
The Impact of the Evolution of Operating
Systems on Older Web Applications

António Godinho1(B) , José Rosado2,3 , Filipe Sá2 ,
and Filipe Cardoso3,4

1 Coimbra Business School, Polytechnic Institute of Coimbra, Quinta Agŕıcola -
Bencanta, 3045-231 Coimbra, Portugal

agodinho@iscac.pt
2 Coimbra Institute of Engineering, Polytechnic Institute of Coimbra,

Rua Pedro Nunes - Quinta da Nora, 3030-199 Coimbra, Portugal
{jfr,filipe.sa}@isec.pt

3 INESC Coimbra—Instituto de Engenharia de Sistemas e Computadores de
Coimbra, Rua Śılvio Lima, Pólo II, 3030-790 Coimbra, Portugal

4 Escola Superior de Gestão e Tecnologia, Politécnico de Santarém,
Complexo Andaluz, Apartado 295, 2001-904 Santarém, Portugal

filipe.cardoso@esg.ipsantarem.pt

Abstract. At the beginning of 2020, the major browser-developing com-
panies announced that newer software versions no more extended sup-
port for older TLS, 1.0 and 1.1. A warning message was displayed in
older versions; the user could override it and enter the website. After
implementing the deprecation of TLS 1.0 and TLS 1.1, the users can
no longer enter those websites. It’s becoming more unusual for websites
to exist for over ten years and keep active, but there are legacy web
platforms where the cost of updating an older platform may need to be
revised.

The Microsoft .NET Framework has been used for almost twenty
years and is supported by Microsoft Windows operating systems. In the
last years, with the development of .NET Core and the release of .NET
5, Microsoft no longer develops ASP.NET Web Forms Framework. It’s
expected that existing web platforms will not run on newer operating
systems from Microsoft and should be replaced and removed from active
systems.

Keywords: ASP.NET Web Forms · Visual Basic .NET · Deprecation
of TLS 1.0 and TLS 1.1 · Windows Server 2003 · IIS 6.0 · Operating
System

1 Introduction

Over time, software applications and the underlying technologies or program-
ming languages they depend on naturally undergo a process of aging, eventually
becoming outdated [1]. This progression can result in a deterioration of the per-
formance of these applications and, in certain instances, vulnerabilities [2,3].

c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2024

Published by Springer Nature Switzerland AG 2024. All Rights Reserved

P. J. Coelho et al. (Eds.): GOODTECHS 2023, LNICST 556, pp. 17–29, 2024.

https://doi.org/10.1007/978-3-031-52524-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52524-7_2&domain=pdf
http://orcid.org/0000-0002-1146-464X
http://orcid.org/0000-0001-5610-7147
http://orcid.org/0000-0002-7846-8397
http://orcid.org/0000-0002-3916-5182
https://doi.org/10.1007/978-3-031-52524-7_2


18 A. Godinho et al.

Additionally, these applications can be tethered to particular operating systems
or technology versions, making upgrades infeasible [4].

Concurrently, as this technological aging occurs, development teams consis-
tently confront difficulties associated with the acquisition and departure of team
members [5,6]. The dynamics within these teams often revolve around the spe-
cialization of individuals in diverse technologies, a necessity driven by the rapid
evolution of the technological landscape [7]. This aspect also needs to be revised
to upgrade the existing systems.

Because of the economic consequences, numerous institutions and compa-
nies across various sectors offer outdated applications that operate on obsolete
operating systems and technologies. It is essential to examine and assess this
impact to determine whether the cost of replacing these legacy applications
outweighs the benefits, especially when compared to creating new, supported
applications through rewriting and redesigning [8]. All resources implicated in
the process must be taken into account prior to undertaking such a venture. Nev-
ertheless, this remains a crucial aspect within software development and system
administration tasks, as the connection between outdated applications and the
seriousness of vulnerabilities and glitches is significant [9,10].

Internet Information Services (IIS) 6.0 and Windows Server 2003 support
ended in July 2015 [11]. Without updates, newer and modern encryption proto-
cols used by Hyper Text Transfer Protocol Secure (HTTPS) cannot be used.

