 K’s and IV ’s bits used by the feedback functions are unchanged,
where i ∈ {0,−1,−2,−3}. Moreover, we can see that the first 4 bits of IV ′

coincide with the last 4 bits of K. The only problem that we encounter is on
position 218. Here on the last clock the feedback function uses x−1, but the value
can be easily obtained from k40, k69 and the output function.

In the case of the output function, the only problematic positions are 213
and 217 from the −4 clock. The two bits coincide with bits 210 and 214 from
clock −1. Lastly, for positions 232 to 255 we know the exact values due to related
Key-IV pairs used by the algorithm. Therefore, we obtain

g−1
252(Xi−1) = 1 ⊕ ki+41ki+82 ⊕ ki+7 g−1

248(Xi−1) = 1 ⊕ ki+43ki+101 ⊕ ki+39

g−1
244(Xi−1) = 1 ⊕ ki+42ki+117 ⊕ ki+102 g−1

240(Xi−1) = 1 ⊕ ki+45ivi+12 ⊕ ki+116

g−1
236(Xi−1) = 1 ⊕ ki+66ki+89ki+109ivi+8 g−1

232(Xi−1) = 1 ⊕ ki+49ivi+30 ⊕ ivi+60

g−1
214(Xi−1) = ivi+85 ⊕ ki+3ki+44 g−1

210(Xi−1) = ivi+81 ⊕ ki+5ki+63

g−1
206(Xi−1) = ivi+77 ⊕ ki+4ki+79 g−1

202(Xi−1) = ivi+73 ⊕ ki+7ki+102

g−1
198(Xi−1) = ivi+69 ⊕ ki+28ki+51ki+71ki+98 g−1

194(Xi−1) = ivi+65 ⊕ ki+11ki+120

10 See the full version of the paper [12] for an analysis of our proposed version.
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Algorithm 8: Key bits recovery algorithm for the 0xfffffffe padding
(forward construction)
1 scriptsize Input: Chosen IV’s IV and IV ′ and key bits kj , where

j ∈ {4 − 6, 29 − 35, 44 − 49, 70 − 72, 84 − 86, 99 − 102, 121}
Output: 24 key bits kj , where

j ∈ {0 − 3, 8 − 11, 40 − 43, 80 − 83, 103 − 106, 117 − 120}
2 for i ∈ [0, 3] do
3 ki+117 ← ki+46ivi+13 %rec : 117 − 120 use : 46 − 49
4 k105 ← k45k120 %rec : 105 use : 45, 120
5 k43 ← k47k105 %rec : 43 use : 47, 105
6 for i ∈ [0, 3] do
7 if i �= 2 then ki+103 ← ki+43ki+118

%rec : 103, 104, 106 use : 43, 44, 46, 118, 119, 121
8 for i ∈ [0, 2] do
9 ki+40 ← ki+44ki+102 %rec : 40 − 42 use : 44 − 46, 102 − 104

10 o3 ←
k102⊕iv12⊕iv62⊕iv′

84⊕iv′
88⊕iv56⊕iv49k47⊕iv39k32⊕iv′

i+81⊕iv′
i+81ivi+53ivi+46

%use : 102, 47, 32
11 k83 ← o3 ⊕ iv′

89 ⊕ iv93 ⊕ k6k35 %rec : 83 use : 6, 35
12 k3 ← o3 ⊕ k83 ⊕ k44k73 %rec : 3 use : 83, 44, 73
13 for i ∈ [0, 2] do
14 oi ← ki+99⊕ivi+9⊕ivi+59⊕iv′

i+81⊕iv′
i+85⊕ivi+53⊕ivi+46ki+44⊕ivi+36ki+29

%use : 99 − 101, 44 − 46, 29 − 31
15 if i �= 0 then oi ← o ⊕ 1 ⊕ iv′

i+81 ⊕ iv′
i+81ivi+53ivi+46

16 if i = 2 then oi ← o ⊕ 1 else oi ← o ⊕ ivi+94

17 ki+80 ← oi ⊕ iv′
i+86 ⊕ ivi+90 ⊕ ki+3ki+32 %rec : 80 − 82 use : 3 − 5, 32 − 34

