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Abstract. Large-scale mainframe applications written in outdated lan-
guages such as COBOL still form the core of the enterprise IT in many
organizations, even though their flexibility and maintainability declines
continuously. Their manual re-implementation in modern languages like
Java is usually economically not feasible. Automated code conversion of
legacy programs usually produces poor quality code in the target lan-
guage, even with recent AI tools such as ChatGPT. In addition, code
conversion recovers dead or unnecessary code artifacts in the new lan-
guage. Therefore, in this paper we explore a novel approach, which does
not convert the legacy code, but instead uses the existing input/out-
put data to generate program tokens through program synthesis. These
tokens are subsequently translated into input tokens and submitted to
ChatGPT to produce the target code. The approach is illustrated and
evaluated by means of a semi-realistic example program. The obtained
results look promising, but need to be further investigated.

Keywords: Program Synthesis · Legacy Modernization · AI ·
COBOL · GPT · Large Language Models

1 Introduction

For many years, possible ways how to deal with the growing amount of program
code considered “legacy” is one of the grand challenges of software engineering
[21]. State-of-the-art architectures and technologies are often a prerequisite for
moving applications to the cloud, create new digital services and business models,
and integrate with new technologies like e.g. blockchain or AI [3,28].

However, modernization of legacy applications remains a big challenge for
various reasons. One is the lack of developers who are familiar with its code and
have the skills to maintain and update it. This is getting worse when developers
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retire or move to other fields, thus losing their specific knowledge [32]. Another
challenge is the lack or inadequacy of documentation [?]. In some extreme cases,
even the source code may be missing, meaning that the program cannot be
changed at all.

Additionally, legacy code can lead to vendor lock-in. This means that com-
panies are constrained by specific programming languages, platforms, or tech-
nologies that were selected in the past. This can make it difficult to switch to
more modern technologies or vendors and create additional costs and risks.

Legacy code represents a significant burden for many organizations, and the
pressure to transform or migrate such systems continuously grows. One reason
is the sheer volume of existing code. It is estimated that there are between 180
and 200 billion lines of such code worldwide [8]. This figure becomes even worse
considering that the global code base is growing by billions of lines annually [7].

Automating transformation and reimplementation projects in software devel-
opment are a major challenge, and many of these projects encounter significant
difficulties [28,33]. One important reason is that many programs depend on pro-
prietary middleware considered outdated today., like e.g., old database systems
or transaction monitors.

The use of exotic or less common programming languages can also be an
obstacle, as expertise in such languages is scarce, and transformation tools may
be lacking. In addition, the quality of legacy code is often already poor, and auto-
mated transformation could actually degrade code quality further. In addition,
there are concepts related to programming languages that cannot be easily trans-
ferred to other programming languages. A typical example is imperative code
that cannot be directly transferred to object-oriented programming languages,
leading to ineffective code after an automated transformation [29].

However, given the growing amount of legacy code, automated code trans-
formation nevertheless remains an increasingly important topic in research and
practice [29]. Manual code transformation is usually both time-consuming and
costly [13]. Moreover, it requires specialized knowledge and, for large code bases,
can lead to errors that are difficult to detect and fix [3].

Therefore, it is essential to develop more effective tools for automated code
transformation to efficiently and cost-effectively transition legacy code into mod-
ern systems [13].

Recent advances in large language models (LLM) due to the introduction of
generative pretrained transformer (GPT) architectures using attention mecha-
nisms [10,35], popularized by services like ChatGPT1, have revolutionized the art
of programming and transformed software development in many ways. Despite
these advances, there are some restrictions limiting their usefulness for legacy
code transformation:

– LLM can translate code, but often do so without a deep understanding of the
underlying concept or original purpose [18].

– There is a risk that LLM translate code that may be redundant or no longer
have a use in modern systems.

1 https://openai.com.

https://openai.com
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– Even if LLM are able to translate legacy code, different programming
paradigms (e.g., imperative vs. object-oriented) may cause the performance
of the transformed code to suffer.

– For a successful code transformation, LLM often require the full source code
or specific details from the documentation describing what functions the code
should perform.