Browser developers like Google, Mozilla, Microsoft, and Apple made similar
announcements that they were deprecating TLS 1.0 and TLS 1.1 around the
spring of 2020 [12–15]. In April 2020, Google announced the release of Google
Chrome 81, when the drop would happen, and almost by the same time, Mozilla
released Firefox 74. Due to the COVID-19 pandemic, these changes were delayed
for an undetermined time. Dropping the support during the pandemic could
cause issues with critical government or healthcare sites that use somewhat out-
dated encryption protocols [16], and even Microsoft postponed the deprecation
of TLS 1.0/1.1 for Microsoft 365/Office 365 for the same reasons.

In the middle of July, those changes were finally implemented, and website
access was blocked automatically after the browsers updated to the latest stable
version.

Almost in the same period, Microsoft announced the release of .NET Core
5 and, most importantly, the next release of their .NET family, .NET 5. With
this new version, Microsoft will stop the development of the ASP.NET Web
Forms Framework, making this technology obsolete [17]. Microsoft will continue
to support .NET Framework (which ASP.Net WebForms is part of) for some
time since much of its functionality is based on the core .Net Framework, even
on modern Operating Systems like Windows 11 and Windows Server 2022 [18].

Nevertheless, the ASP .NET Web Forms Framework is a successful technol-
ogy for developing web platforms. The framework has a set of built.in controls
that provide visual components or functionalities to web applications.

After the time limit, a working platform was available, with all the main
features working. The document is organized as follows: After this Introduction,



The Impact of the Evolution of Operating Systems 19

the case study is presented in Sect. 2. The process for rebuilding the application
is presented in Sect. 3. The results are shown in Sect. 4. For last, Sect. 5 gives
the Conclusions.

2 Case Study - A Web-Based File Manager

The study was conducted on a higher education institution with a website that
provided a file manager for all the institution’s services. This application allowed
all the regular file manager operations: upload, rename, delete, and, most impor-
tantly, provide the public URL to access the uploaded documents. This website
was developed on ASP.NET Web Forms, using Visual Basic .NET 2.0 for the
code behind it. The website serves as an internal tool for more than 3,500 users
and is accessible to all visitors who download files from the site.

The website can be separated into three different components:

1. The login web page allows user authentication on Windows Active Directory.
2. The web page provides file management.
3. The file and directories repository, where the users upload the documents,

and the folder organization.

2.1 Application End of Life

The institution workers have their systems configured to allow the browsers to
be automatically upgraded. As refereed in Sect. 1, when browsers were updated
in July, the users could no longer access the file manager, which posed a problem
since all public documents, from forms for teachers and students to institution
communications, weren’t accessible. It was a problem that had to be fixed as
soon as possible.

2.2 Upgrade Application or Develop a New Website

The original server was running Windows Server 2003 operating system, with
IIS 6.0, and the website was over ten years old. The website could be moved to
a new server with a recent version of IIS. Still, if the application was just copied
to a newer server (running Windows Server 2019 or 2022), this would require
setting up an Application Pool on .NET v2.0 Classic on IIS for the website to
run. An Application Pool on .NET v2.0 Classic processes the requests in the
app pool by using separate processing pipelines for IIS and ISAPI [19]. IIS7 and
IIS8 were re-architected with the superior and faster Integrated Mode pipeline
but retained the “Classic” mode for compatibility [19] (Fig. 1).

While the Application Pool on .NET v4.5 may run as an integrated pipeline,
IIS and ASP.NET will take advantage of the improved features of IIS 7.0 using
only one process. It will mean that the web platform will still be old and won’t
take advantage of all the potential of the newer Operating System and IIS. It
wouldn’t be more than a band-aid because some features were requested, and
some minor bug fixes were required. Setting the application pool as v2.0 classic
would still be the most straightforward task, as shown in Fig. 2.



20 A. Godinho et al.

Fig. 1. Application Pools on IIS

Fig. 2. Setting the Application Pool on IIS

2.3 VB vs C#

The update of the existing web platform had a significant problem. While Visual
Basic .NET has not been deprecated, and there are still developers and applica-
tions that use it. Microsoft has continued to update and enhance Visual Basic
.NET alongside C# in various versions of the .NET platform. However, C# has
received more attention and new features in recent years, and it has become the
primary language of choice for many developers working with the .NET frame-
work. Microsoft has introduced many cutting-edge features and enhancements
in C# to keep it competitive in the modern software development landscape.
Microsoft has not abandoned Visual Basic .NET, but C# has become the dom-
inant language in the .NET ecosystem, with more emphasis on its development
and features.

