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Abstract. The field of Artificial Intelligence (AI) has a significant
impact on the way computers and humans interact. The topic of (facial)
emotion recognition has gained a lot of attention in recent years. Major-
ity of research literature focuses on improvement of algorithms and
Machine Learning (ML) models for single data sets. Despite the impres-
sive results achieved, the impact of the (training) data quality with its
potential biases and annotation discrepancies is often neglected. There-
fore, this paper demonstrates an approach to detect and evaluate annota-
tion label discrepancies between three separate (facial) emotion recogni-
tion databases by Transfer Testing with three ML architectures. The find-
ings indicate Transfer Testing to be a new promising method to detect
inconsistencies in data annotations of emotional states, implying label
bias and/or ambiguity. Therefore, Transfer Testing is a method to verify
the transferability of trained ML models. Such research is the founda-
tion for developing more accurate AI-based emotion recognition systems,
which are also robust in real-life scenarios.

Keywords: Emotion Recognition · Facial Expression Recognition ·
Emotional Artificial Intelligence · Transfer Testing · Data Quality ·
Transferability

1 Introduction

Over the past years, there has been significant interest in AI-based emotion
recognition both in research and in practical applications. This technology
enables machines to identify the emotional state of humans [26,32].

The use of emotion recognition systems has expanded to various fields, includ-
ing customer service [1], emotional support [3], and human-computer relation-
ships [6,7,18].

Numerous studies have been conducted to develop emotion recognition tech-
nology using various data modalities and classification taxonomies [19,31]. Facial
expression recognition (FER) is one of the most widely used and promising tech-
nologies [14,37], mainly due to the fact that human emotions are strongly con-
veyed through facial expressions [5,40]. The use of computerized FER has been
the subject of extensive research in recent years [26,32].
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The primary focus of these studies is to enhance the performance of ML
models and their architectures as well as the overall model performance [36].
Although research has mostly centered on individual or a limited number of
data sets, not much attention has been given to the underlying data (quality)
which affects the transferability. As a result, the significance of inconsistencies in
data annotation and/or labeling ambiguity of emotional states remains poorly
understood [11] and the models perform badly on additional data sets.

To assess the impact of inconsistencies and/or labeling ambiguity and
increase the transferability past research uses Transfer Learning. Transfer Learn-
ing uses pre-learned knowledge from a task to improve the performance of a
related task [34]. In the context of FER, Transfer Learning is used to improve
the performance of a model on a new data set by using a pre-trained model
on a different data set [25]. However, Transfer Learning does not provide any
information about the quality of the data annotations.

Therefore, in this paper we propose a new method called Transfer Testing to
get further insights into quality of the data annotations. This extends and builds
on the results some of the authors presented in [13], as we discuss later in Sect. 5.
In [13], the same data sets were examined for inconsistencies in data annotation
and/or labeling ambiguity. As outlined in Sect. 5, our earlier paper revealed label
similarities in RAF-DB and FER2013, whereas AffectNet annotations differed
from the other data sets. In the present paper, these earlier results are extended
by using more than one ML architecture, as well as by, Transfer Testing to
evaluate across databases, while the methodology is not changed.

Transfer Testing is a method to verify the transferability of trained ML mod-
els. It is a systematic approach to detect and evaluate annotation label dis-
crepancies between separate (facial) emotion recognition databases. The findings
indicate Transfer Testing to be a new promising method to detect inconsistencies
in data annotations of emotional states, implying label bias and/or ambiguity.
Such research is the foundation for developing more accurate AI-based emotion
recognition systems, which are also robust in real-life scenarios.

Our goal is to gain a better understanding of how transferability is affected
by different data sets annotations using various model architectures. Therefore,
multiply models were trained on one single data set and tested on both other
data set. This process is called Transfer Testing. By applying Transfer Testing, we
investigate potential discrepancies in data annotations and provide new insights
for future research directions in the field of transferability.

The rest of this paper is organized as follows: In Sect. 2, a detailed review of
the existing literature on facial emotion recognition is presented, as well as the
relevant ML techniques and a description of emotional data sets. The research
methodology and data used for the systematic analysis is shown in Sect. 3. In
Sect. 4 the accomplished results are presented and discussed in depth in Sect. 5.
The conclusions summarize our findings.
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2 Related Work

2.1 Facial Expression Recognition

FER combines Psychology [5,9] and Technology (Computer Vision). This inter-
disciplinary research field aims to infer human’s emotional state to gather highly
relevant information contained in facial expressions [12,20].

