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Abstract. Object detection systems are the principal pillar in various
safety applications in the transportation field; various sensors can be
deployed to detect and track moving objects and obstacles. In this con-
text, LiDAR technology has shown its effectiveness. In this work, we
survey LiDAR technology focusing on its functioning, sensor types and
application fields. In particular, we point out its use in the vehicular field
and outline the different steps followed by LiDAR-based object detection
approaches.
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1 Introduction

The transportation industry is constantly evolving to improve the driver and pas-
senger experience and road safety. Modern vehicles are equipped with innovative
features such as route guidance systems (e.g., automatic emergency braking,
adaptive cruise control, lane departure warning, speed assistance monitoring,
etc.), fatigue detection [1], voice control, etc. Along with population growth,
these enhancements have increased the demand for vehicles, resulting in road
congestion and higher accident rates. According to the World Health Organiza-
tion [2], about 1.3 million people die each year because of road accidents caused
by human errors, including speeding, disobeying traffic laws, driving under alco-
hol or other substances, or distracted driving.

To lower the high rate of accidents, scientists needed to find a method to
reduce the risk of human errors while driving; for this reason, multiple sensors
can be deployed inside and outside the vehicle to add an extra layer of safety.
Some essential sensors are placed on the engine to inform the driver of the state
of brakes, engine temperate, engine oil level, etc. Nowadays, there are new 2D
and 3D sensing technologies deployed inside the car that enable the drivers to
adjust different equipments of the vehicle without looking away from the road
using simple hand gestures. For example, a touch screen that is used to adjust
the air conditioner and the side windows, a camera installed on the steering
wheel that detects specific gestures of the driver in order to answer phone calls
or skip songs. In addition, a camera attached to the reverse mirror monitors the
driver’s state and sees any signs of tiredness on his face. Concerning the sensors
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used outside the car, in 2000, Nissan’s Infiniti luxury division added cameras
in the rear of the vehicles that broadcast live video to the drivers to help them
view the area behind the car while reversing [3]. In 2003, Toyota launched the
Intelligent Parking Assist option in cars by installing ICS1 sensors on the front
and rear bumpers of the vehicle to parallel driverless parking [4]. In 2014, Elon
Musk was the first to introduce the self-driving car with the Model S, using
many sensors all around the car, from short-range to long-range cameras to
Radars and ultrasonic sensors. In 2020, Waymo manufactured a self-driving taxi
for public use and it implemented the LiDAR Technology as primary sensing
method [5]. These new services are allowed thanks to embedded sensors such as
GPS2 sensors, ultrasonic sensors, cameras, motion sensors, etc.

This work focuses on a new type of sensing technology used for object detec-
tion methods known as LiDAR (LiDAR: Light Detection and Ranging). It uses
laser beams to generate three-dimensional maps of the vehicle’s surrounding
environment. It has been adopted as a reliable sensing technology by multiple
companies like Waymo, Tesla, and Cruise. LiDAR sensing technology is becom-
ing a more and more stable and reliable method for mainly autonomous vehicles.
Many surveys have introduced LiDAR technology [6–8]. Other surveys like [6]
and [7] focused on the sensing mechanism of the LiDAR sensor and the way it
functions, while [8] gave a detailed taxonomy to the 3D object detection methods
that are based on LiDAR sensing data. In this survey, we will focus on the use
of LiDAR technology, mainly in the vehicular field.

In this paper, we presented a survey of a LiDAR sensing technology. We
included a general introduction to the LiDAR sensing system and its differ-
ent fields of application while focusing on the vehicular field. In addition, we
gave a brief comparison between this technology and other sensing technologies
and presented its main advantages and disadvantages. Finally, we presented the
different step of object detection process using this LiDAR technology and its
different methods of application.

The rest of the paper is organized as follows. In Sect. 2, we briefly introduce
the LiDAR technology, explaining its operating mode and range of applications.
Section 3 focuses on LiDAR technology in the vehicular field. In Sect. 4, we con-
clude our paper.

2 LiDAR Technology

In the context of smart mobility, different types of sensors can be deployed to pro-
vide new functionalities and in particular to ensure vehicle safety, as mentioned
in [9]; the authors classified employed sensors into two categories: (i) in-vehicle
sensors including Ultrasonic sensors, RADAR, GPS, Gyro-scope, accelerometer
sensors, and LiDAR sensor; (ii) and in-road sensors such as pneumatic road tube,
inductive loop detector, magnetic sensors, piezoelectric, infra-red sensor, acous-
tic array sensors, radio-frequency identification, and LiDAR sensor. Each sensing
technology has its advantages and disadvantages; in Table 1, we summarize the
most used ones.
1 ICS: Intelligent Clearance Sonar.
2 GPS:Global Positioning System.
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Table 1. Sensing technologies.

