
Method for Evaluating the Performance
of Web-Based APIs

António Godinho1(B) , José Rosado2,3 , Filipe Sá2 ,
and Filipe Cardoso3,4

1 Polytechnic Institute of Coimbra, Coimbra Business School Quinta Agŕıcola -
Bencanta, 3045-231 Coimbra, Portugal

agodinho@iscac.pt
2 Polytechnic Institute of Coimbra, Coimbra Institute of Engineering Rua Pedro

Nunes - Quinta da Nora, 3030-199 Coimbra, Portugal
{jfr,filipe.sa}@isec.pt

3 INESC Coimbra—Instituto de Engenharia de Sistemas e Computadores de
Coimbra, Rua Śılvio Lima, Pólo II, 3030-790 Coimbra, Portugal

4 Escola Superior de Gestão e Tecnologia, Politécnico de Santarém Complexo
Andaluz, Apartado 295, 2001-904 Santarém, Portugal

filipe.cardoso@esg.ipsantarem.pt

Abstract. Application Programming Interfaces (APIs) are available in
virtually every programming language. These interfaces make it easier
to develop software by simplifying complex code into a more straightfor-
ward, manageable structure. APIs provide a standardized interface that
allows different applications to communicate and connect easily, stream-
lining the software development process and making it more efficient and
effective. Performance testing of a web API refers to evaluating the per-
formance characteristics of an API accessible via the web. This process
involves analyzing performance aspects such as response time, reliability,
scalability, and resource utilization. This work defines a test battery using
specific open-source tools to assess Web API performance. The tests used
are load, stress, spike, and soak tests replicating various scenarios of the
volume of users accessing the service or simulating a denial-of-service
attack. These tests aim to determine how well an API can manage a
substantial volume of traffic and transactions while upholding satisfac-
tory performance standards. Applying Web API performance testing will
also enable organizations to implement suitable measures for enhancing
performance and guaranteeing smooth user interaction, pinpointing bot-
tlenecks, constraints, or prospective problems in the API’s architecture
and execution. These tests can also demonstrate the technology’s limita-
tions and benchmarking, helping determine a more suitable production
platform.

Keywords: web api · full-stack development · performance analysis ·
performance tools · linux operating systems

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2024

Published by Springer Nature Switzerland AG 2024. All Rights Reserved

P. J. Coelho et al. (Eds.): GOODTECHS 2023, LNICST 556, pp. 30–48, 2024.

https://doi.org/10.1007/978-3-031-52524-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52524-7_3&domain=pdf
http://orcid.org/0000-0002-1146-464X
http://orcid.org/0000-0001-5610-7147
http://orcid.org/0000-0002-7846-8397
http://orcid.org/0000-0002-3916-5182
https://doi.org/10.1007/978-3-031-52524-7_3


Method for Evaluating the Performance of Web-Based APIs 31

1 Introduction

Full-stack development has seen tremendous growth recently due to the increas-
ing demand for web development as the internet, and e-commerce continues to
expand. Both mobile and web applications use RESTful Web APIs for authen-
tication, data access, file management, and other resources. RESTful APIs are
REST-based APIs that use resource identifiers to represent specific resources
intended for interaction between components. The current state of a resource
is referred to as a resource representation, which consists of data, metadata
describing the data, and hypermedia links that allow for changing the state of
the resource [1]. RESTful architectural design is a specific method for imple-
menting APIs, introduced in 2000 by Roy Fielding. This design involves a set
of constraints to improve an API’s reliability, scalability, and performance [2].
APIs generally serve as interfaces with a set of functions, protocols, and tools
to integrate software applications and services. Web APIs, in particular, can be
accessed over the web through the HTTP/HTTPS protocols, allowing requesting
systems to access and manipulate web resources using standard and predefined,
uniform rules. REST-based systems interact through the Internet’s Hypertext
Transfer Protocol (HTTP) [3]. A Web API enables the front-end or multiple
front-ends for different web application devices to communicate with the back-
end by sending requests to specific endpoints and receiving data in response,
as shown in Fig. 1. According to a survey from the developer nation in 2020, a
staggering 90% of developers utilize APIs, demonstrating that the proliferation
of APIs has played a crucial role in the growth of the developer ecosystem in
recent years. The high adoption rate of APIs among developers serves as solid
evidence that the rise of APIs has significantly impacted and contributed to the
expansion of the developer ecosystem [4]. With an increasing number of program-
ming languages, many with similar components and coding styles, performance
should play a role in choosing a language/framework. The proper way to do this
evaluation is to develop two different Web APIs using various technologies that
use the same database and display the same output.