Also, Visual Basic may not support future features of .NET Core that require
language changes. Due to differences in the platform, there will be some differ-
ences between Visual Basic on .NET Framework and .NET Core [20]. Also, the
webpage’s code was complex due to limitations of the ASP.NET Web Forms
platform version used to develop the website. One widespread mistake by web
developers in the early 2000s was using inline styles. Inline styles don’t separate
content from design, with many locations to check when changing an element



The Impact of the Evolution of Operating Systems 21

property. It also added complexity to the task of modernizing the platform to
a new and more appealing design [21]. One crucial point to consider is that
Microsoft no longer develops ASP.NET Web Forms and may be obsolete at any
time soon. Other technology should be used if a new application is created from
scratch.

2.4 IT Team Coding Expertise

The IT service staff at the institution had gradually lost their expertise in devel-
oping applications using Visual Basic (VB.NET). Over the past decade, as team
members left and newcomers joined all development work shifted to C#. Con-
sequently, Visual Basic .NET became an unfamiliar technology. Introducing a
new coding language to the team was a challenging decision. It involved dealing
with a learning curve, where team members required time to become proficient
in the new language. Additionally, there were considerations regarding adopting
specific development tools, libraries, and frameworks. This transition demanded
resources and attention away from ongoing projects, and committing to a lan-
guage fading into obsolescence seemed impractical.

Considering all these factors, the goal was to update the existing code from
VB.NET to C# to a newer ASP.NET Web Forms running .NET Framework 4.8.
The objective was to have a working website with only one developer involved
within three days. A new platform should be planned and developed from scratch
if this objective isn’t achieved within the time limit.

3 Rebuild the Application

The existing web application is made of only two web pages. The first is the login
page for user authentication on the Windows Active Directory, and the other
web page is the file manager per se, with all the file and directory management
features.

3.1 Tools

Developing reactive web pages or Responsive Web Design (RWD) from source is
a complex process. Several frameworks provide generic functionality with already
written modules and tailored components created traditionally. Web developers
use front-end frameworks for implementing Cascading Style Sheets to facilitate
the development of RWD [22]. Bootstrap is the most popular HTML, CSS, and
JavaScript framework for developing a responsive and mobile-friendly website.
It is free to download and use. It is a front-end framework for easier and faster
web development [23]. Bootstrap [24] uses a grid system that allows a fluid grid
system that appropriately scales up to 12 columns as the device or viewport
size increases [23], allowing the implementation of the RWD. Bootstrap frame-
work was chosen as the base for CSS formatting and visual elements to speed
up the development process for this web platform. The JavaScript Framework
JQuery and fontawsome icons were also added to provide visual details and user
interaction.



22 A. Godinho et al.

3.2 Day One - Move from Visual Basic to C#

The first step was creating an Empty ASP.NET Web Forms solution, choosing
C# for its code. The second step was the initial configuration of the application.
This kind of application configuration is made by editing the web.config file,
which defines the behavior of ASP.NET applications [25]. ASP.NET applications
come with a default Web.config file that can be edited with the working IDE, in
this case, and for this type of technology, it was Visual Studio.

Generally, Web.config files contain comments that make editing the file self-
explanatory [25]. For this web application, and since the user authentication is
made using Windows Active Directory, it was required to define a Connection
String with the IP address and port of the LDAP server, with the credentials
of a user with AD browsing access. This Connection String was then used by a
platform’s component, the Membership Provider, responsible for user manage-
ment on the web application. Inside Authentication Mode Forms, this component
allows the framework ASP .NET to authenticate users on the Windows Active
Directory without needing extra coding.

3.3 Login Page

The first web page developed was the login page. It is a straightforward standard
web page with an ASP .NET Web Forms Login Control. This framework compo-
nent provides user interface elements for logging in to a website [26]. The control
generates two input text boxes for the username and password, a “Remember
me” option checkbox, and a submit button. This web page uses other controls
from the framework, validating both text boxes to make both fields (username
and password) required. Using the configuration defined on the web.config, this
page is set as the default login web page. When an unauthenticated user tries
to access a private area, it will be redirected to this web page.

