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Abstract. Segmentation of 2D echocardiography (2DE) images is an
important prerequisite for quantifying cardiac function. Although deep
learning can automate analysis, variability in image quality and limita-
tions in model generalisability can result in inaccurate segmentations.
We present an automated quality control (QC) methodology to iden-
tify invalid segmentations, and propose post-processing techniques to
automatically correct erroneous segmentations. A workflow was devel-
oped to utilise a deep learning model, trained using the CAMUS dataset,
for segmenting all frames within apical two-chamber and four-chamber
2DE images from an independent dataset containing 91 participants (28
females; 51 healthy controls and 40 patients with mixed cardiac patholo-
gies). Single- and multi-frame QC and post-processing techniques were
applied, and subsequently validated against manual QC in a sample
of 50 randomly selected participants. Cardiac indices derived from the
automated segmentations using 2DE were compared to reference values
obtained through expert manual analysis on the same subjects. Single-
frame QC improved the proportion of usable frames from 76% to 96%.
Multi-frame QC indicated failures in 53% of the images, and while the
resulting specificity was 96%, correction only achieved a sensitivity of
42% with respect to manual assessment. The exclusion of the rejected
images resulted in improvements in the reliability between predicted and
manual measurements. These results demonstrated that applying auto-
mated QC to deep learning segmentation methods can enhance the reli-
ability of 2DE segmentations.
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1 Introduction

2D echocardiography (2DE) is a highly accessible imaging modality that allows
non-invasive and real-time examination of the geometry, motion, and deforma-
tion of the heart. Accurate segmentation of cardiac structures including the left
ventricular (LV) cavity (LVcav), myocardium (LVmyo), and left atrium (LA), is
crucial for deriving clinical indices used to assess cardiac function. Recent stud-
ies have shown the feasibility of using deep learning models to automatically
segment the left heart from 2DE, substantially accelerating image analysis [16].

Despite numerous efforts to create robust deep learning models for cardiac
segmentation, the ability to perform effectively across different datasets remains
a major challenge [5]. This issue is exemplified by ongoing concerns regarding the
accuracy and presence of erroneous segmentations when employing such models
in cross-dataset segmentation tasks. Incorporating post-processing can improve
flawed segmentations, such that a larger pool of valuable images can be used for
clinical analysis [10].

While minor segmentation issues can generally be resolved with simple post-
processing operations, correcting some faults can be challenging due to ambiguity
in the images. Combining automated quality control (QC) methodology with
segmentation processes can help to address errors and improve the reliability and
accuracy of the generated segmentations [14]. QC eliminates the need for time-
consuming and subjective manual review processes and can highlight prevalent
failure modes in deep learning algorithms. This can be used to apply targeted
improvements to automated segmentations, which may result in more accurate
and reliable predictions of standard clinical indices.

Various QC methodologies and metrics have been proposed, including abnor-
mality detection [14], real-time Dice Similarity Coefficients (DSC) [12], reverse
classification accuracy [11], Bayesian uncertainty-based methods [3,13], and con-
vexity scores [20]. Despite these advancements, no open-source QC methodolo-
gies are currently available.

To our knowledge, this study presents the first publicly accessible automated
and quality-controlled workflow for left heart segmentation from 2DE images
using a state-of-the-art deep learning model. Single-frame QC criteria were used
to identify appropriate post-processing steps, and multi-frame QC criteria were
applied to assess the reliability of standard cardiac indices derived from the
segmentations. The dependability of the workflow was assessed by comparing
the generated cardiac indices with those derived from expert manual analysis.

2 Methods

The proposed QC workflow consists of automated left heart segmentation, single-
frame QC assessment, followed by post-processing procedures and multi-frame
QC analysis. Subsequently, this workflow is utilised for the calculation of routine
clinical cardiac indices. A schematic representation of this workflow is depicted
in Fig. 1.
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Fig. 1. Schematic representation of the proposed quality control (QC) workflow for the
automated calculation of routine left heart indices from 2D echocardiography.

2.1 Datasets

CAMUS. The publicly available CAMUS dataset [7] comprised apical two-
chamber (A2CH) and four-chamber (A4CH) 2DE views acquired from 500
patients at end-diastole (ED) and end-systole (ES). All images were acquired
using a GE Vivid E95 ultrasound scanner (GE Vingmed Ultrasound, Horten,
Norway), with a GE M5S probe (GE Healthcare, US). Expert manual labels
were available for LVcav, LVmyo, and LA on the ED and ES frames.