Instead of LLM, in order to reproduce the relationships between inputs and
outputs, deep learning models could be used, but the resulting program surro-
gate, in the form of a trained neural network, could neither guarantee that inputs
always generate the expected outputs, nor is it verifiable or testable [9,27,31].

Therefore, in this paper a hybrid approach is proposed, which combines pro-
gram synthesis, which can establish relationships between inputs and outputs
but does not suffer from the black box problem, and use a LLM to generate the
surrounding code.

The rest of this paper is organized as follows: In Sect. 2 the related work
is analyzed in more detail. Section 3 describes the proposed solutions, which is
experimentally evaluated by applying it to a semi-realistic COBOL program as
described in Sect. 4. The results of the evaluation are presented in Sect. 5. We
conclude with a summary of our findings.

2 Related Work

Legacy application modernization has been a topic for many years in research
and practice [3,15,21,28].

Various approaches to automatic code transformation have been considered
in the literature over the years. However, mainly symbolic, rule-based [15] or
simple statistical methods have been investigated, mostly also only for restricted
problem classes such as clone detection [19,34].

Only few recent works discuss approaches for using ML or AI methods in the
context of code analysis or transformation, e.g., again for code clone detection
[36–38]. However, approaches that use e.g. new approaches like GPT are missing
so far. On the other hand, initiatives such as AI for Code are currently in the
process of establishing a basis for such approaches by creating corresponding
databases of program code (Codenet) [22].

As only little previous work exists on the use of AI for legacy application
modernization, in this paper a novel hybrid approach is proposed, combining
the earlier works on program synthesis with the recent LLM breakthrough by
ChatGPT.

The theory of program synthesis dates back to the 1950s [11]. It was exten-
sively defined and elaborated in the 1970s. The main problem of program syn-
thesis, to automatically construct programs to match a given specification, has
long been a research topic in computer science [4,20,30].

Thanks to increased computing power, the implementation of these ideas is
more feasible today. A wide variety of approaches exist in the area of program
synthesis, but a unified definition is lacking so far [16,23,40].
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The predominant approaches as described by Si et al. [27] can be classified
into three types: The neural approach, in which pseudocode is generated from
input-output examples, the symbolic approach, which synthesizes based on
specifications, and the inductive approach, in which a neural network acts as
a surrogate for a program.

In particular, the symbolic approach can be a promising way forward in
certain circumstances, but only if the specifications are sufficiently concrete and
precise.

In the case of legacy code, as already mentioned, this is often not the case.
The inductive approach, on the other hand, confronts researchers and developers
with the well-known black box problem and is therefore often not applicable in
sectors with extremely strict regulations, such as banking and insurance.

In this work, we focus on the Programming by Example (PBE) approach [39].
Well-known implementations include RobustFill (for string analysis), AlphaRegex
(for regular expression generation), and DeepCoder (for integer and integer list
analysis).

A particular advantage of program synthesis is evident in the legacy con-
text: Many large corporations, banks, and insurance companies that use legacy
code have an extensive database of input-output examples. These IO-based
approaches theoretically do not require code. Moreover, they are language-
independent and can therefore be applied to different programming languages.
Despite the black-box nature of the underlying AI model, the results are editable
and validatable [17].

However, there are challenges. These include problems due to “noise” in data
[27], difficulties in handling loops [12], limited model availability, and limited
mapping capability through Domain Specific Languages (DSL) [23].

Criticism also includes the overuse of synthetic data and the resulting insuf-
ficient semantic mastery, as well as limited generalization and accuracy rates
[24]. In addition, the models are currently limited to integers, which leads to
problems in representing floating point numbers and other data types.

In conclusion, the flexibility of DSL is both an advantage and a challenge.
While it can be extended to include arbitrary constructs, an overly elaborate
DSL increases model complexity.

All these points illustrate, that program synthesis alone is not sufficient to
build a solution for legacy code transformation, which would be useful in practice.
However, combining it with the power of LLM, e.g. in the form of ChatGPT,
could bring a new quality to it.