Analyzing the performance of web applications is a common practice, with
most studies focusing solely on testing the application as a whole. However, it
is essential to assess the entire solution, including isolating testing of the Web

Fig. 1. Web API



32 A. Godinho et al.

API. This approach can effectively identify any potential issues specific to the
Web API. This paper introduces a suggested suite of tests designed to evaluate
how Web APIs behave across various CRUD (create, read, update, and delete)
operations. These tests facilitate the examination of the application’s perfor-
mance under diverse circumstances, encompassing both typical and exception-
ally high request rates, as well as prolonged and resource-intensive durations.
Furthermore, we provide a collection of tools for assembling the test suite and
for visualizing and interpreting the outcomes it generates.

The article is structured into six sections, starting with the Introduction. In
this section, readers will gain an understanding of the article’s objectives and
the reasoning behind them. The second section describes RESTful Web API’s
technology’s functionality, including its norms and practical applications, and
an understanding of the key features that distinguish RESTful APIs from other
APIs. In the third section, we introduce a set of tools utilized to construct and
test the Web API and visualize the test results. The fourth section of API is
performance testing, where the test battery is presented and why each test should
be applied. The fourth section of the article focuses on performance testing,
where the test battery is presented. It explains the reasoning behind each test’s
application, with the importance of performance testing and the specific tests.
The fifth section provides insights into the possible outcomes of the performance
testing and also how to visualize the test results. Finally, the sixth section is the
Conclusions, which summarizes the importance of running the different tests on
each CRUD operation.

2 Related Work

A previous study concentrated on assessing the latency and performance of Web
APIs but encountered the challenge of defining a standardized set of tests that
could be universally applicable across different technological contexts [5]. Sim-
ilarly, various research efforts have attempted to compare performance across
diverse technologies. Yet, they, too, have faced the limitation of needing a com-
prehensive test suite adaptable to various scenarios or technological environ-
ments [1,6,7].

In a separate line of investigation, some studies have compared performance
between two prominent architectural styles for web service development: REST
and SOAP/WSDL. However, these studies typically needed to include the uti-
lization of multiple tests with varying loads, limiting the breadth of their perfor-
mance evaluations. Conversely, numerous other research endeavors have honed in
on assessing the performance of Web APIs in the context of microservices-based
web applications [8–10].

Earlier studies have delved into Web API performance and benchmarking
analysis, with certain ones outlining the methodologies employed to yield their
results. However, these studies often grappled with the challenge of creating a
standardized testing framework that could be universally applied across diverse
technological contexts.



Method for Evaluating the Performance of Web-Based APIs 33

In contrast, the present research addresses these limitations by undertaking a
comprehensive examination. This examination encompasses all CRUD (Create,
Read, Update, Delete) operations within Web APIs and is intentionally designed
to be platform and technology-agnostic.

3 RESTful Web API

A well-designed Web API can expose the functionality of the back-end to other
applications and services, allowing for the reuse of existing code and easy inte-
gration of new services [11]. Web API has the advantage of allowing different
teams and developers to work together more efficiently and build more powerful
and flexible web applications [12]. For example, one team can focus on front-end
development, another on back-end development, and a third on infrastructure
or DevOps. This clear frontier allows each team to have a deeper understand-
ing and expertise in their area of focus, which can result in better quality and
more efficient development. Splitting the work across teams can make it easier
to manage and scale larger projects [13]. The Web API can be developed using
different technologies, from Java, .NET, or JavaScript, using web-development
frameworks. A Web API is a set of rules and protocols that allows different
software applications to communicate with each other. APIs provide a way for
different programs to interact with one another without requiring direct access
to the underlying code. APIs are often used to access web-based software, such
as social media sites, weather services, and online databases. For example, when
a client uses a mobile app to check the weather using a mobile phone, the app
is likely using an API to retrieve the data from a weather service’s servers [14].
Some web services provide APIs for clients to access their functionality and data.
In such a scenario, the API is a set of functions, methods, and protocols that pro-
vide access to the functionality and data of a service, such as a database or a web
application [15]. Then, Web API, when conforming to the REST architectural
principles, are characterized by their relative simplicity and their natural suit-
ability for the Web, relying almost entirely on the use of URIs for both resource
identification and interaction and HTTP for message transmission [16].