Most research on facial emotion recognition is based on Paul Ekman’s work.
He claims, different cultural backgrounds do not affect dependencies between cer-
tain facial expressions and human emotional states [9]. Ekman defined six basic
emotional states, namely anger, fear, disgust, happiness, surprise and sadness
[5,8]. Focusing on ML, emotion recognition can be differentiated into follow-
ing four different tasks: Single Label Learning (SLL), SLL Extension (extended
by Intensity Estimation), Multi-Label Learning (MLL) and Label Distribution
Learning (LDL) [11].

SLL describes a multi-class ML problem. Based on the highest likelihood one
emotional class is identified from several possible emotional states in a facial
expression. Since, this study focuses on limitations directly linked to SLL [11],
the other techniques are not discussed.

Since computers require binary states, research and practice develop ML
models, which perform well by assigning one emotional class to a single facial
expression. That is still the main focus of research. By taking a closer look
on the ML task, there are certain dependencies between the ML approaches,
for instance, SLL can be seen as LDL instances [11]. This work deals with a
two-sided aspect of data annotations in SLL tasks. Firstly, data annotations
(labels) can either be manually or automatically generated which can lead to
inconsistencies/biases. Secondly, recent research claims that one facial expression
can carry more than one emotional state [11]. From past research is also known
that certain emotional states can be recognized better than others [21,35].

These challenges have already been investigated on different facial data sets
by some of the authors [13]. By exploring various data sets with one basic CNN
model, past research came to the conclusion that not only the size of the data
set nor the share of each emotion has influence on the recognition accuracy, the
underlying data (label) quality affects this too [13]. In addition, higher image
resolution data sets do not necessarily lead to better recognition results [13].
Furthermore, latest research has successfully developed models for FER which
discount annotations and still achieve impressive results [25]. These models trans-
form the given emotion into a neutral expression in order to reconstruct the
emotion on this basis.

2.2 Machine Learning Techniques

There are different approaches for FER in ML. A general ML process consists of
up to three phases. First preprocessing phase, second feature extraction phase,
which can be optional, and third emotion recognition or rather classification
phase. Different conventional ML and/or modern Deep Learning methods can be
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applied within each phase. Conventional ML methods consist of Support Vector
Machine (SVM), Adaptive Boosting (AdaBoost), Random Forest (RF), Decision
Tree [11]. Deep Learning models extract automatically relevant facial features
during training [28,41]. In FER Deep Learning models like Convolutional Neural
Networks (CNNs) and Recurrent Neural Networks (RNNs) attract attention [11].

A CNN has multiple layers similar to a Deep Neural Network (DNN). A
CNN contains convolutional layer(s), pooling layer(s), dense layer(s) and fully
connected layer(s). The convolutional layer(s) train the relevant features, start-
ing from low-level features in early layers, up to high-level (abstract) features.
The following pooling layer(s), aggregate information and thereby reduce com-
putational complexity [24].

A CNN model automatically extracts features. For this reason, separate fea-
ture extraction methods like in traditional ML algorithms are not necessary
[11]. Some different popular CNN architectures are listed below in chronological
order: LeNet-5 [24], AlexNet [23], GoogleLeNet [39], VGGNet [38], ResNet [16],
Xception [4], SENet [17]. The architectures have evolved and got more com-
plex over the time. Further on, convolutional layers have been stacked directly
and inception modules, residual learning (with skip connections) and depthwise
separable convolution layer have been developed.

2.3 Emotional Facial Databases

Previous research in FER has led to a lot of facial databases. These dif-
fer based on data type (static, sequential), data dimension (two-dimensional,
three-dimensional), data collection environment (controlled, uncontrolled), and
number of facial expressions [11]. Databases set up in a controlled environ-
ment are for instance The Extended Cohn-Kanade data set (CK+) [29] and
The Japanese Female Facial Expression (JAFFE) database [30]. Since systems
based on these data sets reach only lower performance in real-world scenarios,
research demanded for databases collected in an uncontrolled setting. Examples
are AffectNet [33] and Real-world Affective Faces Database (RAF-DB) [27]. Most
of these databases include six basic emotional states [10], usually adding one neu-
tral facial expression. Therefore, emotional labels can be annotated manually by
experts [33], by computers or by a combination of these [15].

3 Methodology

3.1 Technical Environment

We implemented all ML models on our institute server. It runs on Ubuntu 20.04
LTS, including the NVIDIA data science stack [2]. The server has two NVIDIA
A40 Graphics Processing Units. The code is developed in Python, using Jupyter
Notebook as integrated development environment, and made use of these Python
frameworks: NumPy, Matplotlib, Pandas, Scikit-Learn, Keras and TensorFlow.
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3.2 Data Collection

We consider three different data sets which contain the six basic emotions (anger,
fear, disgust, happiness, surprise and sadness) with an added neutral facial
expression [13]. In addition, to receive a sufficient quantity of data, as well as
a more realistic and representative data, we excluded databases with a size of
less than 10,000 instances and/or the ones collected in a controlled environment.
The remaining data sets are FER2013, RAF-DB and AffectNet with eight labels
(the so-called Mini Version).

