
A Smart Network Repository Based
on Graph Database

Amar Abane(B), Abdella Battou, Mheni Merzouki, and Tao Zhang

National Institute of Standards and Technology, Gaithersburg, MD, USA
{amar.abane,abdella.battou,mheni.merzouki,tao.zhang}@nist.gov

Abstract. To address the increasing complexity of network manage-
ment and the limitations of data repositories in handling the various
network operational data, this paper proposes a novel repository design
that uniformly represents network operational data while allowing for a
multiple abstractions access to the information. This smart repository
simplifies network management functions by enabling network verifica-
tion directly within the repository. The data is organized in a knowledge
graph compatible with any general-purpose graph database, offering a
comprehensive and extensible network repository. Performance evalua-
tions confirm the feasibility of the proposed design. The repository’s abil-
ity to natively support ‘what-if’ scenario evaluation is demonstrated by
verifying Border Gateway Protocol (BGP) route policies and analyzing
forwarding behavior with virtual Traceroute.

Keywords: network management · network data · repository ·
knowledge graph · SDN · Neo4j · control plane verification · data plane
analysis · database-defined networks

1 Introduction

In the current era of rapidly growing network complexity and service diversity,
preventing and detecting undesired behaviors is still a daunting task despite
the increasing number of network management tools. One core challenge lies in
the fragmented nature of network data. It is dispersed across various sources,
management functions, and tools, which often lack a uniform representation
for optimized usage. This scattering inevitably breeds inconsistency, reducing
the utility of data and complicating its processing. Furthermore, when operators
evaluate configuration changes using verification tools, it necessitates the transfer
of network data from its original storage, such as databases or configuration file
repositories, to the analytical tool. This approach further requires supplementary
logic within the management software to process the data and integrate results,
making conventional network repositories based on traditional databases [5] and
distributed maps [1] inefficient.

To tackle these challenges, we present a novel repository to uniformly store
and organize network data. This repository is grounded in a graph database
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
S. Bouzefrane et al. (Eds.): MSPN 2023, LNCS 14482, pp. 75–86, 2024.
https://doi.org/10.1007/978-3-031-52426-4_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-52426-4_6&domain=pdf
https://doi.org/10.1007/978-3-031-52426-4_6


76 A. Abane et al.

(GDB) which allows analysis of network data within the storage system. Creat-
ing a repository capable of addressing the intricate nuances of multi-technology
network architectures, such as Beyond 5G (B5G) [6], necessitates a model that
can represent these varied concepts uniformly. It’s crucial for the model to align
with various management scenarios by retaining the relationships in topology,
connectivity, and configuration, bridging the gap between low-level network ele-
ments and high-level network intent [3]. In addition, the model must remain
comprehensible and easily expendable to accommodate additional data, proto-
cols, and technologies. Therefore, the proposed network repository is designed as
a Knowledge Graph (KG) integrating semantics into the stored data. Its com-
patibility with general-purpose GDB allows for the construction of the KG with
a systematic procedure developed in this paper. Performance assessments val-
idate the KG’s suitability as an effective network repository, underscoring its
potential to enhance network management workflows.

By integrating what-if? scenario verification for control plane and data plane
without additional code, the proposed repository simplifies the development logic
of management functions, paving the way for a smart network repository. We
showcase this ability through a proactive verification of route policies for Border
Gateway Protocol (BGP) and an analysis of network forwarding behavior with
a virtual Traceroute process. The smart repository code is publicly accessible
and the features presented in this paper are reproducible1.

This paper is organized as follows. Section 2 reports on recent approaches for
storing and handling data for network management and discusses the differences
with the repository proposed in this paper. Section 3 presents the design and
construction of the proposed network repository and its knowledge graph schema.
Section 4 provides an evaluation of the repository and discusses the implemented
functionalities. Section 5 concludes the paper and discusses limitations.

