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Abstract. The smart industry paradigm has revolutionized the land-
scape of production processes, ushering in new strategies to meet evolv-
ing demands. Among these strategies, mass customization stands out,
for producing nearly tailored products based on customers preferences,
while still using massive production techniques that allow keeping costs
burdened. However, to embrace mass customization several operations at
shop-floor level of the industry have to be adjusted, among them produc-
tion planning strategies due to the emergence of missing operations. In
this line, this article presents a suite of metaheuristic algorithms designed
to tackle the multiobjective flowshop problem with missing operations
while considering as optimization criteria the makespan, weighted total
tardiness, and total completion time. Through extensive computational
experiments on realistic instances, the performance of the applied meta-
heuristics is thoroughly evaluated. The results underscore the competi-
tiveness of the proposed approaches in effectively addressing the intrinsic
computational complexity of the addressed optimization problem, affirm-
ing their viability for real-world applications.

Keywords: Smart industry · Mass customization · Missing
operations · Flowshop problem · Multiobjective evolutionary algorithms

1 Introduction

The concept of the smart industry, often referred to as Industry 4.0, encom-
passes a transformative paradigm shift in manufacturing and production pro-
cesses, leveraging advanced technologies such as the Internet of Things, artificial
intelligence, robotics, and data analytics [8]. It aims to create highly intercon-
nected, data-driven, and adaptive manufacturing ecosystems, enabling real-time
monitoring, optimization, and automation of production, supply chains, and ser-
vices. Smart industry endeavors to enhance efficiency, flexibility, and innovation
while fostering sustainable practices, ultimately reshaping traditional industrial
practices into agile, intelligent, and interconnected systems.
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The smart industry also fosters an interconnected ecosystem where cus-
tomers, suppliers, and producers collaborate harmoniously [10]. On the hand
of customers, mass customization, a hallmark of this transformation, empow-
ers customers to define their unique product preferences, shaping demand in
real-time. On the other hand, through intelligent data-driven systems, suppliers
seamlessly adjust their offerings, optimizing inventory and production processes
to meet dynamic customization needs. This strategy enhanced interplay among
smart industry’s technological prowess, empowered customers, and agile suppli-
ers has fundamentally reshaped conventional supply chains through comprehen-
sive integration [24].

This new paradigm, paves the way to transform the classic production pro-
cess into mass customization processes, where the client has an active role in
the design of the final product. This situation of personalized products, has a
significant impact in terms of production processes, since not all the finished
product will be the same, then, their production processes must will not be
the same. In production systems that are configured as flow shop, this person-
alization may impact in a missing operation fashion [25]. In missing operation
flow shop scheduling problems, the operation route of each job may be different,
where the differences are basically if a job may skip or not one of the operations.
Then, the cardinality of the set of operations of jobs is not constant for all jobs.
This modification represents a challenging scenario for production scheduling
decision-making, because the orders to be planned are not all the same [20].
Furthermore, decision makers must fulfill many criteria for solving the schedul-
ing of production efficiently nowadays, then, the complexity and difficulty of the
problem enhances.

This article addresses a missing operation, multi-objective, flow shop schedul-
ing problem using a metaheuristic approach [14]. Mainly, the problem considered
is a regular flow shop system, where there is one machine or production resource
per stage, and the jobs to be processed by that system may not require to be
processed in every machine. Also, as mentioned before, to optimize this problem
involves to consider simultaneously more than one criterion. In this case three
different objective functions are analyzed, namely, makespan, total tardiness and
total completion time. These goals treated as a multiobjective optimization prob-
lem, enable to optimize production system utilization, customer service level and
production orders flow, respectively. As far as the authors know, this is the first
time that a missing operation flow shop problem with three objectives is stud-
ied. The metaheuristics applied to solve the problem are NSGA-II, NSGA-III,
MOEA/D and SPEA2.

The article is structured as follows. Section 2 formally presents the flowshop
problem, describing its mathematical formulation and the main related works.
Section 3 presents the metaheuristic algorithms used for the resolution of the
multiobjective flowshop problem. Section 4 describes the computational exper-
imentation, including the implementation details, the description of instances
and the main results. Finally, Sect. 5 presents the conclusions of the research
and formulates the main lines for future work.
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2 Mass Customization and the Multiobjective Flowshop
Problem with Missing Operations

This section presents a comprehensive presentation of mass customization in
Smart Industry environments. Then, a detailed description of the problem
addressed in this work is introduced, where the objectives function considered for
the multi-objective approach are mathematically described. Finally, the related
works found in literature are revised in order to highlight the main contributions
of the reported research.