FER2013 contains 35,887 gray images, which are automatically cropped,
labeled and then cross-checked by experts. It has seven emotional classes and
all images are resized to a format of 48× 48 pixels [15]. RAF-DB on the other
hand has 15,339 aligned colorful RGB-images. All images were manually anno-
tated by about 40 experts and aligned to a size of 100× 100 pixels [27]. The mini
AffectNet consists of 291,650 only manually annotated images in RGB-color with
224× 224 pixels each. The emotional state contempt was removed in addition to
leave us with the same seven emotions as in the other data sets [33].

Table 1. Distribution of Emotional Classes per Data Set

Emotion FER-2013 RAF-DB AffectNet

Pixel Size 48× 48 100× 100 224× 224
Anger 4,953 (14%) 867 (6%) 25,382 (9%)
Disgust 547 (2%) 877 (6%) 4,303 (1%)
Fear 5,121 (14%) 355 (2%) 6,878 (2%)
Happiness 8,989 (25%) 5,957 (39%) 134,915 (47%)
Sadness 6,077 (17%) 2,460 (16%) 25,959 (9%)
Surprise 4,002 (11%) 1,619 (11%) 14,590 (5%)
Neutral 6,198 (17%) 3,204 (21%) 75,374 (26%)
Total 35,887 (100%) 15,339 (100%) 287,401 (100%)

3.3 Data Pre-processing

The pre-processing stage covers typically different methods. For instance, face
detection, facial landmark localization, face normalization and data augmenta-
tion [20]. Face localization is the first step. The previously described data sets
have already aligned and cropped images. That is why we limit preprocessing to
data normalization and augmentation.

To have equal conditions for the comparison, we resize the images of RAF-
DB and AffectNet to the pixel size of FER2013. Since we combine normalization
and data augmentation method, we divide each pixel by 255, which results in a
range from 0 to 1 for each pixel. The total distribution of the emotional classes
is presented in Table 1.
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The pixel size is similar on the three different data sets. Most emotional
states are sufficiently well represented in all data sets, with a few exceptions.
Every data set is split into one training and one test set, with ratios of 80
percent to 20 percent. 30 percent of the training set are used as validation set.
By stratifying the splits we keep the proportions of each emotional class equal
in training, validation and test set. Since AffectNet is provided with a small
test set, we first combine training and test set. Afterwards we split it in the
same ways as the others. By the end of this publication we address differences in
annotation and label ambiguity between the three data sets. Therefore, we use
the trained models on each data set and evaluate these on the other two data
sets, i.e. AlexNet, which was trained on RAF-DB, is evaluated on AffectNet.
Since FER2013 only has decolorized images, we turn all images into black and
white.

3.4 Deep Learning Model Architecture

As already mentioned, we implement various CNN architectures. First of all we
need to emphasize that our aim is to compare the emotion recognition accuracy
for individual emotional states in different data sets, which does not require
beating a certain performance threshold. Hence, we have decided to use three
architectures which use stacked CNN layers directly. The first one is AlexNet
[23]. The second architecture is a standard CNN based on AlexNet [23]. In the
following this CNN architecture is called defaultNet. This defaultNet is the same
architecture used in [13]. The architecture of defaultNet consists of four blocks,
each block contains two convolutional layers followed by one pooling layer. In
each convolutional layer, we chose the padding option same and ReLu activa-
tion function. The pooling layer uses max pooling, which generally performs
better than average pooling. After a stack of these four blocks, the output is
flattened and then two dense layers including dropout follow. In the end, we
classify between seven possible emotional states. To consider a more complex
architecture we decided to use VGGNet [38] as our last architecture.

For training of our models we define 50 epochs and a batch size of 128 for
every data set, in order to have the same amount of weight updates. However,
the steps per epoch differ due to the different size of the data sets. Furthermore,
we use Adam Optimizer starting with a learning rate of 0.0001. This learning
rate is dynamic because it is automatically reduced during training, if validation
accuracy does not improve for three epochs in a row. At the end, we use on each
architecture the model with the highest validation accuracy during training.

