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Abstract. Cardiac magnetic resonance imaging (CMR) is a valuable
non-invasive tool for identifying cardiovascular diseases. For instance,
Cine MRI is the benchmark modality for assessing the cardiac func-
tion and anatomy. On the other hand, multi-contrast (T1 and T2) map-
ping has the potential to assess pathologies and abnormalities in the
myocardium and interstitium. However, voluntary breath-holding and
often arrhythmia, in combination with MRI’s slow imaging speed, can
lead to motion artifacts, hindering real-time acquisition image qual-
ity. Although performing accelerated acquisitions can facilitate dynamic
imaging, it induces aliasing, causing low reconstructed image quality in
Cine MRI and inaccurate T1 and T2 mapping estimation. In this work,
inspired by related work in accelerated MRI reconstruction, we present
a deep learning-based method for accelerated cine and multi-contrast
reconstruction in the context of dynamic cardiac imaging. We formu-
late the reconstruction problem as a least squares regularized optimiza-
tion task, and employ vSHARP, a state-of-the-art Deep Learning-based
inverse problem solver, which incorporates half-quadratic variable split-
ting and the alternating direction method of multipliers (ADMM) with
neural networks. We treat the problem in two setups; a 2D reconstruc-
tion and a 2D dynamic reconstruction task, and employ 2D and 3D deep
learning networks, respectively. Our method optimizes in both the image
and k-space domains, allowing for high reconstruction fidelity. Although
the target data is undersampled with a Cartesian equispaced scheme,
we train our deep neural network using both Cartesian and simulated
non-Cartesian undersampling schemes to enhance generalization of the
model to unseen data, a key ingredient of our method. Furthermore, our
model adopts a deep neural network to learn and refine the sensitivity
maps of multi-coil k-space data. Lastly, our method is jointly trained on
both, undersampled cine and multi-contrast data.
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1 Introduction

Cardiac magnetic resonance (CMR) stands as a vital clinical tool for assessing
cardiovascular diseases due to its non-invasive and radiation-free nature, enabling
a comprehensive evaluation of cardiovascular aspects, such as structure, function,
flow, perfusion, viability, tissue characterization, as well as the assessment of
myocardial fibrosis and other pathologies [1–3]. Key CMR applications include
cine MR imaging and T1/T2 mapping.

However, CMR faces inherent physical challenges, primarily the time con-
suming MRI acquisition process. The requirement for increased spatiotempo-
ral resolution in cardiac imaging further amplifies this challenge. To mitigate
prolonged scan times, accelerated MRI acquisitions are utilized by obtaining
undersampled k-space data, though this approach violates the Nyquist-Shannon
sampling criterion [4].

In the broader MRI domain, conventional techniques such as Parallel Imaging
(PI) [5,6] and Compressed Sensing (CS) [7,8] have been employed to accelerate
MRI data acquisition. These approaches leverage spatial sensitivity information
from multiple receiver coil arrays and exploit the sparsity or compressibility of
MRI data. However, these methods have limitations, such as noise amplification
in PI, and assumptions of sparsity that may not hold for all MRI data in CS,
whilst finding optimal parameters for CS methods might be computationally
and time consuming.

In the last decade, Deep Learning (DL) has revolutionized MRI image recon-
struction, exhibiting superior performance compared to traditional methods,
especially in accelerated MRI reconstruction tasks [9]. DL-based algorithms can
learn complex image representations directly from available datasets, enabling
enhanced image reconstruction from undersampled k-space measurements, often
in supervised learning [10–13], or self-supervised settings [14]. This advance-
ment holds significant potential to impact CMR by elevating the image quality
of reconstructed highly undersampled data while concurrently reducing breath-
hold duration.

In this work, motivated by the need for reducing acquisition times and breath-
hold durations further during CMR, we employ vSHARP [15] (variable Split-
ting Half-quadratic ADMM algorithm for Reconstruction of inverse-Problems),
a DL-based inverse problem solver, previously applied on brain and prostate MR
imaging exhibiting state-of-the-art performance. We particularize vSHARP for
accelerated Cardiac MRI Reconstruction and introduce in Sect. 3.1 two variants
by treating the problem at hand as a 2D reconstruction task (2D model) or
as a 2D dynamic reconstruction task (3D model). Additionally, in Sect. 3.2 we
propose various training techniques to boost model training and generalizability
across unseen cardiac (cine and T1/T2) MRI data. In Sect. 5, we experimentally
compare our two approaches, highlighting that our 2D dynamic implementation
outperforms traditional 2D reconstruction and we further compare our models
with current state-of-the-art approaches.
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2 Theory and Problem Formulation