Therefore, in this paper the question is addressed, how a combination of
an existing approach for program synthesis with ChatGPT for the actual code
generation could be applied to transform legacy code to modern languages like
e.g. Java, and what could be expected with respect to the quality of the resulting
code.
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3 Design of the Solution

The functional core of the program candidate to be replaced, and thus the start-
ing point for the LLM query shall be the relationship between input and output
established by the program synthesis.

This core shall then be enriched step by step by further information, as
illustrated in Fig. 1.

Fig. 1. Hybrid and multi-layered approach, with information generated by program
synthesis at the core, enhanced with further information (e.g. embedding in desired
framework).

The implementation of program synthesis in a real-world context follows a
multistep process. This process can be divided into the following steps, as shown
in Fig. 2.

1. Extraction of inputs and outputs: First, the necessary inputs and outputs
are extracted from the available data.

2. Generation of data combinations: A Data Variator is used to generate all
possible combinations of inputs and outputs. This allows to identify potential
sub-combinations in the data.

3. Application of program synthesis: The next step is to perform the actual
program synthesis.

4. Translation to LLM query: The result of the program synthesis is trans-
lated into an LLM query and submitted to the LLM system

5. Code generation: Based on the query, the LLM system generates the asso-
ciated code.

6. Optimization of query:
(a) Refining: Optimize the query by adding additional information from

source code, comments, documentation and other sources.
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(b) Extension: For more comprehensive code generation, information about
frameworks, interfaces and other relevant aspects are integrated into the
query.

This approach ensures a structured and comprehensive approach to program
synthesis, generating high-quality and relevant code.

Fig. 2. Procedure to generate code using LLM and program synthesis, restricted to
(lists of) integer values from different data sources

Program Synthesis: Per-Example Program Synthesis

PEPS (Per-Example program synthesis) aims to create a pseudo-program pg

that satisfies a set X consisting of N IO examples, each represented as an input-
output pair. This program, consisting of T lines, is identified within a speci-
fied time limit. The behavior and structure of this program are influenced by a
domain-specific language (DSL) originally introduced for DeepCoder [2].

The DSL presented by Balog et al. includes first-order functions such as SORT
and REVERSE and higher-order functions such as MAP and FILTER. These functions
can handle lambda functions as inputs. The DSL supports both integers and lists
of integers as inputs and outputs.

Unlike PCCoder, which is based on a Global Program Search (GPS) approach
and processes all IO examples simultaneously, N-PEPS implements an approach
that handles each example individually. In this approach, PCCoder builds pro-
grams incrementally based on a concept of a program state. The state of this
program is a N × (ν + 1) dimensional memory created by executing t program
steps over N inputs. The model consists of two neural components: Hθ and Wφ.
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While Hθ generates the embedding of the current state, Wφ predicts three key
variables for the next program line.

The model is trained with multiple instances of the specification X and the
actual program pg. For inference, complete anytime bar search (CAB) is used,
stopping either when a solution is reached or when the maximum time is reached.

The main idea behind N-PEPS is to decompose the given N IO examples into
N individual subproblems and then reassemble them later. Within N-PEPS, the
module responsible for detecting PE solutions is called the PE search module.

The Cross Aggregator (CA) approach aims to detect the next line in the
global solution pg based on the execution data of individual programs. This is
done using a cross-attention mechanism where the key and value matrices are
generated from the PE program state embeddings and their subsequent lines.

To achieve the synthesis of a global solution pg, the Cross Aggregator (CA)
employs a neural network-based architecture with a multi-head attention mech-
anism. Instead of relying on elementary aggregation methods, the CA harnesses
program execution state information, comparing the global solution’s current
state to those of preliminary solutions (PE solutions). By using a cross-attention
mechanism, it determines the relevance of PE solution states, positing that a
closely aligned PE state can provide significant cues for the next line of the
global solution. This strategy ensures optimal combinations of PE solutions,
proving especially crucial in scenarios where the comprehensive solution requires
non-trivial combinations or introduces statements not found in the PE solutions.

The N-PEPS model mirrors one layer of the transformer encoder block. How-
ever, due to computation time constraints, the framework consists of only one
layer. The key-to-value mapping in the N-PEPS model plays a critical role in
the process.