CARDIOHANCE. The private CARDIOHANCE dataset consists of echocar-
diograms for 91 participants conducted at the University of Auckland. Ethical
approval for this study was granted by the Health and Disability Ethics Com-
mittee of New Zealand (17/CEN/226), and all research was performed in accor-
dance with relevant guidelines and regulations. Written informed consent was
obtained from each participant. This dataset comprised 51 healthy controls (20
females) and 40 patients (8 females) with mixed cardiac pathologies. The primary
diagnoses were: cardiac amyloidosis (11), LV hypertrophy (10), aortic regurgi-
tation (7), dilated cardiomyopathy (5), hypertrophic cardiomyopathy (4), heart
transplant (2), and coronary artery disease (1). 2DE image sequences were avail-
able with both the LVcav and LA clearly visible. The images were obtained with
a Siemens ACUSON SC2000 ultrasound scanner, equipped with a 4Z1c matrix
array transducer (Siemens Medical Solutions, Issaquah, WA, USA).

2.2 Deep Learning Model for Segmentation

A self-configuring segmentation framework (2D nnU-Net (v2) [4]), was trained
on the CAMUS dataset to segment the LVcav, LVmyo, and LA. This dataset was
split into a 90/10 training/testing ratio, and the model was trained for 100 epochs
using five-fold cross-validation. The nnU-Net model was used to perform cross-
dataset segmentations of the left heart on all images in the CARDIOHANCE
dataset for which no expert labels were available.

2.3 Single-frame Quality Control and Post-processing

Following cross-dataset segmentation, various issues in the segmentations
became apparent, including missing or duplicated structures and the presence of
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holes or discontinuities within or between structures. To address this, a single-
frame QC assessment was implemented to identify and flag erroneous segmen-
tations. Subsequently, the flagged segmentations were post-processed.

Initially, mean centroids of LVcav and LA were computed across the entire
image sequence, excluding any frames that were flagged during the QC assess-
ment. Structures lacking the mean centroid were removed, thereby eliminating
redundant structures. The LVmyo was identified by including only structures bor-
dering LVcav. Additionally, any holes within or between structures were filled.
The issue of missing structures could not be resolved by simple post-processing.

2.4 Multi-frame Quality Control

Cycle Selection. In clinical practice, image sequences often consist of multiple
cardiac cycles. In this study, we defined a cardiac cycle as the duration between
two consecutive ED points. The ED and ES points were taken as the locations
of the maximum and minimum LVcav areas in the area-time curve, respectively.
The cardiac cycle was selected based on having the fewest flagged frames and
the highest contrast-to-noise ratio [9] between the myocardium and blood pool.

Structural Information. After selecting the best cycle from each sequence,
frames with a disconnected LVmyo or LA extending beyond the imaging field
of view, indicative of partial cutoff, were identified and flagged. If two or more
frames were flagged within the selected cardiac cycle, the cycle was excluded.

Area-Time Curve Analysis. Area-time curves were generated for the LVcav

and LA across the entire cardiac cycle to differentiate between well-segmented
and poorly-segmented cycles. A population prior was established as a reference,
based on the selected cycles from all cases in the CARDIOHANCE dataset.
Using the ES timings from all cycles, an average ES point was computed to
temporally align the area-time curves for each subject. Subsequently, all curves
were normalised, thereby accounting for variations in heart size, and a mean
curve was computed for both LVcav and LA.

The similarity between the original area-time curves of each image and the
reference curve was assessed using Dynamic Time Warping (DTW) [1]. DTW
measures the cumulative Euclidean distance between curves after DTW align-
ment. Images were excluded if the DTW distance for either the LVcav or LA
exceeded thresholds of 1 and 2, respectively. These thresholds were empirically
chosen, with the threshold for the LA being larger due to greater variation
observed in the area-time curves of the LA compared to those of LVcav.

Validation. To validate the multi-frame QC, an expert observer manually
reviewed segmentations from one cardiac cycle for 50 randomly selected partici-
pants in order to identify any erroneous segmentations or temporal incoherencies.
Sensitivity and specificity were computed based on the results of the automated
QC and manual review.



102 B. W. M. Geven et al.

2.5 Calculation of Clinical Indices

LV end-diastolic volume (EDV) and end-systolic volume (EDV) were computed
from ED and ES segmentations using the biplane method of disks summation [2],
allowing for LV ejection fraction (EF) determination. The contours extracted
from the segmentations of the LVcav at ED and ES were used to compute the
endocardial LV global longitudinal strain (GLS). Furthermore, the maximum
area of the LA was calculated.

Expert Manual Analysis. Alongside the calculation of clinical indices from
the predicted segmentations, a sonographer carried out manual analysis of the
2DE images using TOMTEC-ARENA 2.31 2D CPA (TOMTEC Imaging Sys-
tems GmbH, Unterschleißheim, Germany). This analysis included LV EDV, ESV,
EF, GLS assessment, and measurement of the maximum LA area.