Sensor Advantages Disadvantages Applications

RGB cameras – Provide dense pixel image

– Low price with decent

data

– Provide no information

concerning the depth of

objects

– Sensitive in poorly lit, and

highly occluded

environments and bad

weather

In-vehicle sensors:

– Monitor the surroundings

of the vehicle and broadcast

it to the driver

– Monitor the driver health

state (fatigue) for emergency

alerts

– Detect the face of a person

in the case of a stolen car

– Autonomous driving

In-Road sensors:

– Monitor the traffic

– Detect violations of road

code

– Detect researched cars

Stereo cameras – Provide dense pixel image

– Provide depth information

for objects

– Low price compared to

LiDAR with decent data

– Sensitive in bad weather

conditions, poorly lit and

highly occluded environ-

ments

– More expensive than RGB

cameras

– Depth error increases expo-

nentially based on the dis-

tance

– Provide data that demand

more computational power

In-vehicle sensors:

– Obstacle detection

– Road surface scanning

In-Road sensors:

– Application to inspect the

state of the road

RADAR – Low price

– Wireless technology

– Capable of detecting the

speed of an object

– Wide range field of view

– Able to collect data in

harsh weather conditions

– The single can go through

insulators

– Low-resolution depth maps

– short-range field of view

– Can’t provide the color of

the object

– Sensitive to radio frequen-

cies

– Fail to differentiate

between multiple objects

In-vehicle sensors:

– Used for collision avoid-

ance

– Safety applications (occu-

pant detection)

In-Road sensors:

– Speed measurement

– Detection of the direction

of movement of the vehicle

Ultrasonic sensors – Low price

– Not affected by luminosity

– Low-resolution depth maps

– A small field of view

– Mediocre accuracy (unable

to differentiate between

small and big objects)

– Can be affected by loud

noises

In-vehicle sensors:

– Parking applications

– Warning applications

– Autonomous driving

– Used for traffic congestion

detection

In-Road sensors:

– Traffic measurement

– Vehicle detection

– Highway Vehicle Violation

Detection

LiDAR – Not affected by the lighting

condition of the environment

– Accurate, quick, and

High-resolution depth maps

over long distances (longer

than the Radar and stereo

cameras)

– High cost for high-end sen-

sors

– Low resolution for low-end

sensors

– Occlusion problem

– Sensitive in foggy weather

– The data generated is usu-

ally sparse and take time to

process

– Can’t provide information

about the texture of the

objects

In-vehicle sensors:

– Parking applications

– Warning applications

– Autonomous driving

– Used for traffic congestion

detection

– Monitor the state of the

railroad

In-Road sensors:

– Traffic measurement

– Vehicle detection

– Train arrival detection

– Autonomous driving
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As shown in Table 1, several sensors could be deployed to ensure the safety
of the roads, for example, RGB cameras can be placed on the roadsides to
detect vehicles, congested points of traffic, and even license plates of cars in case
of road violation. RADAR sensors can be used to detect the speed of moving
vehicles, while ultrasonic sensors are wildly used for parking assistant systems.
In addition to the services mentioned above, these sensors can also be combined
into a detection system to scan the environment around a moving vehicle and
detect obstacles in its path. In this work, we will focus on LiDAR technology,
as it provides high spatial resolutions range information, useful for many road
safety applications such as ADAS (Advanced Driver Assistance Systems) [10],
inspecting of railroad infrastructure [11,12], and inspecting the road pavement
condition [13].

In this section, we first explain how LiDAR technology works, then we enu-
merate the different types of LiDAR sensors and their respective fields of appli-
cation.

2.1 LiDAR Scanning

a. LiDAR System Components: LiDAR is part of the Optical Wireless
communication (OCW) technologies used to generate very high-resolution three-
dimensional maps. The LiDAR technology is considered an active remote sensing
system because it generates beams of light (ultraviolet, visible, or near-infrared)
to detect and measure the distance of objects and generate very high-resolution
three-dimensional maps called point clouds. Every LiDAR system is composed
of three essential elements:

� The LiDAR sensor: These pieces of equipment come in different shapes
and sizes, but most of them have a general component structure, as illustrated
in Fig. 1:

• The Transmitter: it represents the light source (e.g., laser, LED3, or
VCSL4 diode) that generates and emits, in pulses, laser beams from the
sensor to the objects.

• Scanner and optics: a combination of plane mirrors, a polygon mirror,
and a dual-axis scanner are used to adjust the angle and range of the
detected laser beams.

• Photodetector: also known as receiver electronics or photodiode, is the
light sensor responsible for collecting the laser beams reflected off the
objects and converting them into an electrical signal. There are two prin-
cipal photodetector technologies used in LiDAR: solid-state electronics
(e.g., photodiodes) and Photomultiplier.

3 LED:Light Emitting Diode.
4 VCSL: Vertical Cavity Surface-emitting Laser.
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� Position and navigation systems: it includes a GPS receiver and IMU5,
usually needed when the sensor is attached to a moving platform (car, air-
planes, satellites, etc.) to identify the location and orientation of the LiDAR
sensor in the X, Y, Z space, alongside the characteristics of the objects like
the distance, size, and shape.
� A computer and software: they are used to correlate all the information
from the LiDAR sensor and the navigation system and generate the point
clouds.