2 Related Work

By using a KG to describe network data, it is possible to not only represent the
network’s physical and logical attributes but also uncover relationships across
various dimensions within the network [4]. Many studies consider KGs to store
different kinds of network data. Authors in [10] use a KG to represent network
element attributes and topology of the physical network on which a ML-based
technique is used to extract topology relationships between network elements.
Our approach shares the same idea of representing network data using a KG.
However, the proposed repository goes beyond network topology and includes
device configuration, network services, routing behavior, and data plane. In [2],
a solution is proposed to simplify network management workflow using a unified
graph-based model for device, network, and service models. Data is represented
through multiple graphs without detailing how the graphs are organized, mak-
ing the model difficult to understand and reproduce. Our approach considers
the same kinds of network data but uses a single graph to represent them, and
1 https://github.com/usnistgov/smart-network-repository.

https://github.com/usnistgov/smart-network-repository


A Smart Network Repository Based on Graph Database 77

defines an understandable and reproducible method to build and extend the
repository. KnowNet [4] builds a KG which captures and connects network data
of a Software Defined Networking (SDN) controller. Applications exploit the
KG to detect and respond to network issues, and derive new knowledge. Typical
management applications are demonstrated, but the collection and organisation
of the data is not specified and the KG is internally implemented in the tool with-
out a standard interface to interact with it. SeaNet [9] proposes an autonomic
network management solution for SDN driven by a KG and a telecommunication
network ontology [8]. Our KG differs from SeaNet’s as it supports the represen-
tation of configuration-based networks with a distributed control plane such as
BGP, in addition to the network logical configuration and data plane. Neverthe-
less, the proposed KG and construction procedure consider general networking
concepts and can be easily adapted to SDN networks.

The authors in [3] present a network repository design that enables an effi-
cient representation of multiple network topology abstractions for various man-
agement purposes and share valuable insights from their experiences in curat-
ing a comprehensive and evolving topology taxonomy. They propose a Multi-
Abstraction-Layer Topology (MALT) representation that supports all network
management phases, including design, deployment, configuration, operation,
measurement, and analysis. MALT is implemented as a specialized data pro-
cessing layer on top of a SQL database, unlike our repository which is directly
implemented in a native GDB.

Closest to our approach is [7] where the authors put forward the idea that
SDN control is fundamentally about how data is represented. They introduce
a straightforward data representation of the network that includes its topology,
forwarding, and control aspects, all of which are accessible to applications via a
single SQL interface. Their system represents the SDN network control infras-
tructure within a PostgreSQL database. Here, custom SQL queries are utilized
to articulate various network abstractions. A significant hurdle in implementing
this method was to coordinate on a relational database multiple abstractions
that have a collective impact on the same network data.

Note that none of the network repository approaches described above pro-
vides a native support of what-if scenarios evaluation.

3 Proposed Repository

3.1 Overview

The repository’s KG comprises three types of network information: operational,
behavioral, and temporary. The operational information is the network state
including devices and ports with physical and logical topology, connectivity, and
configuration such as VLAN. It also includes data plane information such as rout-
ing information base (RIB) and forwarding information base (FIB), and access
control list (ACL). Behavioral information is inserted to model the execution of
routing protocols such as BGP, or the forwarding process such as Traceroute.
Temporary information represents configuration changes not yet applied to the



78 A. Abane et al.

network. This makes verification and consistency checks easier to implement, by
searching for particular data patterns in the knowledge graph such as two con-
flicting IP addresses attached to the same interface, or a BGP peer configured
on an interface that is not longer enabled. This also makes it easy to extract
configuration changes to apply to network elements.

We discuss in the following the repository design from the network data
acquisition, to the KG schema and its systematic creation process. We then
describe the design of what-if scenario evaluation for BGP and Traceroute.

3.2 Data Acquisition

The construction of the data repository is a multistage process that starts by
collecting data from network elements in a non-structured vendor-dependent
format.

In this design, we distinguish three categories of non-structured network data:
(i) dynamic data representing topology and connectivity updates consisting on
port/link status, device status, and BGP peer status changes. This information
can be collected through NETCONF push notifications as they change frequently
and must be collected as soon as they occur. (ii) static data representing device
configuration that does not change frequently such as hostname, BGP router
ID and ASN, and VLANs. This data is collected periodically (via NETCONF,
RESTCONF, or CLI) and reinserted in the graph. (iii) semi-static data repre-
sents device configuration that may change during a day or over the week (see
network data alterations measured in [2]), such as ACLs and BGP sessions and
route policies. This data is also collected periodically, but more frequently than
static data and only the changed/new attributes are updated in the graph.

