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Abstract. This study focuses on how architectural designers, engineers, and aca-
demics can collaborate with computational intelligent agents in a design and
decision-making process, which is a great challenge. Focusing on this idea, a
novel approach is presented where designers can use intelligent agents to their
advantage for exploring possibilities via data generation and data processing. The
problem of collaboration is presented in two distinct approaches—top-down and
bottom-up. In the top-down approach, a case is selectedwhere the designer intends
to solve a housing design problem starting frommeeting the general requirements
of total area and distribution of housing unit types. In the bottom-up approach, a
case is selected where the designer plans for the very same problem bymeeting the
specific requirements of room area and relations. Both cases are based on a rein-
forcement learning (RL) approach in which the user is allowed to collaborate with
the RL algorithm, and results are compared both with widely used algorithms for
similar problems (genetic algorithms) and ground-truth (deterministic solutions by
designer). Compared results of top-down and bottom-up approaches have shown
that the reinforcement learning approach can be used as an intelligent data system
to explore design space to find an optimal set of solutions within the objective
space. Finally, both approaches are discussed from a broader perspective of how
designers, engineers, and academics can collaborate with agents throughout the
design and decision-making processes.

Keywords: Data Processing · Intelligent Decision Support · Intelligent Data
Systems · Computational Design · Reinforcement Learning

1 Introduction

Formulating a problem inwhich a designer, engineer, or academic can collaboratewith an
intelligent agent throughout the design and decision-making process is a great challenge
since there is still no end-to-end solution or algorithm approaching a design problem
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to provide a creative solution [1]. It is observed that most of the methods aiming to
expand the solution space to provide freedom in design are probabilistic approaches [2,
3]. Nevertheless, studies that use probabilistic methods have limitations on narrowing
the expanded solution space down to a set of optimal solutions. It is observed that
methods aiming to narrow down the solution space to incorporate design knowledge are
mainly formulated with deterministic approaches [4, 5]. Here, it should be noted that
studies that use deterministic methods have restrictions on expanding the solution space
to enable designers to explore a variety of different alternatives. To verify this gap, a
survey is conducted in the game artificial intelligence (AI) domain, and it is observed
that there are approaches that use data augmentation to balance the trade-off between
exploration and exploitation using reinforcement learning (RL). The RL methods are
formulated with the environment, agent, and interpreter triad—a common framework
in reinforcement learning research. Some of the game AI studies in the RL literature
mainly attack the exploration/exploitation problem (i.e., exploring new solutions versus
rigorously following an already feasible solution) with a focus on procedural content
generation. For example, in Khalifa et al. [6], the proposed method uses reinforcement
learning to generate a level for a 2D game (Sokoban) that is playable by seeing the design
problem as a sequential task and teaching agents how to take the next action so that the
expected final level design quality is maximized. In another example [7], how creative
machine learning techniques can be used to interpolate between actual levels from the
same game (Super Mario) or even different games (Super Mario and Kid Icarus) to
achieve a newly generated level is analyzed.

When similar studies in the literature focusing on the architectural design domain
are examined, it is observed that studies are clustered in twomain approaches: one group
focuses on exploration while giving freedom to the user, but it lacks objectives to satisfy
user needs (as ArchiGAN [8] by NVIDIA Research), and the other group focuses on
exploitation that satisfies the objectives that user needs yet it lacks to allow freedom to
the user (as Spacemaker [9] by Autodesk Research). Even though numerous studies in
the architectural design domain focus on either two-dimensional plan layout generation
or three-dimensionalmass generation, themethods used in themachine learning domain,
such as reinforcement learning, where an agent is set loose in an environment where it
constantly acts and perceives and only occasionally receives feedback on its behavior
in the form of rewards or punishments [10] are prone to define the state-of-the-art and
remain unexplored.