Fig. 1. General representation of a LiDAR sensor [6]

b. LiDAR Functioning: The LiDAR technology is like RADAR because both
sensors generate and send out multiple waves of energy that travel from the
Transmitter to the objects around them. Then, based on the time-of-flight prin-
ciple as exposed in Fig. 2, they measure the distance separating them from the
things; the used equation is:

D = c ∗ t

2
(1)

where:

t: represents the time of flight
c: is the constant value of the speed of light

The main difference between both technologies is that RADAR uses radio
waves while LiDAR uses light waves. Part of this transmitted signal is reflected
from the objects and collected by the receiver component of the LiDAR sensor.
This reflected energy, known as the Intensity, is collected by the receiver compo-
nent of the LiDAR sensor and processed by the Global Positioning System and
the Internal Measurement Unit to determine calculate multiple objectives like
the location and orientation of the LiDAR sensor in the X, Y, Z space, along-
side the characteristics of the objects surrounding it like the distance, size, and
shape.

5 IMU: Inertial Measurement Unit.
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Fig. 2. Time-of-flight principle

c. LiDAR Data: The LiDAR sensor collects the laser beams reflected from the
objects, then processes and stores them in files called point clouds that contain
information on a significant number of 3D elevation points in a matrix form.

The main four characteristics of each LiDAR point are the three-dimensional
coordinates x, y, and z and the Intensity value that represents the strength of
the returned laser pulse in addition to other optional pieces of information that
are generated by specific sensors:

– Point classification: each point will be given a class that defines the object
it is reflected. American Society for Photogrammetry and Remote Sensing
(ASPRS) defines these classifications. For example, as shown in Table 2, a
point cloud is given one of the twenty classes.

– RGB: some sensors can assign a color to each point of the points cloud based
on the intensity of the returned laser beams (points with higher Intensity
have warmer tone colors).

– GPS time: this attribute is usually assigned when using a mobile LiDAR
sensor (e.g., attached to a moving vehicle) to stamp when the laser beam was
emitted from the sensor.

The generated point clouds are stored in files under hundreds of file formats,
depending on the LiDAR sensor deployed to scan the area. Still, the majority
fall under the ASCII6 and Binary format.

The first type uses text to encode information, making it easier to read by
text editors and other applications (e.g., Microsoft Excel) and optimal for long-
term archiving. However, these files take longer to process and to read line by
line and are more significant than binary files. This format’s most used file types
are XYZ, OBJ, PTX, and ASC. The latter format is more compact and can

6 ASCII: American Standard Code for Information Interchange.
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Table 2. Classification value and meaning for LiDAR points [?]

Classification value Meaning

0 Never classified

1 Unassigned

2 Ground

3 Low Vegetation

4 Medium Vegetation

5 High Vegetation

6 Building

7 Low Point

8 Reserved

9 Water

10 Rail

11 Road Surface

12 Reserved

13 Wire - Guard (Shield)

14 Wire - Conductor (Phase)

15 Transmission Tower

16 Wire-Structure Connector (Insulator)

17 Bridge Deck

18 High Noise

19–63 Reserved

64–255 User Definable

store and transmit more information than the ASCII format; it allows faster
processing and viewing of files. Its main drawback is that simple text editors
cannot read it. FLS, PCD7 and LAS, are some of the most popular point cloud
binary formats.

Other files can store ASCII and binary forms like PLY, FBX, and E57, taking
advantage of both formats. However, since both of these formats have their
properties, it is not advised to convert binary format to ASCII because it could
degrade the value of information.

There is a wide variety of software capable of processing LiDAR point clouds,
depending on the format of the files. Open-source software provides a lim-
ited number of services; mainly they are used to visualize and display point
clouds (e.g., QCIS3 [14], Whitebox GAT [15], Fugro Viewer [16], SAGA GIS
[17], GRASS GIS [18], Meshlab [19], CloudCompare [20], etc.). Desktop software
offers more services and options in addition to the free viewing mode (e.g., Faro
Scene [21], Leica Cyclone [22], Trimble Real works [23], Bentley Pointools [24],

7 PCD: Point Cloud Data.
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PointCab [25], Point Fuse [26], EdgeWise [27], Capturing Reality [28], Autodesk
ReCap [29], etc.). Table 3 exposes examples of point cloud software and the file
formats they can import and export.

Table 3. Point cloud Softwares import and export format

Software Bentley Pointools Capturing Reality Leica Cyclone Faro Scene Trimble Real
works

Autodesk
ReCap

Import format POD, OBJ, SHP, DXF,
DWG, ESRI, E57, ZFS, LAZ,
LAS, FLS, FWS, XYZ, PTS,
PTX, PTZ, TXT, LWO

PTX, E57 XYZ, PTS, PTX,
LAS, E57, ZFS,
DP

XYZ, CVS, COR XYZ, E57, LAS,
LAZ, ZFS, RSP,
FLS, DP, PTX,
PTS

ASC, CL3,
CLR, E57,
FLS, FWS,
ISPROJ, LAS,
PCG, PTG,
PTS, PTX,
RDS, TXT,
XYB, XYZ,
ZFS, ZFPRJ,
DXF, DWG

Export format POD, PTS, XYZ OBJ, PLY, XYZ, DSM XYZ, PTS,
PTX, E57, DXF,
PCI/CWF, DBX,
Land XML