3.4 File Manager Page

The second web page is the website’s core, with all the directory and file man-
agement functionalities. With the slim timeline, rebuilding the whole application
from scratch wasn’t the objective, and the existing code would be used as a start-
ing point. Again, to speed up the development process, the existing visual basic
code was converted to C# with the help of an online tool from a company called
Progress [27]. This company has a set of long-time successful tools for ASP.NET
and provides this free service on its website. The output generated from the
converter was incomplete and had many problems, but it served its purpose,
Fig. 3. It was challenging because we started with a base code made by another
developer. The next step was to analyze the generated code by the converter to
understand all the features contained.



The Impact of the Evolution of Operating Systems 23

Fig. 3. Telerik code converter from visual basic to C#

Something stood out right from the beginning. The authorization options
related to access levels were hard coded on the code behind the webpage. It used
switch case statements with usernames or Services/Departments. It shouldn’t be
the way to restrict user access to specific areas, so the code blocks that provided
this feature were removed entirely. To provide user authorization at a later stage
of development, the framework’s Authorization Manager Role Provider configu-
ration using SQL Server was added to the web.config file.

The work developed on the first day allowed domain users to log in, access
files, and do directory listing. Browsing through the directories tree failed to
move up or down the hierarchy, as shown in Fig. 4.

3.5 Day Two - File/directory Operations and Design

With the login page already working, the focus was the file upload functionalities.
The second page is the core of the application. The page is constituted of two
sections side by side.

Left Section
Block with the information and file operation, composed of two different blocks.
The one on the top has the following elements:



24 A. Godinho et al.

Fig. 4. Running website on a new server

– Information about the logged-in user.
– Logout button.
– A summary of the number of objects in the current directory.

The block below was the file and directory options, with multiple controls and
components:

– A input textbox and button to create new directories.
– A button allows browsing up one level on the directories tree.
– Button to delete selected files and/or directories.
– Two file upload components and respective buttons permit the user to upload

up to two files simultaneously to the current directory.

Right Section, the Directory Contents
This section is composed of a table with all directory files and sub-folders. They
are marked with icons identifying folders and files using the font awesome icon
pack. There are also columns with file size, creation/change date, and buttons
to rename and obtain the public link. A checkbox on each line allows selecting
a row to apply a single action to multiple rows. The page table and how the
elements are disposed of can be seen in Fig. 5.

Developing the Second Page
File and directory are the main features of a file manager. At this point, only
delete and file upload was working. The folder navigation needed to be addressed.
When a user doubles and clicks a folder, the method that processed the click
event fails, and the table with the current folder content will become empty. The



The Impact of the Evolution of Operating Systems 25

Fig. 5. Table with directory contents

original version used ASP.NET Web Forms Repeater Control to render the table
with the folder contents. This control was changed to a GridView Control, and
all the methods that list the files and directories were redone.

1 protected DataTable GetFiles ()

2 {

3 String dirMae = GetCurDir ();

4 DirectoryInfo dirInfo = new DirectoryInfo(dirMae);

5 FileInfo [] info = dirInfo.GetFiles ();

6 DirectoryInfo [] dirs = dirInfo.GetDirectories ();

7 DataTable dt = CreateDataSource ();

8 DataRow dr;

9 ...

10 curr = GetCurDir ();

11 foreach (var dir in dirs)

12 {

13 aux = curr + @"\" + dir.Name;

14 aux = aux.Replace(@"\\", @"\").ToUpper ();

15 location = InvisibleDirs.IndexOf(aux);

16 if (location < 0)

17 {

18 dr = dt.NewRow ();

19 dr["filename"] = dir.Name;

20 ...

21 dr["type"] = "0";

22 dt.Rows.Add(dr);

23 }

24 }

25 string auxExt;

26 foreach (var file in info)

27 {

28 dr = dt.NewRow ();

29 dr["filename"] = file.Name;

30 ...

31 dr["type"] = "1";



26 A. Godinho et al.

32 dt.Rows.Add(dr);

33 }

34 dt.AcceptChanges ();

35 return dt;

36 }

Listing 1.1. Method to get dir contents, directories and files

The source data that feeds the GridView is now an instance of a DataTable
object that is built in code behind, shown on Code 1.1.

There were several bugs across all the main features. The main task during
the day was to correct all non-working features, with several exceptions sent to
the web server while running the web platform.

