
On the Theory of Fluctuations of Strongly
Nonlinear (vibroimpact) Systems

L. A. Igumnov , V. S. Metrikin , and T. M. Mitryakova(B)

National Research Lobachevsky State University of Nizhny Novgorod,
Nizhny Novgorod, Russia

igumnov@mech.unn.ru, v.s.metrikin@mail.ru, tatiana.mitryakova@yandex.ru

Abstract. During the operation of a large group of technical devices and
mechanisms with impact interactions, such as clock mechanisms, systems
associated with vibro-driven piles and wells drilling for oil and gas pro-
duction, pneumatic impact mechanisms, vibrating mills, cyclic automa-
tion mechanisms, impact interaction mechanisms due to the presence of
gaps and others, there exist parameters, such as the restitution coeffi-
cient, adjusting gap, that do not remain constant but change randomly
from impact to impact. However, most of the research results of strongly
nonlinear systems contain a deterministic formulation. In this paper,
we propose a numerical-analytical method for studying the dynamics of
strongly nonlinear systems, taking into account fluctuations in system
parameters. In this case, the mathematical apparatus of the point map-
pings method of Poincare surfaces is widely used. Random deviations of
parameters can be both delta- and non-delta-correlated. The concepts of
stochastic stability are introduced, which made it possible to determine
not only the optimal values of system parameters, but also to find, to
some extent, dangerous/safe areas of the stability regions boundaries of
the systems motion modes.

Keywords: Strongly nonlinear systems · delta- and non-delta-
correlated random deviations of parameters · Method of point
mappings of Poincare surfaces · Stochastic stability

1 Introduction

A large number of experimental and theoretical works are devoted to the study
of the dynamics of highly nonlinear (vibration-shock) systems. In this regard,
we note that the interest of researchers in such essentially nonlinear systems still
does not wane. This is due to the fact that applications of such systems are
directly used in many industries and national economies. Along with obvious
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practically important applications such as the construction of various civil facili-
ties, medicine, military construction, etc., systems with impact interactions have
found applications in capsule medicine, nanotechnology and other modern areas
of science and technology. In the vast majority of problems, Newton’s concept of
the proportional relationship between the relative pre-impact and post-impact
velocities of translationally moving bodies is used to describe direct impact inter-
action. It is accepted that the proportionality coefficient R, called the coefficient
of restoration, depends on the properties of the impacting bodies and does not
depend on the impact speed and is a constant value varying within 0 < R < 1.
It is known that in systems with collisions, movements with any finite number of
impacts per period are fundamentally possible. Therefore, researchers consider
only the movements that are practically the most important. Studies of more
complex motion modes indicate a tendency toward a significant narrowing of the
areas of existence of stable movements as the motion mode becomes more com-
plex. In a number of cases, the range of feasibility of even two-shock oscillations
turns out to be narrower than the stripes of natural dispersion of parameter
values. In this paper, we study the dynamics of the vibration-impact mecha-
nism, in the mathematical model of which it is assumed that the coefficient of
recovery R varies from blow to blow randomly with a zero average value and a
dispersion different from zero. A numerical-analytical technology has been devel-
oped based on the point mapping method for finding statistical characteristics
of post-impact velocity and impact time. The concept of stochastic stability was
introduced and a numerical experiment was carried out to calculate the standard
deviations of the speed and times of impacts.

