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Preface

This volume contains the proceedings of the fourthWorkshop onDistributed Computing
for Emerging Smart Networks (DiCES-N 2023). The workshop was held on May 27,
2023, inBizerte, Tunisia.We received a total of 13 submissions, ofwhich 6were accepted
for publication, and an invited paper. The acceptance rate was therefore approximately
46,15%. Reviewing was single-blind, where each paper was assigned to at least three
reviewers.

The smart city concept has been embraced by several cities around the world, such
as Singapore, Zurich, New York, Oslo, London, Nice, and other cities in the European
Union; more and more cities are being added to this list. These various smart city ini-
tiatives have different objectives, such as achieving an acceptable standard of living
for its citizens, raising productivity, and boosting the country’s economy or optimizing
the use of natural resources. These objectives revolve around smart cities’ key appli-
cations, mainly smart people, smart governance, smart living, smart economy, smart
environment, and smart mobility. In this context, intelligent transport systems (ITS)
have benefited from recent advances in different fields and are attracting increasing
interest from industry and academia. The first initiatives have started with VANETs1.
Improving road safety was the main goal of VANETs; this networking paradigm allows
communication among vehicles equipped with OBU2 and roadside units (RSUs) placed
along the roads to exchange information about road status, vehicle speed, vehicle posi-
tion, etc. The advent of the Internet of Things (IoT) and recent technological advances
have enabled the proliferation of new applications and innovative services emphasizing
entertainment features. These novel advertising services come with diverse demands in
terms of throughput, latency, jitter, and so forth; they also bring new QoS3 and security
challenges.

The workshop tackled issues relative to the design, development, and evaluation
of distributed systems, platforms, and architectures for Cyber Physical Systems in the
context of smart cities. The program included two sessions.

Session 1 was dedicated to Vehicular Networks and emerging technologies. Through
the deployment of Intelligent Transport Systems (ITS), the authorities aim to provide
efficient solutions to road traffic issues: traffic jams and road accidents due to human
errors, mainly speeding, disobeying traffic laws, driving under the influence of alcohol
or other substances, or distracted driving. To control road traffic, some fixed sensors can
be placed along the road, such as loop detectors or sensors to inspect vehicle speed, or
visual traffic surveillance systems can be used to gather high-quality video sequences in
real time to detect congestion or identify misbehaviour.Moreover, the constant evolution
of the transportation industry has also brought many improvements to modern vehicles
in order to ensure road safety and provide a better experience to drivers and passengers;

1 VANETs: Vehicular ad hoc networks.
2 OBU: On Board Unit.
3 QoS: Quality of Service.
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modern vehicles are now equipped with multiple sensors deployed inside and outside
the vehicle to add an extra layer of safety, such as Ultrasonic sensors, RADAR, GPS4,
gyroscopes, accelerometer sensors, and LiDAR sensors; LiDAR technology, being used
as an in-vehicle or in-road sensor to detect and measure the distance of objects and
generate very high-resolution three-dimensional maps, is introduced in this section.
LiDAR technology is a valuable safetymechanism formany vehicular field applications,
as it offers an extensive scanning range and accurate identification and classification of
objects in the presence or absence of light. Combined with other sensors, a powerful
detection system is provided to scan the environment around amoving vehicle and detect
obstacles in its path. Indeed, all these different types of sensors gather real-time data
about the vehicle’s status or its surrounding environment to provide new functionalities
and ensure vehicle safety. This huge volume of data being collected in real time thanks
to internal or external sensors can now be also exploited to ensure the prediction of the
network state in the short and long term by applying emerging technologies, such as
machine learning and deep learning. The deployment of such techniques in the smart
parking application is discussed in this section.With the improvement of living standards
and the steady expansion of urban areas, the number of vehicles continues to grow,
leading to congestion and crowding on the streets; it becomes increasingly difficult to
find a free parking space, especially during peak hours. Therefore, every driver canwaste
a huge amount of time driving around the streets or visiting different parking lots to look
for a vacant space. Besides, generated traffic jams and road accidents negatively affect
urbanmobility, the lives of citizens, aswell as the economybyblocking access to business
districts and large commercial centres or by forcing drivers to park in remote areas, which
discourages them from travelling to these destinations. Having an intelligent parking
system that can predict free parking spaces is an attractive and efficient solution that could
save us this daily time wasted.We can rely on the internet of things, artificial intelligence
and/or multi-agent systems to automate the parking process and consider several factors
such as the driver’s current location, his intended destination, the travel time, the cruising
time, and the parking cost to reserve vacant places in parking lots and guide drivers to the
selected parking lot. The use of such a smart parking system could significantly improve
the driver’s experience and help stakeholders to take measures to better manage urban
mobility and reduce its negative impacts onmodern society and the environment, mainly
air pollution from idling vehicles and CO25 emissions, increased noise, and induced
health problems. In fact, nowadays, people are seeking new alternative solutions such
as micro-mobility, discussed as the second smart mobility application in this section.
Micro-mobility offers a variety of small and lightweight vehicles suitable for trips of less
than five miles and more and more persons are using this type of transportation for their
daily trip towork or school or for leisure. To copewith this new popular perception,many
operators offer rental services for these new transportation modes; their environmental
friendliness and ability to relieve traffic congestion and parking demand in urban areas
and reduce carbon emissions have promoted the use of shared micro-mobility services
such as electric scooters, bikes, and motorcycles. However, this rising new market still
faces some challenges related tomaintenance difficulties, vandalism diminishing vehicle

4 GPS: Global Positioning System.
5 CO2: Carbon Dioxide.
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life span, infrastructure regulation and safety issues. Fleet maldistribution is also one of
the main micro-mobility problems. In fact, each operator provides a specific operating
mode for the parking procedure: (i) a dock-based system forcing the user to park at
the nearest station to their intended destination or (ii) a free-floating system, which
authorizes users to park the fleet freely in the service area. The first mode facilitates the
management of micro-vehicles, but it imposes some restrictions on the user. The second
mode makes the rental procedure more convenient and easier and offers more freedom
to the user; however, it can lead to an unbalanced system since the parking system is not
controlled. This fleet maldistribution problem has a negative impact on the operator’s
revenue and on the quality of the user experience. The unavailability of micro-devices at
a given time or in some specific areas causes user dissatisfaction, since he must travel to
fetch amicro-vehicle. In this context,micro-mobility operatorsmust implement effective
strategies to enhance the services and the overall user experience. To be able to measure,
track, and manage fleets remotely, operators generally rely on cellular communications
and the information provided through the operator’s application. Besides, every device
is equipped with a growing array of sensors able to gather real-time data about the device
and its environment. This collected data from the shared micro-mobility system, such
as trip data, locations, battery status, and traffic data, can be processed and analyzed
to optimize fleet placement and reduce maintenance costs, while data provided by the
vehicle sensors or traffic data can be useful to identify collision risks and improve user
safety.

Session 2 focused on the Safety and Security of intelligent transportation systems.
Recent advances associatedwith autonomous vehicles (AVs) promise to provide comfort
and more safety by partially or fully replacing the human driver in the task of driving
while avoiding road hazards and adjusting to traffic conditions and traffic signals. To
enable such functional behaviour, these vehicles must be equipped with a combina-
tion of advanced sensor technology and dotted with on-board and remote processing
capabilities. Besides this smartness, they must be totally connected with the rest of the
world through a variety of wireless communication technologies. To be operational,
such a vehicle must be continuously fed with real-time data about its status, its sur-
roundings, and other relevant information (weather, etc.); this data is processed locally
or remotely, raising new security challenges. Indeed, these vehicles, with their inter-
connected components and heavy reliance on digital infrastructure, create a complex
environment potentially sensitive to various types of cyberattacks. For example, hackers
may be able to remotely access and infiltrate on-board systems and networks; they may
exploit system vulnerabilities. For this reason, it is imperative to identify vulnerabilities
and weaknesses early, during the development phase. Proactive detection of potential
security flaws will allow developers to implement the necessary countermeasures to
mitigate risks before autonomous vehicles are deployed on public roads. Such a critical
phase requires comprehensive understanding of the vehicle’s architecture, communica-
tion protocols, and software systems, as well as the ability to anticipate potential threats
and attack vectors. Subsequently, it is necessary to effectively assess and quantify the
precise degree of vulnerability of an existing system when exposed to attacks thanks to a
variety of methodologies and tools, such as penetration testing, vulnerability scanning,
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and threat modelling. The first topic, discussed in this section, is related to threat mod-
elling; it exploits UML6 modelling and a model checker-based approach. It presents a
framework which automatically identifies potential threats and generates secure imple-
mentation solutions. In addition, a real deployment of connected and autonomous cars
underlines the need also to intensify efforts to secure communications between vehicles.
Platooning, tackled in this section, is another ITS application relying on self-driving
and V2V7 communication between the different members of the platoon. A platoon is
designed primarily for freight transport to allow long-distance trucks to travel together
more efficiently; this convoy of vehicles travels in a closely spaced group (platoon) with
automated speed and steering control, thereby reducing air drag and improving fuel
economy and safety. The platoon leader is responsible for keeping the whole platoon
stable by specifying the appropriate speed, the distance between vehicles, and the rele-
vant direction to be followed; this information is communicated to all followers, called
members. He also coordinates the various maneuvers like join, leave, split, and dissolve;
the joining maneuver, allowing new trucks to be added to the platoon, is one of the most
critical operations, as any interference caused by nearby vehicles can delay the suc-
cessful execution of the maneuver or enable an intruder to be inserted into the platoon,
endangering the safety of the whole group. It is imperative to detect these intrusions
promptly and to take the appropriate measures.

The last topic focused on accidents at level crossings (LC), which have attracted
considerable attention in recent years and cause dramatic material and human damage.
Indeed, an LC is an intersection where a railway line intersects with a road or path at
the same level. Most accidents occur at passive level crossings. Indeed, active warning
devices are effective in avoiding accidents due to road user errors, such as inattention, or
insufficient visibility. In this context, ITS can rely on new technologies, affordable now,
to enhance road safety and reduce the risk of accidents. Equipping passive level crossings
with appropriate sensors that can detect the arrival of trains and with warning devices
would increase safety; Vehicle-to-Everything (V2X) communications can be exploited
to give rail and road users real-time traffic information and to ensure alert dissemination
when dangerous circumstances are identified. For such complex and critical systems, it
is imperative to ensure that they behave correctly in all possible situations to guarantee
their safety and the users’ safety. Formal methods can be of great help for the designer
to evaluate the behaviour of a system and avoid errors before its implementation.

We are grateful for the support provided by the many people who contributed to the
success of DiCES-N 2023. Naturally, the workshop could not take place without the
efforts made by the Organizing Committee who helped us to organize and publicize the
event, particularly the Technical Program Committee (Sabra Mabrouk and Leo Mendi-
boure), the local organizers (Emna Ben Salem and Soumaya Dahi) and the publicity
chair (Zeineb El Khalfi).

We are also thankful to the members of the Program Committee for providing their
valuable time and helping us to review the received papers. We would also like to thank
the authors for submitting and then revising a set of high-quality papers. Finally, we

6 UML: Unified Modeling Language.
7 V2V: Vehicle to Vehicle.
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express our sincere gratitude to Springer for giving us the opportunity to publish in
CCIS and we appreciate the support and advice provided by the editorial team.

May 2023 Imen Jemili
Mohamed Mosbah

Sabra Mabrouk
Leo Mendiboure
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Survey on Lidar Sensing Technology
for Vehicular Networks

Mouaouia Guinoubi(B)

University of Carthage, Tunis, Tunisia

mouawiya93@gmail.com

Abstract. Object detection systems are the principal pillar in various
safety applications in the transportation field; various sensors can be
deployed to detect and track moving objects and obstacles. In this con-
text, LiDAR technology has shown its effectiveness. In this work, we
survey LiDAR technology focusing on its functioning, sensor types and
application fields. In particular, we point out its use in the vehicular field
and outline the different steps followed by LiDAR-based object detection
approaches.

Keywords: LiDAR · Vehicular networks · Feature extraction · Object
detection

1 Introduction

The transportation industry is constantly evolving to improve the driver and pas-
senger experience and road safety. Modern vehicles are equipped with innovative
features such as route guidance systems (e.g., automatic emergency braking,
adaptive cruise control, lane departure warning, speed assistance monitoring,
etc.), fatigue detection [1], voice control, etc. Along with population growth,
these enhancements have increased the demand for vehicles, resulting in road
congestion and higher accident rates. According to the World Health Organiza-
tion [2], about 1.3 million people die each year because of road accidents caused
by human errors, including speeding, disobeying traffic laws, driving under alco-
hol or other substances, or distracted driving.

To lower the high rate of accidents, scientists needed to find a method to
reduce the risk of human errors while driving; for this reason, multiple sensors
can be deployed inside and outside the vehicle to add an extra layer of safety.
Some essential sensors are placed on the engine to inform the driver of the state
of brakes, engine temperate, engine oil level, etc. Nowadays, there are new 2D
and 3D sensing technologies deployed inside the car that enable the drivers to
adjust different equipments of the vehicle without looking away from the road
using simple hand gestures. For example, a touch screen that is used to adjust
the air conditioner and the side windows, a camera installed on the steering
wheel that detects specific gestures of the driver in order to answer phone calls
or skip songs. In addition, a camera attached to the reverse mirror monitors the
driver’s state and sees any signs of tiredness on his face. Concerning the sensors
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
I. Jemili et al. (Eds.): DiCES-N 2023, CCIS 2041, pp. 3–27, 2024.
https://doi.org/10.1007/978-3-031-52823-1_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52823-1_1&domain=pdf
https://doi.org/10.1007/978-3-031-52823-1_1
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used outside the car, in 2000, Nissan’s Infiniti luxury division added cameras
in the rear of the vehicles that broadcast live video to the drivers to help them
view the area behind the car while reversing [3]. In 2003, Toyota launched the
Intelligent Parking Assist option in cars by installing ICS1 sensors on the front
and rear bumpers of the vehicle to parallel driverless parking [4]. In 2014, Elon
Musk was the first to introduce the self-driving car with the Model S, using
many sensors all around the car, from short-range to long-range cameras to
Radars and ultrasonic sensors. In 2020, Waymo manufactured a self-driving taxi
for public use and it implemented the LiDAR Technology as primary sensing
method [5]. These new services are allowed thanks to embedded sensors such as
GPS2 sensors, ultrasonic sensors, cameras, motion sensors, etc.

This work focuses on a new type of sensing technology used for object detec-
tion methods known as LiDAR (LiDAR: Light Detection and Ranging). It uses
laser beams to generate three-dimensional maps of the vehicle’s surrounding
environment. It has been adopted as a reliable sensing technology by multiple
companies like Waymo, Tesla, and Cruise. LiDAR sensing technology is becom-
ing a more and more stable and reliable method for mainly autonomous vehicles.
Many surveys have introduced LiDAR technology [6–8]. Other surveys like [6]
and [7] focused on the sensing mechanism of the LiDAR sensor and the way it
functions, while [8] gave a detailed taxonomy to the 3D object detection methods
that are based on LiDAR sensing data. In this survey, we will focus on the use
of LiDAR technology, mainly in the vehicular field.

In this paper, we presented a survey of a LiDAR sensing technology. We
included a general introduction to the LiDAR sensing system and its differ-
ent fields of application while focusing on the vehicular field. In addition, we
gave a brief comparison between this technology and other sensing technologies
and presented its main advantages and disadvantages. Finally, we presented the
different step of object detection process using this LiDAR technology and its
different methods of application.

The rest of the paper is organized as follows. In Sect. 2, we briefly introduce
the LiDAR technology, explaining its operating mode and range of applications.
Section 3 focuses on LiDAR technology in the vehicular field. In Sect. 4, we con-
clude our paper.

2 LiDAR Technology

In the context of smart mobility, different types of sensors can be deployed to pro-
vide new functionalities and in particular to ensure vehicle safety, as mentioned
in [9]; the authors classified employed sensors into two categories: (i) in-vehicle
sensors including Ultrasonic sensors, RADAR, GPS, Gyro-scope, accelerometer
sensors, and LiDAR sensor; (ii) and in-road sensors such as pneumatic road tube,
inductive loop detector, magnetic sensors, piezoelectric, infra-red sensor, acous-
tic array sensors, radio-frequency identification, and LiDAR sensor. Each sensing
technology has its advantages and disadvantages; in Table 1, we summarize the
most used ones.
1 ICS: Intelligent Clearance Sonar.
2 GPS:Global Positioning System.
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Table 1. Sensing technologies.

Sensor Advantages Disadvantages Applications

RGB cameras – Provide dense pixel image

– Low price with decent

data

– Provide no information

concerning the depth of

objects

– Sensitive in poorly lit, and

highly occluded

environments and bad

weather

In-vehicle sensors:

– Monitor the surroundings

of the vehicle and broadcast

it to the driver

– Monitor the driver health

state (fatigue) for emergency

alerts

– Detect the face of a person

in the case of a stolen car

– Autonomous driving

In-Road sensors:

– Monitor the traffic

– Detect violations of road

code

– Detect researched cars

Stereo cameras – Provide dense pixel image

– Provide depth information

for objects

– Low price compared to

LiDAR with decent data

– Sensitive in bad weather

conditions, poorly lit and

highly occluded environ-

ments

– More expensive than RGB

cameras

– Depth error increases expo-

nentially based on the dis-

tance

– Provide data that demand

more computational power

In-vehicle sensors:

– Obstacle detection

– Road surface scanning

In-Road sensors:

– Application to inspect the

state of the road

RADAR – Low price

– Wireless technology

– Capable of detecting the

speed of an object

– Wide range field of view

– Able to collect data in

harsh weather conditions

– The single can go through

insulators

– Low-resolution depth maps

– short-range field of view

– Can’t provide the color of

the object

– Sensitive to radio frequen-

cies

– Fail to differentiate

between multiple objects

In-vehicle sensors:

– Used for collision avoid-

ance

– Safety applications (occu-

pant detection)

In-Road sensors:

– Speed measurement

– Detection of the direction

of movement of the vehicle

Ultrasonic sensors – Low price

– Not affected by luminosity

– Low-resolution depth maps

– A small field of view

– Mediocre accuracy (unable

to differentiate between

small and big objects)

– Can be affected by loud

noises

In-vehicle sensors:

– Parking applications

– Warning applications

– Autonomous driving

– Used for traffic congestion

detection

In-Road sensors:

– Traffic measurement

– Vehicle detection

– Highway Vehicle Violation

Detection

LiDAR – Not affected by the lighting

condition of the environment

– Accurate, quick, and

High-resolution depth maps

over long distances (longer

than the Radar and stereo

cameras)

– High cost for high-end sen-

sors

– Low resolution for low-end

sensors

– Occlusion problem

– Sensitive in foggy weather

– The data generated is usu-

ally sparse and take time to

process

– Can’t provide information

about the texture of the

objects

In-vehicle sensors:

– Parking applications

– Warning applications

– Autonomous driving

– Used for traffic congestion

detection

– Monitor the state of the

railroad

In-Road sensors:

– Traffic measurement

– Vehicle detection

– Train arrival detection

– Autonomous driving
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As shown in Table 1, several sensors could be deployed to ensure the safety
of the roads, for example, RGB cameras can be placed on the roadsides to
detect vehicles, congested points of traffic, and even license plates of cars in case
of road violation. RADAR sensors can be used to detect the speed of moving
vehicles, while ultrasonic sensors are wildly used for parking assistant systems.
In addition to the services mentioned above, these sensors can also be combined
into a detection system to scan the environment around a moving vehicle and
detect obstacles in its path. In this work, we will focus on LiDAR technology,
as it provides high spatial resolutions range information, useful for many road
safety applications such as ADAS (Advanced Driver Assistance Systems) [10],
inspecting of railroad infrastructure [11,12], and inspecting the road pavement
condition [13].

In this section, we first explain how LiDAR technology works, then we enu-
merate the different types of LiDAR sensors and their respective fields of appli-
cation.

2.1 LiDAR Scanning

a. LiDAR System Components: LiDAR is part of the Optical Wireless
communication (OCW) technologies used to generate very high-resolution three-
dimensional maps. The LiDAR technology is considered an active remote sensing
system because it generates beams of light (ultraviolet, visible, or near-infrared)
to detect and measure the distance of objects and generate very high-resolution
three-dimensional maps called point clouds. Every LiDAR system is composed
of three essential elements:

� The LiDAR sensor: These pieces of equipment come in different shapes
and sizes, but most of them have a general component structure, as illustrated
in Fig. 1:

• The Transmitter: it represents the light source (e.g., laser, LED3, or
VCSL4 diode) that generates and emits, in pulses, laser beams from the
sensor to the objects.

• Scanner and optics: a combination of plane mirrors, a polygon mirror,
and a dual-axis scanner are used to adjust the angle and range of the
detected laser beams.

• Photodetector: also known as receiver electronics or photodiode, is the
light sensor responsible for collecting the laser beams reflected off the
objects and converting them into an electrical signal. There are two prin-
cipal photodetector technologies used in LiDAR: solid-state electronics
(e.g., photodiodes) and Photomultiplier.

3 LED:Light Emitting Diode.
4 VCSL: Vertical Cavity Surface-emitting Laser.
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� Position and navigation systems: it includes a GPS receiver and IMU5,
usually needed when the sensor is attached to a moving platform (car, air-
planes, satellites, etc.) to identify the location and orientation of the LiDAR
sensor in the X, Y, Z space, alongside the characteristics of the objects like
the distance, size, and shape.
� A computer and software: they are used to correlate all the information
from the LiDAR sensor and the navigation system and generate the point
clouds.

Fig. 1. General representation of a LiDAR sensor [6]

b. LiDAR Functioning: The LiDAR technology is like RADAR because both
sensors generate and send out multiple waves of energy that travel from the
Transmitter to the objects around them. Then, based on the time-of-flight prin-
ciple as exposed in Fig. 2, they measure the distance separating them from the
things; the used equation is:

D = c ∗ t

2
(1)

where:

t: represents the time of flight
c: is the constant value of the speed of light

The main difference between both technologies is that RADAR uses radio
waves while LiDAR uses light waves. Part of this transmitted signal is reflected
from the objects and collected by the receiver component of the LiDAR sensor.
This reflected energy, known as the Intensity, is collected by the receiver compo-
nent of the LiDAR sensor and processed by the Global Positioning System and
the Internal Measurement Unit to determine calculate multiple objectives like
the location and orientation of the LiDAR sensor in the X, Y, Z space, along-
side the characteristics of the objects surrounding it like the distance, size, and
shape.

5 IMU: Inertial Measurement Unit.
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Fig. 2. Time-of-flight principle

c. LiDAR Data: The LiDAR sensor collects the laser beams reflected from the
objects, then processes and stores them in files called point clouds that contain
information on a significant number of 3D elevation points in a matrix form.

The main four characteristics of each LiDAR point are the three-dimensional
coordinates x, y, and z and the Intensity value that represents the strength of
the returned laser pulse in addition to other optional pieces of information that
are generated by specific sensors:

– Point classification: each point will be given a class that defines the object
it is reflected. American Society for Photogrammetry and Remote Sensing
(ASPRS) defines these classifications. For example, as shown in Table 2, a
point cloud is given one of the twenty classes.

– RGB: some sensors can assign a color to each point of the points cloud based
on the intensity of the returned laser beams (points with higher Intensity
have warmer tone colors).

– GPS time: this attribute is usually assigned when using a mobile LiDAR
sensor (e.g., attached to a moving vehicle) to stamp when the laser beam was
emitted from the sensor.

The generated point clouds are stored in files under hundreds of file formats,
depending on the LiDAR sensor deployed to scan the area. Still, the majority
fall under the ASCII6 and Binary format.

The first type uses text to encode information, making it easier to read by
text editors and other applications (e.g., Microsoft Excel) and optimal for long-
term archiving. However, these files take longer to process and to read line by
line and are more significant than binary files. This format’s most used file types
are XYZ, OBJ, PTX, and ASC. The latter format is more compact and can

6 ASCII: American Standard Code for Information Interchange.
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Table 2. Classification value and meaning for LiDAR points [?]

Classification value Meaning

0 Never classified

1 Unassigned

2 Ground

3 Low Vegetation

4 Medium Vegetation

5 High Vegetation

6 Building

7 Low Point

8 Reserved

9 Water

10 Rail

11 Road Surface

12 Reserved

13 Wire - Guard (Shield)

14 Wire - Conductor (Phase)

15 Transmission Tower

16 Wire-Structure Connector (Insulator)

17 Bridge Deck

18 High Noise

19–63 Reserved

64–255 User Definable

store and transmit more information than the ASCII format; it allows faster
processing and viewing of files. Its main drawback is that simple text editors
cannot read it. FLS, PCD7 and LAS, are some of the most popular point cloud
binary formats.

Other files can store ASCII and binary forms like PLY, FBX, and E57, taking
advantage of both formats. However, since both of these formats have their
properties, it is not advised to convert binary format to ASCII because it could
degrade the value of information.

There is a wide variety of software capable of processing LiDAR point clouds,
depending on the format of the files. Open-source software provides a lim-
ited number of services; mainly they are used to visualize and display point
clouds (e.g., QCIS3 [14], Whitebox GAT [15], Fugro Viewer [16], SAGA GIS
[17], GRASS GIS [18], Meshlab [19], CloudCompare [20], etc.). Desktop software
offers more services and options in addition to the free viewing mode (e.g., Faro
Scene [21], Leica Cyclone [22], Trimble Real works [23], Bentley Pointools [24],

7 PCD: Point Cloud Data.
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PointCab [25], Point Fuse [26], EdgeWise [27], Capturing Reality [28], Autodesk
ReCap [29], etc.). Table 3 exposes examples of point cloud software and the file
formats they can import and export.

Table 3. Point cloud Softwares import and export format

Software Bentley Pointools Capturing Reality Leica Cyclone Faro Scene Trimble Real
works

Autodesk
ReCap

Import format POD, OBJ, SHP, DXF,
DWG, ESRI, E57, ZFS, LAZ,
LAS, FLS, FWS, XYZ, PTS,
PTX, PTZ, TXT, LWO

PTX, E57 XYZ, PTS, PTX,
LAS, E57, ZFS,
DP

XYZ, CVS, COR XYZ, E57, LAS,
LAZ, ZFS, RSP,
FLS, DP, PTX,
PTS

ASC, CL3,
CLR, E57,
FLS, FWS,
ISPROJ, LAS,
PCG, PTG,
PTS, PTX,
RDS, TXT,
XYB, XYZ,
ZFS, ZFPRJ,
DXF, DWG

Export format POD, PTS, XYZ OBJ, PLY, XYZ, DSM XYZ, PTS,
PTX, E57, DXF,
PCI/CWF, DBX,
Land XML

PTC, PTX,
PST, XYZ, DXF,
IGES, VRML,
E57

E57, ASC, LAS
1.2, LAS 1.4,
LAZ, POD, PTS,
PTX, TZF, BSF

RCS, RCP,
PCG, PTS,
E57, DXF,
DWG

Although the LiDAR data is relatively new, it is available for researchers
and scientists to download and experiment with through different websites like
Open Topography [30], USGS Earth Explorer [31], NOAA Digital Coast [32], and
National Ecological Observatory Network [33]. These websites provide a fixed-
point view of LiDAR data irrelevant in the case of model training and machine
learning. In addition, different companies offer free datasets for scientists to apply
and create new machine learning models like Waymo [5], Kitti dataset [34], and
Ouster which alongside its data, it provides unique software used to display and
manipulate the information.

2.2 LiDAR Types

Generally, there are two different types of LiDAR application, airborne and ter-
restrial. Each type requires LiDAR sensors with specific characteristics related to
the application objective, the diameter of the area to be scanned, the maximum
range of the laser beam needed, and the cost of the sensor.

a. Airborne LiDAR: The airborne LiDAR is an acquisition method that
involves attaching the LiDAR sensor to a flying airplane, a helicopter, or a drone
to create a top viewpoint cloud over large areas, as shown in Fig. 3.

This system comprises three main elements:

– The LiDAR scanner
– A GPS device that detects the position of the aircraft holding the scanner
– The IMU is responsible for processing the LiDAR data, generating the point

cloud, and recording the airplane’s altitude.
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Fig. 3. Example of airborne LiDAR scanning method [35]

The aircraft’s height affects the accuracy and density of the point clouds
generated by this method. The longer the distance between the airplane and the
ground, the lower quality of the data. Compared with the traditional methods,
using high-quality RGB cameras to capture top view images, it is possible to
filter the vegetation from the point clouds captured by the airborne LiDAR
sensors, leaving only the relevant ground surfaces, as shown in Fig. 4.

Fig. 4. Comparison between LiDAR sensing and photogrammetry [36]

The sensors used for these situations are divided into topographic and
Bathymetric sensors. Both sensors operate under the same concept, but the
main difference is the LiDAR scanners’ capabilities. Topographic scanners
used to be mounted on airplanes because of their significant sizes (e.g., Leica
TerrainMapper-2, Leica SPL100, RIEGL VQ-880-G, Galaxy T2000, ALTM
Galaxy, Trimble AX60i, Trimble AX80), but more companies started manu-
facturing more compacted sensors that produce inferior but acceptable results.
Hence, attaching them to small drones (e.g., DJI M600 Pro LiDAR quadcopter,
Draganflyer Commander, Riegl RiCopter Lidar UAV) became possible. This
method generates a colored point cloud for above-land surfaces like railroads,
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highways, and infrastructures while avoiding the potential terrestrial obstacles
that could slow down the process or affect the final result of the captured point
cloud. Bathymetric LiDAR sensors are physically more significant, more power-
ful, and require a vital energy source to function. They are usually mounted on
airplanes and used to measure the depth of lakes, seas, and oceans or to locate
objects underwater and map out the structure of the land under sea level.

b. Terrestrial LiDAR: Terrestrial LiDAR sensors are installed at the ground
level and classified into Mobile and Static sensors. With the mobile LiDAR, it is
possible to use more than one laser scanner mounted on a moving vehicle (e.g.,
cars, trains, boats, and vans) to generate dense point clouds along the vehicle’s
trajectory. Similar to the airborne LiDAR, mobile sensors (e.g., Topcon IP-S3,
Ultra Puck, Alpha Prime, HDL-32E, MRS1000, MRS6000, Valeo Scala, Ouster
OS0, OS1, OS2, ES2) are usually equipped with a GPS to detect the location
of the vehicle, and an IMU to process the data coming from the LiDAR sensor
and the navigation system.