Overall, N-PEPS enables efficient synthesis of programs based on IO exam-
ples. By combining domain-specific languages, neural models, and specialized
search techniques, N-PEPS offers some improvements in program synthesis com-
pared to previous models.

In the context of the development of program synthesis models, the evo-
lution of the models can be seen as a progressive process that started with
DeepCoder, evolved through PCCoder, and finally culminated in the develop-
ment of N-PEPS. In this process, N-PEPS builds directly on the DSL originally
developed for DeepCoder.

This ensures continuity in the application and development of the models,
while allowing to build on the knowledge and functionality of the previous mod-
els. In terms of performance, significant improvements were observed; the results
of N-PEPS outperformed those of PCCoder, which ultimately led to N-PEPS
being selected as the preferred model. This indicates that the ongoing develop-
ment and refinement of models in the field of program synthesis is leading to
increasingly efficient and powerful solutions.
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Large Language Models: General Pretrained Transformer

For the natural language processing application domain, the LLM in the form
of ChatGPT (version 4) was chosen. The reasons for this choice are:

– Availability: ChatGPT is currently widely available.
– API access: ChatGPT’s interface provides user-friendly and easy access,

which facilitates integration and application in various contexts.
– ChatGPT is able to generate working code, often of good quality [1,5].
– ChatGPT has limited learning capabilities (few-shot/zero-shot learning) [5,

6,14]

Fig. 3. An example of ChatGPTs limited reasoning abilities.

ChatGPT has significant capabilities in terms of generating coherent code.
Nevertheless, it has inherent limitations in terms of deep understanding of con-
text, especially when it comes to complex links between inputs and outputs.
Although it is capable of responding to the information provided to it and gen-
erating responses based on its extensive training, it lacks the human ability to
intuit and consider context beyond the immediate data, as seen in Fig. 3.
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A simple solution, which is not directly obvious to ChatGPT, is to add all
the numbers and then multiply by two. ChatGPT itself points out that there is
(a) a lack of additional information and (b) a lack of input-output pairs. Even
with an additional input-output pair, ChatGPT does not manage to establish
a simple connection between input and output. The multiplier that might be
“hidden” in a program is invisible to ChatGPT’s analysis capabilities.

4 Experimental Evaluation

COBOL modules, which perform Db2 and dataset accesses, form the basis of
this study. Publicly available repositories often only provide technology demon-
strations or are too complex for demonstration purposes.

Therefore, self-created modules are used as a basis. A JCL batch job is com-
posed of two COBOL modules: TXPROC and SCORES. TXPROC reads one
transaction record each from a dataset. This record consists of a “type”, a “min-
imum rating”, a “maximum rating” and a “value”. Depending on the “type”, dif-
ferent processes are triggered, as illustrated in Fig. 4. The input lists of the IO
pairs for the program synthesis are generated from the respective transaction
record and the unchanged rows from the table CUSTACOT.

The table CUSTACOT represents a backup of CUSTACC before changes
were made by TXPROC. The output lists of the IO pairs consist of the rows
from CUSTACC changed by TXPROC, i.e. the delta between CUSTACC and
CUSTACOT.

Fig. 4. Code excerpt of COBOL module TXPROC

SCORES calculates a SCORE for each customer and records it in the corre-
sponding dataset. This is calculated from (RATING + FLAG1 + FLAG2) * 2.
Customers with a negative rating receive an additional entry in a BADRATING
dataset. Following the SCORE processing, another dataset with HIGHSCORES
is created. For this purpose, all entries with a score > 20 are transferred from
the SCORE dataset to the HIGHSCORE dataset, as shown in Fig. 5.
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Fig. 5. Code excerpt of COBOL module SCORES

The pre-trained model “E2” from the N-PEPS authors’ Git repository [25] is
used for synthesis. Default parameters, see [26], are used and synthesis is applied
directly to the inputs and outputs of the COBOL modules. The Data Variator
is used to prepare the input-output pairs. The main goal is to identify partial
relations between the different IO pairs. One challenge here is the combinatorial
explosion, which allows up to n! for n = |InputV ariables|+ |OutputV ariables|
combination possibilities. This makes it difficult to check all combinations, espe-
cially for large programs.