PTC, PTX,
PST, XYZ, DXF,
IGES, VRML,
E57

E57, ASC, LAS
1.2, LAS 1.4,
LAZ, POD, PTS,
PTX, TZF, BSF

RCS, RCP,
PCG, PTS,
E57, DXF,
DWG

Although the LiDAR data is relatively new, it is available for researchers
and scientists to download and experiment with through different websites like
Open Topography [30], USGS Earth Explorer [31], NOAA Digital Coast [32], and
National Ecological Observatory Network [33]. These websites provide a fixed-
point view of LiDAR data irrelevant in the case of model training and machine
learning. In addition, different companies offer free datasets for scientists to apply
and create new machine learning models like Waymo [5], Kitti dataset [34], and
Ouster which alongside its data, it provides unique software used to display and
manipulate the information.

2.2 LiDAR Types

Generally, there are two different types of LiDAR application, airborne and ter-
restrial. Each type requires LiDAR sensors with specific characteristics related to
the application objective, the diameter of the area to be scanned, the maximum
range of the laser beam needed, and the cost of the sensor.

a. Airborne LiDAR: The airborne LiDAR is an acquisition method that
involves attaching the LiDAR sensor to a flying airplane, a helicopter, or a drone
to create a top viewpoint cloud over large areas, as shown in Fig. 3.

This system comprises three main elements:

– The LiDAR scanner
– A GPS device that detects the position of the aircraft holding the scanner
– The IMU is responsible for processing the LiDAR data, generating the point

cloud, and recording the airplane’s altitude.
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Fig. 3. Example of airborne LiDAR scanning method [35]

The aircraft’s height affects the accuracy and density of the point clouds
generated by this method. The longer the distance between the airplane and the
ground, the lower quality of the data. Compared with the traditional methods,
using high-quality RGB cameras to capture top view images, it is possible to
filter the vegetation from the point clouds captured by the airborne LiDAR
sensors, leaving only the relevant ground surfaces, as shown in Fig. 4.

Fig. 4. Comparison between LiDAR sensing and photogrammetry [36]

The sensors used for these situations are divided into topographic and
Bathymetric sensors. Both sensors operate under the same concept, but the
main difference is the LiDAR scanners’ capabilities. Topographic scanners
used to be mounted on airplanes because of their significant sizes (e.g., Leica
TerrainMapper-2, Leica SPL100, RIEGL VQ-880-G, Galaxy T2000, ALTM
Galaxy, Trimble AX60i, Trimble AX80), but more companies started manu-
facturing more compacted sensors that produce inferior but acceptable results.
Hence, attaching them to small drones (e.g., DJI M600 Pro LiDAR quadcopter,
Draganflyer Commander, Riegl RiCopter Lidar UAV) became possible. This
method generates a colored point cloud for above-land surfaces like railroads,
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highways, and infrastructures while avoiding the potential terrestrial obstacles
that could slow down the process or affect the final result of the captured point
cloud. Bathymetric LiDAR sensors are physically more significant, more power-
ful, and require a vital energy source to function. They are usually mounted on
airplanes and used to measure the depth of lakes, seas, and oceans or to locate
objects underwater and map out the structure of the land under sea level.

b. Terrestrial LiDAR: Terrestrial LiDAR sensors are installed at the ground
level and classified into Mobile and Static sensors. With the mobile LiDAR, it is
possible to use more than one laser scanner mounted on a moving vehicle (e.g.,
cars, trains, boats, and vans) to generate dense point clouds along the vehicle’s
trajectory. Similar to the airborne LiDAR, mobile sensors (e.g., Topcon IP-S3,
Ultra Puck, Alpha Prime, HDL-32E, MRS1000, MRS6000, Valeo Scala, Ouster
OS0, OS1, OS2, ES2) are usually equipped with a GPS to detect the location
of the vehicle, and an IMU to process the data coming from the LiDAR sensor
and the navigation system.

Static sensors, also known as stationary terrestrial sensors (e.g., Faro Focus
3Dx130, Leica C10, Riegl VZ series, Topcon GLS 1500), are commonly used for
surveying purposes. They are placed on a fixated tripod at a strategic location
to create three-dimensional maps of a specific region from a particular angle.
Compared to the traditional methods, static LiDAR sensors can scan in every
direction, including upwards and they can easily be relocated after completing
one scan which makes them fully portable.

2.3 LiDAR Applications

LiDAR was first introduced by Malcolm Stitch in 1961 as a technology for satel-
lite tracking. This technology has evolved over the years, and it is now suc-
cessfully deployed in various application fields that require a technology that
offers an extensive scanning range and accurate identification and classification
of objects in the presence or absence of light:

– Agriculture: The agriculture sector is one of the oldest and longest-existing
markets; it always benefits from new technologies. LiDAR technology is very
useful in this field; it is possible to attach sensors to drones and capture bird’s
eye view maps that are later processed to study the soil and the terrain. Based
on the height level of crops, it is possible to determine the areas with low
productivity that need fertilizers, and damaged crops and products, which
will help the farmer avoid potential financial loss.