Static sensors, also known as stationary terrestrial sensors (e.g., Faro Focus
3Dx130, Leica C10, Riegl VZ series, Topcon GLS 1500), are commonly used for
surveying purposes. They are placed on a fixated tripod at a strategic location
to create three-dimensional maps of a specific region from a particular angle.
Compared to the traditional methods, static LiDAR sensors can scan in every
direction, including upwards and they can easily be relocated after completing
one scan which makes them fully portable.

2.3 LiDAR Applications

LiDAR was first introduced by Malcolm Stitch in 1961 as a technology for satel-
lite tracking. This technology has evolved over the years, and it is now suc-
cessfully deployed in various application fields that require a technology that
offers an extensive scanning range and accurate identification and classification
of objects in the presence or absence of light:

– Agriculture: The agriculture sector is one of the oldest and longest-existing
markets; it always benefits from new technologies. LiDAR technology is very
useful in this field; it is possible to attach sensors to drones and capture bird’s
eye view maps that are later processed to study the soil and the terrain. Based
on the height level of crops, it is possible to determine the areas with low
productivity that need fertilizers, and damaged crops and products, which
will help the farmer avoid potential financial loss.

– Archaeology: The LiDAR technology has been deployed in the archaeol-
ogy field because it’s a low-cost method that can generate high-resolution
3-dimensional maps of archaeological features like ancient caves, roads,
fences, terraces, and even boundaries hidden by vegetation without dam-
aging them. In 2009, the archaeologist Chris Fisher discovered a great city
of the Purepecha empire that goes back to 1519 [37]; Fisher stated that with
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traditional radar technology, it took them two years to survey only 2 km of
the site, but with the LiDAR technology it took them only 45 min to scan
the entire 13 km surface.

– Forestry: In the forestry field, airborne LiDAR technology has been deployed
to study leaf areas, biomass measurements, and canopy heights and estimate
the biodiversity of plants, animals, and even fungi. For example, in 2020,
LiDAR sensors were used to map the Australian forests that have been dam-
aged by fire and identify the healthy and burned vegetation. Also, the Save the
Redwoods League organization [38] has used LiDAR technology to evaluate
the height of trees and learn about the biodiversity of redwood forests.

– Geology: The point clouds generated by airborne and terrestrial LiDAR have
been used in the geology field to study the surface of the Earth. Such as river
channel banks and terraces, glacial landforms, the texture of the terrains
under the vegetation level, and observing the elevation changes of landscapes
between scanning over a long period. For example, in 2005, the Mont Blanc
massif was the first high alpine mountain to be scanned by LiDAR to detect
rock falls caused by climate changes [39]. In addition, ts technology was com-
bined with GNSS8 to locate the Seattle Fault in Washington [40].

– Atmosphere: There are several applications of LiDAR to the atmosphere.
Studying the atmosphere using laser beams goes back to before the Second
World War in 1930 by Edward Hutchinson Synge, who suggested examin-
ing the upper atmosphere using laser beams. Either terrestrial or airborne
LiDAR could be deployed for atmospheric applications. For example, cloud
classification uses a powerful laser to retrieve cloud tops, aerosol properties
investigated by the EARLINET9 [41], atmospheric gazes measuring (e.g.,
ozone, water vapor), and atmospheric temperature measuring approximately
120 m above ground.

– Law enforcement: LiDAR technology is being used as a speed gun by the
police to detect the speed of vehicles surpassing the speed limit or as a method
that records crime scenes to help with the investigation.

– Military: The most general application of the LiDAR system in the military
sector is developing a counter-land mine method by the Areté Associates [42]
called ALMDS10 [43].

– Mining: The LiDAR technology has been applied in the mining field by attach-
ing sensors on robots that are wirelessly controlled to map the inside of tun-
nels and create three-dimensional point clouds [44]. In general, the airborne
LiDAR method is the most used for the surveillance of mining sites because
of its flexibility against obstacles, and the small size of drones makes them
able to reach small spaces [45].

– Physics and astronomy: The Lunar Orbiter Laser Altimeter (LOLA) is a
Moon orbiting satellite equipped with a powerful LiDAR that measures the
distance between the Earth and the moon’s surface in millimeters, and gener-
ating topographic maps. Similar to the previous example, the Mars Orbiting

8 GNSS: Gobal Navigation Satellite System.
9 EARLINET: European Aerosol Research Lidar Network.

10 ALMDS: Airborne Laser Mine Detection System.
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Laser Altimeter (MOLA) is a Mars-orbiting satellite equipped with a powerful
LiDAR sensor to generate global surveys of the red planet.

– Rbobotics: LiDAR technology has been embedded in robots; through the
generated three-dimensional maps of the environment, it is possible for robots
to precisely detect and calculate the distance of the objects around them and
classify them using machine learning models.

The latest advancement to the LiDAR technology, as of the time this paper
was published, are the development of solid-state LiDAR sensors that uses no
moving parts which makes it smaller, more reliable and less expensive. In addi-
tion, the recent advancement to this technology is called the multi-spectral
LiDAR, which uses multiple wavelengths of light to identify more information
about the environment such as the materials of the objects. Finally, this technol-
ogy is being integrated in different mobile devices like smartphones and tablets,
which allow it to be applied in a wider range of applications (e.g. indoor mapping,
augmented reality).

Some of the main applications that utilize LiDAR are exposed in Fig. 5 with
their respective LiDAR sensors.

Fig. 5. LiDAR technology classification, applications, and sensor examples.

In this paper, we will explore the use of LiDAR on the field of autonomous
driving and the object detection systems when using terrestrial LiDAR sensors.

3 LiDAR Usage in the Vehicular Field

The LiDAR technology is a valuable safety mechanism for other vehicular field
applications:
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– It was used in the railroad field to improve safety by installing a terrestrial
LiDAR at a level crossing point to detect the obstacles and then alert the
train driver [46].

– Monitor the state of the railway tracks by attaching a LiDAR sensor on the
front of the train to detect irregularities [47–49] that need to be fixed to avoid
future accidents.

– Detect objects on the tracks using the airborne LiDAR sensor method [50,51].
– Predict rockfall hazard near railway furthermore.
– Used in the domain of VANets as a solution to ensure secure authentication

between vehicles [52].

Still, the autonomous vehicle field remains the field that utilizes LiDAR tech-
nology the most as an object detection mechanism [8,53]. In addition, since early
2010, there have been a decent number of research papers that focus on enhanc-
ing the perception of vehicles. We will explore the object detection by the LiDAR
technology in the vehicular field.

3.1 LiDAR-Based Object Detection in the Vehicular Field

In the vehicular domain, object detection approaches rely either on raw LiDAR
data or on the data provided by LiDAR and a camera; indeed, the fusion of
LiDAR technology and RGB cameras offered a stable and feasible solution. The
raw data coming from either the LiDAR sensor or the RGB camera must go
through three phases:

1. The first phase is the data representation, which is responsible for processing,
organizing, and structuring the raw data from the LiDAR sensor for the next
step.

2. The second phase is feature extraction which is responsible for generating
feature maps by extracting different types of features.

3. The third step is the object detection model. Different approaches can be
applied in this step: regression of bounding boxes, determining the object
orientation, object class prediction, and deduction of object speed in some
cases.

4. The last phase is adopted by models that rely on a two-stage architecture.
The first phase is the primary object detection step, which is responsible
for extracting the bounding boxes framing the detected objects. Afterward, a
second step, called Prediction Refinement, is applied to fine-tune and improve
the results of the first stage.

As illustrated in Fig. 6, the authors in [8] sum up the different methods of each
step of the 3D object detection process.

a. Data Representations: This represents the first step in any 3D object
detection process. The raw LiDAR point data is refined to enhance the per-
formance of the next phase of the process which is the feature extraction. As
illustrated in Fig. 7, this step includes different methods with different output
formats for the LiDAR point clouds data, these methods are explained next.
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Fig. 6. 3D object detection system steps and their respective methods

Fig. 7. Feature extraction output formats [53].
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– Point-based: The concept of this first approach is simple to apply; the form
of the point cloud is preserved as a collection of sparse points, then each point
is represented by its feature vector generated by combining the features of
their neighboring points. But since it is composed of thousands of points,
object detection could take a significant amount of time to process. For this
reason, a preprocessing step is required in order to compact the size of the
point cloud to a pre-defined value [54–59]. The reduction of the point cloud
size is made by a procedure known as downsampling, which eliminates points
from the point cloud until reaching the required number of points N (N is the
fixed number of points in a point cloud). The downsampling can be applied
in two ways, either through a random selection method or a Furthest Point
Sampling (FPS)algorithm. In the first method, the points are picked randomly
until reaching N-selected points, which could result in an uneven selection of
points since dense regions of the point cloud have a higher probability of being
downsampled than sparse ones [54,55]. The second method starts by picking a
point randomly, calculating all the distances of other points, and then deleting
the farthest one. This process is repeated until reaching the desired prefixed
number of points N; this approach maintains a similar representation to the
initial point cloud but at the cost of time and hardware [59–61].

– Voxel-based: Voxelization is assigning each point of the point cloud to a
voxel according to its 3D coordinates. A voxel is a cubic shape element with
distinct coordinates in the 3D space. This approach divides the point clouds
into three-dimensional cuboid [62] that could be uniformly spaced or have
different sizes inside the x, y, and z Cartesian coordinate grid. In the following
step, the features of the raw point cloud are deducted from the group of points
inside each voxel as a single feature vector instead of extracting them from
each point separately, which lower the computational cost and reduce memory
consumption. Some of the features that could be deducted from each voxel are
(i) the average value of the intensities inside the voxel, (ii) the 3D coordinates
of each voxel point, (iii) and the mean distance between each point and the
center of its voxel.

– Pillar-based: This method was introduced by [63]; it is based on partitioning
the point cloud along the Z-axis (in vertical columns) and splitting the 3D
space into fixed-size pillars, which are usually viewed as an unbound voxel
along the Z-axis. Like the voxel-based approach, the allocation of points to
the pillars is done through Fixed or Dynamic voxelization.

– Frustum-based: The models using this data representation [64–66] cut the
point clouds into frustums, which is a section that lies between two parallel
planes of a cone or a pyramid shape, then apply feature extraction methods
on these sections.

– 2D Projection-based: This data representation method involves projecting
three-dimensional point clouds into two-dimensional ones to reduce the com-
putational cost of processing the data. In the literature, three main projection
approaches are proposed and applied in various research projects, which are
the Range View (RV), the Bird’s Eye View (BEV), and Front View (FV).
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– Graph-based: This last approach converts the point cloud into a graph,
where each point is considered a node, and each link between it and its neigh-
bors is an edge. However, since the point cloud holds thousands of points, the
number of edges connecting points will be considerably high, resulting in a
high computational time and resources. Therefore, this method is preceded
by a voxelization step followed by a downsampling phase to preserve specific
points [67].

Features Extraction from LiDAR Data: Features extraction is the fun-
damental phase before applying an object detection method. It enhances the
system’s performance by providing well-defined and easy-to-process features
from the point cloud. There are mainly three classes of features that could be
extracted:

– Local: also known as low-level features, they represent the spatial information
of each point in the point cloud. They are usually extracted at the start of
the model pipeline.

– Global: also named high-level features, they encapsulate the information of
the shape and geometric features between a point and its neighbors; they
could be extracted from a single network or through a combination of net-
works.

– Contextual: these features are the last to be extracted and fed to the model
object detection phase. They represent the combination between the local-
ization features of points and their semantic value.

Many research methods rely on combining multiple feature extractors to
optimize the results of the detection model. There are two different groups of
feature extractors, 3D-based and 2D-based extractors. The earlier extractor is
applied directly to the 3D space, while the latter operates in the 2D planes; each
type has its distinct architectures and application methods.

Object Detection: Object detection is the principal phase of the 3D object
detection process; detection approaches can be classified into five categories
based on (1) the feature extraction pattern, (2) the pipeline architecture of
the detected module, (3) the detection settings of the approach, (4) the object
detection mechanisms, and (5) the type of data used as input, as illustrated in
Fig. 8. This section will present these classifications.

1. Feature extraction patterns: The phase of the feature extraction process dif-
fers from one approach to another. For example, some merge multiple feature
extractors to exploit the advantages of different methods, while others use
a single method that enhances the execution time of the feature extraction
phase. In addition, the architecture of the feature extractor varies from one
to another to extract rich information while maintaining spatial informa-
tion to enhance classification and object localization. When working with a
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Fig. 8. Different classifications of Detection Networks

three-dimensional type of data, the size and shape of objects are constantly
changing depending on the distance between the targeted object and the sen-
sor and the angle of detection; it is necessary to implement networks capable
of extracting multi-scale features. Approaches like [68,69] that operate on 2D
images attempted to achieve this objective by performing object detection
while resizing the input images; but, come with a high computational cost.
More recent approaches [70] tried another method by increasing the layers
of the decoders in the encoder/decoder architecture, which led to generating
feature vectors with multiple resolutions.

2. Pipeline Detector architecture: The object detection solutions generally follow
two different architectures:

– The dual-stage approaches: the detection approaches that follow this
architecture are composed of two networks. The first starts with a pro-
posal generator (e.g., RPN) to create a set of region predictions known as
Intermediate proposals. Then, a second network known as the Prediction
Refinement Network is used to optimize the localization accuracy of the
detected objects that takes as inputs the generated proposals and the
original point coordinates features.

– The Single-Stage approaches: these approaches combine the classification
and bounding box proposals into a collection of connected layers. They
directly apply object classification and generate final bounding box esti-
mations for each part of the feature maps without the need to use the
bounding box refinement phase.

Compared with the dual-stage approach, the single-stage is usually more
time-efficient, making it more suitable for real-time object detection applica-
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tions. In contrast, the first approach can achieve more sophisticated precision
results.

3. Detection settings: For the point cloud data type, the process of detecting
object location can be achieved using two approaches:

– Rectangular-shaped cuboids (also known as the bounding box level local-
ization): This concept revolves around drawing tight bounding box pre-
dictions around the detected objects to locate them. There are various
methods applied to draw and optimize the bounding boxes. The most
used one starts by pre-defining the size of the bounding boxes in the
proposal regions step, then improving them by modifying their sizes and
orientations.

– Segmentation masks (also known as mask-level localizations): This con-
cept utilizes point-based data representation to learn and classify each
point as a foreground or a background point. Instead of a cuboid bound-
ing box, this approach uses pixel-based masks to segment the objects. In
addition, these masks are usually modified to regress bounding boxes.

For the first approach, during the training phase of the model, the encoder
networks utilize the feature vectors generated by the feature extraction phase
and the annotation files that store the dimensions of the bounding boxes.
The training step of the second phase uses the point-based features extracted
from the ground truth segmentation masks provided by the datasets. Finally,
the IoU mechanism is used between the bounding boxes generated by the
model and the ground truth provided by the dataset to evaluate the detector’s
performance.

4. Detection Mechanisms: The object detection approaches can be divided into
four main techniques based on the methods used to generate the region pro-
posals, and they are described in the following:

– Region proposal method Several examples and variations of the Region
Proposal Method were developed in the literature, and the goal with each
one was to enhance the results of the one before.

– Sliding Window Method: The first step of the sliding window detector is
to apply a CNN on the training set that contains cropped and labeled
objects; it generates a model that can identify the required objects. Next,
the same CNN is used to classify the objects inside the image by receiving
multiple parts cropped with a square-shaped frame known as a “Window”
that scans the entire image with a constant stride. Finally, this step is
repeated with different window sizes to find the most acceptable result
[71]. The main disadvantage of this method is the high inference time
when applied to point clouds because of the sparseness of the points.

– Anchorless Detectors: The anchorless method avoids using many
3D anchors; instead, it follows the binary (foreground/background)
segmentation-based detection settings, allowing models to be more mem-
ory efficient with lower computational cost. However, compared to the
region proposal frameworks, the accuracy of these detectors is lower when
detecting large objects (e.g., trucks, cars) and higher for small ones (e.g.,
cyclists, pedestrians).
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– Hybrid Detectors: STD [57] is the general dual-stage approach that com-
bines anchors and segmentation to generate region proposals.

5. Input Data Type: When it comes to the input data utilized in detection
models, there are notably two different approaches; either base the solution
only on LiDAR point clouds as the primary source of data or merge it with
images collected by RGB cameras.

– Various approaches rely on the first method because of the rich geometric
information the LiDAR sensor provides. The LiDAR point clouds could
transformed into BEVs by omitting the height value of the Z-axis; then
applying on them 2D object detection mechanisms used for RGB images.
Some models [63] process the point clouds under the structure of 3D
voxels or pillar representations are usually more expensive in terms of
hardware and time. Finally, other approaches operate directly on the raw
point cloud data as it is [56,57].

– The approaches [72–74] based on both sensing technologies detect objects
in more complex scenarios like small and distant objects, which is impossi-
ble using only LiDAR sensors. The main advantage of using RGB cameras
is the generation of dense pixel images over a significant distance (depend-
ing on the camera’s performance). Still, it doesn’t give any information
about objects’ depth (the distance). Combining the two data types allows
taking advantage of the densely pixelated images generated by RGB cam-
eras and the accurate depth provided by LiDAR.
The usage of two different types of data will improve the accuracy of the
models in the majority of cases, but it comes with many disadvantages:

• Models require precise calibration and synchronization between the
LiDAR and the camera sensors, which makes the accuracy of the
solution extremely dependent on any changes to the sensor position
or view angle.

• These fusion solutions are usually slower than the LiDAR-only solu-
tions due to the large number of images to be processed, the usage of
dual-stage architectures, and the deployment of RPNs for bounding
box generation.

• These solutions are so dependent on the detection performance of
the 2D object detectors, and they are not capable of using the 3D
information to enhance the accuracy of the bounding boxes.

• The approaches relying on extracting and combining the features of
multiple views (e.g., MV3D) face the problem of information loss due
to the inconsistency of the feature sizes across the BEV projection,
the front view projection, and the camera image. Thus, they need to
normalize their sizes, which affects the detection performance.

3.2 Challenges

The perception system requires a single or a group of LiDAR sensors that period-
ically scan and collect the three-dimensional space around it and store it in point
cloud files [8]. Next, it extracts important information and classifies the data by
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their semantic meaning. The LiDAR technology provides 3D point clouds that
represent the scenes around the object holding the sensor. However, some factors
make this task of perception extremely challenging like:

– The vast diversity of environments changes each second, including the state
of the weather. It has been proven in different studies [75–77]that fog and
rain can negatively influence the performance of the LiDAR sensor, but the
LiDAR could still generated results better than other sensing technologies
(e.g. RADAR).

– Objects could be obscure partially or entirely by other objects or parts of
other objects.

– The input shape and size of an object detected by a LiDAR sensor depends
on the distance and angle from which the object was detected. As a result,
the same entity can have different shapes and sizes, creating confusion when
classifying the object.

– The performance of the LiDAR sensor is dependent on the entire driving
domain.

All the factors mentioned above hinder the quality of service that LiDAR
can deliver; therefore, multiple approaches have combined LiDAR with different
sensing technologies like RGB cameras [78] and stereo cameras [79], RADAR
[80], and ultrasonic sensors [81]. The combination of the LiDAR sensor and
monocular cameras is considered the most adopted method of multi-sensing
architecture because of the LiDAR’s capability to provide depth information.
In contrast, cameras collect information richer in texture [8,53,82,83].

Besides, object detection is an essential step for the autonomous vehicle pro-
cess. It relies on the data collected from a LiDAR or a LiDAR and RGB cam-
eras and a machine-learning algorithm to create prediction models or enhance
the performance of older versions. However, although LiDAR sensors provide
high-resolution three-dimensional maps under various lighting conditions; the
recourse to these sensors raises new challenges:

– The data generated by LiDAR sensors are sparse and unstructured.
– The volume of the point clouds is large, and their processing requires powerful

types of equipment since the features extraction and the object detection steps
are expected to be performed in real-time.

– The processing units are resource-constrained since vehicles are equipped with
a limited source of energy (the battery of the vehicle); thus, the use of efficient
computational models to process the point clouds is required.

1. The data generated by LiDAR sensors are sparse and unstructured. 2. The
volume of the point clouds is significant, and their processing requires power-
ful equipment since feature extraction, and object detection steps are expected
to be performed in real-time. 3. The processing units are resource-constrained
since vehicles are equipped with a limited energy source (for electric cars); thus,
efficient computational models are required to process the point clouds .
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4 Conclusion

In this paper, we presented the LiDAR technology, including its functioning
mechanism, types, its various application in different fields. We also tried to
sum up the main feature that could be extracted from the LiDAR point clouds,
and the feature extractors used on this type of data. Our work can still be
improved by presenting the different 3D detection methods used by different
LiDAR models.
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Abstract. Due to rapid economic development, people’s living standards con-
tinue to improve, causing the number of urbanmotor vehicles to rise. Nevertheless,
as the number of motor vehicles continues to grow, it is becoming increasingly
difficult to find a vacant parking space. This study proposes a new intelligent
parking system based on a multi-agent approach and dynamic pricing in order to
achieve more effective, convenient, and accurate parking space prediction effect.
By selecting a path, the driver is guided to a parking lot with unoccupied spaces.
The system assigns and reserves a vacant parking space based on the driver’s utility
that combines travel time, cruising time, walking to destination and parking cost.
MATSim transport simulation platform is used to simulate drivers from off-street
parking in Tunis city center. The numerical analysis, based on real data fromOpen
Data Tunisia, demonstrates that the developed intelligent off-street parking system
reduces traffic congestion, minimizes travel time, and utilizes parking space more
efficiently during peak hours.

Keywords: microscopic simulation · intelligent parking · multi-agent system

1 Introduction

Parking is of crucial importance, given its effects on urban development, on the dynamics
of the city center, and on travel conditions throughout the metropolitan area [1]. It is an
essential daily need for residential areas, as well as for the proper functioning of shops
and economic and social activities. Efficient parking management can better predict
movement and thus improve the vehicle rotation. It also facilitates access to the city
center, revitalizes business districts, and stimulates shopping and leisure [2]. Parking
can be the most powerful instrument [3] that public authorities have in their possession
to control traffic in dense urban areas.

Realization of the parking importance issues in the global context of urban trans-
portation problems has led many cities to take measures to better manage the demand for
travel [4]. Nowadays, efficient parking management strategies are vital in dense urban
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areas where parking is limited and congestion is intense. In the literature, the solutions
proposed are often political or technological [5].

Currently, the main guidance method in Tunisia is to display static information signs
to inform drivers about parking spaces and the route to them [6]. Then, arriving at the
parking lot, it is impossible to predict parking spaces’ availability, resulting in waste of
driver’s time. Researchers have conducted extensive study on induced parking spaces
and parking prediction.

Zhang et al. [7] studied dynamic parking pricing to reach the optimum of the system.
However, this study does not take into account the parking information effect obtained
by detecting the parking occupancy rate. While, Qian and Rajagopal [8] model park-
ing pricing as a stochastic control problem. Parking pricing is adjusted in real-time,
depending on the parking occupancy. The latter is detected using sensors installed in the
parking area. The parking occupancy rate is thus analyzed to forecast future demand and
to determine the optimal parking pricing for the following period. Kotb et al. [9] present
a new smart parking system based on smart reservation and pricing. The new system
is based on mathematical modeling, employing linear mixed integer programming to
reduce the total monetary cost for drivers and maximize the use of parking resources.

Toplan parking lots and integrate urban parking systems,Yeh et al. [10] use streaming
media servers with cloud computing technology and smart mobile devices. The system
provided parking search, navigation, reservations, and car retrieval services. Vision-
based monitoring is proposed by Tang et al. [11] as a low-cost and contactless method of
managing parking services. The authors also presented an adaptive parking monitoring
system that can detect parking occupancy in a flexible way. In order to test this system,
a conventional microcomputer can be connected to a webcam to determine unoccupied
parking spaces.

Jingyu et al. [12] used Lot technology to model the roads and main parking lots
in order to search a more accurate parking space prediction effect. Adaptive genetic
algorithms are also used to simulate and induce drivers. The shortest path for the driver
to reach each parking lot are then determined. Mei et al. [13] combine the Fourier
transform with the least squares support vector regression machine learning technique.
The method can be used to predict the number of steps in a multi-step and single-step
parking lot.

Considering the occupancy condition of three parking spaces, Bora et al. [14] suggest
an intelligent parking guidance model. Multi-agent simulations were conducted on five
scenarios and results were compared with regard to occupancy ratios, wasted time, and
gases emissions. An algorithm and system implementation architecture for smartphone-
based parking guidance are presented by Gao et al. [15] to alleviate parking issues and
improve service efficiency. Parking selection is described as a multi-criteria decision.
Shortest paths are determined using the Dijkstra algorithm.

In urban areas, Huang and Hsieh [16] develop a smart decision support system to
guide available on-street parking. Sensors capture the parking pictures and send them
back to the database server in a short timeframe. The best parking slots are recommended
using two mathematical models. Xie et al. [17]. The authors use deep reinforcement
learning in an automated valet parking environment to solve the problem of parking
space allocation. Markov decision processes is used to formulate the allocation problem.
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The aim of the study is to develop an intelligent off-street parking system. The paper
is an effective tool to make the best use of limited parking resources, guide drivers to the
selected parking lot and improve the system efficiency in dense urban areas. A model
based on dynamic resource allocation and pricing, and multi-agent systems may be
an adequate modeling approach. This paper selects vehicle running time, parking cost,
walking time, and cruising time as the characteristic parameters of the utility function.

This research is structured as follows. Section 2 describes the intelligent off-street
parking prediction system implementation. Section 3 defines the simulation environ-
ment, the input data, and the notation and formulation of the utility function. Section 4
is reserved to numerical simulation. Finally, Sect. 5 reports some conclusions.

2 Off-Street Parking Prediction System Based on Multi-agent
System

Multi-agent systems play a decisive role in the management of the proposed off-
street parking system. The functional aspect is illustrated by a parking procedure in
a cooperative environment of agents (Fig. 1).

 
Parking agent 

Driver agent 

Central agent 

Fig. 1. Organizational structure of agents

Parking agents are responsible for forecasting and monitoring parking space occu-
pancy, on the basis of which parking prices are determined. They are placed in the
automatic barriers installed at the entrance and exit of off-street parking lots. The central
agent is a central server for storing information from the area it manages. It plays the
role of a central supervision entity, through direct interaction with parking agents.

2.1 Search for Available Parking Lot Spaces

Search for available parking spaces follows a hierarchical decision-making process.
Drivers looking for parking spaces send queries to the central agent. With the assistance
of parking agents, central agent assists drivers in finding a parking space according to
their needs.

All pricing decisions are made by the parking agent, based on the condition of
the parking lots and the users’ requests. It continuously analyzes parking occupancy
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status, and determines parking prices according to a dynamic pricing scheme. All the
information collected will be updated and stored in the parking agent’s database. Upon
registering the driver, the central agent contacts the parking agents located around the
destination. Each proposal from the parking agents will be evaluated by the central agent.

2.2 Short Path Selection

The list of parking lots with unoccupied spaces appears instantly. Geographic Informa-
tion Systems (GIS) produce maps that illustrate the location of the parking lot based on
the driver’s current location and his intended destination. Several details are displayed
about each parking lot, including the name, type, price, walking time, and occupancy
rate. Following the user’s receipt of all the required information, he must take the initia-
tive to select a parking space. The shortest path to selected parking is determined using
the A* algorithm.

2.3 Parking Space Allocation

Allocation requests are sent to the central agent, who forwards them to the parking agent.
This allocation is for a time period. Consequently, if any unexpected event occurs, like a
car accident, the central agent must be notified in order to extend the stationing period.
An allocation of parking spaces is necessary in order to avoid overcrowding in a parking
lot at the same time. Absence of allocation is only an approximate indication of parking
availability space.

3 Experiment

3.1 Simulation Environment

MATSim is a transportation network micro-simulation platform for large-scale appli-
cations. For our study, this software was selected as a model and simulation system
for agents. MATSim is designed to run simulations repeatedly (Fig. 2). The simulation
procedure is summarized in three main steps: execution, notation and replanning.

Ini�al
demand

Simula�on Scoring Relaxed
demand

Replanning

Fig. 2. MATSim simulation process [18]
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Execution
In MATSim, demand is modeled individually for each agent. Modeling is done for a
whole day, and it is called plan. Each agent independently generates a daily activity
plan. This latter is a simple schedule of activities, their location in the study area and
the preferred mode of transport to link these activities. All movement plans are then
executed simultaneously in the simulator.

Notation
All executed plans are scored by a utility function. A utility function consists of several
variables that differ among agents, resulting in heterogeneous decisions. A score is thus
calculated for each execution plan.

The utility of a plan Uplan is calculated as the sum of the utilities of the activities
Uact,i, the sum of the travel (dis)utilities Utravel,i and the sum of the parking utilities
Uparking,i [17]:

U =
n∑

i=1

(
Uact,i + Utravel,i

) +
n∑

i=1

Uparking,i (1)

Replanning
The replanning step is analogous to the mechanisms of mutation and selection. This
adaptation process is reflected in iterations, until some form of equilibrium is reached.
A fixed number of day plans are stored in each agent’s memory, and each plan contains a
daily activity chain and a utility value. Those activity plans with the highest utility scores
are selected, and those with the lowest scores are deleted from the agents’ memory.

3.2 Inputs Data

Several input files are required to construct a MATSim simulation, including road net-
works, installations, initial plans and simulation configurations. Files must respect the
XML data format.

Network File
The network file provides all the information relating to a road network. It is subdivided
into two sub-elements namely nodes and links which should satisfy two conditions.
The links are characterized by a set of attributes that quantify the physical limitations
of the road network: the flow, the length, the circulation speed, the number of lanes,
the direction and unique identifier. The links also close the list of available modes of
transport. In addition, each node has an identifier and a specific location defined by
coordinates (x, y) to locate the links in space.