The output of the program synthesis is transformed into tokens using a
Python script, which can then be processed by ChatGPT.

Applying program synthesis methods to the given COBOL modules revealed
some interesting observations.

Module 1: TXPROC

While examining the TXPROC module, we encountered the several difficulties.
Program synthesis could not identify a direct path from inputs to outputs. This
suggests that the relationship between the given inputs and outputs in TXPROC
is non-trivial or not directly representable by the synthesis methods used.

The module partially accesses data of type ‘Decimal’ in Db2, respectively
‘PIC S9(5)V9(4) USAGE COMP-3’ in COBOL, and respectively ‘BigDecimal’
in Java. The mapping of these data types to the ‘Integer’ data type was required,
resulting in compression losses. This could have an impact on the ability of
synthesis to find correct and accurate paths.

Furthermore, the application of the Data Variator was only possible to a
limited extent in this case. The main problem was the sheer number of possi-
ble combinations that could be generated by the Data Variator. This makes it
impractical to analyze all possible combinations in an efficient amount of time.

Module 2: SCORES

As described the module is able to write entries in three datasets. This is achieved
by the processing steps already described. In the following, the steps are divided
into three logical units: SCORE, to calculate the score, HIGHSCORE, if the
score is greater than 20 and BADRATING, if the rating is negative.
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To calculate the SCORE, input data from the database were first connected
to the corresponding output data from the dataset. For simplicity, it was assumed
that the customer ID in the database has an equivalent in the dataset.

The resulting IO pairs were processed with the Data Variator and inputs for
program synthesis were generated from them. An input for the program synthesis
could look as follows:

1 {"examples":[
2 {"output":[38,99],"inputs":[[99,1,5,7,7,

-245,-230]]},
3 {"output":[24,17],"inputs":[[17,3,0,5,7,

-251,-253]]},
4 {"output":[22,7],"inputs":[[7,0,3,7,1,

-177,-200]]}
5 ]
6 }

The program synthesis applied to the IO pairs shown here could not produce
a result. Since we assume that one value of the output is the customer ID in
each case, the focus is on the other value of the output list.

So the crucial “examples” are the following:

1 {"examples":[
2 {"output":38,"inputs":[[5,7,7]]},
3 {"output":24,"inputs":[[0,5,7]]},
4 {"output":22,"inputs":[[3,7,1]]}
5 ]
6 }

In the first test run, the following token, using the said DSL, was generated:

LIST|MAXIMUM,0|TAKE,1,0|ZIPWITH,+,2,2|SUM,3

For the first IO pair, this would mean the following: Take the maximum of
the list a = [5, 7, 7]. Create a new list b containing all elements of the input list
after the maximum (here: 7). Take the list b and the list b, add all elements
in order, create list c from it. Sum all elements of list c. For the specified IO
pairs, this procedure makes sense, but the first two steps do not seem necessary,
since the lists are shorter than the “maximum”. Apart from this, this could cause
errors under corresponding conditions.

After adding another IO pair, namely {"output":6, "inputs":[[1,
1,1]]}, the program synthesis was able to generate a shortened, permissible
token:

LIST|ZIPWITH,+,0,0|SUM,1



216 S. Fischer-Heselhaus and P. Brune

Using Python script, a prompt for ChatGPT is automatically generated from
the pseudocode. When ChatGPT is asked to apply the steps to a given input, it
is able to generate a corresponding output, as illustrated in Fig. 6 and Fig. 7.

Fig. 6. Example for ChatGPT query with token generated by program synthesis trans-
lated into natural language

Fig. 7. Response to ChatGPT query with token generated by program synthesis trans-
lated into natural language

When asked to translate the functions into Java code as compact as possible,
ChatGPT responds as follows:

In the last step we feed ChatGPT with additional information: We assume
that we know that the data is taken from a database with a table named “CUS-
TACC” and the columns “RATING”, “FLAG1” and “FLAG2” are evaluated. With
this information ChatGPT is able to deliver a SQL query that is close to the
original query, as shown in Fig. 8:
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Fig. 8. Response from ChatGPT when asked for a SQL query after enriching the
original ChatGPT query with details such as the table layout.