2.1 Accelerated MRI Reconstruction

Recovering a two-dimensional image x∗ ∈ CN from undersampled multi-coil
(assume Nc coils) k-space measurements ỹ ∈ CN×Nc can be formulated as a
minimisation problem as follows:

x∗ = argmin
x∈CN

1
2

Nc∑

k=1

∣∣∣∣Ak(x) − ỹk
∣∣∣∣2
2

+ R(x), Ak = UFSk, (1)

where Ak represents the forward or corruption operator per coil. It involves
mapping the image to an individual coil image using a known sensitivity map Sk,
transforming it to the k-space domain via the Fast Fourier Transform (FFT) F ,
and undersampling with U. The function R : CN → R denotes a regularization
functional, which is assumed to impose prior knowledge about the image.

In the context of cardiac magnetic resonance, acquisitions are typically
dynamic and synchronized with electrocardiography (ECG)-derived cardiac cine.
In dynamic acquisitions, multiple undersampled k-space data ỹ ∈ CN×Nc×Nf are
obtained at Nf time frames. Consequently, Eq. 1 is adapted as follows:

x∗
d = argmin

x∈CN×Nf

1
2

Nf∑

t=1

Nc∑

k=1

∣∣∣∣Ak(x·,t) − ỹk
·,t

∣∣∣∣2
2

+ R(x), Ak = UFSk. (2)

In dynamic acquisitions, it is often assumed that knowledge can be shared across
time frames or that the motion pattern is known, thereby requiring the selection
of an appropriate prior R : CN×Nf → R that incorporates this information [16].

3 Methods

3.1 Deep Learning Framework

Sensitivity Map Prediction. In conventional settings, sensitivity maps are
estimated from the autocalibration signal (ACS) data, often incorporating a por-
tion of the center of the k-space. Advanced techniques for refining these estimated
sensitivities include ESPIRiT or GRAPPA [5,17]. However, these approaches can
impose computational constraints. To overcome the need for such computation-
ally expensive algorithms, we employ a two-dimensional deep learning module,
specifically a 2D U-Net [18]. This model takes ACS-estimated sensitivity maps as
input and produces refined versions of them as output. The predicted sensitivity
maps

{
Sk

}Nc

k=1
are used for downstream reconstruction tasks, and the sensitivity

module is trained in an end-to-end manner along with the reconstruction model.
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Reconstruction via ADMM Unrolled Optimization. Our approach uti-
lizes vSHARP [15], a DL-based inverse problem solver, to address Eq. 1. vSHARP
employs the half-quadratic variable splitting method [19] to transform the opti-
mization problem in Eq. 1 by introducing an intermediate variable w. It then
unrolls the optimization process over T iterations using the alternating direction
method of multipliers algorithm (ADMM) [20], as follows:

w(j+1) = argmin
w∈CN

R(w) +
λ

2

∣∣∣∣x(j) − w +
m(j)

λ

∣∣∣∣2
2
, (3a)

x(j+1) = argmin
x∈CN

1
2

Nc∑

k=1

∣∣∣∣Ak(x) − ỹk
∣∣∣∣2
2

+
λ

2

∣∣∣∣x − w(j+1) +
m(j)

λ

∣∣∣∣2
2
, (3b)

m(j+1) = m(j) + λ(x(j+1) − w(j+1)), j = 0, · · · , T − 1. (3c)

Our method incorporates U-Nets to replace the need for manually selecting a
prior functional R in Eq. 3a and learn the solution from data directly, namely
the denoising step. Next, data consistency is enforced by solving Eq. 3b via an
unrolled (differentiable) gradient descent scheme. Our approach initializes w(0)

and x(0) using a zero-filled reconstruction with ỹ and the predicted coil sensitiv-
ity maps: w(0) = x(0) :=

∑Nc

k=1 S
k∗F−1(ỹk). Additionally, a learned initializer,

adapted from [13], is used to determine an initialization for the Lagrange Mul-
tipliers m(0). For dynamic reconstruction as in Eq. 2, Eq. 3 is replaced by:

w(j+1) = argmin
w∈CN×Nf

R(w) +
λ

2

∣∣∣∣x(j) − w +
m(j)

λ

∣∣∣∣2
2
, (4a)

x(j+1) = argmin
x∈CN×Nf

1
2

Nf∑

t=1

Nc∑

k=1

∣∣∣∣Ak(x·,t) − ỹk
·,t

∣∣∣∣2
2
+

λ

2

∣∣∣∣x−w(j+1) +
m(j)

λ

∣∣∣∣2
2
, (4b)

m(j+1) = m(j) + λ(x(j+1) − w(j+1)), j = 0, · · · , T − 1. (4c)

3.2 Model Training Techniques

In this section, we outline the various additional techniques employed in our
paper to enhance the performance of our models.