18 for i ∈ [0, 2] do
19 ki+0 ← oi ⊕ ki+80 ⊕ ki+41ki+70 %rec : 0 − 2 use : 80 − 82, 41 − 43, 70 − 72
20 for i ∈ [0, 3] do
21 ki+8 ← ki+42ki+83 %rec : 8 − 11 use : 42 − 45, 83 − 86
22 if i = 3 then ki+8 ← ki+8 ⊕ 1

and

g−1
0 (Xi−1) =

{
xi+40xi+69 ⊕ z−1(Xi−1) if i = 0

1 ⊕ xi+40xi+69 ⊕ z−1(Xi−1) if i �= 0

g−1
218(Xi−1) =

{
ivi+89 ⊕ ki+2ki+31 ⊕ z−1(Xi−1) if i �= −3

ivi+89 ⊕ g−1
0 (X−1)ki+31 ⊕ z−1(Xi−1) if i = −3
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Table 7. Modified cells after running the KSA−1 routine

Clock Cells
−1 0, 194, 198, 202, 206, 210, 214, 218, 232, 236, 240, 244, 248, 252
−2 0, 1, 194, 195, 198, 199, 202, 203, 206, 207, 210, 211, 214, 215, 218, 219,

232, 233, 236, 237, 240, 241, 244, 245, 248, 249, 252, 253

−3 0 − 2, 194 − 196, 198 − 200, 202 − 204, 206 − 208, 210 − 212, 214 − 216,
218 − 220, 232 − 234, 236 − 238, 240 − 242, 244 − 246, 248 − 250,

252 − 254

−4 0 − 3, 194 − 221, 232 − 255

−5 0 − 4, 194 − 222, 232 − 255

−6 0 − 5, 194 − 223, 232 − 255

−7 0 − 6, 194 − 224, 232 − 255

−8 0 − 7, 194 − 225, 232 − 255

where

z′−1(Xi−1) = ki+79 ⊕ ki+98 ⊕ ivi+8 ⊕ ivi+58 ⊕ ivi+52 ⊕ ivi+45ki+43 ⊕ ivi+35ki+28

z−1(Xi−1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z′−1(Xi−1) ⊕ivi+88 ⊕ ivi+84 ⊕ ivi+84ivi+52ivi+45

if i = 0

z′−1(Xi−1) ⊕ivi+88 ⊕ ivi+84 ⊕ ivi+84ivi+52ivi+45

if i = −1

z′−1(Xi−1) ⊕ivi+88 ⊕ ivi+84 ⊕ ivi+93 ⊕ 1 ⊕ ivi+84ivi+52ivi+45

if i = −2

z′−1(Xi−1) ⊕iv81 ⊕ k5k63 ⊕ iv85 ⊕ k3k44 ⊕ ivi+93

if i = −3

From Espresso’s reverse feedback functions we can see that the only functions
containing retrievable key bits are g−1

252, g
−1
248, g

−1
244, g

−1
240 and g−1

218. Note that all
positions, except 217, can be recovered from the padding (see Table 3). In the
case of g−1

218, the value can be recovered from IV ′’s bits. Therefore, we obtain
Algorithm 9 for recovering some of K’s bits.

5.3 Mixed Construction

Once we have constructed two pairs of related IV’s using the KSA and the KSA−1

routines, we can simply apply both the forward and the backward construction.
Note that there might be better approaches when combining the forward and
backward type constructions (i.e. constructions that recover different bits com-
pared to ours).

In the classical case, we can recover 41 key bits. More precisely, the mixed
construction takes as input the two pairs and the key bits kj , where j ∈ {3 −
6, 25 − 35, 44 − 49, 63, 69 − 72, 76 − 79, 84 − 86, 98 − 102, 121}. Then it runs the
forward construction and then it runs the backward one. Finally, the algorithm
outputs kj , where j ∈ {0 − 3, 7 − 11, 36 − 43, 80 − 83, 95 − 98, 103 − 106, 113 −
120, 124 − 127}.
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Algorithm 9: Key bits recovery algorithm for the 0xfffffffe padding
(backward construction)

Input: Chosen IV’s IV and IV ′ and key bits kj , where
j ∈ {0 − 3, 25 − 31, 40 − 45, 63, 69, 76 − 82, 117}

Output: 24 key bits kj , where j ∈ {4 − 7, 36 − 39, 95 − 102, 113 − 116, 124 − 127}
1 for i ∈ [0, −2] do
2 ki+116 ← ki+45ivi+12 %rec : 116 − 114 use : 45 − 43
3 ki+102 ← ki+42ki+117 %rec : 102 − 100 use : 42 − 40, 117 − 115