Collected data is first converted to a vendor-neutral format, which is then
processed to create the KG as described later.

3.3 Knowledge Graph Organizing Principle

For the construction of a KG flexible enough to accommodate a range of various
networking concepts, it is imperative for its data to be easily queried and under-
stood by users and developers. Consequently, the organization of data within
the KG adheres to a set of intuitive principles, outlined below.

We first introduce basic graph database concepts used in this paper. A node
refers to a graph vertex, which can have one or multiple labels identifying the
node type. A relationship refers to the edge connecting two vertices. A property
is a value pair representing an attribute of a node. Each node and relationship
can have multiple properties. A path is a sequence of nodes and relationships
going from one node to another. A path-pattern is a path containing node labels
instead of specific nodes in the graph; it is used to express the shape of the
requested data.

The graph is constructed from the physical layer up to the data plane. Each
inserted node must be connected to an existing node to ensure that no dangling



A Smart Network Repository Based on Graph Database 79

node exists. The network data is organized in the graph according to three main
patterns defining an intuitive representation of the physical network and the log-
ical protocol stack. First, devices and their interfaces, and the physical links that
connect them are represented by the Host-LTP-Link pattern, where LTP stands
for Link Termination Point. Second, protocol endpoints are represented in their
respective layers according to their implementation. That is, link-layer protocols
run on top of physical interfaces, and IP-layer protocols run on top of link layer.
Endpoints of the same layer that are expected to interact can be connected with
a relationship expressing the protocol information; for example, IP endpoints on
top of two physically linked interfaces would be connected with a relationship
corresponding to an ARP table entry. We refer to this pattern by Layer-CTP-
Connection, where CTP stands for Connection Termination Point. Depending
on the layer represented, the CTP has a type such as Ethernet, IPv4, TCP,
etc. Third, device configurations and data plane information must be reachable
from the device via a path of one or more hops. When a configuration or a data
plane information is an independent fact, it is represented by a node connected
to its parent node with a relationship. For example “a FIB route in a host” is
represented with a FibRoute node connected with a “HAS FIB” relationship to
the Host node. When a configuration or a data plane information connects two
independent configurations, it is represented by a relationship between the two
nodes it refers to; for example, “an interface is member of a VLAN” should
be represented ”VLAN MEMBER” relationship between the interface and the
VLAN nodes.

Figure 1 shows the KG schema generated by the GDB. It represents the
existing node labels and their relationships.

3.4 Knowledge Graph Construction

To illustrate the KG creation process, we consider a simple network from which
the following data is collected: device properties (hostname, BGP router ID,
etc.), ports properties (name, MTU, speed, etc.), VLAN configuration, LLDP
neighbors, IPv4 addresses, BGP peers, and FIB routes.

Data collected from devices is converted to a vendor-neutral format grouped
by device, which is then processed to produce facts. A fact is a map represent-
ing a network information to insert in the graph; either through a new node
and new relationship(s), or only a new relationship between two existing nodes.
Facts are organized according to their type and insertion order. For example,
facts representing the network devices and their properties are to insert before
facts representing interfaces, which are to be inserted before BGP peers config-
uration, and so on. The fact types are given in their insertion order as follows:
devices, physical ports, Ethernet endpoints, IPv4 endpoints, VLAN L3 inter-
faces, physical links, IP neighbors connectivity, ACL rules, BGP peers, and FIB
routes.



80 A. Abane et al.

Fig. 1. KG schema visualization

Finally, the facts are converted to GDB queries. A query can insert one or
multiple aggregated facts (see Sect. 4).

Figure 2 shows an example of parsing a BGP peer configuration from CLI
output to the GDB query. The facts step is not shown since the fact is mapped
directly to the GDB query.

The construction algorithm2 creates a KG representing the network opera-
tional state, with topology, configuration and data plane information. Not all
network data is discussed in this paper due to space limitation. However, infor-
mation such as link aggregation and sub-interfaces can be easily represented in
the KG using the organizing principles introduced above.