2.1 Mass Customization Impact on the Shop-Floor Operations

As aforementioned, an important aspect of smart industry is mass customization.
Mass customization refers to the capacity of efficiently producing goods and ser-
vices that are tailored to meet individual customer preferences and requirements,
while still achieving economies of scale similar to mass production [1,18]. Sev-
eral companies have successfully invested in enhancing their mass customization
strategies to offer personalized products to their customers. One example is Nike,
which allows customers to design their own sneakers through its Nike By You
platform, where they can choose colors, materials, and customize various design
elements [26]. Larger products also have entered to this wave of customization.
For example in cars production, BMW enables customers to personalize their
luxury vehicles with a wide range of custom features, including paint colors,
interior materials, and technology options [27].

Smart industry enables manufacturers to gather insights from customer pref-
erences, adapt production processes, optimize resource allocation, and dynami-
cally reconfigure assembly lines, resulting in the cost-effective creation of highly
customized products on a scale previously unattainable. Mass customization
starts with an intelligent smart product design, in which the preferences of the
user are translated into instructions for the shop-floor operations on how to plan
the production phase. In this regard, mass customization has a huge impact in
shop-floor operations [28]. Among the aspects that are involved in an efficient
shop-floor management are: i) Workflow flexibility and Advanced manufacturing
technologies: shop floors must be designed to accommodate varying product con-
figurations and customization options based on advanced manufacturing assessts
[11]. ii) Real-time data integration: shop-floor operations need to integrate data
systems to ensure accurate and up-to-date information for decision-making [29].
iii) Inventory management: inventory management systems must be optimized to
ensure that the right components are available for each customization option [6];
iv) Quality 4.0: robust quality assurance protocols and testing procedures are
crucial to maintain customer satisfaction [30]; v) Skilled Workforce: training pro-
grams are essential to empower workers with the knowledge needed to execute
customization tasks effectively [12]; vi) Smart production planning and control:
aims to intelligently perform the activities of loading, scheduling, sequencing,
monitoring, and controlling the use of resources and materials during produc-
tion by means of data analytics, AI, and machine learning [17].
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Figure 1 presents a summary of the main concepts involved in an Smart
industry and the impact of mass customization to shop-floor operations man-
agement. This article focuses on smart production planning proposing new res-
olution methodologies to solve the flowshop problem that arises in the context
of mass customization with missing operations.

Fig. 1. Smart industry: the new paradigm and the impact on shop-floor operations
management.

2.2 Mathematical Formulation

The mathematical formulation of the multiobjective flowshop problem with miss-
ing operations considers the following elements:

– A set of machines or operations M that can be performed.
– A set of jobs J that have to be delivered.
– A due date dj in which each job has to be delivered.
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– Given the matrix PJM which contains the processing times pjm for each
job j on each machine m and the processing order of jobs on the machines
Or, a completion time function C(j) : PJM × Or → R+

0 that returns the
completion time of job j, i.e., the time when the job has performed all the
required operations in all the machines.

– A vector wj that gives the relative importance of each job regarding the total
completion time.

Then, the optimization problem addressed in this work is to define the pro-
cessing order of jobs on the machines that simultaneously minimized the follow-
ing three metrics: the makespan, the weighted total completion time and the
total tardiness, which are computed as in Eqs. (1a)–(1c).

min Makespan = max
j∈J

{C(j)} (1a)

min Total Completion Time =
∑

j∈J

wj × C(j) (1b)

min Total Tardiness =
∑

j∈J

max(0;C(j) − dj) (1c)

The impact of missing operations affects the matrix of processing times PJM

since several parameters pjm can be equal to 0. Regarding constraints, the prob-
lem at hand is bound by specific restrictions. First, there are non-overlapping
constraints in place, which prohibit more than one job from being processed on
the same machine simultaneously. Second, there are logical timely constraints,
meaning that the start time for processing a job on a machine must occur after
the finish time of the same job on the previous machine. These restrictions shape
the flowshop problem which is known to be a computationally complex prob-
lem [4].