3.5 Transfer Testing

All architectures defined in Sect. 3.4 are trained on each data set. After training,
the models are initially evaluated on the test set of the data set they were trained
on. In addition, we evaluate the trained models on the test sets of the other two
data sets. This process is called Transfer Testing. A graphical explanation of the
whole process is shown in Fig. 1.
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Fig. 1. Evaluation process of one architecture.

Figure 1 show the evaluation of one ML model on the three data sets.
This process is done for all three model architectures (AlexNet, defaultNet and
VGGNet) among all data sets. For instance, AlexNet is trained on RAF-DB.
This trained AlexNet is evaluated on the test set of RAF-DB, FER2013 and
AffectNet. This process is repeated for every architecture and each data set.
The results are presented in the next Section.

4 Results

In this section, we present emotion recognition accuracy of the seven basic emo-
tional states for every model architecture evaluated on the three data sets. The
outcome metrics are limited to precision, recall and F1-score as these are relevant
to answering our research question(s). Due to class imbalances, overall accuracy
is not very meaningful. Our main focus of the analysis is on the F1-scores, which
represents the harmonic mean of precision and recall. The following results eval-
uate the three trained models on every test set of one of the three data sets,
i.e. the AlexNet which was trained on RAF-DB is evaluated on FER2013 and
AffectNet. Therefore, the results contain F1-scores of normal testing and Trans-
fer Testing. Table 2 shows the evaluation of the three trained models on the test
set of FER2013. Furthermore, the results for RAF-DB are represented in Table 3
and for AffectNet in Table 4.

For each data set, we run the models five times in order to address random
model initialization. Additionally, the corresponding standard deviation is shown
in brackets for every metric. There is a general tendency for emotional classes
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Table 2. Evaluation od Models trained on FER2013 for all three data sets

Count Emotion AlexNet defaultNet VGGNet

991 Anger-FER 0.34 (± 0.03) 0.49 (± 0.01) 0.46 (± 0.01)
Anger-RAF 0.16 (± 0.01) 0.16 (± 0.01) 0.12 (± 0.01)
Anger-Aff 0.19 (± 0.01) 0.17 (± 0.01) 0.12 (± 0.01)

109 Disgust-FER 0.04 (± 0.08) 0.05 (± 0.10) 0.27 (± 0.11)
Disgust-RAF 0.02 (± 0.01) 0.00 (± 0.01) 0.02 (± 0.01)
Disgust-Aff 0.02 (± 0.00) 0.01 (± 0.00) 0.02 (± 0.00)

1,024 Fear-FER 0.34 (± 0.02) 0.38 (± 0.02) 0.41 (± 0.02)
Fear-RAF 0.08 (± 0.04) 0.05 (± 0.02) 0.14 (± 0.03)
Fear-Aff 0.12 (± 0.04) 0.18 (± 0.01) 0.14 (± 0.03)

1,798 Happiness-FER 0.66 (± 0.01) 0.78 (± 0.01) 0.80 (± 0.01)
Happiness-RAF 0.43 (± 0.00) 0.50 (± 0.02) 0.52 (± 0.01)
Happiness-Aff 0.03 (± 0.02) 0.04 (± 0.01) 0.52 (± 0.01)

1,216 Sadness-FER 0.35 (± 0.01) 0.45 (± 0.01) 0.46 (± 0.02)
Sadness-RAF 0.25 (± 0.02) 0.27 (± 0.02) 0.28 (± 0.01)
Sadness-Aff 0.01 (± 0.01) 0.02 (± 0.00) 0.28 (± 0.01)

800 Surprise-FER 0.64 (± 0.00) 0.71 (± 0.01) 0.73 (± 0.01)
Surprise-RAF 0.10 (± 0.02) 0.05 (± 0.01) 0.06 (± 0.03)
Surprise-Aff 0.00 (± 0.00) 0.00 (± 0.00) 0.06 (± 0.00)

1,240 Neutral-FER 0.44 (± 0.02) 0.53 (± 0.01) 0.52 (± 0.01)
Neutral-RAF 0.24 (± 0.02) 0.26 (± 0.03) 0.20 (± 0.03)
Neutral-Aff 0.07 (± 0.02) 0.07 (± 0.01) 0.20 (± 0.01)

with higher occurrence to have lower standard deviations, for instance, happi-
ness, sadness and neutral. The variation in F1-scores for each trained model on
remaining data sets is conspicuous. F1-scores on AffectNet tend to be the lowest,
except for the ones trained on AffectNet. For better impression on the impact
of the model architectures on the results Table 5 displays the accuracy of each
model on every data set. In the table we use the weighted average measured
on the quantity of images for each emotion. This means that we first consider
the support of each emotion into account and then take the average of the five
training cycles.