This study aims to position itself between two approaches to propose a novel app-
roach that balances the exploration-exploitation trade-off, which is still a gap in the
literature. In light of the extensive literature review, the methodology is defined based on
mapping reinforcement learning methods to the architectural design domain and acting
as an intelligent decision support system. This study uses an approach that has been
taken for an architectural design problem which is addressed in two main parts. The
first one is an architectural design problem in which the designer starts with a three-
dimensional mass study to primarily handle general requirements (such as total area,
maximum height, and space distribution), and the second one is an architectural design
problem in which the designer starts with a two-dimensional plan to primarily meet
specific requirements (like room areas, partition wall locations, and space relations).
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For the first case study, the top-down approach is formulated as a mass study where
a designer is attempting to meet general requirements such as total floor plan area and
count/distribution of plan types. This approach is acknowledged as a combinatorial opti-
mization which consists of finding an optimal object from a finite set of objects, where
the set of feasible solutions is discrete [11]—predefined sets of building plans in this
case. Therefore, the proposed approach is formulated in a way that allows the designer
to search for the design space (mathematical space that encapsulates all possible com-
binations) via intelligent computational agents to find the set of feasible combinations
within the objective space (mathematical space that encapsulates all possible outcomes)
using the inputs provided by the user. On the other hand, for the second case study, the
bottom-up approach, the problem is formulated as a two-dimensional architectural plan
layout generation where the designer is trying to meet specific requirements such as
plan layouts, room areas, and spatial relations. The proposed case study is attacking the
problem as a procedural layout generation given the boundary conditions, as often used
within the game environments to generate different levels. Therefore, data processing
and augmentation strategies used within the game design domain are harnessed to be
implemented in the design domain to propose an intelligent decision support system.

2 Methods

The proposed methodology of both the top-down and bottom-up approach is mainly
based on a reinforcement learning framework consisting of an environment, an agent,
and an observer. For the top-down approach, defined as an architectural mass genera-
tion problem, the environment is defined as a generative building dataset consisting of
available floor plans, area data, and the number of housing types; the agent is defined
as a probabilistic combinator. It takes total area and distribution ratios corresponding to
housing types input to select among the available set of floor plans with corresponding
area data and type number data. The interpreter is defined as a combinatorial optimiza-
tion algorithm that takes user input to generate rewards and states according to the
environment (Fig. 1).

On the other hand, the bottom-up approach is basically a plan layout generation
problem; the agent is defined as vectors responsible for determining the size and the
geometry of the rooms, the environment is defined as boundary conditions of a building,
and the interpreter is defined as the difference between the boundary conditions and the
generated room. The proposed framework for the top-down approach is constructed to
take the user input data consisting of the desired total area of the building and desired
type distribution ratios to try different combinations of housing plans using the floor
area and type numbers data iteratively.

This iterative process is projected to converge in order to satisfy both the intended
area and type ratios given by the user. On the other hand, to simulate the framework of
the bottom-up approach, the OpenAI Gym framework [12] is selected to be used as it has
a simple source code that can be easily modified to be used in this context. Therefore,
the OpenAI framework was adapted to combine housing plan layouts with different
topologies and used as a main framework for generating new variations (Fig. 2).

The dataset that is used for the top-down approach is composed of 70 different three-
dimensional (3D) housing plan models that are designed by the authors since available
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Fig. 1. The RL framework consists of an environment, agent, and interpreter.

Fig. 2. Different plan layouts are used and combined for the top-down approach.

data for the architectural design domain is still lacking. Since the proposed machine
learning method will be reinforcement learning and combinatorial optimization, related
features/labels for each 3D housing plan were calculated using the Building Information
Modeling (BIM) software and added to the dataset in correspondence. Features/labels
that are used as input to calculate and satisfy the objective function consisting of the area
of each housing plan and the number of housing types (i.e., 1+1, 2+1, 3+1, 4+1) in each
plan. These features/labels are proposed to be used to calculate and satisfy the total area
and ratio/distribution of housing types of the total building that the user demands. On the
other hand, the data used for the bottom-up approach is derived from theGuessingGame-
v0 environment of OpenAI, which aims to guess a number with a 1% deviation rate from
the given range using 200-time steps (iterations), and it is modified in a way to adapt
architectural plan layout generation for the predefined topology and the intended floor
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area of each room given by the user (Fig. 3). For the environment, the discrete action
space is defined by: no guess submitted yet (0), guess is lower than the target (1), guess
is equal to the target (2), guess is higher than the target (3), kept as the same. Yet, rewards
changed to 0 if the agent’s guess is outside of 5% of the target range and 1 if the agent’s
guess is inside 5% of the target range; since 1% of the original GuessingGame would
increase the computational cost.