2.3 Related Work

The study of missing operation in regular flow shop problems (i.e., a single
machine per stage) is not a new problem, it has been studied for more than two
decades [5]. However, in the last years it has gained renewed attention in the
scientific community since, as it was mentioned previously, there is a growing
tendency in the transformation of traditional manufacturing processes towards
personalized manufacturing processes. [3]. As for instance, the case of concrete
personalized industry where the production process is configured as a flow shop
with missing operation. In [25], the objective is to minimize the cycle time, and
for this, the authors developed a comprehensive innovative approach that over-
comes the particular restrictions the production process has, like lags between
operations. Other type of problem is tackled at [19], where a non-permutation
flow shop problem with missing operation is considered. Mathematical program-
ming models are developed to optimize the makespan in this work. Also a non-
permutation flow shop problem is analyzed at [20], but in this case total tardiness
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is considered as objective function and metaheuristics are used for optimization.
More recently in [7] a missing operation flow shop problem arises at the semicon-
ductor industry. At this case, a special feature of the studied problem is the pres-
ence of time waiting constraints, and the objective function is the minimization
of total tardiness. For solving the problem heuristic algorithm are implemented.
Regarding multi-objective optimization with missing operation in regular flow
shop problems, the literature is more scarce. Basically, as far as the authors
know, it can be found only [21,22], where in these works a bi-objective problem
is approached by means of Evolutionary algorithms. In those studies makespan
and total tardiness are minimized, and different levels of missing operations are
considered.

Therefore, after revising the literature, it has not been detected a missing
operation problem with three objectives, even less that analyzed makespan, total
tardiness and total completion time simultaneously. These objectives involves
different relevant interests for decision makers, whom must to cope with in their
optimization processes. Makespan contribute to optimizing production resources
usage, reducing the idle time of them. Meanwhile, total tardiness focus on service
level to the client, trying to accomplish the due dates agreed with the client. And,
total completion time, try to reduce the time a production order is on the system,
that is, tries to reduce the time this order is considered as work-in-progress. The
present article addresses these three objectives in a multi-objective manner.

3 Resolution Approach

This section describes the proposed resolution approach for solving the multiob-
jective flowshop problem.

3.1 Overall Description and Algorithms

Various strategies have been proposed to solve multi-objective optimization
problems. Resolution approaches include exact methods rooted in mathemat-
ical programming [23], as well as heuristic and metaheuristic strategies [16]. For
complex combinatorial challenges like the one described in this paper, meta-
heuristics offer an efficient resolution strategy to attain high-quality solutions
in reasonable computing times and, thus, have been extensively used in similar
problems [20,22].

Among metaheuristics, multi-objective evolutionary algorithm (MOEAs) are
population-based methods inspired by the evolutionary process of species in
nature. MOEAs have demonstrated to be successful methods with application
in diverse complex optimization problems [14]. Particularly, this article proposes
applying four state-of-the-art evolutionary metaheuristics to address the target
problem: SPEA2, NSGA-II, NSGA-III and MOEA/D, which are described next.
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Strength Pareto Evolutionary Algorithm 2 (SPEA2). is a MOEA that focuses on
non-dominated sorting and density estimation to generate a diverse set of solu-
tions, allowing for effective exploration of the Pareto front. In this line, a notable
aspect of SPEA2 is its fitness calculation, which takes into account both Pareto
dominance and diversity. The algorithm introduces the concept of strength to
gauge how many candidate solutions are dominated by or dominate other solu-
tions. Additionally, fitness assignment involves density estimation. Elitism is also
incorporated through the use of a population that stores non-dominated indi-
viduals discovered during the search.

Non-dominated Sorting Genetic Algorithm II (NSGA-II). is a widely used evolu-
tionary algorithm that employs non-dominated sorting, crowding distance, and
elitism to evolve a diverse population of solutions, efficiently approximating
the Pareto front. NSGA-II is characterized by an evolutionary search using a
non-dominated elitist ordering that diminishes the complexity of the dominance
check, a crowding technique for diversity preservation, and a fitness assignment
method considering dominance ranks and crowding distance values. All these
features are integrated to provide a robust and effective search, which has been
successfully applied to solve multiobjective optimization problems in many appli-
cation areas.

Non-dominated Sorting Genetic Algorithm III (NSGA-III). NSGA-III is an
extension of NSGA-II that incorporates reference points to guide the optimiza-
tion process, enhancing the spread of solutions along the Pareto front and sup-
porting better convergence.