– Archaeology: The LiDAR technology has been deployed in the archaeol-
ogy field because it’s a low-cost method that can generate high-resolution
3-dimensional maps of archaeological features like ancient caves, roads,
fences, terraces, and even boundaries hidden by vegetation without dam-
aging them. In 2009, the archaeologist Chris Fisher discovered a great city
of the Purepecha empire that goes back to 1519 [37]; Fisher stated that with
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traditional radar technology, it took them two years to survey only 2 km of
the site, but with the LiDAR technology it took them only 45 min to scan
the entire 13 km surface.

– Forestry: In the forestry field, airborne LiDAR technology has been deployed
to study leaf areas, biomass measurements, and canopy heights and estimate
the biodiversity of plants, animals, and even fungi. For example, in 2020,
LiDAR sensors were used to map the Australian forests that have been dam-
aged by fire and identify the healthy and burned vegetation. Also, the Save the
Redwoods League organization [38] has used LiDAR technology to evaluate
the height of trees and learn about the biodiversity of redwood forests.

– Geology: The point clouds generated by airborne and terrestrial LiDAR have
been used in the geology field to study the surface of the Earth. Such as river
channel banks and terraces, glacial landforms, the texture of the terrains
under the vegetation level, and observing the elevation changes of landscapes
between scanning over a long period. For example, in 2005, the Mont Blanc
massif was the first high alpine mountain to be scanned by LiDAR to detect
rock falls caused by climate changes [39]. In addition, ts technology was com-
bined with GNSS8 to locate the Seattle Fault in Washington [40].

– Atmosphere: There are several applications of LiDAR to the atmosphere.
Studying the atmosphere using laser beams goes back to before the Second
World War in 1930 by Edward Hutchinson Synge, who suggested examin-
ing the upper atmosphere using laser beams. Either terrestrial or airborne
LiDAR could be deployed for atmospheric applications. For example, cloud
classification uses a powerful laser to retrieve cloud tops, aerosol properties
investigated by the EARLINET9 [41], atmospheric gazes measuring (e.g.,
ozone, water vapor), and atmospheric temperature measuring approximately
120 m above ground.

– Law enforcement: LiDAR technology is being used as a speed gun by the
police to detect the speed of vehicles surpassing the speed limit or as a method
that records crime scenes to help with the investigation.

– Military: The most general application of the LiDAR system in the military
sector is developing a counter-land mine method by the Areté Associates [42]
called ALMDS10 [43].

– Mining: The LiDAR technology has been applied in the mining field by attach-
ing sensors on robots that are wirelessly controlled to map the inside of tun-
nels and create three-dimensional point clouds [44]. In general, the airborne
LiDAR method is the most used for the surveillance of mining sites because
of its flexibility against obstacles, and the small size of drones makes them
able to reach small spaces [45].

– Physics and astronomy: The Lunar Orbiter Laser Altimeter (LOLA) is a
Moon orbiting satellite equipped with a powerful LiDAR that measures the
distance between the Earth and the moon’s surface in millimeters, and gener-
ating topographic maps. Similar to the previous example, the Mars Orbiting

8 GNSS: Gobal Navigation Satellite System.
9 EARLINET: European Aerosol Research Lidar Network.

10 ALMDS: Airborne Laser Mine Detection System.
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Laser Altimeter (MOLA) is a Mars-orbiting satellite equipped with a powerful
LiDAR sensor to generate global surveys of the red planet.

– Rbobotics: LiDAR technology has been embedded in robots; through the
generated three-dimensional maps of the environment, it is possible for robots
to precisely detect and calculate the distance of the objects around them and
classify them using machine learning models.

The latest advancement to the LiDAR technology, as of the time this paper
was published, are the development of solid-state LiDAR sensors that uses no
moving parts which makes it smaller, more reliable and less expensive. In addi-
tion, the recent advancement to this technology is called the multi-spectral
LiDAR, which uses multiple wavelengths of light to identify more information
about the environment such as the materials of the objects. Finally, this technol-
ogy is being integrated in different mobile devices like smartphones and tablets,
which allow it to be applied in a wider range of applications (e.g. indoor mapping,
augmented reality).

Some of the main applications that utilize LiDAR are exposed in Fig. 5 with
their respective LiDAR sensors.

Fig. 5. LiDAR technology classification, applications, and sensor examples.

In this paper, we will explore the use of LiDAR on the field of autonomous
driving and the object detection systems when using terrestrial LiDAR sensors.

3 LiDAR Usage in the Vehicular Field

The LiDAR technology is a valuable safety mechanism for other vehicular field
applications:
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– It was used in the railroad field to improve safety by installing a terrestrial
LiDAR at a level crossing point to detect the obstacles and then alert the
train driver [46].

– Monitor the state of the railway tracks by attaching a LiDAR sensor on the
front of the train to detect irregularities [47–49] that need to be fixed to avoid
future accidents.