Joint Modality Training. During the training of our DL-based approach, we
jointly trained it using all available data at our disposal (see Sect. 4.3). This
approach served a dual purpose; Firstly, instead of training separate models
for each modality, our joint modality training aimed to utilize a larger dataset
promoting more effective learning and generalization. Moreover, by integrating
cine and T1/T2-weighted MRI data, we aimed to harness the complementarity
between these modalities. This approach enabled the model to exploit the shared
features and correlations, potentially improving the reconstruction quality for
both modalities.
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Random k-space Cropping. To optimize computational efficiency during
training, we utilized random cropping on the fully-sampled multi-coil k-space
data. Since direct cropping of the k-space would be inappropriate, we first applied
the inverse Fast Fourier Transform (FFT) to reconstruct it into fully-sampled
multi-coil images. Subsequently, random cropping was performed on this recon-
structed image, and the resulting cropped image was transformed back to the
k-space domain (via FFT). The k-space data was then undersampled and used
as input to our model. This approach not only offered computational benefits
but also allowed our model to gain exposure to different parts of the recon-
structed data, including background noise and the regions of interest, without
compromising overall reconstruction quality as compared to using non-cropped
data. Figure 1 illustrates examples of cropped images before the transformation
back to the k-space domain. It’s important to note that for dynamic data, the
same cropping process was applied to all time frames.

Fig. 1. Randomly cropped (in the image domain) examples of cine and T1/T2-weighted
MRI images from the dataset. These images are then transformed to the k-space
domain, followed by retrospective undersampling, and are subsequently utilized for
training.

Multi-scheme Undersampling. Undersampling for the target (validation)
data comprised Cartesian rectilinear equispaced undersampling masks, with 24
fully-sampled ACS (central) lines, and with acceleration factors of R = 4, 8 and
10. Inspired by previous work [21], which demonstrated enhanced model gen-
eralizability in reconstructing Cartesian rectilinear data, we employed a multi-
scheme undersampling setup during training. Alongside the provided undersam-
pling pattern, we used the following undersampling schemes: Equispaced and
Random Cartesian rectilinear, Gaussian 2D Cartesian, and pseudo-Radial and
pseudo-Spiral schemes. These undersampling schemes are visualized in Fig. 2.
Note that for dynamic data, the same undersampling scheme was applied on all
time frames.

Dual Domain Loss. To train our models we designed a dual-domain loss:

Lφ = Limg
φ + Lfreq

φ , (5)

where Limg
φ and Lfreq

φ represent losses computed in the image and frequency
domain, respectively.
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Fig. 2. Undersampling Schemes during training.

Image Domain Loss. The image domain loss, Limg
φ , is computed between the

ground truth RSS image x and the magnitude of the model-predicted image x̂φ .
This loss comprises several components:

Limg
φ = λSSIMLSSIM (x, x̂φ) + λ1L1 (x, x̂φ) + λHFEN1LHFEN1 (x, x̂φ) (6)

which are defined as follows:

LSSIM(u, v) = 1 − SSIM(u, v), L1(u, v) = ||u − v||1 ,

and, LHFEN1(u, v) = HFEN1(u, v).
(7)

In Eq. 7, SSIM denotes the Structural Similarity Index Measure, computed
over W windows, each of size 7 × 7 pixels extracted from images u and v. It is
defined as:

SSIM(u, v) =
1
W

W∑

i=1

(2μui
μvi

+ 0.01)(2σuivi
+ 0.03)

(μ2
ui

+ μ2
vi

+ 0.01)(σ2
ui

+ σ2
vi

+ 0.03)
. (8)

Here, μui
, μvi

, σui
and σvi

represent the means and standard deviations of
each window, while σuivi

signified the covariance between ui and vi. HFEN1

represents the High-Frequency Error Norm, and is defined as follows:

HFEN1(u, v) =
||G(u) − G(v)||1

||G(u)||1 , (9)

where G denotes a 15×15 Laplacian of Gaussian filter with a standard deviation
of 2.5.

SSIM and HFEN are computed per single 2D slice/time frame. For dynamic
reconstruction experiments, we also incorporated λSSIM3DLSSIM3D, which com-
putes the SSIM metric for volumes using windows of voxel-size 7 × 7 × 7.