3.1 Representational State Transfer (REST)

Following protocols, such as SOAP and RESTful web services, can implement
Web APIs. The development of mobile applications was the initial driving force
for RESTful, adopted over other protocols due to the simplicity of use [17]. There
are clear advantages to the use of REST. Typically faster and uses less band-
width because it uses a smaller message format. Another main reason is that
it supports many different data formats, such as JSON, XML, CSV, and plain
text, whereas SOAP supports only XML [18]. Representational State Transfer
(REST) is a software architectural style that defines the rules for creating web
services. RESTful Web APIs are based on the principles of REST architecture,
which defines a set of architectural constraints that a web service must adhere



34 A. Godinho et al.

to be considered RESTful, first described by Roy Fielding in his doctoral disser-
tation [2]. A RESTful Web API must follow these six architectural constraints
[19]:

– Client-Server: Separate client and server concerns for independent evolution.
– Stateless: No client state retention, all needed data in requests.
– Cacheable: Clients can cache responses for improved performance.
– Layered System: Clients access API functionality consistently regardless of

infrastructure.
– Code on Demand (Optional): Allows downloading executable code for client

extension.
– Uniform Interface: Ensures an easy-to-learn and consistent client interaction.

Web APIs facilitate the seamless communication and collaboration of various
software systems, which may have been developed using diverse technologies and
programming languages. They foster interoperability across a broad spectrum
of platforms and devices [20]. By leveraging APIs, developers can deconstruct
intricate systems into more manageable, bite-sized components. This approach
to modularity streamlines the processes of development, upkeep, and software
updates. APIs empower applications to incorporate external services and data
sources, broadening their capabilities and granting access to a broader array of
services [21].

3.2 API HTTP Verbs

The API Interface should be simple, consistent, self-describing, and supports the
most common standard HTTP methods (HTTP verbs): GET, POST, PUT, and
DELETE. These verbs are used to indicate the intended action to be performed
on the requested resource. Usually, they are translated into the CRUD operations
- Create, Read, Update, and Delete [22].

4 Tools

A combination of Prometheus, Fluentd, and Grafana was utilized to facilitate
monitoring this work. These tools were employed to collect statistics and create
informative dashboards, providing insight into the performance and behavior of
the system.

Prometheus is an open-source system monitoring and alerting toolkit. Pro-
vides real real-time monitoring and alerting on the performance of micro-
services-based applications in cloud-native environments. Prometheus uses a
powerful query language and a flexible data model that makes it easy to collect
and store metrics from various systems and applications. The tool also includes
built-in alerting and visualization capabilities [23].

Fluentd is an open-source data collection and logging tool. It can collect data
from a wide variety of sources using input plugins and store the data in various
destinations using output plugins. For this work, it will be used to read Nginx



Method for Evaluating the Performance of Web-Based APIs 35

logs, parsing them into specific fields to Prometheus. Prometheus can’t process
the NGINX logs to verify the accesses for each API. Fluentd can split the access
logs into specific fields, such as IP, URL, and HTTP code. Then, Prometheus
uses Fluentd as a data source. One of the fields relates to the path on the URL,
which will be used on queries to Prometheus by Grafana to generate specific
charts for each API.

Grafana is a popular open-source time-series data query, visualization, and
alerting tool which was developed by Torkel Ödegaard in 2014. It has a highly
pluggable data source model that supports multiple time-series-based data
sources like Prometheus and Fluentd and SQL databases like MySQL and Post-
gres [24]. In this work, the data sources will be Prometheus, which provide the
source for the virtual machine CPU and RAM, and Fluentd, for the NGINX
reverse proxy.

For test and performance, the tools used were: cURL, Hey, and K6. cURL
stands for “Client for URLs” and is a command-line tool for transferring data
using various protocols. It is commonly used to send HTTP and HTTPS
requests. Hey is an open-source load-testing tool for web servers developed by
Jaana B. Dogan. It allows users to generate many HTTP requests to a speci-
fied endpoint to measure the endpoint’s performance and the server it runs on.
Hey can be used to simulate different types of traffic, such as concurrent users,
and it provides metrics such as request rate, latency, and error rate [25]. K6 is
an open-source load-testing tool that allows developers to test web applications
and APIs’ performance and scalability. It is written in Go, like Hey, and uses
JavaScript as its scripting language for testing scenarios. It allows traffic simu-
lation to a website or an API [26]. cURL and Hey was used for initial testing
and to verify the testing environment, while K6 is the tool used in the examples
in this work, with different setups for each test.