Facilities File
Facilities can be interpreted as parking or buildings. Detailed information about the types
of activities that can be performed at specific locations (education or work) is provided
in the facilities file, along with the facility’s opening and closing times. Scheduling these
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hours prevents agents from transferring their activities overnight in order to avoid traffic
jams.

Plan File
The plan file describes the simulated MATsim population and its travel demand. Each
driver agent has a unique identity card (id) and holds a list of plans. These plans are
a simple schedule of activities and travel stages. Activities are described by a list of
attributes: type (home, work, education, shopping, leisure), location (geographical coor-
dinates), start time, end time, and mode of transport (car, walk, bike, public transport,
etc.).

Configuration File
The configuration file specifies all relevant settings and configurations for the tested
scenario. The parameters of each module can be adjusted according to the specific needs
of the scenario. Configuration files generally contain the following inputs: the number
of iterations, the locations of input files, the types of strategies for agents, the types of
adaptations to the plan, and the types of outputs to create.

3.3 Utility Function

To simplify the simulation, it is assumed that each movement activity is composed of
two stages: a first from the origin o to the parking lot j, and a second from the parking
lot j to the final destination d, for a single activity k (Table 1).

Table 1. Nomenclature

Simulation parameters

P Parking price

s Parking stay duration

Atj
Parking availability at a time period t

Cj Total capacity of parking lot j

loj Distance to travel from the origin o to parking j

βdriv
τ Marginal utility of time traveling

βdriv
δ Marginal utility of distance traveled

βμ Marginal utility of money

βcruis
τ Marginal utility of cruising time inside the parking lots

tdriv,toj
Driving travel time t from the origin o to parking j

twalkjd
Time spent walking from parking j to final destination d

tcruis,tjd
Cruising time for parking j at a period time t
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Let’s consider two environments to be applied: static pricing with guidance (A2) and
dynamic pricing with guidance (A3). The utility function MATSim Eq. (1), to be used
in our simulation, can be rewritten as follows:

Ut
j = Udriv,t

j + Ucruis,t
j + Upark,t

j + Uwalk
j (2)

Udriv,t
j = βdriv

τ · tdrivoj + βdriv
δ · loj (3)

Ucruis,t
j = βcruis

τ · tcruis,tj (4)

Uwalk
j = βwalk

τ × twalkjd (5)

Upark,t
j = βμ · s · Pt

j = βμ · s · Pjln

(
Cj

At−1
j

)
, such as: At

j �= 0 (6)

Ut
j = βdriv

τ · tdriv,toj + βdriv
δ · loj + βcruis

τ · tcruis,tj + βμ · s · Pt
j + βwalk

τ · twalkjd (7)

3.4 Simulation Assumptions

A simulation is performed from the driver’s current location to the chosen parking lot,
along with walking time and parking costs. Besides, as part of the proposed algorithm,
a number of factors are taken into account, such as search time and parking duration.

Two environments have been created in order to study the effect of dynamic pricing
with guidance on the proposed off-street parking system.Real-world scenarios represent-
ing the current parking situation in Tunis city center are tested to implement and evaluate
the suggested approach. The two environments have been compared. An environment
with static pricing and guidance is described in the first notice (A2). An environment
with dynamic pricing and guidance is described in the second notice (A3). During the
simulation process, the underlying assumptions are taken into account. Let’s consider:

– Vehicles are the only dynamic component of the road network.
– Parking locations, fees, and spaces are supervised by one parking manager.
– Drivers have access to real-time parking information such as price, available space,

etc.
– Time value is assumed to be the same for all drivers.

4 Results and Discussions

The study area is generated from the road map, associated with the parking maps of
downtown Tunis. This network includes constructed routes of 1361 links and 584 nodes.
In addition, off-street parking of Tunis offers 6001 spaces. Simulated vehicles (ran-
domly generated) number approximately 10000. Simulating a limited period, usually
the morning peak, is the objective of the simulation.
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4.1 Traffic State

A simulation day’s number of vehicles can be seen in Fig. 3. As compared to the environ-
ment (A2), the environment (A3) reduces the number of vehicles in circulation propor-
tionally. Parking occupancy allocation is not taken into account in (A2), unlike (A3). In
this way, drivers may be directed to parking lots with a high occupancy rate, increasing
congestion around them.
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Fig. 3. Variation in vehicle numbers

During certain periods, such as 6:45 am to 9:25 am, the environment application
(A2) can increase in vehicle flow. Nevertheless, it is estimated that (A3) would result
in a reduction in road traffic of 7.62% on the simulation date. As a result, traffic has
become less congested.

4.2 Parking Occupancy State

In Fig. 4, guidance with dynamic pricing is compared to guidance with static pricing for
optimizing parking occupancy.

As an example, this figure shows how many cars are parked at Palmarium and
Khartoum parking lots. Parking demand (A2) for the Palmarium parking is raised for
the period from 6 am to 9 am. Nevertheless, by applying (A3), parked vehicles have
been reduced for a similar period, until saturation has been reached. Unlike Khartoum
parking, (A3) has an increase in occupancy in the earlymorning because parking demand
is low.

(A3) reduce the number of vehicles in Palmariumby redirecting them to less crowded
parking lots like Khartoum. While in (A2), drivers are guided to vacant parking spaces
no matter what the occupancy rate is. Then, the saturated parking lots will be fully
occupied. On the other hand, the occupancy rate in other districts is significantly lower.
Parking occupancy balancing optimization is therefore required.

Parking prices can be accessed in real-time through an intelligent off-street parking
system (Fig. 5), as a way to encourage drivers to switch parking lots based on parking
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Fig. 4. Variation in parking occupancy

occupancy. Parking requests for (A3)will be allocated to other parking lotswhen the (A3)
parking spaces are saturated. In order to bring the occupancy rates of different parking
types into balance, the parking prices will begin to increase. Parking space pricing gives
information about the occupancy state and the attractiveness of the parking lot.
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Fig. 5. Parking pricing elasticity

Figure 5 shows that parking pricing generally starts with a minimum value which
can reach up to 0td. It is noted that it increases over time, following the decrease in
vacant place number. Higher parking charges are levied in parking places with high
occupancy. It stabilizes during peak hours takes a maximum value of up to 5td. Once the
vehicle parked number decreases (availability rate rises), the parking pricing weakens.
(A3) modifies prices to react quickly to variations in parking demand throughout the
simulation. Dynamic prices with guidance optimize off-street parking occupancy.

4.3 Travel Time

On the simulation day, the time spent traveling by vehicles is defined as the travel time.
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Fig. 6. Travel time distribution

Number of vehicles passing between 5 min and 12 min in displacement increased,
while those who passing between 12 min and 19 min were reduced, to resume ascending
from 20 min (Fig. 6a). Based on this result, there is an average 12.3% reduction in travel
time when (A3) is applied. Then, Parking congestion in the study area has reduced
(vehicles are spread across all existing parking lots).

The time drivers spent leaving parking j and reaching o is shown in Fig. 6b. As a
result of applying (A3), the travel time has increased somewhat. There is a reason for
this, as (A3) may redirect drivers to parking lots that are less busy, but are further from
their final destination. Travel time is likely to be extended in this situation.

4.4 Walking Time

Walking time describes the walking time elapsed by the driver from parking j to the final
destination d.
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Fig. 7. Walking time variation

Walking time (Fig. 7) is estimated at 12.1 min on average for (A2) to 13.16 min
for (A3). In fact, the increase in walking time is due to the spatial dispersion of the
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driver’s allocation in parking lots. In a more explanatory way, (A3) encourages vehicles
to park in less crowded parking, which leads to a significant increase in walking time.
In conclusion, the walking cost is by far the most important in travel cost composition.

4.5 Results Discussion

Various situations are reflected in the studied environments. The simulation results,
however, are strongly influenced by the initial assumptions and the quality of the input
data (input generation) (Table 2).

Table 2. Simulation results

Indicators Environment (A2) Environment (A3)

Vehicle numbers - 07.62%

Parking occupancy - 05.00%

Travel time - 12.03%

Walking time - 20.66%

Dynamic pricing and guidance alleviate urban congestion according to simulation
results. The driver will be directed to a parking lot whose occupancy rate is lower once
the parking lots around their destination are full. As a result, congestion around parking
lots shifts to adjacent areas. Test results were as expected. A Shoup [19] study found
that vehicles flow searching for available parking space account for 30% of traffic flow.
Therefore, dynamic pricing with guidance environment (A3) generates proportionally
less fluid traffic than static pricing with guidance environment (A2).

In addition, guidance coupledwith dynamic pricing reduces drivers’ travel time. This
result is closely related to the number of vehicles on the road network (road congestion).
Furthermore, dynamic parking pricing with guidance increases parking occupancy.

Users of parking services spend more time walking due to guidance with dynamic
pricing. This is justified by the geographical location of off-street parking. A wide
variety of them are available throughout the study area. Therefore, dispatching driver to
an unsaturated off-street parking will increase walking time.

Alleviating traffic congestion and minimizing travel time will have positive eco-
nomic, environmental and social impacts onTunis’s downtown area.A shorter travel time
results in lower operating costs for vehicles. Smooth road traffic often leads to increased
productivity. Furthermore, less congested roads will increase the region’s accessibility
and competitiveness.

5 Conclusion

In urban areas, off-street parking lots, including building accessorial parking and public
parking lots, are important resources. Nevertheless, a waste of parking resources results
from an unreasonable allocation of off-street parking lots (density and layout of parking
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spaces). In consequence, analyzing parking supply and demand, parking management
strategies, and other factors needs to be considered when allocating off-street parking
lots.

In order to increase off-street parking’s benefits to society and economy, it is neces-
sary to adopt some appropriate management strategies (parking charging, technology,
parking sharing, etc.) to encouragemore drivers to park there. In this paper, an intelligent
off-street parking system based on dynamic resource allocation and pricing is proposed
to further improve the service level.

The present study models the roads, nodes, and main parking lot. Off-street parking
lots are considered as virtual facilities, and the path from an intersection node to the
associated parking lot is considered as a virtual path. Based on the simulation calculation,
an unoccupied parking space must be found and the shortest route to reach each parking
lot is determined.

In this paper, a multi-agent approach is presented that dynamically allocates parking
spaces. The model is trained and predicted using data from Tunis city center. Utility
function parameters selected for this study were vehicle running time, parking cost,
walking time, and cruising time.

According to experimental results, a parking lot induction method based on a multi-
agent approach and dynamic pricing can effectively select and allocate parking resources.
A shortest path is combined with the agent’s selection to guide the driver to the most
optimal parking lot.
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Abstract. Electric micro-vehicles including scooters, bicycles, and
mopeds are gaining popularity as a preferred shared mode of transporta-
tion due to their environmental sustainability and cost-effectiveness.
However, despite their numerous benefits, these micro-mobility services
face several challenges that may limit their adoption. In this paper, we
provide a comprehensive discussion of shared micro-mobility services
as well as the associated challenges, including maintenance difficulties,
infrastructure regulation, safety concerns, and imbalance issues. We also
explore the potential solutions that have been implemented to address
these challenges and the available datasets that can be used to optimize
micro-mobility services.

Keywords: Micro-mobility devices · Connected micro-mobility ·
Micro-mobility datasets · Challenges · Service optimization

1 Introduction

Shared micro-mobility services have become increasingly popular in recent years
as a flexible and sustainable alternative to traditional transportation options
[14,25,39]. Companies like Bird, Lime, and Voi offer electric bikes, scooters, and
other small vehicles for short trips in urban areas. These services are particularly
useful for tourists, workers, and anyone seeking a quick and convenient trans-
portation mode for their daily needs [13]. In addition to being cost-effective and
affordable with low rental fees, micro-mobility services are eco-friendly, requiring
significantly less energy to operate than traditional cars. Furthermore, they help
alleviate traffic congestion and parking demand in urban areas, making them a
more practical and efficient transportation option [39]. However, the reliability
of these services is often challenged by various issues, such as maintenance diffi-
culties, infrastructure regulation, safety, and imbalance problems [23,26,38,40].
These issues can severely impact user satisfaction and company revenue. There-
fore, it is crucial for micro-mobility operators to implement effective strategies
to enhance the services and the overall user experience. Fortunately, researchers
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have shown that collected data from shared micro-mobility systems, such as
trips, locations, and traffic data, can help solve these problems. For example,
trip data or location can be utilized to optimize fleet placement and reduce
maintenance costs [37]; while vehicle sensor data or traffic data can be used to
identify collision risks and improve user safety [22,26].

This paper offers a comprehensive analysis of micro-mobility services, with a
particular focus on the devices and technologies used for communication between
them. It presents a detailed overview of the challenges facing these services, with
the existing datasets that can be leveraged to address them. By synthesizing
the latest research and insights, it offers practical guidance for researchers and
practitioners in this field. In addition, we perform an analysis of a real-world
dataset obtained from the Bird company’s micro-vehicle fleet usage in Bordeaux
to determine the key factors that can enhance the services and improve the
overall user experience.

The remainder of this paper is organized as follows: In Sect. 2, we introduce
the micro-mobility service, including the different modes that are commonly
used and the technologies that enable their communication. Section 3 provides
an overview of the challenges faced by micro-mobility services, while Sect. 4
outlines how collected data from micro-mobility services can be used to solve
these problems and optimize the services.

2 Overview of Shared Micro-mobility Services
and Technologies

As the demand for urban transportation solutions has increased, shared micro-
mobility services have emerged as a viable and sustainable option for short-
distance trips. To support the efficient operation of these services, various com-
munication methods are used to enable real-time tracking, monitoring, and man-
agement of the micro-mobility devices. This ensures that users have access to
accurate and up-to-date information on vehicle availability, location, and route
planning. Additionally, it enables operators to effectively manage and maintain
their fleets, optimize vehicle allocation and charging, and respond quickly to any
issues or incidents. This section will cover the characteristics of the commonly
used devices in shared micro-mobility services, as well as the communication
technologies that enable their effective deployment and operation.

2.1 Micro-mobility Devices

In recent years, the availability of shared micro-mobility services has greatly
expanded, covering a variety of frequently used modes like bicycles and e-scooters
[1,11]. These modes of transportation differ in terms of design, cost, and oper-
ation mode. Figure 1 shows an example of micro-mobility devices, including e-
scooters, e-bikes, e-mopeds, and segways.

Bikes are typically the most affordable and widely available mode of shared
micro-mobility transportation. They are simple to use and provide a low-impact
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workout. Electric bikes, or pedelecs, on the other hand, offer a smoother ride
thanks to a pedal assist feature that makes it easier for users to travel further
and faster. A speed-pedelec (S-pedelec) is a type of electric bike that is designed
to provide assistance up to higher speeds, typically up to 45 km/h, and may
have different legal requirements than traditional e-bikes. Electric scooters are
also common and practical to use, with their straightforward design making it
simple for users to park them anywhere in free-floating systems. Although more
expensive and requiring a valid driver’s license to operate, electric mopeds offer
a more powerful and effective form of transportation. Finally, electric skate-
boards and segways are the newer additions to the micro-mobility market, offer-
ing unique and fun transportation modes that are popular among young adults;
however, they are not yet widely available for shared use. In the end, a person’s
choice of transportation depends on their preference, budget, and intended use.

Fig. 1. Example of micro-mobility devices

These shared micro-vehicles allow users to rent vehicles for a limited time at
an affordable cost. Most shared micro-mobility services are accessed through a
mobile app that lets users find nearby vehicles, unlock them with their phones,
and pay for their use. Shared micro-mobility services can be classified into two
main categories: fleet services (where the vehicles are managed and provided
by a company) and peer-to-peer services (where individual vehicle owners make
their vehicles available to other users for a fee) [9,32]. Fleet services can be both
docked and dockless, with or without charging stations, depending on the type
of vehicle.
Table 1 represents a comparison of micro-mobility devices, their features, and
specifications like average weight, power supply, range (the distance that the
device can travel in a single charge), legal requirements, etc. The values presented
in the table are indicative averages and may not accurately represent the precise
specifications of each micro-mobility device.
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Table 1. Micro-mobility devices and their features

Feature Device
E-scooter E-bike S-pedelec E-moped Segway

Average weight (kg) 10–25 15–25 30–35 30–70 50–60
Max speed (km/h) 25 25 45 45 20
Operable pedal no possible yes possible no
Power supply (watts) 250–500 250–750 500–750 500–2000 400–800
Range (km/h) 40–100 40–80 50–100 50–100 20–30
Average charging time 4–8 h 3–6 h 3–6 h 4–8 h 4–8 h
Occupants single rider single rider single rider multiple riders single rider
Legal requirements none none license/helmet license/helmet possible
Age requirements 14–16 14–16 >16 >16 14–16

2.2 Micro-mobility Companies

There are several shared micro-mobility companies that have gained popularity
around the world, with some of the most well-known being:

1. Bird provides electric scooters and bikes and operates in around 50 metropoli-
tan areas across the United States, 14 cities in Europe, and 3 cities in the Mid-
dle East. Their micro-vehicles are available for short-term rentals through the
Bird mobile app and are designed to be a sustainable transportation option.
Bird’s electric scooters and bikes are designed to be lightweight and easy to
use, with a top speed of 32 km/h and a range of up to 50 km/h on a single
charge [3].

2. Lime provides electric bikes, scooters, and mopeds in over 100 cities world-
wide. Lime’s electric vehicles are designed to be easy to use and are equipped
with safety features such as lights and brakes [13,17].

3. Voi is a Swedish shared micro-mobility company that provides a variety of
electric vehicles, including bikes, scooters, and mopeds. Voi’s mobile app is
also designed with sustainability in mind, with features such as a carbon
footprint calculator that shows users how much CO2 is saved [34].

4. Spin is a popular shared micro-mobility company that provides electric scoot-
ers, bikes, and e-assist bikes. It operates in over 70 cities worldwide, including
Europe, Canada, and the United States. Spin’s micro-vehicles are designed to
be reliable, with a focus on safety and durability. Spin’s mobile application
is also user-friendly, with clear instructions on where to locate and how to
unlock the fleet, as well as helpful riding safety tips [31].

Various systems are used by micro-mobility companies to handle their fleets.
Docking is a common system in which vehicles are picked up and dropped off at
designated stations. These stations can be fixed physical stations or virtual sta-
tions. Virtual stations refer to well-defined zones without physical boundaries,
with an obligation to park the fleet inside these zones. Alternatively, the dock-
less system allows users to park vehicles anywhere within a specific operating
zone. Some companies use a hybrid system that offers both docked and undocked
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parking options. The choice of a system depends on several factors, such as the
city’s size and metropolis, user demand, and regulatory requirements. Each sys-
tem has its own advantages and disadvantages, making it essential for companies
to assess their needs before deciding on the most suitable option.

Micro-mobility companies also adapt to the specific needs and expectations of
their customers and focus on specific purposes such as Bird for leisure, Lime for
work, and Voi for tourism [4,21]. However, this choice can also depend on various
factors, including personal needs, distances, available transportation options,
traffic conditions, and individual preferences.

2.3 Technologies Used in Connected Micro-mobility Devices

Shared micro-mobility vehicles, such as e-scooters, e-bikes, and e-mopeds, are
typically equipped with wireless communication systems, such as embedded SIM
cards, Global Positioning System (GPS) receivers, and sensors [6,8,24]. These
technologies not only allow companies to track the vehicles’ location and con-
dition, but they also enable direct communication between the vehicles using
short-range or low-power technologies such as Bluetooth, Zigbee, LoRa, or Wi-
Fi [5,33,36]. Some shared micro-mobility vehicles can also be equipped with
Vehicle-to-Vehicle (V2V) technology for short-range and direct communication.
It enables the exchange of information between vehicles and can be used for
collision avoidance, traffic optimization, and platooning. This technology can be
especially useful in densely populated areas where there is a high demand for
short-distance transportation.

To connect micro-mobility vehicles to the internet or to the central control
system, cellular communication technologies such as 4G and 5G can be used for
long-range communication [28]. 4G allows for high-speed remote communication,
enabling operators to monitor in real-time the status of vehicles, such as their
battery level, speed, track status, and other key components. With the arrival of
5G, the infrastructure is expected to further improve road safety with a compre-
hensive vision of traffic and roads in real-time, allowing for more advanced safety
features [28]. Additionally, 5G will enable faster and more reliable communica-
tion for monitoring, control, and management of micro-mobility fleets, which can
lead to more efficient operations and better overall user experience. Some other
technologies including Near Field Communication (NFC), or QR codes can also
be used to connect the device to the user’s mobile phone or unlock the fleet [8].
Table 2 represents a comparison of communication technologies used in shared
micro-mobility systems.

Regarding shared micro-mobility companies, Bird and Lime, use a combi-
nation of communication technologies including Wi-Fi, Bluetooth, and cellular
communication depending on the region’s infrastructure and local conditions
[33]. Ultimately, the choice of communication technologies depends on each com-
pany’s needs, the availability, and quality of wireless networks in a given region,
the transmission range, and local regulatory requirements. Companies may also
adopt new technologies as they evolve to meet the changing needs of users and
improve the overall experience of shared micro-mobility.
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Table 2. Comparison of communication technologies in micro-mobility

Technology Range/power
consumption

Data transfer rate Communica- tion mode Typical use case

Bluetooth 10 m/low 1 Mbps device-to-device data tracking and
control

Wi-Fi 100 m/moderate 10 Gbps device-to-hub/router data exchange,
navigation, and remote
management

Zigbee 100 m/low 250 kbps device-to-device/to hub data exchange, tracking
and control

LoRa 10 km/low 50 kbps device-to-
device/gateway

track location and usage
/monitoring in real-time

V2V 300 m/low 27 Mbps device-to-device collision avoidance,
traffic optimization, and
platooning

4G/5G 6–10 km /high 10 Gbps device-to-cellular
networks

high-speed data
transfer, and remote
control

3 Challenges Facing the Micro-mobility Industry: An
Overview

The field of micro-mobility faces various challenges related to infrastructure,
regulation, system imbalance, and safety. One of the major issues is the lack
of proper infrastructure for micro-mobility vehicles, such as bike lanes, park-
ing areas, and charging stations [19,20,35]. This makes it difficult for users to
use and park their vehicles safely and conveniently, which increases the number
of improperly parked fleets. Another challenge is the need for regulations that
balance the benefits of micro-mobility with issues of public safety, privacy, and
property rights. For example, some cities have imposed restrictions on the num-
ber of shared micro-vehicles allowed on their streets or required companies to
share private data on their operations. Additionally, safety is a concern as acci-
dents involving micro-mobility vehicles have increased. [30]. This requires the
implementation of safety measures such as helmets and educational campaigns
for both users and drivers.

Micro-mobility vehicles require regular maintenance to remain secure and in
excellent operating condition [19]. For example, the batteries in electric micro-
vehicles need to be recharged regularly, but their life span can decrease over
time, reducing their capacity and performance. Tires on rubber-tired vehicles
can suffer damage, punctures, and wear, which also affects their safety and per-
formance. Brakes and brake pads should be checked and replaced if needed.
Electrical components may also need maintenance to function properly, and all
vehicles experience general wear and tear over time, requiring repair and main-
tenance. These maintenance issues can be costly and time-consuming, especially
for individual owners of micro-mobility vehicles [19].

Regarding the communication technologies in micro-mobility systems, they
pose potential security risks. For example, bike and scooter companies utilize a
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combination of Bluetooth and internet connections to communicate with users’
mobile phones and central servers. This can make them vulnerable to hacking
and the potential mobilization of numerous vehicles in an urban setting. The
authors in [28,29], propose a wireless communication technology designed to
enable long-range communication between devices with low power consumption,
namely Low-Power Wide-Area Network (LPWAN). This technology can improve
safety and reduce accidents.

Fleet maldistribution and system imbalance are major challenges that affect
the availability and accessibility of micro-mobility services and, ultimately, user
satisfaction [15,16,23,40]. In the case of dockless systems, fleet maldistribution
can result in certain regions or zones being underserved while other areas are
oversaturated with vehicles. In physical dock-based systems, system imbalance
can lead to empty or full docking stations, which can inconvenience users and
undermine the usefulness of the service. When docking stations are completely
empty, users are unable to access the service and may be forced to seek alter-
native transportation methods. On the other hand, when docking stations are
completely full, users may have difficulty finding a parking spot, which can result
in frustration and discourage further usage of the service. These issues have a
negative impact on customer satisfaction, with customers suffering from unfavor-
able effects like longer wait times, farther travel in finding fleets, and difficulty
accessing the service. Furthermore, a decrease in service quality could result in
lower customer adoption rates and revenue for the company. To overcome these
challenges, micro-mobility providers must develop effective strategies to opti-
mize the distribution of fleets and the management of docking stations while
leveraging real-time data and analytics to improve the overall user experience.

4 How Can Micro-mobility Datasets Be Beneficial?

Data gathering from shared micro-mobility systems can help solve some issues
with user satisfaction and safety, while also significantly improving services. For
example, trajectory data or location data can be used to optimize fleet place-
ment, reducing imbalance issues and improving user accessibility. Vehicle sen-
sor data or traffic can be used to detect collision risks and potential accidents,
enabling preventive measures to reduce these risks and ensure user safety. In
addition, data on users’ usage patterns can be used to improve pricing models,
service offerings, and user satisfaction.

4.1 Using Data for Better Problem-Solving and Services

The use of collected data from shared micro-mobility systems may offer many
opportunities to improve the quality and efficiency of services while ensuring
a more satisfying and safer user experience. Table 3, presents a comprehensive
overview of datasets used by articles to address micro-mobility challenges, includ-
ing information on data availability statements, collection years, system and fleet
type, targeted issues, and data analysis country.
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Table 3. Used datasets for addressing micro-mobility challenges

Ref Data type Statement Year Fleet type Problem Country

[15] trip/weather public 2015–2017 docked bike imbalance Korea
[18] trip public 2013–2016 docked bike imbalance NewYork
[16] trip/weather public 2016 docked bike imbalance China
[25] trip private 2019 dockless scooter relocation Canada
[12] trip/weather private 2019 dockless scooter relocation Korea
[37] trip open 2019 dockless bike maintenance/relocation NewYork
[41] trip open 2017 dockless bike maintenance/relocation China
[14] trip/weather private 2020 dockless scooter relocation Korea
[26] sensor open 2020–2021 dockless scooter infrastructure/safety Italy
[38] trip/weather public 2013–2017 docked pedelec maintenance cost NewYork
[7] trip open 2018–2019 dockless scooter infrastructure/safety Texas
[22] region/traffic private 2018 dockless scooter relocation Turkey
[2] sensor/traffic private 2015 docked bike station placement US
[10] crashes/trips private 2019–2021 dockless infrastructure safety Italy
[27] trip/weather private 2020 dockless scooter relocation Chicago

The authors in [15,18], describe a method for solving placement problems in
physical dock-based systems by utilizing trip data and advanced deep-learning
architectures. The solution relies on predicting user demand and using graph
networks to model the connections between stations as nodes and the depen-
dencies between them as edges, with the ultimate goal of balancing the fleet.
In [16], the researchers propose a reinforcement learning1 framework based on
recorded trips between docked stations. This would help the system find a good
balance. The solution consists of loading from a blocked predicted station and
unloading at an empty station. In [12,25], the researchers use real-world trip
data, taking into account weather and temporal criteria, to enhance the fleet
locations and decrease the research time to find a fleet. They represented the
demand using heatmap images as a strategy to identify future frequent areas.
They employed machine learning forecasting techniques to predict the demand
density at each hour within the operational zone. This strategy can help oper-
ators choose the best locations for their fleets and enhance the user experience
by analyzing demand density images. To address both maintenance and redistri-
bution challenges, the authors, in [37], propose a reinforcement learning-based
multi-agent system that enhances micro-vehicle availability while minimizing the
need for relocation and battery replacements. This solution is designed using
a trip dataset and is capable of improving operational efficiency. In [41], the
researchers prove the effectiveness of initiating users to balance dockless systems
and aggregate low-battery fleet together, saving the cost of maintenance. They

1 Reinforcement learning is a branch of machine learning that involves the training
of artificial agents to interact with their environments and learn the best actions to
take using a deep neural network to increase reward and solve the problem.
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propose a prediction tool capable of estimating user demand from recorded trips
within an area using machine learning. In [14], the authors show that weather
data can be used to predict how many users will want to use dockless sys-
tems. The solution can increase user satisfaction by minimizing the research
time required to find a fleet.

To enhance micro-mobility safety as well as improve infrastructure, authors
in [26], propose a safety-based efficiency indicator for urban areas, using a data
envelopment analysis. This indicator allows evaluation of the safety efficiency
for each studied area according to factors such as road intersections, vehicle
speed, and the presence of bicycle lanes. The authors, in [38], focus on the
development of an efficient prediction machine learning model that predicts the
demand for pedelec use every 48 h and an optimal route plan for pedelec battery
charging using real-world datasets. In [7], a method is presented for estimating
street segment-level e-scooter flows using an open-source dataset that includes
millions of trip origins and destinations. The authors prove that the proposed
model can help cities better support the emerging shared micro-mobility service.
Researchers, in [22], suggest a decision support system for e-scooter sharing sys-
tems that helps dynamically place e-scooters in urban areas where they are
required. The goal of this system is to provide select options by combining real-
time social media data with traffic density information and region data given by
the multi-criteria analysis made using the Analytical Hierarchy Process (AHP).
In [2], a station placement strategy is proposed in order to determine the best
locations for 5 new bike-sharing stations in Fargo, North Dakota. The workflow
combines a geographic information system (GIS), level of traffic stress (LTS)
ratings, and location-allocation optimization models. Authors in [10] highlight
the inefficiency of ad-hoc planning in developing safe infrastructure for micro-
mobility, which is essential for creating climate-friendly, sustainable, and livable
cities. They propose an automated network planning process that utilizes data
from various empirical sources, including existing infrastructure networks, bicy-
cle crashes, and trip data from Bird company. The modeling framework pre-
sented in the study is applied specifically to the city of Turin, Italy, but it can
be extended to other cities as long as similar data is available. It is able to cre-
ate new cycling tracks that prioritize both travel demand and cycling safety and
can be integrated into the existing infrastructure. The authors, in [27], focus on
redistribution fleet optimization by predicting user demand using a trip dataset.
The solution can help operators pick the ideal areas for fleet deployment accord-
ing to user needs. Additionally, it can be adapted to any redistribution strategy
and can be used in various ways like reducing collision risks in areas where the
model predicts high demand or optimizing pricing strategies by analyzing the
number of future demands.