4 Results

After the time limit, a working platform was available, with all the main features
working. Some lingering problems will require significant code changes to fix.
For example, the application used a session var that stores the current directory.
This var was changed when a user entered a sub-folder by clicking on one of the
folders on the table, as shown in Fig. 5. The session var could also be changed by
pressing the “up one level” button, which allows changing to the parent directory.
The problem with using a session var was that if the user used the back button
from the browser instead of using the navigation buttons, the web page stopped
working because the directory shown on the web page did not match the one
on the session var. The multiple file upload failed when the total size exceeded
the maximum defined on IIS. ASP.NET doesn’t allow complete customization
of its components. It led to some violations of the CSS framework Bootstrap,
which resulted in some elements not being fully responsive. The results were
satisfactory due to urgency, but several elements must be remade.

5 Conclusions

Upgrading older ASP.NET Web Forms applications from visual basic to C# for
small websites/applications is possible, and it can be sustainable. But there are
different aspects to be considered when trying to do this kind of update/up-
grade. Other persons, over time, usually develop old applications with extended
longevity; another issue may be existing documentation of these types of old web
platforms. There are a couple of issues that will increase the understanding of
code. Still, if the update/upgrade is decided, there are valuable tools that help
convert the code from one language to the other to speed up the development.
Still, this conversion results in extremely buggy code, requiring a deep analysis
of the generated code, and on some occasions, it may take the same amount of
time as developing a web page from scratch.



The Impact of the Evolution of Operating Systems 27

Over the years, web design has evolved, providing users with more friendly
and appealing User Interfaces (UI). This approach can also make the UI mod-
ernization process more difficult because it is more connected to the old layout
being used.

On more extensive applications, converting old code from a different language
and using that generated code as a basis for an upgraded version of a web
platform may be even more confusing than help full, and this approach should
be disarted.

There is also the question of the longevity of the ASP.NET Web Forms
platform. A newer technology should be used if the application has to be made
from scratch. Choosing from the Microsoft ecosystem, more recent frameworks
like .NET Core 3.1 and .NET 6/7 are considered LTS, but when this work was
written, the last version was .NET 6 and should be chosen. There are also other
options with different technologies. On the Microsoft ecosystem, there is Blazor,
and on JavaScript full-stack Frameworks, there are several options like React,
Angular, Vue, or Node.

The choice to upgrade or develop a new application has to be made case
by case, considering the technologies where the IT team’s skills are vital. Also,
the time and effort required to upgrade an existing application following the
path chosen in this work are to consider the complexity of the current web
platform and probably the knowledge of the team of the application code and
functionalities. The sum of all these factors has to be compared to the cost of
developing a new web application.

Acknowledgements. This work is funded by FCT/MEC through national funds
and co-funded by FEDER—PT2020 partnership agreement under the project
UIDB/50008/2020. This work is partially funded by National Funds through
the FCT - Foundation for Science and Technology, I.P., within the scope of
the projects UIDB/00308/2020, UIDB/05583/2020 and MANaGER (POCI-01-0145-
FEDER-028040). Furthermore, we would like to thank the Polytechnics of Coimbra
and Santarém for their support.

References

1. Fürnweger, A., Auer, M., Biffl, S.: Software evolution of legacy systems. In: ICEIS
2016, p. 413 (2016)

2. Zerouali, A., Mens, T., Robles, G., Gonzalez-Barahona, J.M.: On the relation
between outdated docker containers, severity vulnerabilities, and bugs. In: 2019
IEEE 26th International Conference on Software Analysis, Evolution and Reengi-
neering (SANER), Hangzhou, China, pp. 491–501 (2019). https://doi.org/10.1109/
SANER.2019.8668013

3. Narayana Samy, G., Ahmad, R., Ismail, Z.: Security threats categories in healthcare
information systems. Health Inform. J. 16(3), 201–209 (2010). https://doi.org/10.
1177/1460458210377468

4. Zerouali, A., Cosentino, V., Mens, T., Robles, G., Gonzalez-Barahona, J.M.: On
the impact of outdated and vulnerable Javascript packages in docker images. In:
2019 IEEE 26th International Conference on Software Analysis, Evolution and

https://doi.org/10.1109/SANER.2019.8668013
https://doi.org/10.1109/SANER.2019.8668013
https://doi.org/10.1177/1460458210377468
https://doi.org/10.1177/1460458210377468