Multi-objective Evolutionary Algorithm based on Decomposition (MOEA/D).
MOEA/D decomposes a multi-objective optimization problem into subprob-
lems, each solved by a separate optimization process. It balances exploration and
exploitation to efficiently approximate the Pareto front by iteratively updating
solutions through collaboration among subproblems.

3.2 Description of the Proposed Metaheuristics

The proposed MOEAs operate using the following features:

Solution Representation. As it usual in similar works, solutions are denoted by
permutations of integers within a vector. The index placement within the vector
represents the processing sequence on the initial machine, with the associated
integer values corresponding to individual jobs slated for scheduling. Thus, the
length of the vector represents to the total job count.

Initialization. The population, comprising #P individuals, is initialized through
a random procedure that generates permutations devoid of repeated integer val-
ues. Employing a uniform probability distribution, each value within a solution
representation is chosen from the interval [1,n].
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Evolutionary Operators. The well-known Partially Mapped Crossover (PMX)
is employed as the recombination operator. This crossing mechanism pairs two
chosen individuals with a probability of pc, and it has been widely utilized in
various studies tackling permutation-encoded scheduling issues. Subsequently,
the mutation operator relies on Swap Mutation, involving the interchange of
two elements within the permutation. Application of the mutation operator to
an individual occurs with a probability of pm. Notably, the proposed operators
ensure the feasibility of the resultant solutions.

4 Computational Experimentation

This section presents the computational experimentation of the proposed app-
roach, including the description of instances, the methodology used for the exper-
imental evaluation, and the main numerical results.

4.1 Description of the Problem Instances

A set of realistic instances were constructed for the computational experimen-
tation, following the procedure by Henneberg and Neufeld [9]. Processing times
were generated as integer values within the range [0:100] following a pseudo-
uniform distribution, with the probability of a processing time been zero with
a relatively higher value compared to the other possible processing times. This
approach ensured the existence of varied processing times including the possi-
bility of missing operations. The sets of instances were constructed considering
three different numbers of jobs (30, 40 and 50), two different numbers of machines
or operations (10 and 20) and three different percentage probability of missing
operations (0%, 10% and 20%). The instances were named using the following
convention n × m − p%, where n is the number of jobs, m is the number of
machines and p% for the percentage probability of missing operations.

4.2 Methodology for the Computational Experimentation

This subsection presents the description of how the computational experimen-
tation of the proposed MOEAs is performed.

Implementation Details and Excecution Platform. The implementation of the
proposed MOEAs was carried out in Java, using the JMetal framework version
6.1 [13]. The computational experimentation phase was executed on the National
Supercomputing Center, Uruguay (Cluster-UY) [15].

Evaluation Metrics. The evaluation is performed considering two multiobjective
optimization metrics: spread and relative hypervolume (RHV). Spread [2] is a
metric of diversity that evaluates the distribution of the non-dominated solu-
tions, assessing the capacity of correctly sampling the Pareto front. Unlike other
typical distribution metrics such as spacing, the spread as formulated in Eq. (2)
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takes into account the information about the extreme points of the true Pareto
front to calculate a more accurate value of the dispersion.

Spread =
∑

o∈O deo +
∑

i∈ND |d − di|∑
o∈O deo + |ND|d (2)

where O is the set of objectives, ND is the set of non-dominated solutions, deo is
the distance between the extreme point of the Pareto front regarding objective
o and the closest non-dominated solution in the computed Pareto front, di is the
distance between the non-dominated solution i in the computed Pareto front and
the closest neighbor non-dominated solution, and d is the average value of all
di. On the other hand, the RHV quantifies the ratio between the hypervolumes
(in the search space of the objective functions) covered by the computed Pareto
front and the true Pareto front of the problem. Thus, in an ideal situation the
RHV value equals one. Consequently, RHV serves as a comprehensive metric
that evaluates both numerical accuracy (proximity of the computed Pareto front
to the real Pareto front) and the distribution of the non-dominated solutions.
When the true Pareto front is unknown for a problem instance, as it is the case
in this study, the true Pareto front is approximated using all the non-dominated
solutions obtained from all the resolutions performed for that instance.