Fig. 3. Predefined housing plan layouts to be used in the bottom-up approach.

The implementation of the top-down approach is based on the reinforcement learning
algorithmsproposed byBello et al. [13] for the famous ‘traveling salesmanproblem’. The
algorithm uses the TensorFlow framework, which is known to be one of the most robust
frameworkswithin themachine learning domain.Yet, since it is implemented specifically
on the traveling salesman problem, it requires further examination and adaptation to be
implemented in the proposed problem.Accordingly, an alternative and simpler algorithm
is employed, which is also used as a benchmark for the study [13]. The implemented
algorithm is a knapsack solver, which is part of OR-Tools developed by Google AI. Even
though the already implemented algorithm is not exactly a machine learning model but
rather a more traditional artificial intelligence algorithm, it is still implemented to better
understand the problem and observe the results. On the other hand, the implementation
flow of the bottom-up approach (Fig. 4) is designed to have a graphics engine that is not
available in the original GuessingGame environment, so that generated results can also
be observed visually. For the graphical part, PyOpenGL is used, a Python binding of
the commonly used OpenGL engine, to visualize room layouts generated by the agents.
As a benchmark, the ground truth, which is the expected output of the algorithm, is
also visualized in the background with a different color. Using the proposed flow, initial
tests were conducted with tasks starting from the easiest to the most complex ones, such
as guessing the area of a single square, guessing the dimensions of a single rectangle,
guessing areas of multiple rectangles with a fixed ratio, and guessing both dimensions
and positions of multiple rectangles.

Following the results obtained from the initial test of the framework, it is observed
that data design and data augmentation processes are necessary both to transform the
proposed framework into a reinforcement learning framework and increase the perfor-
mance of the converged results (Fig. 5). Therefore, data design is conducted to transform
the number of housing-type data derived from BIM into rewards that the agent can use
within the reinforcement learning environment. To transfer the housing type numbers
data into a reward mechanism, numbers are used to calculate the distribution ratios for



96 O. Yetkin et al.

Fig. 4. Implementation workflow including graphics engine and adapted environment.

each plan, and then the absolute total differences between the ratios of each plan and the
intended ratios that the user will give are calculated and scaled into a range between 0
and 10. Therefore, it is provided that the agent’s probability of choosing a plan with a
closer distribution of the intended housing types is aimed to increase since the interpreter
will try to maximize the collected rewards. Furthermore, the dataset is augmented using
a dataset multiplier calculated based on the ratio of the intended total area to the average
area of each plan. This augmentation facilitates the agent’s ability to utilize housing
plans from the dataset multiple times as the total area increases. Such repetitive usage
of suitable housing plans becomes essential, as attempting to find a viable solution by
employing each unique plan in the dataset only once would be impractical.

Fig. 5. Data design and data augmentation processes to increase performance.
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3 Results and Discussion

Initial outcomes of the top-down approach algorithm are collected on ten different test
cases. Initial results have shown a trade-off between total area and housing type ratios
demanded by a user. Results show that the intended areas are approximated more pre-
cisely and yet often it fails to satisfy the type ratios requested by the user. It was observed
that the size or variance of the dataset of 70 different floor plans might not be enough to
find an instance that satisfies the type ratio and area objectives efficiently. However, after
the integration of the data design and data augmentation process into the proposed work-
flow, performance is increased both in approximating ratios and the total area desired
by the user.

Following the increase in the algorithm’s performance, another implementation is
also done to compare the proposed workflowwith the common approaches in the current
literature. Since the most common approach used in generative architectural design sys-
tems is genetic algorithms, a genetic algorithm written for a similar knapsack problem
is implemented to the same dataset. The dataset is again subjected to the same data pre-
processing (design and augmentation) to conform to the comparability of the algorithms
and their results (ceteris paribus principle). The genetic algorithm is implemented using
hyperparameters of crossover rate as 0.8, mutation rate as 0.4, solutions per population
as 50, and the number of generations as 250. After the implementation, results are visu-
alized in a line chart for area predictions and bar charts for ratio predictions to compare
with the method proposed through the reinforcement learning framework (Fig. 6).