In the next section, we discuss results, similarities and differences in the
recognition accuracy of emotional states and work out possible reasons for this.

5 Discussion

By focusing on the models, we conclude that the impact of the architecture on
the result is not the crucial factor. All model architectures tend to the same
results. VGGNet, the most complex architecture, tends to have higher accuracy
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Table 3. Evaluation od Models trained on RAF-DB for all three data sets

Count Emotion AlexNet defaultNet VGGNet

173 Anger-FER 0.01 (± 0.01) 0.00 (± 0.00) 0.00 (± 0.00)
Anger-RAF 0.43 (± 0.03) 0.56 (± 0.02) 0.53 (± 0.03)
Anger-Aff 0.00 (± 0.00) 0.00 (± 0.00) 0.02 (± 0.04)

175 Disgust-FER 0.07 (± 0.03) 0.05 (± 0.02) 0.05 (± 0.02)
Disgust-RAF 0.10 (± 0.07) 0.25 (± 0.05) 0.33 (± 0.03)
Disgust-Aff 0.07 (± 0.03) 0.07 (± 0.01) 0.08 (± 0.03)

71 Fear-FER 0.00 (± 0.01) 0.00 (± 0.00) 0.00 (± 0.02)
Fear-RAF 0.22 (± 0.03) 0.32 (± 0.08) 0.29 (± 0.05)
Fear-Aff 0.04 (± 0.01) 0.03 (± 0.01) 0.03 (± 0.00)

1,192 Happiness-FER 0.71 (± 0.01) 0.79 (± 0.01) 0.79 (± 0.01)
Happiness-RAF 0.83 (± 0.01) 0.87 (± 0.01) 0.88 (± 0.01)
Happiness-Aff 0.01 (± 0.01) 0.01 (± 0.00) 0.00 (± 0.00)

492 Sadness-FER 0.29 (± 0.01) 0.38 (± 0.01) 0.38 (± 0.03)
Sadness-RAF 0.50 (± 0.02) 0.54 (± 0.02) 0.57 (± 0.03)
Sadness-Aff 0.01 (± 0.01) 0.01 (± 0.00) 0.02 (± 0.01)

324 Surprise-FER 0.11 (± 0.02) 0.11 (± 0.02) 0.13 (± 0.02)
Surprise-RAF 0.63 (± 0.01) 0.67 (± 0.01) 0.67 (± 0.02)
Surprise-Aff 0.21 (± 0.02) 0.20 (± 0.02) 0.21 (± 0.04)

641 Neutral-FER 0.40 (± 0.06) 0.48 (± 0.03) 0.41 (± 0.02)
Neutral-RAF 0.61 (± 0.01) 0.68 (± 0.01) 0.67 (± 0.01)
Neutral-Aff 0.06 (± 0.02) 0.09 (± 0.01) 0.07 (± 0.03)

scores. Obviously the models trained and tested on the same data set provide
the best accuracy.

Doing testing and training on the same data set confirms the findings of
the previous work [13] for all three architectures. New insights on the overall
performance, as well as the emotional states itself, is discussed on the basis of
Transfer Testing in the following.

The results of our analysis in Tables 2, 3 and 4 show that the emotional state
happiness is best recognizable in every data set, independent of the architectures,
while testing on the same data set. Using Transfer Testing of FER2013 and RAF-
DB trained models on these mutual data sets, still happiness is detected best.
AffectNet seems to differ from these two data sets, since the recognition ranking
vary in order during Transfer Testing on FER2013 or RAF-DB. Fear and disgust
are the most difficult emotional states to recognize in all data sets and for all
models except for AffectNet trained ones.

Table 6 illustrates a ranking of recognition accuracy for every emotional state
based on F1-score on FER2013. The same information for RAF-DB is shown in
Table 8 such as for AffectNet in Table 7. The emotional state surprise in the
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Table 4. Evaluation od Models trained on AffectNet for all three data sets

Count Emotion AlexNet defaultNet VGGNet

5,076 Anger-FER 0.14 (± 0.02) 0.12 (± 0.00) 0.10 (± 0.01)
Anger-RAF 0.13 (± 0.01) 0.15 (± 0.01) 0.11 (± 0.01)
Anger-Aff 0.41 (± 0.02) 0.54 (± 0.01) 0.53 (± 0.01)

861 Disgust-FER 0.01 (± 0.00) 0.01 (± 0.00) 0.00 (± 0.00)
Disgust-RAF 0.03 (± 0.00) 0.04 (± 0.00) 0.05 (± 0.01)
Disgust-Aff 0.00 (± 0.00) 0.00 (± 0.00) 0.07 (± 0.07)