Parametrization. The determination of the optimal parametric configuration
was guided by statistical analysis. This process was pivotal in establishing the
values for the key parameters of the studied MOEAs: population size (#P ),
crossover probability (pc), and mutation probability (pm). To determine these
parameters different values were assessed: 50 and 100 for population size, 0.5,
0.7, and 0.9 crossover probabilities, and 0.01, 0.05, and 0.1 mutation proba-
bilities. Consequently, a comprehensive evaluation encompassing sixteen para-
metric configurations ensued for each of the four MOEAs. The analysis for the
parameter setting was based on the RHV, which as aforementioned is a robust
summary metric. The stopping condition was set to 150,000 evaluations of the
objective function. For the comparison three small instances different from the
main computational study were used. As the RHV values did not follow a normal
distribution according to the Shapiro-Wilk test, the Friedman rank test, a non-
parametric method, was employed to assess the goodness of each configuration.
Particularly, the neighborhood size of the MOEA/D was chosen in 3% of #P
which showed a good performance in our previous work [21]. After the parameter
setting, the following configurations were chosen for the studied MOEAs:

– MOEA/D: #P = 50, pc = 0.5, and pm = 0.1
– NSGA-II: #P = 100, pc = 0.7, and pm = 0.1
– NSGA-III: #P = 50, pc = 0.7, and pm = 0.1
– SPEA2: #P = 100, pc = 0.9, and pm = 0.1

4.3 Numerical Results

This subsection describes the result of the computational experimentation. For
each instance and each MOEA, 30 independent runs were performed.
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Multi-objective Optimization Metrics. Tables 1 and 2 present the summary of
the results of the RHV and the spread respectively. The tables report the statis-
tical test used to study if there are significant differences among the medians or
averages, a central tendency and a dispersion measure for the studied MOEAs.
In the instances in which results follow a normal distribution, the ANOVA test
is applied as statistical test (expressed with “A” in the Tables 1 and 2) and
the mean and standard deviation are used as central tendency and dispersion
measures respectively. Conversely, in the case of non-parametric distributions,
Kruskal-Wallis (expressed with “K-W” in the table) is applied as statistical test,
and the median and interquartile range are used as central tendency and dis-
persion measures respectively. For each instance, the best result is marked with
bold font. Results marked with gray background indicate the cases in which the
test verified a significant statistical difference with respect to the other MOEAs.
Regarding RHV, NSGA-II obtained the largest mean/median in 8 out of 18
instances. SPEA2 obtained the largest mean/median in 6 out of 18 instances.
Finally, the NSGA-III obtained the largest mean/median in 4 instances out of 18
instances. The largest mean/median value was obtained by SPEA2 for instances
30J × 10M-0% (0.7822). In terms of spread, SPEA2 obtained the smallest value
in 13 out of 18 instances. NSGA-II and NSGA-III obtained the smallest values
in 3 out of 18 instances and in 2 out of 18 instances, respectively. The overall
smallest value of spread was obtained by SPEA2 for instance 30J × 20M-0%
(0.3895). Overall the SPEA2 and the NSGA-II had the best performance for the
instances studied, been able to outperformed the other MOEAs in both analyzed
metrics.

Table 1. Results of RHV metric for the studied MOEAs.