It was not possible to generate results for the HIGHSCORE routine by means
of program synthesis. Although HIGHSCORE works similarly to SCORE, not
all customer IDs appear in the HIGHSCORE dataset. Accordingly, the IO pairs
sometimes look different:

1 {"examples":[
2 {"output":38,"inputs":[[5,7,7]]},
3 {"output":[],"inputs":[[5,1,0]]},
4 {...}
5 ]
6 }

If only the entries present in the HIGHSCORE dataset are matched with the
database, a subset of the functionally equivalent IO pairs of the SCORE routine
is created; accordingly, the control structure of HIGHSCORE would be lost.

There is no negative rating (BADRATING) in the table used, so no entry
is created in the corresponding dataset. In a realistic scenario, there would be
two explanations for this: Either it is dead code that is no longer applied or the
occurrence of a negative rating it is a rare, if not critical, event.
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5 Results

Applying program synthesis to legacy code provides an impressive way to auto-
matically generate tokens, which can be used as a starting point for code gener-
ation via LLM.

The tokens generated by program synthesis offer the advantage of trans-
parency. This differs from “black box” approaches and allows direct comparison
with the original legacy code. A notable advantage of program synthesis is the
automatic elimination of dead code. However, there is a risk that certain edge
cases could be overlooked if insufficient I/O examples are provided.

In theory, program synthesis can be applied at any level - be it IO within a
JCL job, within a COBOL module, a process or a subroutine. The only require-
ment is the ability to create a relation between inputs and outputs.

The case study highlighted the advantages and some pitfalls of the multi-
layered AI approach. In particular, program synthesis can react very strongly
to small changes in input-output pairs. It should be noted that the case study
chosen is deliberately simple. Shrivastava et al. give other, much more complex
examples [26].

Among the challenges is the need to map various data types to the ‘integer’
type, which in some cases can prevent the use of program synthesis.

Although there are theorems for mapping data types into congruent (number)
spaces by approximation, there is no way to map floating point numbers effec-
tively, i.e. without loss of information, which means that correlations between
inputs and outputs are easily lost [?].

Furthermore, data preparation requires a lot of time and effort. Nevertheless,
a detailed knowledge of inputs and outputs enables the creation of input-output
pairs suitable for program synthesis. A completely open application to inputs
and outputs is possible, but the processing time increases considerably if every
conceivable combination is evaluated by means of program synthesis.

In addition, it has been observed that program synthesis generates overly
complex tokens in some situations, which could make the process inefficient.
It could be shown that linking program synthesis and LLM provides an app-
roach to migrate legacy code to other programming languages even with little
information.

In addition, the use of an LLM ensures that there is flexibility with regard
to the target environment, represented here in the form of Java code and SQL
query. However, it also became apparent that the code quality increases if the
LLM is provided with appropriate additional information.

6 Conclusion

In conclusion, in this paper a new hybrid approach for AI-based transformation
of legacy code to modern programming languages was presented. By combining
program synthesis with GPT, it avoids translating the original legacy code, but
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recovers its actual functionality and generates a new program for it. The app-
roach was evaluated in an explorative way in first experimental setup using a
semi-realistic COBOL program as example.

The results are promising, but further research and development are needed
to improve and expand it regarding the following aspects: First, stochastic meth-
ods, in particular cluster analysis, should be integrated into the overall workflow.
By pre-analyzing the relationships between inputs and outputs, it would enable
to perform inferences about control structures in legacy code. It could also help
reduce the sheer volume of possible combinations for the Data Variator. If certain
inputs have particularly strong relationships to specific outputs, these correla-
tions could be brought to the forefront, leading to more efficient and targeted
analyses.

Second, the constraints of the input and output values to an integer number
range needs to be removed. The key questions are: What limits are reasonable?
What range of values actually occurs in real inputs and outputs? And can there
be alternative models or more efficient mappings that exceed or replace the
integer number range?

Finally, the approach needs to be integrated in a software tool to provide a
higher degree of automation and to make the program synthesis process more
efficient and user-friendly. This will help to achieve faster and more accurate
results, especially in complex legacy code environments.
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