The complete graph creation process is executed only once. After that only
portions of the graph are recreated periodically for static and semi-static network
data as described above. Dynamic network state changes are received individu-
ally via notification, converted to a fact and inserted in the graph.

3.5 What-if support

The proposed repository natively supports what-if scenario evaluation through
simple simulations. We selected BGP and Traceroute to showcase this capability.
BGP route policies are known to be intricate and prone to errors, which is
why some of the most significant internet outages are caused by misconfigured
route policies that inadvertently leak or accept routes they shouldn’t. Traceroute
2 Not provided here due to space limitations. The reader can refer to the smart repos-

itory code for the complete KG creation process.



A Smart Network Repository Based on Graph Database 81

Fig. 2. Simplified BGP configuration parsing example. 1: CLI output from a SONiC
device, 2: CLI output from a OCNOS device, 3: Vendor-independent format, 4: GDP
query

provides detailed information about the paths taken by a specified flow through
the network, which is a powerful capability for exploring and testing network
behavior.

The BGP process is a sequence of queries that modify the KG with nodes
and relationships that describe BGP behavior. A BGP peer created on an inter-
face of a router is represented by BgpPeer node connected to the correspond-
ing IPv4 CTP node with a ‘HAS BGP PEER’ relationship. Two BGP peers
that established a session are connected with a ’PEERS WITH’ relationship.
A BGP route update is represented with BgpUpdate node and contains the
announced prefix, origin Autonomous System (AS), next hop, AS path3. BgpUp-
date is connected to the BGP peer through which it is sent (resp. received) via a
‘BGP UPDATE TO SEND’ (resp. ‘RECEIVED BGP UPDATE’) relationships.

3 Not all BGP features are included in this demonstration.



82 A. Abane et al.

A clause of the route policy is represented with a Filter node connected to the
device to which it belongs with a ‘HAS FILTER’ relationship. A filter can be
inbound or outbound, and contains a prefix and/or origin AS to match the route,
a priority, a permit or deny action, and optional values for community and local
preference to modify the route.

The Traceroute process is similar to that of BGP. The queries start by creat-
ing a Packet node connected to the source LTP from which it originates (Usually
the loopback interface of a device). The packet contains flow information such
as destination IP address, destination port, and protocol. The packet is virtu-
ally forwarded by finding the best matching route at each node, applying the
inbound and outbound ACL rules, and sending the packet to the output LTP.
Each forwarding step creates a relationship corresponding to the action between
the packet and the corresponding node: LTP, ACL rule, and FIB route. This pro-
cess continues until the destination is reached, no route is found for the packet,
or the packet is blocked by an ACL rule.

4 Evaluation

The proposed repository is implemented on Neo4j, a popular GDB with an SQL-
like query language.

To evaluate the feasibility of the proposed network repository, we measure its
time and space efficiency, and we demonstrate two what-if scenarios by verifying
BGP route policies and analyzing forwarding with a virtual Traceroute.

4.1 Performance Evaluation

When handling network data with a KG, the most critical evaluation criteria
are the size of the graph on disk, the time to execute a query on the repository,
and the graph creation time.

We emulate a leaf-spine network with 13 leaves, 10 spines, and 4 servers each
connected on a different VLAN. The links between spines and leaves are Layer 3.
The routing is realized with BGP. All nodes use SONiC as the network operating
system.

The repository is implemented with Neo4j 4.4.25 Enterprise Edition, and the
evaluation is performed on a server with a Core i5 8th generation CPU with 16
Gb of RAM.