MOEA/D NSGA-II NSGA-III SPEA2

Instance Test
mean/

median

std/

iqr

mean/

median

std/

iqr

mean/

median

std/

iqr

mean/

median

std/

iqr

30J×10M-0% A 0.4834 0.0911 0.7344 0.0518 0.7524 0.0590 0.7822 0.0411

30J×10M-10% K-W 0.5928 0.1268 0.7459 0.1395 0.7402 0.1049 0.7242 0.1331

30J×10M-20% A 0.4113 0.0598 0.7398 0.0845 0.6272 0.0885 0.7485 0.0933

30J×20M-0% K-W 0.5013 0.0695 0.6984 0.0817 0.7126 0.0674 0.7378 0.0560

30J×20M-10% A 0.5699 0.0623 0.7748 0.0518 0.7558 0.0575 0.7652 0.0425

30J×20M-20% A 0.4467 0.0583 0.7047 0.0664 0.7037 0.0456 0.6746 0.0529

40J×10M-0% A 0.4006 0.0940 0.6096 0.1067 0.6015 0.1227 0.6584 0.0750

40J×10M-10% A 0.2673 0.1485 0.5692 0.1495 0.5126 0.1445 0.5341 0.1405

40J×10M-20% A 0.4170 0.1131 0.5951 0.1074 0.5835 0.1231 0.6331 0.1178

40J×20M-0% A 0.4858 0.0678 0.7385 0.0587 0.7399 0.0614 0.7412 0.0641

40J×20M-10% A 0.3950 0.0825 0.6264 0.0875 0.6289 0.1242 0.5965 0.1136

40J×20M-20% A 0.3477 0.0824 0.5773 0.1700 0.5427 0.0902 0.5396 0.1125

50J×10M-0% A 0.3950 0.1255 0.5622 0.1170 0.5321 0.1107 0.5238 0.1147

50J×10M-10% A 0.3238 0.1098 0.5374 0.1154 0.5689 0.0943 0.5204 0.0976

50J×10M-20% K-W 0.4452 0.1381 0.7027 0.0682 0.5847 0.1650 0.6994 0.1385

50J×20M-0% K-W 0.4351 0.1039 0.6146 0.0674 0.6572 0.1009 0.6379 0.1375

50J×20M-10% A 0.3863 0.0978 0.6391 0.1111 0.6595 0.1260 0.6588 0.0909

50J×20M-20% K-W 0.3891 0.1543 0.4894 0.1153 0.6394 0.1546 0.5096 0.1955
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Table 2. Results of Spread metric for the studied MOEAs.

MOEA/D NSGA-II NSGA-III SPEA2

Instance Test
mean/

median

std/

iqr

mean/

median

std/

iqr

mean/

median

std/

iqr

mean/

median

std/

iqr

30J×10M-0% A 0.6967 0.2133 0.6194 0.0791 0.6407 0.0930 0.5875 0.0734

30J×10M-10% A 0.9320 0.2343 0.5847 0.0746 0.7396 0.1305 0.5855 0.0809

30J×10M-20% A 0.6581 0.2059 0.5420 0.0500 0.5494 0.0725 0.4328 0.0559

30J×20M-0% K-W 0.4926 0.3159 0.5277 0.0558 0.5673 0.0640 0.3895 0.0922

30J×20M-10% K-W 0.5793 0.3295 0.5209 0.0775 0.4747 0.0760 0.4289 0.0550

30J×20M-20% K-W 0.4828 0.1162 0.5819 0.0874 0.5589 0.0649 0.4928 0.0767

40J×10M-0% K-W 1.0366 0.4067 0.8862 0.1077 0.9358 0.1001 0.7415 0.1895

40J×10M-10% A 0.8685 0.2703 0.7688 0.0952 0.8219 0.1000 0.7410 0.1253

40J×10M-20% A 0.8854 0.2373 0.6944 0.1232 0.7860 0.1174 0.6862 0.0972

40J×20M-0% K-W 0.6562 0.4220 0.5989 0.1072 0.6249 0.1733 0.5550 0.0555

40J×20M-10% A 0.8023 0.2096 0.6358 0.0833 0.6958 0.1037 0.6508 0.0944

40J×20M-20% K-W 0.4162 0.3034 0.5463 0.0824 0.5882 0.0845 0.5103 0.0916

50J×10M-0% K-W 1.0173 0.4402 0.7436 0.1380 0.8684 0.1498 0.7416 0.1084

50J×10M-10% K-W 1.1669 0.3361 0.8214 0.1237 0.9201 0.1110 0.8666 0.1628

50J×10M-20% A 0.9082 0.2717 0.8292 0.1095 0.9344 0.0620 0.7920 0.1228

50J×20M-0% K-W 0.7270 0.3757 0.5938 0.1064 0.5604 0.1418 0.5334 0.0636

50J×20M-10% A 0.7694 0.2483 0.6114 0.0690 0.6745 0.1350 0.6059 0.1003

50J×20M-20% A 0.7759 0.2383 0.5840 0.0498 0.6184 0.0689 0.5519 0.0743

Consolidated Pareto Fronts. Table 3 reports the spread and RHV metrics for
the consolidated Pareto fronts computed from all the nondominated solutions
obtained by each MOEA for each instance in the 30 independent runs. Regard-
ing RHV, the NSGA-II, SPEA2 and NSGA-III are able to outperformed the
rest of the MOEAs in 6 instances, 6 instances, and 5 instances, respectively.
Regarding spread, the NSGA-II, SPEA2, NSGA-III, and MOEA/D are able to
outperformed the rest of the MOEAs in 10 instances, 6 instances, 1 instance, and
1 instance respectively. Similarly to the previous numerical results, the SPEA2
and NSGA-II are able to obtain the best results in more instances than the other
two MOEAs.
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Table 3. Consolidated Spread and RHV metrics for the studied MOEAs.