4 k113 ← k42iv9 %rec : 113 use : 42
5 k99 ← k43k101k114 %rec : 99 use : 43, 101, 114
6 for i ∈ [0, −3] do
7 ki+127 ← iv′

i+3 %rec : 127 − 124

8 ki+7 ← ki+41ki+82 %rec : 7 − 4 use : 41 − 38, 82 − 79
9 if i = 0 then ki+7 ← ki+7 ⊕ 1

10 ki+39 ← ki+43ki+101 %rec : 39 − 36 use : 43 − 40, 101 − 98
11 o ← ki+79 ⊕ ivi+8 ⊕ ivi+58 ⊕ ivi+52 ⊕ ivi+45ki+43 ⊕ ivi+35ki+28

%use : 79 − 76, 43 − 40, 28 − 25
12 if i = 3 then o ← o ⊕ iv81 ⊕ k5k63 ⊕ iv85 ⊕ k3k44 ⊕ iv90 %use : 5, 63, 3, 44 else

o ← o ⊕ ivi+88 ⊕ ivi+84 ⊕ 1 ⊕ ivi+84ivi+52ivi+45
13 if i = 0 or i = 1 then o ← o ⊕ 1 else o ← o ⊕ ivi+93

14 ki+98 ← o ⊕ iv′
i+93 ⊕ ivi+89 ⊕ ki+2ki+31 %rec : 98 − 95 use : 2 − 0, 31 − 28

15 if t = 0 then k−1 ← o ⊕ k98 ⊕ k40 ⊕ k69 %use : 98, 40, 69

Table 8. Attack Complexity

Construction Padding
0xfffffffe 0x7fffffff

Forward 2104 + 232 2101 + 240

Backward 2104 + 228 299 + 234

Mixed 287 + 232 + 228 289 + 240 + 234

Regarding our proposal, the mixed construction can recover 39 key bits. More
precisely, the mixed construction takes as input the two pairs and the key bits
kj , where j ∈ {4 − 12, 21 − 31, 36 − 53, 60 − 82, 86 − 90, 95 − 97, 99 − 103, 106 −
108, 117}. Then it runs the backward construction and then it runs the forward
one. Finally, the algorithm outputs kj , where j ∈ {0 − 3, 13 − 15, 32 − 35, 83 −
85, 91 − 94, 98, 104, 105, 109 − 116, 118 − 127}.

Remark 2. Note that we also studied the backward and forward combination
for the classic case. However, this combination performed poorer than the one
we presented. Thus, we omitted it. The same happened for the forward and
backward combination for our proposed padding scheme.

5.4 Complexity

To summarise, we provide in Table 8 the complexities of the key recovery attacks.
We can see that when we take the attacks separately, the original padding has a
better security margin. However, in the mixed case our proposal performs better.
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6 Conclusions

In this paper, we have shown that given any Key-IV pair, one can easily construct
another pair, with expected 232 time complexity, that produces the same bits as
the initial keystream on a significant amount of positions.

Furthermore, we have studied related Key-IV pairs that produce shifted
keystreams. We have shown how one can obtain two related Key-IV pairs, in
expected 228 trials, such that the pairs generate 4-bit shifted keystreams. To
increase the complexity of these attacks, we have proposed a new padding scheme
and have proven that the complexity increases to 234.

Additionally, we managed to describe several attacks that recover some of
the key bits and requires only two/four related IV’s. Hence, we can decrease the
complexity of conducting a brute force attack on the key to 287 in the classical
case and to 289 for our proposal.

A Examples

A.1 Propagation of a Single Bit Differential

Based on Algorithm 1, in Table 9 we present some examples. More pre-
cisely, two initial states X0 and X0,Δ which differ only in the position presented
in Table 9, Column 1, produce identical output bits in the positions found in
Table 9, Column 3, among the initial 160 key stream bits obtained during the
PRGA.