4.1 Test Scenario

The test scenario involved the setup of multiple virtual machines running Linux.
Nginx was installed on the head node as a reverse proxy solution. The same
VM hosted Prometheus, Grafana, and Fluentd to collect statistics and generate
charts. Another VM housed a Java API connected to a third VM running a
database engine, as depicted in Fig. 2.

5 WEB API Performance Testing

Performance testing is a task performed to determine how a system accomplishes
responsiveness and stability under a particular workload. It can also investigate,
measure, validate, or verify other system quality attributes, such as scalability,
reliability, and resource usage [27]. It is also an important test to identify bottle-
necks and ensure that the software can handle the expected usage and demand.
Several tests used to measure website performance may also be applied to Web
API. Each test uses the tools presented in Sect. 4, following the three phases of



36 A. Godinho et al.

Fig. 2. Test scenario

traditional software testing: test design, test execution, and test analysis [28].
These steps should start by designing realistic loads for each type of test, sim-
ulating the workload that may occur in the field, or designing fault-inducing
loads, which are likely to expose load-related problems. Once again, the tools
from Sect. 4 will process logs, generating charts and tables with statistics [29].

5.1 The 99th , 95th and 90th Percentiles

The 99th percentile is often used as a benchmark for performance testing because
it represents a high level of performance. It measures how well a system performs
compared to others and helps identify any outliers or issues that need to be
addressed. Additionally, using the 99th percentile instead of the average (mean)
or median can provide a more accurate representation of system performance,
as it eliminates the impact of a smaller number of extreme results. The 95th

percentile is also a commonly used benchmark for performance testing because
it represents a level of performance that is considered good but not necessarily
the best. It can provide a more realistic measure of performance, as it believes
there may be some variability in results. Similarly to the previous, using the 90th

percentile instead of the average (mean) or median can provide a more accurate
representation of system performance, as it eliminates the impact of a smaller
number of extreme results. In this case, the 90th percentile can help identify
if the system is not meeting the desired performance level and any issues or
bottlenecks that must be addressed. The mean and percentiles will be utilized
in Grafana to create charts from the tests defined in K6.

5.2 Number of Virtual Users

The initial step in creating testing scenarios is often determining the appropriate
number of concurrent users to simulate, establishing the foundation for estab-
lishing performance objectives. Although estimating the maximum simultaneous
users for a new website can be difficult, for an existing website, numerous data
sources, such as Google Analytics, can be utilized to establish performance tar-
gets and provide valuable information about the number of concurrent users



Method for Evaluating the Performance of Web-Based APIs 37

likely to be required. To ensure the correctness of the testing environment and
to determine a consistent number of virtual users (VUs) for all future tests, mul-
tiple pilot tests using different numbers of virtual users should be conducted for
new applications (Fig. 3). Analyzing hardware requirements across various VU
numbers is crucial for achieving optimal performance, CPU utilization, mem-
ory usage, and latency response. Conducting tests with different VUs can reveal
diverse CPU and memory requirements behaviors, as demonstrated in Figs. 3 and
4. Notably, in this example, the CPU requirements increase with the number of
users. Still, the memory requirements remain similar or even decrease, which
contradicts the initial impression, highlighting the importance of analyzing the
various hardware components.

Fig. 3. Pilot tests - CPU requirements

Fig. 4. Pilot tests - Memory requirements

A web API can be made available to clients through a web server or reverse
proxy, which acts as a gateway to route incoming requests to the appropriate API
endpoints and return responses to clients. These solutions can provide additional
functionality like load balancing, caching, and security features that enhance
API performance and security. Among the most popular web server and reverse
proxy solutions are NGINX and Apache Web Server. The maximum number of
concurrent connections for Apache2 is determined by the “MaxRequestWorkers”
directive in its configuration file. The default value is 256 [30], but it can be
adjusted according to specific requirements. On the other hand, the maximum



38 A. Godinho et al.

number of concurrent connections for NGINX is set by the “worker connections”
directive in its configuration file. By default, NGINX can handle up to 512
connections per worker process, and this value can be increased to a maximum
of 1024 connections per worker process [31]. Assuming that at least two workers
are used, the number of allowed connections can be up to 2048.