This last solution and the majority of solutions proposed to address micro-
mobility issues such as relocation problems, infrastructure safety, or mainte-
nance costs rely on predicting user demand using advanced machine learning
techniques. By leveraging this prediction, operators can optimize their services
to better align with user needs and improve overall satisfaction. To accomplish
this, data collected from shared micro-mobility systems, such as trip data, fleet
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positions, and infrastructure-related data, is processed using data science, data
cleaning, and analysis techniques to prepare it for modeling. In this context, data
visualization techniques can also be used to help in identifying other influential
factors that should be prioritized in predicting user demand, like weather or traf-
fic data. Through visualization, patterns, and trends within the data can be more
easily identified, leading to a better understanding of the complex relationships
between different variables.

4.2 A Review of a Real-World Micro-mobility Dataset (Bordeaux,
2021/2022)

We are delighted to collaborate with Bird [3], a leading operator in the micro-
mobility space, to analyze their recent dataset on self-service fleet usage. This
dataset provides a unique opportunity to explore real-world mobility trends in
the city of Bordeaux, France, and address micro-mobility challenges, including
user satisfaction and fleet availability. However, the dataset is not yet publicly
available due to privacy concerns. In this section, we present the features of this
dataset as well as strategies for leveraging it to improve service quality and meet
user needs. Figure 2 shows the operating zone in Bordeaux, which covers a 36.56
Km2 area and includes more than 100 virtual stations for e-bikes and e-scooters.

Fig. 2. Bird’s operating area in Bordeaux city

Bird is one of the companies that rely on virtual stations to park its fleets
in Bordeaux for regulatory reasons, in which users are obligated to park in well-
defined georeferenced areas without physical boundaries with a radius of 15m
[3].

Bird provides us with a trip dataset for electric scooters and bikes that have
been recorded, with the beginning and ending GPS positions collected in the city
of Bordeaux. It includes over 71 thousand recorded trips between arrival and
departure stations over the twelve 2021 months and the three winter months of
2022. Each transaction record includes the following details:
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Fig. 3. Example of Bird virtual station

– Trip ID (Object): refers to the trip identifier.
– Vehicle checks out/in time (Object): refers to the date of reservation and the

return of the fleet.
– Start and End position latitudes and longitudes (Float64): refers to the precise

GPS start and end positions of the trip.

A list of fixed virtual stations is also given because trips are recorded with the
exact GPS departure and arrival position rather than the virtual station to
which they belong. This list includes the latitudes and longitudes positions and
the identifier of the station.

The graphs shown in Fig. 4 illustrates the average demand (number of trips)
for Bird’s micro-mobility services during different times of the day across differ-
ent seasons.

Fig. 4. Average demand for each season by hour and day (from Bird’s data)
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Table 4 represents the average number of demands made up to the maximum
during each time period, categorized by day type (weekday vs. weekend) and
season. This data is derived from Graph 4, which provides a visual representation
of the same information.

Table 4. Average number of trips by the time of day, day type, and season

Season Day Morning(5am–12pm) Afternoon(12pm–6pm) Evening(6pm–12am)

Summer Weekday 132–180 215–230 200–300
Weekend 90–175 187–240 225–300

Fall Weekday 70–150 120–150 100–300
Weekend 60–100 140–150 120–160

Winter Weekday 45–80 85–120 40–50
Weekend 35–40 60–80 35–40

Spring Weekday 100–175 137–250 75–100
Weekend 60–100 100–180 75–100

As expected, the demand for trips during the summer increases significantly
in the afternoon and evening hours, especially on weekends, with a peak demands
of up to 300. In contrast, there is relatively low demand during the morning rush
hour. During spring and winter, however, the demand is lower during the evening
rush hours and higher in the morning or afternoon, particularly on weekdays,
with demand reaching up to 250. The data demonstrate that Bird’s customers
use the services primarily for leisure purposes, as demand consistently peaks
during the evening rush hour or evening hours, in each season. Figure 5 shows
a heatmap visualization for user demand. We can easily notice from the maps
that the majority of the frequented areas are touristic or commercial.

Fig. 5. Heatmap visualization for Bird demand density

We can notice, from Figs. 3 and 5, that the area’s type and period have a great
impact on user demand. However, regarding the imbalance problem, it is not
sufficient to determine the exact ideal locations to place the fleets dynamically
according to the user’s needs and enhance user satisfaction and service. Recent
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studies have demonstrated that using advanced prediction techniques, such as
machine learning, can help predict the user demand for an area or a station.
These predictions can be based on temporal criteria, such as specific days or
time periods of the week [12,18,41]. Given also that weather variables have a
significant impact on the use of micro-mobility modes [21,38]; it enables more
accuracy in the prediction of user demand by taking into consideration a variety
of variable factors like temperature, humidity level or wind speed.

In consequence, we can say that the use of real trips, that have been recorded
over time, can effectively help increase the availability of fleets in areas where
high future demand is predicted; this helps to reduce the amount of time that
users must spend searching for a fleet. This forecast enables operators to prop-
erly assess their demand and can provide additional virtual stations in popular
regions during specific times, like the summertime, close to tourist areas. By
enhancing the user experience, these techniques help operators boost their rev-
enue and improve their services.

Additionally, the user demand prediction tool can improve various aspects,
such as pricing strategies and offers, during peak demand periods. It can also
improve safety and reduce collisions in areas predicted to be in high demand,
or decrease the cost of maintaining devices and replacing batteries. This can
be achieved by planning collection operations during times when there is little
demand.

5 Conclusion

Shared micro-mobility services face numerous challenges that can negatively
impact user satisfaction and company revenue. These challenges include system
imbalance, high maintenance costs, infrastructure problems, and safety concerns.
To overcome these challenges, machine learning techniques, analytical systems,
and decision support systems have been proposed as solutions. These approaches
rely on the collected data from shared micro-mobility services, and it has been
demonstrated their significance as a crucial element in enhancing service usage.
In this study, we analyzed a real-world dataset of recorded trips in Bordeaux,
France. The goal was to explore how to leverage this data to improve fleet avail-
ability and service quality. By identifying patterns and insights within this data,
we can make informed decisions and implement targeted strategies to create a
better experience for users and drive greater revenue for companies [27].
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Abstract. In recent years, there has been growing concern among experts regard-
ing the risks of hacking autonomous vehicles. As these vehicles become increas-
ingly complex, the number of potential vulnerabilities and challenges asso-
ciated with securing them also rises. This paper presents a model checking-
based framework that utilizes a predefined set of attacks and countermeasures,
which are then used to assess the security robustness of the model. First, we
formalize a cyber-physical system using Unified Modeling Language (UML)
class and activity diagrams. Subsequently, we employ UML to develop a meta-
language for autonomous vehicle systems, cyberattacks, and cybersecurity coun-
termeasures. The framework instantiates domain-specific application diagrams
for autonomous vehicles, identifies existing attack surfaces, and generates poten-
tial attacks that could exploit detected vulnerabilities or weaknesses. Further-
more, the proposed framework generates appropriate Java code for integrating
countermeasures, attacks, and smart vehicle models. To demonstrate the effec-
tiveness of the proposed solution, we model, analyze, harden, and evaluate our
framework using a real-world use case. This research aims to contribute to the
ongoing efforts to improve the security of autonomous vehicles and mitigate the
risks associated with hacking and other cyber threats. By applying the framework
presented in this paper, the goal is to promote a more secure development and
implementation of autonomous vehicle systems.

Keywords: Cyber Security · Domain Specific Language · Autonomous
Vehicles · Threat behavior · Attack Graphs, Counter Measures · UML · JAVA

1 Introduction

The introduction of autonomous vehicles on our roads presents a new set of cybersecu-
rity challenges, as hackers may be able to remotely access and infiltrate on-board sys-
tems and networks. These vehicles, with their interconnected components and reliance
on digital infrastructure, create a complex environment that is potentially susceptible to
various types of cyberattacks. Addressing these security concerns requires tackling two
key challenges in the development of secure autonomous vehicles [23].

The first challenge involves early identification of vulnerabilities and weaknesses
during the development stage [25]. By proactively uncovering potential security flaws,
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developers can implement necessary countermeasures to mitigate risks before vehicles
are deployed on public roads. This requires a comprehensive understanding of the vehi-
cle’s architecture, communication protocols, and software systems, as well as the abil-
ity to anticipate potential threats and attack vectors. The second challenge is related
to efficiently assessing and quantifying the precise degree of vulnerability of an exist-
ing system when exposed to known attacks. This process is crucial for determining the
effectiveness of implemented security measures and identifying any remaining gaps that
may be exploited by hackers [16]. To achieve this, robust security assessment method-
ologies and tools must be developed and applied, such as penetration testing, vulnera-
bility scanning, and threat modeling.

Addressing the first challenge necessitates verifying whether a model of the sys-
tem satisfies a set of relevant security properties. This verification is performed in the
presence of an attacker, typically a Dolev Yao adversary [6], possessing significant
power to control all the system’s communication channels and interfere with its func-
tionality. This analysis technique is known as model checking [3]. Model checking has
been successfully applied to uncover insidious attacks and anomalies in risk analysis
and security assessment for model-based systems [30]. However, although efficiently
implemented in specific cases [4], the worst-case time complexity of model checking
is exponential in the size of the system’s (|S|) and the property’s (|P |) models, i.e.,
O(2(|S|+|P |)). Consequently, large systems may be impractical for this type of analy-
sis. In contrast, addressing the second challenge involves adopting a more pragmatic
approach. By considering only documented attacks, the process involves estimating the
system’s degree of vulnerability by examining its attack surfaces [17]. An attack sur-
face can be roughly defined as the set of externally accessible system actions and the
system resources that can be modified through those actions. The more extensive the
attack surface, the more vulnerable the system can be.

Detecting attack surfaces requires inspecting a system’s model and determining if
known attacks can reach the system’s core procedures via the exposed actions. The lit-
erature offers various ways to describe attacks, including attack trees [18], attack graphs
[27], and network attack graphs [28]. Such models are utilized by numerous organiza-
tions that have a special interest in collecting, describing, and classifying attack patterns.
This paper focuses on addressing the second challenge by proposing a formal frame-
work for automatically detecting attack surfaces in systems modeled using UML [21], a
general-purpose, graphical modeling language designed for specifying, designing, and
verifying complex hardware and software systems, as well as organizational and pro-
cedural workflows. The UML 2.0-based formalism has become the de facto standard
in software and systems modeling, making it a pragmatic choice to ensure compliance
with current engineering practices.

UML covers various aspects of a system’s modeling, particularly its structure and
behavior, with its extended profiles MARTE and SysML. Specifically, class and activ-
ity diagrams, which this work adopts, can express both qualitative and quantitative ele-
ments of a system’s behavior at various levels of abstraction [10]. A strong system [20]
is one in which the cost of an attack is greater than the potential gain to the attacker.
Conversely, a weak system is one where the cost of an attack is less than the potential
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gain. The cost of an attack should take into account not only money but also time to
recovery and potential punishment for criminal activities.

To summarize, addressing the cybersecurity challenges in autonomous vehicles
requires focusing on two key aspects: early identification of vulnerabilities during the
development stage and efficient assessment of existing systems’ vulnerability when
exposed to known attacks. By employing a combination of model checking and attack
surface analysis, developers can better understand and mitigate risks associated with
autonomous vehicles. Utilizing UML for system modeling provides a practical and
widely-accepted approach for detecting attack surfaces and ensuring compliance with
current engineering practices. By taking these steps, the security of autonomous vehi-
cles can be significantly improved, ultimately leading to safer and more reliable trans-
portation systems.

This paper presents an innovative framework for detecting and mitigating attacks
in autonomous vehicle systems. By leveraging a model checker-based approach, the
framework automatically identifies potential threats and generates secure implementa-
tion solutions. The framework starts by creating a meta-model specific to autonomous
vehicles and their associated security challenges. This meta-model serves as a blueprint
for the system being analyzed, and is modeled using classes and activity diagrams.

Once the input system is modeled, the framework uses attack templates to gener-
ate potential attacks on the system’s attack surfaces. These attacks are then combined
with the instantiated model and appropriate countermeasures to produce a secure imple-
mentation. The end result is a transformed autonomous vehicle system, implemented in
Java, that is secure and resilient against potential attacks. A visual representation of the
framework is shown in Fig. 1. This framework provides a comprehensive solution for
ensuring the security of autonomous vehicle systems and mitigating the risks associated
with them.

Fig. 1. Secure Autonomous Vehicles Systems.
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The remainder of this paper is organized as follows. Section 2 provides a compre-
hensive review of the existing related work in the field of autonomous vehicle secu-
rity. In Sect. 3, the necessary background information is formally presented to provide
context for the proposed framework. Section 4 introduces the concept of the threat
meta-model, specifically designed for autonomous vehicle systems. This section also
delves into the details of attack generation and composition. The security assessment of
autonomous vehicle systems is presented in Sect. 6. This section demonstrates how the
proposed framework can be used to evaluate the security of these systems. The imple-
mentation of secure systems is covered in Sect. 7. This section provides insight into
how the proposed framework can be used to transform autonomous vehicle systems
into secure and resilient systems. The experimental results of the proposed framework
are described in Sect. 8. This section provides empirical evidence for the effectiveness
of the framework. Finally, Sect. 9 concludes the paper and highlights potential avenues
for future research. This section also provides a summary of the key contributions of
the paper and the impact of the proposed framework on the field of autonomous vehicle
security.

2 Related Work

In this section, we provide an overview of the current initiatives and research efforts
related to system attack modeling, attack detection, countermeasures, and their applica-
tion in the context of autonomous vehicles.

Attack Modeling. A risk-based approach [22] has been proposed to create modular
attack trees for each component in the system [9]. These trees are specified as para-
metric constraints, allowing for the quantification of security breach probabilities due
to internal and external component vulnerabilities. Another approach models proba-
bility metrics based on attack graphs as a special Bayesian network [7], where each
node represents vulnerabilities as well as pre- and post-conditions. Jürjens and Sha-
balin [14] and Houmb et al. [11] extracted specific cryptography-related information
fromUMLsec diagrams, incorporating the Dolev-Yao attacker model within UMLsec to
represent interactions with the environment. Furthermore, Siveroni et al. [29] extended
UMLsec to model peer-to-peer applications and their security aspects, relying on abuse
cases defined as UML use cases and state machine diagrams to represent attack scenar-
ios. Morais et al. [19] generated attack scenarios from the threat model of a wireless
security protocol by collecting attacks from vulnerability databases, classifying them
based on violated properties, and generating the protocol attack tree using the Securel-
Tree tool.

Attack Surface Detection. Gegick and Williams [8] identified security vulnerabilities at
the code level by tailoring attack patterns based on software components, taking the
form of regular expressions representing generic vulnerabilities. Huang et al. [12,24]
and Ouchani and Lenzini [24] distilled attack surfaces from an attack graph by iden-
tifying the minimum cost in the graph, using a SAT solver to determine the minimum
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effort required for an attacker to compromise critical system assets. Vijayakumar et al.
[31] developed a runtime analysis-based approach to compute attack surfaces by locat-
ing system adversaries and determining which program entry points provide access
to adversary-controlled objects, using the system’s access control policy to differenti-
ate between adversary-controlled and trusted data. Kantola et al. [15] identified com-
munication attack surfaces by considering intent-based attacks on applications lacking
common signature-level permissions, where any component of the correct type with a
matching intent filter can intercept the intent, with the potential attacks enabled by such
unauthorized intent receipt depending on the intent type. Checkoway et al. [2] systemat-
ically analyzed the external attack surface of modern automobile systems, synthesizing
the set of possible external attack vectors as a function of the attacker’s ability to deliver
malicious input via specific modalities and characterizing the attack surface exposed in
current automobiles through their set of channels.

Securing Autonomous Vehicles. Joy and Gerla [13] proposed an architecture to guaran-
tee location privacy for mobile users, developing system epochs, a labeled transition-
based threat model, and a query measuring location sensitivity. Cui et al. [5] integrated
a six-step method to analyze safety and security in compliance with ISO standards
26262 and SAE J3061. Plosz and Varga [26] demonstrated the relationship between
threats, attacks, vulnerabilities, and their impacts on autonomous vehicles. Ayub et al.
[1] designed an autonomous vehicle to secure sensitive areas from suspicious activities,
relying on self-governing navigation and recursive path planning.

By examining these various research efforts, we can gain valuable insights into
the current state of attack modeling, detection, and countermeasures for autonomous
vehicles. This knowledge will be crucial in the development of more secure and reliable
systems, capable of withstanding increasingly sophisticated cyber threats.

3 Systems Modeling Language

In this section, we introduce the modeling diagrams, both structural and behavioral, that
form the basis for specifying our security meta language. These diagrams facilitate the
representation and analysis of system components and their interactions, enabling the
development of a robust security meta language for effective security analysis.

3.1 Structural Models

Any language should provide a semantic foundation for modeling a system’s structure
and behavior. As a standard graphical language, UML offers mechanisms to represent
class members, such as attributes and methods, along with additional information about
them. The visibility of attributes or methods can be denoted as follows: + for public, −
for private, # for protected, and ∼ for package visibility.

– + Public: The attribute or method is accessible from any class within the system.
– − Private: The attribute or method is accessible only within the class it is defined.
– # Protected: The attribute or method is accessible within the class itself and any
subclasses or classes within the same package.
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– ∼ Package: The attribute or method is accessible to classes within the same package,
but not to classes outside the package.

By utilizing these visibility symbols in UML, we can effectively model the accessi-
bility and encapsulation of class members in a system’s structure and behavior, which
is crucial for understanding the security properties of the system.

Further, UML defines various relationships between classes:

– Dependency: A semantic connection between dependent and independent model ele-
ments. Dependency is denoted by a dashed arrow.

– Association: Represents a relationship between instances of classes. Association can
be bi-directional, uni-directional, an aggregation (including composition aggrega-
tion), or reflexive. Association is denoted by a solid line connecting two classes.

– Aggregation: Occurs when a class is a collection or container of other classes. It
represents a “whole-part” relationship, but the parts can exist independently of the
whole. Aggregation is denoted by a diamond shape at the end of an association line.

– Composition: A relationship that represents a stronger “whole-part” relationship
where the parts cannot exist independently of the whole. Composition is denoted
by a filled diamond shape at the end of an association line.

– Generalization: Indicates that one of the two related classes (the subclass) is con-
sidered to be a specialized form of the other (the superclass), and the superclass is
considered a generalization of the subclass. Generalization is denoted by a hollow
triangle at the end of a solid line.

– Dependency: A relationship where a class depends on another if the independent
class is a parameter variable or local variable of a method of the dependent class.
Dependency is denoted by a dashed arrow.

A formal structure of UML diagrams is given in Definition 1.

Definition 1 (Class Diagram). A class diagram is a tuple C = (C, T, R), where:

1. C is a finite set of classes, whereas c ∈ C is a tuple 〈A,B〉 of typed attributes A
and behaviors B.

2. T = {d, a, s, c, g} defines the type of a class relations (dependency, aggregation,
association, composition, and generalization).

3. R : C × C → Ar × T × Ar returns the kind of relations between classes and Ar
defines the multiplicity enumeratison.

3.2 Behavioral Models

Activity diagrams are UML formalism that focus on a system’s behavior. Activity dia-
grams are graphs: their vertices stand for activities (called activity nodes) and their
edges stand for connections among activities (called activity edges) that define objects/-
data flow or control flows. In particular, an activity node (a�N )can be of the following
types:

– An activity invocation element: It sends (a!v � N ) or receives (a?v � N ) signals
or objects, or it calls an operation or calls a behavior (a ↑ A�N ).
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– A control flow element: It defines the initial (ι�N )and the final flow of the diagram
(�), or the final flow of a path (�), or a decision nodes (D(A, p, g,N ,N ), ). It can
be a fork (F (N1,N2)), a merge (M(x)�N ) or a join node (J(x)�N ).

An activity edge can be of the following types:

– A control flow element: This element represents the execution path through the activ-
ity diagram. Incoming edges, which lead to a node from other nodes, are called input
edges; outgoing edges, which originate from a node and lead to other nodes, are
referred to as output edges. Understanding the flow of control through these input
and output edges is crucial for accurately modeling a system’s behavior and identi-
fying potential security vulnerabilities.

– An object flow element: This element represents the flow of objects between activ-
ity nodes in the activity diagram. Incoming edges are called input tokens; outgoing
edges are referred to as output tokens.

Branching in activity diagrams is modeled using decision nodes andmerge nodes. A
decision node specifies a choice between different possible paths. The direction to take
depends on the evaluation of a boolean guard, if the decision is boolean. Alternatively,
it depends on a probability distribution if the decision is probabilistic. A merge node
specifies a point from where different incoming control paths start following the same
path.

Concurrency and synchronization are modeled with fork nodes and join nodes. A
fork node indicates the beginning of multiple parallel control threads. In UML 2.0, fork
nodes model unrestricted parallelism: thus, a token evolves asynchronously according
to an interleaving semantics. A join node allows multiple parallel control threads to
synchronize and rejoin (Fig. 2).

Fig. 2. Activity Diagram Constructs

When an activity diagram is invoked, its initial node activates. It is customary to
assume that the initial node activates by possessing a token. A node activates, and thus
takes the token, only if the preceding node deactivates and if the condition guarding the
node’s incoming edge is satisfied. During execution, the action or decision node that has
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an associated call behavior can consume its input token and invoke its specified behav-
ior. UML supports two types of invocations: synchronous and asynchronous. In the
asynchronous invocation, the execution of the invoked behavior proceeds without any
further dependency on the execution of the activity that invokes it. In the synchronous
invocation, the execution of the calling artifact is blocked until it receives a reply token
from the invoked behavior. In a decision node that has more than one path enabled, the
choice of which behavior to activate is done non-deterministically.

Definition 2. A UML activity diagram is a directed graph G = (N,E), where N is
the set of activity nodes and E is the set of activity edges. The activity nodes can be of
different types, including action nodes, initial nodes, decision nodes, merge nodes, fork
nodes, and join nodes. The activity edges connect these nodes and can be of two types:
control flow elements and object flow elements.

Definition 3 (UML Activity Diagram). A UML activity diagram is a tuple A =
(•, fin,N , E , K, P rob, Tok), where:

1. • is the initial node,
2. fin = {�,�} is the set of final nodes,
3. N = N1 ∪ N2 ∪ N3 is a finite set of activity nodes, where N1, N2, and N3 are

activity invocation, object and control nodes, respectively.
4. E is a finite set of activity edges,
5. K is a finite set of tokens,
6. Prob : ({•} ∪ N )× E → Dist(N ∪ fin) is a probabilistic transition function that

assigns for each node a discrete probability distribution μ ∈ Dist(N ∪ fin),
7. Tok : N ∪ E → K is a function that assigns for each node or edge one token.

Proposition 1 (Structure Constraint). For a UML activity diagram A, let |E| be the
number of edges, and |N | = |N1| + |N2| + |N3| is the number of nodes. We have:

1. If N3 = ∅, then : |N | = |E| − 1
2. If N3 
= ∅, then : |N | < |E| − 1

Proposition 2 (Token Constraint). In a UML activity diagram A, let |E| represent the
number of edges, and |K| is the number of tokens. Then: |K| < |E| + |N |.

4 Modeling Meta Language

The meta language MML provides a convenient way to model the structural and behav-
ioral design of an autonomous vehicle (AV), its potential threats and attacks, and the
available countermeasures. MML builds upon the foundation of UML, extending its
capabilities to better represent security aspects of a system.

Definition 4. The Meta Modeling Language (MML) is an extension of UML designed
for modeling the security aspects of a system, including threats, attacks, and counter-
measures. MML combines the structural and behavioral modeling capabilities of UML
with additional constructs that facilitate the representation of security-related elements
and their relationships.
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By incorporating MML into the design process of an AV, engineers can gain a
deeper understanding of the system’s potential vulnerabilities and the effectiveness of
various countermeasures. MML makes it easier to identify and mitigate security risks,
ensuring a more robust and secure design for autonomous vehicles.

4.1 AV Model

Figure 3 depicts the class diagram of the meta-model for an autonomous vehicle (AV).
In an AV, an entity can be an object, a device, and/or a social actor. The class protocol
ensures the communication between the server, device, and objects. An object can be
physical (e.g., sensor) or digital (e.g., message, data) with varying degrees of speci-
ficity and capabilities. A device is an object with a system (e.g., PC, smartphone, etc.)
and can make decisions according to its behavior. Social actors can vary depending on
the model’s system, but typically interact with others, manipulate objects, and access
resources. The AV meta-model provides a way to represent the various components
of an autonomous vehicle and their relationships. By incorporating this meta-model
into the design process, engineers can more easily identify potential vulnerabilities and
develop appropriate countermeasures. Additionally, the AV meta-model can facilitate
communication between different stakeholders, such as engineers and security analysts,
by providing a common language for discussing the design and security aspects of an
AV.

Fig. 3. A AV Meta-Model.

4.2 AV Environment

Figure 4 shows the class diagram of the meta-model for an autonomous vehicle (AV)
environment. An environment can be a human body, a natural species, or a physical
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space that hosts the system and interacts with its components. In the context of AVs, the
environment plays a crucial role in determining the system’s behavior and its interaction
with external entities. For example, the weather, traffic conditions, and road infrastruc-
ture can affect an AV’s decision-making process and overall performance. Additionally,
the presence of other vehicles, pedestrians, and animals in the environment can pose
safety challenges for the AV.

Fig. 4. A AV environment Meta-Model.

4.3 Threat Model

In the context of an AV model, a threat can be represented as a class diagram, as shown
in Fig. 5. A threat is an entity that implements techniques, possesses certain skills and
knowledge, and can be part of an attack scenario (e.g., attack tree) to exploit a vulner-
ability in the AV system. Threat modeling is a critical aspect of AV security analysis,
as it helps identify potential threats and vulnerabilities in the system. The AV threat
meta-model provides a structured way to represent different types of threats, their capa-
bilities, and their relationships with other components of the AV system. By analyzing
the threat model, security analysts can identify potential vulnerabilities and develop
appropriate countermeasures to mitigate the risk of an attack.

Fig. 5. Threat Model.
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4.4 Counter Measure Model

A countermeasure is a defense mechanism that is designed to protect a system against
potential attacks. In the context of AV security, countermeasures can be implemented to
mitigate vulnerabilities that may be exploited by an attacker. Figure 6 shows the class
diagram of the metamodel for countermeasures in an AV system.

Fig. 6. Counter-Measure Model.

As shown in the diagram, a countermeasure can be associated with a set of vulnera-
bilities that it is designed to mitigate. Examples of countermeasures include monitoring,
security policy rules, software measures (such as encryption and access controls), and
physical measures (such as secure storage and biometric authentication).

4.5 Threat Behaviors

The standard schema for describing attack patterns is the Common Attack Patterns
Enumeration and Classification (CAPEC) developed by the software assurance strategic
initiative. We specifically considered two categories of attacks to be relevant for our
work: software attacks (CAPEC-513) and communications attacks (CAPEC-512). The
software attacks category includes twenty-five attacks, such as Brute Force (CAPEC-
112) and Authentication Abuse (CAPEC-114). Due to space limitations, we cannot list
all the attacks in this category, but they can be found in the CAPEC taxonomy. The
communications attack category includes two attacks: Interception (CAPEC-117) and
Protocol Manipulation (CAPEC-272). These attacks are important to consider when
assessing the security of autonomous vehicles, as they can have significant impacts on
the system’s functionality and safety. By identifying and analyzing these attacks, we can
better understand the potential vulnerabilities of the system and develop appropriate
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countermeasures to mitigate them. We present models for a chosen set of technical
attacks, as follows.

– Spoofing (CAPEC-156): An attacker impersonates a trusted source by crafting a
fake message that mimics an authorized one. Recipients of these messages may
be deceived into responding or processing the misleading message. Spoofing can
involve altering the message’s content (CAPEC-148) or falsifying the message’s
sender or receiver (CAPEC-151). The probabilities of these attacks are illustrated in
the figure below, with P (CAPEC − 148) = P (CAPEC − 151) = 0.8. We assign
a value of 0.8 due to their high severity, representing the average between 60% and
100%.

– Data Leakage (CAPEC-118): An attacker acquires sensitive information by
exploiting design vulnerabilities using well-formed requests. Three techniques
belong to this category: Data excavation (CAPEC-116), Data interception (CAPEC-
117), and Sniffing (CAPEC-148). CAPEC-116 and CAPEC-117 appear in the first
control flow with probabilities of P (CAPEC − 116) = 0.5 and P (CAPEC −
117) = 0.5. CAPEC-148 is shown in the second control flow with a probability
value of P (CAPEC − 148) = 0.2.

– Resource Depletion (CAPEC-119): An attacker exhausts a resource to the point
where the target’s functionality is impacted, typically causing the degradation or
denial of one or more services. The attacker can achieve their goal through flood-
ing (CAPEC-125), leaking (CAPEC-131) by uploading a malicious file, or alloca-
tion (CAPEC-131) by sending a formatted request. The pattern of these attacks is
depicted in the following diagram, where n represents the number of requests and
m is a number determined by the designer. These attacks are launched with proba-
bilities of P (CAPEC − 125) = 0.8 and P (CAPEC − 131) = 0.8.

– Injection (CAPEC-152): An attacker manipulates or disrupts a target’s behavior by
sending specially crafted input data via an interface that processes this data. Vari-
ous patterns, dependent on the resources, are documented in CAPEC and abstracted
to a design level, including SQL (CAPEC-66), email (CAPEC-134), format string
(CAPEC-135), LDAP (CAPEC-136), resource injection (CAPEC-240), script injec-
tion (CAPEC-242), and command injection (CAPEC-248). These patterns share a
common control flow with an 80% probability, as depicted in Fig. 7.
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Fig. 7. Control flow for Injection (CAPEC-152)

Fig. 8. Workflow for Exploitation of Authentication (CAPEC-225).