28 A. Godinho et al.

Reengineering (SANER), Hangzhou, China, pp. 619–623 (2019). https://doi.org/
10.1109/SANER.2019.8667984

5. Savor, T., et al.: Continuous deployment at Facebook and OANDA. In: Proceedings
of the 38th International Conference on Software Engineering Companion (2016)

6. Goodman, E., Loh, L.: Organizational change: a critical challenge for team effec-
tiveness. Bus. Inf. Rev. 28(4), 242–250 (2011)

7. Acar, Y., Stransky, C., Wermke, D., Weir, C., Mazurek, M.L., Fahl, S.: Developers
need support, too: a survey of security advice for software developers. In: 2017 IEEE
Cybersecurity Development (SecDev), Cambridge, MA, USA, pp. 22–26 (2017).
https://doi.org/10.1109/SecDev.2017.17

8. Christensen, C.M.: The innovator’s Dilemma: When New Technologies Cause
Great Firms to Fail. Harvard Business Review Press (2013)

9. Hossain, M.M., Fotouhi, M., Hasan, R.: Towards an analysis of security issues,
challenges, and open problems in the internet of things. In: 2015 IEEE world
Congress on Services. IEEE (2015)

10. Habibzadeh, H., et al.: A survey on cybersecurity, data privacy, and policy issues in
cyber-physical system deployments in smart cities. Sustain. Cities Soc. 50, 101660
(2019)

11. Microsoft. Internet information services (IIS) - microsoft lifecycle. Microsoft
Lifecycle—Microsoft Docs. https://docs.microsoft.com/en-us/lifecycle/products/
internet-information-services-iis. Accessed 15 Nov 2021

12. Benjamin, D.: Modernizing transport security. Google Online Security Blog
(2018). https://security.googleblog.com/2018/10/modernizing-transport-security.
html. Accessed 18 Nov 2021

13. Thomson, M.: Removing old versions of TLS. Mozilla Security Blog (2018). https://
blog.mozilla.org/security/2018/10/15/removing-old-versions-of-tls/. Accessed 18
Nov 2021

14. Pflug, K.: Modernizing TLS connections in Microsoft edge and internet explorer
11. Microsoft Edge Blog (2020). https://blogs.windows.com/msedgedev/2018/10/
15/modernizing-tls-edge-ie11/. Accessed 18 Nov 2021

15. Wood, C.: Deprecation of legacy TLS 1.0 and 1.1 versions. WebKit (2018). https://
webkit.org/blog/8462/deprecation-of-legacy-tls-1-0-and-1-1-versions/. Accessed
18 Nov 2021

16. Laflamme, R.: Chrome 81 features and release date. Insightportal (2020). https://
www.insightportal.io/news/all-news/chrome-81-beta-features-and-release-date.
Accessed 18 Nov 2021

17. [MSFT], R., Rich Lander [MSFT] Program Manager, 6, A., Asthana, A., 6, S.,
[MSFT], S., Cheong00. Introducing.NET 5 (2021). https://devblogs.microsoft.
com/dotnet/introducing-net-5/. Accessed 28 May 2022

18. Microsoft. Microsoft.NET Framework - Microsoft Lifecycle (n.d.). https://
docs.microsoft.com/en-gb/lifecycle/products/microsoft-net-framework. Accessed
28 May 2022

19. Hanselman, S.: Moving old apps from IIS6 to IIS8 and why Classic Mode
exists (2013). https://www.hanselman.com/blog/moving-old-apps-from-iis6-to-
iis8-and-why-classic-mode-exists. Accessed 15 Nov 2022

20. .NET Team. Visual basic support planned for.NET 5.0 (2020). https://devblogs.
microsoft.com/vbteam/visual-basic-support-planned-for-net-5-0/. Accessed 15
Nov 2022