2 Equations of Motion

Consider a vibroimpact mechanism consisting of a mass M , which is affected by
an external periodic force F sinωt and a linear friction force −hẋ. The mass itself
oscillates along the stand attached to the base of the processed material. The
physical scheme of the mechanism is presented in [7]. The dynamics of such a
mechanism is of independent interest in terms of compaction of various materials
(soil, sand, etc.). The research into dynamics of such systems is mainly carried
out at constant parameters. Significantly less number of results on studying the
dynamics of vibroimpact systems with randomly changing parameters can be
observed. It is obvious that during the operation of vibro-impact compaction
mechanisms for various materials, the restitution coefficient, when interacting
with the medium, changes its initial value from impact to impact affecting the
compaction process. In this regard, studying the dynamics of strongly nonlinear
(vibro-impact) dynamic systems is a rather topical issue. In what follows, we
will assume: 1) energy dissipation occurs through impacts and when friction
forces are taken into account; 2) the impact is instantaneous with the restitution
coefficient R, varying within 0 ≤ R ≤ 1; 3) limiter offset is not taken into
account. Under the assumptions made, the differential equation of the system in
the interval between impacts (x > 0) can be written as:
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Mẍ + hẋ = P + F sinωt, (1)

where x — is the coordinate of the mass M , P is a constant force acting on the
impact mass M , and, generally speaking, P �= mg, h — is the friction coefficient,
F , ω —are the amplitude and frequency of the driving force. At x = 0, ẋ < 0
an inelastic impact occurs with the restitution coefficient R, which is described
using Newton’s hypothesis ẋ+ = −Rẋ−, where ẋ−, ẋ+ are pre-impact and post-
impact velocities of a mechanism. Introducing the dimensionless time τ = ωt

and the coordinate ξ = Mω2x
F , Eq. (1) is rewritten as

ξ̈ +
h

Mω
ξ̇ =

P

F
+ sin τ, ξ > 0, (2)

ξ̇+ = −Rξ̇−, ξ = 0, ξ̇− < 0. (3)

3 Point Mapping

Let us assume that during the operation of the mechanism, the restitution coeffi-
cient changes randomly from impact to impact, and the changes are so small that
they do not take the system out of the vicinity of a stable periodic regime. Let in a
deterministic system (the restitution coefficient is constant and equal to R = R0)
for some values of the parameter R = R0 there is a stable periodic motion. The
restitution coefficient for the n-th impact takes on the value: Rn = R0 + ΔRn,
where ΔRn is a small random deviation from R0 with zero mean value and
non-zero variance. The phase space of the considered system (2), (3) in the
coordinates ξ, ξ̇, τ is three-dimensional. The plane ξ = 0 divides it into two sub-
spaces: Φ1(ξ ≥ 0, ξ̇, τ) and Φ2(ξ < 0, ξ̇, τ). The phase trajectory defined by (2),
(3) is located in Φ1. It follows from the problem formulation that each time the
image point falls on the ξ = 0 plane at the points (ξ̇1, τ1), (ξ̇2, τ2), . . . , (ξ̇n, τn), . . .
with the restitution coefficient R1, R2, . . . , Rn, . . .. Therefore, it can be clearly
concluded that the study of the dynamics of system (2), (3) can be carried out
using a point mapping of the plane ξ = 0 into itself. The point mapping of the
plane ξ = 0 is written as follows:

ξ̇n = μ
(
e−μ(τn+1−τn) − 1

)−1

·
(

e−μ(τn+1−τn) ·
(

q

μ
− ν

μ
cos τn + ν sin τn

)
− q

μ
−

− qτn +
1
μ
cos τn + qτn+1 − ν sin τn+1 − νμ cos τn+1) ,

ξ̇n+1 = −Rn+1

(
e−μ(τn+1−τn) ·

(
ξ̇n − q + ν cos τn − νμ sin τn

)
+ q−

− ν cos τn+1 + νμ sin τn+1). (4)
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Here q = PMω
Fh , μ−1 = Mω

h , ν = M2ω2

M2ω2+h2 It is directly seen from the
point transformation that random sequences of points ξ̇1, τ1; ξ̇2, τ2; . . . ; ξ̇n, τn; . . .,
determined from relations (4) with R = R1, R2, . . . , Rn, . . ., respectively, repre-
sent a Markov process to which the theory of Markov processes can be applied.
Since, by assumption, the random deviations of the restitution coefficient ΔRn

for each n-th impact from R0 are small, the set of points
{

ξ̇k, τk

}
will be located

in the ε neighborhood of the stable periodic regime corresponding to the value of
R0. Therefore, it is possible to linearize point mapping (4) in the vicinity of this
stable periodic motion, after which a system of equations in finite differences
with respect to post-impact velocity deviations, impact time, and restitution
coefficient is obtained in the form:

Δξ̇n = Δτn+1 ·
(

μ(q + μν)e−µT

e−µT − 1
− μe−µT cos τ0(1− νμ2 − νe−µT )

(e−µT − 1)2
− qμ − νμ2 sin τ0+

+νμ cos τ0) + Δτn ·
(

μe−µT cos τ0(νμ2 − ν + 1)

(e−µT − 1)2
+

νe−µT (sin τ0 + μ cos τ0)

e−µT − 1
− +sin τ0

e−µT − 1

)
,

Δξ̇n+1 = ΔRn+1 ·
(
(e−µT − 1)(q − ν cos τ0 + νμ sin τ0)− e−µT ξ̇0

)
+

+Δτn+1 ·
(
μR0e−µT (ξ̇0 − q + ν cos τ0 − νμ sin τ0) + ν sin τ0 + νμ cos τ0

)
+

+Δτne−µT ·
(
−R0μ(ξ̇0 − q + ν cos τ0 − νμ sin τ0)− ν sin τ0 − νμ cos τ0

)
+

+e−µT Δξ̇n, (5)

where T denotes the period 2πn. The system of two difference equations of the
form (5) is reduced to a linear difference equation with the right side of the form:

Δτn+2 + αΔτn+1 + βΔτn = γΔRn+1. (6)

Random changes in the restitution coefficient ΔRn+1 in Eq. (6) can be
selected from the literature sources among the known dependencies.

The solution of the difference equation is sought as the sum of general solution
Δτ0

n = C1z
n
1 +C2z

n
2 (z1, z2 — roots of the characteristic equation z2+αz+β = 0)

of a homogeneous equation and a particular solution Δz∗
n of an inhomogeneous

equation, which is found using the method of variation of arbitrary constants.
Since, by assumption, the periodic motion is stable, the roots of the charac-

teristic equation of system (4) satisfy the condition |z1| < 1, |z2| < 1. With this
in mind, the solution of the difference Eq. (6) will be written in the form:

Δτn+1 = T

n−1∑
ν=−∞

αn,νΔRν+1, (7)

where αn,ν = zn−ν−1
1 −zn−ν−1

2
z1−z2

.
For Δξ̇n we obtain:
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Δξ̇n =
Tp

1 + R

n−1∑
ν=−∞

αn,ν

⎧
⎨
⎩

⎛
⎝1 +

√(
1 + R

p

)2

− (1 − R)2(πnp)2

⎞
⎠ ΔRν+1−

−ΔRν+2} , (8)

where p is the ratio of the weight of vibrostriker to the amplitude of driving
force.

Assuming that random changes of R are delta-correlated, from (7) and (8),
we obtain expressions for standard deviations in the form:

Δτ2
n =

T 2(1 + z1z2
(1 + z1z2)(1 − Z2

1 )(1 − z22)
ΔR2, (9)

Δξ̇2n = T 2p2
[
(1 + m2)(1 + z1z2)

]
ΔR2, (10)

where m = 1 − 1+R
p cos τ∗.