5.3 Load Testing

Load testing primarily focuses on evaluating a system’s current performance in
terms of the number of concurrent users or requests per second. It is used to
determine if a system is meeting its performance goals. By conducting a load
test, you can evaluate the system’s performance under normal load conditions,
ensure that performance standards are being met as changes are made, and
simulate a typical day in the business [32]. These tests are done using tools that
use VUs to simulate the requests, as shown in Fig. 5. The configuration file in
Fig. 6 specifies a maximum of 100 VUs for the test. As mentioned in Sect. 5.2,
this value should be customized based on the expected traffic for a Web API
or new applications. Figure 6 also shows that multiple endpoints can be tested
simultaneously on the same instance using the same HTTP method.

Fig. 5. Load testing - VUs progress over time

5.4 Stress Testing

Stress testing is a form of load testing used to identify a system’s limits. This
test aims to assess the system’s stability and dependability under high-stress
conditions. By conducting a stress test, it can determine how the system will
perform under extreme conditions and the maximum capacity of the system in
terms of users or throughput. Also, the point at which the system will break,
how it will fail, and whether it will recover automatically after the stress test is
complete without manual intervention, as shown in Fig. 7. The configuration file
shown in Fig. 8 specifies the VUs for different time intervals during the stress
test, as indicated by the chart in Fig. 7.



Method for Evaluating the Performance of Web-Based APIs 39

Fig. 6. K6 Load testing

Fig. 7. Stress testing - VUs progress over time

Fig. 8. K6 Stress testing



40 A. Godinho et al.

5.5 Spike Test

A spike test is a variation of a stress test that involves subjecting a system to
extreme load levels in a very short period. The main objective of a spike test is to
determine how the system will handle a sudden increase in traffic and identify
any bottlenecks or performance issues that may arise. This type of test can
help identify potential problems before they occur in a production environment
and ensure that the system can handle expected levels of traffic [32–34]. By
conducting a spike test, you can determine how the system will perform under
a sudden surge of traffic, most frequently a Denial of Service (DOS) attack, and
whether it can recover once the traffic has subsided. The success of a spike test
can be evaluated based on expectations, and systems generally react in one of
four ways: excellent, good, poor, or bad.

– “Excellent” performance is when the system’s performance is not degraded
during the surge of traffic, and the response time is similar during low and
high traffic;

– “Good” performance is when response time is slower, but the system does
not produce errors, and all requests are handled;

– “Poor” performance is when the system produces errors during the surge of
traffic but recovers to normal after traffic subsides;

– “Bad” performance is when the system crashes and does not recover after the
traffic has subsided, as depicted in Fig. 9.

Fig. 9. Spike testing - VUs progress over time

Figure 10 shows the configuration file where it is defined that the VUs will
peak at 1500 and sustain for 3 min.

5.6 Soak Testing

Soak testing is used to evaluate the reliability of a system over an extended
period. By conducting a soak test, you can determine if the system is prone to
bugs or memory leaks that may cause it to crash or restart, ensure that expected
application restarts do not result in lost requests, identify bugs related to race



Method for Evaluating the Performance of Web-Based APIs 41

Fig. 10. K6 Spike testing

conditions that occur sporadically, confirm that the database does not exhaust
allocated storage space or stop working, verify that logs do not deplete the
allotted disk storage, and ensure that external services that the system depends
on do not stop working after a certain number of requests [34]. To run a soak
test, you should determine the maximum capacity that the system can handle,
set the number of VUs to 75–80% of that value, and run the test in three stages:
ramping up the VUs, maintaining that level for 4–12 h, and ramping down to
0, as shown on Fig. 11. A capacity limit of 75% to 80% for the soak test may
place too much strain on the database, potentially causing the test to fail. To
prevent this, the test should be conducted with a lower number, for example,
using the default capacity limit for the Apache web server, which amounts to 400
connections when set to 80% capacity. The file configuration in Fig. 12 displays
the VUs reaching 400 and staying at that level for approximately 4 h.

Fig. 11. Soak testing - VUs progress over time

5.7 Tests to All CRUD Operations

The tests outlined in Sect. 5 are exclusively related to the GET method. When
evaluating an API’s performance, testing the other HTTP verbs used for the



42 A. Godinho et al.

Fig. 12. K6 Soak testing

CRUD operations, such as the POST method for creating new records or the
PUT method for updating existing ones, is essential. In these cases, a valid
JSON payload must be added and sent to the server, as demonstrated in the
example in Fig. 13. This example also showcases using environment variables and
virtual users for iteration. The PUT method needs a present identifier to update
a record successfully. Testing for deletions is challenging, as most web APIs
include the identifier of the record to be deleted in the URL. It necessitates
a distinct strategy for deleting a valid existing record, and various methods
exist. For testing purposes, you can define the inserted identifier and use only
identifiers that combine the iteration and virtual user. Alternatively, you can
eliminate the identifier parameter and erase the identifier with the highest value
on the database.