Table 9. Propagation of a Single Bit Differential

Flipped
Bit

Position

Number of
Identical

Keystream
Bits

Positions of Identical Keystream Bits

31 25 0-15, 19, 22, 23, 27, 34, 42, 55, 58, 71
47 10 0, 1, 25, 36, 39, 43, 47, 51, 66, 82

71 21 0, 1, 3, 4, 7, 8, 11, 12, 15-17, 19, 20, 21, 24, 25, 49, 60, 67,
71, 75

95 32 0-5, 7-9, 11, 12, 16, 18, 20, 22, 23, 27, 31, 32, 35, 36, 39,
41, 43-45, 48, 49, 73, 91, 95, 99

119 22 0, 1, 4, 5, 8, 9, 12, 13, 16, 19, 24, 27, 35, 36, 40, 42, 46, 51,
56, 59, 65, 67

143 32 0-2, 4, 5, 8-10, 12-14, 16-19, 21-24, 33, 36, 40, 43, 48, 51,
59, 60, 64, 66, 70, 83, 91

167 51
0-2, 4-8, 10-12, 14-17, 19-22, 24-26, 28, 29, 32-34, 36-38,

40-43, 45-48, 57, 60, 64, 67, 72, 75, 83, 84, 88, 90, 94, 107,
115

191 58
0-2, 5, 6, 8, 9, 11, 13-16, 18-20, 22-26, 28-32, 34-36, 38-41,
43-45, 48, 49, 52, 56-58, 61, 62, 65-67, 69, 71, 72, 81, 84,

88, 91, 99, 108, 112, 114, 131

215 81
0, 1, 3-26, 29, 30, 32, 33, 35, 37-40, 42-44, 46-50, 52-56,

58-60, 62-65, 67-69, 72, 73, 76, 80-82, 85, 86, 89-91, 93, 95,
96, 105, 108, 112, 115, 123, 132, 136, 138, 155

239 96

1-3, 5-7, 9-11, 13-16, 18-21, 23-25, 27-50, 53, 54, 56, 57,
59, 61-64, 66-68, 70-74, 76-80, 82-84, 86-89, 91-93, 96, 97,
100, 104-106, 109, 110, 113-115, 117, 119, 120, 129, 132,

136, 139, 147, 156
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A.2 Multiple Key-IV Trials with a Fixed Differential

In Table 10 we provide an examples for Algorithm 2.

Table 10. Key-IV pairs which differ only in the 239th position

Key IV State

0xd17117b8c5f9042 0x96a2736a408 0x7a53d74a086602e4943e052d9fc6865
43a69b7db0a535d2b 208e40e4ce2e9 b37d9c35fb68b0cf78e8b5bcba7f0a273

0xcee2d9eee6c6da3 0x52385c5ecfd 0x7a53d74a086602e4943e052d9fc6865
625309eb7737e3f4d 2fa898bf48b67 b37d9c35fb68b0cf78e8b5bcba7f1a273

A.3 Key-IV Pairs that Produce Shifted Keystreams

In Table 11 we present a set of examples for Algorithms 4 to 7.

Table 11. Key-IV pairs that produce shifted keystreams

Key IV Keystream

Algorithm 4

0x2a13a9539900630 0x2c112eb15ad 0x6757b665d8a3e72
f7a721a25e2193026 d58ec3a99599a bd2bdfdc326a93404
0xa13a9539900630f 0xc112eb15add 0x757b665d8a3e72b
7a721a25e21930262 58ec3ad959aef d2bdfdc326a934043

Algorithm 5

0xb1d331f900270d5 0x7e8b7fd12fe 0x6172f847028df4f
f6a43069b404888cf bf7c2f17d86ff eb0906ea001fc6d1f
0xfb1d331f900270d 0xf7e8b7fd12f 0x56172f847028df4
5f6a43069b404888c ebf7c2b17684f feb0906ea001fc6d1

Algorithm 6

0xb64e24eddec37cf 0xaee197ec26b 0x0261c57c8b0238e
8a30970c2155d30cf 76484bceb639d 469f8e67299c3ed57
0x4e24eddec37cf8a 0xe197ec26b76 0x61c57c8b0238e46
30970c2155d30cfae 4849c49c2f33f 9f8e67299c3ed5742

Algorithm 7

0xd90e03c9fdcf7ce 0xb6a7a25b255 0xca75acab22d4c9e
231f9ac4c322ad987 b956c9672467f e1fb6c9045f1379e0
0xd7d90e03c9fdcf7 0x87b6a7a25b2 0x05ca75acab22d4c
ce231f9ac4c322ad9 55b954817ee18 9ee1fb6c9045f1379
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