The processing stage takes about 500 ms and includes the generations of
facts and queries, with each fact mapped to one query. The graph creation takes
about 106 s for a total number of 8466 queries representing 8466 facts, which
corresponds to an average execution time of 13 ms per query. The execution
time of queries is stable during the graph creation process because, as per the
creation procedure, the queries do not need to process a large portion of the graph
to insert a node/relationship. Consequently, the number of queries executed to
create the graph can be reduced by aggregating multiple related facts and insert
them in one query. Given the KG organizing principle (Sect. 3.3) and the creation
process (Sect. 3.4), the more is known about the represented network concepts



A Smart Network Repository Based on Graph Database 83

(e.g., topology, routing protocols, etc.) the more facts can be aggregated. After
aggregating the facts of ports and Ethernet/IPv4 endpoints with each device
creation query, the number of queries dropped by 39.6% (3359 queries) lowering
the total graph creation time to 66 s while producing the same graph. Adding
the BGP peers to this aggregation dropped the initial queries number by 42.6%
(3610 queries) lowering the graph reaction time to 63 s. Finally, the aggregation
of ACL rules facts belonging to the same ACL table, reduced the number of
queries by 43.9% and the graph creation time to 61 s.

The KG of this network contains 7974 nodes and 17193 relationships, with
a size on disk of around 3 MB. Therefore, on average, for each created node
3 relationships are created. Once the graph is established, the average query
execution time is no more than 29 ms. This query execution time can represent
the time to insert a notification about a dynamic network state change.

Note that a GDB system such as Neo4j is capable of supporting hundred
millions of nodes and relationships.

4.2 What-if scenario with BGP

We consider an example leaf-spine network with 4 leaves, 4 spines, and 8 servers
each connected on a different VLAN. The topology includes 2 border routers and
2 firewalls4. For simplicity, we assume route updates are allowed only between
leaf01, leaf02, spine01, and spine02.

In the following, we run the simulated BGP behavior to analyse two examples
of BGP route policies configuration, before applying them to the network. The
filters in routes are configured in such a way that on only routes for prefix
10.11.200.0/24 are accepted and propagated.

In the first example, we mimic the advertisement of a route for the prefix
10.0.0.0/8 from leaf01 that will not be propagated. Figure 3 shows the queries
that runs the what-if scenario and inspect the results to find where the route
has been blocked.

Fig. 3. Blocked route

4 This network and “what-if” examples are available in the smart repository code.



84 A. Abane et al.

In the second example, we mimic the advertisement of a route for the prefix
“10.11.200.0/24 from leaf01 that will be propagated to all routers. Figure 4 shows
the queries that runs the scenario and find the propagation path of the routes
installed at leaf02.

Fig. 4. Propagation path of a route

4.3 What-if scenario with Traceroute

In this example, we simulate the forwarding process to find the path taken by
leaf01 router to reach the DNS Server 10.0.104.104 (server04). The following is
the query that runs the what-if scenario and Fig. 5 shows the results.

CALL custom.traceroute(‘leaf01’, ‘10.0.104.104’, ‘10.0.104.0/24’, 33434, ‘UDP’)

YIELD ignored RETURN ignored

Fig. 5. Traceroute results



A Smart Network Repository Based on Graph Database 85

5 Conclusion

This paper demonstrated a smart network repository based on a general-purpose
native GDB. The repository can represent multiple levels of network abstraction,
including topology, connectivity, configuration, and forwarding, in an organized
and comprehensible manner. A systematic method is introduced to construct
the repository’s KG which contributes to the common understanding of net-
work data, and creates a interoperable and extensible network repository, thus
increasing the accessibility and usability of the network data.

The feasibility of a general-purpose GDB as a network repository was eval-
uated, establishing it as a viable solution for Network Management Systems
(NMS) and SDN controllers.

The repository’s potential extends beyond just storing and managing network
data. We assessed its potential for running simple simulations to quickly evaluate
what-if scenarios through queries. This capability, demonstrated for BGP route
policy and Traceroute, opens up new avenues for smart network repositories that
natively support analysis and verification.

Disclaimer

Any mention of commercial products or reference to commercial organizations
is for information only; it does not imply recommendation or endorsement by
NIST, nor does it imply that the products mentioned are necessarily the best
available for the purpose.