– Exploitation of Authentication (CAPEC-225): Attackers exploit vulnerabilities in
authentication mechanisms, such as authentication bypass via spoofing (CWE-290),
authentication bypass using assumed immutable data (CWE-302), and origin valida-
tion error (CWE-346). The sub-category CAPEC-21 focuses on exploiting session
variables, resource IDs, and other trusted credentials by taking advantage of soft-
ware that accepts user input without verifying its authenticity. This attack follows
the workflow illustrated in Fig. 8 with an 80% probability.

– Fuzzing (CAPEC-28): This attack, inspired by a software testing method, employs
a probabilistic technique (CAPEC-223). The attacker submits randomly generated
input to the system and monitors it for indications of potential weaknesses. The
attack pattern is characterized by the control flow described below, with P(CAPEC-
28) = 0.8 and P1, P2, · · · , Pn representing probability values (e.g., uniformly dis-
tributed), as demonstrated in Fig. 9.

Fig. 9. Control flow for Fuzzing (CAPEC-28).

5 Systems-Attack-Defense Composition

By relying on the developed diagrams, we can instantiate concrete models for a real
case by providing specific values for the attributes and methods of the classes in the
class diagrams. This allows us to create a concrete system model that can be analyzed
for potential security vulnerabilities.

5.1 Attack Surfaces Detection

A system’s attack surface is related to its exposed vulnerabilities, which in turn affects
an adversary’s ability to interfere with and damage the system. The larger the attack
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surface, the greater the vulnerability, and the more potential attacks the system may
suffer. An attack surface is defined as a subset of a system’s resources, typically its
data, variables, and actions, that an intruder can control and used to interfere with the
system’s behavior.

Entry and exit points refer to the system’s artifacts used to receive and send objects,
respectively. A channel connects an attacker to a system, and untrusted data refers to
persistent data that can be read (received) or written (sent) by an entry or exit point,
respectively. The concept of untrusted objects is defined in Definition 5.

Definition 5. [Untrusted Object] An object v is untrusted if it is acquired by an input
action or if it depends on an untrusted object. An object v depends on another object w
if v is calculated from w.

Definition 6 formalizes the notion of attack surface in SysML terms:

Definition 6. (Attack Surface). Let A be a SysML model. An attack surface is a tuple
ω = 〈N, X, O, Ch〉, where:

1. N is the set of entry points of A, which are all artifacts except send artifacts.
2. X is the set of exit points of A, which are the send artifacts.
3. O is the set of untrusted objects of A.
4. Ch : N ∪ X → 2O maps entry or exit points to untrusted objects.

In this definition, N represents the set of entry points of the SysML model, which
are all artifacts except send artifacts, while X represents the set of exit points, which
are the send artifacts. O is the set of untrusted objects, which are objects that are either
acquired by an input action or depend on another untrusted object, as per Definition 5.
The function Ch maps each entry or exit point to a set of untrusted objects. Together,
these components form the attack surface of the SysML model, which is crucial for
understanding and identifying potential vulnerabilities that an attacker can exploit.

To determine the attack surfaces of a SysML activity diagram A, we traverse the
diagram in a depth-first manner, and identify the entry points, exit points, untrusted
data, and channels. These components form the attack surface, which we denote by
Ω = (ω1, ω2, ω3, ω4). Here, ω1 is the set of entry points, ω2 is the set of exit points,
ω3 is the set of untrusted data, and ω4 is the set of channels. By constructing the attack
surface in this way, we can identify the specific parts of the system that an attacker can
potentially exploit to compromise the security of the system.

5.2 Application-Dependent Attacks Generation

Our objective is to assign appropriate attack templates for each attack surface detected
by Algorithm 1 and instantiate them for the system under study. To accomplish this, we
propose the function Λ described in Listing 1.1, which assigns at least one attack k ∈ K

to each attack surface ω ∈ Ω. Here, K is the set of attacks, where each ki corresponds
to a specific CAPEC id: k1 is CAPEC-148, k2 is CAPEC-151, k3 is CAPEC-116, k4 is
CAPEC-117, k5 is CAPEC-125, k6 is CAPEC-131, k7 is CAPEC-148, k8 is CAPEC-
152, k9 is CAPEC-225, k10 is CAPEC-28, and k11 is CAPEC-163.
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Listing 1.1. Attack-System Composition.

Λ :Ω → 2K

Λ (ω ) = ∀ω ∈ Ω , Case (ω ) of
ι�N ⇒ in {k1, k6, k7, k11} ∪ Λ(N ) end
a�N ⇒ in {k2, k4} ∪ Λ(N ) end
a ↑ A�N ⇒ in{k3, k4, k10, k11} ∪ Λ(N )∪Λ(A) end
a!v�N ⇒ in {k2, k3, k4} ∪ Λ(N )end
a?v�N ⇒ in {k1, k8, k11} ∪ Λ(N ) end
D(A, p, g, N1, N2) ⇒ in {k5, k7, k9, k11} ∪ Λ(N1) ∪ Λ(N2) ∪ Λ(A) end
M(x, y)�N ⇒ in {k5, k9} ∪ Λ(N ) end
F (N1, N2) ⇒ in{k5, k9} ∪ Λ(N1) ∪Λ(N2) end
J(x, y)�N ⇒ in {k5, k9} ∪ Λ(N ) end

e l s e ⇒ in {} end

5.3 AV Defense

We propose a set of countermeasures to minimize attack surfaces and counteract attack
actions. At this level of AV design, countermeasures can be preventive (e.g., firewall,
antivirus) or reactive (e.g., adding security guards) after a successful attack. In this
work, we consider the following measures:

– Policy access control: This restricts the use and access to resources. We adopt the
role-based access control (RBAC) mechanism to model this defense.

– Encryption: This ensures confidentiality and data integrity. We use symmetric and
asymmetric key encryption.

– Intrusion detection: This is a prevention mechanism from known attacks.
– Secure communication: This allows a sensor node running on a system to commu-
nicate with an external node running on a different system. Initially, we integrate
IPsec using AES-CCM.

– Reputation-based secure routing: This guarantees the continuity of the routing ser-
vice by selecting trusted neighbor nodes. At this level, we use a signature-based
detection method.

6 AV Security Assessment

For the security assessment, we rely on the probabilistic and symbolic model checker
PRISM to verify the security requirements expressed in the probabilistic computation
tree logic (PCTL). A PRISM program is a composition of a set of modules defined
as a set of variables and commands. The evaluation of variables defines the state of a
module, whereas commands define their transitions. PRISM expresses a probabilistic
command as [α] g → p1 : u1+...+pm : um, where pi is a probability value (pi ∈]0, 1[
and

m∑

i=0

pi = 1), α is a label that names the action α, g is the guard over all variables

expressed as a propositional logic formula, and ui describes the update of variables. An
update takes the form (v′

j = valj) · · · (v′
k = valk) to assign the value vali to only a

local variable vi. So, for a given action α, if the guard g is valid, then the update ui
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is enabled with a probability pi. When p = 1, it is a simple command expressed by
[a] g → u.

Syntactically, a module named M is delimited by two keywords: the module
head “module M”, and the module termination “endmodule”. Further, we can
model costs with reward module R delimited by keywords “rewards R” and
“endrewards”. A reward module is composed from a state reward or a transition
reward. A state reward associates a cost (reward) of value r to any state satisfying g and
it is expressed by g : r. A transition reward is specified by [a] g : r to express that the
transitions labeled a, from states satisfying g, are acquiring the reward of value r.

Finally, for the analysis, we have to generate a PRISM program P proper to the
provided formalism. For that, we define the function TP that assigns for each node
behavior its proper PRISM code fragment that is bounded by ‘module node name’
and ‘endmodule’ and the semantic rules of each action is expressed by a PRISM
command.

For an automatic assessment of security in AV, we develop TP (Listing 1.2) that
transforms the structural and behavioral diagrams of a given AV model into a PRISM
code. The security requirements are expressed in PCTL as follows.

φ ::= � | ap | φ ∧ φ | ¬φ | P�� p[ψ]

ψ ::= Xφ | φU≤ kφ | φUφ

where the term “�” means true, “ap” is an atomic proposition, k ∈ N, p ∈ [0, 1], and
	
∈ {<,≤, >,≥}. The operator “∧” represents the conjunction and “¬” is the negation
operator, and P is the probabilistic operator. Also, “X”, “U≤ k”, and “U” are the next,
the bounded until, and the until temporal logic operators, respectively.

Listing 1.2. PRISM Code Geneation.
T :A → P
T (A) = ∀n ∈ A, L(n = ι) = �,L(n �= ι) = ⊥, Case(n) of

l : ι�N ⇒ in {[l]l −→ (l′ = ⊥)&(L(N)′ = �); } ∪ T (N) end

l : M(x, y)�N ⇒ in {[lx]lx −→ (l′x = ⊥)&(L(N)′ = �); }∪{[ly ]ly −→ (l′y = ⊥)&(L(N)′ = �); } ∪ T (N)end

l : J(x, y)�N ⇒in {[l]lx ∧ ly −→ (l′x = ⊥)&(l′y = ⊥)&(L(N)′ = �); }cupT (N)end

l : F (N1, N2) ⇒ in {[l]l −→ (l′ = ⊥)&(L(N1)′ = �)&(L(N2)′ = �); } ∪ T (N1) ∪ T (N2) end

l : D(A, p, g, N1, N2)⇒Case (p) of ]0, 1[ ⇒in

{[l]l −→ p : (l′ = ⊥)&(l′g = �) + (1 − p) : (l′ = ⊥)&(l′¬g = �); } ∪ {[l¬g ]lg ∧ ¬g −→ (l′¬g = ⊥)&(L(N2)′ = �); }
∪{[lg ]lg ∧ g −→ (l′g = ⊥)&(L(N1)′ = �); } ∪ T (N1) ∪ T (N2)end

Otherwise in {[l]l −→ (l′ = ⊥)&(l′g = �); } ∪ {[l]l −→ (l′ = ⊥)&(l′¬g = �); }
∪{[lg ]lg ∧ g −→ (l′g = ⊥)&(L(N1)′ = �); } ∪ {[l¬g ]lg ∧ ¬g −→ (l′¬g = ⊥)&(L(N2)′ = �); } ∪ T (N1) ∪ T (N2)end

l : aB �N, Case (B) of↑ Ai ⇒in {[l]l → (l′ = ⊥); }
∪{[L(E(Ai))]L(E(Ai)) → (l′ = ⊥)&(L(N)′ = �); } ∪ T ′(Ai); end

ε ⇒ in {[l]l −→ (l′ = ⊥)&(N′ = �); } ∪ T (N′) end

l : � ⇒ in [l]l −→ (l′ = ⊥); end

l : �⇒ in [l]l −→ &l∈L(l′ = ⊥);end

7 AV Code Generation

This section generates Java code corresponding to the diagrams presented in Sect. 4.
The function Λc generates the Java code that corresponds to a class diagram, as shown
in Listing 1.3.
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Listing 1.3. Class diagram to Java Code.
Λc:C → J

Λc(c) = ∀c, c1, c2 ∈ C, Case (c) of

c ⇒ in public final class c {}end

p ⇒ in package p.name; end

a ∈ Att(c) ⇒ in public class c { vis(a) type(a) _a;} end

g ∈ c1 × c2 ⇒ in public abstract class c1 {}

public final class c2 extends c1 {} end

r ∈ c1 × c2 ⇒ in public abstract class c1 {}

public final class c2 implements c1 {} end

s ∈ c1 × c2 ⇒ in public final class c1 {private c2 _c1,2;} public final class c2{} end

c ∈ c1 × c2 ⇒ in public final class c1 {private final c2; private c1() {_c2 = new c2();}

public final class c2 {} end

d ∈ c1 × c2 ⇒ in public final class c1{public use(c2 c2){}}

public final class c2{public void method(){C c;}} public final class C {}

else ⇒ in {} end

8 Experimental Results

In this section, we present the specification of an autonomous vehicle (AV) system and
its corresponding threat behavior using our MML. We also define the requirement prop-
erties for the system. The MML allows us to model the structural and behavioral design
of an AV, along with its possible threats and attacks, and the existing countermeasures.
By using the MML, we can easily instantiate concrete models for real cases, compose
an attack for a concrete system, and reinforce it using predefined countermeasures.

Model’s System

In the specification with our MML, the base class is Vehicle, which is instantiated from
theObject class. The methods of the class represent its behavior, and two objects, Vision
and Lidar, are responsible for detecting obstacles, creating a 3D map, and sending it to
the Controller. The localization system is represented by three classes:GPS, which rep-
resents the device in the vehicle and is instantiated from theDevice class;GSM, which is
a communication protocol instantiated from the Protocol class; and GPS Server, which
represents the station of the GSM network and is also instantiated from the Protocol
class. Additionally, the driver is represented by the Driver class, which is instantiated
from the Social Actor class and can control the vehicle either manually or through voice
commands. The vehicle has a voice detector, which is represented by the Voice class and
is also instantiated from the Object class (Fig. 10).

Attackers Behavior

In the case of the drone attack, the drone is considered as an external attacker that
targets the AV’s communication system. The attacker can use a laser to interfere with
the communication between the AV and the GPS server or other vehicles, which can
cause a DDoS attack. The DDoS attack can lead to a denial of service for the AV, and
thus affect its ability to perform its tasks and ensure safety.

As for the malware attack, the attacker targets the driver’s smartphone, which is
considered as a vulnerable entry point to the AV system. By infecting the smartphone
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Fig. 10.Model’s system of autonomous vehicle.

with malware, the attacker can gain access to the AV system and take control of the
vehicle through the smartphone. The attacker can manipulate the AV’s behavior and
compromise its safety, posing a significant threat to the passengers and other road users.

First Attacker. Figure 12 provides a visual representation of the attacker’s model,
which is broken down into various components. The first component, the class KLidar,
represents the attacker’s knowledge about the Lidar sensor, such as its communication
frequency and other important technical details. This knowledge plays a crucial role in
enabling the attacker to target the system effectively.

The second component, the class VLidar, represents the vulnerabilities inherent in
the Lidar sensor. These vulnerabilities are potential points of weakness that the attacker
may exploit in order to disrupt or compromise the sensor’s functionality. By understand-
ing these vulnerabilities, the attacker can better plan their attack strategy and maximize
the potential for success.

The attacker’s skills are represented by the class Dos Attack, which signifies that the
attacker is primarily capable of carrying out Denial of Service (DoS) attacks. This type
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of attack aims to overwhelm the target system, rendering it inoperable or significantly
degraded in performance. The attacker’s specialization in DoS attacks may limit their
range of tactics, but it also allows them to focus on honing their skills in this specific
area.

The attack process itself is depicted in a separate activity diagram, which is included
in Sect. 4.5 and titled Resource Depletion (CAPEC-119). This diagram illustrates the
various steps involved in the attack, from initial reconnaissance and probing to the
actual execution of the DoS attack. It provides a clear and concise visualization of
the attacker’s actions, enabling a better understanding of the attacker’s methodology
and the potential countermeasures that can be employed to mitigate the risk of such an
attack (Fig. 11).

Fig. 11. First attacker behavior.

Second Attacker. Figure 12 illustrates the model of the attacker, focusing on
their knowledge, vulnerabilities, and skills related to the network. The class Net-
work:Knowledge represents the attacker’s understanding of the deployed communi-
cation protocols within the network. This knowledge enables the attacker to identify
potential weaknesses and areas of opportunity within the network infrastructure, which
may be exploited during an attack.

The class Network:Vulnerability highlights the vulnerabilities associated with the
network protocols in use. These vulnerabilities could stem from design flaws, imple-
mentation errors, or misconfigurations, and they serve as potential targets for the
attacker. By being aware of these vulnerabilities, the attacker can develop and refine
their attack strategies to exploit these weak points effectively.

The attacker’s skills are represented by the class Network:skills, which indicates
their ability to conduct network-related attacks. This could include activities such as
eavesdropping, packet manipulation, or network-based Denial of Service (DoS) attacks.
The attacker’s proficiency in these skills can significantly impact the effectiveness of
their attack and the level of damage they can inflict on the target network.

The activity diagram of the CAPEC-156 attack is provided in Sect. 4.5. This dia-
gram outlines the various steps involved in executing the attack, from initial reconnais-
sance to the actual exploitation of network vulnerabilities. By examining this activity
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diagram, security professionals can gain a better understanding of the attacker’s tac-
tics and techniques, which can then be used to develop more effective defenses and
countermeasures against such threats.

Fig. 12. Second attacker behavior.

Requirement Properties

We have defined three properties to see if the attacker may violate the properties or not.

– The attacker could not stop the car. P =?[�((CurentPosition 
= destinitation)∧
(Run = �))]

– The attacker could not change the destination of the car. P =?[�(destinitation =
target)]

– Could the car know when to stop. P =?[�(Time2Destinitation =
EstimedT ime)]

Verification Result

The results, obtained from the verification are summarized in Table 1 where the symbol
✓ means an attack has been found and the symbol ✗ means that the property is safe.

Table 1. The verification results.

Property/Attacker First Attacker Second Attacker

Φ1 ✗ ✗

Φ2 ✓ ✗

Φ3 ✓ ✗
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The first attacker can violate only Φ1 because his knowledge and skills are limited,
it will go near to the vehicle and send signals with the laser to saturate the channel to
cause denial-of-service of the Laser and that will stop the vehicle.

The second attacker can violate all the properties, because he is inside the network
and he uses the smartphone of the victim which allows him to control totally the car, he
needs only to install the malware on the smartphone by a fishing e-mail.

Reinforcement Recommendation

Figure 13 shows the counter-measure used to monitor and detect abnormal behavior, it
adds physical solutions to absorb signals attacks in addition to a secure channel.

Fig. 13. Counter-Measure.

Secure Vehicle Implementation

Listing 1.4 presents the java code for the class diagram of the vehicle, the attack, and
the counter measures.

Listing 1.4. Vehicule-System Java Code.

p u b l i c c l a s s Veh i c l e {
p r i v a t e S t r i n g i d ; . . .
p u b l i c vo id s t a r t ( ) ; . . .
p u b l i c vo id s t o p ( ) ; . . .
p r i v a t e V i s i on v i s i o n ( ) ;
p r i v a t e Road r o a d ( ) ;
p r i v a t e L i d a r l i d a r ( ) ;
p r i v a t e C o n t r o l l e r c o n t r o l l e r ( ) ; . . . }
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p u b l i c c l a s s Ddos {
p r i v a t e S t r i n g i d ;
p r i v a t e S t r i n g goa l ; . . .
p r i v a t e S t opVeh i c l e s t o p v e h i c l e ;
p r i v a t e KLidar k l i d a r ;}
p u b l i c c l a s s DefenseDos {
p r i v a t e S t r i n g goa l ;
p r i v a t e a c t i o n l i s t a c t i o n s ; . . .
p u b l i c vo id add ( ) ;
p u b l i c vo id upda t e ( ) ; . . .
p r i v a t e Phys i cMeasu re s phy s i cmea su r e ;
p r i v a t e SensorsM senso rm ;}

9 Conclusion

One way to ensure security in cyber-physical systems, such as autonomous vehicles,
and to reduce the costs associated with these products, is to detect vulnerabilities to
attacks at early stages of the development life-cycle while also providing correction
mechanisms that ensure their continuous functionality. In this paper, we presented a
comprehensive framework designed to detect vulnerabilities exploited by attacks in a
specialized environment of cyber-physical systems, with a focus on autonomous vehi-
cles.

Our framework comprises UML-based meta-models tailored to autonomous vehi-
cles, attacks, and countermeasures. We also devised an algorithm that identifies attack
surfaces within the system and a function that assigns a set of potentially harmful attacks
to each attack surface. To enhance the resilience of the autonomous vehicle, we imple-
mented a range of countermeasures and subsequently generated Java code for a secure
autonomous vehicle. The effectiveness of the proposed approach has been demonstrated
through a real-world case study involving a smart autonomous vehicle operating in a
malicious environment.

In the near future, we plan to expand our research in several directions. Firstly, we
aim to apply our framework to various real-world scenarios, broadening the scope of
its applicability. Secondly, we aspire to develop a more comprehensive catalog encom-
passing a wider range of attack types and countermeasures, including those relevant to
the supply chain. Lastly, an essential task is to implement and validate the correctness
of the proposed approach, ensuring that it delivers the intended outcomes in securing
cyber-physical systems like autonomous vehicles.

By addressing these future goals, our research will contribute to the ongoing efforts
to safeguard autonomous vehicles and other cyber-physical systems against potential
threats, ultimately improving their security, reliability, and overall performance in an
increasingly interconnected world.
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Abstract. To perform the different platoon maneuvers such as join-
ing, merging, splitting, etc., platoon communication requires consider-
able cooperation among platoon members. The joining operation is the
most difficult to achieve when a new member wants to insert itself into
the middle of the platoon. Indeed, some interferences due to the intrusion
of an unwanted vehicle in the middle of the platoon lead to the aborting of
the joining maneuver by the eligible vehicle and to communication prob-
lems between the already existing members. In this context, we propose
a Visual based method for Intruder vehicle Detection, denoted “VID”.
The main idea is to detect and classify vehicles (unwanted or not) dur-
ing the join maneuver by analyzing the video recorded by the on-board
cameras installed at the front of the platoon trucks. The performance
of our method is tested and validated using videos of highway scenes in
different weather conditions (sunny, rainy, cloudy). The obtained results
show that VID can identify the intruder with rates higher than 89% and
95% for precision and recall respectively.

Keywords: Platooning · Join-maneuver · ROI extraction · Vehicle
detection · Logo classification

1 Introduction

According to Bloomberg, the number of vehicles will climb by 35% by 2040 [1],
as illustrated in Fig. 1. This increasing number of circulating vehicles worldwide
leads to a considerable expansion of road traffic, which inevitably causes more
and more traffic jams. In fact, as the growth rate of vehicles is faster than
highway construction, it can lead to traffic congestion, energy waste, longer travel
time, more accidents, and more pollution; these critical issues lead to health
problems [2,3]. Nowadays, people aim to improve road capacity, traffic flow, and
make travel safer and more comfortable [3–7]. An effective way to mitigate the
mentioned problems is to shift from individual to cooperative driving, called also
platoon-based driving.

Platooning is an Intelligent Transport System (ITS) application [8] which
has emerged as a promising solution for traffic management in highways. Truck
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Fig. 1. The estimation of vehicles sales from 2015–2040 [1].

platoon is often defined as a convoy of vehicles which are traveling together in a
tightly spaced group (platoon) with automated velocity and steering control. The
vehicle platoon is commonly composed of a leader and one or more followers,
called also platoon members. Figure 2 illustrates an example of a platoon of
four heavy duty vehicles on a highway: one platoon leader (the first one) and
three platoon followers. The leader vehicle performs as a chief and therefore the
vehicles following it at the rear can act and suits changes in its movement, like
lane changing, braking, etc. The leader also takes the responsibility of keeping the
stability of the whole platooning by specifying the appropriate speed, distance
between vehicles and therefore the relevant direction to follow; this information
is communicated to all the members. It is also the responsible for coordinating
the different maneuvers like join, leave, split, dissolve, etc.

Join maneuver occur when a truck tries to be a part of an already estab-
lished platoon. The most important aspect of the Join maneuver is the insert
position. In fact, different situations can occur such as back (tail) join, front join
and middle join. The leave maneuver takes place when a given vehicle wants
to exit the platoon (e.g. reaching its destination). The leader is informed first
and the involved vehicle waits for the response before taking manual control
and changing lanes. Then, the vehicles in front and behind this vehicle open
a gap for safety reasons. When this vehicle leaves, they return to the imposed
distance of the platoon. The merge maneuver allows the joining of two platoons,
having the same destination, to form a single platoon. The process is usually
initiated by the back platoon leader and then the front platoon leader decides
to simply accept or reject the request. Split maneuver takes place when several
vehicles want to exit the platoon in order to create a new one having another
leader. The Dissolve maneuver occurs when the leader decides to separate the
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Fig. 2. Example of vehicle platooning.

entire platoon in several situations; for example, the platoon leader may quit
the platoon if there are obstacles on the road ahead or all vehicles have left the
platoon. The leader can only switch to manual driving mode after all followers
have acknowledged the order to leave the platoon. In our work, we particularly
focus on join maneuver. The traffic context should be taken into account in order
to execute this maneuver. In fact, it may require vehicles to accelerate, decel-
erate or change lanes; these different actions can disturb the driving conditions
of nearby vehicles. Besides, these neighboring vehicles may interfere with a pla-
tooning maneuver and delay its execution. Any vehicle, being in the trajectory
of the vehicles participating in the maneuver, represents an obstacle for a pla-
tooning operation which can be a risk for its safe execution. The interference
caused by such vehicles can delay the successful execution of the maneuver, and
can also impact the traffic flow and speed. Besides, another important aspect of
the join maneuver is the platoon ordering. The most simple and easy solution
of all is to make vehicles join the back (tail) of the platoon. However, joining
the platoon at the front is the hardest scenario since it requires roles change
in the platoon (a new Leader should be chosen). Moreover, allowing vehicles
to fit into any other position in the platoon permits members to be ordered
according to one of several parameters such as engine, weight or braking perfor-
mance, aerodynamics, distance to be traveled, etc. However, the possibility that
an unauthorized vehicle enters the gap created by the members is high which can
lead to the aborting of the join maneuver. In fact, an unintended vehicle in the
middle of a platoon distorts the communication among the platoon members as
this intruder does not take part in platoon communication, and can cause a high
PLR (packet loss ratio). In this case, the maneuver cannot be performed by the
authorized vehicle and in the extreme cases (for example high traffic densities)
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the platoon may be broken. Obviously, communication failures will also hamper
the maneuvering, and it should be checked whether the maneuver can be safely
aborted when information is lost without endangering the vehicles occupants.

An example of a joining maneuver made by an unintentional or unauthorized
vehicle is illustrated in Fig. 3 where PL represents the platoon leader, v1 to v4
are the platoon members and M1 represents the joining vehicle. In the first step,
M1 needs to send join request to PL. Once PL receives this request, it checks
M1 location and sends a slow-down command to V3 in order to create a gap
(small distance) and allow M1 to fit into the platoon. Even so, an unauthorized
vehicle (red vehicle) can overtake it and enters into this gap which can distort
the communication between V2 and V3 because this unauthorized vehicle does
not participate in the communication of the platoon. This situation forces the
PL to abort the join.

Fig. 3. Interference caused by an unauthorized vehicle entered.

In this context, authors in [9] surveyed the interference that can be gener-
ated by any unauthorized vehicle entering the platoon. Although, four scenarios
are analyzed which are distant truck interference, close truck interference, car
interference, and channel impairments, no solutions are proposed. The car inter-
ference is the most critical scenario, it can occur whenever a human-driven car
occupies the gap vacated for the authorized vehicle. Authors in [10] presented
an algorithm which is able to identify any interference caused by an unintended
vehicle entered into the opened gap. The main goal of this algorithm is to first
split the platoon at the intrusion point and then merge sub-platoons. In the
second step, the radar distance with the GPS position, sent by the authorized
vehicle, are compared to identify the vehicle entering the gap of platoon and ver-
ify the identity of the new member in order to ensure a successful termination
of the operation. If it does not match, an intrusion is detected. Authors in [11]
proposed a platoon management protocol for VANET and then the three basic
platoon maneuvers are simulated namely joining, splitting, and lane changing.
The authors also explained three platooning scenarios which are: the leave of the
leader, the leave of a follower, and entry at the platoon tail. The developed pro-
tocol takes into account five different variables that any platoon enabled vehicle
should have, namely vehicle ID, platoon ID, platoon depth, platoon size and pla-
toon members. However, the presented protocol has some limitations namely the
high delay during platoon merge maneuver. Moreover, the proposed approach for
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the platoon merge can only perform rear-end merge. Authors in [12] developed
a hybrid controller for joining and splitting operations. The continuous-time
system handles vertical control, and the discrete event supervisor decides the
join and split operations. However, this method often loses connections in high
vehicle dense areas which leads to high packet loss ratio (PLR). Authors in [13]
proposed a cooperative platoon maneuver switching model for the discrete coop-
erative maneuver such as join and split based on hybrid automata to improve the
utilization of road infrastructure resources. But this proposed protocol suffers
from high latency and frequent loss of connections.

In this context, our goal is to address the joining operation, which is the most
difficult to perform when a new member wants to insert himself in the middle of
the platoon due to possible interference from other vehicles. We want to identify
if there is an intrusion of an unwanted vehicle in the middle of the platoon. The
main contributions of this work are:

– We conducted a systematic literature review including the most appropriate
approaches for vehicle detection and classification.

– We proposed a Visual based method for Intruder vehicle Detection, denoted
“VID”. It consists of three main steps: (i) Road area extraction based on color
features, (ii) Vehicle detection based on Haar-like features and AdaBoost clas-
sifier, and (iii) Identification of authorized vehicles based on the logo situated
on the rear area of each truck using CNN.

– We evaluated the performance of the proposed framework using video
sequences taken with front-view cameras in different cities; the scenes involve
highway trips in various weather conditions (sunny, rainy, snowy and cloudy).

The rest of this paper is organized as follows: in Sect. 2, a description of the
related state of the art is given. In Sect. 3, our proposed framework is detailed.
In Sect. 4, the obtained results are presented. Finally, we conclude our work.

2 Related Work

2.1 Vehicle Detection

For many years, vehicle detection has been an important part of the intelligent
vehicle system. Each operation of vehicle detection needs an effective collection
of environmental data which depends on the high-precision and high-reliability of
sensors. The deployed sensors in this context can be divided into two kinds: active
sensors such as Lidar, radar, ultrasonic, etc. and passive sensors such stereo
cameras, monocular camera, omnidirectional cameras, event cameras, infrared
cameras etc. [14].

Indeed cameras are the most commonly used passive sensors in the field of
vehicle detection thanks to their ability to generate a high resolution images
containing environmental information like texture, color, and so on. Moreover,
they have good coverage, small size and low cost. Various vehicle detection tech-
niques using images recorded by cameras have been proposed in the literature.
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Usually, the visual based methods can be done in one-stage or two stages. One
stage methods do not require candidate regions extraction that should be ana-
lyzed for vehicle detection. Omitting region extraction allows faster processing,
which is ideal for time-sensitive applications; however, the detection accuracy
is low and the robustness is poor. Two-stage methods requires a Hypothesis
Generation (HG) step and Hypothesis Verification (HV) step. A set of candi-
date regions (called region of interests: ROIs), that may contain vehicles in the
captured image, are generated in the HG step. Then, the vehicle can be easily
identified in this ROIs in the HV step.