– Detect objects on the tracks using the airborne LiDAR sensor method [50,51].
– Predict rockfall hazard near railway furthermore.
– Used in the domain of VANets as a solution to ensure secure authentication

between vehicles [52].

Still, the autonomous vehicle field remains the field that utilizes LiDAR tech-
nology the most as an object detection mechanism [8,53]. In addition, since early
2010, there have been a decent number of research papers that focus on enhanc-
ing the perception of vehicles. We will explore the object detection by the LiDAR
technology in the vehicular field.

3.1 LiDAR-Based Object Detection in the Vehicular Field

In the vehicular domain, object detection approaches rely either on raw LiDAR
data or on the data provided by LiDAR and a camera; indeed, the fusion of
LiDAR technology and RGB cameras offered a stable and feasible solution. The
raw data coming from either the LiDAR sensor or the RGB camera must go
through three phases:

1. The first phase is the data representation, which is responsible for processing,
organizing, and structuring the raw data from the LiDAR sensor for the next
step.

2. The second phase is feature extraction which is responsible for generating
feature maps by extracting different types of features.

3. The third step is the object detection model. Different approaches can be
applied in this step: regression of bounding boxes, determining the object
orientation, object class prediction, and deduction of object speed in some
cases.

4. The last phase is adopted by models that rely on a two-stage architecture.
The first phase is the primary object detection step, which is responsible
for extracting the bounding boxes framing the detected objects. Afterward, a
second step, called Prediction Refinement, is applied to fine-tune and improve
the results of the first stage.

As illustrated in Fig. 6, the authors in [8] sum up the different methods of each
step of the 3D object detection process.

a. Data Representations: This represents the first step in any 3D object
detection process. The raw LiDAR point data is refined to enhance the per-
formance of the next phase of the process which is the feature extraction. As
illustrated in Fig. 7, this step includes different methods with different output
formats for the LiDAR point clouds data, these methods are explained next.
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Fig. 6. 3D object detection system steps and their respective methods

Fig. 7. Feature extraction output formats [53].
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– Point-based: The concept of this first approach is simple to apply; the form
of the point cloud is preserved as a collection of sparse points, then each point
is represented by its feature vector generated by combining the features of
their neighboring points. But since it is composed of thousands of points,
object detection could take a significant amount of time to process. For this
reason, a preprocessing step is required in order to compact the size of the
point cloud to a pre-defined value [54–59]. The reduction of the point cloud
size is made by a procedure known as downsampling, which eliminates points
from the point cloud until reaching the required number of points N (N is the
fixed number of points in a point cloud). The downsampling can be applied
in two ways, either through a random selection method or a Furthest Point
Sampling (FPS)algorithm. In the first method, the points are picked randomly
until reaching N-selected points, which could result in an uneven selection of
points since dense regions of the point cloud have a higher probability of being
downsampled than sparse ones [54,55]. The second method starts by picking a
point randomly, calculating all the distances of other points, and then deleting
the farthest one. This process is repeated until reaching the desired prefixed
number of points N; this approach maintains a similar representation to the
initial point cloud but at the cost of time and hardware [59–61].

– Voxel-based: Voxelization is assigning each point of the point cloud to a
voxel according to its 3D coordinates. A voxel is a cubic shape element with
distinct coordinates in the 3D space. This approach divides the point clouds
into three-dimensional cuboid [62] that could be uniformly spaced or have
different sizes inside the x, y, and z Cartesian coordinate grid. In the following
step, the features of the raw point cloud are deducted from the group of points
inside each voxel as a single feature vector instead of extracting them from
each point separately, which lower the computational cost and reduce memory
consumption. Some of the features that could be deducted from each voxel are
(i) the average value of the intensities inside the voxel, (ii) the 3D coordinates
of each voxel point, (iii) and the mean distance between each point and the
center of its voxel.

– Pillar-based: This method was introduced by [63]; it is based on partitioning
the point cloud along the Z-axis (in vertical columns) and splitting the 3D
space into fixed-size pillars, which are usually viewed as an unbound voxel
along the Z-axis. Like the voxel-based approach, the allocation of points to
the pillars is done through Fixed or Dynamic voxelization.

– Frustum-based: The models using this data representation [64–66] cut the
point clouds into frustums, which is a section that lies between two parallel
planes of a cone or a pyramid shape, then apply feature extraction methods
on these sections.

– 2D Projection-based: This data representation method involves projecting
three-dimensional point clouds into two-dimensional ones to reduce the com-
putational cost of processing the data. In the literature, three main projection
approaches are proposed and applied in various research projects, which are
the Range View (RV), the Bird’s Eye View (BEV), and Front View (FV).
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– Graph-based: This last approach converts the point cloud into a graph,
where each point is considered a node, and each link between it and its neigh-
bors is an edge. However, since the point cloud holds thousands of points, the
number of edges connecting points will be considerably high, resulting in a
high computational time and resources. Therefore, this method is preceded
by a voxelization step followed by a downsampling phase to preserve specific
points [67].