1,376 Fear-FER 0.05 (± 0.00) 0.05 (± 0.00) 0.04 (± 0.00)
Fear-RAF 0.04 (± 0.00) 0.06 (± 0.01) 0.06 (± 0.01)
Fear-Aff 0.22 (± 0.02) 0.26 (± 0.03) 0.33 (± 0.03)

26,983 Happiness-FER 0.00 (± 0.01) 0.00 (± 0.00) 0.00 (± 0.00)
Happiness-RAF 0.04 (± 0.01) 0.00 (± 0.00) 0.04 (± 0.03)
Happiness-Aff 0.85 (± 0.00) 0.89 (± 0.00) 0.90 (± 0.00)

5,192 Sadness-FER 0.14 (± 0.01) 0.11 (± 0.02) 0.14 (± 0.01)
Sadness-RAF 0.07 (± 0.04) 0.09 (± 0.02) 0.12 (± 0.01)
Sadness-Aff 0.32 (± 0.05) 0.49 (± 0.01) 0.49 (± 0.02)

2,918 Surprise-FER 0.04 (± 0.00) 0.04 (± 0.00) 0.04 (± 0.00)
Surprise-RAF 0.04 (± 0.00) 0.04 (± 0.00) 0.03 (± 0.00)
Surprise-Aff 0.28 (± 0.03) 0.42 (± 0.01) 0.42 (± 0.02)

15,075 Neutral-FER 0.12 (± 0.03) 0.17 (± 0.01) 0.16 (± 0.03)
Neutral-RAF 0.23 (± 0.03) 0.18 (± 0.03) 0.18 (± 0.04)
Neutral-Aff 0.62 (± 0.00) 0.68 (± 0.00) 0.68 (± 0.00)

Table 5. Accuracy as Weighted Average

Test Set Models trained on AlexNet defaultNet VGGNet

FER2013 FER2013 0.47 0.56 0.58
RAF-DB 0.24 0.25 0.26
AffectNet 0.06 0.07 0.07

RAF-DB FER2013 0.42 0.49 0.47
RAF-DB 0.63 0.69 0.70
AffectNet 0.05 0.05 0.05

AffectNet FER2013 0.06 0.07 0.07
RAF-DB 0.10 0.07 0.09
AffectNet 0.65 0.72 0.72

AffectNet data set represents the major exception in the ranking for traditional
training and testing. Furthermore, the other emotions hardly vary in order on
all three data sets for all architectures. As soon as we evaluate the AffectNet
trained models using Transfer Testing we get results which highly vary from the
other patterns.
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Table 6. Recognition Accuracy Ordinal Ranking for Models trained on FER2013

Trained Rank AlexNet defaultNet VGGNet
FER 1 Happiness Happiness Happiness

2 Surprise Surprise Surprise
3 Neutral Neutral Neutral
4 Sadness Anger Anger
5 Fear Sadness Sadness
6 Anger Fear Fear
7 Disgust Disgust Disgust

RAF 1 Happiness Happiness Happiness
2 Sadness Sadness Sadness
3 Neutral Neutral Neutral
4 Anger Anger Fear
5 Surprise Surprise Anger
6 Fear Fear Surprise
7 Disgust Disgust Disgust

Aff 1 Anger Fear Fear
2 Fear Anger Anger
3 Neutral Neutral Neutral
4 Happiness Happiness Happiness
5 Disgust Sadness Sadness
6 Sadness Disgust Disgust
7 Surprise Surprise Surprise

Table 7. Recognition Accuracy Ordinal Ranking for Models trained on AffectNet

Trained Rank AlexNet defaultNet VGGNet

FER 1 Anger Neutral Neutral
2 Sadness Anger Sadness
3 Neutral Sadness Anger
4 Fear Fear Fear
5 Surprise Surprise Surprise
6 Disgust Disgust Disgust
7 Happiness Happiness Happiness

RAF 1 Neutral Neutral Neutral
2 Anger Anger Sadness
3 Sadness Sadness Anger
4 Fear Fear Fear
5 Surprise Disgust Disgust
6 Happiness Surprise Happiness
7 Disgust Happiness Surprise

Aff 1 Happiness Happiness Happiness
2 Neutral Neutral Neutral
3 Anger Anger Anger
4 Sadness Sadness Sadness
5 Surprise Surprise Surprise
6 Fear Fear Fear
7 Disgust Disgust Disgust
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The results from trained AffectNet models lead to a totally new order in the
recognition ranking. Fear is better recognizable whereas happiness is not the
best emotion to recognize. These outliers in the comparative ranking are the
first indications of data inconsistencies.