6 Results

The tests run on a linux console, using K6 provide initial results via command
shell, as shown in Figs. 14 and 15. The results provide valuable performance
information, particularly for HTTP request duration - median, percentile 99,
and 90, as well as the number of test iterations and iterations per second and
the number and percentage of failed HTTP requests. This information reveals
the latency of requests at each percentile and the performance and potential
bottlenecks of the Web API, as demonstrated by the results. The GET method
in Fig. 14 ran without any issues, while with the PUT method (Fig. 15), over
10% of the requests failed due to 40x HTTP errors. Running the test only on
the GET method could be deceiving, and it shows the importance of testing
all methods, helping to identify potential technology or code problems. Using
Grafana helps to gain a deeper understanding of the performance data. Grafana
provides charts and visualizations and can be used to cross information such as
VU numbers with the number of failed requests. It can also be used to visualize
key metrics such as the latency of HTTP requests at the 99th and 90th per-
centiles, as demonstrated in Fig. 16. In addition to that, it also provides insight



Method for Evaluating the Performance of Web-Based APIs 43

Fig. 13. K6 POST load test

Fig. 14. K6 GET Spike test



44 A. Godinho et al.

Fig. 15. K6 PUT Spike test

Fig. 16. Grafana - Latency p99 and p90

into the CPU and memory utilization, as shown in Fig. 17. This complete pic-
ture of the Web API’s performance allows for quick and easy identification of
any potential bottlenecks or areas for improvement. Using multiple sources on
Grafana, it is possible to compare different APIs on the same chart, allowing
direct comparison, shown in Fig. 18.



Method for Evaluating the Performance of Web-Based APIs 45

Fig. 17. Grafana - CPU and memory

Fig. 18. Soak test .NET vs Java Spring

7 Conclusions

Web API performance is essential because it directly affects the user experi-
ence and the application’s overall success. Poor API performance can result in
slow response times, error messages, and frustrated users. It can decrease user
engagement, and e-commerce websites may reduce revenue. On the other hand,
fast and reliable API performance can provide a better user experience, increase
customer satisfaction, and drive business growth. In addition, efficient Web API
performance is crucial for scalability and sustainability. As the number of users
and API requests increase, the API must be able to handle the increased load
without slowing down or crashing. A well-optimized API can handle significant
traffic and requests, allowing smooth and seamless growth. Therefore, monitoring
and improving Web API performance should be a priority for any organization
that relies on APIs to power their applications and services.

One of the critical aspects of performance testing is defining the number
of virtual users that will be used to simulate real user traffic. The number of
virtual users required for performance testing will depend on several factors,
including the system’s nature, the expected user load, and the testing goals.



46 A. Godinho et al.

There are several factors or steps, but conducting a pilot test with a few virtual
users ensures that the testing environment is set up correctly and establishes
a baseline for the system’s performance. From that point, gradually increase
the number of virtual users, monitoring the system’s performance at each stage.
Gradually increase the number of users until the system reaches its maximum
capacity or until the testing goals have been achieved.

The tests outlined in this work aim to evaluate a Web API under varying
workloads thoroughly. The tests should cover the primary HTTP verbs, includ-
ing GET, POST, PUT, and DELETE. The GET test should address the most
demanding scenario: retrieving all entities from a single endpoint. The POST test
focuses on creating new records in the database, the PUT test focuses on updat-
ing existing resources, and the DELETE test focuses on removing resources. The
comprehensive test suite must be run on the four CRUD (Create, Read, Update,
and Delete) operations to identify and eliminate potential performance problems.
By thoroughly testing each of the CRUD operations, you can gain confidence in
the reliability and scalability of the system and prevent any unexpected issues
from arising during production use. Testing all HTTP methods may also help
to determine the appropriate number of virtual users for the tests.

The tools presented in this work are a valid method for obtaining real-world
results and testing the response limits of the application. The results may be
visualized through charts generated by these tools, clearly representing any issues
detected during the testing process. Running multiple queries on a single chart
allows running the same test on numerous Web APIs, visualizing the results on
a single graph, and providing a tool for direct comparison.