Results have shown that the proposed workflow performs better in finding combi-
nations that have total area values closer to the intended total area by the user. Hence,
the genetic algorithm approximated intended type ratios better than the reinforcement
learning approach. Yet, not to compare the two methods just by intuition, commonly
used regression performance metrics are calculated: mean absolute error (MAE) and
root mean square error (RMSE). It is derived that the proposed approach of reinforce-
ment learning outperforms the genetic algorithm in terms of approximating the area
objective (with an MAE of 12.8 and an RMSE of 21.8 compared to an MAE of 99.6
and an RMSE of 111.7). In contrast, the genetic algorithm performs slightly better than
reinforcement learning in terms of satisfying the ratio objective (with an MAE of 0.138
and RMSE of 0.105 compared to an MAE of 0.141 and RMSE of 0.115) (Table 1). The
initial tests for the bottom-up approach are conducted on different levels, as mentioned
in the previous section: a single square, a single rectangle, multiple rectangles with a
fixed ratio, and multiple rectangles, then results are visualized. The first test conducted
with a single square is executed with a single agent responsible for guessing the area of
the square given by the user.

The results (Fig. 7) showed that the algorithm converged within 100 time steps when
only integers were used in the action space without extensive computational resources.
However, to optimize the performance for further tasks, the guessing range of the agent is
modified not to include negative numbers since a negative number would not be possible
for a floor area. Also, for the algorithm toworkwithmultiple rectangles, the environment
is modified to take the area value to be guessed as an input.

Further tests are conducted to implement the use of multiple intelligent agents since
the dimensions (width, height) of any rectangle would affect the floor area, and therefore
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Fig. 6. Visualization of the predicted areas and ratios of reinforcement learning.

Table 1. Comparison of genetic algorithm and reinforcement learning with MAE and RMSE.

Genetic Algorithm Reinforcement Learning

Area MAE: 99.600 Area RMSE: 111.678 Area MAE: 12.800 Area RMSE: 21.758

1+1 MAE: 0.076 1+1 RMSE: 0.082 1+1 MAE: 0.105 1+1 RMSE: 0.108

2+1 MAE: 0.088 2+1 RMSE: 0.086 2+1 MAE: 0.133 2+1 RMSE: 0.128

3+1 MAE: 0.168 3+1 RMSE: 0.129 3+1 MAE: 0.098 3+1 RMSE: 0.089

4+1 MAE: 0.220 4+1 RMSE: 0.124 4+1 MAE: 0.230 4+1 RMSE: 0.137

Ratio MAE: 0.138 Ratio RMSE: 0.105 Ratio MAE: 0.141 Ratio RMSE: 0.115
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Fig. 7. Results of the first task with an agent (white) to guess an area of a square (pink).

both should be guessed by an agent to fit the common area objective. The second test,
conducted after guessing the area of a square, is demonstrated on a simple rectangle
where the width and height are tried to be guessed by different agents. Results showed
that modifications in the previous test worked successfully in the second case, and the
algorithm converged to the intended rectangle, further enhancing the decision-making
process. Other tests, which are guessing areas of multiple rectangles with a fixed ratio
and guessing both dimensions and positions ofmultiple rectangles conducted in a similar
setting with the addition of more agents and algorithms, are again able to succeed in
guessing the given plan layout (Fig. 8).

Fig. 8. Results of the complex task which has multiple agents to guess the plan geometry.

Hence, it is observed in this study that it is possible to generate different valid
architectural plan layouts based on the relational and hierarchical information retrieved
from the user. In addition, since the environment is set to boundary conditions of a
building and a reward mechanism is proposed to control the difference between the
generated layout and the feasible region of a valid architectural plan, the current study
is proven to cover a reliable position between exploration and exploitation.

Both top-down and bottom-up approaches have shown that the reinforcement learn-
ing approach can be used to explore the design space to find optimal solutions within
the objective space. In addition, to show its performance on extended cases that are not
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present in the test set, an automation algorithm is implemented to observe how successful
the model is, given along with 4572 different inputs (each ratio ranging from 0.0 to 1.0
with an interval of 0.1 while providing a total of 1.0, and total area ranging from 2000 to
20000 with an interval of 1000) from the user. It is observed that the proposed method
is still performing well with an MAE of 46.433 and an RMSE of 64.295 for the area
objective, an MAE of 0.101, and an RMSE of 0.135 for the ratio objective. Similarly,
another test is conducted on an extended dataset consisting of 8421 different housing
plans in a different typology than the original dataset (Fig. 9). It is observed that the
proposed framework can be adapted to different design problems.