Table 8. Recognition Accuracy Ordinal Ranking for Models trained on RAF-DB

Trained Rank AlexNet defaultNet VGGNet

FER 1 Happiness Happiness Happiness
2 Neutral Neutral Neutral
3 Sadness Sadness Sadness
4 Surprise Surprise Surprise
5 Disgust Disgust Disgust
6 Anger Anger Anger
7 Fear Fear Fear

RAF 1 Happiness Happiness Happiness
2 Surprise Neutral Surprise
3 Neutral Surprise Neutral
4 Sadness Anger Sadness
5 Anger Sadness Anger
6 Fear Fear Disgust
7 Disgust Disgust Fear

Aff 1 Surprise Surprise Surprise
2 Disgust Neutral Disgust
3 Neutral Disgust Neutral
4 Fear Fear Fear
5 Happiness Happiness Anger
6 Sadness Sadness Sadness
7 Anger Anger Happiness

Furthermore, it is worth taking a closer look on F1-score intervals at every
emotional state. There are differences between the best and worst F1-score for
every emotional state in the data sets across all model architectures. The differ-
ence in F1-scores are presented in Table 9.

Focusing on disgust, the F1-scores differences are the worst for traditional
training and testing. Therefore, we can assume that this emotion has the highest
label inconsistency. This is also influenced by the low share of this emotion in
every data set, see Table 1. Fear is underrepresented in AffectNet and RAF-DB
as well, and accordingly the F1-score difference is higher. In FER2013 fear seems
to have some label inconsistency, as the corresponding F1-score differences are
always high. The strong F1-score variations in certain emotions is a further sign
of potential irregularities in the underlying data sets.
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Table 9 leads to the conclusion that trained models on AffectNet tend to
worst F1-score ranges among all data sets. This confirms the point that Affect-
Net differs from the other data sets with reference to label inconsistency and
annotation.

Table 9. F1-score Differences for every Emotional State across all architectures and
all data sets

Model trained on Emotion Max F1-score differences on
FER2013 RAF-DB AffectNet

FER Anger 0.15 0.01 0.04
Disgust 0.23 0.02 0.01
Fear 0.07 0.00 0.01
Happiness 0.14 0.08 0.00
Sadness 0.11 0.09 0.03
Surprise 0.09 0.02 0.00
Neutral 0.09 0.08 0.05

RAF Anger 0.04 0.13 0.04
Disgust 0.02 0.23 0.02
Fear 0.09 0.10 0.02
Happiness 0.09 0.05 0.04
Sadness 0.03 0.07 0.05
Surprise 0.05 0.04 0.01
Neutral 0.06 0.07 0.05

Aff Anger 0.07 0.02 0.13
Disgust 0.01 0.01 0.07
Fear 0.06 0.01 0.11
Happiness 0.49 0.01 0.05
Sadness 0.27 0.01 0.17
Surprise 0.06 0.01 0.14
Neutral 0.13 0.03 0.06

In accordance to the ranking in Tables 2, 3 and 4, we present a ranking for
every emotional state based on F1-scores in every data sets among all models.
Table 10 indicates best recognition accuracy, considering the average of F1-scores
across all models. All data sets have the best F1-scores across the emotions while
training and testing on the same data set, except disgust in trained AffectNet.
Due to the stratified split into training, validation and test data, class imbal-
ances are present. A reason for disgust being more recognizable on RAF-DB for
trained AffectNet models is the fact that this class has a very low share in every
data set, but is more present in RAF-DB. For trained FER2013 the recogni-
tion accuracy in RAF-DB is better than for AffectNet despite the fact RAF-DB
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has the smallest amount of images. The emotions where RAF-DB ranks have a
smaller share. Focusing on RAF-DB trained models, the ranking for disgust, fear
and surprise are the worst on FER2013. Even FER2013 has a higher percentage
on the data set for these emotions, AffectNet has a higher recognition accuracy.
Happiness and neutral have higher appearance on AffectNet while the accuracy
level is lower. This is an indicator of label inconsistency on this emotions in
AffectNet. Overall, this leads to the assumption that RAF-DB has the lowest
data inconsistencies, while FER2013 and AffectNet have higher ones.