Instance MOEA/D NSGA-II NSGA-III SPEA2
RHV Spread RHV Spread RHV Spread RHV Spread

30J × 10M-10% 0.8443 0.7738 0.9735 0.5155 0.9578 0.5232 0.9667 0.5931
30J × 10M-20% 0.6703 0.6574 0.9722 0.5058 0.9167 0.7268 0.9805 0.4954
30J × 10M-0% 0.7621 0.6836 0.9278 0.4737 0.9302 0.5108 0.9710 0.4685
30J × 20M-10% 0.8041 0.6126 0.9712 0.4558 0.9481 0.5927 0.9402 0.4034
30J × 20M-20% 0.6711 0.6427 0.9321 0.3611 0.9592 0.4497 0.8829 0.4754
30J × 20M-0% 0.7662 0.5835 0.9506 0.4616 0.9222 0.5188 0.9360 0.4655
40J × 10M-10% 0.6198 0.6842 0.9855 0.7670 0.8589 0.9604 0.8870 0.7849
40J × 10M-20% 0.7475 0.6930 0.8840 0.5986 0.9183 0.6737 0.9617 0.5987
40J × 10M-0% 0.6824 0.7807 0.9079 0.5344 0.9116 0.7246 0.9540 0.5988
40J × 10M-10% 0.6509 0.6051 0.9346 0.4889 0.9524 0.5193 0.9303 0.5545
40J × 10M-20% 0.5810 0.7644 0.9333 0.5719 0.8713 0.4808 0.9069 0.4997
40J × 20M-0% 0.7078 0.5367 0.9574 0.4930 0.9619 0.4996 0.9456 0.4856
50J × 10M-10% 0.6873 0.9384 0.8380 0.5640 0.9383 0.6974 0.8446 0.7364
50J × 10M-20% 0.8144 1.0288 0.9157 0.6397 0.8813 0.7216 0.9815 0.7097
50J × 10M-0% 0.7176 1.1333 0.8092 0.7105 0.8943 1.0291 0.8296 0.7702
50J × 10M-10% 0.6747 0.7259 0.9508 0.4702 0.9278 0.5466 0.9307 0.7395
50J × 10M-20% 0.7673 0.7998 0.8072 0.5031 0.9209 0.6806 0.8914 0.5758
50J × 10M-0% 0.7407 0.6757 0.8887 0.5255 0.9480 0.5379 0.8574 0.4727

Impact of Missing Operations Over Instances. For showing the relation between
the values of the objectives, Fig. 2 presents the consolidated Pareto fronts of
the instances according to the percentage of missing operations for instance 30J
× 10M. Similar results were obtained for the rest of the instances. The Total
Tardiness and the weighted Total Completion Time seem to be highly sensitive
to the percentage of missing operation, i.e., the larger the percentage probability
of missing operations, the smaller the values of Total Tardiness and the weighted
Total Completion Ttime. On the other hand, the Makespan is less affected by
the percentage probability of missing operation.
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(a) 3D Pareto front (b) Completion Time/Makespan

(c) Tardiness/Makespan (d) Completion Time/Tardiness

Fig. 2. Pareto front of instance 30J × 20M with different levels of missing operations.

5 Conclusions and Future Work

Mass customization, as part of the Smart industry paradigm, seeks to combine
the advantages of mass production with those of customization. This article stud-
ied the flow shop problem with missing operations that arises in shop-floor oper-
ations as a consequence of mass customization. Four state-of-the-art MOEAs
were applied to simultaneously optimize three traditional metrics of flowshop
problems: weighted Total Completion Time, total tardiness and makespan. In
the computational analysis over realistic instances, SPEA2 and NSGA-II con-
sistently computed the best results, regarding both convergence and diversity
metrics. Moreover, another relevant result is the greater impact of the percent-
age of missing operations on total tardiness and weighted total completion time,
whereas the makespan remained relatively unaffected.

Future work includes enlarging the computational experimentation, incorpo-
rating more instances and higher percentage probabilities of missing operations.
Additionally, other MOEAs will be included in the analysis to assess their per-
formance in this specific problem domain.
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