2.6 Statistics

The agreement between the clinical indices derived from the predicted segmenta-
tions and expert manual analysis on the images in the CARDIOHANCE dataset
was quantified using the average measure, two-way mixed effects intraclass cor-
relation coefficient (ICC) [6]. Paired-sample t-tests were performed to identify
statistically significant differences (p-values < 0.05). All tests were conducted
using Python [18] v3.10, with the Pingouin [17] and SciPy [19] packages.

3 Results

3.1 Evaluation of Deep Learning Segmentation Performance

The segmentation performance on the CAMUS test set, measured by DSC, Haus-
dorff Distance (HD) and Mean Absolute Distance (MAD), is presented in Table 1.
The LVcav achieved the highest DSC compared to LVmyo and LA, while the HD
and MAD were lowest for the LVcav. The LA exhibited the highest variability
across all metrics.

Table 1. Segmentation accuracy on the CAMUS test set (n=50) for left ventricular cav-
ity (LVcav), myocardium (LVmyo) and left atrium (LA). Metrics include Dice Similar-
ity Coefficient (DSC), Hausdorff Distance (HD) and Mean Absolute Distance (MAD),
with values given as mean ± standard deviation. Results are averaged across apical
two-chamber and four-chamber views in end-diastole (ED) and end-systole (ES) phases.

LVcav LVmyo LA
DSC(-) HD

(mm)
MAD
(mm)

DSC
(-)

HD
(mm)

MAD
(mm)

DSC
(-)

HD
(mm)

MAD
(mm)

ED 0.953± 0.020 3.9± 1.9 1.2± 0.6 0.889± 0.036 4.5± 1.6 1.4± 0.5 0.916± 0.065 4.2± 3.0 1.4± 0.9
ES 0.938± 0.033 3.8± 1.6 1.2± 0.6 0.896± 0.036 4.6± 1.7 1.4± 0.5 0.933± 0.036 4.2± 2.4 1.3± 0.7
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3.2 Single-frame Quality Control and Post-processing

Table 2 presents the percentages of flagged frames per failure mode identified
through single-frame QC. Before post-processing, 20750 frames passed, repre-
senting 76% of the 27406 frames in the CARDIOHANCE dataset. The number
of passed frames increased to 26233 after post-processing, accounting for 96% of
the total number of frames.

The main reason for flagging frames before post-processing was the presence
of holes within the LVcav (9.4%) or between LVcav and LVmyo (10.0%). After
post-processing, frames were mainly flagged due to the presence of multiple
distinct LVmyo structures (3.9%). Figure 2 illustrates examples of post-processing
procedures.

Table 2. Percentage of flagged frames in the CARDIOHANCE dataset (n = 27406)
before and after post-processing, categorised by failure mode for left ventricular cav-
ity (LVcav), myocardium (LVmyo), and left atrium (LA) during single-frame QC.

Failure mode before after

No LVcav <0.1% 0.1%
No LVmyo <0.1% <0.1%
No LA 0.1% 0.2%
Duplicate LVcav <0.1% <0.1%
Duplicate LVmyo 4.1% 3.9%
Duplicate LA 0.7% <0.1%
Holes within LVcav 9.4% 0.6%
Holes within LVmyo 2.1% 0.4%
Holes within LA 2.3% <0.1%
Holes between LVcav and LVmyo 10.0% 0.8%
Holes between LVcav and LA 0.5% 0.1%
Holes between LVmyo and LA 0.6% <0.1%

3.3 Multi-frame Quality Control

Table 3 presents a comparison between clinical indices derived from predicted
segmentations and expert manual analysis using TOMTEC software, both before
and after exclusion based on multi-frame QC assessment. The comparison
revealed significant biases in all indices before and after exclusion, with the
exception of LV EF after exclusion. After QC exclusion, all ICC values increased,
indicating enhanced reliability between the segmentations and TOMTEC mea-
surements.
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Fig. 2. Examples demonstrating the effect of post-processing (PP) on segmentations.
Top row: 2D echocardiography (2DE) images; middle row: segmentations before PP;
bottom row: segmentations after PP. The examples showcase different scenarios, includ-
ing (A) filling holes in the left atrium, and (B) filling holes in the left ventricular cav-
ity (LVcav), (C) removing redundant structures and filling holes between LVcav and
myocardium (LVmyo), and (D) unimproved unconnected LVmyo.

Table 3. Comparison of clinical indices derived from segmentations and expert man-
ual analysis, before and after multi-frame QC exclusion, including intraclass correlation
coefficients (ICC) and biases (mean± standard deviation). Statistically significant dif-
ferences (p-values < 0.05) between indices derived from segmentations and expert man-
ual analysis are indicated by asterisks (*). The indices included left ventricular (LV)
end-diastolic volume (EDV), end-systolic volume (ESV), ejection fraction (EF), global
longitudinal strain (GLS) and left atrium (LA) maximum area for the apical two-
chamber (A2CH) and four-chamber (A4CH) views.