Features Extraction from LiDAR Data: Features extraction is the fun-
damental phase before applying an object detection method. It enhances the
system’s performance by providing well-defined and easy-to-process features
from the point cloud. There are mainly three classes of features that could be
extracted:

– Local: also known as low-level features, they represent the spatial information
of each point in the point cloud. They are usually extracted at the start of
the model pipeline.

– Global: also named high-level features, they encapsulate the information of
the shape and geometric features between a point and its neighbors; they
could be extracted from a single network or through a combination of net-
works.

– Contextual: these features are the last to be extracted and fed to the model
object detection phase. They represent the combination between the local-
ization features of points and their semantic value.

Many research methods rely on combining multiple feature extractors to
optimize the results of the detection model. There are two different groups of
feature extractors, 3D-based and 2D-based extractors. The earlier extractor is
applied directly to the 3D space, while the latter operates in the 2D planes; each
type has its distinct architectures and application methods.

Object Detection: Object detection is the principal phase of the 3D object
detection process; detection approaches can be classified into five categories
based on (1) the feature extraction pattern, (2) the pipeline architecture of
the detected module, (3) the detection settings of the approach, (4) the object
detection mechanisms, and (5) the type of data used as input, as illustrated in
Fig. 8. This section will present these classifications.

1. Feature extraction patterns: The phase of the feature extraction process dif-
fers from one approach to another. For example, some merge multiple feature
extractors to exploit the advantages of different methods, while others use
a single method that enhances the execution time of the feature extraction
phase. In addition, the architecture of the feature extractor varies from one
to another to extract rich information while maintaining spatial informa-
tion to enhance classification and object localization. When working with a
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Fig. 8. Different classifications of Detection Networks

three-dimensional type of data, the size and shape of objects are constantly
changing depending on the distance between the targeted object and the sen-
sor and the angle of detection; it is necessary to implement networks capable
of extracting multi-scale features. Approaches like [68,69] that operate on 2D
images attempted to achieve this objective by performing object detection
while resizing the input images; but, come with a high computational cost.
More recent approaches [70] tried another method by increasing the layers
of the decoders in the encoder/decoder architecture, which led to generating
feature vectors with multiple resolutions.

2. Pipeline Detector architecture: The object detection solutions generally follow
two different architectures:

– The dual-stage approaches: the detection approaches that follow this
architecture are composed of two networks. The first starts with a pro-
posal generator (e.g., RPN) to create a set of region predictions known as
Intermediate proposals. Then, a second network known as the Prediction
Refinement Network is used to optimize the localization accuracy of the
detected objects that takes as inputs the generated proposals and the
original point coordinates features.

– The Single-Stage approaches: these approaches combine the classification
and bounding box proposals into a collection of connected layers. They
directly apply object classification and generate final bounding box esti-
mations for each part of the feature maps without the need to use the
bounding box refinement phase.

Compared with the dual-stage approach, the single-stage is usually more
time-efficient, making it more suitable for real-time object detection applica-



20 M. Guinoubi

tions. In contrast, the first approach can achieve more sophisticated precision
results.

3. Detection settings: For the point cloud data type, the process of detecting
object location can be achieved using two approaches:

– Rectangular-shaped cuboids (also known as the bounding box level local-
ization): This concept revolves around drawing tight bounding box pre-
dictions around the detected objects to locate them. There are various
methods applied to draw and optimize the bounding boxes. The most
used one starts by pre-defining the size of the bounding boxes in the
proposal regions step, then improving them by modifying their sizes and
orientations.

– Segmentation masks (also known as mask-level localizations): This con-
cept utilizes point-based data representation to learn and classify each
point as a foreground or a background point. Instead of a cuboid bound-
ing box, this approach uses pixel-based masks to segment the objects. In
addition, these masks are usually modified to regress bounding boxes.

For the first approach, during the training phase of the model, the encoder
networks utilize the feature vectors generated by the feature extraction phase
and the annotation files that store the dimensions of the bounding boxes.
The training step of the second phase uses the point-based features extracted
from the ground truth segmentation masks provided by the datasets. Finally,
the IoU mechanism is used between the bounding boxes generated by the
model and the ground truth provided by the dataset to evaluate the detector’s
performance.

4. Detection Mechanisms: The object detection approaches can be divided into
four main techniques based on the methods used to generate the region pro-
posals, and they are described in the following:

– Region proposal method Several examples and variations of the Region
Proposal Method were developed in the literature, and the goal with each
one was to enhance the results of the one before.

– Sliding Window Method: The first step of the sliding window detector is
to apply a CNN on the training set that contains cropped and labeled
objects; it generates a model that can identify the required objects. Next,
the same CNN is used to classify the objects inside the image by receiving
multiple parts cropped with a square-shaped frame known as a “Window”
that scans the entire image with a constant stride. Finally, this step is
repeated with different window sizes to find the most acceptable result
[71]. The main disadvantage of this method is the high inference time
when applied to point clouds because of the sparseness of the points.