Hypothetical Generation Methods (HG). The main purpose of the HG
step is to quickly locate the vehicle position in an image for further exploration.
The hypothetical positions discovered in the HG step are fed into the HV step,
which performs a test to check the exactness of these hypotheses. In the litera-
ture, various HG approaches have been proposed and they can be classified into
the following three categories: Knowledge-based, motion-based and stereo-based
methods. The first category uses prior knowledge of some vehicle features to esti-
mate the car’s position in the image. The most commonly used features include:
symmetry, shadows under the vehicles, color, geometrical features (such as cor-
ners, horizontal and vertical edges), texture, and vehicle lights. [43] proposed a
new method for detecting vehicles that are fully/partially visible from the rear
view. The method is divided into two main steps. First, the two parts of the rear
view of a vehicle are detected using Haar-like features and Adaboost cascade
classifiers. Second, the symmetry is used to detect vehicles that are fully visible.
Similarly, [44] proposed an algorithm that uses two stages to detect vehicles.
A new vehicle enhancement filter based on the vehicle’s structural information
is used to identify potential vehicle locations. Then, the identified locations are
refined using bilateral symmetry of the vehicles with respect to an axis. [45] pro-
posed a vehicle detection method for urban traffic using shadow under vehicles.
The main idea of this method is to compare pixel properties across the vertical
intensity gradients caused by shadows on the road and then perform intensity
thresholding and shape recognition. [46] explored the use of color information as
a hint for detecting vehicles. They proposed a model to find vehicles’ colors in
order to quickly detect possible vehicle candidates. But, using color in vehicles
detection is uncommon due to its variability under different weather and light
conditions. [47] proposed a method to detect vehicles from the headlights and
taillights using image segmentation and pattern analysis. First, an automatic
multi-level histogram threshold is applied to extract all bright objects. Second,
these extracted bright objects are processed through spatial clustering in order
to identify and classify moving vehicles. The method was finally tested and
evaluated on real highways and urban roads and in different night’s scenes. The
knowledge-based approaches have the drawback of being sensitive to local/global
picture changes such as pose, lighting, and partial occlusion.

Motion-based methods do not need any prior knowledge; these methods
extract vehicles that are distinguished from the fixed background by their
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motion. Generally, a static camera is used to model the background and seg-
ment the moving foreground objects. Such an approach does not require pre-
training and can recognize previously unseen moving objects. State of the art
methods include frame differencing, background subtraction and optical flow
methods. [48] proposed a vehicle detection approach using the traditional two-
frame difference method. This method can easily separate the background of
current frame occluded by previous frame, and obtains a good result with a low
computational cost. The main problem is that when the detected object has
a uniform gray-scale, the overlapping part of the moving objects in the image
will appear “blank”. To solve this problem, the three-frame difference method
was established by [49] and then improved by [50] to better solve the problem of
“blank holes” in the image. [52] also proposed a new system that can detect mov-
ing objects in complex road scenes by implementing an advanced background
subtraction method. [53] used information provided by Radar and camera to
implement an optical flow method to detect vehicles. The radar sensor can detect
the same vehicle multiple times, while the optical flow method can only detect
vehicles with a significant speed difference compared with the ego-vehicle. [51]
proposed an effective vehicle counting where Kalman filter algorithm is used to
count and track the multiple moving vehicles in complex traffic scenes. Proposed
methods in this context rely on various forms of background subtraction, mak-
ing them unsuitable for cameras with significant ego-motion on the vehicle (the
motion of monocular moving camera with arbitrary translation and rotation).
However, proposed methods in this context rely on various forms of background
subtraction, making them unsuitable for cameras with significant ego-motion on
the vehicle (the motion of monocular moving camera with arbitrary translation
and rotation).

Stereo-based methods represent another kind of HG method, in which infor-
mation’s collected by stereo vision is used to detect vehicles. In the literature, two
different methods have been established. The first one uses the disparity map,
while the second one uses the anti-perspective transformation. In order to detect
vehicles, several methods based on disparity maps have been proposed. [54] intro-
duced a new method to detect and track vehicles using a semi-dense disparity
map. The mean-shift algorithm is also used in order to cluster and track these
vehicles. [55] used the disparity maps technique to design a method for detecting
vehicles and estimating their motion states, in which a simple iterative clustering
is combined with optical flow. [56] trained a CNN in order to generate the seman-
tic maps, then clustering based on the Depth-first search (DFS) algorithm is used
for vehicle detection. [57] used images collected by a camera installed behind a
car’s rear view mirror for distance detection. After converting the images to an
aerial view, and restoring information about the road surface, the converted IPM
image will be used to estimate the distance of the target vehicle. The biggest
problem is that the conversion into Inverse Perspective Mapping (IPM) image
means that the size has changed, so the system cannot detect certain target
vehicles in the IPM image. [58] combined IPM with CNN for estimating the
position, size, and direction of vehicles.
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Hypothesis Verification Methods (HV). Hypothesis verification (HV)
methods include tests allowing verifying the correctness of vehicle location
hypothesis, previously generated in the HG step. Therefore, the output of the HV
methods is an accurate “car” or “non-car” automatic classification. Over time,
several HV methods have been presented, which can be divided into two main
categories [17]: template-based methods and appearance-based methods. The
template-based methods use the vehicle class’s predefined patterns to perform
correlation between the selected image locations and the predefined templates.
The appearance-based methods learn the vehicle class attributes from a series
of training images that should reflect the appearance’s allowable variability. In
general, the variability of the non-vehicle class should be modelled to improve
the performance. An illustration of a set of training images is presented in Fig. 4.
Initially, a large set of training images should be obtained, where each training
image is defined by a collection of features. Then, either by training a classifier
or by modeling the probability distribution of the features in each class, the
decision boundary between non-vehicle and vehicle classes is learned.

Fig. 4. Examples of car and non-car images used for training.

For template-based methods, some of the templates proposed in the literature
represent the vehicle class “loosely,” while others are more detailed. [59] proposed
a HV algorithm based on the presence of license plates and rear windows. This
can be considered as a loose template of the vehicle class. [60] proposed a tem-
plate based on the observation that the rear view of a vehicle has a “U” shape
which describes the one horizontal edge, two vertical edges, and two corners con-
necting the horizontal and vertical edges. The image region was considered as a
vehicle, if the’U’ shape is detected. The same system is proposed by [62] using
a template, based on the fact that the visual appearance of an object depends
on its distance from the camera. Consequently, a two slightly different generic
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object (vehicle) models are used, one for nearby objects and another for dis-
tant objects. However, this proposed method raises the question of what model
to use in a specific location. [61] proposed a new system to recognize vehicles
using a very loose template. Another system is proposed by [63] where distance-
dependent sub-sampling was performed before the verification step, instead of
working with different generic models. [64] proposed a system for night-time
detection of vehicles using morphological operators. A template, called “mov-
ing edge closure,” was also used and fitted to groups of moving points. An
edge detection is performed on the area covered by the detected moving points,
followed by the external edge connection in order to get the moving edge clo-
sure. The vehicle is detected if the size of the moving edge closure was within
a predefined range. Moreover, a rather loose template is used by [65] in which
hypotheses were generated on the basis of road position and perspective con-
straints. The template contained a priori knowledge about vehicles: A vehicle is
usually symmetric, characterized by a rectangular bounding box which satisfies
specific aspect ratio constraints. In the first step, the hypothesized region was
checked for the presence of two corners representing the bottom of the bounding
box. However, because of the nature of the template matching methods, most
papers proposed over the years do not report quantitative results.

For appearance-based methods, several feature extraction methods have been
proposed Over the years in the context of vehicle detection. Based on the method
used, the features extracted can be classified as either local or global. Global
features are obtained by considering all the pixels in an image. [66] proposed a
solution to recognize vehicles using nearest-neighbor classifier. However, the used
training database was too small, which makes it difficult to draw any useful con-
clusions. Another solution proposed by [67] for object detection based on global
features. The approach builds a distribution-based model of objects patterns,
and learns from examples a set of distance parameters to distinguish between
“object” and “non object” window patterns. An inherent problem with global
feature extraction approaches is that they are sensitive to local or global image
variations (e.g., pose changes, illumination changes, and partial occlusion). On
the other hand, local features are less sensitive to these effects. Moreover, geo-
metric information and constraints in the configuration of different local features
can be utilized either explicitly or implicitly. [68] proposed a general method for
object detection applied to front and rear views of vehicles. A complete set of
Haar wavelet coefficients of certain scales are computed and a SVM (Support
Vector Machine) is trained to classify vehicles (car and non-car). This repre-
sentation provided a richer model and spatial resolution and it was suitable for
capturing complex patterns. [69] proposed a method for rear-view vehicle detec-
tion using wavelet parameters as input vector, and performed a SVM-based
classifier to verify the candidate solutions. They went further to assert that the
actual values of the wavelet coefficients are not very important for vehicle detec-
tion. Furthermore, [69] consider the problem of rear-view vehicle detection from
gray-scale images. They combined Haar wavelet with Gabor features to describe
the properties of a vehicle and SVM for classification. [70] used a vision-based
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vehicle detection system. The symmetry of the HOG features extracted in a
given image patch, along with the HOG features themselves, was used for vehi-
cle detection. [71] proposed a vision-based vehicle detection system particularly
in the blind-spot area for driving assistance through hazard warning. In this
method, a camera captures the images of the blind-spot area and the video
stream is then analyzed to warn the driver if a vehicle is detected; the driver will
consequently give up the lane changing decision to avoid an accident. The main
drawback of the local features is that they are quite slow to compute. In recent
years, there has been a transition from complex image features such as Gabor
filters and HOG to simpler and efficient feature sets for vehicle detection. Haar-
like features are sensitive to vertical, horizontal, and symmetric structures, and
they can be computed efficiently, making them well suited for real-time detection
of vehicles [18].

Features for Vehicle Detection. Features can be represented as functions of
the original measurement variables which could be used for pattern recognition
and/or classification. Feature extraction refers to the process of transforming
training samples in something like a feature vector that can fulfills the classi-
fier’s input requirements [19]. Overall, the main goal of features extraction would
be to make object identification and classification more effective and efficient. To
produce superior classification results, the design and selection of features are
especially critical. To maximize training efficiency, a fine feature should com-
prise the majority of the vehicle’s design and be the simple as possible. The
extracted features can usually be used for object detection or target tracking,
such as human faces, vehicles, pedestrians, traffic signs, etc. Commonly used fea-
ture extraction methods in the literature include: Haar-like features and HOG
(Histogram of Oriented Gradients) and LBP (Local Binary Pattern).

– Haar-like features:
Haar-like features (also called Haar features) were first proposed by Viola
and Jones [20] to detect human faces. They can provide information about
the gray-scale distribution of two adjacent areas in the image. For a variety
of reasons, it is widely assumed that detection algorithms based on Haar-like
features are more efficient and effective than other approaches that process
pixels directly [21].
[22] introduced two kinds of original Haar features which are shown in
Fig. 5(a) and (b). The two rectangles which are left-right of the feature shown
in Fig. 5(a) can have also the “up-down” position. [20] extended Haar-like fea-
ture with three rectangles, displayed in Fig. 5 (c). The three types of rotational
features enriched by [23] are shown in Fig. 5(d), (e) and (f).
Each Haar-like feature contains at least two connected “black” and “white”
rectangles. In order to calculate the value of each Haar-like feature, (Eq. 1) is
used where f(x) represents the difference between both the gray values of the
pixels in the black and white rectangles when added together.
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Fig. 5. Example of Haar-like features: (a) and (b) illustrate Haar-like features provided
by [22]. [20] developed a Haar-like featue with three rectangles in (c). The rotational
features of [23] are seen in (d–f).

f (x) =
∑

blackrectangle

(pixelvalue) −
∑

whiterectangle

(pixelvalue) . (1)

If three rectangles appear in one Haar feature which shown in Fig. 5(c) or (e),
default integer weights need to be assigned for each rectangle to ensure an
equal number of pixels in black and white regions [24]. The default weights
assigned in Fig. 5(c) and (e) are −1, 2 and −1.

– Histogram of Oriented Gradients (HOG):
In recent years, object detectors based on edge analysis have been used in
many detection tasks, and these detectors provide valuable information about
objects of interest. In this field, the Histogram of Oriented Gradients (HOG)
is considered as one of the popular feature descriptors used in image process-
ing and computer vision for the purpose of target detection. This method is
introduced first by Dalal and Triggs [25] who tackled the problem of pedes-
trian detection.
The HOG descriptor’s main benefit is that it could accurately represent the
contour and edge features of elements other than humans, such as vehicles,
animals, and so on. The HOG features extraction and target detection pro-
cess is depicted in Fig. 6 using sevetal classification algorithm such as SVM
and AdaBoost.
Initially, the normalized input image is scanned based on the sliding window,
which is divided later into many blocks (called cells). Then, a histogram of
gradient orientations is accumulated to each cell. The obtained histogram is
normalized by accumulating the energy of the local histogram on the block;
the result is used to normalize all the cells in the block in order to have a
better illumination invariance. Next, the HOG features (histograms already
normalized) are collected on the detection window. The collected features are
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Fig. 6. Original HOG algorithm flow.

fed to a classification algorithm (linear SVM) for object/non-object classifi-
cation.

– Local Binary Patterns (LBP):
[26] introduced Local Binary Patterns (LBP) as another powerful and effec-
tive local descriptor for micro-structures of images in computer vision. It can
be represented as an efficient image feature which can transform an image
into an array or image of integer labels describing the small scale appear-
ances. These labels are therefore added to the image for further processing.
Face recognition, texture analysis, object detection and tracking and several
applications proposed over the years employ LBP.
A few years later, some improvements were made to LBP. A generic LBP
operator is proposed by [27]; its particularity that it uses quarters of different
sizes (not only 3× 3 pixel block) to capture the main features at different
scales. In addition, this improved solution has been extended from a rectan-
gular to a circular domain allowing to select any number of neighborhoods
at any distance. Another improved LBP solution proposed by [28] is called
Multi-Block Local Binary Pattern Feature (MB-LBP). The particularity of
MB-LBP is that it is defined by comparing the value of the central block with
the values of its eight neighboring blocks.

2.2 Vehicle Classification

The main goal of a classifier is to use the extracted features in order to identify
whether or not the input sub-window includes an object. Given a set of training
examples, every one can be identified as belonging to one of the K categories.
The algorithm of classification can construct a new model that can assign new
examples that are not training examples to one category or other categories. In
the literature, several classification algorithms have been proposed. The most
two popular algorithms are AdaBoost and Support Vector Machine (SVM).
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Adaptive Boosting (AdaBoost). The AdaBoost classifier can be presented
as a machine learning algorithm, which was first proposed by Yoav Freund and
Schapire [29]. It was creatively applied to detect human faces by [20], thus open-
ing a new chapter in image processing technology. The feature sets like Haar,
LBP and HOG are extremely enormous. For example, for HOG, there are nearly
576 features, while LBP can reach 3600 depending on the version. For the Haar
features, when the window size is 20×20, there are 45891 features, and if all pos-
sible parameters (position, scale, and type) are considered, more than 160,000
features can be reached. It is clear that all these descriptors contain a big number
of useless and redundant information. In this context, AdaBoost is a powerful
classifier that can be used to avoid these redundant features and pick only effec-
tive and useful features and solve the following three basic tasks:

– Evaluate and select only the significant and effective input features.
– Construct the (simple or weak) classifiers, where each classifier is constructed

based on only a single candidate feature.
– Use the boosting process to make the selected weak classifier stronger

The weak learning algorithm aims to select a single image feature that pro-
duces a good result. AdaBoost can be defined as a combination of a weak clas-
sifiers in a weighted voting machine, and it can perform well in various fields.
Figure 7 shows clearly architecture of AdaBoost classifier.

Fig. 7. The architecture of the AdaBoost classifier.

The weak learning algorithm is intended in order to choose one image fea-
ture that can yield the most effective result. For each feature and in order to
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minimize the number of mis-classified examples, an optimal threshold should be
generated [20] and defined by (Eq. 2).

hj (x) =
{

1&ifpjfi (x) < pjΘj

0 otherwise
(2)

Where, each weak classifier hj(x) is composed of features fi, a threshold
Θj and a coefficient factor pj indicating the direction of the inequality, and x
represents the input image sub-window.

Support Vector Machine (SVM). Support Vector Machines (SVM) repre-
sent another popular and powerful pattern recognition classification algorithm
proposed by [30]. The main goal of SVM is to find the optimal solution for class
splitting and it has the separating hyperplane as result. To obtain the optimal
results, SVM has some parameters to be adjusted. Suppose we have the follow-
ing example of a training database with a size of N : (xi,yi), i ∈ [1, N] and xi

represents a descriptor vector, belonging to the class marked by yi ∈ [−1, 1].
This class is to represent the binary result (−1 means false/negative, 1 means
true/positive). The main goal of classification is to construct a hyperplane equa-
tion that divides the database set: the first side includes all the points labeled
with yi = 1 and the other side contains the points labeled by yi = −1. More pre-
cisely, two parameters w and b should be found to satisfy the following inequality
(Eq. 3):

yi (w.xi) + b > 0, i = 1, ..., N (3)

Note that in the case where the sample set is linearly separable, the hyper-
plane that satisfies this equation is available. In this case, it is possible to update
w and b with the following way (Eq. 4):

min
1≤i≤N

yi (w.xi + b) ≥ 1, i = 1, ..., N (4)

In this case, the distance between the points closest and the hyperplane
becomes 1

‖w‖ , and the above equation is transformed as follows (Eq. 5):

yi (w.xi + b) ≥ 1 ∀i (5)

As mentioned earlier, the separating hyperplanes are not unique. The optimal
hyperplane is also called Optimal Separating Hyperplane (OSH), which has the
most large distance to the closest point. In other word, the goal of OSH is to
separate the hyperplane that maximizes the margin 2

‖w‖ as shown in Fig. 8.
SVM has an extensive range of applications for example in data analysis, pat-

tern recognition, etc. A classic SVM application example proposed by the author
in [25] used a locally normalized Histogram of Oriented Gradient (HOG) descrip-
tors are used and SVM is employed as a classifier in order to achieve an excellent
pedestrian detector. Over the years, some application based on SVM have been
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Fig. 8. An example of optimal separating hyperplane in 2D.

improved, such as in traffic sign classification [31], vehicle detection [32], pedes-
trian detection [33] and many other fields, which means that SVM has excellent
capabilities in image recognition and classification.

Other Classifiers. In addition to SVM and AdaBoost, other classifiers are
used. Some of the most used classifiers are K-Nearest Neighbor (KNN) and
Convolutional Neural Network (CNN).

– K-Nearest Neighbor (KNN)
KNN can be represented as a non-parametric algorithm that is dubbed the
“lazy algorithm” due its low complexity in comparison to other classification
algorithms. The data is classified using the KNN algorithm’s closest neighbor
features. The locate the nearest point between the features, the algorithm
uses the Euclidean distance method.

– Convolutional Neural Network (CNN)
Authors in [34] introduced Convolutional Neural Networks as a method
for visual pattern recognition. However, due to the development of high-
performance of Graphics Processing Unit (GPU) architectures, they have
only recently gained traction in the scientific community [35]. A CNN takes
an input image, that has typically had some minimal preprocessing and runs
it through a series of transformation layers to create an image class predic-
tion. In the past ten years, neural networks (NN) have become popular, which
can achieve nonlinear decision boundaries [17]. But the neural network needs
to perform parameter adjustment calculations, so it is very time-consuming.
Thanks to advances in deep learning technology, Convolutional Neural Net-
works (CNN) have achieved considerable success in visual vehicle detection
solutions. [58] used the R-CNN deep learning method to train their model
and apply it to the vehicle detection process. For vehicle classification, [37]
employs Fast R-CNN, which is divided into two parts: region proposal and
object recognition. But this method is slow and has limited accuracy because
it is very time-consuming to generate object recommendations and it is not
optimized during the training process.
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3 VID Framework

During a platoon joining operation, three possible scenarios can be distinguished:
joining the platoon from the tail, joining the platoon from the front and enter-
ing into the middle of the platoon. In this work, we focus on this latter scenario
which is the most complicated one. In fact, the join maneuver is aborted when
an unintended vehicle enters the midst of the platoon, which disrupts communi-
cation among platoon members. To overcome this problem, we propose a Visual
based method for Intruder vehicle Detection, denoted VID. The main idea is
to exploit the video sequences provided by front-view cameras to delineate the
region where authorized vehicles are expected to fit during the join maneuver
and to check these newly joined vehicles. As illustrated in Fig. 9, our approach
comprises three phases: ROI identification, vehicle detection and classification.
To get rid of irrelevant objects, we first proceed with a road extraction process.
Then, we perform a ROI delineation to detect and check all vehicles entering
the platoon gap. If a truck is detected, recognition of the logo on its back allows
confirming whether it is an authorized truck or not.

Fig. 9. Overview of VID approach.

In the following detail of our proposed framework by identifying its main
components and used methods.

3.1 Region of Interest Extraction

The basic idea is to allow platoon trucks to keep an eye on the front region
where any new vehicle could be inserted. By analyzing video stream provided
by a front-view camera, we aim to identify the ROI referring to the road area
in front of the truck. To this end, we first perform a road extraction step by
exploiting the color features related to the road, usually in shades of gray. Then,
we detect lines as the ROI is delineated with lane markers, commonly in white
or yellow [38]. As shown in Fig. 10, this approach includes three main steps: road
extraction, lane detection and ROI identification.
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Fig. 10. Overview of the ROI extraction method.

3.2 Vehicle Detection

Once the road area is extracted and the ROI is identified, it now becomes easy
to detect any vehicle entering the platoon gap during the join maneuver and
classify it as a car or truck. For this purpose, we use Haar-like features and the
Adaboost cascade classifier, described below.

– Features extraction

Our method uses the five main Haar features shown in Fig. 11 in order to
determine the feature values of all samples. The complete set of rectangular
features for a vehicle sample of size 24 × 24 is rather big (up to 162,336). As a
result, the integral image is applied to compute these features quickly.

Fig. 11. Haar-like features suitable for vehicle rear view.

The integral value of each pixel in an integral image is computed as below
(Eq. 6):

ii (x, y) =
∑

x′≤x,y′≤y

i (x′, y′) (6)

where ii (x′, y′) represents the integral value of pixel (x, y) and i (x′, y′) repre-
sents the gray value of pixel (x′, y′) in the original image. The Haar feature



100 H. Gharbi et al.

may be extracted quickly using the integral image. The intensity of the shadow
region can be depicted in [39] as illustrated in Fig. 12. Only six points in the
integral image are required to compute the difference between two neighboring
rectangles.

ii (xA, yA) + ii (xD, yD) − ii (xB, yB) − ii (xC , yC) (7)

Fig. 12. Intensity calculation of shadow region.

– Vehicle classification

In order to detect vehicles, we use Adaboost as classifier in our method. From
training the dataset images, it may learn features of a vehicle’s appearance.
Thanks to its adaptability and flexibility for cascade classification, the Boosting
algorithm (AdaBoost) is a learning-based method commonly employed for vehi-
cle detection. The training Adaboost can be performed as an off-line method
that uses a large number of labeled positive (vehicle/truck) and negative (non-
vehicle/non-truck) images. Adaboost uses linear combination and weighting to
remove weak filters from the Haar-like extracted features in order to produce a
better classifier with a lowest classification error.

The algorithm presented by [40] shows the learning process based on
AdaBoost theory. During the first step, the positive and negative weights are ini-
tialized. Then, the weights will be updated (using an iterative loop). The learning
process usually excludes a large set of available features, but only focuses on a
few numbers of significant features to ensure a rapid classification. According
to this algorithm, for every step in the boosting process, only the new effective
weak classifier is selected. Then, all the best weak classifiers are selected and
combined into a strong classifier.

– Intruder detection

In order to classify the detected truck (authorized or not), we use a logo
detection and recognition method that can locate and recognize the logo on
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the rear view of the truck. To this end, we have recall to convolutional neural
networks (CNN). CNN allows an image to be examined pixel by pixel and to
generate models that learn patterns in the pixel arrangements. Each image in
the dataset has a correct classification that the model will use to train itself
by comparing to the prediction. For any correct prediction, the error will be 0,
otherwise it is 1.

In our method, CNN is used to learn the content of images. Each image will
be sent through a convolutional layer first. Sections of pixels will all be filtered
and sent through the pooling layer, then analyzed and compared to a desired
result to make a prediction of whether the image falls into a certain category.
The CNN process is shown in Fig. 13.

Fig. 13. The CNN process.

4 Performance Evaluation

Our objective is to evaluate the performance of our method under different
scenarios. The vehicle detection and classification algorithms were implemented
in Python and the library OpenCV that supports image processing has been
used. In the following, we present the different datasets and metrics used in this
work, and then we expose the experimental results.

4.1 Datasets

We use three datasets:

– Lane detection dataset

We collected 80 online video sequences taken using front-view cameras in
highway sceneries in different cities (California, Turkey, Texas, Toronto, Seoul-
Korea, Marysville-usa). These video sequences are divided into four categories
depending on weather conditions (sunny, rainy, snowy and cloudy), and they
include straight roads with solid and dash lines [38].
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– Vehicle detection dataset

In order to verify the efficiency of the vehicle detection method, a total of
700 images are used; the dataset is composed of car and non-car and truck and
non-truck. We consider 300 car samples, 200 truck samples and 200 negative
samples. All images are normalized to a size of 30*30 pixels, and some of these
data samples are shown in Fig. 14.

Fig. 14. Training samples.

– Logo detection and classification dataset

In our experiment, the logo situated in the rear-view of each truck should be
captured using the onboard-camera. The whole database contains 200 images
which cover 2 logo categories (authorized and non-authorized), as shown in
Fig. 15.

In logo detection step, logos were cropped from different back’s truck images;
data is prepared to build reliable and accurate logo detection system. These logo
samples have been manually labeled and obtained from the internet. We divided
the dataset into training and validation datasets, consisting of 120 images and
80 images respectively having 56 × 40 pixels.

Fig. 15. Training Logo Samples.
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4.2 Evaluation Metrics

In this evaluation step, we illustrated our results using the following metrics.

• Recall rate: Measures the proportion of cases that have been correctly
detected. It is calculated as follows:

Recall =
TP

TP + TN
(8)

• Precision rate: measures the proportion of positive cases actually detected.
It is expressed by:

Precision =
TP

TP + FP
(9)

• F-measure: It is the average of precision and recall, it is computed as follows:

F − measure = 2 × Recall × Precision

Recall + Precision
(10)

Where:

– True Positive (TP): represents the proportion of positive cases that were
correctly identified, (Correctly predicting a label).

– False Positive (FP): represents the proportion of negatives cases that were
incorrectly classified as positive, (Falsely predicting a label).

– False Negative (FN): represents the proportion of positives cases that were
incorrectly classified as negative, (Missing label).

– True Negative (TN): represents the proportion of negatives cases that were
classified correctly, (Correctly predicting the other label).

For lane detection experiments, since no negative data (i.e., ground-truth
non-lane point) can be delimitated, (TN) rates are 0%.

4.3 Results

The different tests and results used to evaluate the effectiveness of our method
are presented in this subsection.

– Region of interest extraction

Table 1 clearly illustrates the calculated recall, precision and accuracy rates
for the various considered weathers conditions. On a sunny day, and as expected,
the proposed method provides great results with rates over 90% for the three
studied metrics. This is due to the fact that lane marks are easily recognizable.
On cloudy days, the results are less satisfying. Similarly, on rainy days, perfor-
mances decrease, with F-measure, recall and precision rates slightly around 60%.
This is due to the interference of raindrops on the front windshield. In snowy
conditions, our method gives lower percentages, with just 20% for F-measure,
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Table 1. The proposed method performance according to weather conditions.

Sunny % Rainy % Cloudy % Snowy %

Recall 93 63 71 23

Precision 99 64 88 18

F - measure 96 63 78 20

23% for recall and 18% for precision. This might be explained by the fact that
under such circumstances, the road is completely or partially covered with white
snow, which distorts the road extraction and lane marks detection and leads to
an increased false-positive number.

Some ROI detection results (green triangle) under different weather are pre-
sented in Fig. 16. The detection results appear to be excellent on sunny days
(Fig. 16(a) and (b)), but less satisfying on sever conditions (Fig. 16(c), (d) and
(e)). Our method fails to recognize all the lines, resulting in a visually misplaced
ROI, as shown in (Fig. 16(f)).

– Vehicle detection

In this section, we compare our method against two other methods using the
same classifier Adaboost but with different features namely LPB and HOG.

Table 2 presents the results while considering the whole image. Table 3 and
the graphic in Fig. 17 represent the results while considering the extracted ROI.
It is clear that results give excellent rates in sunny days in the two cases, espe-
cially when the Haar-like and AdaBoost algorithm are used with rates above
90%. For the cloudy and rainy days, the results are less satisfying. When the
extracted ROI is taken into the account, the results become better for the three
considered metrics. This is due to the decrease of the noise and the removal of
the unwanted region as only the road area is processed in the image.

Figure 18 shows the different Confusion matrix of the three features using
AdaBoost algorithm. The true positive rate (correctly detected vehicles) is
high when Haar-like features are considered (Fig. 18(a)). When HOG is used
(Fig. 18(b)), the falsely predicted vehicles is high. The LBP algorithm shows
the worst result (Fig. 18(c)) with a high number of falsely detected or missing
vehicles.

Results in Table 2 show that the algorithm combining Haar-like features and
AdaBoost gives the best results even when we consider detection on the whole
image with rates exceeding 76% for sunny days. Its performance decreases as
expected in severe conditions but remains above the two other algorithms. The
ROI extraction step improves results of all three algorithms. The Haar-like and
AdaBoost method outperforms the other two algorithms in term of recall, preci-
sion with a success rate of over 90% for sunny days and even over 80% in cloudy
days. These results could be explained by the fact that the Haar-like features
are relatively resistant to noise and lighting changes because they calculate the
gray level difference between the white and black rectangles. Moreover, Haar-like
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Fig. 16. Result of ROI detection in different weather conditions.