Indices Before exclusion After exclusion
ICC Bias ICC Bias

LV EDV (ml) 0.763 *−28± 22 0.798 *−29± 22

LV ESV (ml) 0.852 *−14± 14 0.877 *−13± 15

LV EF (%) 0.866 *1.6± 5.4 0.874 0.5± 5.5

LV GLS A2CH (%) 0.287 *7.0± 7.0 0.445 *4.1± 5.3

LV GLS A4CH (%) 0.536 *3.1± 4.7 0.653 *2.7± 4.3

LA maximum area A2CH (mm2) 0.648 *−4.8± 4.0 0.793 *−3.6± 2.4

LA maximum area A4CH (mm2) 0.754 *−3.8± 3.3 0.848 *−2.7± 2.0

In total, 53% of all images were excluded through the multi-frame QC assess-
ment. Manual validation further demonstrated a sensitivity of 42% and a speci-
ficity of 96% for excluding images based on both structural faults and temporal
inconsistencies.
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4 Discussion

The 2D nnU-Net model that was trained in this study outperforms all methods
listed on the CAMUS challenge website1 for LVcav, LVmyo and LA segmenta-
tions. Despite its good performance on the CAMUS test set, several issues arose
during cross-dataset segmentation on the CARDIOHANCE dataset. Single-
frame QC analysis, presented in Table 2, revealed a substantial improvement
in the availability of valid frames after post-processing. Only a small fraction of
the frames still exhibited an issue with unconnected cardiac labels after post-
processing, as depicted in Fig. 2D. To address this issue, it may be beneficial to
incorporate a statistical shape model in the post-processing step.

After multi-frame QC, over half of all images were excluded. For the accept-
able images, there was a low sensitivity of 42% with respect to manual assess-
ment, indicating that a considerable number of flawed segmentations remained
undetected, which could be problematic if used in a clinical setting. On the
other hand, a high specificity of 96% was observed, indicating that only a small
proportion of accurately segmented images was flagged erroneously. To enhance
sensitivity in detecting faults and abnormalities, additional QC criteria can be
introduced, potentially including structural properties like convexity and sim-
plicity of anatomical structures [8,20].

Table 3 demonstrates a significant underestimation of the LV EDV and ESV,
as well as the maximum LA areas. This discrepancy could be caused by apical
undersegmentation in the LVcav. This can be attributed to the inherent limita-
tions of the expert manual labels in the CAMUS dataset, which have also been
associated with volume underestimation [20]. Moreover, the LV GLS values were
found to be overestimated compared to the values obtained with TOMTEC in
both A2CH and A4CH views, possibly due to the presence of apical under-
segmentation in the LVcav. This undersegmentation can result in higher GLS
measurements [15].

The exclusion of flagged images resulted in an improved agreement of LV GLS
and LA maximum area in A4CH views with respect to expert manual analysis.
Initially categorised as poor (ICC < 0.5) and moderate (0.5 ≤ ICC < 0.75)
reliability, the LV GLS and LA maximum area measurements were reassessed as
exhibiting moderate and good (0.75 ≤ ICC < 0.9) reliability, respectively, after
excluding the indices of flagged images. However, poor reliability persisted in
the measurements of LV GLS in A2CH views (ICC = 0.445).

In this study, the manual determination of multi-frame QC criteria raises
concerns regarding optimality and dataset-specific applicability. It may there-
fore be beneficial to explore more generalised criteria, reducing dependence on
qualitative manual threshold determination. Furthermore, the utilisation of a
single average population prior in area-time curve analysis overlooks potential
variations in curve shapes between healthy controls and patients with cardiac
pathologies. Future studies could investigate the use of population priors tailored
to specific pathologies, thereby enhancing the effectiveness of the analysis.

1 https://www.creatis.insa-lyon.fr/Challenge/camus/results.html

https://www.creatis.insa-lyon.fr/Challenge/camus/results.html
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5 Conclusion

In this study, we have presented an automated QC workflow for left heart anal-
ysis from 2DE, with the objective of enhancing the accuracy and reliability of
automatically segmented images when applied to cross-dataset segmentation.
The implementation of QC, which identifies, flags and applies corrections to
faulty segmentations, is shown to be crucial for improving the reliability of the
derived cardiac indices when compared to expert manual analysis. Application
of the workflow resulted in an improvement in the proportion of usable frames
from 76% to 96%. By releasing the code associated with the proposed automated
QC workflow, we aim to facilitate collaborative efforts and further developments
by the community.
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