There are also some limitations in the study regarding the following aspects. The first
limitation is about the capabilities of the already implemented solver, which is declared
to perform better over integers rather than floating numbers. However, since the real data
consist of floating numbers for floor areas, it may cause a precision problem. The other
limitation is the development process for working in BIM or other 3D environments,
which requires further and interoperable development processes to visualize the result
of the algorithms. Even though generating data from a correctly modeled 3D model is
very easy, generating a model from predicted data back again is not. The last limitation
is crucial and related to the problem itself, which is the NP-hardness (non-deterministic
polynomial-time hardness) of the planning. Since the selected problem is often regarded
as a very complex problem, the algorithm may not converge to a state that can be
found manually with human cognition. As can be observed from the visualized results,
even if the proposed method is successful in terms of satisfying the total area and the
ratio distribution objectives, it fails to converge to compact results as found by human
cognition by manual selection (Fig. 10).

However, the architectural design problem is often classified as an NP-hard prob-
lem that seems to be the case, considering the total process and subjective aspects.
Nevertheless, it is also possible to see some parts, such as plan layout generation and
combinatorial optimization of level stacking, as a straightforward engineering problem.
Therefore, computational methods and state-of-the-art research in artificial intelligence
can aid the architectural design process in that sense, as it has been aiding other disci-
plines. Hence, since the topologies of the housing plans are predetermined, the suggested
approach can hardly be regarded as a creative approach that suggests a different housing
plan than the ones already in the dataset. Yet as a future projection, the approach can be
extended as a data augmentation and processing strategy, which is processed by agents
taking action and passing the information after convergence to the other agent so that
the algorithm cannot only guess the given condition with a predetermined topology but
also offer different topologies having different relations between rooms.

In light of partial discussions throughout the paper, it can be observed that there is a
whole lot more work to be done to achieve an AI agent that is really ‘intelligent’. This
idea is also clearly presented in the famous Chinese Room argument by Searle [14],
which is formulated as a human in a room following a computer program to respond to
Chinese characters slipped under the door where the human understands nothing, and
yet, following the program for manipulating symbols and numerals, it sends appropriate
strings of Chinese characters which leads those outside the door mistakenly suppose
that there is a Chinese speaker in the room [15]. Therefore, this hypothesis relies on the
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idea that intelligence (whether it is human or machine intelligence) is more than just
producing outputs that can fool the interrogator (human or machine), and the famous
‘Imitation Game’ proposed by Turing [16] is not enough to conclude that there is indeed
an intelligent behavior. Yet, as machines can process, augment, and produce data that we
can put to use as we intended, it provides great potential in collaboration for the future
where humans design and machines execute.

Fig. 9. Visualization of the first dataset of 70 plans and the extended dataset of 8421 plans.
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Fig. 10. 3D models of ground truth and instances generated by reinforcement learning.

4 Conclusion

In conclusion, the presented approach is formulated to demonstrate a novel and inter-
active way of collaborating with intelligent computational agents in the architectural
design context. To demonstrate this way of human-machine interaction, top-down and
bottom-up approaches are used, and results of generating 3D mass studies and 2D plan
layouts are presented. The comparison results of RL algorithms with genetic algorithms
and ground-truth solutions have shown that it is possible both to process and augment
the domain-specific data with strategies from another domain which is game design
and to use RL agents as a collaboration tool to explore possibilities in the design space.
Therefore, it shows a great potential to enhance the decision-making processes in design,
as well as other disciplines. Nevertheless, it is difficult to draw a line where creativity
starts as elaborated at the end of the results and discussions section. Represented case
studies aimed to attack the problem piecewise instead of holistically handling the archi-
tectural design problem in one shot. Hence, it should be noted that this approach is not
presented to generate either 2D plan schemes or 3D mass studies but rather presented
as a new model to combine creative aspects of human designers with the exploration-
exploitation capabilities of computational agents. Therefore, it is projected that it has the
potential to enhance the capabilities of a designer as a prosthesis of a creative mind in
the future and to further expand the use of intelligent computational agents as intelligent
decision support systems in various domains such as medical, educational, and societal
challenges.
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