21. Kyrnin, J.: Avoid inline styles for CSS design. ThoughtCo (2020). https://www.
thoughtco.com/avoid-inline-styles-for-css-3466846. Accessed 24 Nov 2021

https://doi.org/10.1109/SANER.2019.8667984
https://doi.org/10.1109/SANER.2019.8667984
https://doi.org/10.1109/SecDev.2017.17
https://docs.microsoft.com/en-us/lifecycle/products/internet-information-services-iis
https://docs.microsoft.com/en-us/lifecycle/products/internet-information-services-iis
https://security.googleblog.com/2018/10/modernizing-transport-security.html
https://security.googleblog.com/2018/10/modernizing-transport-security.html
https://blog.mozilla.org/security/2018/10/15/removing-old-versions-of-tls/
https://blog.mozilla.org/security/2018/10/15/removing-old-versions-of-tls/
https://blogs.windows.com/msedgedev/2018/10/15/modernizing-tls-edge-ie11/
https://blogs.windows.com/msedgedev/2018/10/15/modernizing-tls-edge-ie11/
https://webkit.org/blog/8462/deprecation-of-legacy-tls-1-0-and-1-1-versions/
https://webkit.org/blog/8462/deprecation-of-legacy-tls-1-0-and-1-1-versions/
https://www.insightportal.io/news/all-news/chrome-81-beta-features-and-release-date
https://www.insightportal.io/news/all-news/chrome-81-beta-features-and-release-date
https://devblogs.microsoft.com/dotnet/introducing-net-5/
https://devblogs.microsoft.com/dotnet/introducing-net-5/
https://docs.microsoft.com/en-gb/lifecycle/products/microsoft-net-framework
https://docs.microsoft.com/en-gb/lifecycle/products/microsoft-net-framework
https://www.hanselman.com/blog/moving-old-apps-from-iis6-to-iis8-and-why-classic-mode-exists
https://www.hanselman.com/blog/moving-old-apps-from-iis6-to-iis8-and-why-classic-mode-exists
https://devblogs.microsoft.com/vbteam/visual-basic-support-planned-for-net-5-0/
https://devblogs.microsoft.com/vbteam/visual-basic-support-planned-for-net-5-0/
https://www.thoughtco.com/avoid-inline-styles-for-css-3466846
https://www.thoughtco.com/avoid-inline-styles-for-css-3466846


The Impact of the Evolution of Operating Systems 29

22. Shenoy, A., Prabhu, A.: CSS Framework Alternatives: Explore Five Lightweight
Alternatives to Bootstrap and Foundation with Project Examples. Apress (2018)

23. Gaikwad, S.S., Adkar, P.: A review paper on bootstrap framework. IRE J. 2(10),
349–351 (2019)

24. Mark Otto, J.: Bootstrap (2022). https://getbootstrap.com/. Accessed 17 Nov 2022
25. HaiyingYu. Edit configuration of an ASP.NET application - ASP.NET.

Edit configuration of an ASP.NET application - ASP.NET—Microsoft
Docs (n.d.). https://docs.microsoft.com/pt-PT/troubleshoot/developer/webapps/
aspnet/development/edit-web-config. Accessed 4 Mar 2022

26. Anderson, R.: Login class (system.web.ui.webcontrols). (System.Web.UI.
WebControls)—Microsoft Docs (n.d.). https://docs.microsoft.com/en-us/dotnet/
api/system.web.ui.webcontrols.login?view=netframework-4.8. Accessed 7 Mar
2022

27. Code converter C# to VB and VB TO C#. Telerik. (n.d.). https://converter.
telerik.com/. Accessed 29 Nov 2021

https://getbootstrap.com/
https://docs.microsoft.com/pt-PT/troubleshoot/developer/webapps/aspnet/development/edit-web-config
https://docs.microsoft.com/pt-PT/troubleshoot/developer/webapps/aspnet/development/edit-web-config
https://docs.microsoft.com/en-us/dotnet/api/system.web.ui.webcontrols.login?view=netframework-4.8
https://docs.microsoft.com/en-us/dotnet/api/system.web.ui.webcontrols.login?view=netframework-4.8
https://converter.telerik.com/
https://converter.telerik.com/

	The Impact of the Evolution of Operating Systems on Older Web Applications
	1 Introduction
	2 Case Study - A Web-Based File Manager
	2.1 Application End of Life
	2.2 Upgrade Application or Develop a New Website
	2.3 VB vs C#
	2.4 IT Team Coding Expertise

	3 Rebuild the Application
	3.1 Tools
	3.2 Day One - Move from Visual Basic to C#
	3.3 Login Page
	3.4 File Manager Page
	3.5 Day Two - File/directory Operations and Design

	4 Results
	5 Conclusions
	References