Frequency Domain Loss. The frequency domain loss, Lfreq
φ , was computed

between the ground truth multi-coil k-space y and the k-space transformation
of the model predicted image ŷφ :

Lfreq
φ = λNMAELNMAE (y, ŷφ) , where LNMAE(u, v) =

||u − v||1
||u||1 . (10)

The choice of the weighting factors λSSIM, λSSIM3D, λ1, λHFEN1 , λNMAE ≥ 0
are hyperparameters that determine the influence of each loss component in the
overall optimization process.
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4 Experimental Setup

We conducted two sets of experiments, addressing the reconstruction task from
two perspectives: a 2D reconstruction problem and a 2D dynamic reconstruction
problem involving spatial dimensions and time.

4.1 2D Reconstruction

In this setup, our goal was to solve Eq. 3. We utilized 2D U-Nets with four scales
as denoisers, each featuring 32 filters in the initial scale. The optimization process
involved 16 steps (T = 16). Data consistency in Eq. 3b was ensured through 14
gradient descent iterations. For the sensitivity model, we employed a 2D U-
Net with four scales and 32 filters for the first scale. This configuration focused
on reconstructing 2D images. The input consisted of undersampled multi-coil
k-space data from single slices or frames, and the output comprised 2D images.

4.2 2D Dynamic Reconstruction

In this configuration, we approached the reconstruction challenge dynamically,
utilizing the formulation presented in Eq. 4. Our model took as input a sequen-
tial series of time frames featuring 2D undersampled multi-coil k-space data.
Our objective was to generate a corresponding sequential series of time-frame
images as the output. In contrast to the previous setup, we employed 3D U-Nets,
incorporating four scales and 32 filters in the initial scale. However, to accom-
modate GPU memory constraints, we limited the optimization steps to T = 10
and conducted 8 gradient descent iterations for data consistency. Similarly to
the 2D reconstruction setup, for the sensitivity model we utilized a 2D U-Net
with four scales and 32 filters in the initial scale.

4.3 Dataset

We conducted our experiments using the CMRxRecon dataset [22], contain-
ing 4D multi-coil Cine and multi-contrast k-space data acquired on a 3T MRI
scanner with protocols outlined in [23]. The Cine MRI data included short-axis
(SAX) and long-axis (LAX) views, while the multi-contrast data encompassed
T1 and T2-weighted MRI data. For training, we had access to a total of 203 cine
and 240 multi-contrast 4D volumes of fully-sampled k-spaces. The validation
dataset comprised 111 cine and 118 multi-contrast 4D volumes of undersampled
k-spaces at acceleration factors of 4, 8, and 10.

4.4 Training and Optimization Details

Our models were implemented and optimized using PyTorch [24]. The Deep
Image Reconstruction Toolkit (DIRECT) [25] facilitated our pipeline tools. We
employed Adam as the model parameter optimizer, with ε = 10−8 and (β1, β2) =
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(0.9, 0.999). Training was conducted on four NVIDIA A100 80GB GPUs with
a batch size of 1 and 2 on each GPU, for dynamic and non-dynamic tasks,
respectively.

For both experimental setups, the loss computation used these weighting
parameters: λSSIM = λ1 = λHFEN1 = 1.0, and λNMAE = 3.0. For 2D dynamic
reconstruction (Sect. 4.2), we employed both versions of the SSIM loss, computed
per 2D slice and across the entire sequence, and we set λSSIM3D = 1.0.

4.5 Comparisons

To evaluate our proposed methods, we compared them against two state-of-
the-art 2D MRI reconstruction approaches, the Recurrent Variational Network
(RecurrentVarNet) [13], wining method in the MultiCoil MRI Reconstruction
Challenge [10] and the End-to-end Variational Network (E2EVarNet), one of
the top-performing solutions in the fastMRI challenge [12]. Both approaches
were trained using the same settings and techniques as used for our proposed
methods.

4.6 Evaluation Metrics

Metrics used for evaluation were the structural similarity index measure (SSIM),
the normalized mean-squared-error (NMSE), and the peak signal-to-noise ratio
(PSNR).

5 Results

Table 1. Average evaluation metrics on the validation set for each modality.

Experimental Setup Acceleration Factor Cine Multi-Contrast

LAX SAX T1-weighted T2-weighted

SSIM NMSE PSNR SSIM NMSE PSNR SSIM NMSE PSNR SSIM NMSE PSNR

RecurrentVarNet 4 0.8696 0.0192 31.07 0.9170 0.0118 34.14 0.9016 0.0175 33.21 0.8995 0.0125 31.34

8 0.7871 0.0505 26.99 0.8499 0.0272 30.42 0.8360 0.0424 29.46 0.8534 0.0266 28.08

10 0.7763 0.0592 26.46 0.8295 0.0362 29.24 0.8034 0.0601 27.79 0.8451 0.0340 27.04