Acknowledgements. This work is funded by FCT/MEC through national funds
and co-funded by FEDER—PT2020 partnership agreement under the project
UIDB/50008/2020. This work is partially funded by National Funds through
the FCT - Foundation for Science and Technology, I.P., within the scope of
the projects UIDB/00308/2020, UIDB/05583/2020 and MANaGER (POCI-01-0145-
FEDER-028040). Furthermore, we would like to thank the Polytechnics of Coimbra
and Santarém for their support.

References

1. Hong, X.J., Yang, H.S., Kim, Y.H.: Performance analysis of restful API and Rab-
bitMQ for microservice web application. In: 2018 International Conference on Infor-
mation and Communication Technology Convergence (ICTC), Jeju, Korea (South),
pp. 257–259 (2018). https://doi.org/10.1109/ICTC.2018.8539409

2. Fielding, R.T.: Architectural Styles and the Design of Network-Based Software
Architectures. University of California (2000)

3. Karlsson, O.: A Performance comparison Between ASP. NET Core and Express.
js for creating Web APIs. [Dissertation] (2021). http://urn.kb.se/resolve?urn=urn:
nbn:se:hj:diva-54286

4. Voskoglou, C.: APIs Have Taken over Software Development: Nordic Apis
—. Nordic APIs, 20 October 2020. https://nordicapis.com/apis-have-taken-over-
software-development/

https://doi.org/10.1109/ICTC.2018.8539409
http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-54286
http://urn.kb.se/resolve?urn=urn:nbn:se:hj:diva-54286
https://nordicapis.com/apis-have-taken-over-software-development/
https://nordicapis.com/apis-have-taken-over-software-development/


Method for Evaluating the Performance of Web-Based APIs 47

5. Bermbach, D., Wittern, E.: Benchmarking web API quality. In: Bozzon, A., Cudre-
Maroux, P., Pautasso, C. (eds.) ICWE 2016. LNCS, vol. 9671, pp. 188–206.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-38791-8 11

6. Kronis, K., Uhanova, M.: Performance comparison of Java EE and ASP. NET core
technologies for web API development. Appl. Comput. Syst. 23(1), 37–44 (2018)

7. Karlsson, O.: A Performance comparison between ASP. NET Core and Express. js
for creating Web APIs (2021)

8. Rathod, D.: Performance evaluation of restful web services and soap/wsdl web
services. Int. J. Adv. Res. Comput. Sci. 8(7), 415–420 (2017)

9. Akbulut, A., Perros, H.G.: Performance analysis of microservice design patterns.
IEEE Internet Comput. 23(6), 19–27 (2019)

10. El Malki, A., Zdun, U.: Combining API Patterns in Microservice Architectures:
Performance and Reliability Analysis (2023)

11. Geewax, J.J.: API design patterns. Simon and Schuster (2021)
12. Maleshkova, M., Pedrinaci, C., Domingue, J.: Investigating web APIs on the world

wide web. In: 2010 Eighth IEEE European Conference on Web Services, Ayia Napa,
Cyprus, pp. 107–114 (2010). https://doi.org/10.1109/ECOWS.2010.9

13. Vainikka, J.: Full-stack web development using Django REST framework and React
(2018)

14. Richardson, L., Amundsen, M., Ruby, S.: RESTful Web APIs: Services for a Chang-
ing World. O’Reilly Media, Inc., Sebastopol (2013)

15. Ong, S.P., et al.: The materials application programming interface (API): a simple,
flexible and efficient API for materials data based on representational state transfer
(REST) principles. Comput. Mater. Sci. 97, 209–215 (2015)

16. Neumann, A., Laranjeiro, N., Bernardino, J.: An analysis of public REST web
service APIs. IEEE Trans. Serv. Comput. 14(4), 957–970 (2018)

17. Halili, F., Ramadani, E.: Web services: a comparison of soap and rest services.
Mod. Appl. Sci. 12(3), 175 (2018)

18. Sohan, S.M., Anslow, C., Maurer, F.: A case study of web API evolution. In: 2015
IEEE World Congress on Services. IEEE (2015)

19. Archip, A., Amarandei, C.M., Herghelegiu, P.C., Mironeanu, C.: RESTful web
services-a question of standards. In: 2018 22nd International Conference on System
Theory, Control and Computing (ICSTCC), pp. 677–682. IEEE, October 2018

20. Noura, M., Atiquzzaman, M., Gaedke, M.: Interoperability in internet of things:
taxonomies and open challenges. Mob. Netw. Appl. 24, 796–809 (2019)