Table 2. Testing results of different algorithms while considering the whole image.

Number of videos Method Recall (%) Precision(%) F-measure(%)

Sunny 30 LBP + AdaBoost 63 67 68

HOG + AdaBoost 70 75.2 73

Haar + AdaBoost 79.7 81 76.3

Cloudy 20 LBP + AdaBoost 53 58 54

HOG + AdaBoost 57 66.8 65

Haar + AdatBoost 65.5 79.8 74.7

Rainy 10 LBP + AdaBoost 31.8 33.2 30

HOG + AdaBoost 36 34.3 32.3

Haar + AdaBoost 43 37 40
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Fig. 17. Testing results of different algorithms: (a) LBP, (b) HOG, (c) Haar

Features are good at detecting edges and lines. The proposed method gives also
the highest F1-measure; this metric is considered as a comprehensive evaluation
index demonstrating the overall performance.

Figure 19 shows the detection results of our proposed car/truck detection
method using Haar-like and AdaBoost classifier in different weathers condition.

– Logo classification

In order to check if the truck entering into the platoon gap is authorized
or not, the logo situated in the back of this truck should be detected. In the
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Table 3. Testing results of different algorithms while considering the extracted ROI.

Number of videos Method Recall (%) Precision(%) F-measure(%)

Sunny 30 LBP + AdaBoost 72.3 75.7 77.5

HOG + AdaBoost 80.7 83.5 83

Haar + AdaBoost 90.2 98 93.1

Cloudy 20 LBP + AdaBoost 70.7 67.8 68.6

HOG + AdaBoost 77.7 76.8 72.5

Haar + AdatBoost 85.6 80.5 89.3

Rainy 10 LBP + AdaBoost 41.7 43.3 37

HOG + AdaBoost 49.1 43.5 48

Haar + AdaBoost 54.1 59.5 50.2

Fig. 18. Confusion Matrix using AdaBoost algorithm: (a) Haar-like; (b) HOG and (c)
LBP.

experiment, two classification techniques were used namely the KNN and CNN,
and the outcomes of these techniques were compared. Both techniques use the
same training and testing data and operate in the same system environment.
The K value in the KNN algorithm is fixed to 3. For CNN, 5 layers are used and
each image is smoothed by a Gaussian filter with a 3*3 kernel and sigma value
of 1. The different testing results of these methods are shown in Table 4 and in
the graphic in Fig. 20. For CNN algorithm the results seem to be excellent with



108 H. Gharbi et al.

Fig. 19. Detection result: (a, b) sunny day, (c, d) cloudy weather, (e) rainy day.

Table 4. Testing results of algorithms: KNN and CNN

Precision % Recall % F-measure %

KNN 79.1 75.7 75

CNN 89.7 95.8 96.3

rates over 90% for the three studied metrics. For the KNN algorithm the results
are less satisfying with rates around 70%.

Figure 21 shows the Confusion matrix for the used algorithm CNN and KNN.
The correctly detected logo is high and the falsely detected and missing logos is
low when CNN algorithm is used compared with the KNN algorithm.

The KNN classifier shows the worst performance with a precision, recall
and F-measure of 79%, 75% and 75% respectively. However, the CNN rates were
respectively 89%, 95% and 96%. The main advantage of CNN compared to KNN
is that its computational efficiency. It conducts parameters sharing and employs
convolution and pooling techniques to enables CNN models to operate on any
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Fig. 20. Testing results of KNN and CNN.

Fig. 21. Confusion Matrix for: (a) CNN; (b) KNN.

device, making them globally attractive. Moreover, it is highly powerful and
efficient model that operates automated feature extraction with superhuman
accuracy. CNN is better at classification and categorization and has excellent
generalization abilities.

In our method, we use CNN to detect and classify the different logos situated
in the rear view of each truck; some testing results of CNN are shown in Fig. 22.
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Fig. 22. Classification results: (a), (b) authorized truck; (c), (d).

5 Conclusion

Throughout this paper, a Visual based method for Intruder vehicle Detection
called “VID” is proposed in order to detect any unintended vehicle entering the
platoon gap during the join maneuver. This method includes three main steps:

– ROI extraction by extracting the road area based on color feature.
– Vehicle detection based on Haar-like features and AdaBoost classifier.
– Vehicle classification based on the logo situated on the rear area of each truck

using CNN.

We have analyzed the performance of “VID” in different weather conditions
(sunny, cloudy, rainy). The results showed that “VID” performed effectively in
good weather conditions (sunny circumstances) and provided acceptable rates
in overcast conditions (cloudy weather). However, in extreme weather (rain
and snow), noise and false detection are possible. As future work, we want to
explore the method’s performance in the context of varying road conditions and
lane marker distortions. Additionally, further experiments and improvements are
needed to ascertain the effectiveness of our method on urban roads, where vehicle
density is higher than on highways, and the risk of an unwanted vehicle entering
the platoon gap is significant.
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Abstract. The Internet of Vehicles (IoV) relies heavily on Vehicle-to-Everything
(V2X) communications to enhance traffic safety and reduce the risk of accidents.
This is particularly critical in level crossing scenarios where rail communications
rely on their own infrastructure with unique access technology andmessage types.
Solutions for safer level crossings need to be practical and suitable for implemen-
tation. In response, researchers have proposed Edge computing solutions, an IT
architecture that processes data locally at the network’s edge rather than in a central
data center. This approach allows for real-time analysis of extensive data generated
by connected devices. In this paper, we present a novel Edge computing infrastruc-
ture for safer level crossings, leveraging Cooperative Awareness Message (CAM)
and Decentralized Environmental Notification Message (DENM) exchanges to
identify hazardous situations. Our proposed solution integrates Intelligent Trans-
port Systems (ITS) G5 and cellular 4G/5G V2X communication, optimized by a
new algorithm for managing road-rail infrastructure in the Edge node. Our algo-
rithm ensures Quality of Service (QoS) for V2X communications and enables
road operators to prevent level crossing accidents. We demonstrate the effective-
ness of our approach through simulations of different use cases and scenarios
using OMNET++, SUMO, and Unity 3D.

Keywords: CAM · DENM · Edge Computing · IoV · ITS G5 · Level Crossing ·
QoS · V2X

1 Introduction

To lower the danger of accidents, Intelligent Transport Systems (ITS) utilize new tech-
nologies for vehicular communications. The primary goal is to offer effective solutions
to increase road safety, particularly in railroad contexts. Several ITS stations enabling
Vehicle to Everything (V2X) communications; such as Vehicle to Infrastructure (V2I),
Vehicle to Vehicle (V2V), and Vehicle to Pedestrian (V2P) aim to exchange traffic data,
to avert hazardous circumstances [1]. By giving rail and road users real-time traffic
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information, a well-designed intelligent level crossing system presents good chances
to boost security and safety. Dedicated Short-Range Communications (DSRC) are val-
ued as appealing options for supporting V2X connections. Numerous use cases can be
examined in this context, especially when a train is considered in the Internet of Vehicles
(IoV) paradigm. For the sake of safety, it is possible to implement advanced algorithms to
ensure real-time communications between the various environment’s entities like LIght
Detection And Ranging (LIDAR), vehicles, pedestrians, Edge nodes, trains, etc. Such
algorithms must ensure alert dissemination when dangerous circumstances are identi-
fied. Under normal traffic conditions, connected vehicles send periodic messages called
Cooperative Awareness Messages (CAM). The CAM frequency is suggested to be a
multiple of 100 ms and does not exceed 1s [2]. However, Decentralized Environmen-
tal Notification Messages (DENM) are transmitted when the objective is to send alerts
and urgent information. There are four distinct types of DENM: (1) the announcement
of a new alert uses a New DENM, (2) events can be updated by an Update DENM,
(3) canceled by a Cancellation DENM, and (4) negated by using a Negation DENM
[3]. Along these lines, the Edge node is proposed in this paper to manage CAM and
DENM messages’ transmission efficiently based on our proposed algorithm while con-
sidering delay requirements. Therefore, the adopted architecture allows our system’s
actors to communicate with the level crossing’s infrastructure while ensuring real-time
transmissions.

Through this work, we present an architecture for CAM and DENM transmissions
in the level crossing area, as well as an algorithm for handling CAMs and DENMs
when an unusual event occurs. We also propose a priority order for the alerts’ generation
following the event’s severity. Then, we demonstrate a method that enables the train
to brake before arriving at the level crossing when an emergency occurs. The proposed
solution is based on hybrid ITS-G5/ LTE4Gcommunications. Additionally, we highlight
the significance of the Edge’s role by comparing the Edge-based infrastructure to a
cloud-based architecture while evaluating the Quality of Service (QoS) requirements.

The remainder of this paper is organized as follows. Section 2 discusses the solu-
tions suggested in the reviews of related works. Section 3 introduces the chosen archi-
tecture. Section 4 explains the proposed algorithm. Several use cases are detailed in
Sect. 5. Section 6 presents the performance evaluation and the simulation results. Finally,
conclusion and future works are drawn in Sect. 7.

2 Related Works

The key points covered in this article have been discussed in research papers such as:
Francesco Romeo et al. [4] have analyzed the DENM performance on the 5G-V2X

sidelink within the resource allocation scheme. This strategy based on message repeti-
tions improves the DENM performance by using Maximum Ratio Combining (MRC) at
the receiver with a negligible impact on periodic CAMs. This approach does not provide
means to prioritize DENM types. Message classification and precision have not been
taken into account. The simulated system is very limited and the specific case of the
level crossing is not considered.

Zdenek Lokaj et al. [5] have proved that when traffic flow increases in city zones,
the information sent to a driver via CAMs and DENMs has a considerable benefit. This
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work provides a model of a Cooperative (C)-ITS system that can make traffic safer.
The limitation of this study is that it focuses on general V2X communications, so the
authors did not consider a specific messaging strategy. Besides, they do not specify
how to resume regular traffic conditions upon an emergency resolution. No alternative
solutions are proposed for traffic congestion or collisions.

Erik de Britto e Silva et al. [6] have researched reinforcing traffic safety using CAM
to verify velocity accuracy. They proposed using a Road Side Unit (RSU) equipped
with a speed detection device to enforce the accuracy of the disseminated velocity.
The RSU receives C-ITS messages and sends warning notifications (DENMs) when
received information is inaccurate. This approach focuses only on sending alerts when
the allowed vehicle’s speed is exceeded. In addition, the exchange of messages between
several RSUs is not mentioned.

Nagore Iturbe-Olleta et al. [7] have detailed the deployment of an ITS-G5 application
based on analyzing CAM and DENM transmissions. They considered the management
of alerts generated in a traffic control center by converting them to the corresponding
DENMs and sending them to the specific RSU. For all studied scenarios, no train or
level crossing are mentioned. Also, no priority assignment is considered on the 802.11p
channel for the four DENM types (New, Update, Cancellation, and Negation).

3 Adopted Architecture

The new aspect of our chosen approach is the implementation of a level crossing
infrastructure that ensures the exchange of information in real-time, as shown in Fig. 1.

Fig. 1. Proposed architecture.
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Many communications are supported to manage the exchange of messages under
this architecture. An alert is sent to the Edge node when the LIDAR (or the camera, or
another particular sensor) identifies an emergency. The Edge node transmits the received
warning to the RSU. It should be noted that the Edge is mounted next to the RSU close to
the level crossing to avoid high installation costs. We assume that its installation, next to
the RSU, can provide advanced computing capabilities for processing and analyzing data
locally at the network’s edge, which is crucial for optimizing communication between
vehicles and infrastructure and managing road-rail infrastructure. Consequently, it can
be viewed as a higher-level computing platform that facilitates communication and data
processing between RSUs and other connected devices, rather than as a standalone RSU.
Through the V2X platform, the Edge node may also communicate with the train to alert
it to emergencies. Assuming that the considered 500 m-zone supports 802.11p ITS-G5
communications [8], the RSU broadcasts the warning announcing the emergency case
by sending a DENM to the nearby connected road users (The adopted DENM size for
the realized simulations is equal to 300 bytes [9]). The CAM size is equivalent to 500
bytes [2].

Initially, CAM messages are exchanged periodically between the various environ-
ment components. Still, if an unusual circumstance arises, the CAMs are transmitted
with a less priority order ϕn allowing the DENMs to have the highest priority order ϕ0
on the 802.11p channel [10].

The Edge employs a method based on priority assignment to manage all DENM
types, including New, Update, Cancellation, and Negation. The following section
provides more information about the suggested algorithm.

4 Proposed Algorithm

A strategy for assigning messages in real-time systems in accordance with their priority
is demonstrated in Algorithm 1.
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Algorithm 1 Generation of messages at the Edge node
Input: η[d], ζ[c]

Output: {Ñd}[η[d]], {Üd}[ η[d]], {Çd}[ η[d]] , {θ(neg)d}[ η[d]]

Initialize: iη[d]←0, kζ[c]←0;
1 while Ť0<= Ťnf do
2     Broadcast ζ[c] ; //every 100 ms
3 kζ[c] = kζ[c] +1;
4 if ((η[d] is detected) and (η[d]=={Ñd}[η[d]]) then
5 if ((Šặ == Ł) and (Šặ==ŠRŞ)) then
6 Broadcast η[d]  with 0 ;
7 iη[d]←  iη[d] + 1;
8 end if
9 else if ((η[d] is detected) and ((η[d]=={Üd}[η[d]]) or 

(η[d]=={Çd}[ η[d]]))) then
10 if (Šặ == Šƒặ) then
11 Broadcast η[d] with 0 ;
12 iη[d]←  iη[d] + 1;
13 else
14 Ignore η[d];
15 end if
16 else if ((η[d] is detected) and (η[d]=={θ(neg)d}[ η[d]])) then
17 if (Šặ != Šƒặ) then
18 if ((Šặ == Ł) and (Šặ==ŠRŞ)) then
19 Broadcast η[d] with 0   ;
20 iη[d]← iη[d]+ 1;
21 end if
22 end if
23 end if

//Keep exchanging ζ[c] in case of detection or not of η[d]

//Accord a lower priority order [ 0+[1..n]] to ζ[c]  when any η[d]  

({Ñd}[η[d]], {Üd}[ η[d]], {Çd}[ η[d]], {θ(neg)d}[ η[d]]) is being transmit-
ted on the 801.11p channel.

24 end while 
25 End.

Our approach is predicated on the understanding of unique parameters including:
Source of the alert (Šặ) (a LIDAR (Ł)), source of the first alert (Šƒặ), several recog-
nized sources (ŠRŞ), DENM (η[d]) detection, and some specifications of each treated
use-case. The following is the recommended hierarchy of relevance for the various
DENM types: The new DENM ({Ñd}[η[d]]) has the highest priority, followed by the
updateDENM({Üd}[η[d]]), the cancellationDENM({Çd}[η[d]]) and the negationDENM
({θ(neg)d}[η[d]]) respectively. We suppose that only the periodic exchange of CAMs (ζ[c])
is observed and that the number of exchanged CAMs increases every 100 ms (kζ[c] =
kζ[c] + 1), but when an emergency is detected, an alert must be broadcasted (iη[d] ←
iη[d] + 1) as long as the simulation is still running (Ť0 < = Ťnf).

Next, we provide a step-by-step description of each DENM type’s generation
strategy.
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4.1 Generation of a New DENM

Once an emergency is identified, {Ñd}[η[d]] is generated at the Edge node. We consider
that an event detected by the infrastructure (Ł) has always the priorityϕ0 for the proposed
approach. We assume that if the same alert is triggered by more than one source (ŠRŞ)
then it is a major priority compared to an alert triggered by just one source. For the
announced cases, the Edge node is informed that the problem persists. Consequently, it
broadcasts the corresponding new DENM, otherwise, if unidentified sources have sent
the emergency notification, the Edge decides that the regular periodic CAM exchange
must not be interrupted, so no DENM message is generated.

4.2 Generation of an Update DENM

In some instances, the unexpected occurrence continues after broadcasting the new
DENM with just minor adjustments to its position, severity, priority order, or other
specifications. The Edge node, in this case, disseminates an update DENM to notify
road users of these changes. If the {Üd}[η[d]] is produced by the same identifiable source
as the original DENM (Šặ ← Šƒặ), then it is broadcasted to road users. Otherwise, it
is disregarded, preserving the first {Ñd}[η[d]] on the 802.11p channel and the periodic
exchange of ζ[c] until the end of the simulation time (T ← Ťnf). This type of DENM
is delivered only when it becomes necessary to update the characteristics of the first
broadcasted warning.

4.3 Generation of a Cancellation DENM

When the Edge is transmitting a {Ñd}[η[d]] or a {Üd}[η[d]] and the emergency is resolved,
it stops issuing the alert to disseminate a {Çd}[η[d]]. So, the priority accorded to the
cancellation DENM is lower than the new and updated ones. The Edge node checks
if the source that has originally issued the initial warning notification (η[d]) when the
abnormal event took place is also the transmitter of the cancellation notification (Šặ ←
Šƒặ). If the source is the same, then the {Çd}[η[d]] is sent, and all traffic users realize that
the problem is resolved. Suppose a different source broadcasts the cancellation DENM,
the Edge dismisses it. In this case, the exchange of the {Ñd}[η[d]] or the {Üd}[η[d]] persists
along with the regular exchange of CAMs (ζ[c]) in the considered IoV environment.

4.4 Generation of a Negation DENM

It occasionally happens that the Edge receives a false alert while exchanging messages
with other system actors during the various scenarios that could occur. In this circum-
stance, it instantly broadcasts a Negation DENM ({θ(neg)d}[η[d]]) to inform road users
that they shouldn’t consider the erroneous warning. This kind of message must be gen-
erated by a station different from the original (Šặ �= Šƒặ) [11]. In this instance, when the
LIDAR (Ł) and several recognized sources (ŠRŞ) send this type of alert, it is broadcasted
by the Edge. In fact, we grant the infrastructure (Ł) a high degree of confidentiality for
our proposed process to avoid making decisions based on inaccurate information. It is
crucial to mention that the {θ(neg)d}[η[d]] has the lowest priority order compared to other
DENM messages.
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4.5 Prioritization of Similar DENM Types

When the Edge receives 2 × η[d] of the same type according to the four classifications
listed above, it categorizes them on the 802.11p channel based on the severity of the
event they are reporting.

Then, it generates the DENM of the most dangerous event first, due to the DENM
CauseCode field that gives information about the cause of the emergency (e.g., Acci-
dent, Roadworks, Vehicle breakdown, Human problem, collision risk, etc.). The DENM
message includes a priority information field where the values 0 and 7 represent the
highest and lowest priorities, respectively [12].

5 Use Cases

Different use-case analyses are carried out to validate the defined strategy. The selection
of the studied use cases was carefully made based on their relevance to the current state-
of-the-art in level crossing safety, as well as their representativeness of various scenarios
and traffic conditions, ensuring that the proposed approach can be validated with high
confidence and applicability.

5.1 Malfunction Detection

In this instance, a defect is discovered by a LIDAR (or a road user) at a distance d =
10m from the level crossing, typically connected to the lengthy duration of the barrier
closure T > 22 s. At this point, the LIDAR alerts the Edge node, which then emits a
DENM warning other road users of this special circumstance, as shown in Fig. 2. Some
of them will decide to adjust their course to avoid any accident risk after receiving such
a signal. Others will stop and wait to hear from the Edge, via DENM, that the unusual
event has been canceled (By receiving a cancellation DENM from the source that first
reported the issue, the Edge realizes that the problem has been fixed).
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Fig. 2. Dissemination of barriers malfunction alert.

5.2 Detection of a Blocked Vehicle

Numerous eventualities are taken into account in this context and are handled in
simulations:

Detection Without the Presence of a Train. In this scenario, the LIDAR detects a
blocked vehicle on the railway and sends an alert to the Edge as shown in Fig. 3.
(Barriers are opened and there is no coming train).

Fig. 3. Diffusion of the blocked vehicle alert with the absence of the train.

The Edge node transmits the warning received from the LIDAR at Tmax = t +
1s (maximum time for information processing). Once the Edge issues the DENM for
problem resolution, regular traffic is resumed. As a result, some drivers will choose to
use a different route. Others will pause and wait for an Edge DENM cancellation.
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Detection with the Presence of a Train. In this scenario, a pedestrian, a vehicle or a
LIDAR detects that there is a blocked vehicle at the level crossing. Assuming that the
barriers are closed five minutes later, the train should be five kilometers away from the
level crossing. So,wepropose that it receives the alert through anLTE4Gcommunication
and this, by the implementation of 2 eNodeBs as presented in Fig. 4.

Fig. 4. Distribution of the blocked vehicle alert with the presence of the train.

In our trials, we suppose that the train receives the alert 5 min before the barriers
closure. For safety issues, we assume that it is driving at a speed equal to 80 km/h (It is
current in an urban area). Once it receives the alert, the train starts braking, its braking
distance Db is given by:

Db = Is × (tp+e + Is

2 ×
(
dm ± 9.81×Sp

103

) ) (1)

where tp+e = tp + te, tp > 0, te > 0 (2)

Is (m/s) represents the Initial Speed (The train’s speed at the reception of the alert),
tp+e is the time for the establishment of the braking force, which is the sum of the
propagation time in the train tp and the setting time in the convoy’s vehicles te. The
deceleration average is represented by dm (m/s2) and Sp is the rise (‰) that is negative
only in descent.

The graph in Fig. 5 illustrates the calculated distances of braking based on the DE-
OCF diagrams of the brakes’ evaluation [13]. Next, we will refer to this method as
T1. Hence, Fig. 6 shows a comparison between the values obtained in Fig. 5 and the
calculated distances for the train’s braking obtained using (1), this method will have T2
as a reference in the next paragraph.
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Fig. 5. Calculated distances of braking based on the evaluation of brakes’ diagrams DE-OCF
(T1) [13].

Keen-eyed observers will notice that for a braking factor λ = 100% and for a speed
equal to 80 km/h, the train needs 254,16 m to brake, according to T1. However, it needs
270,8 m to stop, according to T2.

Fig. 6. Comparison between the Braking distances obtained based on T1 and T2 [14].

It is worth mentioning that the train needs to be alerted in advance to be able to
brake safely (In our scenario, it receives the warning notification at the moment of the
vehicle’s blockage, and it starts to brake 5 km before barriers are closed). Since the
train is a passengers’ train, as the Braking distance increases (even by some meters), the
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passengers’ comfort is more ensured. Given this, T2 is the best strategy to use for the
train’s braking.

Through the exchange of recurring CAMs, the local Edge identifies the train’s loca-
tion when the vehicle is blocking the railway. The train will wait for a new notification
from the Edge node informing it that the issue has been resolved. This will allow it to
continue traveling and prevent the collision.

5.3 Detection of a Chicane Passage

Several possibilities, such as the following, can be seen for the chicane passage:

Negation of a False Alert. In this scenario, a pedestrian, a vehicle or a LIDAR detects
that there is a blocked vehicle at the level crossing. 5 min later, barriers are closed,
the train is at a 5 km-distance from the Level Crossing at the moment of the vehicle’s
blockage. So, we propose that it receives the alert through an LTE 4G communication
and this, by the implementation of 2 eNodeBs as presented in Fig. 4.

The sources of the alert in this instance—both the LIDAR and the pedestrian—are
chosen to be at a distance d1→max = 10 to 25 m from the Level Crossing (to ensure
real-time alert transmission and ensure the QoS exigencies). They both send a DENM
to the Edge after spotting a car making a chicane passage at the level crossing. The
Edge node (assuming that the barriers are closed and that a train is approaching at a
distance of dtr = 200 m from the level crossing) broadcasts the alert at Tmax (t + 1s).
In order to avoid further delay, another vehicle also tries to pass into a chicane. This
vehicle sends a warning signal to other road users (a cancellation DENM) stating that
the road is open. Having received the cancellation DENM, the Edge identifies that it is
a false alert at the moment of reception TR, since the vehicle that has just issued the
warning was not the source of the initial DENM. Therefore, it lacks the authority to end
the exceptional circumstance. The Edge node broadcasts a negation DENM as a result.
To decrease the risk of accidents, drivers will either move away andmodify their route or
stop and wait for a subsequent signal to proceed. Then, when t = δpr (Corresponding to
the problem resolution time), those who chose to wait receive a DENM informing them
that the level crossing is now open. Consequently, automobiles and pedestrians resume
their customary periodic exchange of CAMs.

GivingMore Priority to the Infrastructure. Here, the pedestrian, the vehicleṼ2, and
the LIDAR all pick up on the vehicle Ṽ1’s chicane passage. Sources of the warning
notification are at distances d1→max = 10 to 35 m from the level crossing. The barriers
are closed and a train is approaching the level crossing (at dtr = 150 m).

Actually, all of the three mentioned entities will communicate the emergency to the
Edge via a DENM. As a result, the latter alerts other road users to unexpected event.
Given that Ṽ1 succeeds its chicane passage, Ṽ2 tries to follow the chicane passage of
Ṽ1. It starts to move forward after broadcasting a fake signal in order to indicate that
the level crossing is open. Given that the Edge prioritizes infrastructure and since the
LIDAR is a key source of the first distributed DENM, a cancellation DENMmust be sent
by the LIDAR to terminate the DENM (unless a technical failure occurs, in which case
the Edge will update its algorithms). Therefore, even ifṼ2 was one of the initial sources
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of the DENM, the urgency still exists for the Edge as long as the LIDAR is operational
and has not yet cancelled the DENM. As a result, the Edge node broadcasts a negation
DENM, as seen in Fig. 7.

Fig. 7. Dissemination of the Negation DENM.

Road users must then wait for the barriers to reopen and for a new signal from the
Edge before proceeding on their customary path.

6 Performance Evaluation and Simulation Results

Our approach is validated through simulations using OMNET++, SUMO Framework,
and Unity 3D for the aforementioned use cases. Our primary objective is to demonstrate
the effectiveness of the suggested approach. Despite differences in underlying character-
istics among the use cases, our analysis reveals that there is no significant difference in
performance or accuracy of the simulated scenarios. Thus, we conclude that the approach
can be validated using any of the studied use cases with equal reliability.

By analyzing the results of our simulated “Detection of a blocked vehicle” scenario,
we compare the performance of our architecture based on the Edge infrastructure to a
central cloud-based architecture to demonstrate the effectiveness of our method. Fur-
thermore, we sought to prove that the IoV paradigm we presented sends packets in
real-time. In contrast to a central cloud-based messages exchange, Fig. 8 demonstrates
that message latency for communications based on the Edge infrastructure is relatively
low. For the sake of readability, in this comparison, we paid close attention to the simu-
lation time points at which packets are being exchanged (there is no scale specified for
the x-axis). The graph shows that, when considering Edge-based exchanges, the average
latency is estimated to be very negligible. The time it takes to send packets is only a few
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microseconds (an average of 349,7254 μs), so real-time communication is guaranteed.
This is significant in our case because we attempt to notify other road users of emergen-
cies as soon as the abnormal event occurs. However, the graph in Fig. 8 demonstrates
that cloud-based communications require a few milliseconds to initiate (An average of
2,465361807 ms). This latency increases the risk of accidents.
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Fig. 8. Latency in a cloud-based architecture compared to an Edge-based infrastructure.

To further demonstrate the utility of our strategy, we examined the packet loss rates
in both of the treated alternatives. This is shown in Fig. 9 where the average loss rate is
very low (=3,4375%) for the Edge Infrastructure. Our simulations show that there is a
significant difference between this packet loss rate and the corresponding value when a
cloud infrastructure is considered, which ranges between 66,66% for the first sent packet
and 16,16% for the last sent one (No scale is specified on the x-axis, we consider only
the most relevant moments in the simulation time where packets are being exchanged).

These observations explain why we opted for an edge-based infrastructure to secure
a level crossing area.



Securing Level Crossings with Edge Infrastructure and V2X Communications 129

0 20 40 60 80

50

51

52

52

53

54

55

56

57

87

packet loss rate (Cloud model) % packet loss rate (Edge model) %
Si

m
ul

at
io

n 
tim

e 
(s

)

Packet Loss Rate (%)

Fig. 9. Packet loss rate for both Edge-based and cloud-based models.

7 Conclusion and Future Works

This paper presents a new approach for managing DENMs and CAMs based on an
Edge infrastructure at the level crossing. The key strategy is to declare dangerous use
cases to avert serious accidents. The proposed architecture supports the interchange of
all four DENM message types in the IoV environment. The transmissions are based on
hybrid ITS G5/ LTE 4G communications. The simulated use cases demonstrate how the
suggested approach could decrease accident risks in urban areas by satisfying real-time
exchange requirements.

In future works, we plan to integrate the Radio Frequency Fingerprinting (RFF),
a physical layer-based method for enhancing the security and privacy of transmitted
information in order to fulfill the exchange confidentiality.
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Abstract. Accidents at level crossings often cause dramatic material
and human damages that seriously affect the reputation of rail safety.
Research on Level Crossing (LC) safety has attracted considerable atten-
tion in recent years. In this paper, we rely on formal methods, based on
mathematical rigour, which provide real help for the designer to evaluate
the behaviour of a system and avoid errors before its implementation.
Thereby, we propose a railway LC system that suggests a new archi-
tecture which prevents very risky situations causing several accidents.
To do so, we adopted the Event-B formal method to specify the safety
requirements of our system and verify its correctness. Event-B is based
on the refinement technique which allows a problem decomposition and
then reduces modelling and verification effort.

Keywords: Railway · Level Crossing · Correctness · Formal
methods · Event-B · Refinement

1 Introduction

Over the last decades, safety has been a major issue in railway operations. In
particular, Level Crossing (LC) safety remains one of the most critical chal-
lenges that railway stakeholders need to handle. An LC is an intersection where
a railway line intersects with a road or path at the same level. According to a
statistical analysis of accidents at the European LC, there are more than 300
deaths every year in Europe [12]. Nevertheless, due to a complex operation con-
text, and the lack of complete details about accidents, the risk assessment of
LCs remains a challenging task. Therefore, LC safety in a railway field has to be
urgently enhanced.