Equalities (7), (8), (9), (9) show that neither Δτ2
n, nor Δξ̇2n do not vanish

for any values of the system parameters. This follows from the fact that |zi < 1|,
and 1+z1z2 = 1+R2. However, it is possible to specify the values of the system
parameters at which the variance Δξ̇2n equals zero, namely:

(1 + R2)

{
2 +

(
1 + R

p
cos τ∗

)2

− 2
1 + R

p
cos τ∗

}
− 2

{
1 − 1 + R

p
cos τ∗

}
·

·
{
1 + R2 − (1 + R)2

p
cos τ∗

}
= 0. (11)

Hence we get the equation:

cos τ∗ =

{
2 − (1 − R)2

} {
1 −

(
1−R
1+Rπnp

)2
}

2p
. (12)

For small R << 1, which corresponds to an almost absolutely inelastic
impact, we obtain

1 − (πnp)2(1 − 2R)√
1 − (πnp)2

=
2R + 1 − (πnp)2(1 − 2R)

2p
. (13)

For R = 0 formula (13) gives p =
(
4 + (πn)2

)−1/2. From the last equality we
obtain that for n = 1 — p = 0, 276453, for n = 2 — p = 0, 151653, for n = 3 —
p = 0, 10379. For R = 1 the value of p is 1. Hence it follows that the curve (12)
lies near the upper stability limit.
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4 Stochastic Stability

A dynamic system, the input of which is a random process ξ(λ, t) and the output
is a random process y(λ, t), according to [2], will be called stochastically stable if
for any ε > 0 there exist δ > 0 such that if r(ξ) ≤ δ then ρ(y) ≤ ε(δ) and ε → 0
for δ → 0, where r(ξ) and ρ(y) are norms. The definition of stochastic stability
depends on the way norms r(ξ) and ρ(y) are introduced.

It was shown above that the root mean square deviations of Δτ2
n and Δξ̇2n can

be written as in the form of a product of some constant, which is the function
of only the system parameters and the dispersion of the random deviation ΔR2.
Assume that ΔR = 0 and ΔR2 �= 0. Then, using [2], we can assume that the
system will be stochastically stable if there exists a constant C, that depends
only on the parameters of the system, such that, for sufficiently large n, the
inequalities hold

Fig. 1. Numerical experiment

Δτ2
n + Δξ̇2n ≤ CΔR2. (14)

Note that, since the changes of R are small and parameter deviation occurs
in the vicinity of such a value at which there is a stable periodic regime in the
deterministic case, the value ΔR2 is small, and therefore the expression of the
right side of inequality (14) is also a small value ((C is a constant). Hence it
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follows that in inequality (14), due to the smallness of CΔR2 the root-mean-
square values Δτ2

n and Δξ̇2n must also be small. In addition, it follows from
(14) that if the deviations of the restitution coefficient tend to zero, then the
root-mean-square ones also tend to zero if the system is stochastically stable.

5 Numerical Experiment

In this section, we present the results of the numerical experiment in order to
identify quantitative characteristics of the effect of correlation functions with a
change of R on the value of the root-mean-square deviations.

In Fig. 1 dotted lines are level lines for delta-correlated changes of R, and
solid lines are level lines corresponding to non-delta -correlated changes of R.

Inside the stability region there is a boundary curve

x =
2(1 + R)2√

4(1 + R)2 + (1 − R2)2 T 2
, (15)

meaning as follows. Correlation with a random change of R when accounted
for leads to a shift of the level lines to domain of smaller p for p ≤ x and larger
one p for p > x.

6 Conclusions

1. A numerical-analytical technique for studying the dynamics of strongly nonlin-
ear (vibro-impact) systems with randomly changing parameters has been devel-
oped. The main attention is paid to the study of the influence of the most
significant parameters that change in time and depend on the behavior of the
systems themselves in time. Thus, for example, the structure of the behavior of
a vibro-impact system is studied when the velocity recovery coefficient changes
from impact to impact.
2. A refined form of the stochastic stability of vibro-impact systems is given,
with the help of which it is possible to determine, in particular, an analogue of
dangerous and safe boundaries of stochastic stability.
3. The calculated data on the behavior of maximum velocities upon impact
during material processing are given.
4. Exact ratios of solutions of difference equations depending on the choice of
the form of random changes in the velocity recovery coefficient upon impact are
given.

The work was supported by the RSF grant No. 22-19-00138.
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