References

1. Berde, P., et al.: Onos: Towards an open, distributed sdn os. In: Proceedings of the
Third Workshop on Hot Topics in Software Defined Networking, HotSDN 2014,
pp. 1–6. Association for Computing Machinery, New York (2014). https://doi.org/
10.1145/2620728.2620744

2. Hong, H., et al.: Netgraph: an intelligent operated digital twin platform for data
center networks. In: Proceedings of the ACM SIGCOMM 2021 Workshop on
Network-Application Integration, NAI 2021, pp. 26–32. Association for Computing
Machinery, New York (2021). https://doi.org/10.1145/3472727.3472802

3. Mogul, J.C., et al.: Experiences with modeling network topologies at multiple levels
of abstraction. In: 17th Symposium on Networked Systems Design and Implemen-
tation (NSDI) (2020). https://www.usenix.org/conference/nsdi20/presentation/
mogul

4. Quinn, R., et al.: Knownet: towards a knowledge plane for enterprise network man-
agement. In: NOMS 2016–2016 IEEE/IFIP Network Operations and Management
Symposium, pp. 249–256 (2016). https://doi.org/10.1109/NOMS.2016.7502819

5. Sung, Y.W.E., Tie, X., Wong, S.H., Zeng, H.: Robotron: top-down network man-
agement at facebook scale. In: Proceedings of the 2016 ACM SIGCOMM Confer-
ence, SIGCOMM 2016, pp. 426–439. Association for Computing Machinery, New
York (2016). https://doi.org/10.1145/2934872.2934874

https://doi.org/10.1145/2620728.2620744
https://doi.org/10.1145/2620728.2620744
https://doi.org/10.1145/3472727.3472802
https://www.usenix.org/conference/nsdi20/presentation/mogul
https://www.usenix.org/conference/nsdi20/presentation/mogul
https://doi.org/10.1109/NOMS.2016.7502819
https://doi.org/10.1145/2934872.2934874


86 A. Abane et al.

6. Vilalta, R., et al.: Teraflow: secured autonomic traffic management for a tera of
SDN flows. In: 2021 Joint European Conference on Networks and Communications
& 6G Summit (EuCNC6G Summit), pp. 377–382 (2021). https://doi.org/10.1109/
EuCNC/6GSummit51104.2021.9482469

7. Wang, A., Mei, X., Croft, J., Caesar, M., Godfrey, B.: Ravel: a database-defined
network. In: Proceedings of the Symposium on SDN Research, SOSR 2016. Asso-
ciation for Computing Machinery, New York (2016). https://doi.org/10.1145/
2890955.2890970

8. Zhou, Q., Gray, A.J.G., McLaughlin, S.: ToCo: an ontology for representing hybrid
telecommunication networks. In: Hitzler, P., et al. (eds.) ESWC 2019. LNCS, vol.
11503, pp. 507–522. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
21348-0 33

9. Zhou, Q., Gray, A.J.G., McLaughlin, S.: Towards a knowledge graph based auto-
nomic management of software defined networks. CoRR abs/2106.13367 (2021).
https://arxiv.org/abs/2106.13367

10. Zhu, Y., Chen, D., Zhou, C., Lu, L., Duan, X.: A knowledge graph based construc-
tion method for digital twin network. In: 2021 IEEE 1st International Conference
on Digital Twins and Parallel Intelligence (DTPI), pp. 362–365 (2021). https://
doi.org/10.1109/DTPI52967.2021.9540177

https://doi.org/10.1109/EuCNC/6GSummit51104.2021.9482469
https://doi.org/10.1109/EuCNC/6GSummit51104.2021.9482469
https://doi.org/10.1145/2890955.2890970
https://doi.org/10.1145/2890955.2890970
https://doi.org/10.1007/978-3-030-21348-0_33
https://doi.org/10.1007/978-3-030-21348-0_33
https://arxiv.org/abs/2106.13367
https://doi.org/10.1109/DTPI52967.2021.9540177
https://doi.org/10.1109/DTPI52967.2021.9540177

	A Smart Network Repository Based on Graph Database
	1 Introduction
	2 Related Work
	3 Proposed Repository
	3.1 Overview
	3.2 Data Acquisition
	3.3 Knowledge Graph Organizing Principle
	3.4 Knowledge Graph Construction
	3.5 What-if support

	4 Evaluation
	4.1 Performance Evaluation
	4.2 What-if scenario with BGP
	4.3 What-if scenario with Traceroute

	5 Conclusion
	References