E2EVarNet 4 0.9521 0.0048 37.43 0.9693 0.0033 40.67 0.9715 0.0038 41.34 0.9543 0.0042 36.64

8 0.8871 0.0174 31.79 0.9262 0.0095 35.24 0.9354 0.0107 35.63 0.9261 0.0093 33.08

10 0.8727 0.0209 30.79 0.9112 0.0126 33.91 0.9202 0.0190 33.21 0.9205 0.0114 32.02

2D Reconstruction (2D vSHARP) 4 0.9584 0.0034 38.74 0.9739 0.0025 41.54 0.9766 0.0026 42.16 0.9573 0.0038 36.94

8 0.9072 0.0111 33.50 0.9410 0.0069 36.75 0.9521 0.0063 37.87 0.9369 0.0069 34.31

10 0.8944 0.0138 32.48 0.9284 0.0091 35.50 0.9442 0.0092 36.50 0.9334 0.0083 33.57

2D Dynamic Reconstruction (3D vSHARP) 4 0.9658 0.0028 39.57 0.9783 0.0020 42.39 0.9814 0.0021 42.24 0.9655 0.0029 38.23

8 0.9229 0.0087 34.54 0.9522 0.0055 37.81 0.9609 0.0055 38.80 0.9479 0.0054 35.47

10 0.9112 0.0111 33.44 0.9407 0.0079 36.48 0.9544 0.0080 37.33 0.9460 0.0063 34.74

In Fig. 3 we present sample reconstructions and in Table 1 are presented
the reconstruction evaluation results on the validation dataset, from both of
our experimental setups. Additionally, we include results from the two meth-
ods employed for comparison: the RecurrentVarNet and the E2EVarNet. We
can observe that both, 2D reconstruction and 2D dynamic reconstruction with



Deep Cardiac MRI Reconstruction with ADMM 487

vSHARP, yielded superior results in terms of quantitative metrics, surpassing
both the RecurrentVarNet and the E2EVarNet. However, the 2D dynamic recon-
struction setup outperforms the 2D reconstruction for both Cine and Multi-
Contrast tasks.

Additionally, in Table 2, we present the time required for volume reconstruc-
tion in seconds across the two experimental setups detailed in this work. From
Table 2 is evident that in overall, the 2D dynamic reconstruction surpasses the
2D reconstruction in both Cine and Multi-Contrast scenarios.

Fig. 3. Sample reconstructions from the 10× undersampled validation set.

Table 2. Time for reconstruction per volume (in seconds).

2D Reconstruction Cine Multi-Contrast 2D Dynamic Reconstruction Cine Multi-Contrast

LAX SAX T1-w T2-w LAX SAX T1-w T2-w

8.57 96.49 12.60 2.26 3.63 15.71 5.46 2.72
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6 Conclusion and Discussion

In this work we employed the variable Splitting Half-quadratic ADMM algo-
rithm for Reconstruction of inverse-Problems (vSHARP) network, a state-of-
the-art DL-based method, to the task of reconstructing undersampled Cardiac
MRI data. We adapted vSHARP under two settings, one that considers the
reconstruction problem as a 2D reconstruction task, i.e., each image at a specific
time frame is treated individually, and one that it considers it as a dynamic task
by operating on all time frame data within a given sequence.

Upon reviewing the Table 1, it becomes evident that both of our proposed
methods have demonstrated superior performance compared to the alternatives.
In addition, as anticipated and demonstrated in other works [26], our empirical
findings confirm that 2D dynamic reconstruction outperforms the traditional
2D reconstruction. This improved performance of the 2D dynamic model can be
attributed to its ability to leverage shared information across data points within
the same time sequence.

Another aspect worth considering is that, in our dynamic setup, we employed
all time frames per slice as input. This introduced GPU memory limitations,
thereby constraining the parameter count in the reconstruction model (3D
vSHARP). However, by utilizing only a subset of the time sequence data (e.g.,
2–3 adjacent time frames), it would be feasible to construct a larger model.

Furthermore, Table 2 shows that the 2D dynamic reconstruction setup
requires less inference time. This can be attributed to the fact that the 2D recon-
struction process involves loading individual slices or time frames into memory
and subsequently performing a forward pass through the model. This leads to
relatively longer reconstruction times, as evidenced by the higher values for both
the Cine and Multi-Contrast datasets. Conversely, in the 2D dynamic reconstruc-
tion setup, sequences of data are loaded collectively and processed in a single
forward pass through the 2D dynamic model, resulting in significantly reduced
reconstruction times. This observation could indeed play a pivotal role in select-
ing an appropriate reconstruction model for real-time clinical scenarios.
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