– Anchorless Detectors: The anchorless method avoids using many
3D anchors; instead, it follows the binary (foreground/background)
segmentation-based detection settings, allowing models to be more mem-
ory efficient with lower computational cost. However, compared to the
region proposal frameworks, the accuracy of these detectors is lower when
detecting large objects (e.g., trucks, cars) and higher for small ones (e.g.,
cyclists, pedestrians).
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– Hybrid Detectors: STD [57] is the general dual-stage approach that com-
bines anchors and segmentation to generate region proposals.

5. Input Data Type: When it comes to the input data utilized in detection
models, there are notably two different approaches; either base the solution
only on LiDAR point clouds as the primary source of data or merge it with
images collected by RGB cameras.

– Various approaches rely on the first method because of the rich geometric
information the LiDAR sensor provides. The LiDAR point clouds could
transformed into BEVs by omitting the height value of the Z-axis; then
applying on them 2D object detection mechanisms used for RGB images.
Some models [63] process the point clouds under the structure of 3D
voxels or pillar representations are usually more expensive in terms of
hardware and time. Finally, other approaches operate directly on the raw
point cloud data as it is [56,57].

– The approaches [72–74] based on both sensing technologies detect objects
in more complex scenarios like small and distant objects, which is impossi-
ble using only LiDAR sensors. The main advantage of using RGB cameras
is the generation of dense pixel images over a significant distance (depend-
ing on the camera’s performance). Still, it doesn’t give any information
about objects’ depth (the distance). Combining the two data types allows
taking advantage of the densely pixelated images generated by RGB cam-
eras and the accurate depth provided by LiDAR.
The usage of two different types of data will improve the accuracy of the
models in the majority of cases, but it comes with many disadvantages:

• Models require precise calibration and synchronization between the
LiDAR and the camera sensors, which makes the accuracy of the
solution extremely dependent on any changes to the sensor position
or view angle.

• These fusion solutions are usually slower than the LiDAR-only solu-
tions due to the large number of images to be processed, the usage of
dual-stage architectures, and the deployment of RPNs for bounding
box generation.

• These solutions are so dependent on the detection performance of
the 2D object detectors, and they are not capable of using the 3D
information to enhance the accuracy of the bounding boxes.

• The approaches relying on extracting and combining the features of
multiple views (e.g., MV3D) face the problem of information loss due
to the inconsistency of the feature sizes across the BEV projection,
the front view projection, and the camera image. Thus, they need to
normalize their sizes, which affects the detection performance.

3.2 Challenges

The perception system requires a single or a group of LiDAR sensors that period-
ically scan and collect the three-dimensional space around it and store it in point
cloud files [8]. Next, it extracts important information and classifies the data by
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their semantic meaning. The LiDAR technology provides 3D point clouds that
represent the scenes around the object holding the sensor. However, some factors
make this task of perception extremely challenging like:

– The vast diversity of environments changes each second, including the state
of the weather. It has been proven in different studies [75–77]that fog and
rain can negatively influence the performance of the LiDAR sensor, but the
LiDAR could still generated results better than other sensing technologies
(e.g. RADAR).

– Objects could be obscure partially or entirely by other objects or parts of
other objects.

– The input shape and size of an object detected by a LiDAR sensor depends
on the distance and angle from which the object was detected. As a result,
the same entity can have different shapes and sizes, creating confusion when
classifying the object.

– The performance of the LiDAR sensor is dependent on the entire driving
domain.

All the factors mentioned above hinder the quality of service that LiDAR
can deliver; therefore, multiple approaches have combined LiDAR with different
sensing technologies like RGB cameras [78] and stereo cameras [79], RADAR
[80], and ultrasonic sensors [81]. The combination of the LiDAR sensor and
monocular cameras is considered the most adopted method of multi-sensing
architecture because of the LiDAR’s capability to provide depth information.
In contrast, cameras collect information richer in texture [8,53,82,83].

Besides, object detection is an essential step for the autonomous vehicle pro-
cess. It relies on the data collected from a LiDAR or a LiDAR and RGB cam-
eras and a machine-learning algorithm to create prediction models or enhance
the performance of older versions. However, although LiDAR sensors provide
high-resolution three-dimensional maps under various lighting conditions; the
recourse to these sensors raises new challenges:

– The data generated by LiDAR sensors are sparse and unstructured.
– The volume of the point clouds is large, and their processing requires powerful

types of equipment since the features extraction and the object detection steps
are expected to be performed in real-time.

– The processing units are resource-constrained since vehicles are equipped with
a limited source of energy (the battery of the vehicle); thus, the use of efficient
computational models to process the point clouds is required.

1. The data generated by LiDAR sensors are sparse and unstructured. 2. The
volume of the point clouds is significant, and their processing requires power-
ful equipment since feature extraction, and object detection steps are expected
to be performed in real-time. 3. The processing units are resource-constrained
since vehicles are equipped with a limited energy source (for electric cars); thus,
efficient computational models are required to process the point clouds .
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4 Conclusion

In this paper, we presented the LiDAR technology, including its functioning
mechanism, types, its various application in different fields. We also tried to
sum up the main feature that could be extracted from the LiDAR point clouds,
and the feature extractors used on this type of data. Our work can still be
improved by presenting the different 3D detection methods used by different
LiDAR models.
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