21. Michel, F., Faron-Zucker, C., Corby, O., Gandon, F.: Enabling automatic discovery
and querying of web APIs at web scale using linked data standards. In: Companion
Proceedings of the 2019 World Wide Web Conference, pp. 883–892, May 2019

22. Ozdemir, E.: A general overview of RESTful web services. Applications and
approaches to object-oriented software design: emerging research and opportu-
nities, pp. 133–165 (2020)

23. Coarfa, C., Druschel, P., Wallach, D.S.: Performance analysis of TLS web servers.
ACM Trans. Comput. Syst. (TOCS) 24(1), 39–69 (2006)

24. Chakraborty, M., Kundan, A.P.: Grafana. Monitoring Cloud-Native Applications,
pp. 187–240. Apress, Berkeley, CA (2021)

25. Dogan, J.: RAKYLL/Hey: HTTP Load Generator, ApacheBench (AB) Replace-
ment. GitHub, Rakyll. https://github.com/rakyll/hey/

26. Deliver Fast and Reliable Digital Experiences with K6. k6, K6 Grafana Labs.
https://k6.io/deliver-fast-and-reliable-digital-experiences-with-k6/

https://doi.org/10.1007/978-3-319-38791-8_11
https://doi.org/10.1109/ECOWS.2010.9
https://github.com/rakyll/hey/
https://k6.io/deliver-fast-and-reliable-digital-experiences-with-k6/


48 A. Godinho et al.

27. Khan, R., Amjad, M.: Web application’s performance testing using HP LoadRun-
ner and CA Wily introscope tools. In: 2016 International Conference on Comput-
ing, Communication and Automation (ICCCA), Greater Noida, India, pp. 802–806
(2016). https://doi.org/10.1109/CCAA.2016.7813849

28. Harrold, M.J.: Testing: a roadmap. In: Proceedings of the Conference on the Future
of Software Engineering (2000)

29. Jiang, Z.M., Hassan, A.E.: A survey on load testing of large-scale software systems.
IEEE Trans. Softw. Eng. 41(11), 1091–1118 (2015). https://doi.org/10.1109/TSE.
2015.2445340

30. Apache MPM Common Directives. mpm common - Apache HTTP Server Version
2.4, The Apache Software Foundation. https://httpd.apache.org/docs/2.4/mod/
mpm common.html#maxrequestworkers

31. NGINX - Core Functionality. NGINX. http://nginx.org/en/docs/ngx core
module.html#worker connections

32. Malik, H., Jiang, Z.M., Adams, B., Hassan, A.E., Flora, P., Hamann, G.: Automatic
comparison of load tests to support the performance analysis of large enterprise
systems. In: 2010 14th European Conference on Software Maintenance and Reengi-
neering, Madrid, Spain, pp. 222–231 (2010). https://doi.org/10.1109/CSMR.2010.
39

33. Malik, H., Hemmati, H., Hassan, A.E.: Automatic detection of performance devi-
ations in the load testing of large scale systems. In: 2013 35th International Con-
ference on Software Engineering (ICSE). IEEE (2013)

34. Hasanpuri, V., Diwaker, C.: Comparative analysis of techniques for big-data perfor-
mance testing. In: 2022 Seventh International Conference on Parallel, Distributed
and Grid Computing (PDGC). IEEE (2022)

https://doi.org/10.1109/CCAA.2016.7813849
https://doi.org/10.1109/TSE.2015.2445340
https://doi.org/10.1109/TSE.2015.2445340
https://httpd.apache.org/docs/2.4/mod/mpm_common.html#maxrequestworkers
https://httpd.apache.org/docs/2.4/mod/mpm_common.html#maxrequestworkers
http://nginx.org/en/docs/ngx_core_module.html#worker_connections
http://nginx.org/en/docs/ngx_core_module.html#worker_connections
https://doi.org/10.1109/CSMR.2010.39
https://doi.org/10.1109/CSMR.2010.39

	Method for Evaluating the Performance of Web-Based APIs
	1 Introduction
	2 Related Work
	3 RESTful Web API
	3.1 Representational State Transfer (REST)
	3.2 API HTTP Verbs

	4 Tools
	4.1 Test Scenario

	5 WEB API Performance Testing
	5.1 The 99th, 95th and 90th Percentiles
	5.2 Number of Virtual Users
	5.3 Load Testing
	5.4 Stress Testing
	5.5 Spike Test
	5.6 Soak Testing
	5.7 Tests to All CRUD Operations

	6 Results
	7 Conclusions
	References