In order to guarantee the safety of such complex systems, scenario-based test-
ing and simulation methods are far from being sufficient, since they do not ensure
that systems behave correctly in all possible situations. However, adopting formal
modeling has gained a great attention in the development of critical transport
applications [5,6]. Formal methods are also desired by railway engineers thanks
to the benefits and the potential of model-based engineering systems. In fact,
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these methods consist in expressing the system behaviour as mathematical for-
mulas. They aim to specify the functionality of a system and provide an efficient
way to prove its properties without worrying about the possible scenarios.

Therefore, the main purpose of our research is the use of formal methods to
specify the safety requirements of LC systems. Our work enables to count the
number of upcoming vehicles from the two sides of the LC. Indeed, it informs
each vehicle when it can reach the LC. The main goal of the developed system is
to guarantee a safe LC and a reliable passage of trains and vehicles. To do so, we
adopted the Event-B formal method, which relies on a refinement-based model
development. The refinement technique deals with the complexity of a system
since it consists in introducing the different properties in a step-by-step fashion.
Moreover, it is the main basis of the correct-by-construction approach [9].

The remainder of this paper will be divided into the following sections: In
Sect. 2, we give a brief overview of the Event-B formal method and the correct-
by-construction approach. In Sect. 3, we provide a description of our proposed
railway LC system. Section 4 details our system formalization using the Event-
B method. The related work is presented in Sect. 5. Finally, the last Sect. 6
concludes the paper and provides insights for future works.

2 Preliminaries

In this section, we introduce preliminary details about the Event-B formal
method and the correct-by-construction approach which represent the essential
concepts of our proposed formal development of the railway LC system.

2.1 Event-B Modeling Method

Event-B [1] is a formal method enabling the development of software through
consecutive refinements. Its modeling language relies upon the first-order predi-
cate logic and the set theory. Moreover, it uses two main structures to specify a
software system: contexts and machines. The context specifies the static part of
a model which may include carrier sets, constants, axioms, and theorems that
can be derived from the axioms of a context. A context may be extended by
another context to introduce more elements. A machine describes the dynamic
elements of a system. It consists of several components: variables, invariants,
theorems, and events. In fact, the variables express the different states of the
system. Invariants define the properties of the variable that should always be
maintained in each state. Theorems express the properties derivable from the
invariants. Events specify the behavior of a system by modifying the set of vari-
ables. An event is fired when its guards are satisfied. The actions represent the
result of an event execution. In order to use the static elements of the system, a
machine may see one or more contexts.
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2.2 Correct-by-Construction Approach

The correct-by-construction approach [9] aims to create a correct software. The
foundation of this approach is the refinement technique. It is the main feature
of Event-B as it enables to enrich a machine in a step-by-step manner. In the
refined machine, new variables and events can be introduced. Furthermore, the
abstract variables and events can be replaced by concrete ones. The relationship
between the variables in the abstract and concrete model is expressed by gluing
invariants.

To ensure the correctness of contexts, machines and the refinement process,
we must validate a number of proof obligations (POs) which are automatically
generated by the “RODIN” platform [2]. Some POs are related to the machine/-
context elements while others are related to the refinement process. The POs
enable checking whether the events preserve the invariants of the system and
that all events are feasible. The definitions of all the PO types are clearly given
in [1]. Moreover, the POs can be discharged either automatically by an integrated
proof tool or through interactive proof steps.

3 Railway Level Crossing System

We present in Fig. 1 the overall process of our railway level crossing system. We
assume that the traffic road crossing the railway is usually a one-way lane. We
describe the different components of our system in Table 1.

S2S1

S1 RL L/C S2

LLBRGW

Fig. 1. The graphical representation of the LC system

For a better understanding, we suppose that the train comes from the left
side. If the sensor S1 detects the train, it sends an approaching message to the
GW. Here, we can distinguish two cases:

• Case 1: If the L/C detects an obstacle at the LC, it sends a message to the
GW. This latter communicates with the RL to display a red signal. So, the
train must stop.
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• Case 2: If the RL displays a green signal, the train continues running. So,
the sensor S1 detects the train and sends an approaching message to the
GW. After that, the GW sends a message to the BR about closing the LC.
Moreover, it informs the drivers of vehicles to stop by changing the signal
of the LL to red. At this time, the train passes the LC safely and the other
components remain as they are. Then, after crossing the railway, the sensor
S2 sends a message to the GW to lift the BR. Therefore, in order to change
the LL to green, it should be ensured that the number of cars after the LC
does not exceed a certain number. This number is computed according to the
distance covered by the gateway. In our work, we assume that only a single
vehicle can cross the crossing level at a time.

Table 1. Description and role of each item of the proposed system

Item Description Role

GW Level crossing control
and Gateway

It connects LC components, communicates
with vehicles and takes decisions about
closing and reopening the LC

S1 Sensor It detects the train and sends an approaching
message to the GW

S2 Sensor It detects the train and sends an exit message
to the GW if the train exits the LC

BR Barrier It opens and closes one side of the road traffic

L/C Lidar/camera It detects obstacles at the LC

RL Railway signal light It displays signals stop or proceed indications
to the driver of the train

LL LC signal Light It informs the drivers of vehicles to stop when
the train is coming or to continue otherwise

4 Formal Development of the Railway LC System

In this section, we model the proposed railway LC system through the Event-B
formal method. Figure 2 illustrates the architecture of our formal specification
which consists of five machines and two contexts:

– The context “C0” encodes the railway and the road structure. The context
“C1” extends “C0” and defines all labels of the system.

– The first machine “M0” specifies the main events performed by a train at the
LC. It uses properties defined in the context “C1”.

– The machine “M1” refines the first one. It adds events to encodes vehicle
activities.

– The third machine “M2” refines “M1”. It formalizes the railway signal light,
lidar/camera, and LC signal light properties.
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– The fourth machine “M3” refines “M2” to introduce local labels of vehicles.
– The last machine “M4” refines “M3” and specifies the vehicle numbering.

Due to lack of space, we present in this paper only the main elements of our
formalization.

C0 C1

M0 M1

Extends

Sees
Refines

M2 M3 M4
Refines Refines Refines

Fig. 2. The Event-B specification structure of the LC system

4.1 Formal Specification of the Context C0

The context C0 describes the static properties of the railway and the road (see
Listing 1.1). They are represented by a simple, connected and oriented graph.
They are specified by two paths. A path is a linear graph where nodes are listed
in a defined order (N1, N2, ..., Nn) and edges connect two neighbouring nodes
(Ni, Ni+1) where i ∈ {1, 2, ...n − 1}. The intersection between the road and the
railway paths is an edge representing the LC zone. To specify the railway and
the road path, we start by defining a set of positions as given in Table 2.

Table 2. Description of the different positions in the railway and the road path

Positions Description

s1 and s2 The positions of the sensor S1 and the sensor S2 respectively

rl The position of the first railway light

cz0 and cz1 The positions of the beginning and the end of the crossing
zone respectively

r0 [resp. r1] The position of the first [resp. last] place covered by the
gateway in the road before [resp. after] the crossing zone

In Fig. 3, we present a graphical representation of the railway and the road
structure.

Fig. 3. Graphical representation of the railway and the road
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Formally, a position is defined as a node (P is the position set) and an
edge is specified as a link between two nodes (axm1). The axioms axm2 and
axm3 respectively ensure that the graph is simple and directed. The domain
restriction “P � id” is a subset of the relation id which includes all the pairs
whose first component is in P . In axm4, we define a path as a finite sequence
of edges which joins two nodes. For example, a path between x and y which
crosses the nodes x, z, and y and covers the edges (x, z) and (z, y) is defined
as follows: x �→ y �→ {x, z, y} �→ {x �→ z, z �→ y}. In axm5, we assert that a
path should include their extremity nodes. A path is composed of a set of edges
which result from a bijection between the nodes of the path (axm6). In fact,
from this bijection, we excluded the first node of the path x which does not have
a predecessor node and the last node of the path y that does not have a successor
node. Then, in axm7, we mentioned that a path is a connected graph, while in
axm8 and axm9, we use the operator partition to define instances of the sets P
and edges. The axm10 [resp. axm11], defines the path railway [resp. road] as a
set of edges with respect to our use case.

Listing 1.1. Axioms of the context C0

axm1: edges ⊆ P × P
axm2: P � id ∩ edges = ∅

axm3: edges ∩ edges−1 = ∅

axm4: path ⊆ (P × P ) × P (P ) × P (edges)
axm5: ∀x, y, z, S ·x �= y ∧ z ⊆ P ∧ S ∈ P (edges) ∧ ((x �→ y) �→ z) �→ S ∈ path
⇒x ∈ z ∧ y ∈ z
axm6: ∀x, y, Z, S ·x �= y ∧ Z ⊆ P ∧ S ∈ P (edges) ∧
((x �→ y) �→ Z) �→ S ∈ path ⇒ S ∈ Z \ {y} �� Z \ {x}
axm7: ∀x, y, Z, S ·x �= y ∧ Z ⊆ P ∧ S ∈ P (edges) ∧
((x �→ y) �→ Z) �→ S ∈ path ⇒ (∀q ·q ⊆ Z ∧ y ∈ q ∧ S[q] ⊆ q ⇒ Z = q)
axm8: partition(P, {s1}, {s2}, {rl}, {cz0}, {cz1}, {r0}, {r1})
axm9: partition(edges, {s1 �→ rl}, {rl �→ cz0}, {cz0 �→ cz1}, {cz1 �→ r1},
{r0 �→ cz0}, {cz1 �→ s2})
axm10: railway = {s1 �→ rl, rl �→ cz0, cz0 �→ cz1, cz1 �→ s2}
axm11: road = {r0 �→ cz0, cz0 �→ cz1, cz1 �→ r1}

Finally, we added the following theorems (thm1 and thm2) to prove that
railway and road sets comply with the previously defined axioms through the
following theorems:

• thm1 : (r0 �→ r1) �→ {r0, cz0, cz1, r1} �→ road ∈ path
• thm2 : (s1 �→ s2) �→ {s1, rl, cz0, cz1, s2} �→ railway ∈ path

4.2 Formal Specification of the Context C1

The C1 context introduces the labels of the system (see Listing 1.2). In fact,
the two possible states of the crossing zone are: open and close (see axm1). The
railway and road light signals are specified by the axm2 and axm3 respectively,
while in axm4, we describe the possible states of the barrier: up and down.
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We specify in axm5 the lidar states which can be clear LC or not clear LC.
As for axm6, it specifies the possible positions of a vehicle: away (very far),
before, inside or just after the LC zone. In axm7, we define two constants:
max cars before LC and max cars after LC. We assume that the first one
[resp. the second one] corresponds to the maximal number of vehicles in the
path (r0 �→ cz0) [resp. (cz1 �→ r1)] where a gateway can connect with them.

Listing 1.2. Axioms of the context C1

axm1: partition(crossing states, {open}, {close})
axm2: partition(RL states, {Green}, {Red})
axm3: partition(Light state, {red}, {no light})
axm4: partition(BR states, {up}, {down})
axm5: partition(lidar states, {clear LC}, {not clear LC})
axm6: partition(vehicle position, {away LC}, {before LC}, {inside LC}, {after LC})
axm7: max cars before LC ∈ N1 ∧ max cars after LC ∈ N1

4.3 Formal Specification of the Machine M0

The first machine, called M0, specifies the basic events of the model. This level
is very abstract in which we can observe only four events:

– Open LC occurs when the train leaves the LC zone. More precisely, the train
moves from the (cz0 �→ cz1) path to the (cz1 �→ s2) path.

– Close LC occurs when the train enters the first path of the railway (s1 �→ rl).
– move inside LC occurs when the train moves forward from (s1 �→ rl) or

(rl �→ cz0) to the next path.
– move away LC occurs when the train exits (cz1 �→ s2) path and therefore

it leaves the railway.

In this first machine, we define two variables: crossing road state and
train inside (see Listing 1.3). The first variable represents the state of the cross-
ing zone. It is “close” [resp. “open”] if vehicles cannot [resp. can] cross the rail-
way (see inv1). The train inside variable attributes the value “TRUE” [resp.
“FALSE”] to a particular path of the railway if a train is [resp. is not] inside (see
inv2). Through “inv3” and “inv4”, we specify that the crossing zone is closed
if there is a train inside (s1 �→ rl) or (rl �→ cz0) or (cz0 �→ cz1) paths and open,
otherwise. Then, the invariant “inv5” asserts that no more than one train can
be present inside (s1 �→ rl) or (rl �→ cz0) or (cz0 �→ cz1) paths.

Listing 1.3. Invariants of the machine M0

inv1 : crossing road state ∈ {cz0 �→ cz1} → crossing states
inv2 : train inside ∈ railway → BOOL
inv3 : crossing road state(cz0 �→ cz1) = close ⇔ (∃x, y ·x �→ y ∈

railway \ {cz1 �→ s2} ∧ train inside(x �→ y) = TRUE)
inv4 : crossing road state(cz0 �→ cz1) = open ⇔

train inside[railway \ {cz1 �→ s2}] = {FALSE}
inv5 : ∀x, y ·x �→ y ∈ (railway \ {cz1 �→ s2}) ∧ train inside(x �→ y) = TRUE

⇒train inside[railway \ {cz1 �→ s2, x �→ y}] = {FALSE}
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Because of the space limitation, we detailed only the events Open LC and
Close LC of the M0 machine. The event Open LC (see Listing 1.4) can be
activated if the state of the crossing zone is equal to “close” and the train moves
from the (cz0 �→ cz1) path to the (cz1 �→ s2) path. In the action component, the
crossing zone state takes the state “open” and the train moves to the (cz1 �→ s2)
path.

Listing 1.4. Event Open LC, in M0

EVENT Open LC
WHEN
grd1 : crossing road state(cz0 �→ cz1) = close
grd2 : train inside(cz0 �→ cz1) = TRUE

THEN
act1 : crossing road state(cz0 �→ cz1) := open
act2 : train inside := (train inside \ {cz0 �→ cz1 �→ TRUE, cz1 �→ s2 �→ FALSE})

∪{cz1 �→ s2 �→ TRUE, cz0 �→ cz1 �→ FALSE}
END

The event Close LC (see Listing 1.5) can be triggered if the state of the
crossing zone is equal to open and the train enters the first path of the railway
(s1 �→ rl). The actions defined in the clause “THEN” update the crossing zone
state and the train is now in the first path of the railway (s1 �→ rl).

Listing 1.5. Event Close LC, in M0

EVENT Close LC
WHEN
grd1 : crossing road state(cz0 �→ cz1) = open

THEN
act1 : crossing road state(cz0 �→ cz1) := close
act2 : train inside := (train inside \ {s1 �→ rl �→ FALSE}) ∪ {s1 �→ rl �→ TRUE}

END

4.4 Formal Specification of the Machine M1

The second machine M1 refines the first one and adds new details to it (see
Listing 1.6). At this level, we can observe the vehicle traffic. Formally, we define
a new variable v inside to specify the set of present vehicles at each path of
the road (see inv1). Moreover, we restrict the number of vehicles in each road
path by thresholds previously defined in the context (see inv2, inv3 and inv4).
Through “inv5”, we ensure that a vehicle crossing the rails will find a free place
in the following path (cz1 �→ r1). The invariant “inv6” asserts that no vehicles
can be at two paths at the same time. Finally, when the crossing zone is closed
then there is no vehicle inside the (sz0 �→ cz1) (inv7).
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Listing 1.6. Invariants of the machine M1

inv1 : v inside ∈ road → P (Cars)
inv2 : card(v inside(r0 �→ cz0)) ≤ max cars before LC
inv3 : card(v inside(cz1 �→ r1)) ≤ max cars after LC
inv4 : card(v inside(cz0 �→ cz1)) ≤ 1
inv5 : card(v inside(cz0 �→ cz1)) = 1 ⇒

card(v inside(cz1 �→ r1)) < max cars after LC
inv6 : ∀x, y, z, w·x �→ y ∈ road ∧ z �→ w ∈ road ∧ x �→ y �= z �→ w ⇒

v inside(x �→ y) ∩ v inside(z �→ w) = ∅

inv7 : crossing road state(cz0 �→ cz1) = close ⇒ v inside(cz0 �→ cz1) = ∅

At this level, we reinforce the event Close LC guard by adding a new con-
dition v inside(cz0 �→ cz1) = ∅ to fulfill the invariant “inv7” property. Indeed,
we have specified four new events to model the vehicular movement around the
railway: enter road, enter road LC, exit road LC and exit road.

The enter road event (see Listing 1.7) is activated when a vehicle enters the
(r0 �→ cz0) path. In the guard component, we state in grd1 that the vehicle
belongs to the finite set of vehicles Cars. We assert that the vehicle is not
already on the road paths (grd2), but there is at least one free place in that
path (grd3). Then, in the action component of this event, we added the vehicle
to the set of vehicles which are in the (r0 �→ cz0) path.

Listing 1.7. Event enter road, in M1

EVENT enter road
ANY vehicule
WHEN
grd1 : vehicule ∈ Cars
grd2 : ∀CARS ·CARS ∈ v inside[road] ⇒ vehicule /∈ CARS
grd3 : card(v inside(r0 �→ cz0)) < max cars before LC
THEN
act1 : v inside(r0 �→ cz0) := v inside(r0 �→ cz0) ∪ {vehicule}

END

The Listing 1.8 presents the enter road LC event which enables a vehicle
to enter the crossing zone ((cz0 �→ cz1) path). More precisely, a vehicle should
be in the (r0 �→ cz0) path (see grd1) and the crossing zone must be open (see
grd4) and free (see grd2). Indeed, to ensure that the vehicle does not suck in the
(cz0 �→ cz1) path, we have to guarantee a free place in the (cz1 �→ r1) path (see
grd2). The action act1 uses the overriding operator “�−” in Event-B to update
the v inside variable and therefore, the vehicle becomes inside the crossing zone.

Listing 1.8. Event enter road LC, in M1

EVENT enter road LC
ANY vehicule,X
WHEN
grd1 : vehicule ∈ v inside(r0 �→ cz0)
grd2 : v inside(cz0 �→ cz1) = ∅ ∧ card(v inside(cz1 �→ r1)) < max cars after LC
grd3 : X = v inside(r0 �→ cz0)
grd4 : crossing road state(cz0 �→ cz1) = open
THEN
act1 : v inside := v inside �−

{r0 �→ cz0 �→ (X \ {vehicule}), cz0 �→ cz1 �→ {vehicule}}
END
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The Listing 1.9 presents the exit road LC event. The vehicle inside the cross-
ing zone is moving and it becomes in the (cz1 �→ r1) path.

Listing 1.9. Event exit road LC, in M1

EVENT exit road LC
ANY vehicule,X
WHEN
grd1 : v inside(cz0 �→ cz1) = {vehicule}
grd2 : X = v inside(cz1 �→ r1)
THEN
act1 : v inside := v inside �− {cz1 �→ r1 �→ (X ∪ {vehicule}), cz0 �→ cz1 �→ ∅}

END

Finally, the exit road event enables the vehicles to exit the (cz1 �→ r1) path.

4.5 Formal Specification of the Machine M2

The third machine M2 refines M1 and adds five new variables: open lidar,
road light state, Barrier state, Lidar states, and Railway light state. These
variables are detailed by the following invariants (see Listing 1.10). The five first
invariants define these variables where BR is the barrier, LL is the light signal
on the road side, lidar is the LC obstruction detector, and RL are the railway
light signals. The invariant inv6 asserts that all the railway light signals are
synchronized: they are Green or Red. The barrier and the road light should be
respectively down and red if the crossing zone is closed (see inv7). Likewise, the
barrier and the road light should be respectively up and no light if the crossing
zone is open (see inv8). In invariant (inv9) [resp. (inv10)] we mention that the
railway light signals are Green [resp. Red] when the crossing zone is clear [resp.
not clear]. Through inv11 and inv12, we precise that the lidar is activated only
if the train is inside the (rl �→ cz0) path.

Listing 1.10. Invariants of the machine M2

inv1 : Barrier state ∈ {BR} → BR states
inv2 : road light state ∈ {LL} → Light state
inv3 : Lidar states ∈ {lidar} → lidar states
inv4 : Railway light state ∈ RL → RL states
inv5 : open lidar ∈ BOOL
inv6 : Railway light state[RL] = {Green} ∨ Railway light state[RL] = {Red}
inv7 : crossing road state(cz0 �→ cz1) = close ⇒

Barrier state(BR) = down ∨ road light state(LL) = red
inv8 : crossing road state(cz0 �→ cz1) = open ⇒

Barrier state(BR) = up ∨ road light state(LL) = no light
inv9 : Lidar states(lidar) = clear LC ∧ train inside(rl �→ cz0) = TRUE ⇒

Railway light state[RL] = {Green}
inv10 : Railway light state[RL] = {Red} ⇒

Lidar states(lidar) = not clear LC ∧ train inside(rl �→ cz0) = TRUE
inv11 : train inside[railway \ {rl �→ cz0}] = {TRUE} ⇒ open lidar = FALSE
inv12 : open lidar = TRUE ⇒ train inside(rl �→ cz0) = TRUE
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At this level, we refine the events of the machine M1 and we add two new
events: detect object and detect no object. The detect object event is triggered
when there is an obstacle in the crossing zone. In this case, all railway light
signals become Red (see Listing 1.11).

Listing 1.11. Event detect object, in M2

EVENT detect object
WHEN
grd1 : open lidar = TRUE
grd2 : Railway light state[RL] = {Green}
grd3 : Lidar states(lidar) = clear LC
THEN
act1 : Railway light state := RL × {Red}
act2 : Lidar states(lidar) := not clear LC

END

The detect no object event is triggered when the obstacle is removed. Then,
the railway light signals turn green and the train can cross the crossing zone
level (see Listing 1.12).

Listing 1.12. Event detect no object, in M2

EVENT detect no object
WHEN
grd1 : open lidar = TRUE
grd2 : Railway light state[RL] = {Red}
grd3 : Lidar states(lidar) = not clear LC
THEN
act1 : Railway light state := RL × {Green}
act2 : Lidar states(lidar) := clear LC
act3 : open lidar := FALSE
END

The move inside LC is now replaced by two concrete events. The first one
(move inside LC(1), see Listing 1.13) specifies the train movement from (s1 �→
rl) to (rl �→ cz0) paths. Furthermore, the gateway activates the Lidar to detect
an object and may probably, in certain case, stop the train.

Listing 1.13. Event move inside LC(1), in M2

EVENT move inside LC(1) REFINES move inside LC
WHEN
grd1 : train inside(s1 �→ rl) = TRUE
grd2 : open lidar = FALSE
THEN
act1 : train inside := train inside �− {s1 �→ rl �→ FALSE, rl �→ cz0 �→ TRUE}
act2 : open lidar := TRUE
END

The second event move inside LC(2) (see Listing 1.14) specifies the train’s
movement from (rl �→ cz0) to (cz0 �→ cz1) paths. This movement can be realized
if the Lidar asserts that no obstacle is in the crossing zone.
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Listing 1.14. Event move inside LC(2), in M2

EVENT move inside LC(2) REFINES move inside LC
WHEN
grd1 : train inside(rl �→ cz0) = TRUE
grd2 : Lidar states(lidar) = clear LC
THEN
act1 : train inside := train inside �− {rl �→ cz0 �→ FALSE, cz0 �→ cz1 �→ TRUE}
act2 : open lidar := FALSE
END

4.6 Formal Specification of the Machine M3

At this level, we refine the machine M2. We add a new variable v position to
encode the vehicle position. This variable will replace the v inside variable to
make the position as local information for each vehicle. In Listing 1.15, we pro-
vide the invariants list of this machine. As for the inv1, it defines the new variable
and while the other invariants specify all the different position cases. Finally, the
events of this machine are refined by replacing v inside with v position.

Listing 1.15. Invariants of M3 machine

inv1 : v position ∈ Cars → vehicule position
inv2 : dom(v position � {before LC}) = v inside(r0 �→ cz0)
inv3 : dom(v position � {inside LC}) = v inside(cz0 �→ cz1)
inv4 : dom(v position � {after LC}) = v inside(cz1 �→ r1)
inv5 : ∀v ·v position(v) = away LC ⇒ (∀x·x ∈ ran(v inside) ⇒ v /∈ x)

4.7 Formal Specification of the Machine M4

This level introduces a new variable called v number defined by the following
invariant: v number∈dom(v position�{before LC})��1..card(dom(v position
�{before LC})). This variable assigns a unique number to each vehicle as it
enters the road on the side before the crossing zone. The first vehicle to enter is
assigned the number one, and the last one is assigned the total number of vehi-
cles. Thereby, the gateway has more control over the vehicles and knows exactly
which vehicle should cross the railway. Then, each vehicle gets its v number after
performing a connection with the gateway. After that, the v number is updated
after the vehicle passes through the LC zone.

Two events are refined at this level: enter road and enter road LC. The
guard component of the first event is reinforced by three guards. Let n be
the number of vehicles in the (r0 �→ cz0) path, then n should be less than
the threshold max cars before LC: n < max cars before LC. If there are no
vehicles inside the (r0 �→ cz0) path then, n gets the value zero: v number =
∅⇒n = 0, otherwise n gets the number of the last entered vehicle: v number �=
∅⇒max(ran(v number)) = n. In the action component the entered vehicle gets
a new number which is n + 1: v number := v number ∪ {vehicule �→ n + 1}.
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The second event enter road LC is reinforced by a new guard, which allows
only the vehicle vehicule that has number one (i.e., the first in front of the cross-
ing zone) to cross the railway: v number(vehicule) = 1. In the action component
of this event, we update the whole number of vehicles inside the (r0 �→ cz0) path:
v number := {x, y ·x ∈ dom(v number) ∧ v number(x) > 1 ∧ v number(x) =
y|x �→ (y − 1)}

4.8 Overview of Proof Obligations

In Table 3, we give an overview of the proof statistics for the development of the
railway LC system using the RODIN platform. These statistics are a measure of
the development complexity. Some Proof Obligations (POs) are produced and
automatically discharged by RODIN while others are interactively proved. There
are 235 POs generated by the RODIN platform. 116 POs (49%) are automatically
discharged, while the others (119 POs = 51%) which are more complex and
require the interaction with the provers.

Table 3. Proof statistics

Models Total POs Automatic POs (%) Interactive POs (%)

Contexts 0 0 0

Machine M0 39 11 (28%) 28 (72%)

Machine M1 59 38 (64%) 21 (36%)

Machine M2 68 40 (59%) 28 (41%)

Machine M3 50 21 (42%) 29 (58%)

Machine M4 19 6 (32%) 13 (68%)

Total 235 116 (49%) 119 (51%)

5 Related Work

Several works have been proposed to verify the correctness of railway LC control
systems. Most of the reviewed approaches have used the model checking-method
[15], which is easy to understand and relies on automated techniques that can
perform a faster evaluation. For instance, the authors of [14] defined a new auto-
matic protection system architecture that avoids two particular scenarios, which
have been identified as the reasons for many LC accidents. The first scenario is
the short opening duration between successive closure cycles related to trains
passing in opposite directions. The second scenario is the long closure dura-
tion correlated with slow trains. Therefore, the proposed architecture consists
in adding an anticipation sensor and a speed sensor prior to the usual train
detection sensor on the arrival side. This architecture has been validated using
formal notations based on timed automata [4] for the specification phase and
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the model-checking technique for the verification process. Nevertheless, adopt-
ing model checking-based verification has some limitations. Indeed, when the
state space is too large, it suffers from the state explosion problem.

Moreover, many research studies [10,16,18] focused on hiding formal
methods-related details by automating model transformations for railway sys-
tems engineering. Therefore, they can achieve a formal verification result without
learning the necessary mathematical background. In [10], Kraibi et al. introduced
an approach combining the UML (Unified Modeling Language) [8] and Event-B
formal method. In fact, the authors used UML to model the system behavior
from an informal specification. Then, the UML model is translated into Event-
B model, and proceeded with the formal verification and validation of safety
properties using formal proof techniques. The proposed approach is illustrated
through a case study of a railway signaling system.

Authors in [13] introduced a formal model-based methodology that assists
the building of a safe electronic urban railway control system. This methodology
consists in selecting and integrating an appropriate high-level semi-formal and
low-level formal description forms and tools into a toolchain that fits the railway
field. Moreover, it ensures the transformation from semi-formal to formal models.
Besides, it takes into consideration the specificities of the studied domain and
the best-practice engineering systems. In fact, the proposed methodology has
been illustrated via a case study of a tram-road LC protection system which has
a simple architecture and a low number of elements.

The contribution of Rehman et al. [17] presents a graphical model of the rail-
way gate control system based on the UML. Then, the authors transferred the
UML sequence diagram into the Deterministic Finite Automata (DFA) realizing
the functions of the system. Additionally, the automata-based model is trans-
formed into a formal model using the VDM-SL formal language [11]. This model
is verified and checked through the VDM-SL toolbox1.

To the best of our knowledge, only few studies have adopted the theorem
proving-based verification [7] which adopts hard-proof mechanisms that require
the user’s interaction. Nevertheless, it ensures a powerful correctness method and
can deal with complex formalisms. In [3], the authors formalised a generic hybrid
railway signalling model using the Event-B formal method and communication
modeling patterns. This model introduces railway signalling sub-systems that
can compute and communicate safe travelling distances to the rolling stock. It
can be extended by refinement to capture a particular signalling configuration.

In this work, we introduce a railway LC system which is based on vehicle
to infrastructure communication in order to enhance security during LC. The
correctness of the proposed system has been verified using the Event-B formal
method and the refinement technique.

1 https://www.overturetool.org/download/examples/VDMSL/.

https://www.overturetool.org/download/examples/VDMSL/
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6 Conclusion

In this research, we have attempted to suggest a new railway LC system that
prevents the main risky situations. The proposed system is specified by a formal
model using the Event-B method. In fact, we are based on a stepwise refinement
strategy to build a correct solution. Then, the correctness of our model is checked
by discharging all the proof obligations.

One of the future work directions is to address the inter-vehicle communica-
tions which can meet stringent safety application. Moreover, we aim to enhance
our work by verifying the correctness of temporal properties, such as liveness
properties which can not be checked using invariants.
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