Table 10. Recognition Accuracy F1-score Ranking

Emotion FER2013 with trained RAF-DB with trained AffectNet with trained
FER RAF Aff FER RAF Aff FER RAF Aff

Anger I II III III I II II III I
Disgust I III III III I I II II II
Fear I III III III I II II II I
Happiness I II III II I II III III I
Sadness I II II II I III III III I
Surprise I III III II I II III II I
Neutral I II III II I II III III I

The low share of disgust might explain the high F1-score differences in Table 9
and the generally low F1-scores in Tables 2, 3 and 4. However, the emotional
states anger and fear also have comparatively small shares, but significantly
lower F1-score differences and relatively good F1-scores for all models. Emotional
states with lower proportions can also achieve quite satisfactory recognition accu-
racy, for instance, surprise on FER2013 and RAF-DB. Beyond, happiness with
its high appearance in all data sets has small accuracy levels on FER2013 for
trained AffectNet models (see Table 9).

The emotional classes are largely equally distributed across all data sets. In all
three data sets, happiness is the emotional state with the highest share followed
by neutral and sadness. For this reason, we believe that a comparison without
further adjustment of the class weights in the training set is valid. However,
we are also aware that our analysis has limitations and suggest future research
considering class imbalances. This could help to understand the potential impact
of class imbalances on our findings. Generally speaking, our analysis provides
convincing evidence that recognition accuracy of individual emotional states
differs. On the one hand, between individual emotional states, which is known
from previous studies as well [14]. On the other hand, recognition accuracy of
individual emotions vary (strongly) between different data sets while the image
features (e.g. size, color) and training parameters (e.g. epochs) are kept constant.
The used model architectures slightly vary in the accuracy, therefore the results
lead to the same conclusions. AffectNet data set indicates higher (F1-score)
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differences. The least data inconsistencies can be assumed on RAF-DB. Our
findings imply data inconsistencies and/or label ambiguity. Possible reasons for
these variations in emotional data can be multifactorial. Three potential factors
follow.

First, the number of total support and the proportion of emotional classes
tend to have an influence on the recognition accuracy of emotional states. This
does not apply to all emotional states. The AffectNet data set with most support,
reaches the lowest recognition accuracy for three emotions.

Second, reducing the image size and color range of RAF-DB and AffectNet to
fit the size of FER2013 could potentially lead to losses of information content.
However, interestingly initial experiments without pixel reduction showed the
opposite. The AffectNet data set with the highest image resolution and detail
information, had generally the lowest recognition accuracy scores.

Third, our findings show that certain emotions, i.e., disgust and fear, have
lower recognition accuracy. This is in line with previous publications [21,22]. It is
worth mentioning that emotions can have different intensities. Plus, differences
between certain emotions are not very obvious. Some emotions are very similar
and their expressions can be closely related to other emotions. Recently, research
has also questioned whether it is valid to assume that facial expressions only con-
tain single emotional states [11]. As consequence, data annotations can be biased
and/or incorrect. This can be possible for images carrying higher information
content, which leads to higher ambiguity, variability and variance. Therefore,
manual image annotation is more difficult and subject to a higher error rate.

The previous analysis clearly shows that Transfer Testing reveals differences
between the databases. Through these findings, trained models can be tested for
their transferability to other databases. However, further research on Transfer
Testing is necessary to determine a measure of transferability and to apply this
to real-world scenarios. Overall, the transfer test is a valid method for detecting
inconsistencies and/or label ambiguity.

6 Conclusion

In conclusion, this paper presents a comparative analysis to detect label incon-
sistencies in three commonly used facial expression datasets by Transfer Testing
with three different ML model architectures. For this, the data sets have been
processed using the same resolution to classify the contained facial images with
respect to the expressed emotions. To eliminate possible influences of model
architectures, we considered three different types of architectures. Our exper-
iments indicate that the complexity of the ML architectures does not have a
significant impact on the overall performance. The transferability among the
data sets, on the other hand, deserved a closer look. By Transfer Testing, the
presented results demonstrate that recognition accuracy is influenced by the size
of the data set and the share for each emotion in it. Furthermore, transferability
seems to be (strongly) influenced by the underlying data (label) quality. Trans-
fer testing shows the existence of label biases and/or ambiguity. Furthermore,
Transfer Testing shows that the transferability is decisively influenced by this.
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All in all, this leads to several future research directions. First, more empiri-
cal analysis is required, comparing more data sets. Class imbalances should also
be taken into account. Second, investigations are necessary to understand why
certain emotions have low recognition accuracy and possible solutions for this
challenge. Third, based on our results, it is necessary to investigate a poten-
tial relationship between annotation inconsistencies and transferability of ML
architectures. Fourth, research is required to minimize and/or distinguish data
annotation inconsistencies and label ambiguity as well as the implications which
entail with each of them.

AI-based emotion recognition is in general a promising technique for appli-
cations. Nonetheless, our results show that AI needs to be applied with great
care. On the one hand we should always critically reflect its outcomes, and on
the other hand its data input (quality).
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